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ABSTRACT

EFFICIENT IMAGE MATCHING USING HYPERDIMENSIONAL

COMPUTING AND GROUP TESTING

The widely adopted image matching approach remains dependent on exhaustive

matching of local features across images. We challenge this and investigate enhanc-

ing matching efficiency by not approximating nearest neighbors but using a hierarchical

approach. We hypothesize that efficiently identifying sufficiently similar geometrically

meaningful feature matches, rather than the most similar but geometrically random ones,

can improve or maintain matching performance, with lower computational complexity.

We propose a novel method named group-guided nearest neighbors, matching groups of

features as one and then matching individual features across matched groups only. Inspired

by concepts from hyperdimensional computing and group testing, the hierarchical pipeline

reduces the time complexity of feature matching from n squared to n times the square root

of n. Empirical results on homography and pose estimation indicate that our method

outperforms the standard nearest neighbors algorithm and achieves the performance level

of other methods. We formulate the proposed method as a general framework that offers a

continuum of methods with varying levels of computational cost. Additionally, we intro-

duce a linear-time matching algorithm which first tests memberships of the most distinct

features to feature groups of the other image, then matches these distinct features only with

the members of the matched groups. Experiments show that this algorithm performs better

than linear-time adaptations of quadratic-time algorithms. We also propose techniques

for generating better synthetic image pair datasets for homography estimation and faster

evaluation of image matching pipelines. These contributions result in an image matching

framework with efficient matchers, realistic datasets, and fast evaluation.
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ÖZET

HİPER BOYUTLU HESAPLAMA VE GRUP TESTİ KULLANARAK

VERİMLİ İMGE EŞLEME

Yaygın olarak kullanılan imge eşleme yaklaşımı, imgeler arasında yerel özniteliklerin

kapsamlı bir şekilde eşleştirilmesine dayanmaktadır. Bizler, bunu karşımıza alıyor ve en

yakın komşular üzerinden tahmin yaparak değil de hiyerarşik bir yaklaşım kullanarak

eşleme verimliliğinin artırılmasını inceliyoruz. En benzer ancak geometrik olarak rast-

gele öznitelik eşlemelerinin aksine, yeterince benzer ve geometrik olarak anlamlı öznitelik

eşlemelerinin verimli bir şekilde saptanmasının, daha düşük hesaplama karmaşıklığı

ile eşleşme performansını artırabileceğini veya koruyabileceğini varsayıyoruz. Grup

güdümlü en yakın komşular adında yeni bir yöntem öneriyoruz. Bu yöntem, öznitelik

gruplarının bir olarak eşleşmesini ve ardından yalnızca eşleşen gruplar arasında birey-

sel özniteliklerin eşleşmesini içerir. Hiper boyutlu hesaplama ve grup testi kavram-

larından ilham alan hiyerarşik boru hattı, öznitelik eşlemenin zaman karmaşıklığını n

kareden n kök n’ye düşürür. Homografi ve poz tahminine ilişkin deneysel sonuçlar, bizim

yöntemimizin standart en yakın komşu algoritmasından daha iyi bir sonuç verdiğini ve

diğer yöntemlerin performansını yakaladığını göstermektedir. Önerilen yöntemi, değişen

seviyelerde hesaplama maliyetlerine sahip yöntemlerin devamlılığını sunan genel bir

çerçeve olarak ifade ediyoruz. Ayrıca öncelikle en belirgin özniteliklerin diğer imgenin

öznitelik gruplarına üyeliklerini test eden, ardından bu belirgin öznitelikleri yalnızca

eşleşen grupların üyeleriyle eşleştiren bir doğrusal zamanlı eşleme algoritması sunuyoruz.

Deneyler gösteriyor ki, bu algoritma karesel zaman algoritmalarının doğrusal zaman

uyarlamalarından daha iyi bir performans sergiliyor. Homografi tahmini için daha iyi

sentetik imge çifti veri kümeleri oluşturulması ve imge eşleme boru hatlarının daha hızlı

değerlendirilmesi için teknikler de sunuyoruz. Bu katkılar sonucunda verimli eşleştiriciler,

gerçekçi veri kümeleri ve hızlı değerlendirme içeren bir imge eşleme çerçevesi ortaya

çıkmaktadır.
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CHAPTER 1

INTRODUCTION

Matching two or more images of the same scene is a fundamental problem in

computer vision and serves as a prerequisite for various applications, including image

stitching (Levin et al. 2004; Brown and Lowe 2007; Szeliski et al. 2007; Zaragoza et

al. 2013; Adel, Elmogy, and Elbakry 2014; Lin et al. 2015; Wang and Yang 2020), 3D

reconstruction (Ullman 1979; Wu 2011, 2013; Schonberger and Frahm 2016; Schönberger

et al. 2016; Moulon et al. 2017; Lindenberger et al. 2021; Xiang Wang et al. 2021; Bastanlar

et al. 2010), and simultaneous localization and mapping (Montemerlo et al. 2002; Durrant-

Whyte and Bailey 2006; Bailey and Durrant-Whyte 2006; Thrun 2008; Mur-Artal, Montiel,

and Tardos 2015; Fuentes-Pacheco, Ruiz-Ascencio, and Rendón-Mancha 2015; Stachniss,

Leonard, and Thrun 2016; Placed et al. 2023). Figure 1.1 illustrates the inputs, outputs,

and sample applications of image matching.

Image matching typically involves extracting local features from all images and

matching the most similar features across images. This process is followed by a robust

estimation which searches the largest subset of matches that are geometrically consistent.

Many works aimed at enhancing the pipeline has been concentrated on either

improving feature extraction or accelerating the geometric verification of feature matches.

Nevertheless, the feature matching step has remained relatively unchanged, continuing to

depend on either exact or approximate nearest neighbor (NN) search in descriptor space.

Efforts in feature matching tend to be categorized into two groups: either a com-

prehensive solution that is more accurate yet computationally more expensive than exact

NN search with simple filters, or an approximate search that is more efficient but less

accurate than exact NN search. A recent and successful exemplar of accurate solutions

is AdaLAM (Cavalli et al. 2020), which establishes region matches between images and

filters feature matches based on these region matches. However, methods like AdaLAM

rely on nearest neighbors and add extra steps at the end of the exhaustive search rather than

replacing it. This approach limits their efficiency. On the other hand, approximate NN

methods such as FLANN-based solutions (Muja and Lowe 2009) result in a substantial

1



Multiple Images of the Same Scene
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Figure 1.1. Image Matching with Sample Applications

degradation of performance (Jin et al. 2021).

To the best of our knowledge, no work has improved the efficiency of exhaustive

feature matching without compromising its accuracy.

1.1. Thesis Statement

We observe that the NN search process for feature matching represents a “leaky

abstraction”. This is to say that simply identifying the most similar features may not

lead to geometrically meaningful results, especially when dealing with repetitive patterns

2



in images. Even when geometric validation successfully identifies and eliminates these

highly similar but incorrect feature matches, they continue to cause problems by slowing

down the validation process and hindering the use of information from the correct matches

of these features.

In our study, we ask: Is it possible to enhance the efficiency of feature match-

ing without losing its accuracy, using a hierarchical approach that does not depend on

exhaustive search among feature descriptors? Our thesis is that efficiently identifying

sufficiently similar geometrically meaningful feature matches, rather than the most similar

but geometrically random ones, can potentially improve or at least maintain matching

performance.

We draw inspiration from the human visual system which recognizes objects based

on high-level features, advanced feature filtering methods such as AdaLAM (Cavalli et

al. 2020), which verifies feature matches locally around distinct matches, and recent group

testing (Iscen and Chum 2018) and hyperdimensional computing (Neubert and Schubert

2021) methods applied to computer vision problems.

We propose two distinct feature matching strategies, both employing a hierarchical

approach. Instead of directly matching individual features across images, we first group

the features within each image. The Group-Guided Nearest Neighbors (GGNN) algorithm

matches feature groups first and then matches individual features within those groups.

Conversely, the Group-Tested Nearest Neighbors (GTNN) algorithm matches individual

features to feature groups initially, and subsequently matches individual features within

the matched groups. Figure 1.2 illustrates the matching strategies.

Both algorithms reduce the time complexity of the matching process from Θ(𝑛2)

to Θ(𝑛
√
𝑛) when considering

√
𝑛 groups of features, where 𝑛 represents the total number

of features in one image. Additionally, GTNN improves efficiency further and achieves

Θ(𝑛) time complexity by matching only the top
√
𝑛 features, rather than all 𝑛 features, to

all groups in the other image.

1.2. Thesis Structure

The organization of the thesis is as follows:

Chapter 1: We introduce the primary problem addressed in this research and
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NN variants

Match features to features.

GGNN

Match groups to groups.

GTNN

Match features to groups.

Figure 1.2. Feature Matching Strategies: This figure illustrates the initial stages of NN

variants and two proposed group-based matching methods.

outline our proposed approach.

Chapter 2: We provide the necessary background knowledge, covering funda-

mental concepts and discussing related work in the literature.

Chapter 3: We present a concrete solution to the problem. This includes the

introduction of group-guided nearest neighbors (GGNN), along with its pre- and post-

processing stages. We demonstrate the efficiency of this solution, which has a time

complexity of Θ(𝑛
√
𝑛) instead of Θ(𝑛2), and its effectiveness in various homography

estimation tasks.

Chapter 4: We generalize the computation of hierarchical regions, enabling the

use of any number of regions with any number of features. We introduce group-tested

nearest neighbors (GTNN), an alternative to GGNN that compares top features with groups

of features, achieving linear time complexity and thus being more efficient. We present

methods for quick approximate evaluation of image matchers for hyperparameter opti-

4



mization and an accurate image warping algorithm utilizing single image superresolution

techniques to create realistic synthetic image pairs. Lastly, we extend estimation-guided

matching to epipolar geometry and assess the pose estimation performance of the hierar-

chical matching algorithm.

Chapter 5: We summarize our contributions and findings and outline potential

directions for future work.
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CHAPTER 2

BACKGROUND

This chapter presents an overview of the fundamentals of image matching, the key

concepts that inspire our work, and the relevant literature essential for understanding the

discussions that follow in this thesis.

2.1. Image Matching Fundamentals

Image matching is the process of establishing point correspondences between

images of the same scene to estimate the geometric relationship between the cameras.

Figure 2.1 shows a pair of images that can be matched. The process of estimating

geometric transformation between images typically begins with the extraction of sparse,

local features from each image. These features consist of keypoints, which are distinct

interest points, and their associated descriptor vectors computed from the surrounding

image patches. The features are then matched across the images by identifying the most

similar pairs and retaining only the geometrically consistent matches. Once reliable

point correspondences between the images are established, estimating the transformation

parameters becomes straightforward by minimizing the squared errors.

Figure 2.2 visualizes keypoints of the images. Numerous algorithms exist for

keypoint detection, each with its own strengths and characteristics. Some algorithms

offer better localization and repeatability, while others prioritize speed. There are both

handcrafted and learned methods. Certain algorithms detect corners, while others detect

blobs. Some detect circles of uniform sizes, while others detect circles of varying sizes to

better handle scale differences between images. Additionally, some algorithms calculate

a dominant 2D orientation to normalize the patch to a canonical form, and some identify

affine shapes to enhance robustness to viewpoint changes.

Once the keypoints are detected, the next step is to describe the image patches

marked by keypoints with descriptor vectors that are invariant or robust to geometric and

photometric differences, such as changes in viewpoint or brightness. This ensures that the
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Figure 2.1. Sample Inputs for Image Matching: Because the scene is planar, the two images

are related by a projective transformation, which can be represented by a homography

matrix with 8 degrees of freedom. In this case, the task of an image matcher is to

accurately estimate these 8 parameters, which is possible by determining 4 perfect point

correspondences or more imperfect ones. If the camera movement were constrained to

simpler transformations, there would be fewer parameters to estimate. For example, if

there were only a 2D rotation, only one parameter, the angle, would need to be estimated.

In contrast, if the scene were three-dimensional, more parameters would need to be

estimated for general camera movements, either the essential matrix or the fundamental

matrix, depending on whether the cameras are calibrated.

keypoints can be reliably matched across different images despite these variations. Some

algorithms only detect keypoints, some only compute descriptors, and some perform both

tasks. We refer to a keypoint and its corresponding descriptor jointly as a ‘local feature’

(in short, ‘feature’).

Figure 2.3 visualizes the tentative feature matches between the images. Note

that this matching procedure is not geometry-aware, and no filtering based on geometric

verification has been applied yet.

Tentative feature matches often contain mismatches, known as outliers. Typically,

outliers are much more common than inliers. However, it is often possible to filter out the

outliers because they are generally geometrically random and, consequently, inconsistent

with other matches. In contrast, inliers, even if few in number, are all consistent with each

other and have an approximate consensus on the transformation parameters. Geometric

verification can be applied either locally or globally. Local geometric verification can be

used as a prefiltering method to reduce the contamination rate—the ratio of the number
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Figure 2.2. Outputs of Keypoint Detection: 2048 Difference of Gaussians (DoG) key-

points (represented as circles with orientations) are detected independently in both images.

Some keypoints (marked in green) are repeated in the other image, meaning their centers,

when projected using the true homography matrix, align closely with a keypoint center in

the other image. Orange-marked keypoints are repeated with a less strict threshold, while

red-marked keypoints are not repeated. High repeatability is a desired characteristic of

keypoint detectors, as non-repeated keypoints cannot be matched, even with a hypothetical

perfect feature matcher. Note that due to non-overlapping regions in the images, certain

keypoints cannot be repeated, such as those close to the bottom-left and top-right corners

of the right image.

of outliers to all matches—thereby increasing the success chance of global geometric

verification. Global geometric verification is performed using a Monte Carlo algorithm,

where the time is constrained and success is probabilistic. In the global approach, a

large consistent subset is identified among all matches, with the remaining matches being

rejected. Figure 2.4 visualizes the inliers identified solely through global geometric

verification, excluding any local verification among the previously established feature

matches.

The Direct Linear Transform (DLT) algorithm works by solving a set of linear

equations derived from point correspondences between two images. Since each 2D point

provides two coordinates, solving for the transformation parameters requires establishing

𝑛 point correspondences to satisfy 2𝑛 degrees of freedom. For instance, to estimate the

parameters of a projective transformation, a minimum of four point correspondences is

required. However, in practical applications, due to localization errors, approximately 20

point correspondences are typically needed to achieve accurate results. In this case, the
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Figure 2.3. Outputs of Feature Matching: SIFT features (centers of the previously detected

DoG keypoints and their corresponding descriptor vectors) are matched with their nearest

neighbors in descriptor space across images. The search is bidirectional, retaining only

mutual matches. Additionally, only the 512 matches with the smallest descriptor distances

are kept. Green-marked matches are the best, orange-marked matches are moderate, and

red-marked matches are the worst, as compared to the ground truth homography matrix.

system is overdetermined, meaning there are more correspondences than the theoretical

minimum. Singular Value Decomposition (SVD) is used to find a least-squares solution

by minimizing the sum of squared residuals, considering all the correspondences. Figure

2.5 visualizes the estimated parameters alongside the ground truth.

Table 2.1 shows the important properties of the most common 2-dimensional

geometric transformations. A rigid transformation is also known as a Euclidean transfor-

mation. These transformations may occur in planar scenes when the cameras are moved.

For example, a similarity transformation occurs when the camera moves in three dimen-

sions but only changes its orientation in the roll direction. Roll refers to the rotation of the

camera around the axis that points in the direction the camera is facing, causing the image

plane to rotate in 2D. Figure 2.6 illustrates these transformations. All these transforma-

tions are closed under composition and inversion. If 𝐻1 and 𝐻2 are homography matrices

representing projective transformations, then their products 𝐻1𝐻2 and 𝐻2𝐻1, as well as

their inverses 𝐻−1
1

and 𝐻−1
2

, are also homography matrices.
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Figure 2.4. Outputs of Outlier Filtering: Outlier filtering, or geometric verification, in-

volves determining the transformation parameters that have the largest consensus among

the provided point matches. The most popular algorithm for performing this task is Ran-

dom Sample Consensus (RANSAC). The RANSAC algorithm is used to reject outliers

among the matches. In its simplest form, RANSAC randomly samples a minimal sub-

set of matches to estimate the transformation parameters, which in this case requires 4

point correspondences since they produce 8 equations to estimate 8 parameters. Then,

all matches that are sufficiently consistent with the parameters suggested by the minimal

subset are counted. This process is repeated many times, and the minimal subset with the

best support (highest count) is chosen as the best hypothesis. Matches inconsistent with

this best hypothesis are then eliminated. RANSAC has many variants that improve upon

its basic components.

2.2. Key Inspirations

Hyperdimensional computing (HDC) (Kanerva 2009, 2022) is a computational

paradigm inspired by high-dimensional vector spaces and human cognitive processes. It

uses hypervectors to efficiently encode, process, and retrieve information. In HDC, data

points in high-dimensional space undergo operations like binding and bundling (super-

position), enabling robust, noise-tolerant computations due to redundant representation.

This redundancy ensures data integrity even when some components are altered or lost.

HDC excels in associative memory and pattern recognition tasks, manipulating complex

data structures with simple mathematical operations. Its resilience to errors, noise, and

capacity for parallel processing make HDC a scalable, energy-efficient alternative for

AI, cognitive computing, and data-intensive applications. Recently, HDC has been uti-

10



Figure 2.5. Estimated and True Homographies: The corners of the left image were

projected onto the right image using both the estimated homography (marked in red) and

the true homography (marked in green). The estimated quadrilateral is nearly invisible

because it almost perfectly aligns with the true one. Note that neither the automobile

visible in the first image nor the ground visible in the second image prevents accurate

determination of the camera movement. Since the scene is mostly planar, these elements

are treated as occlusions that must be discarded, and local features are capable of handling

them effectively.

lized in computer vision for systematically aggregating image descriptors. This approach

leverages binding and bundling operations to combine multiple image descriptors into a

single holistic vector, significantly improving performance in tasks like place recognition

in mobile robotics (Neubert and Schubert 2021).

Group testing (Du, Hwang, and Hwang 2000; Aldridge, Johnson, and Scarlett

2019) is a combinatorial method for identifying defective items within a large population

by testing groups rather than each item individually. Initially proposed during World War

II for detecting syphilis in the U.S. Army, this technique involves pooling samples and

testing the pools. If a pool tests negative, all items within it are deemed non-defective;

if positive, further testing identifies the defectives. Group testing leverages the principles

of combinatorial mathematics to design efficient pooling strategies, making it particularly

effective in low-prevalence scenarios by significantly reducing the number of tests and

saving time and resources. This method is adaptable to various problem settings and is

applied in fields such as medical diagnostics, manufacturing quality control, and network

security, optimizing the testing process while maintaining high accuracy and reliability.
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Table 2.1. Expressive Powers of 2D Geometric Transformations

Translation Rigid Similarity Affine Projective
Degrees of freedom 2 3 4 6 8

Translation � � � � �
Rotation � � � �

Uniform scaling � � �
Nonuniform scaling � �

Shear � �
Perspective projection �

Composition of projections �

Recently, group testing has been applied in computer vision for efficient approximate

nearest neighbor search in large-scale image retrieval (Iscen and Chum 2018). This

approach enhances search accuracy while reducing computational complexity, making it

suitable for processing large datasets in parallel and in batches.

2.3. Related Work

2.3.1. Features for Sparse Matching

In image matching systems handcrafted feature extractors such as SIFT (David G

Lowe 1999, 2004) along with its variants (Ke and Sukthankar 2004; Bastanlar, Temizel,

and Yardimci 2010; Yu and Morel 2011; Brown and Süsstrunk 2011; Arandjelović and

Zisserman 2012) and alternative real-valued descriptors (Mishchuk et al. 2017; DeTone,

Malisiewicz, and Rabinovich 2018; Barroso-Laguna et al. 2019; Z. Luo et al. 2019; Tian

et al. 2020; Tyszkiewicz, Fua, and Trulls 2020; Gleize, Wang, and Feiszli 2023) have been

widely adopted due to their robustness against photometric and geometric transformations.

With the advent of deep learning, convolutional neural networks have been employed to

learn feature descriptors directly from data, which has shown superior performance over

handcrafted methods for most tasks. Binary descriptors have also gained popularity due

to their computational efficiency and lower memory requirements. Techniques such as
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Figure 2.6. 2D Geometric Transformations: This figure illustrates how a square can

be transformed under various classes of geometric transformations. The most general

transformation is the projective transformation, where all four corners of the square can

move independently.

BRIEF (Calonder et al. 2010; Calonder et al. 2012) and ORB (Rublee et al. 2011), which

are handcrafted descriptors, along with LATCH (Levi and Hassner 2016) and BEBLID

(Suárez et al. 2020), which are learned descriptors, provide a faster alternative to real-

valued descriptors.

2.3.2. Matching of Sparse Features

Traditional methods like Nearest Neighbors (NN) and Mutual Nearest Neighbors

(MNN) have been foundational for matching sparse features. MNN works by applying the

nearest neighbors method bidirectionally and then calculating the intersection, retaining

only the mutual matches. This ensures fewer mismatches by confirming that a feature

in one image is the nearest neighbor of a feature in the second image and vice versa.

However, it often reduces the number of correct matches as well.

To enhance robustness, the Nearest Neighbors with Ratio Test (SNN) (David G.

Lowe 2004) was introduced. SNN compares the distance of the closest neighbor to

that of the second-closest, filtering out matches where the ratio exceeds a predefined
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threshold. This ratio test effectively reduces false matches by ensuring that the best match

is significantly closer than the second-best match. SNN has been highly influential in

the development of newer algorithms and continues to remain relevant today. A more

recent approach, SMNN (Jin et al. 2021), combines the principles of MNN and SNN to

further refine the matching process by ensuring mutual consistency and applying a ratio

test, thereby reducing false matches.

Beyond descriptor-only methods, some techniques are geometry-aware, meaning

they consider the spatial relationships between keypoints. First Geometrically Inconsistent

Nearest Neighbors (FGINN) (Mishkin, Matas, and Perdoch 2015) and Adaptive Locally-

Affine Matching (AdaLAM) (Cavalli et al. 2020) are notable for incorporating geometric

constraints into the matching process. FGINN extends SNN by searching for second

nearest neighbors only among keypoints that are spatially distant from the first nearest

neighbor, producing a superset of SNN. AdaLAM is a more advanced system, filtering

NN matches with local geometric verification around SNN matches using Random Sample

Consensus (RANSAC) (Fischler and Bolles 1981). Figure 2.7 illustrates the Hasse diagram

of the matches produced by these algorithms.

Efficient alternatives to exact NN methods have been extensively explored in the

literature. Notably, the Fast Library for Approximate Nearest Neighbors (FLANN) (Muja

and Lowe 2009) employs multiple randomized kd-trees (Silpa-Anan and Hartley 2008)

and hierarchical k-means trees (Muja and Lowe 2009) to approximate NN. Although these

methods offer improved efficiency, they perform worse than exhaustive nearest neighbor

searches in terms of matching accuracy (Jin et al. 2021).

Additionally, hash-based methods such as LDAHash (Strecha et al. 2011) and

CasHash (Cheng et al. 2014) provide efficient indexing of descriptors. While these

methods are more efficient, they are typically less accurate than tree-based methods and

are often implemented in a feature-specific manner, which is another disadvantage.

Another category of approximate NN algorithms includes graph-based matchers

(M. Wang et al. 2021), which scale well for searching. Examples include the Navigating

Spreading-out Graphs (NSG) (Fu et al. 2017) and Hierarchical Navigable Small Worlds

(HNSW) (Malkov and Yashunin 2018). These algorithms are utilized for general searches

in large vector databases and are not limited to local feature matching across two images.

All these tree-based, hash-based, and graph-based approximate nearest neighbor
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Figure 2.7. Hasse Diagram of Selected Algorithms Based on Subset Relations of Produced

Matches: The matches identified by the algorithms are ordered by set inclusion. For

instance, MNN is a subset of NN. This partial order is valid only when identical parameters

are applied. For example, FGINN is a subset of SNN under the same threshold conditions.

This is particularly significant for SMNN, as it is a subset of both MNN and FGINN. To

mitigate the strict constraints, SMNN is generally employed with less strict thresholds.

methods are purely descriptor-based and do not incorporate geometric awareness. Con-

sequently, even under optimal conditions, these algorithms can only perform as well as

exact NN methods and not better, for sufficiently large datasets.

The matching algorithm proposed in the following chapter neither filters nor ap-

proximates NN. It is designed to be more efficient than exact NN and more accurate than

approximate NN.
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CHAPTER 3

HIERARCHICAL IMAGE MATCHING WITH

GROUP-GUIDED NEAREST NEIGHBORS

Exact Nearest Neighbor (NN) search with heuristic filtering remains on the Pareto

front for balancing image matching performance and computational efficiency. We propose

a hierarchical pipeline that employs hyperdimensional computing for efficient group testing

of feature similarities. Figure 3.1 illustrates the main idea behind this approach, which

first detects, describes and matches feature groups rather than directly matching individual

features. Experimental evidence suggests that this group-based approach is not only

efficient but also highly effective for image matching.

(a) Image with a pyramid of circular regions (b) Region as a group of local features

Figure 3.1. Hierarchical Approach for Feature Matching: (a) illustrates the coarse feature

matching where the images are divided into regions of varying sizes, resulting in
√
𝑛

regions for 𝑛 features. Each region is then compactly described by aggregating the group

of local features detected within it, as shown in (b), instead of using a descriptor extraction

method directly. This aggregation helps to discard the vast, uninformative space within

the region. Subsequently, groups of features are matched across images, followed by the

matching of individual features within the corresponding groups.
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3.1. Approach

We propose Group-Guided Nearest Neighbors (GGNN), a hierarchical approach

to matching image pairs. Initially, we describe features with vectors that are probably

approximately orthogonal to each other, with the naming inspired by probably approx-

imately correct learning. We then spatially group keypoints and represent each group

with a single descriptor vector formed through aggregation. Our process matches these

groups across images, and we carry out feature matching and match filtering within these

matched groups. By matching these groups across images and performing feature match-

ing across group matches instead of conducting a global search, we enhance efficiency.

Our method showcases a lower time complexity than NN search. Figure 3.2 illustrates

both matching strategies. Subsequently, we perform a robust estimation of the geomet-

ric transformation. Finally, we apply a guided matching procedure to further refine the

estimated transformation. Figure 3.3 shows an overview of the proposed system.

3.1.1. Probably Approximately Orthogonal Feature Description

The simple summation operation effectively represents a set of vectors when the

involved vectors are pairwise orthogonal. The expected value for the angle between two

random, zero-centered descriptor vectors in 𝑘 > 1 dimensions is 90◦. However, the

variance is significant in relatively lower-dimensional spaces, particularly when the de-

scriptors are not statistically random. Achieving perfect orthogonality among descriptors

without compromising other desirable characteristics such as matchability is infeasible.

To achieve “probably approximately orthogonal” vectors, we employ higher-dimensional

descriptor vectors than usual, as vectors in higher dimensions are more likely to exhibit

orthogonality. This approach is inspired by the principles of hyperdimensional comput-

ing (Kanerva 2022), where vector symbolic architectures enable symbolic computation

using very high-dimensional random vectors. These vectors, when subjected to algebraic

operations, function akin to distinct symbols.

We explored various publicly available feature extractor algorithms and their com-

binations through concatenation, focusing on binary descriptors since they are faster to

compute and compare, and usually higher-dimensional than the real-valued alternatives.
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NN

Θ(𝑛2)

𝑛 such features

in the left image

𝑛 such features

in the right image

Perform 𝑛2 such comparisons to

obtain 𝑛 best feature-feature matches.

GGNN

Θ(𝑛) +
√
𝑛 · Θ(𝑛) = Θ(𝑛

√
𝑛)

√
𝑛 such groups

of
√
𝑛 features

in the left image

√
𝑛 such groups

of
√
𝑛 features

in the right image

Perform 𝑛 such comparisons to

obtain
√
𝑛 best group-group matches.

Then for each of the
√
𝑛 group-group matches:

√
𝑛 such features

in the left group

√
𝑛 such features

in the right group

Perform 𝑛 such comparisons to

obtain
√
𝑛 best feature-feature matches.

(𝑛 feature-feature matches are obtained in total.)

Figure 3.2. Feature Matching in Θ(𝑛
√
𝑛) Time: The widely adopted strategy for matching

features involves searching for the most similar feature pairs. The NN strategy encompasses

not only the basic NN algorithm but also various algorithms that approximate NN, as well

as those that rely on NN before filtering the matches. GGNN has a lower time complexity

because it does not require an exact NN search. Additionally, it does not approximate

NN, meaning that in the best-case scenario, its output differs from NN. The objective of

GGNN is to find sufficiently similar, geometrically meaningful matches.
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Figure 3.3. Comprehensive System Overview: The diagram illustrates the computational

processes applied to individual images (left) and to pairs of images (right). It is important

to note that for a dataset of 𝑚 images, the number of potential image pairs escalates to

Θ(𝑚2). This exponential increase underscores the significance of optimizing the efficiency

of computations that are performed for each image pair. For optimal visual clarity, viewing

in color is recommended.
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The concatenation of bipolar representations of two binary descriptors, 512-dimensional

LATCH (Levi and Hassner 2016) and 512-dimensional BEBLID (Suárez et al. 2020),

computed on Oriented FAST (Rublee et al. 2011) keypoints, emerged as an effective solu-

tion in terms of orthogonality and matchability. To enhance orthogonality, we identified

better configurations of these algorithms than their default settings in OpenCV (Bradski

2000). Additionally, we implemented non-maximum suppression on keypoints based on

their response scores to enhance orthogonality further, in response to our observation that

keypoints in close spatial proximity are less likely to yield orthogonal vectors.

3.1.2. Spatial Grouping of Local Features

The hierarchical approach necessitates the grouping of local features. In our ex-

periments, it was observed that grouping features based on keypoint positions consistently

outperforms random grouping or grouping based on descriptor vectors, such as maximiz-

ing intra-group pairwise orthogonality.

Various spatial grouping strategies were explored, including the use of top-scale

keypoints as regions, clustering of keypoints, and random sampling of large circles on

images. Remarkably, the most effective method was also the simplest: employing fixed-

size, overlapping circles that are systematically sampled, with their centers forming a grid

layout. The total number of these circular regions correlates with the time allocated for

solving the matching problem. We suggest using
√
𝑛 regions where 𝑛 is the number of

features. Other hyperparameters, such as circle sizes and distances between them, were

empirically determined. These parameters could potentially be further tuned in the future

using larger, more diverse datasets or those specific to certain domains. The sampling

algorithm was improved by introducing a pyramid-like pattern of variable-size circles,

which better accommodates scale differences between images.

It was observed that groups are biased towards matching with groups of higher

cardinalities, severely limiting the spatial distribution of group matches across the images

and significantly reducing image matching performance. To address this issue, we ensured

a consistent feature count within each group. In regions with an excess of keypoints, only

those with the highest scores were selected. Conversely, if a region had insufficient

keypoints, the circle size was increased to include the necessary number. This approach
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allows for unbiased comparison of aggregated descriptors and leads to better utilization

of group count budget.

To aggregate descriptors, we employed element-wise addition of the bipolar repre-

sentation of binary descriptors. This operation, referred to as ”bundling” in hyperdimen-

sional computing literature, efficiently represents a superposition of orthogonal vectors.

There is no need for 𝐿2 normalization of the vectors before aggregating since they all

possess the same 𝐿2 norm, with components being either 1 or −1. After aggregation,

there is still no need for such normalization because we always add the same number of

such vectors, and thus the resulting vectors have the same norm.

3.1.3. Group-Guided Feature Matching

Once individual features are computed and groups are formed and described, we

match these
√
𝑛 groups of features across images (right side of Fig. 3.3). We compare

the group descriptors using cosine similarity, as our experiments demonstrated that it

performs better than other, more complex set-theoretic formulations such as the Jaccard

Index. This correspondence search is performed bidirectionally, considering the union of

the resulting match sets. We retain only the top 50% of the group matches based on their

vector similarities to eliminate low-quality matches, resulting in a maximum of
√
𝑛 group

matches.

Next, we conduct feature matching for each of the matched groups across images.

To limit the impact of incorrectly matched groups and remove false feature matches,

we first filter the nearest neighbors using the mutuality constraint. We then perform

local geometric verification by running multiple RANSACs (Fischler and Bolles 1981) in

parallel, similar to the method described in (Cavalli et al. 2020). We aggregate all feature

matches obtained from all group matches into a single pool, which contains at most 𝑛

feature matches, though typically fewer in practice.

This group-guided feature matching concept parallels the principles of group test-

ing (Aldridge, Johnson, and Scarlett 2019). In group testing, individual tests are simulta-

neously conducted on multiple items. However, our approach involves not only grouping

the items (features of the first image) but also the tests (features of the second image).

Adopting this two-way grouping strategy enhances the efficiency of the testing process.
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3.1.4. Robust Estimation and Guided Matching

When features are matched and pre-filtered, they often still contain outliers—matches

that are geometrically inconsistent with the largest consistent subset. To address this, we

follow the standard procedure of performing a robust estimation of the geometric trans-

form, typically using RANSAC (Fischler and Bolles 1981) or its variants (Chum, Matas,

and Kittler 2003; Chum and Matas 2005; Brachmann et al. 2017; Barath and Matas 2018;

Brachmann and Rother 2019; Barath et al. 2020; Ivashechkin, Barath, and Matas 2021;

Barath, Cavalli, and Pollefeys 2022; Cavalli et al. 2023). We maintain a high threshold for

robust estimation to find a coarse estimation.

Next, we conduct estimation-guided feature matching using all keypoints. In this

process, we compare features with other features within a small neighborhood centered

around the estimated location of the keypoint. This is done using the ratio test for

descriptors as described in (David G. Lowe 2004) and scale-based filtering for keypoints

as in (Cavalli et al. 2020). Guided matching is highly efficient as it leverages the previously

constructed quick keypoint search structure. We finalize the process with robust estimation

over the new feature matches, this time using a small error threshold.

3.1.5. Computational Complexity

The time complexity of NN search is Θ(𝑘𝑛2), where 𝑘 represents the descriptor

dimensionality, which is typically a constant, and 𝑛 represents the feature count, a variable

whose optimal value depends on factors such as image resolution. In our approach, we

use
√
𝑛 groups containing

√
𝑛 features. Our algorithm requires Θ(𝑘𝑛) time for exact group

matching. Subsequently, matching
√
𝑛 features to other

√
𝑛 features takes Θ(𝑘𝑛) time for

each the
√
𝑛 group matches. The total complexity for group-guided feature matching thus

becomes Θ(𝑘𝑛
√
𝑛). Since 𝑘 is normally a constant, this complexity can be simplified to

Θ(𝑛
√
𝑛).
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3.2. Evaluation

We evaluate the performance of the proposed method on the task of homography

estimation using the Oxford classic image matching dataset (Mikolajczyk and Schmid

2005). This dataset consists of 6 images for each of the 8 scenes, resulting in a total of

48 images. For each scene, there is one reference image, which is paired with each of

the other 5 images in that scene, resulting in 40 image pairs with corresponding ground

truth homography matrices. By calculating homography matrices for all possible image

pairs within each scene, we extend this to a total of 288 image pairs, which we refer to as

Oxford+. The “Bikes” and “Trees” scenes exhibit varying degrees of blur. The “Leuven”

scene involves variations in light conditions, while the “UBC” scene is characterized by

JPEG compression. The “Graff” and “Wall” scenes depict changes in viewpoint, and the

“Bark” and “Boat” scenes involve zoom and rotation adjustments.

Additionally, we use the Homogr dataset (Lebeda, Matas, and Chum 2012), which

contains a single image pair for each of the 16 scenes. Due to the small sample size

and the similar performance of all methods, we generate synthetically transformed image

pairs to allow for differentiation among the methods. Following the approach described

in (DeTone, Malisiewicz, and Rabinovich 2016), we generate random homographies by

perturbing the image corners. This process allows for the creation of any number of image

pairs, and for our experiments, we generate 640 image pairs.

Lastly, we utilize the image sequences from the HPatches dataset (Balntas et

al. 2017). This dataset comprises 580 image pairs, with 285 pairs featuring illumination

changes and the remaining 295 pairs featuring view changes.

We employ the average corner error (ACE) (DeTone, Malisiewicz, and Rabinovich

2016; Le et al. 2020; S.-Y. Cao et al. 2022; Li et al. 2022; Hong et al. 2022; Y. Luo et

al. 2022; Luo, Wang, Liao, et al. 2023; S. Cao et al. 2023; Liao, Luo, and Wang 2023; Luo,

Wang, Wu, et al. 2023; Xingyi Wang et al. 2023), a metric commonly used for assessing the

accuracy of geometric transformations, for the evaluation of the obtained transformation.

ACE quantifies the average discrepancy between the true and estimated corner positions

in the transformed image. Success is declared if the ACE value falls below 1% of the

image diagonal’s length; otherwise, it is considered a failure (Ivashechkin, Baráth, and

Matas 2021).
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In experiments we use 𝑛 = 4096 features. In practice the number of features

can be as high as 8k (Cavalli et al. 2020), 10k (Gleize, Wang, and Feiszli 2023), 12k

(Tyszkiewicz, Fua, and Trulls 2020), 15k (Jin et al. 2021), 20k (Santellani et al. 2022)

or 40k (Suwanwimolkul, Komorita, and Tasaka 2021). The theoretical speedup of the

proposed method increases as the number of features increases.

Table 3.1 presents the performance of the proposed method on the dataset and

compares it with several classical and recent methods. The classical methods include

nearest neighbors (NN), mutual nearest neighbors (MNN), and nearest neighbors with

ratio test (SNN) (David G. Lowe 2004). Additionally, we evaluate FGINN (Mishkin,

Matas, and Perdoch 2015), a variation of SNN that considers the geometry of keypoints.

Recent methods such as AdaLAM (Cavalli et al. 2020) and SMNN (Jin et al. 2021), as

implemented in Kornia (Riba et al. 2020), are also included in the comparison. We also

include the preemptive feature matching strategy (Wu 2013), which matches top-scale

features across images to accelerate multiview matching. As a hierarchical matching

baseline with a Θ(𝑛
√
𝑛) time complexity, we include feature matching guided by matches

of top-scale features, referred to as Hierarchical Nearest Neighbors (HNN). For linear-time

approximate NN methods, we evaluate the widely-used FLANN (Muja and Lowe 2009),

which is tree-based, and the state-of-the-art HNSW (Malkov and Yashunin 2018), which is

graph-based. To ensure a fair comparison, all methods were applied to the same keypoints

with identical descriptor vectors, followed by identical post-processing steps, including

guided matching. For robust estimation, we used GC-RANSAC (Barath and Matas 2018).

All methods were tuned for optimal performance, except for NN and MNN, which do not

require parameter tuning.
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The results indicate that GGNN achieves Pareto optimality in the efficiency-

accuracy trade-off, meaning that no other method surpasses GGNN in both efficiency

and accuracy. In other words, for its level of efficiency and beyond, GGNN demonstrates

the highest accuracy across all three datasets. Furthermore, GGNN outperforms both NN

and AdaLAM on all three datasets while maintaining greater efficiency.

Figure 3.4 presents the intermediate results of the proposed method on a selected

image pair, demonstrating how the refining process enhances the rate of correct matches

at both the group and feature levels. Figure 3.5 provides sample results, showcasing both

successful matches and various types of failures.

Table 3.2 presents the results of the ablation study for the GGNN pipeline, wherein

each column represents the proposed method with some components intentionally omitted.

The ablation study reveals that performance deteriorates when certain components are

removed or modified, highlighting the significance of these components in the overall

effectiveness of the proposed method. This suggests that each component contributes

positively to the model’s performance and that their inclusion is essential for achieving

optimal results. Notably, the results indicate that the removal of NMS led to the largest

decrease in performance across all three datasets, underscoring its critical importance in

maintaining high accuracy.

3.3. Discussion

For image matching, increased field-of-views captured in increased image resolu-

tions necessitates a quadratic increase in keypoints due to the two-dimensional nature of

images. Our research introduces a novel approach, proposing an image matching method

that circumvents the exhaustive NN search in descriptor space for each keypoint. Central to

this approach is the concept of first matching clusters of spatial features, and subsequently

matching individual features within these matched clusters. This strategy leverages the

spatial relationships between features, enhancing the efficiency of the method. Empirical

evaluations support the effectiveness of this approach.

The current version of our proposed feature matching process is not feature-

agnostic, which could restrict its compatibility with future feature extractors. However,

most extractors can be adapted to yield high-dimensional descriptors. In higher dimen-
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(a) Initial region matches

(b) Refined region matches

(c) Initial feature matches

(d) Refined feature matches

Figure 3.4. Intermediate Results from GGNN: (a) Initial region matches: Groups are

matched with the most similar groups from the other image. Successful matches, indicated

by blue lines, have a sufficient number of common members. (b) Refined region matches:

Low-quality region matches are discarded. (c) Initial feature matches: Members are

matched with the most similar members of the matched groups. Blue lines indicate

matches with low localization errors. (d) Refined feature matches: Within each group,

geometrically inconsistent matches are discarded. A spectrum of colors from blue to red

is used to indicate the quality of matches, with blue representing the best matches and red

representing the worst.
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Figure 3.5. Sample Results From GGNN: More successful outcomes shown on the left

and less successful ones on the right. Failures occur due to relatively high reprojection

errors in matching (indicated by yellow or red matches, with red being worse), or when

the number of matches is not sufficiently high, or when matched features are not spatially

well-distributed.
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Table 3.2. Failure Percentages for Ablated Components

Non-maximum suppression � � � � �
Pyramid for regions � � � � �

Region match elimination � � � � �
Local geometric verification � � � � �

Guided matching � � � � �

Oxford+ Bikes 0.0 0.0 0.0 0.0 0.0 0.0
Oxford+ Trees 2.8 2.8 2.8 0.0 2.8 2.8

Oxford+ Leuven 0.0 0.0 0.0 0.0 0.0 0.0
Oxford+ UBC 0.0 0.0 0.0 0.0 0.0 0.0
Oxford+ Graff 25.0 41.7 30.6 33.3 27.8 36.1

Oxford+ Wall 11.1 19.4 16.7 16.7 19.4 16.7

Oxford+ Bark 63.9 66.7 66.7 69.4 69.4 63.9
Oxford+ Boat 47.2 52.8 55.6 55.6 55.6 52.8

Oxford+ 18.8 22.9 21.5 21.9 21.9 21.5

Homogr-Random 6.6 12.0 7.2 6.7 8.9 8.9

HPatches Illum 10.2 13.0 13.3 10.2 13.7 12.3

HPatches View 16.3 27.5 17.6 16.6 22.0 18.3

HPatches 13.3 20.3 15.5 13.4 17.9 15.3

Time Complexity Θ(𝑛
√
𝑛)

sional spaces, these descriptors tend to be pairwise orthogonal, fulfilling our primary

requirement. Moreover, using a single descriptor extractor generates vectors with compo-

nents less correlated than those in concatenated descriptors. This reduction in correlation

enhances both discriminability and orthogonality, making our approach potentially more

effective than the currently evaluated method for descriptor extraction.

The computational overhead resulting from the preparation of groups is asymp-

totically negligible. In practice, even if the feature count is small and overhead becomes

significant, the additional computation is applied to all imaged individually rather than

to each pair of images. Consequently, as images are repeatedly used (e.g., in multi-view

image matching), the additional cost diminishes rapidly.
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CHAPTER 4

EXTENSIONS AND IMPROVEMENTS

In the previous chapter, we proposed a hierarchical approach to image matching,

detailing a method that utilizes this approach along with the necessary pre- and post-

processing steps. We demonstrated its efficiency and accuracy in solving the problem of

homography estimation across image pairs.

In this chapter, we extend and enhance our work in several independent dimensions.

First, we generalize the number of regions (and thus spatial groups). Next, we explore

an alternative to Group-Guided Nearest Neighbors (GGNN) to increase efficiency. We

then propose a quick evaluation method for image matchers, useful for hyperparameter

optimization. Additionally, we introduce a more accurate warping method compared to

classical warping, which can generate more realistic image pairs from captured images.

Finally, we extend our approach from planar to 3D scenes and evaluate the proposed

method on pose estimation.

4.1. Pyramid of Grids for Hierarchical Regions

The proposed feature matching method can be formulated as a general framework

in which 𝑔 groups are matched across images and then 𝑔 times 𝑐 members are matched

against 𝑐 members of the matched group. This framework requires 𝑔2 + 𝑔𝑐2 descriptor

comparisons in total. It is sensible to constraint the relationship between these variables

to satisfy the equation 𝑐 = 𝑛/𝑔. This way 𝑔 groups of 𝑐 features will have 𝑛 features

in total. (Note that this does not mean all features are covered as there are overlapping

features between groups.) Applying this constraint the number of comparisons becomes

𝑔2 + 𝑛2/𝑔. For simulating the conventional NN search, there must be only 𝑔 = 1 group

and thus 1 + 𝑛2 comparisons (or simply 𝑛2 by avoiding the unnecessary group matching)

must be performed. Whereas, the proposed method constructs 𝑔 =
√
𝑛 groups and

requires only 𝑛 + 𝑛
√
𝑛 comparisons. Within this framework it is possible to minimize the

computational cost beyond the proposed setting: the minimum number of comparisons
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is 3
3
√

2𝑛2/(2 3
√
𝑛2), which occurs when there are 𝑔 = 3

√
4

3
√
𝑛2/2 groups. Instead of using

the proposed setting, one can select an appropriate integer 𝑔 automatically from the range

[1, 3
√

4
3
√
𝑛2/2] depending on the time budget. The number of total comparisons decreases

monotonically within this range.

The previous chapter focused exclusively on 64 groups, using 𝑛 = 4096 and setting

𝑔 to
√
𝑛 = 64. To vary the computational cost for a fixed 𝑛 and to apply the previously

proposed setting of 𝑔 =
√
𝑛 for different 𝑛 values, a generic formulation for generating

regions is required.

4.1.1. Computation of Regions

Our image regions are arranged in grids, with these grids stacked as levels of a

pyramid. Below is the formulation for computing the pyramid for a given number of

regions, which can be framed as a constrained subset sum problem. Each region is defined

by the group of features within it. We use the terms “region count” and “group count”

interchangeably, as they correspond one-to-one.

The function pyr(𝑔) is defined to compute a pyramid for a given number of groups

𝑔. This function constructs a set of integers that satisfy a series of specific conditions,

ensuring the set is uniquely determined for each 𝑔. We define the function pyr(𝑔) as a

piecewise function:

pyr(𝑔) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1} if 𝑔 = 1

first

�����������������

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋 ⊂ Z+

																			

∑
𝑥∈𝑋

𝑥2 = 𝑔

1 ∈ 𝑋

∀𝑥1 ∈ 𝑋 ∀𝑥2 ∈ 𝑋 (𝑥2 < 𝑥1 =⇒
𝑥1

𝑥2
>
√

2)

∀𝑥1 ∈ 𝑋

(
(∀𝑥2 ∈ 𝑋 (𝑥1 ≤ 𝑥2)) ∨ (∃𝑥2 ∈ 𝑋 (𝑥2 < 𝑥1 ∧

𝑥1

𝑥2
< 2

√
2))

)
∀𝑔′ < 𝑔 ( |pyr(𝑔′) | ≤ |𝑋 |)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�����������������

if 𝑔 > 1

where examples include pyr(1) = {1}, pyr(5) = {1, 2}, pyr(14) = {1, 2, 3}, and

pyr(21) = {1, 2, 4}. It holds that
∑
𝑥∈pyr(𝑔) 𝑥

2 = 𝑔 for all 𝑔 if pyr(𝑔) is not an empty set.

The function first(sets) selects the lexicographically first element among the sorted

sets. This is the set whose smallest number is the smallest among the sets. If there are
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multiple candidates, it selects the one whose second smallest number is the smallest

among the candidates, and so on. The smallest number for which there are multiple

possible pyramids is 247. pyr(247) is equal to {1, 2, 3, 5, 8, 12} rather than {1, 2, 3, 8, 13},

as first({{1, 2, 3, 5, 8, 12}, {1, 2, 3, 8, 13}}) = {1, 2, 3, 5, 8, 12} because 1 = 1, 2 = 2, and

3 = 3, but 5 < 8.

The semantics of these sets is that each level 𝑥 ∈ pyr(𝑔) contains 𝑥2 identical

circles arranged in a grid with 𝑥 rows and 𝑥 columns. For instance, pyr(14) = {1, 2, 3}

indicates that there are 3 levels in the pyramid for 14 regions, with 1 × 1 = 1 circle,

2 × 2 = 4 circles, and 3 × 3 = 9 circles. If the value of the function is the empty set as in

pyr(2) = {}, this means that such a pyramid cannot be constructed. Figures 4.1 and 4.2

collectively illustrate pyr(𝑔) where 1 ≤ 𝑔 ≤ 200.

Note that 1 is always an element, meaning that there must be a global region. For

every pyramid, the ratio of two adjacent levels is a number between
√

2 and 2
√

2. For

example, pyr(14) = {1, 2, 3} because 2/1 is greater than
√

2 and less than 2
√

2, and 3/2 is

greater than
√

2 and less than 2
√

2. This constraint distributes regions well in scale space.

The last condition ensures the number of levels is monotonically increasing as the number

of regions increases.

Due to the recursive definition, we compute the values for all possible region

numbers in ascending order up to an arbitrary upper bound. Once these values are

computed, we implement the function for determining the regions using a simple lookup

table.

For some region counts, the function is undefined. We believe the defined values

are sufficiently dense, allowing the largest 𝑔 value less than the required value, for which

𝑝𝑦𝑟 (𝑔) is defined, to be used. However, if necessary, a pyramid with any number of

regions can be created. To achieve this, identify the smallest 𝑔 value greater than the

required number for which 𝑝𝑦𝑟 (𝑔) is defined. Then, remove the excess regions from

the densest level, which is guaranteed to have more regions than required for removal.

For example, 𝑝𝑦𝑟 (100) is not defined. Instead, one can use 𝑝𝑦𝑟 (94) = {1, 2, 5, 8}, or

𝑝𝑦𝑟 (102) = {1, 2, 4, 9} and remove 102 − 100 = 2 regions from the 9 × 9 = 81 grid

randomly.
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(a) 𝑝𝑦𝑟 (1) = {1} (b) 𝑝𝑦𝑟 (5) = {1, 2} (c) 𝑝𝑦𝑟 (14) = {1, 2, 3}

(d) 𝑝𝑦𝑟 (21) = {1, 2, 4} (e) 𝑝𝑦𝑟 (30) = {1, 2, 5} (f) 𝑝𝑦𝑟 (39) = {1, 2, 3, 5}

(g) 𝑝𝑦𝑟 (50) = {1, 2, 3, 6} (h) 𝑝𝑦𝑟 (57) = {1, 2, 4, 6} (i) 𝑝𝑦𝑟 (63) = {1, 2, 3, 7}

(j) 𝑝𝑦𝑟 (70) = {1, 2, 4, 7} (k) 𝑝𝑦𝑟 (78) = {1, 2, 3, 8} (l) 𝑝𝑦𝑟 (85) = {1, 2, 4, 8}

Figure 4.1. Pyramid of Grids (Part I): 𝑝𝑦𝑟 (𝑔) represents a pyramid with a total of 𝑔
regions. Each level 𝑥 ∈ 𝑝𝑦𝑟 (𝑔) contains 𝑥2 identical circles arranged in a grid with 𝑥 rows

and 𝑥 columns.
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(a) 𝑝𝑦𝑟 (94) = {1, 2, 5, 8} (b) 𝑝𝑦𝑟 (102) =
{1, 2, 4, 9}

(c) 𝑝𝑦𝑟 (103) =
{1, 2, 3, 5, 8}

(d) 𝑝𝑦𝑟 (120) =
{1, 2, 3, 5, 9}

(e) 𝑝𝑦𝑟 (131) =
{1, 2, 3, 6, 9}

(f) 𝑝𝑦𝑟 (138) =
{1, 2, 4, 6, 9}

(g) 𝑝𝑦𝑟 (139) =
{1, 2, 3, 5, 10}

(h) 𝑝𝑦𝑟 (150) =
{1, 2, 3, 6, 10}

(i) 𝑝𝑦𝑟 (157) =
{1, 2, 4, 6, 10}

(j) 𝑝𝑦𝑟 (160) =
{1, 2, 3, 5, 11}

(k) 𝑝𝑦𝑟 (163) =
{1, 2, 3, 7, 10}

(l) 𝑝𝑦𝑟 (170) =
{1, 2, 4, 7, 10}

Figure 4.2. Pyramid of Grids (Part II): 𝑝𝑦𝑟 (𝑔) represents a pyramid with a total of 𝑔
regions. Each level 𝑥 ∈ 𝑝𝑦𝑟 (𝑔) contains 𝑥2 identical circles arranged in a grid with 𝑥 rows

and 𝑥 columns.
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4.1.2. Evaluation

In the experiments, we use the same pipeline as in the previous chapter. However,

we omit region match elimination (refining region matches) and local geometric verifi-

cation (refining feature matches). While these processes are important, including them

makes it difficult to compare different numbers of regions fairly. Fig. 4.3 shows the results

obtained by varying the number of groups. We aim at minimizing both the number of

comparisons and the failure percentage.

Figure 4.3. Impact of the Number of Groups: The plot visualizes the impact of different

number of groups 𝑔 while keeping their cardinality at 𝑐 = 𝑛/𝑔 for 𝑛 = 4096. The proposed

setting is calculated as 𝑔 =
√
𝑛 = 64. Horizontal lines mark the performance level of the

proposed setting.

For 𝑛 = 4096 features, the number of vector comparisons 𝑔2 + 𝑛2/𝑔 is 16, 777, 217

for 𝑔 = 1 group, 266, 240 for 𝑔 = 63 groups, and 123, 855 for 𝑔 = 203 groups. This

demonstrates a significant difference between the NN algorithm and the proposed GGNN

setting, although the difference in computational efficiency between the proposed GGNN

setting and the absolute minimum is less pronounced. We observe that 𝑔 =
√
𝑛 generally

provides a good balance between speed and performance, at least for 𝑛 = 4096 using our

features on our datasets. However, this parameter can be optimized for specific features,

datasets, applications, and time limits.
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4.2. Efficient Image Matching with Group-Tested Nearest Neighbors

The GGNN approach to feature matching involves first matching groups of fea-

tures and subsequently matching individual features within those matched groups. In

this section, we propose an alternative approach called Group-Tested Nearest Neighbors

(GTNN).

4.2.1. Group-Tested Nearest Neighbors

Group-Tested Nearest Neighbors (GTNN) is a two-step matching algorithm that

parallels the GGNN methodology. However, it initially matches individual features to

feature groups, and then matches these features to the members within the corresponding

groups.

Assuming the existence of
√
𝑛 groups, each containing

√
𝑛 features—consistent

with the proposed GGNN framework—the time complexity for matching all 𝑛 features to

feature groups of the other image is Θ(𝑛
√
𝑛). This step yields 𝑛 feature-group matches.

For each of these matches, comparing a feature to the members of the matched group

requires Θ(
√
𝑛) time, resulting in a total of Θ(𝑛

√
𝑛). Thus, the overall complexity remains

Θ(𝑛
√
𝑛), identical to that of GGNN.

In scenarios where matching between features and groups is performed bidirec-

tionally or multiple nearest neighbors are selected, the number of feature-group matches

may exceed 𝑛. Conversely, if filtering techniques such as the ratio test or thresholding

based on absolute distances are applied, the number of matches may decrease. Regardless

of these variations, the asymptotic complexity does not increase.

Unlike GGNN, GTNN allows for a further reduction in time complexity to Θ(𝑛)

by considering only the top
√
𝑛 features on the side of the individual features, even if

the grouped features still consider all 𝑛 features. This linear time complexity can also

be achieved with NN when both sides are limited to the top
√
𝑛 features, which are the

features with the highest response. It is important to note that this approach is different

than detecting
√
𝑛 features and matching them. We use efficient guided matching with all

methods, allowing the use of all 𝑛 features once the transformation is coarsely estimated.

Figure 4.4 illustrates and compares the linear time adaptation of the quadratic NN
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approach with the linear time version of GTNN. Unlike NN variations and GGNN, GTNN

is asymmetrical in terms of the types of matched items. However, similar to the other

methods, it can be performed bidirectionally, making the overall algorithm symmetrical.

4.2.2. Evaluation

We use the same datasets and pipeline as described in Chapter 3. However, we do

not perform local geometric verification for GTNN since it was defined for group-group

matches, which are not applicable here. Additionally, rather than pooling only the nearest

neighbors, we pool both the nearest neighbors and the second nearest neighbors for feature-

group matches due to the low number of matches. Although this approach significantly

increases the rate of mismatches, the robust estimation can effectively manage them given

the small number of matches.

We refer to the linear time adaptation of the NN algorithm, achieved by reducing

the number of features to their square root, as Linear Nearest Neighbors (LNN). LNN

employs the same preprocessing and postprocessing steps as GTNN. Other methods that

filter the NN show worse performance in our experiments compared to the vanilla NN.

Since the number of matches is already small, global geometric verification applied for

robust estimation is sufficient and performs better without these prefiltering techniques.

To save space, we omit these methods in the results and only present LNN as the baseline.

Table 4.1 shows the experiment results. The GTNN algorithm outperforms LNN

on all three datasets, though the margins are small in two of them. Despite this, both

linear time algorithms perform significantly worse than the other algorithms. The positive

aspect is that we can almost always detect if we fail to estimate the correct transformation,

even without knowing the ground truth. The number of consistent matches found indicates

whether the result is likely due to pure chance. Therefore, GTNN can be used initially,

especially if some image pairs are easier to match or if matching a subset of image pairs

is sufficient, as in multiview cases. More complex algorithms can then be used only if

needed.
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NN (Linear-time adaptation)

Θ(𝑛)

√
𝑛 such features

in the left image

√
𝑛 such features

in the right image

Perform 𝑛 such comparisons to

obtain
√
𝑛 best feature-feature matches.

GTNN

Θ(𝑛) +
√
𝑛 · Θ(

√
𝑛) = Θ(𝑛)

√
𝑛 such features

in the left image

√
𝑛 such groups

of
√
𝑛 features

in the right image

Perform 𝑛 such comparisons to

obtain
√
𝑛 best feature-group matches.

Then for each of the
√
𝑛 feature-group matches:

√
𝑛 such features

in the group

Perform
√
𝑛 such comparisons to

obtain 1 best feature-feature match.

(
√
𝑛 feature-feature matches are obtained in total.)

Figure 4.4. Feature Matching in Θ(𝑛) Time: The GTNN algorithm differs from the NN

algorithm by filtering features in the right image using group testing instead of relying

on response scores. For each feature in the left image, GTNN dynamically determines

a group of
√
𝑛 candidate features from the right image for matching. In contrast, NN

searches for a match from the fixed set of
√
𝑛 top features in the right image for every

feature in the left image.
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Please note that there remains a Θ(𝑛
√
𝑛) time complexity for computing exact

spatial groups before matching the features. This preprocessing step prevents the overall

time complexity from reducing to linear time. However, the necessity for linear time

complexity arises particularly in the multi-view scenario, where a set of images are

matched against each other. In such cases, there can be Θ(𝑚2) potential image pairs for

𝑚 images. Consequently, image-based computations are performed 𝑚 times, while image

pair-based computations are required Θ(𝑚2) times. Therefore, if the number of image

pairs to match exceeds 𝑚
√
𝑛, the amortized time complexity, including the preprocessing

of feature groups, remains linear. Conversely, if this condition is not met and a reduction

in complexity is still desired, approximate grouping methods such as locality-sensitive

hashing (Indyk and Motwani 1998; Gionis, Indyk, Motwani, et al. 1999; Jafari et al. 2021)

or grid-based methods can be employed to achieve linear time complexity.

4.3. Quick Evaluation of Image Matching Pipelines

We observe that the performance of an image matching pipeline can be efficiently

predicted without running it on the entire dataset. For instance, the pipeline can be

initially tested on a medium-difficulty problem. If it succeeds, it can then be applied to

a more challenging problem; if it fails, it can be applied to an easier problem instead.
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This approach is particularly useful when pipelines have alternative modules and multiple

parameters, leading to a combinatorial explosion. In such cases, quick evaluation is

essential for hyperparameter optimization on a validation set.

To address the problem of quick evaluation, we propose using a decision tree

regressor (Kingsford and Salzberg 2008; Loh 2011, 2014; Breiman 2017). Training data

for these quick evaluation models can be generated by running random pipelines on the

full validation set, making this a meta-learning problem where the training occurs on the

validation set. The resulting tabular data consists of rows representing different pipelines

(image matchers), columns representing individual problems (image pairs to match), and

values indicating how each pipeline performs on each problem.

Image matching algorithms generate a numeric error instead of a simple success

or failure, enabling more precise performance predictions. Consequently, the values in

the table are numeric, representing the Relative Average Corner Error (RACE), which is

the average corner error divided by the image’s diagonal length. It is important to note

that if a matcher completely fails to predict a transformation, the error is infinite, and thus

the table may contain infinite values. The final column in the table represents the failure

percentage across the entire dataset, based on an arbitrary failure tolerance as detailed in

previous chapters. For this study, we consider values above 0.01 as failures. Figure 4.5

illustrates the dataset.

4.3.1. Methods for Learning Quick Evaluation

Classification and Regression Trees (CART) (Breimann et al. 1984) is a widely

used decision tree learning algorithm. Existing implementations, such as Scikit-Learn’s

(Pedregosa et al. 2011) ‘DecisionTreeRegressor’, cannot handle infinite values. To address

this, we implement a decision tree regressor from scratch that minimizes mean squared

error (MSE) at each split. We verify its correctness by running tests both on the custom

implementation and the Scikit-Learn implementation, and comparing the results. We

then modify the implementation to change the operator for the split condition from ‘≤’

to ‘<’. This simple modification enables the algorithm to handle data containing positive

infinities. The rationale is that the midpoint between a finite number and positive infinity

is calculated as infinity, and the ‘<’ operator can then split the data into finite numbers
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Image Pair 1 · · · Image Pair j Overall
Matcher 1 𝑅𝐴𝐶𝐸1,1 · · · 𝑅𝐴𝐶𝐸1, 𝑗 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒1

Matcher 2 𝑅𝐴𝐶𝐸2,1 · · · 𝑅𝐴𝐶𝐸2, 𝑗 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒2

...
...

. . .
...

...

Matcher i 𝑅𝐴𝐶𝐸𝑖,1 · · · 𝑅𝐴𝐶𝐸𝑖, 𝑗 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑖

Figure 4.5. Illustration of the Dataset for Learning and Testing Quick Evaluation: The

objective is to predict overall performance, indicated by the failure percentage (last column,

ranging from 0 to 100), using performance data from selected problems (other columns,

represented by the relative average corner error, ranging from 0 to ∞). This method

enables estimation of the failure percentage without calculating all performance values.

The failure percentage is determined based on an arbitrary failure tolerance. The training-

testing split must be performed on the rows. This is a meta-learning problem because the

components of the matchers are also typically being learned.

and infinities when the threshold is set to ∞.

We introduce another important modification to the learning algorithm by adding a

monotonicity constraint (Potharst and Feelders 2002) for splitting the tree: the predictions

must be monotonically increasing from the left-most leaf to the right-most leaf. This is

because it is never indicative of superior performance when an algorithm performs worse

on an individual problem, even if it contradicts part of the training data considered at the

time. This means that the rule ‘if 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then predict 𝑥, otherwise predict

𝑦’ can be added to the tree only if 𝑥 < 𝑦. This constraint helps to avoid overfitting. We

refer to the resulting decision tree as a Monotone Decision Tree (MDT). Figure 4.6 shows

a decision tree learned on Oxford+ homography estimation dataset.

Note that the runtime for condition checks is negligible compared to running a

pipeline on an image pair. Nearly all the time needed for inference is spent calculating the

values of the required features. As a result, reusing the features in a path from the root

to a leaf does not increase the runtime of the quick evaluation. Therefore, we propose an

improvement to MDTs for this problem: We increase the “maximum depth” but constrain

the tree to perform splits solely based on the features that are already used in that path

after reaching the original maximum depth. We refer to the resulting decision tree as
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bark2-3 < 0.0309

boat1-4 < 0.0607 trees3-6 < ∞

20.843 25.620 34.325 41.154

T F

T F T F

Figure 4.6. Example Decision Tree for Quick Evaluation: This tree predicts an image

matcher’s performance on the Oxford+ dataset, which contains 288 image pairs, based on

evaluations of only two image pairs. Although the model considers three features in total,

the number of required evaluations equals the depth of the tree, which is 2, assuming lazy

evaluation (i.e., features are computed only when needed). For instance, if the pipeline

in question has a RACE of 0.01 when estimating the homography matrix between the

2nd and the 3rd images of the ‘bark’ scene, and has a RACE of 0.1 when estimating the

homography matrix between the 1st and the 4th images of the ‘boat’ scene, the model

predicts its overall failure percentage as 25.62%. Note that the tree is monotone, with

predictions in ascending order from left to right.

a Feature-Efficient Monotone Decision Tree (FEMDT). Similar ideas related to learning

based on costly features can be found in the machine learning literature (Reyzin 2011; Xu

et al. 2014; Peter et al. 2017; Janisch, Pevnỳ, and Lisỳ 2019; Erion et al. 2022).

Decision forests (Rokach 2016) consist of a set of decision trees whose predictions

are averaged (or determined by majority voting in the case of classification). Like other

model ensembles, which are generally more robust than individual models, decision forests

are generally more robust than individual decision trees. Therefore, we propose using a

feature-efficient variant of random forests (Biau and Scornet 2016; Parmar, Katariya, and

Patel 2019) for quick evaluation. Since decision trees can be used for feature selection,

we first build a decision tree to obtain feature importances, then use the most important
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features. The number of selected features correlates with the inference time budget.

Increasing the number of trees in the ensemble or their maximum depths does not increase

the inference runtime beyond the time needed for calculating all the selected features. We

refer to this type of random forest as a Feature-Efficient Random Forest (FERF). Note that

these are regular random forests but trained after feature selection.

4.3.2. Evaluation

Table 4.2 shows the most important features for quick evaluation of Oxford+ dataset.

These values were calculated using 500 random image matching pipelines obtained with

random modules (such as a feature matching algorithm) and random parameters (such as

a threshold). A feature’s importance is calculated based on its contribution to the model,

considering that more important features are already in use. This diminishes the returns

with each additional feature, which explains the significant difference between the first

and second highest importance values, and not necessarily their independent predictive

powers.

Table 4.2. Feature Importances for Quick Evaluation

1 2 3 4 5 6 7
Feature bark2-3 boat1-4 wall4-2 graff4-6 wall5-2 boat4-5 leuven3-6

Importance 0.737 0.141 0.040 0.016 0.016 0.006 0.006

Table 4.3 presents a comparison of the learning algorithms tested using 10-times

repeated 10-fold cross-validation. Notably, even the simplest solution, MDT, predicts the

overall performance of an image matching pipeline at one or two orders of magnitude

faster than exhaustive evaluation, with relatively small error. For example, MDT can

predict the failure percentage approximately 100 times faster with an average error of

about 1.4%. The feature-efficient variant, FEMDT, further improves performance over the

standard version. We show two versions: FEMDT1, which adds a single cost-free level at

the bottom of MDT, and FEMDT2, which adds two such levels. While more levels can

be added, the models will overfit after a certain number of levels. The ensemble variant,
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FERF, with 3 decision trees, has three versions: FERF1 and FERF2, with one and two extra

cost-free levels respectively, and FERF∞, with unbounded depth. FERF∞ outperforms

all other methods at every cost level.

Table 4.3. Prediction Performance of Quick Evaluation Models

# Evals Root Mean Squared Error (RMSE)
(Approx.
Speedup) MDT FEMDT1 FEMDT2 FERF0 FERF1 FERF2 FERF∞
1 (288×) 2.992 2.719 2.703 2.951 2.040 1.530 0.874
2 (144×) 1.804 1.534 1.510 2.028 1.533 1.390 0.880
3 (96×) 1.420 1.342 1.296 1.541 1.389 1.285 0.899
4 (72×) 1.266 1.205 1.385 1.385 1.281 1.148 0.921
5 (58×) 1.167 1.145 1.132 1.274 1.134 1.077 0.888
6 (48×) 1.129 1.101 1.084 1.157 1.085 1.040 0.900
7 (41×) 1.081 1.072 1.066 1.076 1.082 1.065 0.899

Unlike other methods, with FERF∞, the error does not decrease as the number

of evaluations increases. Interestingly, the best-performing model is also the fastest,

suggesting that for Oxford+, testing our pipelines on a single image pair effectively reveals

their quality. It is important to note that these results may vary not only with different

image pair datasets but also with different pipelines. One set of pipelines may excel in

certain situations but struggle in others, while another set excels where the first struggles

but struggles where the first excels. In such cases, the overall performance cannot be

accurately predicted from a single image pair. Nevertheless, accurate models, albeit more

complex, can still be learned from data, provided the training set is representative.

Figure 4.7 shows the histogram of the target variable values for the generated image

matching pipelines with the selected image pair dataset. When the distribution changes,

the results are expected to change. However, the same methodology can be applied to any

image pair dataset and any set of pipelines.

In the previous chapter, we demonstrated that GGNN outperformed all other

methods, including less efficient ones, achieving a failure rate of 18.8% on the Oxford+

dataset. By employing the quick evaluation model FERF∞ with single evaluation, we

conducted hyperparameter optimization through approximate evaluations for randomly
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Figure 4.7. Distribution of Failure Percentages in the Quick Evaluation Dataset: Among

the 500 pipelines, the mean failure percentage is 24.1, with a standard deviation of 5.6.

The failure percentages range from a minimum of 17.7 to a maximum of 46.5. A simple

model that always predicts the mean value of 24.1 would result in a root mean squared

error of 5.6.

selected parameters. This process was completed in significantly less time than required

to evaluate a single pipeline on the full dataset. Using the optimized parameters identified

through this approach, we further reduced the failure rate to 17.7%, as confirmed by a full

dataset evaluation.

4.4. Accurate Image Warping for Improved Dataset Generation

Image warping functions are essential components of any image processing tool-

box. These functions apply geometric transformations, such as projective transformations,

to images. In digital images, intensity values are located on discrete coordinates. When

a pixel is shifted by a non-integer amount, interpolation is required, resulting in an ap-

proximation. These approximations typically smooth the image, causing high-frequency

regions such as edges, corners, and textures to become blurred. The loss of information
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in the image warping process becomes evident when the resultant image differs from the

original after a complete cycle of periodic transformations (e.g., applying a 30-degree

rotation 12 times) or the sequential application of forward and inverse transformations

(e.g., downscaling by a factor of 2 followed by upscaling by a factor of 2).

Super Resolution (SR) encompasses a class of techniques that generate a high-

resolution image from one or more low-resolution images. It is trivial and virtually

free to generate large datasets of low- and high-resolution versions of images, simply by

downscaling any unsupervised image dataset. Thanks to this, many deep learning-based

single-image SR models have been proposed. The first proposed model (Dong et al. 2015)

applied image restoration to traditionally upscaled images. Then many specialized neural

network architectures (Xintao Wang et al. 2018; Y. Wang et al. 2018; Xintao Wang et

al. 2021; Zhang et al. 2021) were specifically designed for upscaling images accurately,

and repeatedly pushed the state-of-the-art further.

In this section, we propose a solution to the problem of image warping by using

data-driven SR as a black box. As far as we know, this application of SR has not

been previously documented in the literature. We employ this image warping method to

realistically generate synthetic pairs of single captured images for a homography estimation

dataset.

4.4.1. A Method for Accurate Image Warping

Interpolation for intensity values is almost always required for image warping.

The exceptions are specific cases such as combinations of integer translations, rotations by

multiples of 𝜋/2, and downscaling along an axis by an odd integer factor. Consequently,

image warping almost invariably leads to information loss.

No free lunch theorems state that the average performance of optimization algo-

rithms across all possible problems is equivalent (Wolpert and Macready 1997). This

implies that among single-image SR techniques (e.g., deep learning-based models (Dong

et al. 2015; Xintao Wang et al. 2018; Y. Wang et al. 2018; Xintao Wang et al. 2021; Zhang

et al. 2021)), non-adaptive interpolation methods (e.g., bilinear interpolation), and adap-

tive interpolation methods (e.g., edge-directed interpolation (Allebach and Wong 1996;

Li and Orchard 2001; Tam, Kok, and Siu 2010)), none is inherently superior for randomly
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synthesized images. Even a simple constant function used for interpolation is equally

successful on average. Fortunately, the laws of physics impose local consistency and

other properties on real-world objects, making some techniques superior for real images

(Lin, Tegmark, and Rolnick 2017). Deep learning-based SR techniques leverage extensive

datasets of example images to learn natural priors and develop awareness of both local

and global patterns. These techniques generally produce better approximations than other

upscaling methods, except in the case of intentionally designed adversarial examples.

Warped images can be used as data augmentation for training neural networks,

including SR models. We propose the opposite: using SR models to warp images, resulting

in more accurate estimations than traditional methods such as bicubic interpolation. This

can be achieved by first applying SR to the image, then warping the super-resolved image

using the corresponding high-resolution transformation, and finally downscaling the result.

For any uniform upscaling matrix 𝑈 and a transformation matrix 𝑇 (such as a

homography matrix), there is another transformation matrix 𝑇 ′ (also homography matrix

if 𝑇 is a homography matrix), such that 𝑇 𝑝 = 𝑈−1𝑇 ′𝑈𝑝 for all 2-dimensional points

𝑝 represented in homogeneous coordinates. In fact, 𝑇 ′ = 𝑈𝑇𝑈−1. This means that

applying 𝑈−1𝑇 ′𝑈 to an image coordinate is equivalent to directly applying 𝑇 . However,

the former approach can leverage SR algorithms for upscaling the image. The upscaled

image essentially corresponds to denser intensity values in the original resolution. Denser

values lead to better interpolation, assuming the upscaling is more accurate than the

simple interpolation and the downscaling step at the end does not negate the accuracy

gains achieved at the high resolution. Figure 4.8 illustrates both the direct approach and

the proposed approach to the image warping problem, along with the ideal result.

For tasks like homography estimation, it is common practice to train models

and evaluate algorithms on large datasets of artificially transformed real images. In the

previous chapter, we generated such a dataset using images from the Homogr dataset. The

proposed image warping method can be employed to generate these datasets in a more

realistic manner. While recent deep warping models (Son and Lee 2021; Xiao et al. 2024)

offer an alternative approach, our method has the advantage of requiring each image to be

super-resolved only once, regardless of the number of different transformations applied

subsequently. This makes our approach highly efficient for generating a vast number of

image pairs, potentially even an infinite number, from single high-resolution images.
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Figure 4.8. Accurate Image Warping: The original warping function (T ) required to

transform the original image, the calculated function (T′) that mimics T in high resolution,

the super resolution algorithm (S) that accurately upscales images, and the downscaling

operation (D) that conventionally downscales images are all represented as functions. LR
represents the original image, and HR represents the hypothetical perfect high-resolution

version of LR. In this context, the target represents the ideal warped image. The classical

result is the outcome of direct warping, while the proposed result is a better approximation

of the target than the classical result, assuming S and D produce accurate results. The

target is typically unknown, as it is not possible to calculate HR from LR. However, it is

possible to use a given image as HR and obtain LR by downscaling it. This allows us to

confirm that the similarity between the proposed result and the target is higher than that

between the classical result and the target.

4.4.2. Evaluation

We generated a dataset of 320 image pairs by applying transformations using

random homography matrices to the Homogr images. As the baseline warping method, we

employed bicubic interpolation. For the proposed warping approach, we used BSRGAN

(Zhang et al. 2021) for super resolution with a scale factor of 2, followed by bicubic

interpolation for warping in high resolution and subsequent downscaling.

Another challenge with image warping for synthetic dataset generation, beyond

interpolation issues, is that image resolutions significantly decrease because the warped
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images must be cropped to the largest inscribed rectangles. These rectangles are consid-

erably smaller than the original images, particularly when the transformations are more

extreme. For this reason, it is usually sensible to upscale the warped images and use them

as the image pair dataset. We follow this approach as well. We upscale the resultant

images for the bicubic warping method and omit the downscaling step for the proposed

warping method.

Figure 4.9 shows sample patches from warped images. The proposed method’s

results appear significantly sharper based on qualitative visual inspection.

Figure 4.9. Sample Patches from Warped Images: The image patches above demonstrate

the results of the proposed warping method, whereas the image patches below show the

results of the bicubic warping method.

Table 4.4 shows the performance of GGNN on warped images using both methods,

as well as on the high-resolution versions. It is important to note that the results for the

low-resolution and high-resolution datasets are not directly comparable, as high-resolution
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datasets present easier problems.

Table 4.4. Failure Percentages for Homography Estimation on Warped Images

Bicubic Warping Proposed Warping Bicubic W. (2×) Proposed W. (2×)
28.4 26.9 7.2 2.5

The results suggest that the proposed method is a better simulator of camera

movement in the real world compared to the widely used method in the community. This

approach can potentially be applied to other image warping applications as well.

4.5. Generalization to 3D Scenes

In this section, we extend the application of our hierarchical image matching

method from planar scenes to three-dimensional (3D) scenes, leveraging the principles of

epipolar geometry. While in planar scenes or when objects are sufficiently far from the

camera, estimating a homography matrix remains meaningful, general 3D cases require

a more complex approach. By utilizing the concepts of the essential matrix and epipolar

geometry, we aim to demonstrate that our method can be effectively generalized to handle

3D scenes, providing accurate pose estimation and robust matching performance.

4.5.1. Pose Estimation with Hierarchical Image Matching

In three-dimensional scenes, pose estimation becomes crucial for understanding

the spatial relationships and relative positioning of objects. To achieve this, we employ

the concepts of epipolar geometry, which are fundamental to 3D computer vision.

Figure 4.10 illustrates epipolar geometry. If the camera intrinsics are known,

the relative pose (position and orientation) of the two cameras can be represented by an

essential matrix; otherwise, it is represented by a fundamental matrix. However, there are

degenerate cases where the essential or fundamental matrix cannot be accurately estimated,

such as when the scene is planar, when there is pure rotation without translation, when the

cameras move parallel to each other, or when one camera is directly behind the other.
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Figure 4.10. Epipolar Geometry: 𝐶𝑙 and 𝐶𝑟 are the centers of two cameras (or a single

camera at two different times). The baseline is the line that connects these two camera

centers. Terms like “wide-baseline stereo” refer to the length of the segment 𝐶𝑙𝐶𝑟 ,

indicating that the distance between 𝐶𝑙 and 𝐶𝑟 is relatively long. Image planes are the 2D

projections of the scene as seen by the cameras. Although these planes are theoretically

infinite, the cameras capture only a finite portion of the scene within their field of view.

The epipoles 𝑒𝑙 and 𝑒𝑟 are the projections of each camera center onto the image plane of

the other camera and they lie on the baseline. Depending on the field of view, the epipoles

can be outside the actual image. 𝑃 is an arbitrary 3-dimensional point in the scene. An

epipolar plane is defined by a 3D point and the optical centers of the two cameras. The

projection of 𝑃 on the left image plane is 𝑃𝑙 and on the right image plane is 𝑃𝑟 . If we

know the relative pose of the cameras, and that 𝑃𝑙 and 𝑃𝑟 correspond to the same point,

we can locate the 3D point 𝑃, as the lines 𝐶𝑙𝑃𝑙 and 𝐶𝑟𝑃𝑟 intersect at 𝑃. In practice, due

to localization errors, the lines may not actually intersect, but an approximate intersection

can be calculated. Epipolar lines are the lines on an image plane that pass through the

epipole and all possible locations of a point. For instance, the epipolar line corresponding

to 𝑃𝑙 lies on the right image plane and passes through the epipole 𝑒𝑟 and the projected point

𝑃𝑟 . If we know the relative pose of the cameras and want to locate 𝑃𝑟 , the corresponding

point to 𝑃𝑙 in the right image, it can be anywhere on the corresponding epipolar line. This

uncertainty arises because the depth (distance of 𝑃 to 𝐶𝑙) is not known. If the depth is

known, the position of 𝑃𝑟 can be determined.

For general 3D scenes, the problem of pose estimation involves determining the

essential or fundamental matrix based on whether the camera intrinsics are known. This

process is analogous to homography estimation in planar scenes, relying on robust es-

timation techniques using feature matches. The essential matrix encodes the rotation

and translation between two camera views, while the fundamental matrix represents this

relationship when camera calibration is unavailable.

To estimate the essential or fundamental matrix, we utilize a robust estimation

method such as Random Sample Consensus (RANSAC) to identify a consistent set of
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feature matches. This step ensures that outliers, which can significantly affect the accuracy

of the estimated matrix, are excluded from the calculation. Once the matrix is estimated,

the relative pose of the cameras, including their rotation and translation, can be derived.

Guided matching in the context of 3D scenes follows a similar principle to the

planar case but is adapted to work with epipolar constraints. Instead of searching for

corresponding points around estimated points, we search around the estimated epipolar

lines. This approach leverages the geometric relationship defined by the essential or

fundamental matrix, where each point in one image has a corresponding epipolar line in

the other image.

4.5.2. Evaluation

To evaluate our method, we utilize the Tanks and Temples dataset (Knapitsch et

al. 2017), a benchmark specifically designed for large-scale scene reconstruction. This

dataset provides a comprehensive array of challenging indoor and outdoor scenes cap-

tured under realistic conditions using high-resolution video. Ground-truth data, obtained

using an industrial laser scanner, ensures high accuracy and enables detailed performance

assessment of 3D reconstruction methods.

Although the dataset is primarily intended for multiview matching, we sample

image pairs from the image sequences for our pairwise image matching evaluation. We

select three scenes to ensure a variety of environments: a meeting room, a truck, and a

barn. The meeting room is an indoor scene with varying lighting conditions; the truck

represents a complex outdoor vehicle scene with reflective surfaces; and the barn is an

outdoor scene with repetitive patterns and a mix of natural and man-made textures. Figure

4.11 provides a visual reference for the scenes.

We generate three image pair datasets by matching every 10th image to 18 images

around it, filtering out those with an angular distance greater than 60 degrees. This results

in the following number of image pairs: Meeting room: 570, Truck: 416, and Barn: 694.

To evaluate the quality of the estimated poses, we use the mean Average Accuracy

(mAA) metric (Yi et al. 2018; Jin et al. 2021). mAA measures the angular accuracy of

the estimated poses by computing the difference between the estimated and ground truth

rotation vectors. The mAA is calculated by thresholding the angular error at multiple
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(a) Meeting Room (b) Truck (c) Barn

Figure 4.11. Selected Scenes: (a) Meeting Room, (b) Truck, (c) Barn.

levels and integrating the resulting accuracy values to provide a single scalar score.

We perform experiments using the same methods described in Chapter 3. Fig-

ure 4.12 presents the pose estimation results, showing average accuracy versus angular

error. Numerical results, specifically mean Average Accuracy at 5 and 10 degrees, are

summarized in Table 4.5.

The results extend the main conclusions we drew in Chapter 3 to epipolar geometry:

While SMNN consistently outperforms all other methods across every dataset, GGNN

demonstrates superior performance compared to other methods with the same or greater

efficiency. It also surpasses some of the less efficient methods. In our experiments, GGNN

consistently outperforms NN and achieves better results than AdaLAM in most cases.

These findings highlight the robustness and versatility of GGNN in various challenging

scenarios, reinforcing its potential for practical applications in 3D reconstruction and other

computer vision tasks.

Table 4.5. Pose Estimation Results

mean Average Accuracy (mAA) at 5◦ and 10◦

Dataset NN MNN SNN FGINN AdaLAM SMNN HNN GGNN FLANN HNSW

(2004) (2015) (2020) (2021) (Proposed) (2009) (2018)

Meeting .209 .254 .250 .254 .222 .271 .181 .250 .148 .204

room .360 .415 .408 .415 .368 .437 .302 .398 .270 .352

Truck .169 .216 .215 .213 .204 .232 .139 .209 .121 .168

.279 .342 .350 .354 .325 .372 .226 .332 .204 .279

Barn .271 .332 .325 .306 .299 .349 .252 .304 .225 .269

.402 .465 .460 .443 .432 .490 .368 .428 .339 .399

Complexity Θ(𝑛2) Θ(𝑛
√
𝑛) Θ(𝑛 log 𝑛)

54



Figure 4.12. Pose Estimation Results: The x-axis represents the angular difference be-

tween the estimated and ground truth rotation vectors, while the y-axis shows the average

accuracy at various error thresholds. Results are presented for three image pair datasets.
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CHAPTER 5

CONCLUSIONS

The primary goal of this thesis is to reduce the computational complexity of solving

the common problem of image matching. Many people around the world cannot afford

high-end CPUs, GPUs, and other processing units on their computers, and numerous

applications need to run on mobile or embedded devices. This work is designed not

just for those low-resource devices but also reflects the limitations of our own relatively

modest computer, which constrained our focus to efficiency over accuracy. The motivation

is practical and immediate.

This thesis presents advancements in the field of image matching through the

introduction of efficient algorithms leveraging hyperdimensional computing and group

testing principles. The proposed methods, Group-Guided Nearest Neighbors (GGNN)

and Group-Tested Nearest Neighbors (GTNN), offer practical approaches to enhancing

the efficiency of image matching.

The hierarchical approach introduced in GGNN reduces the computational com-

plexity of feature matching from Θ(𝑛2) to Θ(𝑛
√
𝑛). By grouping features spatially and

matching these groups first, followed by individual feature matching within the matched

groups, this method identifies sufficiently similar, geometrically meaningful matches effi-

ciently.

The GTNN algorithm further optimizes the process by achieving Θ(𝑛) time com-

plexity. This is accomplished by initially matching the most distinct features to feature

groups of the other image, followed by matching these distinct features only with the

members of the matched groups. This linear-time matching algorithm shows promise in

improving performance compared to linear-time adaptations of quadratic-time algorithms.

Empirical results on homography and pose estimation tasks indicate that the pro-

posed GGNN and GTNN methods achieve Pareto optimality in the efficiency-accuracy

trade-off. The results support the hypothesis that hierarchical matching of geometrically

meaningful feature matches can improve or maintain matching performance with lower

computational complexity.
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We also proposed a technique for generating better synthetic image pair datasets

for homography estimation. This technique aims to create more realistic datasets, which

are essential for training and evaluating image matching algorithms. Additionally, we

introduced methods to facilitate faster evaluation of image matching pipelines. These

methods allow for more efficient assessment of image matching performance, speeding up

the development cycle and enabling quicker iterations during algorithm optimization.

The efficiency of solutions in computer science is often a temporary concern.

Historically, computing algorithms have become simpler over time when the problem size

remained constant, and this trend persists. We have seen our specialized algorithms, once

designed with pride, being outperformed by simpler ones with fewer steps and branches,

executed in parallel. However, while processing units are becoming increasingly powerful,

the number of images to process and the resolution of these images are also increasing,

potentially requiring more efficient algorithms in the future.

We intend to open-source the project after refactoring the code. This release

will encompass not only the implementations but also a comprehensive image match-

ing framework that includes all discussed pipelines, various alternative modules, several

benchmarks, a quick evaluation system, a synthetic dataset generation system, and a play-

ground with numerous automated visualizations and interactive tools. It is our aspiration

that this will significantly facilitate the work of others in the field. Practitioners will have

the capability to experiment with pipelines by freely selecting alternative modules and pa-

rameters, thereby obtaining numerical and insightful results. Researchers can enhance the

existing work by defining their own modules and automatically obtaining all intermediate

and final results. Notably, our experience indicates that establishing these systems require

more effort than the implementation of the proposed methods as modules.

For future research, several directions hold significant potential to further enhance

the efficiency and accuracy of the proposed methods. Key areas of focus include:

• Optimized Feature Extraction: Learning a single high-dimensional binary de-

scriptor, instead of concatenating multiple descriptors, can not only improve speed

but also enhance robustness by minimizing correlation among the components of

the descriptors. Integrating non-maximum suppression directly into the keypoint

detection process, rather than using it as a post-processing step, can further reduce

computational overhead.
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• Automated Parameter Selection for GGNN: Developing methods for automatic

parameter selection can enhance the performance of a single run and reduce the

overall time required for optimizing parameters on a training set of image pairs. For

example, determining the rate at which to discard the lowest-quality group matches

based on distance statistics can streamline the process.

• Solving Easy Problems Faster with GGNN: Enhancing the GGNN algorithm to

adapt to varying levels of difficulty in image matching tasks is a promising avenue.

In scenarios with small viewpoint changes, a single group match could be sufficient

to generate and verify a reliable hypothesis for transformation parameters, thus

speeding up the process.

• Solving Difficult Problems Better with GGNN: Large viewpoint and scale changes

complicate matching. Grouping keypoints with similar sizes, proportional to the

region size, can address large scale differences. Although our initial attempts did

not improve performance, there are many alternative approaches to explore. If

images are reused for matching with different images, we can afford to spend more

time processing them individually. One approach is performing affine simulation by

warping the image or patches and allocating part of the group budget for the warped

features. We experimented with bundling warped features of a region to obtain a

single affine-invariant descriptor, but we did not try bundling features of warped

regions independently from other simulations to create multiple affine-covariant

descriptors for each region.

• Maximizing Intra-Group Orthogonality for GTNN: In GGNN, spatial grouping

of features is crucial. For the GTNN method, grouping features based on descrip-

tor distances rather than spatial proximity, using a greedy algorithm to maximize

pairwise orthogonality within groups, could enhance performance. This is per-

formed once for each image, not for each image pair. If a linear-time algorithm

is needed, random grouping or a hash-based grouping technique could also work.

These approaches might eliminate the need for non-maximum suppression.

• Improving GTNN to Potentially Outperform GGNN: The GTNN algorithm with

a time complexity of Θ(𝑛
√
𝑛), which matches all individual features rather than just

the top
√
𝑛, can be enhanced to potentially outperform GGNN. The key to this im-
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provement might lie in filtering out feature-group matches with descriptor distances

that can be explained by pure chance and ensuring local geometric consistency

before performing global verification.

• Multiview Matching: Extending the proposed algorithms to handle multiview

matching scenarios is a rewarding direction. For instance, image pairs can be

selected based on similarities of feature groups could enhance the process.

In conclusion, the proposed GGNN and GTNN methods offer meaningful im-

provements in the efficiency of image matching tasks. Further research and development

are encouraged to fully realize their potential and continue advancing image matching

methodologies.

59



BIBLIOGRAPHY

Adel, Ebtsam, Mohammed Elmogy, and Hazem Elbakry. 2014. “Image stitching based on

feature extraction techniques: a survey.” International Journal of Computer Applica-

tions 99 (6): 1–8.

Aldridge, Matthew, Oliver Johnson, and Jonathan Scarlett. 2019. “Group testing: an in-

formation theory perspective.” ISBN: 1567-2190 Publisher: Now Publishers, Inc.

Foundations and Trends® in Communications and Information Theory 15 (3): 196–

392.

Allebach, Jan, and Ping Wah Wong. 1996. “Edge-directed interpolation.” In Proceedings

of 3rd IEEE international conference on image processing, 3:707–710. IEEE.

Arandjelović, Relja, and Andrew Zisserman. 2012. “Three things everyone should know

to improve object retrieval.” In 2012 IEEE conference on computer vision and pattern

recognition, 2911–2918. IEEE.

Bailey, Tim, and Hugh Durrant-Whyte. 2006. “Simultaneous localization and mapping

(SLAM): Part II.” IEEE robotics & automation magazine 13 (3): 108–117.

Balntas, Vassileios, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk. 2017. “HPatches:

A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors.” 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3852–3861.

Barath, Daniel, Luca Cavalli, and Marc Pollefeys. 2022. “Learning to find good models

in RANSAC.” In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 15744–15753.
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Janisch, Jaromı́r, Tomáš Pevnỳ, and Viliam Lisỳ. 2019. “Classification with costly features

using deep reinforcement learning.” In Proceedings of the AAAI Conference on

Artificial Intelligence, 33:3959–3966. 01.

64



Jin, Yuhe, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo

Yi, and Eduard Trulls. 2021. “Image matching across wide baselines: From paper to

practice.” ISBN: 0920-5691 Publisher: Springer, International Journal of Computer

Vision 129 (2): 517–547.

Kanerva, Pentti. 2009. “Hyperdimensional computing: An introduction to computing in

distributed representation with high-dimensional random vectors.” Cognitive compu-

tation 1:139–159.

. 2022. “Hyperdimensional Computing: An Algebra for Computing with Vectors.”

Publisher: Wiley Online Library, Advances in Semiconductor Technologies: Selected

Topics Beyond Conventional CMOS, 25–42.

Ke, Yan, and Rahul Sukthankar. 2004. “PCA-SIFT: A more distinctive representation

for local image descriptors.” In Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. 2:II–II.

IEEE.

Kingsford, Carl, and Steven L Salzberg. 2008. “What are decision trees?” Nature biotech-

nology 26 (9): 1011–1013.

Knapitsch, Arno, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. “Tanks and tem-

ples: Benchmarking large-scale scene reconstruction.” ACM Transactions on Graph-

ics (ToG) 36 (4): 1–13.

Le, Hoang, Feng Liu, Shu Zhang, and Aseem Agarwala. 2020. “Deep Homography Esti-

mation for Dynamic Scenes.” 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 7649–7658.

Lebeda, Karel, Jirı Matas, and Ondrej Chum. 2012. “Fixing the locally optimized ransac–

full experimental evaluation.” In British machine vision conference, vol. 2. Citeseer.

Levi, Gil, and Tal Hassner. 2016. “LATCH: learned arrangements of three patch codes.”

In 2016 IEEE winter conference on applications of computer vision (WACV), 1–9.

IEEE. isbn: 1-5090-0641-9.

65



Levin, Anat, Assaf Zomet, Shmuel Peleg, and Yair Weiss. 2004. “Seamless image stitching

in the gradient domain.” In Computer Vision-ECCV 2004: 8th European Conference

on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part

IV 8, 377–389. Springer.

Li, Xin, and Michael T Orchard. 2001. “New edge-directed interpolation.” IEEE transac-

tions on image processing 10 (10): 1521–1527.

Li, Yunyao, Kehang Chen, Shilei Sun, and Chu He. 2022. “Multi-scale homography esti-

mation based on dual feature aggregation transformer.” IET Image Process. 17:1403–

1416.

Liao, Yanhao, Yinhui Luo, and Xingyi Wang. 2023. “Unsupervised Deep Infrared and

Visible Homography Estimation Algorithm Based on Content-Aware.” Proceedings

of the 2023 3rd International Conference on Big Data, Artificial Intelligence and Risk

Management.

Lin, Chung-Ching, Sharathchandra U Pankanti, Karthikeyan Natesan Ramamurthy, and

Aleksandr Y Aravkin. 2015. “Adaptive as-natural-as-possible image stitching.” In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

1155–1163.

Lin, Henry W, Max Tegmark, and David Rolnick. 2017. “Why does deep and cheap

learning work so well?” Journal of Statistical Physics 168:1223–1247.

Lindenberger, Philipp, Paul-Edouard Sarlin, Viktor Larsson, and Marc Pollefeys. 2021.

“Pixel-perfect structure-from-motion with featuremetric refinement.” In Proceedings

of the IEEE/CVF international conference on computer vision, 5987–5997.

Loh, Wei-Yin. 2011. “Classification and regression trees.” Wiley interdisciplinary reviews:

data mining and knowledge discovery 1 (1): 14–23.

. 2014. “Fifty years of classification and regression trees.” International Statistical

Review 82 (3): 329–348.

66



Lowe, David G. 1999. “Object recognition from local scale-invariant features.” In Pro-

ceedings of the seventh IEEE international conference on computer vision, 2:1150–

1157. Ieee.

. 2004. “Distinctive image features from scale-invariant keypoints.” ISBN: 0920-

5691 Publisher: Springer, International journal of computer vision 60:91–110.

Luo, Yinhui, Xingyi Wang, Yanhao Liao, Qiang Fu, Chang Shu, Yuezhou Wu, and Yuan-

qing He. 2023. “A Review of Homography Estimation: Advances and Challenges.”

Electronics.

Luo, Yinhui, Xingyi Wang, Yuezhou Wu, and Chang Shu. 2022. “Detail-Aware Deep

Homography Estimation for Infrared and Visible Image.” Electronics.

. 2023. “Infrared and Visible Image Homography Estimation Using Multiscale

Generative Adversarial Network.” Electronics.

Luo, Zixin, Tianwei Shen, Lei Zhou, Jiahui Zhang, Yao Yao, Shiwei Li, Tian Fang, and

Long Quan. 2019. “Contextdesc: Local descriptor augmentation with cross-modality

context.” In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2527–2536.

Malkov, Yu A, and Dmitry A Yashunin. 2018. “Efficient and robust approximate nearest

neighbor search using hierarchical navigable small world graphs.” IEEE transactions

on pattern analysis and machine intelligence 42 (4): 824–836.

Mikolajczyk, Krystian, and Cordelia Schmid. 2005. “A performance evaluation of lo-

cal descriptors.” ISBN: 0162-8828 Publisher: IEEE, IEEE transactions on pattern

analysis and machine intelligence 27 (10): 1615–1630.

Mishchuk, Anastasiia, Dmytro Mishkin, Filip Radenovic, and Jiri Matas. 2017. “Working

hard to know your neighbor’s margins: Local descriptor learning loss.” Advances in

neural information processing systems 30.

Mishkin, Dmytro, Jiri Matas, and Michal Perdoch. 2015. “MODS: Fast and robust method

for two-view matching.” Computer vision and image understanding 141:81–93.

67



Montemerlo, Michael, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. 2002. “Fast-

SLAM: A factored solution to the simultaneous localization and mapping problem.”

Aaai/iaai 593598:593–598.

Moulon, Pierre, Pascal Monasse, Romuald Perrot, and Renaud Marlet. 2017. “Openmvg:

Open multiple view geometry.” In Reproducible Research in Pattern Recognition:

First International Workshop, RRPR 2016, Cancún, Mexico, December 4, 2016,

Revised Selected Papers 1, 60–74. Springer.

Muja, Marius, and David G. Lowe. 2009. “Fast approximate nearest neighbors with auto-

matic algorithm configuration.” VISAPP (1) 2 (331): 2.

Mur-Artal, Raul, Jose Maria Martinez Montiel, and Juan D. Tardos. 2015. “ORB-SLAM:

a versatile and accurate monocular SLAM system.” ISBN: 1552-3098 Publisher:

IEEE, IEEE transactions on robotics 31 (5): 1147–1163.

Neubert, Peer, and Stefan Schubert. 2021. “Hyperdimensional computing as a framework

for systematic aggregation of image descriptors.” In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 16938–16947.

Parmar, Aakash, Rakesh Katariya, and Vatsal Patel. 2019. “A review on random forest: An

ensemble classifier.” In International conference on intelligent data communication

technologies and internet of things (ICICI) 2018, 758–763. Springer.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et

al. 2011. “Scikit-learn: Machine Learning in Python.” Journal of Machine Learning

Research 12:2825–2830.

Peter, Sven, Ferran Diego, Fred A Hamprecht, and Boaz Nadler. 2017. “Cost efficient

gradient boosting.” Advances in neural information processing systems 30.

Placed, Julio A, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim Indelman, Luca
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