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ABSTRACT

HUBBLE TENSION IN THE CONTEXT OF COSMOLOGICAL

SCALAR FIELD MODELS

This thesis delves into the issue of Hubble tension that is the discrepancy be-

tween different types of measurements of the expansion rate of the universe at present

(i.e. Hubble constant H0). Various techniques can be employed to measure H0. There are

two types of measurements, namely, direct and indirect measurements for measurement

of H0. Direct measurements involve determining the recession velocities of galaxies or

supernovae at relatively small cosmological distances, so this type of measurements are

direct local measurements. On the other hand, indirect measurements encompass both

local methods, such as utilizing the Tully-Fisher relation, and non-local approaches, in-

cluding cosmic microwave background (CMB) measurements and baryon acoustic os-

cillation (BAO) measurements of large-scale structures (LSS). The most precise local

measurements are achieved through supernovae calibrated by Cepheid variable star mea-

surements, while CMB measurements provide the most precise non-local measurements.

However, even when considering measurement errors, there is a significant discrepancy

between supernovae and CMB measurements. This is known as the Hubble tension. A

milder discrepancy is also observed between local direct measurements and BAO mea-

surements. Many different potential sources of this tension and many different models

are proposed to resolve this tension. This thesis focuses on the subset of the proposed

models that employ scalar fields in the context of general relativity. The primary objec-

tive is to provide a comprehensive understanding of the fundamental ideas underlying

these models and emphasize their theoretical aspects.
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ÖZET

KOZMOLOJİK SKALAR ALAN MODELLERİ KAPSAMINDA

HUBBLE GERİLİMİ

Bu tez, evrenin günümüzdeki genişleme hızını ölçmek için kritik bir parame-

tre olan Hubble sabitinin, H0’un ölçüm sonuçlarındaki büyük farklıklara odaklanmak-

tadır. H0’u ölçmek için çeşitli teknikler kullanılabilir ve bunlar genel olarak doğrudan

ve dolaylı ölçümler olarak kategorize edilebilirler. Doğrudan ölçümler, galaksilerin veya

süpernovaların göreceli küçük kozmik mesafelerdeki uzaklaşma hızlarının belirlenmesini

içerir, bu nedenle bu tip ölçümler doğrudan yerel ölçümlerdir. Öte yandan, dolaylı ölçümler,

Tully-Fisher ilişkisi gibi lokal yöntemleri ve kozmik mikrodalga arka plan (CMB) ölçümleri

ve büyük ölçekli yapıların baryon akustik osilasyon (BAO) ölçümlerini içeren lokal ol-

mayan yaklaşımları kapsar. En hassas yerel ölçümler, Cepheid değişken yıldız ölçümleri

tarafından kalibre edilen süpernova ölçümleriyle elde edilirken, CMB ölçümleri en has-

sas olmayan lokal olmayan ölçümleri sağlar. Bununla birlikte, ölçüm hataları dikkate

alındığında bile, süpernova ve CMB ölçümleri arasında önemli bir uyuşmazlık, Hub-

ble gerilimi olarak bilinen bir farklılık ortaya çıkar. Yerel doğrudan ölçümler ile BAO

ölçümleri arasında daha hafif bir farklılık olsa da yine de farklılık belirgindir. Literatürde,

bu gerilimin çözümü için birçok farklı potansiyel neden ve model önerilmektedir. Bu tez,

genel görelilik çerçevesinde skalar alanlar kullanan modellerin bir alt kümesine odaklan-

maktadır. Temel hedef, bu modellerin temel fikirlerinin kapsamlı bir anlayışını sağlamak

ve önemli teorik yönlerini vurgulamaktır.

vi
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CHAPTER 1

INTRODUCTION

In 1929 Edwin Hubble observed that the galaxies at cosmological distances are

receding from Earth and their recession speeds are proportional to their distances [44].

This verified the predictions obtained by Alexander Friedmann in 1922 [36] and indepen-

dently by Georges Lemaitre in 1927 [54]. The expansion rate of the universe is described

by the Hubble constant H0 which expresses how many times a given physical distance in

the universe increases in a unit of time. The standard unit for H0 is km/ Mpc /s where

Mpc = 3.1 × 1016 km. In fact, it is also used to determine the age and the composition

of the universe in the standard model of cosmology [97]. Since its introduction, H0 has

been measured many times at different times [29, 49, 51, 66]. The first observational

result was of the order of 500 km/ Mpc /s [44], but the uncertainty was large.Then, for

decades the H0 was measured between 50 and 100 km/ Mpc /s [19, 34, 89] Even in 1994,

its value was in the range of 61 - 85 km/Mpc/s by observations of supernovas [83]. In re-

cent years H0 has been also measured by studying cosmic microwave background (CMB)

radiation in the context of the standard model of cosmology that is called Λ-Cold-Dark-

Matter (ΛCDM). Then, it has been noticed that the value of H0 measured from CMB is

significantly smaller than the direct measurements of the recession speeds of the galaxies

and supernovas at cosmological distances. However, the first measurements were com-

patible with the direct measurements within the error bars. However, the disagreement

between these two methods turned into tension after improvements in the error bars in the

direct measurements. Now the disagreement between the direct measurements and CMB

measurements are more than 5σ1 [47]. This is called Hubble tension. See Fig. 1.1.

There are many proposals for the solution of the Hubble tension [10, 12, 16, 17,

20, 26, 28, 59, 72]. At first, some systematic errors were thought to be the source of the

1σ is used to designate one standard deviation in a Gaussian distribution. In general, a ”5 sigma”

deviation, plus or minus, indicates how far out on the distribution you are from the mean. The departure

from the mean value in such a distribution is commonly expressed in terms of the number of standard

deviations. Here, as we have two independent measurements and the uncertainties follow a roughly normal

distribution, 5 sigma indicates that the difference between the two values is 5 times the expected standard

deviation of the difference between the two numbers.

1



Figure 1.1.
5σ confidence level can be shown by the extended Markov chain Monte

Carlo sampling of the posterior for the Hubble constant H0. where the

Planck Collaboration chains (blue) and the Supernovae and H0 for the

Equation of State (SH0ES) Collaboration (green) provide the probability

density for the baseline [47]

tension. But studies show that this is not the case [29, 42, 45, 76, 78, 95], especially

after the measurements have gotten more and more precise with 8σ Confidence level

[77]. There are different assumptions and models for the solution of the tension by the

inclusion of new physics. Some models adopt the approach that the missing physics is

due to gravitational physics. This type of models modify the gravitational part of physics,

for example [37]. Other type of models assume that general relativity is valid at all scales

while the source term of the Einstein equations, or the Robertson-Walker metric [60] is

modified. Typically, there are two types of such models; late time solutions and early time

solutions. Late time solutions modify the standard model after recombination era 2 while

early time solutions modify it just before the recombination.

In this thesis we adopt the second approach above i.e. we consider the models

that modify the matter and energy content of the standard model. There are different

kinds of models of this type. Some of them, modify the matter content in an ad hoc

and phenomenological way [2, 55, 57] while others add new cosmological fields, such

as scalars, vector fields, fermions, etc. In this thesis, we limit ourselves to scalar field

models.

2which happened around 380,000 years after the Big Bang and is the period in the early universe when

electrons and protons combined to form neutral atoms, and the photons were allowed to flee the hot, dense

plasma of the universe and travel freely resulting cosmic microwave background radiation (CMB)

2



CMB measurements of Hubble constant assume the standard model of cosmology.

Therefore, in the next chapter, we give a brief overview of the standard model. In Chap-

ter 3 we briefly consider the basic distance measurement techniques at small redshifts

and cosmic distance ladder that is essential for the direct measurements of Hubble con-

stant. In Chapter 4 the basic aspects of the non-local measurements of Hubble constant

in CMB and baryon acoustic oscillation (BAO) measurements are considered. In Chapter

5, meaning of the Hubble tension is discussed concisely and concretely. In Chapter 6, we

study basic aspects of scalar field models proposed for solution of the Hubble tension by

considering three models from late solutions and three models from early time solutions.

Finally, in Chapter 7 we conclude.

3



CHAPTER 2

BRIEF OVERVIEW OF THE STANDARD MODEL OF

COSMOLOGY

2.1. Background Evolution

2.1.1. Robertson-Walker Metric

Cosmological observations suggest that universe at scales larger than clusters of

galaxies (at an instant of time) seem to be isotropic (when overaged over large scales)[58].

We assume that the universe seems to be isotropic at these scales when viewed from any

point in the universe. These together imply that the universe is homogeneous and isotropic

at any instant of time which is called cosmological principle. Moreover, we may assume

this to be true at any time during the evolution of the universe by Weyl’s postulate [58].

This, in turn, implies that the metric describing the universe (at cosmological scales) is

described by Robertson-Walker (RW) metric, namely, [97]

ds2 = gμνdx
μdxν = −dt2 + a2

(
dr2

1− kr2
+ r2dΩ2

)
, where dΩ2 ≡ dθ2 + sin2 θdφ2

(2.1)

where a = a(t) is called scale factor, k specifies the three dimensional curvature,

and k = 1, 0,−1 for closed, flat, open universes, respectively. The derivation of the RW

metric is presented in Appendix A.

2.1.2. Friedmann-Lemaı̂tre-Robertson-Walker Universe

After substituting RW metric and the corresponding energy-momentum tensor

in Einstein’s field equations, we obtain a set of equations that are called Friedmann

4



equations. The resulting universe is called the Friedmann-Lemaı̂tre-Robertson-Walker

(FLRW) universe.

First, we take a look at the general form of Einstein Equations:

Rμν − R

2
gμν − Λgμν = 8πGTμν (2.2)

where G is Newton’s constant, Tμν is the energy-momentum tensor, Λ is the cosmological

constant, and Rμν is Ricci tensor, R is the curvature scalar which is the contracted Ricci

tensor, namely,

Rμν ≡ gαβRαμβν = Rβ
μβν , R ≡ gμνRμν (2.3)

with Rα
δβγ being the Riemann-Christoffel tensor

Rα
δβγ ≡ Γα

δγ,β − Γα
δβ,γ − Γα

εγΓ
ε
δβ + Γα

εβΓ
ε
δγ (2.4)

The homogeneity and isotropy of the universe may be described by a perfect fluid

with the energy-momentum tensor

Tμν = (ρ+ p)UμUν + pgμν (2.5)

where ρ is the energy density, p is the pressure, and Uμ is the four-velocity of the observer.

At co-moving coordinates, where (Uμ) = (−1, 0, 0, 0), (2.5) reads

Tμν =

⎛
⎜⎜⎜⎜⎜⎝
ρ 0 0 0

0 p a2(t)
1−kr2

0 0

0 0 p a2(t)r2 0

0 0 0 p a2(t)r2 sin2 θ

⎞
⎟⎟⎟⎟⎟⎠ (2.6)

By substituting the (2.1) and (2.6) in (2.2), one obtains the Friedmann equations:

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.7)

ä

a
= −4πG

3
(ρ+ 3p) (2.8)

where H is the Hubble rate which is a measure of the expansion rate of the universe. We

have also the continuity equation

∇μT
μ0 =

∂ρ

∂t
+ 3

ȧ

a
(ρ+ p) = ρ̇+ 3H(ρ+ p) = 0 (2.9)

which is the energy conservation equation. Note that, in this case i.e. in the case of

Friedmann equations any two of (2.7), (2.8), and (2.9) equations are enough to describe

the FLRW universe.

5



We may relate ρ and p by an equation of state (EoS) defined by

w =
p

ρ
(2.10)

Equation (2.10) may be substituted in the continuity and Friedmann equations

ρ̇+ 3H(1 + w)ρ = 0 (2.11)

H2 =
8πG

3
ρ− k

a2
(2.12)

ä

a
= −4πG

3
ρ(1 + 3w) (2.13)

where any two of the resulting equations may be used to determine the corresponding

universe explicitly.

2.2. Cosmological Perturbations

In the real universe at scales smaller than the scale of the clusters of galaxies,

the grouping of matter appears as inhomogeneities in the universe. The degree of in-

homogeneities at the scale of clusters of galaxies is initially small enough to call them

perturbations. For instance, one of the most well-known cosmological perturbations is

the temperature perturbation which can be expressed as

δT = T − T̄ , δT =
δT

T̄
(2.14)

where T̄ is the unperturbed temperature or the temperature in the Robertson-Walker

spacetime. In general relativistic treatment of perturbations we make a gauge choice

that associates the real space-time with the unperturbed space-time. Hence, we can use

the well known FLRW universe to understand the behavior of the real universe. To un-

derstand the cosmological perturbations, let us consider a general background metric ḡμν .

In general this metric may be perturbed as

gμν = ḡμν + δgμν = ḡμν + hμν (2.15)

One may express the metric component perturbations in the form

h00 = −E

hi0 = a [∂iF +Gi] (2.16)

hij = a2 [Aδij + ∂i∂jB + ∂jCi + ∂iCj +Dij]

6



This form helps performing scalar-vector- tensor decomposition of the perturbations. Af-

ter the composition we get scalars (i.e.A,B,E, F ), divergenceless vectors (i.e.∂iCi =

∂iGi = 0), and divergenceless traceless symmetric tensors (i.e.∂iDij = 0, Dii = 0) that

are independent and uncoupled to each other. The explicit form of the perturbation of RW

metric can be written as

ds2 = (ḡμν + hμν)dx
μdxν

= −(1 + E)dt2 + a [∂iF +Gi] dtdx
i + a2 [(1 + A)δij + ∂i∂jB + ∂jCi + ∂iCj +Dij] dx

idxj

(2.17)

A metric ds2 is invariant under a general coordinate transformation given by xμ →
x̂μ = xμ+ εμ(x). One can write gauge transformations where only the field perturbations

are affected by such a coordinate transformation so that hμν(x) → hμν +Δhμν with

Δhμν(x) ≡ ĝμν(x)− gμν(x) (2.18)

where Δhμν is an unphysical perturbation due to gauge transformation. This implies that

some components of gμν are unphysical, so may be eliminated. In general ĝμν denotes the

form of gμν after the gauge transformation

ĝμν(x) = ḡμν(x) + hμν(x) + Δhμν(x) (2.19)

One can write ĝμν(x̂) by starting from the line element and applying the infinitesimal

diffeomorphism i.e. x̂μ = xμ + εμ or similarly xμ = x̂μ − εμ,

gμν(x)dx
μdxν = gμν(x̂− ε)

∂xμ

∂x̂λ

∂xν

∂x̂σ
dx̂λdx̂σ (2.20)

as dxμ = ∂xμ

∂x̂λdx̂
λ =

(
δμλ − ∂εμ

∂x̂λ

)
dx̂λ. Hence

gμν(x)dx
μdxν = gμν(x̂− ε)

(
δμλ − ∂εμ

∂x̂λ

)
dx̂λ

(
δνσ −

∂εν

∂x̂σ

)
dx̂σ (2.21)

gμν(x̂− ε) can be written to first order in εμ as

gμν(x̂− ε) � gμν(x̂)− ελ
∂gμν(x̂)

∂x̂λ
(2.22)

So Eq. (2.21) becomes

gμν(x)dx
μdxν =

[
gμν(x̂)− ελ

∂gμν(x̂)

∂x̂λ

](
δμρ − ∂εμ

∂x̂ρ

)
dx̂ρ

(
δνσ −

∂εν

∂x̂σ

)
dx̂σ

= gμν(x̂)dx̂
μdx̂ν − gμν(x̂)

∂εμ

∂x̂ρ
dx̂ρdx̂ν − gμν(x̂)

∂εν

∂x̂σ
dx̂μdx̂σ

− ελ
∂gμν(x̂)

∂x̂λ
dx̂μdx̂ν (2.23)
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i.e.

gμν(x)dx
μdxν =

[
gμν(x̂)− gρν(x̂)

∂ερ

∂x̂μ
− gμσ(x̂)

∂εσ

∂x̂ν
− ελ

∂gμν(x̂)

∂x̂λ

]
dx̂μdx̂ν (2.24)

= ĝμν(x̂)dx̂
μdx̂ν (2.25)

where

ĝμν(x̂) = gμν(x̂)− gρν(x̂)
∂ερ

∂x̂μ
− gμσ(x̂)

∂εσ

∂x̂ν
− ελ

∂gμν(x̂)

∂x̂λ
(2.26)

Hence,

Δhμν(x) = ĝμν(x)− gμν(x) = −gμλ(x)∂νε
λ − gλν(x)∂με

λ − ∂λgμν(x)ε
λ (2.27)

Or explicitly

Δh00 = −2∂0ε0

Δhi0 = −∂0εi − ∂iε0 + 2
ȧ

a
εi (2.28)

Δhij = −∂jεi − ∂iεj + 2aȧδijε0

Decomposing the spatial component of εμ into the gradient of a spatial scalar and a diver-

genceless vector (i.e. ∂iε
V
i = 0) is required:

εi = ∂iε
S + εVi (2.29)

One may use (2.29) to write

h00 +Δh00 = −E − 2∂0ε0

hi0 +Δhi0 = a [∂iF +Gi]− ∂0∂iε
S − ∂0ε

V
i − ∂iε0 + 2

ȧ

a
∂iε

S + 2
ȧ

a
εVi (2.30)

hij +Δhij = a2 [Aδij + ∂i∂jB + ∂jCi + ∂iCj +Dij]− ∂j∂iε
S

− ∂jε
V
i − ∂i∂jε

S − ∂iε
V
j + 2aȧδijε0

Now, to get rid of the unphysical scalars we need to determine the physical param-

eters by fixing the gauge. Considering the scalar modes, the perturbed metric becomes

ds2 = −(1 + E + 2∂0ε0)dt
2 + ∂i

(
a F − ∂0ε

S − ε0 + 2
ȧ

a
εS
)
dtdxi

+

(
a2
[
1 + A+ 2

ȧ

a
ε0

]
δij + ∂i∂j

[
a2B − 2εS

])
dxidxj (2.31)

We choose Newtonian gauge, adjust εS in order to get B′ = ∂i∂j
[
a2B − 2εS

]
= 0, and

ε0 so that F ′ = ∂i
(
a F − ∂0ε

S − ε0 + 2 ȧ
a
εS
)
= 0. In this gauge, it’s conventional to use

E ′ = E + 2∂0ε0 and A′ = A+ 2 ȧ
a
ε0 as

E ′ ≡ 2Φ , A′ ≡ −2Ψ (2.32)
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without less of generality we may express the perturbed metric as

ds2 = −(1 + 2Φ)dt2 + a2δij(1− 2Ψ)dxidxj (2.33)

here Φ is the gravitational potential, Ψ is scale factor average local perturbation.

The Einstein field equations for the expansion of the unperturbed case can be

expressed as

R̄μν = 8πGS̄μν (2.34)

its perturbation is

δRμν = 8πGδSμν (2.35)

where Sμν is the source tensor that can be expressed as

Sμν = Tμν − 1

2
gμνg

ρσTρσ (2.36)

First, one must use the perturbed affine connection to find the perturbed Ricci

tensor as [9, 97]:

δRμκ =
∂ δΓλ

μλ

∂xκ
− ∂ δΓλ

μκ

∂xλ
+ δΓη

μνΓ̄
ν
κη + δΓν

κηΓ̄
η
μν − δΓη

μκΓ̄
ν
νη − δΓν

νηΓ̄
η
μκ (2.37)

and the perturbed energy-momentum tensor to find the perturbed source tensor δSμν :

δSμν = δTμν − 1

2
ḡμνδT

λ
λ − 1

2
hμνT̄

λ
λ (2.38)

Recall that the unperturbed energy-momentum tensor takes the form of the perfect fluid

as we have shown in Eq. (2.5). Here

T̄μν = (ρ̄+ p̄) ŪμŪν + p̄ḡμν (2.39)

and

δT μ
ν = ḡμν

[
δTλν − hλκT̄

κ
ν

]
(2.40)

Thus, the perturbed Einstein equations read [97]:

4πGa2[δρ− δp−∇2π2] = aȧΦ̇ + 4ȧ2Φ + 2aäΦ−∇2Ψ+ a2Ψ̈ + 6aȧΨ̇ (2.41)

−8πGa(ρ̄+ p̄)∂jδu = −2ȧ∂jΦ− 2a∂j ˙Psi (2.42)

4πG[δρ+ 3δp+∇2πS] = −1

a

[
1

a
∇2Φ + 3ȧΦ̇ + 3 ¨Psi+ 6ȧΨ̇ + 6äΦ

]
(2.43)
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2.3. Baryon-Photon Fluid Before Decoupling

The main aim of this section is to derive the equation for the baryon-photon wave

and show that this wave has sound speed cs. We start by writing an equation to describe

how particles move from one phase-space point to another as

df

dt
= C[f ] (2.44)

where f is called distribution function (i.e. occupation number) and it represents the

number density in phase space (i.e. the number of particles per volume per momentum

volume), and C[f ] is the source term (i.e. the collision term). C[f ] = 0 corresponds to

free particles and follows from conservation of the number density in phase space in the

absence of external forces. The number of particles is conserved with a given momentum

in co-moving coordinates if any particle-particle interactions are neglected. But when

particle-particle interactions are considered, the source term should be included. The

total derivative on the left hand side can be written using the partial derivatives in the

form
df(x, p, p̂, t)

dt
=

∂f

∂t
+

∂f

∂xi
· dxi

dt
+

∂f

∂p

dp

dt
+

∂f

∂p̂i
· dp̂i

dt
(2.45)

One may use the geodesic equations for photons so we can express [30]

dxi

dt
=

p̂i

a
(1 + Ψ− Φ) (2.46)

and
1

p

dp

dt
= −H − ∂Φ

∂t
− p̂i

a

∂Ψ

∂xi
(2.47)

One can substitute (2.46) and (2.47) in (2.45) with neglecting the last term and any other

second order term to write the Boltzmann equation for photons as

df

dt
=

∂f

∂t
+

p̂i

a

∂f

∂xi
− p

∂f

∂p

[
H +

∂Φ

∂t
+

p̂i

a

∂Ψ

∂xi

]
(2.48)

Now, let us take Bose-Einstein of the distribution function of photons, f in the presence

of a temperature perturbation Θ

f(x, p, p̂, t) =
[
e

p
T (t)[1+Θ(x,p̂,t)] − 1

]−1

� f (0) − p
∂f (0)

∂p
Θ (2.49)

where f (0) ≡ [e
p
T − 1]−1, T is the temperature which is a function only of time and it

does not depend on x nor on the direction of propagation p̂. But Θ depends on x and p̂

because of the inhomogeneities and the anisotropies in the photon distribution. While it

does not depend on the magnitude of the momentum p.
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We may now go ahead and gather the terms in Eq. (2.48) that are comparable in

order after substituting (2.49) in it. We can get benefit from the zeroth order [30] to get

the relation between the temperature and the scale factor as dT
T

= −da
a

. We are interested

in the first order term

df

dt

∣∣∣∣
first order

= −p
∂

∂t

[
∂f (0)

∂p
Θ

]
− p

p̂i

a

∂Θ

∂xi

∂f (0)

∂p
+HΘp

∂

∂p

[
p
∂f (0)

∂p

]

− p
∂f (0)

∂p

[
∂Φ

∂t
+

p̂i

a

∂Ψ

∂xi

]
(2.50)

using ∂f (0)

∂t
= −dT/dt

T
p∂f (0)

∂p
where we have used p ∝ T ∝ 1

a
, the first order can be written

as
df

dt

∣∣∣∣
first order

= −p
∂f (0)

∂p

[
∂Θ

∂t
+

p̂i

a

∂Θ

∂xi
+

∂Φ

∂t
+

p̂i

a

∂Ψ

∂xi

]
(2.51)

The first two terms explain how the distribution function changes when there are no col-

lisions. The gravitational impact of perturbations is taken into consideration in the last

two. We know that there will be a nonzero collision term at first order in perturbations,

therefore this equation for Θ is not complete.

Next, We can consider the right side of Eq. (2.44). The general form of collision

term is [30]

C[f1(p)] =
1

2E1(p)

∫
d3q

(2π)32E2(q)

∫
d3p′

(2π)32E3(p′)

∫
d3q′

(2π)32E4(q′)
|M|2

× (2π)4δ
(3)
D [p+ q − p′ − q′]δ(1)D [E1(p) + E2(q)− E3(p

′)− E4(q
′)]

× {f3(p′)f4(q′)[1± f1(p)][1± f2(q)]

−f1(p)f2(q)[1± f3(p
′)][1± f4(q

′)]} (2.52)

where energy and momentum conservations are enforced by the Dirac delta functions.

Here, the microphysical characteristics of the interaction determine the scattering ampli-

tude squared |M|2. Let us consider Compton scattering e−(q) + γ(p) ↔ e−(q′) + γ(p′).

The corresponding collision term is

C[f(p)] =
1

2E(p)

∫
d3q

(2π)32Ee(q)

∫
d3q′

(2π)32Ee(q′)

∫
d3p′

(2π)32E(p′)

∑
3spins

|M|2

× (2π)4δ
(3)
D [p+ q − p′ − q′]δ(1)D [E(p) + Ee(q)− E(p′)− Ee(q

′)]

× {fe(p′)f(q′)− fe(q)f(p)} (2.53)

where the photon energies are E(p) = p and E(p′) = p′. However, for electrons, we take

the nonrelativistic limit and take it approximately be me. After we do the q′ integration
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and using the three-dimensional momentum delta function, we obtain

C[f(p)] =
π

2mep

∫
d3q

(2π)32me

∫
d3p′

(2π)32p′
δ
(1)
D [p+ Ee(q)− p′ − Ee(|q + p− p′|)]

×
∑
3 spins

|M|2{fe(q + p− p′)f(p′)− fe(q)f(p)} (2.54)

using Ee(q)−Ee(|q+p−p′|) � (p′−p)·q
me

and fe(q+p−p′) � f(q), one approximately

can write

C[f(p)] =
π

2mep

∫
d3q

(2π)32me

fe(q)

∫
d3p′

(2π)32p′
∑
3 spins

|M|2

×
{
δ
(1)
D (p− p′) +

(p′ − p) · q
me

∂

∂p′
δ
(1)
D (p− p′)

}
{f(p′)− f(p)} (2.55)

The CMB found to exhibit a polarization due to the polarization dependency of the am-

plitude for Compton scattering. However, since the influence of polarization is negligible

in the determination of the collision term, we will disregard it on radiation field. Ad-

ditionally, we will also neglect the angular dependence changes due to its subdominant

contribution to the collision term. Hence after these assumptions, for our case of the

Compton scattering the amplitude squared is
∑

3spins |M|2 = 32πσTm
2
e, where σT is the

Thomson cross-section [30]. Moreover, for the terms that are independent of q, the q

integral yields a factor of ne/2 (the number 2 represents an electron’s two possible spin

states, which is denoted by ge = 2). Conversely, terms with a factor of q/me produce

neub/2 , where ub is the bulk electron velocity. With these, and after substituting (2.49)

in (2.55), the collision term becomes

C[f(p)] = −p
∂f (0)

∂p
neσT [Θ0 −Θ(p̂) + p̂ · ub] (2.56)

where Θ0 is temperature monopole which is the integral of Θ over all directions of tem-

perature. Now, substitute (2.51) and (2.56) in (2.44) to get the Boltzmann equation for

photons, and simplify it cancelling similar factors and using the conformal time

∂Θ

∂η
+ p̂i

∂Θ

∂xi
+

∂Φ

∂η
+ p̂i

∂Ψ

∂xi
= neσTa[Θ0 −Θ(p̂) + p̂ · ub] (2.57)

It is useful to write it in the momentum space (express it by tilde e.g. Θ̃(k)) using Fourier

transformation and defining the optical depth τ , and μ which is the cosine of the angle

formed by the photon direction p̂ and wavenumber k. Hence,

∂Θ̃

∂η
+ ikμΘ̃ +

∂Φ̃

∂η
+ ikμΨ̃ = −dτ

dη
[Θ̃0 − Θ̃ + μub] (2.58)
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The Boltzmann equation for photons (2.48) is actually a special case of more

general form for baryons where instead of using E = p, we have

dfb

dt
=

∂fb

∂t
+

p

E

p̂i

a

∂fb

∂xi
− p

∂fb

∂p

[
H +

∂Φ

∂t
+ p̂i

E

ap

∂Ψ

∂xi

]
= C[fb] (2.59)

The cosmic generalization of the continuity equation and the Euler equation for the baryon

are obtained by using the zeroth and the first moment of the Boltzmann equations respec-

tively. Integrate them after multiplying both sides by the phase space volume d3p
(2π)3

and

using the definitions of the fluid velocity ui
b = 1

nb

∫
d3p
(2π)3

fb
pp̂i

E
and the density of baryons

nb =
∫

d3p
(2π)3

fb. Subsequently, using the first-order equations in Fourier space and confor-

mal time, we get [30]

dδ′b
dη

+ ikub = −3
dΦ

dη
(2.60)

ub

dη
+

a′

a
ub = −ikΨ+

1

R

dτ

dη
[ub + 3iΘ1], or equivalently

ub = −3iΘ1 +
R
dτ
dη

[
dub

dη
+

a′

a
ub + ikΨ

]
(2.61)

where R is the baryon-to-photon energy ratio R ≡ 3ρb
4ργ

. By using the definition of the lth

temperature multipole moment Θl

Θl(k, η) ≡ 1

(−i)l

∫ 1

−1

dμ

2
Pl(μ)Θ(μ, k, η) (2.62)

where μ ≡ k·p̂
k

, and η is the conformal time. One can use the completeness of the Legen-

dre function to write

Θ(μ, k, η) =
∞∑
l=0

AlPl(μ) , where Al(k, η) =
2l + 1

2

∫ 1

−1

Θ(μ, k, η)Pl(μ) (2.63)

Hence, using (2.62) we equivalently write

Θ(μ, k, η) =
∞∑
l=0

(2l + 1)(−i)lΘl(k, η)Pl(μ) (2.64)

We can integrate over μ after multiplying (2.58) by P0(μ) = 1 and P1(μ) = μ respectively

∂Θ0

∂η
+ kΘ1 =

∂Φ

∂η
, or equivalently kΘ1 =

∂Φ

∂η
− ∂Θ0

∂η
(2.65)

∂Θ1

∂η
− kΘ0

3
=

kΨ

3
+

dτ

dη
[Θ1 − iub

3
] (2.66)

One can approximate (2.61) to the lowest order as ub = −3iΘ1 to rewrite the

bracket in (2.61) as

ub � −3iΘ1 +
R
dτ
dη

[
−3i

dΘ1

dη
− 3i

a′

a
Θ1 + ikΨ

]
(2.67)
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Hence, one can substitute it in (2.66)

∂Θ1

∂η
+

a′

a

R

1 +R
Θ1 − k

3(1 +R)
Θ0 =

kΨ

3
(2.68)

substituting (2.65) in this equation gives us a second order wave equation

∂2Θ0

∂η2
+

a′

a

R

1 +R

∂Θ0

∂η
+ k2c2sΘ0 = −k2

3
Ψ− a′

a

R

1 +R

∂Φ

∂η
− ∂2Φ

∂η2
(2.69)

where cs is the sound speed of the baryon-photon wave

cs(η) ≡
√

1

3(1 +R[η])
(2.70)

In other words, it is shown that the photon-baryon fluid before decoupling moves as a

wave (with a damping and driving force term) with velocity cs given in (2.70).
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CHAPTER 3

COSMIC DISTANCE LADDER AND LOCAL

MEASUREMENTS OF HUBBLE CONSTANT

3.1. Cosmic Distance Ladder

The cosmic distances where Hubble flow is the main source of redshift of light

coming from celestial objects may be determined by using a sequence of measurements

that is called the cosmic distance ladder. The first rung of the ladder is the measurement

of the distances of nearby objects where the effect of Hubble expansion on the motion

of the astronomical objects is wholly negligible. The methods used for these relatively

small distances are called primary distance indicators. In this context, the distances of

the most nearby stars may be determined by the geometrical parallax method and other

primary distance indicators such as main sequence stars. The minimum distances that

may be measured by main sequence stars are in the order of the largest distances that

can be measured by trigonometric parallax. Hence trigonometric parallax may be used

to calibrate the main sequence method. For example, [88] employs the main sequence

fitting method to determine the distance of the globular galactic cluster NGC5904 (M5)

whose distance had been also determined by the geometric parallax method [67]. Similar

procedures may be used for other primary distance indicators. This enables measuring

further distances and cross-checking between different methods.

The second step of distance measurements are called secondary distance indica-

tors. These are mainly the methods that can measure the effect of Hubble expansion, so

are able to measure H0 while they cannot be used to determine if the expansion of the

universe is accelerating or not. They correspond to distances roughly in the interval of

0.03 � z � 0.1.

The final step of the cosmic ladder expansion is mainly supernovae. There are

supernovae that are close enough so that they may be calibrated by secondary distance

indicators. e.g. cepheids. In fact, cepheids have a very unique position in this aspect.

Some cepheids are close enough so that their distances may be calibrated by primary

distance indicators while there are cepheids that are far enough so that can be used to
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calibrate supernovae distances.

3.2. Main Measurement Methods for Very Low Redshift Distances:

Primary Distance Indicators

The objects used to measure distances in cosmology are divided into primary and

secondary distance indicators. In this section, we will consider the main methods to de-

termine low redshift distances(z not much greater than 0.01) [97]. Here we will consider

the primary distance indicators. The two main classic kinematic methods are used to de-

termine the distance of objects within our own galaxy(z � 0.01) [97]. They are important

in determining almost all distance measurements in astronomy.

3.2.1. Trigonometric Parallax

Trigonometric parallax is an essential tool in determining the distances to nearby

stars. To understand it, let’s consider the motion of Earth around the Sun. As Earth orbits

the Sun, nearby stars appear to shift their positions slightly relative to more distant stars.

This apparent shift is caused by the change in the observer’s (in this case, the Earth’s)

position as it moves along its orbit. The angle of this apparent shift is called the parallax

angle or trigonometric parallax π. It is the angle subtended at the star by the baseline

formed by Earth’s orbit around the Sun. The parallax angle can be measured by observing

the apparent change in the star’s position against the background of more distant stars over

a period of six months, as the Earth moves from one side of its orbit to the other. So what

we actually observe is twice the parallax angle 2π.

Using basic trigonometry, the distance to the star can be calculated from its paral-

lax angle. This may be measured in terms of angle in radians by

π =
dE
d

(3.1)

where dE is the mean distance of the earth from the sun, and d is the distance of the

star from the sun. The parallax angle is typically very small, measured in arcseconds

(1/3,600th of a degree). The parallax in seconds of arc is the reciprocal of the distance in

parsecs. where a parsec (pc) is defined as the distance at which π = 1′′.
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3.2.2. Proper Motions and Apparent Luminosity

Proper motion (μ) refers to the apparent motion of a celestial object across the sky

at a rate in radians/time, that is given by

μ =
v⊥
d

(3.2)

where v⊥ is the celestial object’s velocity in the transverse direction to the line of sight,

and d is the distance between the object and the earth. We may determine the component

of velocity along the line of sight by analyzing the Doppler shift in the spectral lines of the

source. Subsequently, we may compute v⊥ by assuming that the velocities in the direction

perpendicular to the line of sight are the same as the velocities along the line of sight, by

spherical symmetry of the orbit of the observed object.

These kinematic techniques have limited use beyond our solar system. Greater

distances necessitate alternative measurement approaches. In cosmology, the most preva-

lent technique for measuring distance involves measuring the apparent luminosity of ob-

jects with known absolute luminosities. The apparent luminosity � is the energy received

per second per square centimeter of the receiving area, whereas the absolute luminos-

ity L is the energy released per second. The connection between absolute and apparent

luminosity, as per Euclidean geometry, is as follows:

� =
L

4πd2
(3.3)

d is the distance between the object and the earth. By directly measuring � and using L

that is determined by another method, one may use the above formula to find d.

3.2.3. Some primary distance indicators to determine absolute

luminosity

While two stars are never completely the same in the actual Universe, there are

stellar objects with almost constant absolute luminosities regardless of their location in the

sky. These are known as standard candles. Those and several different types of stars have

been utilized in the observation of absolute luminosity that is needed to do the measure-

ments of distance through. Here we give some examples of primary distance indicators:
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3.2.3.1. Main Sequence

Main sequence stars are characterized as those that continue to burn hydrogen at

their cores and exhibit a distinctive relation between absolute luminosity and color, both

of which rely on mass. The highest luminosity is found in blue-white stars, diminishing

gradually for hues that go toward yellow and red. Calibration of absolute luminosities

of the main sequence involves stars with known distances, determined through trigono-

metric parallax measurements and apparent luminosity assessments. These distances,

determined through this method, are occasionally referred to as photometric parallaxes

[97].

3.2.3.2. Red Clump Stars

Red Clump Stars are a specific type of stars in the later stages of their evolution

where have exhausted all of their hydrogen and burn helium instead. The absolute lu-

minosity of Red Clump Stars is relatively well-defined especially in the infrared band,

making them useful for distance estimation [97].

3.2.3.3. RR Lyrae Stars

RR Lyrae stars are low-mass variable stars whose luminosities fluctuate. By using

statistical and trigonometric parallax methods their absolute luminosities are calibrated,

and these calibrations are used to find their approximate absolute luminosities. After

estimating their intrinsic luminosities, they can be used as distance indicators [97].

3.2.3.4. Eclipsing Binaries

Eclipsing binaries are systems consisting of a primary star and a smaller com-

panion, where the smaller star periodically eclipses the primary star. The companion’s

velocity may be deduced from the Doppler shift of its spectral lines. The duration of the

eclipse allows for the determination of the radius of the primary star, which in turn enables

the calculation of its surface area. The temperature of the primary is found from the mea-

surement of its spectrum. The absolute luminosity of the primary can then be calculated
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using the Stefan-Boltzmann law of black body radiation [97]. Among the three types of

eclipsing binary systems, the detached eclipsing binary systems (DEBs) are considered

the most effective for determining distances. This serves as a solid anchor for the Mag-

ellanic Clouds as it provides the most precise distances known for the Large Magellanic

Cloud (LMC) [69] and Small Magellanic Cloud (SMC) [39].

3.2.3.5. Masers

Water masers seen in the accretion disks of supermassive black holes (SMBHs) in

active galactic nuclei (AGNs) offer a unique method for measuring geometric distances to

their host galaxies. Very long baseline interferometric (VLBI) observations of the Masers’

locations, velocities, and accelerations can reveal their Keplerian motion (as predicted for

orbits around a point mass). This data may be utilized to get a purely geometric distance

to the maser host galaxies. However, these objects are uncommon due to the necessity

of an edge-on alignment of the inner accretion disk with our line of sight, along with an

appropriate density profile of the disk [68, 74].

3.2.3.6. Cepheid Variables

Cepheid variables are stars whose luminosity is known to vary periodically. These

are very bright stars that can be observed even outside their galaxies. They are used to

measure the distances outside our galaxy. Leavitt showed in [52] that there is a tight

relation between their period of pulsation (weeks to months) and their maximum detected

flux. The Period-Luminosity Relation for Cepheid variables is typically given as:

M = a logP + b (3.4)

where M represents the absolute magnitude or intrinsic luminosity of the Cepheid vari-

able, P represents the period (in days) of the Cepheid variable’s pulsation, The slope of

the line (coefficient ”a” in the equation) determines the relationship between period and

luminosity, while the intercept (coefficient ”b”) accounted for the absolute magnitude off-

set, and they depend on the specific wavelength or filter used for observations. One can

convert period measurements of distant cepheids into absolute luminosity measurements

by using Leavitt’s law, providing us with the absolute distance to these variable stars.
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3.2.3.7. Tip of the Red Giant Branch(TRGB)

The TRGB is the highest brightness point for red giant branch (RGB) stars, which

are main-sequence stars. As an RGB star exhausts the hydrogen in its core producing

helium, it transitions to burning hydrogen in a shell surrounding the core, gradually in-

creasing the mass of the helium core. This leads to the star cooling down while becoming

brighter, a progression that persists until the helium core’s mass, and subsequently its

temperature, reaches a sufficient level (approximately 0.5 solar masses) to trigger helium

burning, transitioning to carbon. This event, akin to the sudden onset of helium fusion in

low-mass stars, is known as the helium flash [47].

The TRGB is not a specific star, but rather a characteristic of a stellar distribution.

Therefore, it is not as straightforward to determine its luminosity from trigonometric par-

allaxes as it is for individual stars such as Cepheid variables. To calibrate TRGB luminos-

ity, it was essential to measure the distance to a group of stars that are at the same distance

from us [35, 87].

3.3. Secondary Distance Indicators

The secondary distance indicators are calibration methods to measure the dis-

tances that are at redshifts sufficiently large for peculiar velocities (velocities of stars

in the galaxy relative to the galaxy) to be insignificant compared to the expansion velocity

(approximately 0.1 > z > 0.03) [97].

3.3.1. Some secondary distance indicators to determine absolute

luminosity

Here we give some examples of secondary distance indicators:

3.3.1.1. Tully-Fisher Relation

In 1977, Tully and Fisher [90] developed a method to estimate the absolute lu-

minosity of suitable spiral galaxies. They utilized the 21 cm absorption line observed in
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these galaxies, which arises from transitions of hydrogen atoms between their two hy-

perfine states. The Doppler effect, resulting from the rotation of the galaxy, causes the

broadening of this absorption line (known as the Doppler shift of its spectral lines). The

width of the line, denoted as W, provides an indication of the maximum rotational speed

of the galaxy. This rotational speed is correlated with the galaxy’s mass, which, in turn,

is correlated with its absolute luminosity [1]. Therefore, by measuring the width of the

hyperfine splitting lines, one can determine the rotational speed of the galaxy and, conse-

quently, its absolute luminosity.

3.3.1.2. Faber-Jackson Relation

This method uses the relation between random velocities of stars in elliptical

galaxies with their absolute luminosity to find the absolute luminosities of elliptical galaxies[33].

3.3.1.3. Fundamental Plane

This method is the improvement of the Faber-Jackson relation where the effect

of the surface brightness of star clusters on the absolute luminosities is also taken into

account[31].

3.3.2. Type Ia Supernovae

In the context of secondary distance indicators, it is essential to dedicate a separate

subsection to consider type Ia supernovae emphasizing their profound significance.

Type Ia supernovae are thought to happen when a white dwarf star in a binary

system gathers enough material from its companion to amplify its mass near the Chan-

drasekhar limit (the maximum mass supported by electron degeneracy pressure, which is

an effective pressure that prevents white dwarfs from undergoing gravitational collapse).

When the white dwarf exceeds this limit, it becomes unstable. The subsequent increase

in temperature and density allows the conversion of carbon and oxygen into nickel, lead-

ing to a catastrophic collapse and thermonuclear explosion. The implication of this is that

since such supernovae all start at about the same mass (i.e. the Chandrasekhar limit), their

absolute luminosity ought to be constant for all such supernovae and therefore they pro-
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vide high brightness ”perfect standard candles” for distance measurement. Their absolute

luminosity also depends on the declining time of supernova light, where the slower the

decline, the higher the absolute luminosity.

In order to determine the absolute luminosity of Type Ia supernovae, since none

of them are sufficiently close for a parallax measurement in the 400 years, some kind of

calibration is required. These supernovae are significantly more luminous than primary

distance indicators, with luminosities reaching billions of solar luminosities. One way

to calibrate them is by using the cepheids. However, given that neighboring galaxies

that host type Ia supernovae and cepheids are uncommon, an alternative set of calibrator

galaxies can be obtained through the tip of the red giant branch (TRGB) method. The

relation of absolute luminosity and decline time was calibrated using some supernovae in

galaxies whose distance had been determined via the detection of cepheid variables they

contained. The distances to a larger sample of additional type Ia supernovae in farther-off

galaxies were subsequently computed using this relation.

3.4. Luminosity Distance

In subsection 3.2.2, we developed the common relation for the apparent brightness

� of a source with absolute luminosity L at a distance d. For distances at greater redshifts,

say z > 0.1 [97], the effects of cosmic expansion on the measurement of distance cannot

be ignored. Subsequently, the adjusted formula for a source’s apparent brightness at radial

coordinate r1 at any redshift z is

� =
L

4πr21a(t0)
2(1 + z)2

(3.5)

where a(t0) is the Robertson-Walker scale factor at the present time. This formula can be

expressed as the previous one, by defining the luminosity distance dL:

� =
L

4πd2L
where dL = r1a(t0)(1 + z) (3.6)

For nearby sources (objects with z � 1) [97], we can express the relation between

luminosity distance and redshift effectively using a power series. This allows us to derive

a representation of the luminosity distance (dL) that explicitly shows its relation with the

Hubble constant. It is useful to begin with the definition of the Hubble constant:

H0(t) ≡ ȧ(t0)

a(t0)
(3.7)
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H0 can be used in expanding the Robertson-Walker scale factor a(t) in a power series, so

a(t) ≈ a(t0)[1 + (t− t0)H0 − 1

2
(t− t0)

2(q0H
2
0 ) + · · ·] (3.8)

Then the redshift can be expressed using the Hubble constant and the look-back time

(t0 − t) as:

z =
a(t0)

a(t)
− 1 = H0(t0 − t) +

1

2
(q0 + 2)H2

0 (t0 − t)2 + · · · (3.9)

This can be inverted, to give the look-back time as a power series in the redshift:

H0(t0 − t) = z − 1

2
(q0 + 2)z2 + · · ·. (3.10)

The coordinate distance r of the luminous object in a spatially flat universe (K=0) is given

by

r =

∫ t0

t

dt′

a(t′)
=

∫ t0

t

dt′

a(t0)[1 + (t− t0)H0 − 1
2
(t− t0)2(q0H2

0 ) + · · ·] (3.11)

which can be expanded as:

r + · · · = t0 − t

a(t0)
+

H0(t0 − t)2

2a(t0)
+ · · · (3.12)

Then one can write

a(t0)rH0 = z − 1

2
(1 + q0)z

2 + · · · (3.13)

substituting this equation in the expression of dL that inferred from the relation between

apparent and absolute luminosity, one gets:

dL = a(t0)r(1 + z) =
1

H0

[z +
1

2
(1− q0)z

2 + · · ·] (3.14)

Another way to calculate luminosity distance can be made by the expression of

the radial coordinate r(z) of a source observed as a function of the redshift. So

r(z) =

∫
dt

a
=

∫
da

a2H
=

∫
dz

H(z)
(3.15)

H(z) is the Hubble expansion rate as a function of redshift z, In the Standard Model H(z)

is given by:

H(z) = H0E(z); E(z) =
√

ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4 (3.16)

r(z) =

∫
dz

H0

√
ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4

(3.17)

In this case one can express the luminosity distance of a source observed with redshift z

as:

dL = r(z)(1 + z) =
1 + z

H0

∫
dz√

ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4
=

1 + z

H0

∫
dz

E(z)
(3.18)
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CHAPTER 4

BASIC NON-LOCAL MEASUREMENTS OF HUBBLE

CONSTANT

4.1. Cosmic Microwave Background (CMB)

The very early universe was thermal bath containing photons, neutrinos, dark mat-

ter particles, protons, electrons, helium nuclei, and photons. During that time the radiation

was in thermal equilibrium with the hot dense matter due to the very rapid collisions be-

tween photons and free electrons, where energetic photons rapidly ionized any hydrogen

that produced. The recombination era started when the temperature of the expanding Uni-

verse had lowered enough for protons and electrons to form neutral hydrogen giving the

cosmic microwave background (CMB) as photons flew freely across the Universe. This

time is called the last scattering surface.

Studying CMB radiation is an effective technique for measuring the universe’s

geometry, matter composition, and primordial fluctuations. In this section, we aim to

briefly relate the temperature inhomogeneity of light in acoustic oscillations of baryon-

photon fluid before recombination to the CMB anisotropies observed at present. This will

be done for the sake of completeness although this point is not directly related to the study

of Hubble tension. As we will see later, Hubble constant H0 is determined by studying

the relation

θ =
rs
DA

, where rs =

∫ ∞

z∗

csdz

H(z)
and DA =

∫ z∗

0

dz

H(z)
(4.1)

It is evident from this equation that only the size of the sound horizon rs and the cosmo-

logical model adopted is important in this context. On the other hand the evolution of the

temperature inhomogeneity at the last scattering surface and at later times till the present

do not affect these quantities. They only affect the final form of the anisotropy.

In Section 2.3 we have derived the equation for temperature inhomogeneities of

photons in the photon-baryon fluid in the era before recombination. This inhomogeneity

evolves due to some effects at the era of the last scattering and in the following era till the

present which will be briefly summarized at the end of this section. The inhomogeneity
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Θ is 3-dimensional. This inhomogeneity must be projected to the sphere of the observa-

tion at present. To this end, first the 3-diemnsional inhomogeneity must be expressed in

terms of spherical harmonics. Any 3-dimensional function Θ(x, p̂, η) may be expressed

in terms of spherical harmonics as

Θ(x, p̂, η) =
∞∑
l=1

l∑
m=−l

alm(x, η)Ylm(p̂) (4.2)

where p̂ is the incoming photons’ direction and

alm(x, η) =

∫
d3k

(2π)3
eik·x

∫
dΩ Y ∗

lm(p̂) Θ(x, p̂, η) (4.3)

isotropy of CMB temperature implies

〈alma∗l′m′〉 = δll′δmm′Cl (4.4)

ΔT (p̂) or Θ(x0, p̂, η0) is measured in the position of the observer and may be expressed

in terms of spherical harmonics as

ΔT (p̂)

T
= Θ(x0, p̂, η0) =

∞∑
l=1

l∑
m=−l

alm(x, η0)Y
m
l (p̂) (4.5)

The two-point correlation function is an excellent way to quantify anisotropies in the

CMB. It can be expressed as

〈ΔT (p̂)

T

ΔT (p̂′)
T

〉 =
∑
lm

ClY
m
l (p̂)Y m

l (p̂′) =
∑
l

Cl

(
2l + 1

4π

)
Pl(p̂ · p̂′) (4.6)

where we have replaced Θ by ΔT
T

that corresponds to the temperature anisotropy at the

present time at the location of Earth while we reserve Θ for temperature isotropy in gen-

eral, especially at the era before recombination. Hence one can write

Cl =
1

4π

∫
d2n̂d2n̂′Pl(p̂ · p̂′)〈ΔT (p̂)

T

ΔT (p̂′)
T

〉 (4.7)

One must be cautious about an important point here, the physical meaning of the lower

indices l here are not the same as the ones in (2.62). The ones in (2.62) correspond to

the expansion of the inhomogeneity at era before the recombination while the one here

corresponds to its decomposition on the sphere of observation at present. For example,Θ0

also is expanded in terms of the spherical harmonics as in (4.5).

Note that,ΔT
T

observed at present, in addition to the frozen inhomogeneities due to

the baryon-photon oscillations, has also contributions from sources of anisotropy just be-

fore recombination and at the time of recombination or after the recombination till today.
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We have not discussed these contributions to ΔT
T

since they do not change the angular size

of the sound horizon of the anisotropy due to the baryon-photon fluid oscillations that we

use in (4.1), so they are not directly related to the Hubble tension. It will be enough to

mention these sources of anisotropies briefly as [11, 30, 97]

1. Doppler Effect: results from variations in plasma velocity during the recombination.

2. Sachs-Wolfe effect which is the blueshift or redshift in temperature caused by varia-

tions in the gravitational potential at the time of recombination. In fact, the acoustic

oscillations discussed above may be considered as initial conditions for the Sachs-

Wolf effect [11, 82]

3. The integrated Sachs-Wolfe effect is the same as the Sachs-Wolfe effect but with

time-dependent fluctuations between the recombination and the present time.

4. The Dipole Anisotropy: This is due to the overall redshift of the CMB radiation

arising from the earth’s motion with respect to CMB. In fact, this contribution is

subtracted from the CMB data to find the true anisotropy.

5. The Sunyaev-Zel’dovich effect is an anisotropy resulting from photons being scat-

tered by intergalactic electrons within galaxy clusters.

6. Silk Damping: This is the diffusion of photons from hotter regions to colder ones at

the times before recombination. This is a small-scale effect due to the fact that the

baryon-photon fluid, in fact, consists of particles i.e. baryons and photons which

are separated from each other by some distance. In other words, it is due to the

non-vanishing mean free path of the photons in their collisions with baryons.

There are also additional contributions to anisotropies, namely, polarization of CMB pho-

tons by intergalactic and inter-stellar dust [80], and weak lensing [30, 97].

4.2. Impact of the Value of H0 on CMB measurements in the Context

of the Standard Model

Acoustic oscillations affect CMB radiation and the distribution of baryons. Pho-

tons decouple at z∗ while baryons decouple at zd. What we may measure is θ which

represents the effect of the acoustic oscillations either on CMB or on large-scale structure
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(LSS). For CMB one can write

θ =
rs
DA

, where rs =

∫ ∞

z∗

csdz

H(z)
, and DA =

∫ z∗

0

dz

H(z)
(4.8)

H for ΛCDM can be written in the form

H(z) = H0E(z) ; E(z) =
√
ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4 (4.9)

At the first glimpse, it seems as if the effect of changing the Hubble constant would

cancels out in the formula of θ, but actually one can see its effect by considering Saha

equation [97]

X(1 + SX) = 1 (4.10)

where X ≡ np

np+n1s
and S can be expressed as

S = 1.747× 10−22e157894/TT 3/2ΩBh
2 (4.11)

here T is the temperature in degrees Kelvin and h is the Hubble constant in units of 100

km/Mpc/s. As we can see from (4.11), when the Hubble constant increases the tem-

perature must be decreased in order to have a fixed value of S. This means that actually

changing the Hubble constant value will affect the temperature where the decoupling hap-

pened at which is related to the redshift, then z∗ will also be affected. In other words, if

we assume that at X = X̃ the decoupling happens at some fixed value of the temperature

T̃ . Then, changing the Hubble constant, changes T̃ , this, in turn, changes the redshift of

decoupling.

4.3. Baryon Acoustic Oscillations (BAO)

Baryon acoustic oscillations (BAO) are imprints of the density fluctuations of

baryonic matter that are observed at the present time in large-scale structure. They are

due to the sound waves in the baryon-photon plasma before recombination. After the

decoupling of baryons and photons, these oscillations are frozen in inhomogeneities of

baryon distribution that result in large-scale structures (such as galaxies) at present time.

BAO matter clustering serves as a ”standard ruler” for the length scale in cosmology, just

how supernovae offer a ”standard candle” for astronomical observations. The greatest dis-

tance that the acoustic waves could travel in the plasma before cooling to the point where

they became neutral atoms and decoupled light, stopping the expansion of the plasma

density waves and ”freezing” them in place, is what determines the length of this standard

ruler. See Fig. 4.1

27



In BAO feature, perturbation is measured using galaxy correlations e.g. in the

transverse direction to the line of sight, the observable is the angular size of the sound

horizon at the ”cosmic drag” epoch, or at the epoch of baryons decoupling. So that in

BAO measurements of the Hubble constant, z∗ in rs is replaced by the redshift at baryon

drag zd in the rd; and z∗ in DA in (4.8) by the redshift of the observed point (e.g. the

galaxy) zobs. That is θBAO
⊥ reads

θBAO
⊥ =

rd
DA(zobs)

, where rd =

∫ ∞

zd

csdz

H(z)
, and DA(zobs) =

∫ zobs

0

dz

H(z)
(4.12)

Astronomical surveys measure θBAO
⊥ while rd and DA are calculated by specify-

ing the cosmological model i.e. H(z). In the standard calculations H(z) is taken to be

that of the standard model of cosmology. The observations give θBAO
⊥ = rs

DA(zobs)
. In fact,

rd corresponds to the radius of the universe at the time of baryons decoupling while it is

a small portion of the sky today because the size of the horizon in a matter dominated

universe increases. BAO observations assist cosmologists learn more about the nature of

dark energy (which drives the universe’s accelerated expansion) by restricting cosmolog-

ical parameters.
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Figure 4.1.
An artist’s concept for a measurement of the universe’s size. The gray

spheres represent the pattern of BAO from the early Universe. Galax-

ies currently have a modest tendency to align with the spheres. This

graphic shows an exaggerated alignment. Astronomers can calculate

the distance between galaxies to within 1% accuracy by comparing the

size of the spheres (white line) to the expected value. (Image Credit:

Zosia Rostomian, Lawrence Berkeley National Laboratory, https://

newscenter.lbl.gov/2014/01/08/boss-one-percent/)
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CHAPTER 5

HUBBLE TENSION

Currently, there are multiple independent ways to infer the value of H0. One

method involves measuring the Hubble constant from the analysis of measurements of

the cosmic microwave background (CMB) temperature and polarization spectra, another

from the baryon acoustic oscillation (BAO) feature found in the large-scale distribution

of galaxies after using the standard cosmological model (ΛCDM) in both methods. On

the other hand, the Hubble constant can also be directly determined from measurements

of distances to sufficiently distant luminous celestial objects such as Type Ia supernovae

(SNe Ia). This approach relies on the absolute luminosity measurements of these SNe Ia

that can be calibrated for example through measurements of Cepheids, which are variable

stars known to exhibit periodic changes in brightness, which, in turn, are calibrated using

geometry. This method is commonly referred to as the direct local measurements.

Estimates of the Hubble constant from local measurements are typically higher

than those derived from CMB data, assuming the ”standard” ΛCDM cosmological model.

There is 4σ to 6σ discrepancy. The disagreement between the local and non-local mea-

surements of H0 is called Hubble tension[27, 75, 93].

To be more specific, let us discuss the problem in terms of equations. The (local)

direct method of the determination of H0 rely on measuring the luminosity distance dL as

a function of redshift z. As shown in the section 3.4 the luminosity distance at relatively

small redshifts can be expressed as

dL =
1

H0

[z +
1

2
(1− q0)z

2 + · · ·] (5.1)

where, q0 is the deceleration parameter. We can measure the luminosity distance of su-

pernovae for a set of low redshifts. q0 is measured by Adam G. Riess and Louise Breuval

[78] as q0 = −0.55. Hence, we may determine H0.

Another way to determine H0 is the non-local methods such as CMB perturba-

tions, BAO, etc. Both for CMB and BAO calculations [3, 4, 8, 66] a co-moving angle

that is obtained from measurements are related to the co-moving sound horizon rs and the

co-moving distance D, that are calculated. For example, in the case of CMB perturbations

we mainly measure the angular scale of perturbation on the last scattering surface θ∗ that

30



is given by:

θ∗ =
rs

D(z∗)
, where rs =

∫ ∞

z∗

csdz

H(z)
and D(z∗) =

∫ z∗

0

dz

H(z)
(5.2)

where in the case of ΛCDM

H(z) = H0E(z); E(z) =
√

ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4 (5.3)

Here, z∗ is the redshift at which baryons and photons decouple, rs is the sound horizon,

which is the co-moving distance a sound wave may travel from the beginning of the

universe till recombination, cs is the baryon-photon sound speed, and D(z∗) is the co-

moving distance from a present-day observer to the last scattering surface. While cs

is mostly dependent on the baryon-to-photon ratio of energy densities as represented in

(2.70), where R is supplied after (2.61), the value of z∗ is substantially dictated by the

measurement of the current CMB temperature and the standard atomic physics.

In the case of BAO, the perturbation is measured by using galaxy correlations in

the transverse direction to the line of sight, the observable is the angular size of the sound

horizon at the ”cosmic drag” epoch, or at the epoch of baryon decoupling when measured

today, θBAO
⊥ that is given by

θBAO
⊥ =

rd
D(zobs)

, where rd =

∫ ∞

zd

csdz

H(z)
and D(zobs) =

∫ zobs

0

dz

H(z)
(5.4)

where zobs is the redshift at which a given BAO measurement is made, rd is the co-moving

sound horizon at the end of the baryon drag epoch, and D(zobs) is the co-moving distance

from a present-day observer to the location of the perturbation.

Many studies have studied possible effects of measurement errors (i.e. systemat-

ics) in local mesurements of Hubble constant as a probable cause of the tension. These

studies imply that the tension cannot be attributed to systematics [29, 42, 45, 76, 78].

Therefore, the most reasonable approach for the solution of this tension seems to be as-

suming that the local measurements correspond to the true value of H0 and the non-local

measurements may be brought to be in agreement with the CMB measurements by mod-

ifying ΛCDM by inclusion of new physics. This may be done in two different ways,

namely, early time solutions and late time solutions.

5.1. The Basic Idea of Early Time Solutions

”Early” in this context refers to before the CMB photons last scattered, or during

the first 400,000 years of the universe. Prior to the recombination phase (and after the time

31



of nucleosynthesis not to impact the successful outcome of the standard model), early time

solutions alter the expansion history changing both H0 and rs in the appropriate direction

(i.e. increasing H0 while decreasing rs so that both rs and D(z∗) decrease by the same

amount) to solve the Hubble tension. Suppressing the extent of the sound horizon may be

achieved most simply by raising the Hubble expansion rate during the pre-recombination

era, which necessitates raising the energy density during that period.

One can see this point more clearly by considering the expression of the sound

horizon in a spatially flat universe (K=0) i.e.

rs =

∫ ∞

z∗

csdz

H(z)
(5.5)

and the co-moving distance to z∗

D(z∗) =
1

H0

∫ z∗

0

dz

E(z)
(5.6)

H(z) = H0E(z) ; E(z) =
√
ΩΛ + ΩM(1 + z)3 + ΩR(1 + z)4 (5.7)

It is evident from (5.5) that larger energy gives smaller sound horizon. E(z) is fixed

in (5.6), while H0 is increased. This, in turn, implies that D(z∗) is decreased. One

may decrease rs and D(z∗) by the same amount so that the angular scale of perturbation

remains fixed:

θ∗ =
rs

D(z∗)
(5.8)

Workable solutions can be obtained by modifying ΛCDM at early times without

affecting the successful predictions of the Standard Model such as nucleosynthesis. A

viable approach is to propose a concept of ”early dark energy” (EDE) that functions sim-

ilarly to a cosmological constant before to matter-radiation equivalence but subsequently

decays more quickly than radiation. This class of early time solutions seems to alleviate,

but not to solve, the H0 tension below the 3σ significance [29, 42, 66].

5.2. The Basic Idea of Late Time Solutions

Late time solutions of the Hubble constant tension are expansion history alter-

ations following recombination that raise the H0 value while maintaining the co-moving

distance and the sound horizon unaltered. This means that, while maintaining the energy

density as that of ΛCDM today, the energy density during periods between decoupling

and now must be less than in the standard cosmological model. This then increases H0

as is evident from (5.6). Then
∫ z∗
0

dz
E(z)

is greater when compared to the one for ΛCDM,
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H0 must increase by the same ratio. Therefore, the angular scale of perturbation (5.8)

remains the same since rs is unaltered in this solution.

This needs some exotic matter whose energy density grows with time concerning

its standard form, given the reduction of the radiation and matter densities in a rising

redshift. The simplest way to do this is to propose that a phantom-like fluid takes the

place of the cosmological constant. i.e., a fluid with an equation of state

w =
p

ρ
< −1 (5.9)

where p and ρ are here the dark-energy pressure and energy density.
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CHAPTER 6

MAIN SCALAR FIELD MODELS PROPOSED FOR

SOLUTION OF HUBBLE TENSION IN THE CONTEXT OF

GENERAL RELATIVITY

6.1. General Aspects of Scalar Field Models

A ”scalar field” is defined as a field that is invariant under Lorentz transformations.

The energy density associated with particular scalar fields may be used to describe dark

energy or dark matter in the scalar field model alternatives of the standard ΛCDM model

[97]. For example, quintessence models are an example of such models [15, 98].

The general Lagrangian density of a scalar field φ is

Lφ = T (φ)− V (φ) = −1

2
gμν∂μφ∂νφ− V (φ) (6.1)

where V (φ) is an unspecified potential function, T (φ) is the kinetic energy, and g rep-

resents the determinant of RW metric. Hence, the action of such a scalar field can be

expressed as

Sφ =

∫
d4x

√−gLφ = −
∫

d4x
√−g

[
1

2
gμν∂μφ∂νφ+ V (φ)

]
(6.2)

One can use this action to write the corresponding energy-momentum tensor for scalar

fields as

T μν
φ = −gμν

[
1

2
gρσ∂ρφ∂σφ+ V (φ)

]
+ gμρgνσ∂ρφ∂σφ (6.3)

Let us now take a scalar field so that it depends on time only, not on position. Hence,

energy density, pressure, and the equation of state may be expressed as

ρφ = T00 =
1

2
φ̇2 + V (φ) (6.4)

pφ = T 1
1 = T 2

2 = T 3
3 =

1

2
φ̇2 − V (φ) (6.5)

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(6.6)
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Note that wφ varies between −1 (that corresponds to the cosmological constant and is

the case for φ̇2 << V (φ)) and 1 (that corresponds to stiff matter and is the case for

φ̇2 >> V (φ)). In general, −1 < wφ < 1. The field equation obtained from the action

(6.2) is

∇μ∇μφ+
∂V

∂φ
= 0 (6.7)

The equation of motion for φ = φ(t) may be obtained from (6.7) or from(2.9), which

reads

φ̈+ 3Hφ̇+ V ′(φ) = 0 (6.8)

where V ′(φ) is the derivative of V (φ) with respect to φ.

6.2. Late Time Solutions

In this class of models the evolution of E(z) = H(z)/H0 in (5.7) is decreased

in the era after decoupling so that H(z) remains the same provided that H0 may be in-

creased to the value obtained from local measurements. This procedure does not change

rs. Hence, the value of the Hubble constant measured in local measurements may be fitted

to the observed value of θ. We consider such three models to see the basic lines of this

type of solutions in more detail.

6.2.1. Late dark energy transition

There are two types of late dark energy (LDE) transition models. One of them

describes transitions from a matter-like to a cosmological constant behaviour at high red-

shifts after recombination. We will discuss this type of transition in the next section. In

this section we will delve into the details of the second type which assume a late transition

in the dark energy density near the present epoch. Such a transition is hidden from be-

ing observed by SNe Ia measurements if we take the redshift zt (where the transition has

taken place) to be smaller than the smallest redshifts of the observed supernovae. Only

distance measurements below zt � 0.02 would be sensitive to such a jump[10, 61]. This

LDE modification of the ΛCDM expansion history leads to a fractional change of δ in the

Hubble constant

H2
0 = H̃2

0 (1 + 2δ) (6.9)
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Here and throughout this section tildes denote values in a flat ΛCDM model with a cos-

mological constant density ρ̃Λ. The basic idea of this model may be summarized as; H0 in

(6.9) may be considered as the true value of the Hubble constant measured by the direct

local measurements while H̃0 is close to the value measured by CMB and other non-local

measurements. It is evident that this approach in principle may solve the Hubble tension

in the view of the discussion in Section 5.2. The expression in (6.9) can be obtained from

the limiting case of the following smooth dark energy density ρDE(z)

ρDE(z) = [1 + f(z)]ρ̃Λ (6.10)

Here, f(z) is similar to a smooth step function that defined as

f(z) =

⎧⎨
⎩0 z � zt

2δ
Ω̃Λ

S(z)
S(0)

otherwise
(6.11)

where

S(z) =
1

2

[
1− tanh

(
z − zt
Δz

)]
(6.12)

In this definition, zt,Δz and δ are the position, width, and amplitude of the transition,

respectively. the equation of state of the LDE model can be obtained by

1 + w =
ρ̇

3Hρ
=

1

3

(1 + z)f ′

1 + f
where f ′ =

df

dz
(6.13)

Now, to construct the scalar field model we identify the corresponding scalar field poten-

tial by using (6.4) and (6.5) as

V (z) =
ρDE − pDE

2
= [(1 + f)− (1 + z)f ′

6
]ρ̃Λ (6.14)

and the kinetic energy of the field can be expressed as

φ̇2

2
=

ρDE + pDE

2
(6.15)

So, one may obtain a scalar field that corresponds to (6.9).

φ(z) =

∫
φ̇(z)dt =

∫ z

0

|(1 + w(z′))ρDE(z
′)|1/2 dz′

(1 + z′)H(z′)

=

√
ρ̃Λ
3

∫ z

0

( |f ′|
1 + z′

)1/2
dz′

H(z′)
(6.16)

Although this model, in principle, can solve the Hubble tension as mentioned before, one

cannot be sure if it really solves the tension because of the degeneracy between the Hubble

constant and the supernovae absolute luminosities in the determination of the luminosity

distances and the possibility of the variation of the absolute luminosities [10, 16] as may
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be seen in the following formulas for apparent luminosity and the theoretical value of the

luminosity distance

� =
L

4πd2L
=

L

4π
(

a0(1+z)
H0

∫
dz

E(z)

)2 (6.17)

dL =
a0(1 + z)

H0

∫
dz

E(z)
(6.18)

where E(z) is given in (5.7).

Moreover, it is shown in [7] that this model should be supplemented by a transition

in the absolute luminosities of the supernovas at a redshift of an order of 0.01 to solve the

Hubble tension. A similar result is obtained in [38], which finds that BAO data favor

an ultra-late-time (phantom-like) enhancement of H(z) at z < 0.2 accompanied with a

transition in the absolute magnitude of supernovae. However, a full CMB data analysis

is currently missing [29]. On the other hand, it has been found that five different data-

motivated priors of type Ia supernovae absolute magnitudes result in a range of H0 that is

compatible with both local and non-local measurements [21].

6.2.2. Late time transitions in the quintessence field

Probably the most popular cosmological scalar field model for dark energy and

dark matter is quintessence. Therefore, [28] studied a quintessence field (a massive scalar

field φ) that transitions from a matter-like to a cosmological constant behaviour at a late

time to see if this model may solve the Hubble tension. In this model the transition is

smooth and can be expressed by considering the effective equation of state:

wφ eff(a) =
wφ0

1 +
(

a
a∗

)− 2
Δ

(6.19)

where a∗ is the scale factor at the time of transition, and Δ defines transition period.

Then, using the continuity equation (2.11) the energy density in the quintessence field is

depicted as

ρφ = ρφ0

(
a

a0

)−3(1+wφ0)

⎡
⎢⎣1 +

(
a0
a∗

)− 2
Δ

1 +
(

a
a∗

)− 2
Δ

⎤
⎥⎦

3 Δ wφ0
2

(6.20)

where a0 and ρφ0 are the present value of the scale factor and of the energy density in

quintessence, respectively.
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The above phenomenological framework may be derived from the following scalar

field model. The scalar field satisfies the Klein-Gordon equation

φ̈+3Hφ̇−∇2φ+m2φ+
∂Vosc

∂φ
= 0 , where Vosc(φ) = Λ4

[
1− cos

(
φ

f

)]
(6.21)

Λ is a free parameter which controls the height of the perturbations over the quadratic

potential, and f is the energy scale that controls the field excursion.

Initially (at time of inflation), the Hubble parameter H is so large that only the first

two terms in (6.21) contribute to the equation of motion with a constant φ as a solution.

Later, H becomes very small compared to the mass term (and the other potential term

which is much larger than the mass term). In this era, the scalar φ oscillates about a

minimum of the potential with an effective equation of state 0 (i.e. the scalar behaves

like matter). After that, the field tunnels to another minimum of the potential behaving

as another fluid with equation of state wφ0 (in particular, φ may take a constant value and

behave like a cosmological constant with equation of state −1).

[28] investigated this extension of the ΛCDM model by using four different analy-

ses. It showed that this model with changing only a∗ does not help in relieving the Hubble

constant tension. Also, in the case of letting f and Δ free to vary, because these parame-

ters do not correlate with H0, do not alleviate the tensions between Planck and the other

cosmological probes. In the case of free dark energy equation of state also the case of

free wφ0 with the total neutrino mass
∑

mν and the number of relativistic degrees of free-

dom Neff, because of the strong anti-correlation between wφ0 and H0 also between
∑

mν

and H0 in both cases [28] found a shift of the Hubble constant towards lower values, in-

creasing the tension with Planck and the local measurements. [59] included curvature to

extend the one-parameter and three-parameter parameterizations of [43] in the analysis

and found that the H0 tension remains above the 3σ.

6.2.3. Chameleon dark energy

A late-time inhomogeneous resolution is proposed by [12] suggesting that as an

effective cosmological constant, a chameleon field coupled with a local overdensity of

matter (since the physical characteristics of the chameleon field including its mass, are

highly dependent on its surroundings, as it is a sort of scalar field that behaves quite

differently in high-density areas than in low-density areas [50]) might be imprisoned at

a greater potential energy density, accelerating the local expansion rate relative to the

background with lower matter density.
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The chameleon field φ introduces extra interactions with matter fields ψi with

conformal factor Ωi(φ). The action for this model is given by

S =

∫
d4x

√−g

(
M2

P l

2
R− 1

2
(∂φ)2 − V (φ)

)
+
∑
i

S(i)
m [Ω2

i (φ)gμν , ψi] (6.22)

where MP l is is the reduced Planck mass. The metric employed in the first term in (6.22)

i.e. in Hilbert-Einstein term and the chameleon action is gμν that is used in the Einstein

frame metric. In this frame photons and baryons move on geodesics , while the metric for

the S
(i)
m terms is g̃μν which is induced by the chameleon coupling to matter and it is called

Jordan-frame metric g̃
(i)
μν = Ω2

i (φ)gμν in which DM moves on geodesics but photons and

baryons are accelerated [48]. Therefore, chameleon has an effective potential Veff that can

be expressed as

Veff(φ) = V (φ) + Ω(φ)ρ̂m (6.23)

where ρ̂m is the covariantly conserved energy density defined in Appendix B. The effec-

tive potential is the sum of two contributions: one from the actual potential V (φ), and the

other from coupling of φ to the matter density Ω(φ)1 where

V (φ) = αΛ4

(
Λ

φ

)n

, Ω(φ) = e(
φ
Λ) (6.24)

Then, the vacuum-expectation value that corresponds to the minimum of the potential can

be expressed as

〈φ〉 = (1 + n)ΛW

[
1

1 + n

(
ρ̂m

nαΛ4

)− 1
1+n

]
(6.25)

where W (z) is the Lambert function defined by z = W (z)eW (z), and hereafter the mass

scale Λ4 will be chosen as the current critical density 3M2
P lH

2
∼CMB. This model assumes

an inhomogeneous profile for the local Hubble constant. The chameleon field coupling to

the background region gives the Hubble constant H∼CMB, while its coupling to sufficiently

dense region of the matter overdensity (so that the Friedmann equation could be applied)

gives another value for the Hubble constant H∼local. The Friedmann equations for each

case [12] are

3M2
P lH

2
∼CMB = ρ̂∼CMB

m + Veff(〈φ〉∼CMB ;n, α, ρ̂
∼CMB
m ) (6.26)

and

3M2
P lH

2
∼local = ρ̂∼local

m + Veff(〈φ〉∼local ;n, α, ρ̂
∼local
m ) (6.27)

1The uncoupled scalar field regime is recovered in the limit Ωi(φ) → 0.
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namely
H2

∼local

H2
∼CMB

=
ρ̂∼local
m

Λ4
+ α

(
Λ

〈φ〉∼local

)n

+ e

( 〈φ〉∼local
Λ

)
ρ̂∼local
m

Λ4
(6.28)

with α solved by matching H∼local to H∼CMB. As one can see from (6.28), by increasing

〈φ〉∼local , H∼local will be higher, explaining the local measurements of the Hubble con-

stant. In this model it was found that 20% overdensity in the local region is sufficient to

reproduce the local measurement on the Hubble constant [12]. But a full data analysis is

however missing [29].

6.3. Early Time Solutions

In this class of models, the amount of energy before the recombination period is

larger than the one in the ΛCDM model. Increasing H(z) in rs, increasing H0 in D(z∗)

while keeping E(z) fixed so that it results in smaller rs and D(z∗) with the angular scale

of perturbation (5.8) remaining fixed. The observed value of θ may thus be matched to

the value of the Hubble constant as determined in local measurements. We consider such

three models to see the basic lines of this type of solutions in more detail.

6.3.1. Chameleon early dark energy

This model designates a cosmology called ”chameleon EDE” or CEDE, that sug-

gests EDE scalar field that couples to dark matter, inspired by chameleon models of dark

energy [50], such that the dark matter becoming the dominant component of the Universe

close to matter-radiation equality at zeq. As we have demonstrated in section 6.2.3, such

a connection results in a change in the scalar’s effective potential as well as a modulation

of the dark matter mass. The choices of scalar field potential and form of the coupling in

[48] are

V (φ) = λφ4 , Ω(φ) = e
βφ

MPl (6.29)

where λ and β are dimensionless constants. Then the effective potential is

Veff(φ) = V (φ) + Ω(φ)ρdm = λφ4 + e
βφ

MPl ρdm (6.30)

Here, the fundamental Friedmann equation reads

3M2
P lH

2 =
1

2
φ̇2 + Veff(φ) + ρm + ρΛ =

1

2
φ̇2 + V (φ) + Ω(φ)ρdm + ρm + ρΛ (6.31)
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where ρdm is the dark matter density. Thus, the contribution of dark matter (DM) to the

overall energy supply of the universe at any given time is ρdmΩ(φ), which may be seen as

a modulation of the DM particle’s mass. Therefore, the equation of motion of the scalar

is modified by an additional source term dependent on the dark matter density i.e.

φ̈+ 3Hφ̇+
dVeff(φ)

dφ
= 0 (6.32)

The coupling to DM most noticeably modifies the early-time behavior of the scalar

field which can be seen at high redshifts in Fig. 6.1a. It acts like the cosmological constant

and then it decays fast as a−4 and as DM dilutes away, the native potential of the scalar

comes again into play. After the scalar Hubble frozen for some time, the scalar then

begins to roll and oscillate asymmetrically in effective potential about a new, time-varying

minimum. This shifts the odd (even) peaks in the fractional energy density to lower

(higher) energy density than in the symmetric-potential uncoupled EDE case as shown in

Fig. 6.1b. This model has the potential to solve Hubble tension. In particular, a potential

φ4 for CEDE can be used to refine the issue by adding an adjustable parameter, β as

illustrated in Fig. 6.1a. However, full data analysis is missing for this model, and this

seems to be a difficult task in view of the complicated form of the model [48].

(a) Energy densities of various components

of the Universe

(b) the fractional energy density fede in the EDE

and CEDE scalar fields

Figure 6.1. The uncoupled EDE (dot-dashed) and CEDE (solid) models. Colors show

the variation of ρscf with β [48]
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6.3.2. New early dark energy

New early dark energy (NEDE) is a component of vacuum energy on the electron

volt scale that decays in a first-order phase transition just before recombination [62]. Ac-

cording to NEDE, recombination in the early Universe is assumed to have preceded the

vacuum first-order phase transition of the NEDE scalar field. In fact there are two types of

new early dark energy models; cold new early dark energy and hot new early dark energy.

Cold new early dark energy is an extension of early dark energy with addition of an extra

scalar φ that triggers the increase and decrease of the energy density of the first scalar

field ψ. In hot new early dark energy model the trigger field φ is replaced by temperature.

Here we will consider the cold new dark energy model since the basic lines of models

are the same. The first scalar ψ behaves as dark energy before its transition to an energy

density that decays like radiation or faster. The NEDE abrupt transition may be expressed

by a scalar field ψ whose potential at a critical point creates two non-degenerate minima

(true and false vacuum) [66]. This can be achieved by considering a tunneling field ψ

and an extra subdominant trigger field φ that, when activated, dramatically increases the

tunneling rate.

This model has the form of general potential V (ψ, φ) as

V (ψ, φ) =
λ

4
ψ4 − 1

3
αMψ3 +

1

2
βM2ψ2 +

1

2
m2φ2 +

1

2
λ̃φ2ψ2 (6.33)

where α, β, λ, and λ̃ are positive, dimensionless constants, while M represents a general

mass scale. It is advantageous to define a dimensionless potential or in other words rescale

V by multiplying both sides of (6.33) by 81λ3

(α4m4)

V̄ (ψ̄, φ̄) =
1

4
ψ̄4 − ψ̄3 +

δeff(φ̄)

2
ψ̄2 +

1

2
κ2φ̄ 2 , where κ =

3λ

α
√

λ̃

m

M
(6.34)

as we utilized the dimensionless variables ψ̄ = 3λ
αM

ψ, and φ̄ = 3
√

λλ̃
αM

φ as well as δeff =

δ+φ̄ 2 = 9λβ
α2 +φ̄ 2 that controls the shape of the potential for the dimensionless tunneling

field ψ̄.

As shown in [63] ψ has two minima. ψ is at the false vacuum before the transition

and it makes a fast tunneling to the true vacuum at the transition by the help of φ. The

result is a sudden localized peak in the energy density of φ before recombination. This

causes a localized energy density before recombination so that the sound horizon is de-

creases without spoiling the era of nucleosynthesis. In other words, it describes an almost

instantaneous transition from a background fluid with an EoS parameter that varies from
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−1 to w NEDE

w NEDE (t) =

⎧⎨
⎩−1 for t < t∗

w∗
NEDE for t > t∗

(6.35)

where the transition happens at time t∗.

In [63] it was shown that there exists a parameter space in this model where the

time of the jump in the energy density of ψ may localized at the correct time with the

correct magnitude so that it may resolve the Hubble tension. In [25], the effects of

incorporating Atacama Cosmology Telescope (ACT) were investigated, yielding H0 =

71.49± 0.822 km/Mpc/s (68%C.L.) and a best-fit of H0 = 72.09 km/Mpc/s. The model’s

fit quality in comparison to ΛCDM, notably improves, leading to a reduction in tension

from 4.8σ down from 2.9σ within ΛCDM. However, the ACT data somewhat diminishes

the efficiency of NEDE in addressing the Hubble tension. On the other hand, incorporat-

ing the South Pole Telescope (SPT) data resulted in H0 = 71.431±0.852 km/Mpc/s (68%

C.L.) and a best-fit of H0 = 71.77 km/Mpc/s demonstrating a strong fit that reduces the

tension to below 2σ. This model effectively decreases the Hubble tension from approxi-

mately 4.8σ to around 2σ establishing itself as one of the most promising solutions to the

Hubble tension [23, 64, 84].

6.3.3. Anharmonic oscillations

Anharmonic oscillations model is one of EDE models that tries to reduce the H0

tension [72]. This model’s scalar field has a potential having an oscillating feature of the

form [46]:

Vn(φ) ∝
(
1− cos

φ

f

)n

(6.36)

The homogeneous Klein-Gordon equation of motion for the field is given by

φ̈+ 3Hφ̇+
dVn(φ)

dφ
= 0 (6.37)

To see the physical implications of (6.36) more clearly, we may consider the case n = 1

[46]. One may take H very large initially so that the contribution of the potential to (6.37)

is much smaller than the contribution of the second term. At this time φ = constant is

a solution of (6.37). By (6.6), φ = constant corresponds to w = −1. We may let this

correspond to the inflationary universe era. At this time, the time derivative of φ is zero.

The later evolution may be either of the following two ways: 1- The field initially may be
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at the maximum of the potential (that corresponds to φ/f = −π), 2- The field may be at

the minimum of the potential (that corresponds to φ/f = π). In the first case, φ later gets

smaller and behaves like dark energy. In the second case, φ is close to the minimum of the

potential (that may correspond to the later evolution of the case -1). This corresponds to

the time when the second term in (6.37) is negligible after a sufficiently long time when

H gets sufficiently small.

In the case small φ/f , (6.36) may be approximated by

Vn(φ) ∝ φ2n (6.38)

This results in the following equation of state [91]

wn ≡ n− 1

n+ 1
. (6.39)

where the replacements γ = 1 + w, n → 2n are done when compared to [91]. When the

oscillations become rapid compared with the expansion rate, one can use the effective-

fluid approximation [70] to find the scalar-field equations of motion. The scalar field

initially (i.e. at very large z) has the equation of state of the cosmological constant, and

at late times (i.e. at small z) behaves as a fluid with the equation of state given in (6.39).

Therefore, The energy density parameter of the scalar field may be taken as:

Ωφ(a) =
2Ωφ(ac)

( a
ac
)3(wn+1) + 1

(6.40)

which has an associated equation of state

wφ(z) =
1 + wn

1 + ( a
ac
)−3(1+wn)

− 1 (6.41)

It asymptotically approaches -1 as a → 0 representing that the energy density is constant

at early times while approaches wn for a � ac, showing that the energy density is diluted

as a−3(1+wn) when the scalar field becomes dynamical [79]. The homogeneous EDE en-

ergy density dilutes like matter for (wn = 0) n = 1, like radiation for (wn = 1/3) n = 2,

and faster than radiation whenever n ≥ 3. For n → ∞ the scalar field is fully dom-

inated by its kinetic energy wn → 1 and the energy density dilutes as a−6. In [72], it

was found that n = 3 is the solution preferred by the data used, gives H0 = 70.6 ± 1.3

km/Mpc/s at 68% CL, solving the Hubble tension within 2σ. This resolution requires a

∼ 5% contribution from EDE to the total energy density at redshift z � 5000 that then

dilutes later[72].
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CHAPTER 7

CONCLUSION

In this thesis, we have reviewed the concept of the Hubble constant tension and

discussed some models that try to solve this tension in the context of scalar field mod-

els. We have given a brief overview of the standard model of cosmology discussing the

background evolution using RW metric and deriving Friedmann equations, furthermore,

exhibiting the cosmological perturbations for RW metric and Einstein field equations. We

have also used the Boltzmann equation in order to derive the equation for the baryon-

photon wave and show that this wave has sound speed cs that depends on the universe’s

baryon density. We also have considered the Hubble constant determination techniques

after presenting the main measurement methods used in cosmology to determine dis-

tances; the cosmic distance ladder for the local measurements, while CMB and BAO

measurements for the non-local measurements of H0. We also, for the sake of complete-

ness, have considered the evolution of the inhomogeneities and the anisotropies at the

present time.

In Chapter 5, we have discussed what is the Hubble tension and the basic ideas for

its solution which are categorized as early and late time solutions. In the next chapter, we

have given three models for each type of these solutions within the scalar field models.

Regarding these six models that we considered, it seems that the late dark energy transi-

tion model should include a change in the absolute luminosities of supernovae at a redshift

of roughly 0.01 [7]. However, no complete study of CMB data is yet available[29]. Late

time transitions in the quintessence field model either by adjusting only a∗ or allowing

changes in f and Δ, do not help in relieving the Hubble tension, keeping it above the 3σ

[28]. Introducing a variable equation of state for dark energy within this context shifts

the Hubble constant towards lower values, exacerbating the Hubble tension [28]. In the

late Chameleon dark energy model, studies have shown that 20% overdensity in the lo-

cal region is sufficient to reproduce the local measurement on the Hubble constant [12].

In fact, [13] finds that late-time solutions are strongly disfavored if the late-time matter

perturbation data are included. Chameleon early dark energy model has also the poten-

tial to solve Hubble tension [48]. However, for both of them, complete data analysis is

still lacking [29]. New early dark energy model effectively decreases the Hubble tension

from approximately 4.8σ to around 2σ establishing itself as one of the most promising
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solutions to the Hubble tension [23, 25, 64, 84]. Anharmonic oscillation model requires

a ∼ 5% contribution from EDE to the total energy density at redshift z � 5000 to solve

the Hubble tension within 2σ [72]. CMB data from ACT shows a 3σ preference for EDE

over ΛCDM, while it increases S8 tension [73]. Also, in [40] it is found that early dark

energy mitigates the tension to 3σ. [22] finds that one of the late time decaying dark mat-

ter cannot relieve the Hubble tension while some other models of this type like [24] are

compatible with observations. The observational relevance of early dark energy models

seems to be inconclusive, and the situation may be improved in the next generations of

measurements [71].

In this thesis only some typical scalar filed models are considered. There are other

scalar field models and non-scalar field models as well. However, the observational rele-

vance of the models that are not discussed here is not much better than the ones discussed

in this thesis. For example, there is no preference for interacting dark energy models over

ΛCDM [41, 71, 92]. [56] finds that observational data disfavor self-interacting neutrino

models (except possibly self-interacting tau neutrino models). [65] finds that extended in-

teracting dynamical dark energy is very efficient in alleviating the Hubble tension. Axion-

like early dark energy and the acoustic oscillation models seem not to be able to solve the

tension while they are mitigating the tension [32, 86]. [6] considers a model where the

cosmological constant changes sign from a negative cosmological constant to a positive

one. They find that the Planck + BAOtr + PP data prefers this model over ΛCDM while

it has a weak preference when only the Planck data is considered. The main problem

with this model is the question of whether the sign flip in cosmological constant may be

motivated by a concrete physical mechanism while there are proposals in this direction

[5]. Time-varying electron mass solution to Hubble tension [85] is considered the best

model that reduces the tension to the � 2σ [84]. However, [49] finds that this model

together with Majoron models are ruled out by data while time-varying electron mass

solutions with spatial curvature and the early dark energy models reduce the tension to

1.0 − 2.9σ level, but none of these models is good enough to be the next model of Cos-

mology. Another study finds that the Hubble tension may be solved in the context of

the Planck CMB data by modification of recombination while the inclusion of BAO and

uncalibrated supernovae data makes the solution fully acceptable for perturbative modifi-

cations of recombination [53].

In conclusion, this thesis has discussed the Hubble tension and the proposed alter-

native models for resolving it within the context of scalar field theories. It seems that none

of the models including the non-scalar ones are able to solve the Hubble tension although
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some of them mitigate it.
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APPENDIX A

DERIVATION OF ROBERTSON-WALKER METRIC

In this appendix we will derive Robertson-Walker Metric relying solely on the

assumption of homogeneity and isotropy. The symmetries present in the Cosmological

Principle require a constant lapse function, gtt . The differential distance formula [18, 96],

or metric consistent with the Cosmological Principle and Weyl’s postulate is

ds2 ≡ gμνdx
μdxν = −dt2 + a2(t)dσ2 (A.1)

where t is timelike coordinate, a(t) is a function known as the scale factor, and dσ2 is the

general 3-dimensional spherically symmetric matrix that can be expressed as [96]

dσ2 ≡ gijdx
idxj = A(r)dr2 + r2

(
dθ2 + sin2 θdφ2

)
(A.2)

we may set A(r) = e2β(r). The corresponding Ricci tensors can be written as:

Rrr =
2

r
∂rβ(r)

Rθθ = e−2β(r∂rβ(r)− 1) + 1 (A.3)

Rφφ = [e−2β(r∂rβ(r)− 1) + 1] sin2 θ

It may be shown that the isotropy and the homogeneity of universe implies that the space-

time can be decomposed into maximally symmetric subspaces [96]. We know that maxi-

mally symmetric metrics obey[18]

Rμν = (n− 1)kgμν (A.4)

where k known as the curvature constant and can be expressed as

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
+1 for the spherical space

−1 for the hyperbolic space

0 for the flat space

(A.5)

In this case n = 3, then

Rrr = 2ke2β , Rθθ = 2kr2 , Rφφ = 2kr2 sin2 θ (A.6)
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Now, we equate (A.3) to (A.6) and solve the equation to find β

β = −1

2
ln 1− kr2 (A.7)

Thus we obtain the explicit form of (A.1) as

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(A.8)

This metric (A.8) is known in cosmology as the Robertson-Walker metric which was first

rigorously derived in the 1930’s by Howard Percy Robertson [81] and (independently)

Arthur Geoffrey Walker [94], and is commonly referred to as the Robertson-Walker metric

which is considered as the backbone of standard cosmology.
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APPENDIX B

DERIVATION OF ρ̂ IN CHAMELEON DARK ENERGY

The chameleon field φ introduces extra interactions with matter fields ψi with

conformal factor Ωi(φ). In Jordan-frame, the corresponding energy-momentum tensor

T̃ μν
(i) is conserved by ∇̃(i)

μ T̃ μν
(i) = 0 while in Einstein frame the energy-momentum tensor

T μν
(i) , in this case, is not conserved, but one can get the relation between these from the

action variation in both frames as T̃ μν
(i)Ω

6
i (φ) = T μν

(i) [14]. Then, express the conservation

relation in the Jordan frame using Einstein’s frame of the energy-momentum tensor as

∇̃(i)
μ T̃ μν

(i) = Ω−6
i ∇μT

μν
(i) − TiΩ

−7
i ∇νΩi = 0 → ∇μT

μ
(i)ν = TiΩ

−1
i ∇νΩi (B.1)

with trace Ti = T̃
(i)
μν g̃

μν
(i) . Using a perfect fluid in Minkowski space the energy-momentum

tensor (2.6) becomes T μ
(i)ν = diag(−ρi, pi, pi, pi) with EoS (2.10), the ν = 0 component

of (B.1) reads

∇t(Ω
3wi−1
i ρi) = 0 (B.2)

This defines a covariantly conserved density ρ̂i

ρ̂i = Ω3wi−1
i ρi = Ω3wi+3

i ρ̃i (B.3)
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M. Górski, P. Wielgórski, P. Karczmarek, W. Narloch, et al. (2020). A distance deter-

mination to the small magellanic cloud with an accuracy of better than two percent

based on late-type eclipsing binary stars. The Astrophysical Journal 904(1), 13.

[40] Gsponer, R., R. Zhao, J. Donald-McCann, D. Bacon, K. Koyama, R. Crittenden, T. Si-

mon, and E.-M. Mueller (2023, 12). Cosmological constraints on early dark energy

from the full shape analysis of eBOSS DR16.

54



[41] Hoerning, G. A., R. G. Landim, L. O. Ponte, R. P. Rolim, F. B. Abdalla, and E. Ab-

dalla (2023, 8). Constraints on interacting dark energy revisited: implications for the

Hubble tension.

[42] Hu, J.-P. and F.-Y. Wang (2023). Hubble tension: The evidence of new physics. Uni-

verse 9(2), 94.

[43] Huang, Z., J. R. Bond, and L. Kofman (2010, dec). Parameterizing and measuring dark

energy trajectories from late inflatons. The Astrophysical Journal 726(2), 64.

[44] Hubble, E. (1929). A relation between distance and radial velocity among extra-

galactic nebulae. Proceedings of the national academy of sciences 15(3), 168–173.

[45] Huterer, D. (2023). Hubble tension. Eur. Phys. J. Plus 138(11), 1004.

[46] Kamionkowski, M., J. Pradler, and D. G. E. Walker (2014, Dec). Dark energy from the

string axiverse. Phys. Rev. Lett. 113, 251302.

[47] Kamionkowski, M. and A. G. Riess (2023). The hubble tension and early dark energy.

Annual Review of Nuclear and Particle Science 73, 153–180.

[48] Karwal, T., M. Raveri, B. Jain, J. Khoury, and M. Trodden (2022). Chameleon early

dark energy and the hubble tension. Physical Review D 105(6), 063535.

[49] Khalife, A. R., M. B. Zanjani, S. Galli, S. Günther, J. Lesgourgues, and K. Benabed

(2023, 12). Review of Hubble tension solutions with new SH0ES and SPT-3G data.

[50] Khoury, J. and A. Weltman (2004). Chameleon cosmology. Physical Review D 69(4),

044026.
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[69] Pietrzyński, G., D. Graczyk, A. Gallenne, W. Gieren, I. Thompson, B. Pilecki, P. Kar-
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