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ABSTRACT 

DETERMINATION OF COLORING SUBSTANCES IN CLEANING 
PRODUCTS BY CHEMOMETRICS METHODS 

In this thesis study, surface cleaner samples were studied. UV-Visible 

Spectrophotometry was applied to the samples prepared by adding dye amounts 

determined at various concentrations into these samples. Partial least squares (PLS), 

simple least squares regression (SLR) and genetic inverse least squares (GILS) methods 

have been successfully applied to the visible spectra of prepared samples for the 

quantitative determination of these coloring substances. A total of 35 samples were 

prepared as binary and ternary mixtures of these dyes along with single dye containing 

cleaning products. Among these 35 samples, 29 of them were chosen as calibration set 

and the remaining 6 samples were used as independent validation set. Absorption spectra 

between 400-700 nm were recorded on the prepared set and SLR, PLS and GILS methods 

were applied to the obtained spectral data and the resulting predictions were compared 

with actual values. The regression coefficients (R²) and standard error cross-validation 

(SECV) values of these methods (PLS and GILS) and the standard error of prediction 

(SEP) were found, the results were evaluated, the accuracy of the chemometrics 

modelling was reviewed, and the predictions and references were compared. With these 

analysis methods, the concentration of dyes in the cleaning products can be determined 

by using chemometrics methods combined with UV-Visible Spectroscopy. 
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ÖZET 

TEMİZLİK ÜRÜNLERİNDE RENKLENDİRİCİ MADDELERİN 
KEMOMETRİK YÖNTEMLERLE TAYİNİ 

Bu tez çalışmasında yüzey temizleyici örnekleri incelenmiştir. Bu numunelerin 

içerisine çeşitli konsantrasyonlarda belirlenen boya miktarları eklenerek hazırlanan 

numunelere UV-Görünür Bölge Spektrofotometrisi uygulanmıştır. Kısmi en küçük 

kareler (PLS), basit en küçük kareler regresyonu (SLR) ve genetik ters en küçük kareler 

(GILS) yöntemleri, bu renklendirici maddelerin kantitatif tayini için hazırlanan 

numunelerin görünür spektrumlarına başarıyla uygulanmıştır. Bu boyaların ve tek boya 

içeren temizlik ürünlerinin ikili ve üçlü karışımları halinde toplam 35 adet numune 

hazırlandı. Bu 35 örnekten 29 tanesi kalibrasyon seti olarak seçilmiş, geri kalan 6 tanesi 

ise bağımsız validasyon seti olarak kullanılmıştır. Hazırlanan sete 400-700 nm 

aralığındaki absorpsiyon spektrumları kaydedilerek elde edilen spektral verilere SLR, 

PLS ve GILS yöntemleri uygulanarak ortaya çıkan tahminler gerçek değerlerle 

karşılaştırıldı. Bu yöntemlerin (PLS ve GILS) regresyon katsayıları (R²) ve standart hata 

çapraz doğrulama (SECV) değerleri ile tahminin standart hatası (SEP) bulunmuş, 

sonuçlar değerlendirilmiş, kemometrik modellemenin doğruluğu gözden geçirilmiş, 

tahminler ve referanslar karşılaştırıldı. Bu analiz yöntemleri ile kemometrik yöntemlerin 

UV-Görünür Spektroskopi ile birleştirilmesiyle temizlik ürünlerindeki boyaların 

konsantrasyonu belirlenebilmektedir. 
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CHAPTER 1 

INTRODUCTION 

Cleaning industry products, colors that can be use in them not only for aesthetic 

purposes but also contribute to functionally. It helps to improve appearance of the 

products, where many times attracts consumer’s attention generating brand awareness. 

This also makes it easier to differentiate between the different cleaning products that are 

used in our day-to-day activities, based on the color-coding system; kitchen cleaners 

generally have one code while bathroom cleaners may be coded with other colors. Dyes 

can indicate what a product might contain. For example, household cleaning products 

with antibacterial ingredients are frequently blue or green in color. Nevertheless, the dyes 

chemical composition used in cleaning products should be critically examined to assess 

their impact on safety and environment overall. However synthetic dyes on the other hand 

will provide bold colors and lasting results however some of them can be dangerous 

or/and toxic for nature and us. Water based paints are a great environmental option but 

can lack the same quality of some of our other options in terms of the long-term durability. 

While dyes act as a significant part of promoting products and steering consumer choice 

in what seems to be the most competent direction, it should not necessarily take place if 

their effects on health and environment are properly addressed. As such, the 

manufacturers of cleaning products must ensure that they choose the right types of paint 

which will help in maintaining aesthetics as well as avoid potential safety hazards. 

The amount of dye used in the formulation of cleaning materials is an important 

factor to increase the aesthetic appeal of the product, consumer trust and brand 

recognition. The amount used ensures that the color of the product is distinct and 

consistent, giving the user a positive impression about the effectiveness and quality of the 

product, and the dye ratio is generally used at very low rates. This is enough to ensure 

that the coloring of that product is unique and uniform, making a good impression on the 

user regarding the efficiency and quality of it. This usually is reported in percentage by 

weight or volume, and when the formulation process occurs it is kept under meticulous 

control. Cleaning products are not just dyed to make them look pretty, though. The 

amount of dye in such a material is heavily regulated due to safety and functional 

elements. Excessive use causes increased skin irritation. Hence the right balance has to 
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be achieved in establishing correct quantum of dye. Quality control during laboratory 

testing ensures that the concentration of dyes in our products do not exceed acceptable 

levels. In turn, spectrophotometry and chromatography allow us to accurately determine 

the amount of dye and confirm that it is constant in each batch. In addition, devices that 

measure color (colorimeters) guarantee the brand consistency and each item will have 

exactly the same shade. Thus, the proper regulation of amount will ensure the competitive 

advantage while protecting consumers from health threat and safety concerns that may be 

associated with some of the products. That’s why cleaning materials manufacturers are 

very careful to formulate the optimum by employing state-of-the-science methods and 

cutting-edge technology in how they use paint. In conclusion, while the utilization of dyes 

for presentation and guidance must be a significant sector in producing competition and 

influencing consumer selection when it comes to cleaning solutions, its use can only be 

limited due to certain environmental and health impacts. Hence, the cleaning product 

manufacturers should be careful in choosing suitable types of paint that fit both 

aesthetically and safety-wise. 

If cleaning products containing dye do not have the desired color value and 

quality, various analytical methods determine what level of dye is present. 

Spectrophotometry provides sensitive and accurate information due to the measurement 

of light absorption properties of the dye, and HPLC assures precise quantification since 

they are separated. This is done by comparing the intensity of the colour to a standard 

reference. UV-Visible spectroscopy uses the information about how dyes (or colors) in 

them absorb radiation within the ultraviolet and visible spectrum to give high sensitivity 

over a wide concentration range. All these methods ensure accurate and homogenous 

estimates on the utilized dyes in cleaning items production; hence, it will enable 

optimization or enhance of processes of productions along with keeping product quality 

at all times. 

Chemometric methods are useful in the evaluation and interpretation of data in 

chemical analysis, and increasingly essential for its verification. These methods help in 

extracting useful information for big and complex data, as well they also improve the 

accuracy, sensitivity, and reliability of the analysis. All of these explanations and analyses 

to be carried out will lead us to chemometric methods as a solution. Chemometrics is 

defined as the application of mathematical and statistical methods to various types of 

chemical information in order to obtain useful information on a large volume of processed 

data. These methods reveal previously unseen patterns and relationships from large, 
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complex and broad data such as spectra, chromatograms or any continuous measurement-

based analytical data. In particular, it is widely used in all steps to build and validate 

calibration models or for noise reduction, signal separation and data correction. 

Chemometric techniques are developed to enhance the effectiveness of analytical 

methods, while it also ensures the accuracy and precision involved in data analysis. It can 

also be applied during process optimization, allowing to improve production processes 

and produce better products. It therefore appears that chemometrics has become part of 

modern chemical analysis. 
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CHAPTER 2 

STATE OF THE ART 

2.1. Historical Development of Cleaning Products  

As the awareness of human beings becomes stronger and greater in terms of their 

hygiene and health, there have been a lot of evolutions made on cleaning products from 

time to time historically. Wherever people were scrubbing away dirt with basic water and 

sand mixtures, the Egyptians started using soap like substances of oil combined with 

alkaline salts. Soap production did not become widespread in Europe until the Middle 

Ages, with the introduction of animal fats and alkali made from ash. With the 

development of the modern chemical industry in the late 19th century, synthetic 

detergents appeared. Later, the detergent industry grew significantly using petroleum 

derivatives and household cleaning products began to proliferate.1 At the end of the 20th 

century, environmental concerns along with other health considerations led to improved 

green cleaning products involving a greater amount of natural and biodegradable active 

ingredients that contain less dangerous chemicals. Nowadays, thanks to developing 

technologies, it is offered in a wide variety and increasingly effective with more 

efficacious cleaning products are safer and sustainable. 

 

Figure 2.1. Cleaning Materials 
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2.2. Types of Cleaning Products 

There are a few different kinds of cleanings and cleaning materials. The products 

used in this regard vary depending on their function, so they are categorized adequately 

as well. Detergent is one of the most common cleaning material uses for household chore 

such as washing clothes and dishwashing. Most detergent includes surfactants which 

lower the surface tension between water and dirt, allowing dirty to be wash away more 

easily. A disinfectant is a substance or chemical agent that kills microorganisms, 

especially those found only on living surfaces. These chemicals are trusted key agents in 

medical geographies and numerous houses; elsewhere, any cleaning resource that helps 

kill all harmful microbes can be said to be a powerhouse. What are surface cleaners? 

Surface cleaners are products used for cleaning floors, walls, glass and other surfaces. 

They generally contain water, surfactants (detergents), solvents and sometimes antiseptic 

agents. Toilet cleaners are used to remove dirt, detritus, and microorganisms (such as 

bacteria and viruses) in bathrooms and lavatories. Some cleaners kill pathogenic bacteria 

such as Enterococcus fecalis, Salmonella choleraesuis, Staphylococcus aureus, Candida 

albicans etc.2 These products usually contain strong acids or alkalis. Multi-purpose 

cleaners are a type of general cleaning product with high versatility as it can be used on 

different surfaces such as home or even industrial use. ‘Ammonia or alcohol’ - These are 

the basic ingredients of glass cleaners that give your windows and mirrors a spotless 

clean. There are two primary types of detergent available: powder and liquid. Both 

powders and liquids specifically target skill levels, fabrics type or even the color of your 

clothing. Besides, for the tough stains and whitening procedures even the bleaches or stain 

removers are also utilized. Cleaning materials with eco-friendly alternatives have fewer 

harsh chemicals and are biodegradable, which makes it a better choice for environmental 

and health sustainability. 

2.3. Cleaning Products Content 

Cleaning materials are made up of a variety of raw materials, all of which play a 

different role in the effectiveness and safety of the final product. One of the main 

ingredients of cleaning products are surfactants, which are responsible for reducing the 

surface tension of a liquid thereby allowing it to mix with oils and dirt and greatly 
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increasing the effectiveness of the clean. Sodium lauryl sulfate belongs to the group of 

anionic surfactants, which are excellent for cleaning particulate soils and organic 

substances, and for the removal of grease, non-ionic surfactants are preferred, which have 

anti-grease properties. Water softening chelating agents, such as the builder sodium 

tripolyphosphate, can also be added to the wash water to bind metal ions which interfere 

with surfactants, and which prevent the formulation of soap scum.3 Laundry detergents 

and dishwasher have a critical demand for enzymes, such as proteases, amylases, and 

lipases for cleaving protein-, starch- or fat-based stains.4 These bleaching agents, such as 

sodium hypochlorite and hydrogen peroxide, are included for whitening fabrics and 

bactericidal activity by decomposing-colored organic compounds and microorganisms.5 

These contain other ingredients dissolved in water or appropriate kinds of solvents like 

ethanol or isopropanol to increase the cleaning power on greasy or sticky materials.6 To 

avoid microbial contamination in the products, mainly formaldahyde donors and 

isothiazolinones are added as protective which guarantee the necessary stability of the 

products as well as their safety to the consumer during the shelf life. Fragrances and dyes 

are common in many household items to improve the appearance and odor of the product 

but can also be controlled because they have been shown to elicit allergenic responses.7 

If a different texture is desired for the detergent, thickening agents such as xanthan gum 

or cellulose derivatives may also be added. When precisely mixed, these raw materials 

give formulation to cleaning and cleansing products, which are efficient, safe, and easy 

to use.  

2.4. Surface Cleaners and Its Content 

Surface cleaners are general cleaning supplies that can be used to clean and 

sterilize numerous surfaces in large scale areas such as homes, workplaces or industrial 

units. They are made with water, surfactants, solvents, fragrances and may optionally 

contain antiseptic or antibacterial compounds. Surfactants help in detaching dirt and oil 

from the surface to extract them while cleaning. Hard-to-remove stains and oils are 

dissolved using solvents, guaranteeing a thorough clean on every surface. Every time an 

area is properly cleaned, fragrances impart a fresh feeling to the area as they always leave 

behind a nice and pleasant smell constitute hygiene with the help of antiseptic and 

antibacterial, components enabling death to microorganisms. Some were uniquely 
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formulated for certain types of surfaces such as wood, ceramics, glass and metal. 

Environment friendly surface cleaners are the ones composed of relatively less harmful 

chemicals and are also biodegradable hence a healthier as well as environmentally safer 

choice. 

 

Figure 2.2. Surface Cleaner Applications 

2.5. The Importance of Dye in Cleaning Products 

Dye is essential for cleaning materials not only because they make it beautiful but 

also bring its functionality back to life. These dyes increase the aesthetic value found in 

products, allowing them to catch the customers’ eye and connecting their visual appeal 

with brand recognition.8 Certain colors mean certain things to the products' intended use 

or content. For example, blue is usually antibacterial, and green means there are green 

ingredients.9 It also makes the various types of cleaners easier to identify, allowing 

consumers to more easily locate the product they are seeking. Dyed chemicals also enable 

the display and easier visibility of product instructions as well as warnings. On the other 

hand, there is a potential negative impact on the environment and human health from dyes 

applied to cleaning agents. Even though synthetic dyes help to achieve bright and long-

lasting colors, they often include certain poisonous chemicals, which leads to water 
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pollution and harmful outcomes.10 Hence, these days the manufacturers are more inclined 

towards using biodegradable and environment-friendly paints. These paints still provide 

the same visual appeal and advantages, but without further harm to our already ill 

environment. And most importantly, they do not affect consumer health as well. It is strict 

that the amount of dye involved in cleaning products should be regulated and assayed 

during formulation because a higher frequency utilization can disrupt the chemical 

equilibrium nature or result in unwanted reactions. The quantitative analysis of dyes and 

their optimal level for use is performed through a wide range of chemical methods such 

as spectrometry, chromatography, or colorimetric test. Such methods are essential for the 

optimization of production processes and ensuring that the quality of each product is 

consistently high. Proper and safe use of the paints will lead to the successful entry of the 

product into the market and also win consumer’s trust. 

 

Figure 2.3. Dyes in the Cleaning Industry 

2.6. The Types of Dye in Cleaning Products 

Dyes in cleaning products are examined under two groups. Firstly, they are 

synthetic dyes, and secondly, they are natural dyes. Azo dyes are widely used in laundry 

detergents and surface cleaners because of their bright, long-lasting color variety. 

Phthalocyanine dyes provide high stability in water-based products and are therefore 

preferred especially in blue and green colors. Natural dyes are environmentally friendly 

and biodegradable dyes obtained from biodegradable products. These include vegetable 

dyes and mineral pigment dyes with chlorophyll and anthocyanin derived from plants, 

such pigments as iron oxide and titanium dioxide derived from natural minerals and 
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offering stable coloring without toxicity.11 Along with the dyes that are legal for use in 

the food, pharmaceutical, and cosmetic industries, food dyes are used in the cleaning and 

cosmetics industry. Optical brighteners are used, for example, in laundry detergents to 

give fabrics a whiter and brighter appearance. The bleaching effect is achieved when 

fluorescent substances absorb ultraviolet light and emit it back as blue light. Health and 

environmental safety, as well as aesthetics and functionality, are other equally important 

needs when choosing paint for cleaning products.12 

 

Figure 2.4. Food Dyes in the Cleaning Industry 

2.7. Types of Dye  

2.7.1. Allura Red  

A synthetic azo dye, a category of synthetic dyes, Allura Red is especially 

distinctive by the intensely bright red hue it exhibits and its widespread utilization across 

several industries. Azo dyes are a major class of dyes known for their bright, highly 

colored, and long-lasting colors with excellent versatility.13 Allura Red dyes find a 
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multitude of applications in the textile industry, where they are employed for dyeing 

textiles like cotton, wool, or silk to give colours that are fast to washing and light.14 It is 

also employed in the leather industry as a dye for leather products, adds an appropriate 

aesthetic finishing tough and durable. Allura Red is used in the paper industry for 

manufacture of colored papers and of cardboard intended to contribute to the visual 

attractiveness of packaging materials and stationery.12 In addition, the dye is incorporated 

into the food industry, subject to rules and regulations, and used in the marketing of candy, 

beverages, and processed foods to make them visually more beautiful for consumers. It 

is also use in the cosmetics industry (lipsticks, nail polish, hair dyes) to ensure shiny 

appealing colors. It is also used in pharmaceutical, where drugs and capsules are colored 

easily with the help of Allura Red and in that process helps to identify and differentiate 

drugs. For all these applications, synthetic azo dyes are used, such as Allura Red, 

however, there is also a great concern regarding the environmental and health 

consequences of the use of these dyes. Some azo dyes have been shown to can decompose 

to aromatic amines, some of which are known or suspected to be carcinogenic and 

regulated.14 Consequently, research is in process to find safer and sustainable alternatives 

in the form of plant-based dyes and ecofriendly synthetic dyes. 

 

Figure 2.5. Powder Allura Red 

2.7.2. Brilliant Blue 

Brilliant Blue or Brilliant Blue FCF or FD&C Blue are synthetic dyes of blue, 

very used throughout the world in various sectors of the industry, being responsible for 

intense blue color and durability. The use of Brilliant Blue is in the food and beverage 

areas o is demonstrates loud and clear one form with the color to bring extensive food 

coloring such as candies, beverages, baked goods, and dairy products, attracting people 
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to see. The image is non-food dye approved for use in many countries including the 

United States and Europe with usage levels regulated to ensure consumer safety.15 

Pharmaceutical use Brilliant Blue is used for coloration in medicines as tablets and syrups 

helped in identification and differentiation since it fits in the pharmaceutical standards.16 

Brilliant Blue is also widely used in the cosmetic industry, in such products as shampoos, 

soaps, lotions, and makeup, to make the products more marketable and attractive.17  

Along with being used in consumer goods, Brilliant Blue is also used in scientific 

research and medical diagnostics. Along with being used in consumer goods, Brilliant 

Blue is also used in scientific research and medical diagnostics. In addition, Brilliant Blue 

has been investigated for its neuroprotection properties, particularly after spinal cord 

diseases and nervous system-related disease states and has been found to have benefits in 

reducing inflammation and promoting healing synthetic colors such as Brilliant Blue are 

used worldwide but are suspected of having harmful effects on the environment and 

human health. Although generally considered safe, high doses of Brilliant Blue have been 

found to cause allergic reactions in sensitive individuals, leading regulatory bodies to 

strictly monitor its use.18 Brilliant Blue has applications in addition to its use in consumer 

goods. in scientific research and medical diagnosis. It is used as a biological stain in 

microscopy and cell biology to visualize and distinguish cellular components and 

structures. 

 

Figure 2.6. Powder Brilliant Blue 

2.7.3. Tartrazine 

Tartrazine known as FD&C Yellow No. 5 is a synthetic lemon-yellow azo dye 
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utilized in a variety of industries because of its properties as a dye. It is most used in the 

food and beverage sector to give candies, soft drinks, processed snacks, and baked goods 

a vibrant appearance. The dye is controlled by the U.S. Food and Drug Administration 

(FDA), as well as the European Food Safety Association (EFSA), which establish the 

maximum permissible concentration to avoid damage to consumers.18 Its uses in the 

pharmaceutical field include that colouration of pills, tablets, and liquid medicine, to help 

people in the identification of the product and the differentiation of dosages in case of 

liquid medication.16 Tartrazine is also used as a dye in the cosmetics industry for hair 

dyes, shampoos and lotions, where it gives a bright, inviting color.17 A controversy and 

research regarding health risks of tartrazine has long been existing despite of enormous 

consumption of tartrazine. There have been occasional studies linking this compound to 

hyperactivity in children, bringing about some controversy about its safety. Labelling of 

foods as containing the dye has been required in some countries by a regulatory body. 

The widespread application of tartrazine in industrial processes is also associated with its 

wastewater pollution, because synthetic dyes are generally resistant to biodegradation. 

Therefore, efforts are always to explore other options of dyes removal from wastewater 

and advanced treatment measures. These efforts are focused on lowering the 

environmental footprint of synthetic dyes, without sacrificing their functional advantages. 

 

Figure 2.7. Powder Tartrazine 

2.8. Advantages and Disadvantages of Dyes Use in Cleaning Products 
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Table 2.1. Advantages and Disadvantages of Dyes 

Types of Dye Advantages Disadvantages 

Synthetic Dyes     

Azo Dyes 

- Bright, vibrant colors 

- Long-lasting 

- Wide color variety 

- Potential health risks  

- Environmental pollution due 

to non-biodegradability 

Phthalocyanine 

Dyes 

- High stability in water-

based products 

- Strong colorfastness 

- Environmental impact due to 

complex chemical structure 

Optical 

Brighteners 

- Enhance visual whiteness 

and brightness 

- Effective at low 

concentrations 

- Can cause allergic reactions 

in sensitive individuals 

- Potential for environmental 

persistence 

Natural Dyes     

Vegetable Dyes 

- Environmentally friendly. 

- Biodegradable, perceived as 

safer by consumers 

- Less color variety 

- Generally less stable and 

less vibrant 

Mineral Pigment 

Dyes 

- Stable coloring without 

toxicity 

- Derived from natural 

minerals 

- Limited color range 

- Potential for heavy metal 

contamination 

Each type of paint may differ depending on its intended use and environmental 

factors. Therefore, it is important to consider the location and conditions of use when 

choosing the most suitable type of color. 

2.9. UV-Vis Spectroscopy 

The most important and most widely used form of spectroscopy in analysis of the 

absorption of ultraviolet and visible light of chemical substances, UV-Visible 

spectroscopy (ultraviolet-visible spectroscopy). This method relies on the fact that 
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molecules absorb light at certain wavelengths, causing electronic transitions between 

orbitals.19 Absorption spectra are a tool that measures the molecular structure of the 

analyte while providing information about its concentration and environment. For 

example, by applying the Beer-Lambert law (which relates absorption to concentration), 

concentrations of substances in solution can be measured by UV-Visible spectroscopy.20 

It is also used in investigation of reaction kinetics, for the change of absorbance as a 

function of time can tell the reaction rate and mechanism.21 It is used in sectors such as 

pharmaceuticals for drug quality control, environmental science for monitoring 

pollutants, and biochemistry for the characterization of proteins, and nucleic acids etc.22 

It can say that UV-Visible spectrophotometers have diode array detectors and user-

friendly software. Now available worldwide, UV-Visible spectroscopy is not without its 

disadvantages, such as interference from other absorbing species in the sample matrix, or 

the need for the sample to be in clear, colourless solution free from scattering effects.23 

However, its ability to perform fast, non-invasive quantitative analysis has made UV-

Visible spectroscopy a ubiquitous analytical tool in virtually every scientific field. 

 

Figure 2.8. Schematic Summary of UV-Vis 



15  

 

Figure 2.9. UV-Vis Usage and Interior View 

2.9.1. UV-Vis Advantages 

UV-Visible spectroscopy is one the most applied and versatile tool in the field of 

analytical chemistry to both qualitative and quantitative analysis. An important feature is 

that it is swift and precise way to analyse and to know the quantity of analytes in a solution 

knowing what the absorbance of ultraviolet and visible light is.20 This technique, although 

being very pursed, allows for nanomolar concentrations to be detected, and therefore, it 

is invaluable for applications in pharmaceuticals, environmental monitoring, and 

biochemical research.19 Furthermore, UV-Visible spectroscopy can be a non-destructive 

technique, so the sample can sometimes be tested without change or consumption of the 

original sample, which allows for additional tests on the sample, or further use of the 

sample.24 Additionally, the technique benefits from relatively straightforward sample 

preparation when compared to other analytical methods, as it generally only requires that 

the sample be diluted in an appropriate solvent, making it both time and cost effective24. 

In addition, it is not widely used in the laboratories around the world at a relatively cheap 

price, since UV-Visible spectrometers are the most common and least expensive.20 Data 

obtained using the UV-Vis spectroscopy are simple to analyze and interpret, absorbance 

spectra show well defined the specific peaks according to type of analyte, which allow 

quick identification and quantification.19 Additionally, progress of instrumentation has 

allowed the production of small/portable UV-Visible spectrometers useful for field 

analysis and in situ testing, especially for environmental analysis and quality control.24 

Another character of UV-Visible absorption specifically that the UV-possibility expand 
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due to each foundation and band to country levels, similarly, to utilizing to UV-Visible 

spectroscopy in reading response kinetics and monitoring the course an artificial reaction 

in actual time, sighted at response mechanisms and quotes. UV-Visible spectroscopy is 

therefore a fundamental technique in modern analytical science, due to its simplicity, 

wide applicability and the fact that it is an extremely robust technique. 

Table 2.2. Advantages and Disadvantages of UV-Vis 

Advantages Disadvantages 

High Sensitivity 
Limited to Transparent or Translucent 

Samples 

Can detect very low concentrations of 

analytes, providing high precision in 

quantitative analysis. 

Samples that absorb strongly in the UV-

Vis region can lead to non-linear responses 

or complete absorption, complicating 

analysis. 

Non-Destructive Analysis Requires Calibration and Standards 

Allows samples to be analyzed without 

being consumed, enabling further 

testing or use. 

Accurate results depend on proper 

calibration with known standards, which 

can be time-consuming and require 

meticulous preparation. 

Quick and Efficient Susceptible to Matrix Effects 

Provides rapid results with minimal 

sample preparation, making it time-

efficient and cost-effective. 

Sample matrix can affect the absorbance, 

leading to inaccuracies if not properly 

accounted for. 

Versatile Applications Limited Structural Information 

Applicable to a wide range of 

substances, including organic and 

inorganic compounds, in various fields 

such as pharmaceuticals, environmental 

monitoring, and biochemical research. 

UV-Vis spectra provide limited 

information about molecular structure 

compared to other techniques like NMR or 

mass spectrometry. 
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2.9.2. Beer-Lambert Law 

The Beer-Lambert law is a fundamental principle in spectrophotometry that 

describes the linear relationship between the absorption of light by a substance and its 

concentration in solution. Lambert-Beer states that the absorbance of a sample (A) is 

equal to the path length of light in the sample (b) multiplied by the concentration of 

absorbent-containing substances (c) and the molar absorbance constant of proportionality 

(ε) as given in equation 2.1. 

                                                   A = εbc                                                           (2.1) 

This equation is very important in quantitative chemical analysis; it is used to find 

out the concentration of a substance if the absorbance and molar absorptivity and path 

length is known.20 The Beer-Lambert equation is incredibly important in molecular 

spectroscopy, including in analytical chemistry, biochemistry, and environmental science 

to determine the concentration of a solute’s solution. For example, it is employed in 

clinical laboratories to measure the amount of glucose in blood, or the amount of 

hemoglobin. The law goes on to provide that the system is perfect, and hence absorbance 

is a consequence of only the absorbing species and that the light path is definite. 

Nonetheless, these deviations can happen as a result of the high concentration of solute 

giving rise to molecular interactions, the limitations of the instrument, or the stray light.23 

Nonetheless, even with these possibilities for inaccuracy, the principle of Beer-Lambert 

law continues to underpin our analytical techniques, providing a simple and self-

contained method of concentration determination when correctly applied.21 

Instrumentation and data analysis has continued to increase the precision and utility of 

this cardinal law in most modern analytic methods.22 Graphical illustration of Beer’s law 

is given in Figure 2.10. 
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Figure 2.10. Beer's Law 

2.10. Chemometrics Methods 

The chemometric approach, by the application of mathematical and statistical 

methods on measurements, performs data processing to gain information from complex 

chemical problem solving, this approach will focus to increase performance and 

reliability of analytical results. They are necessary to work and interpret large data sets 

obtained by modern analytical techniques like spectroscopy, chromatography, or Mass 

spectrometry.25 Principal component analysis (PCA) is a powerful chemometric method 

suitable for reducing the dimensionality of data sets, while preserving as many of the 

variances between samples as possible which simplifies easier analysis of data and 

discovery of patterns.26 A second important approach is partial least squares (PLS) 

regression, which is commonly used to construct predictive models, often in cases in 

which the predictors are highly collinear or when the number of predictors outstrips the 

number of observations.27 It also used chemometrics in pharmaceutical research to 

guarantee the quality of the product through the analysis of chemical composition and 

quality of the raw materials and final products.28 By being combined with chemometric 

methods, these tools not only allow more accurate and efficient data interpretation but 

also greatly contribute to the expansion of analytical methodologies.25 These tools allow 

the analyst to make decisions about the interpretation of data and system variations, 

therefore supporting several scientific and industrial fields with more robust data analysis 

available. 

2.10.1. Comparison of Chemometrics Methods 
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Table 2.3. Comparison of Chemometrics Methods 

Method Advantages Disadvantages 

Principal 

Component 

Analysis (PCA) 

- Reduces dimensionality 

of data, simplifying 

analysis 

- Identifies patterns and 

correlations among 

variables. 

- Can be sensitive to 

scaling of variables. 

- Interpretation of principal 

components can be 

challenging. 

Partial Least 

Squares (PLS) 

- Handles collinear and 

noisy data well. 

- Provides both predictive 

models and variable 

selection. 

- Requires careful 

validation to avoid 

overfitting. 

- Interpretation of results 

can be complex. 

Genetic Inverse 

Least Squares 

(GILS) 

- Efficiently selects 

relevant variables. 

- Robust against noisy data 

and overfitting. 

- Computationally 

intensive due to genetic 

algorithm 

- Requires expertise to 

implement effectively. 

Multiple Linear 

Regression (MLR) 

- Simple to implement and 

interpret. 

- Provides direct 

relationships between 

variables. 

- Assumes linear 

relationships which may 

not always be accurate. 

- Sensitive to 

multicollinearity among 

predictors. 

Artificial Neural 

Networks (ANN) 

- Can model complex non-

linear relationships. 

- Adaptive learning 

capabilities. 

- Requires large datasets 

for training. 

- Prone to overfitting if not 

properly regularized. 

2.10.2. Principle Component Analysis (PCA) 
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The great advantage of Principal Component Analysis (PCA) is that each index 

calculated while studying our data represents the principal characteristics that distinguish 

our data from high dimensional data. PCA does this by converting your original variables 

into a new set of uncorrelated variables called principal components, which are ordered 

in such a way that the first few captures most of the variation present in the original 

dataset.29 The main objective when using PCA is to project the data in question to a 

smaller set of axes defined in principal component space in order to allow us to visualize 

data, discover patterns, and to reduce noise for beneficial data interpretation and analysis. 

Especially in domains like spectroscopy and chromatography, this approach is useful as 

they have datasets with many correlations in between variables. In spectroscopy, for 

example, PCA can be used to recognize important spectral columns, in terms of which 

are the dominant features responsible for the largest fraction of the variance of the data, 

which makes easier the classification of samples by similarities or the detection of 

anomalous samples.30 PCA is also widely used in exploratory data analysis to gain insight 

into the hidden patterns or underlying structure that exist in cases where the data is not 

directly accessible.31 PCA has one of the advantages that it is non-parametric which does 

not require imposing any distribution for the data itself, making it very flexible.29 But the 

interpretation of the principal components is difficult at times particularly with complex 

or non-linear data structures. Nonetheless, PCA is still an important tool in chemometrics 

and other data-rich disciplines, helping with finding valuable information within large 

data sets. 

The PLS model equation described as: 

                                                    Amxn = Tmxh . Bhxn + EAmxn                                                   (2.2) 

A is an mxn matrix of spectral absorbance, B is a hxn matrix of loading vectors or 

loading spectra, and T is an mxh matrix of intensities or scores in the new coordinate 

system of the h loading vectors for the m sample’ spectra. EA is the mxn matrix residuals 

not fit by the model. 

2.10.3. Simple Least Squares Regression (SLR) 

Simple Least Squares Regression is a statistical method used to model the 

relationship between a dependent variable and one or more independent variables by 

minimizing the sum of the squared differences between the observed and predicted 
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values.  

This technique is represented by the equation:  

                                                  y=β0+β1x+ϵy                                                  (2.3) 

Where y is the dependent variable, x is the independent variable, β0 is the y-

intercept, β1 is the slope, and ϵ is the error term.32 The primary goal of Simple Least 

Squares is to find the line that best fits the data points, providing a clear interpretation of 

how changes in the independent variable affect the dependent variable.33 This method 

assumes a linear relationship between the variables and that the residuals errors are 

normally distributed with a mean of zero and constant variance, known as 

homoscedasticity.34 Simple Least Squares is widely used due to its simplicity and 

effectiveness in providing valuable insights into data relationships, despite being sensitive 

to outliers and assuming linearity, which may not always be the case in real-world data.35 

2.10.4. Partial Least Squares (PLS) 

 Partial Least Squares (PLS) regression is a chemometric method that is used to 

model complex relationships of large number of observations with high multicollinearity 

and less objects between dependent and independent variables. PLS consists in projecting 

the predictor variables as well as the response variables in a new space defined by latent 

variables, the latter are linear combinations of the original variables.36 This approach is 

specifically significant in cases where traditional regression techniques taking into 

account linear regressions experience the anxiety over Multicollinearity or high-

dimensionality sort of issues in its work.27 PLS has been widely used in spectroscopy 

where it is used to correlate the spectral data to the chemical concentrations of a sample, 

allowing for the development of predictive models able to deal with highly complex and 

noisy data .The PLS method further decomposes both the predictors and the responses 

such that the covariance between these matrices are maximized so that the latent variables 

have the most information relevant for prediction.36 PLS is also widely used in calibration 

and validation of drug formulations, in pharmaceutical research, and in process control 

that is used to monitor and optimize industrial processes.37 Although PLS offers 

significant strengths (such as those related to fitting nonlinear multivariate models with 

many correlated x-variables and strong retention of variance between variables), the 

interpretability of PLS models is inherently difficult as the latent variables are abstract 
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quantities as such, sample-based estimates) with no direct physical counterpart or 

connection that must be carefully validated and cross-validated to assure model validity.38 

However, PLS is still one of the major methods in chemometrics, and it leads to essential 

findings and predictions in many scientific and industrial contexts.36 

The PLS model equation described as: 

                                                    Cmxn = Tmxh . Rhxn + ECmxn                                                                 (2.4) 

C is an mxn matrix of dependent variables, T is a hxn matrix of scores matrix, and 

R is a regression coefficients matrix. EC is error matrix. This matrix represents the 

remaining variance or prediction errors that the model cannot explain. 

2.10.5. Genetic Inverse Least Squares (GILS) 

This method demonstrates that GILS, an advanced chemometric approach that 

combines the robust nature of genetic algorithms with the accuracy of inverse least 

squares (ILS) regression, is a powerful method for optimizing predictive models for 

complex chemical analysis data. GILS is particularly good at model identification given 

a large number of variables in the data because it selects the most capable features and 

avoids using too many features. It begins with a genetic algorithm that simulates the 

process of natural evolution to find the best solution under the premise of individually 

selecting, homogenizing, and modifying the population of potential solutions. This 

method allows GILS to efficiently explore large search spaces and avoid local minima 

that often trap traditional optimizers. After the most appropriate subset of variables is 

created, the prediction model is created by adding ILS regression to the area where at 

least one variable contributes significantly to reducing the prediction error. It is 

particularly useful in the case of spectroscopy and chromatography, where the 

identification of important spectral bands or chromatographic peaks responsible for 

changes in chemical properties of interest is of great importance. GILS is highly 

advantageous in improving the interpretability and generalizability of models by reducing 

noise floors and hence can be used in environmental monitoring, pharmaceutical, food 

quality control, etc. It plays an important role in these fields in this case, the versatility 

and reliability of the method is strengthened by its ability to handle noisy data and, in 

particular, collinear data. Although hardly comprehensive, benefits from improvements 

in model accuracy and reduction of overfitting make GILS a preferred option for complex 
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analytical challenges. The nature of modern chemometrics suggests that GILS can 

support significant advances as computing power and algorithm design improve. 

Inverse Least Square (ILS) method, which is based on the multivariate extension 

of inverse Beer-Lambert's law and assumed that concentration is a function of absorbance. 

                                                    Cmxl = Amxn . Pnxl + Ecmxl                                                                       (2.5) 

In this Equation, C is the concentration matrix, and A is the absorbance matrix. E 

is the matrix of errors in concentrations not fitted by the model. P is the nxl matrix of 

regression coefficients associated with the absorbance values to the concentrations of the 

components in the calibration set. 

2.11. Literature Examples 

In a study by Ping Qi, eleven synthetic color additives (Allura red, amaranth, azo 

rubin, brilliant blue, erythrosin, indigotin, ponceau 4R, new red, sunset yellow, quinoline 

yellow and tartrazine) in flour and meat foods were developed and validated using HPLC 

combined with DAD and MS/MS. The color additives were extracted with ammonia-

methanol and further purified by the SPE procedure. These dyes were then analyzed and 

confirmed.39 

Pekcan Ertokuş applied partial least squares and principal components regression 

methods. She examined various mixtures of Allura Red and Brilliant Blue to determine 

the concentrations of colorants, it was also analyzed by UV-spectrophotometry in 

chemical separation. The obtained experimental data were evaluated with chemometric 

methods as Partial Least Squares (PLS). As a result, the predictions were compared with 

the reference values.40 

Food coloring mixtures containing Yongnian Ni, tartrazine, sunset yellow, 

ponceau 4R, amaranth and brilliant blue provided analysis by spectrophotometry. Data 

obtained from experiments. It was processed with chemometric approaches such as 

classical least squares (CLS) and principal component regression (PCR), and the analysis 

was made as a result of these methods.41 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1. Materials 

Surface cleaning product was prepared by adding certain percentages of soft 

water, protective raw materials, chelators, perfumes with nonionic active ingredients and 

finally 3 different color compounds to be determined in different percentages. All these 

raw materials were supplied from Viking Cleaning and Cosmetics company. The trade 

names of the three color compounds to be selected for this product are as follows: R1: 

Tartrazine (Yellow), R2: Brilliant Blue (Blue) and  R3: Allura Red (Red). Figure 3.1 

shows colorless surface cleaner product which is used as backgrand measuments in the 

UV-Visible spectrophotometric data collection part. 

 

Figure 3.1. Colorless Surface Cleaner 

As seen from Figure 3.1, it has a slightly yellow appearance due to its colorless 

chelating and protective raw material content which produces slightly yellow. 
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3.2. Experimental Setup 

The surface cleaner choosen for this study contains only 0.1% (w/w %) dye 

compound in the final product. In a standard product, R1 is added about 0.055%, R2 is 

0.017%  and R3 is about 0.028% by mass. The colored surface cleaners that are studied 

in this thesis were cmposed of either binary or ternary mixtures of dyes alon with single 

component products by varying the dye concentrations as plus and minus 25% of the 

standard formula as shown in Table 3.1 

Table 3.1. Percentages (w/w %) of Dyes in the Formulation 

Color Formulation (A)   A x 0.25= (B) Low(A-B) High(A+B) Range 
R1 0.055  0.01375 0.04125 0.06875 0.02750 
R2 0.017  0.00425 0.01275 0.02125 0.00850 
R3 0.028  0.00700 0.02100 0.03500 0.01400 

While preparing the surface cleaner product, it was prepared with the help of 

Thermo brand mechanical mixer  as shown in Figure 3.2. During mixing, all raw materials 

and color compounds at specified concentrations were added respectively. 

 

Figure 3.2. Mechanical Stirrer (Thermomac) 
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Table 3.2 shows the dye composition (w/w %) of the 35 surface cleaning samples 

used in this study. 

Table 3.2. Dye Composition (w/w %) of the 35 Surface Cleaning Samples 

No %R1 %R2 %R3 
1 0.06875 0 0 
2 0.05500 0 0.00700 
3 0.05500 0.00425 0 
4 0.04125 0 0.01400 
5 0.04125 0.00425 0.00700 
6 0.04125 0.00850 0 
7 0.02750 0 0.02100 
8 0.02750 0.00425 0.01400 
9 0.02750 0.00850 0.00700 
10 0.02750 0.01275 0 
11 0.01375 0 0.02800 
12 0.01375 0.00425 0.02100 
13 0.01375 0.00850 0.01400 
14 0.01375 0.01275 0.00700 
15 0.01375 0.01700 0 
16 0 0 0.03500 
17 0 0.00425 0.02800 
18 0 0.00850 0.02100 
19 0 0.01275 0.01400 
20 0 0.01700 0.00700 
21 0 0.02125 0 
22 0.05500 0.01700 0.02800 
23 0.05500 0.01700 0.02800 
24 0.05500 0.01700 0 
25 0.05500 0.01700 0 
26 0.05500 0 0.02800 
27 0.05500 0 0.02800 
28 0 0.01700 0.02800 
29 0 0.01700 0.02800 
30 0.05500 0 0 
31 0.05500 0 0 
32 0 0.01700 0 
33 0 0.01700 0 
34 0 0 0.02800 
35 0 0 0.02800 

Concentrations were enriched by the mixture design and different dye types were 

added to the products in different proportions. The appearance of these products after 
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preparation shows that although similar colors may appear, each color is different due to 

the addition of different concentrations of each dye. The final form of the 35 prepared 

products is given in Figure 3.3. 

 

Figure 3.3. The Final Form of the 35 Prepared Products 

3.3. Determining the Factors and Parameters of the Experiment 

Three different dye types were determined as parameters and their concentrations 

were determined in different percentages. Additionally, our data was enriched with the 

help of mixture design. All of these 35 different products have different formulations and 

the percentages of the 3 dyes change each time. The prepared products are subjected to 

UV-Vis spectroscopy. This is how absorbance values are achieved by scanning the 

colorless version of the surface cleaner as a blank and then scanning the colored final 

product as sample. The raw materials in the formulations are generally absorbing in the 

UV part whereas the spectra of the dyes are seen in the visible part of the spectrum.  

3.4. Analysis Method of Experimental Results 

The final data was created by scanning the products on the UV-Vis region, and 

since the product to be analyzed would be in the visible region, the spectral data were 

recorded between 400 to 700 nm wavelength range. As a result of the spectra obtained 

from the UV-vis spectrophotometer, it is closely determined which absorbance values of 
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the dyes represent which dye in this study. Figure 3.4 shows the Thermo brand UV-

Visible spectrophotometer used in this study. 

 

Figure 3.4. UV-Vis Spectrophotometer (Thermo) 

Mixture design method is a statistical design and optimization method for 

combining different components into a mixture containing certain ratios to obtain a 

mixture with the desired properties. This method is used widely for product formulation 

and for product improvement, particularly in the field of chemistry, food and agriculture, 

pharmaceuticals, cosmetics and materials science. In other words, the primary objective 

of mixture design is to determine how the performance, product stability, and other key 

properties of the product depend on the mixing ratios of the components. That way, you 

can get low-cost high-quality products by finding most suitable component combinations. 

The approach is based on the assumption that each component can vary within a certain 

range and that the total quantity of components is constant. Mixture models provide a 

more systematic approach than the traditional trial-and-error method in product design 

stage. and then it is an effective way to implement. This method helps in concluding the 

most performant formulations in fewer trials, thus less time and resources. 

Chemometrics methods are a way to model relationships between dependent 

variables (responses) and independent variables (predictors) with the goal of obtaining 

the best-fitting regression model for both sets of variables. This is very useful when 

having large numbers of predictors, high-dimensional datasets, and multicollinearity 
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issues. The versatility and highly adaptable structure of chemometric methods are useful 

and are actively used in different fields, especially chemistry and economics, where they 

are used as an important modelling tool. More focus was placed on the analysis of 

chemical components. It is aimed to do this especially for the analysis of chemical 

components. 

After completing the spectral measurements, data were transferred to MS Excel 

for the pre-processing of raw spectra. The moving average method is a technique used to 

analyze and interpret time series data. Its purpose is to reveal underlying trends and 

patterns more clearly by reducing random fluctuations or noise in data series. This 

technique is widely applied in finance, economics, meteorology, engineering and many 

other applications. Smoothing the data makes it more interpretable and allows analysts to 

better predict their expectations of future trends and behaviour. The goal of migration is 

to reduce the noise in the graph and reveal the main data signal by getting rid of random 

noise and data. On high-frequency datasets this can lead to significant advantages. 

MS Excel was also used to generate simple least squares regression (SLR) models 

after applying five point moving average smoothing of the raw spectral data. Following 

this, Minitab statistical software (Minitab 16 Statistical Software. Minitab, Inc., State 

College, PA) were used in order to develop multivariate partial least squares (PLS) 

regression models. Finally, genetic inverse least squares (GILS) and PLS models were 

also generated by using algorithms developed in Matlab (MATLAB R2022b, Natick, 

Massachusetts: The MathWorks Inc.) programming environment. 

  



30  

CHAPTER 4 

RESULTS AND DISCUSSION 

The dye components which are coded as R1, R2 and R3 were analyzed by adding 

3 different paint types to surface cleaner products at various concentrations. A total of 35 

samples were prepared with various different concentrations of these compounds using 

the mixture design method. UV-Visible spectroscopy was used in the analysis and the 

range in the visible region (400 - 700 nm) was taken. A wide variety of calibration 

methods (SLR, PLS and GILS) were used to prepare univariate and multivariate 

calibration models for the three dye components in order to compare performance of 

univariate and multivariate calibration methods. 

In the first scenario, the spectra in the 400-700 nm range of 35 different products 

were converted into separate data set and the wavelength of maximum absorbance values 

corresponding to each dye component were determined. Figure 4.1 shows the spectra of 

the three samples (s1, s16 and s21). These samples are single dye containing samples in 

the data set of 35 samples in order to determine maximum absorbing wavelengths of the 

dyes R1 (443 nm), R2 (635 nm) and R3 (569 nm). 

 

Figure 4.1. UV-Vis. Spectra of the Samples s1, s16 and s21 

As can be seen from figure 4.1, it is clear that each dye has a distinct maximum 
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absorbing wavelengths although R2 and R3 has some overlap and R1 shows a flat trend 

down to 400 nm. These spectral features of the three single dye component containing 

samples suggest that even simple least squares may be applied to develop calibration 

models based on Beer’s Law. On the other hand, it would be useful to compare the 

performance of the multivariate calibration methods such as PLS and GILS with SLR due 

to the partial overlap in the spectral data. The following section illustrates the results of 

the univariate and multivariate calibration modelling of the data after moving average 

smoothing application in order to remove partial noise fluctuations in the spectra. 

4.1. Analysis Results of R1, R2, R3 Dyes in Surface Cleaner 

4.1.1. Moving Average Smoothing of Raw Spectral Data  

A total of 35 different samples were prepared as cleaning products with various 

concentrations of colouring dyes. Figure 4.2 shows UV-Vis. Spectra of the 35 samples 

from 400 to 700 nm wavelength interval by taking the colourless cleaning product as 

blank.  

 

Figure 4.2. Graph of Absorbance Versus Wavelength (nm) 
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As can be seen in Figure 4.2, three peaks corresponding dyes R1, R2 and R3 show 

changes in absorbance values depending on the concentration changes of these dyes in 

the samples.  On the other hand, there are some noise fluctuations in various parts of the 

spectra. These fluctuations negatively affect the data, and therefore the spectral data must 

be smoothed before further analysis. Here, the moving average method was applied to 

with a five consecutive data point as window size. Figure 4.3 shows the smoothed spectra 

of the 35 samples by the moving average smoothing method. 

 

Figure 4.3. Smoothed Spectra of the 35 Samples by the Moving Average Smoothing 

As seen from the smoothed spectra, significant portion of the fluctuations on the 

raw spectral data is corrected. This smoothed spectral data was used for further univariate 

and multivariate calibration modelling by using SLR, PLS and GILS methods. The 

following section shows the results of these methods. 

4.2. The SLR Results of R1 (Tartrazine, Yellow) 

First of all, the data set containing visible spectra (from 400 to 700 nm) of the 35 

samples were divided into two subsets as calibration and independent validation sets. 

Among the 35 samples, 6 of them were chosen as independent validation where those 
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samples that are mostly the duplicate given in Table 3.2 were selected.  The remaining 29 

samples were used as the calibration set. Comparison was then made between the applied 

methods namely SLR, PLS and GILS to see how close the predictions with actual values.  

Figure 4.4 shows the plot of concentration vs. absorbance at 443 nm for R1 by 

using simple least squares. 

 

Figure 4.4. Plot of Concentration vs. Absorbance for R1 by Using Simple Least Squares 

As seen from Figure 4.4, the sample with the highest R1 content causes a 

significant deviation from linearity and distorts the success of the calibration plot. 

Therefore, this sample is taken out from the calibration set only for R1 and the result of 

new SLR calibration model for R1 is redrawn (Figure 4.5).  
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Figure 4.5. Plot of Concentrations of R1 vs. Absorbances at 443 nm by SLR 

After removing the sample causing nonlinearity in the calibration line, it is clear 

that be method was successfully applied, and as a result of this new calibration plot, the 

regression coefficients of the model were improved from 0.9062 to 0.9956. The standard 

error of calibration (SEC) and the standard error of prediction (SEP) values were 

calculated as 0.00966 and 0.00183 (w/w %), for calibration and independent validation 

sets, respectively. These results demonstrated that even with simple least squares method 

based on Beer’s law could be sufficient for the prediction of the Tartrazine yellow (R1) 

in the cleaning products for not only single component mixtures but also the mixtures 

contain binary and ternary mixtures of these three dyes (Tartrazine yellow, Brilliant blue 

and Allura red). 

4.3. The SLR Results of R2 (Brilliant Blue, Blue) 

The results of the SLR calibration model for R2 (Brilliant Blue) was plotted and 

these results were examined. Absorbance (635 nm) vs. concentration plot of R2 obtained 

from SLR is given in Figure 4.6. 
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Figure 4.6. Plot of Concentrations of R2 vs. Absorbances at 635 nm by SLR 

The regression coefficient of the model was found to be 0.9868 for the calibration 

set. The standard error of calibration (SEC) and the standard error of prediction (SEP) 

values were calculated as 0.00089% and 0.00109% (w/w %), for calibration and 

independent validation sets, respectively. The SLR method was successfully applied, and 

the error ranges were determined and estimated.  

4.4. The SLR Results of R3 (Allura Red, Red) 

The result of the SLR calibration model for R3 (Allura Red) was plotted (Figure 

4.7) and these results were examined.  
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Figure 4.7. Plot of Concentrations of R3 vs. Absorbance at 569 nm by SLR 

The regression coefficient of the model was found to be 0.9886 for the calibration 

set. The standard error of calibration (SEC) and the standard error of prediction (SEP) 

values were calculated as 0.00135 and 0.00179 (w/w %), for calibration and independent 

validation sets, respectively.  

The results of the SLR method have demonstrated that even with a univariate 

calibration approach, it is possible to quantitatively determine these color compounds in 

the cleaning products which contain not only the single dye but also for the binary and 

ternary mixtures of these color compounds. However, application of multivariate 

calibration methods such as PLS and GILS could improve the performance of the 

quantitative determination of these dye compounds as they are able to use whole spectral 

data instead of focusing only a single maximum absorbing wavelength. The following 

part gives results of the multivariate calibration studies carried out with PLS and GILS. 

4.5. The PLS Results of the R1 (Tartrazine, Yellow) 

In the second part of this study, the PLS method was applied to the same the 

datasets as calibration and independent validation containing the visible spectra (400 to 

700 nm) of 35 samples. Predictions were made using the PLS method for R1(Tartrazine) 
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and absolute error values were given for both calibration and independent validation set 

in Table 4.1 and 4.2, respectively. 

Table 4.1. Results of Calibration Set for R1 by using PLS 

Calibration Data 

No References R1 Predicted R1 Absolute Error 

s1 0.069 0.085 0.016 
s2 0.055 0.050 0.005 
s3 0.055 0.049 0.006 
s4 0.041 0.051 0.010 
s6 0.041 0.038 0.003 
s7 0.028 0.027 0.001 
s8 0.028 0.027 0.001 
s9 0.028 0.027 0.001 
s10 0.028 0.024 0.004 
s11 0.014 0.014 0.000 
s12 0.014 0.015 0.001 
s14 0.014 0.012 0.002 
s15 0.014 0.013 0.001 
s16 0.000 0.002 0.002 
s17 0.000 0.000 0.000 
s18 0.000 -0.001 0.001 
s19 0.000 0.000 0.000 
s20 0.000 0.002 0.002 
s21 0.000 0.013 0.013 
s22 0.055 0.054 0.001 
s24 0.055 0.050 0.005 
s25 0.055 0.050 0.005 
s26 0.055 0.051 0.004 
s27 0.055 0.052 0.003 
s28 0.000 0.001 0.001 
s29 0.000 0.001 0.001 
s31 0.055 0.049 0.006 
s33 0.000 0.001 0.001 
s34 0.000 0.000 0.000 

As can be seen in Table 4.1, the reference and predicted values in the calibration 

set were compared, and then the absolute error values were calculated for each sample in 

the calibration set. The difference between the estimates and the reference values shows 

the absolute error value; the smaller this difference is, the better the estimate shows the 
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result. 

Table 4.2. Results of Validation Set for R1 from PLS 

Validation Data 

No References R1 Predicted R1 Absolute Error 

s5 0.041 0.029 0.013 
s13 0.014 0.016 0.002 
s23 0.055 0.053 0.002 
s30 0.055 0.049 0.006 
s32 0.000 0.001 0.001 
s35 0.000 -0.001 0.001 

Calibration data set is used as the training set to produce multivariate PLS model 

with leave one out cross validation. Then independent validation set is used as the test set 

to verify the performance of the model in the training process, and during the testing 

process, it can be tested how accurately the model can perform or how well it can 

generalize across all observations.The result of the PLS calibration model for R1 

(Tartrazine) was plotted in Figure 4.8 as actual vs predicted plot for both calibration and 

validation data sets along with standard error of cross validation (SECV) and standard 

error of prediction (SEP) for calibration and independent validation sets in addition to the 

R2 value of the calibration data. 
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Figure 4.8.  A) Actual R1 Concentrations vs. Predicted R1 Concentrations by PLS B) 
Statistical Parameters of R1 

The regression coefficient of the model was found to be 0.9987 for the calibration 

and validation set, respectively. The standard error of cross validation (SECV) and the 

standard error of prediction (SEP) values were calculated as 0.00086 and 0.00132 (w/w 

%), for calibration and independent validation sets, respectively. The PLS method was 

successfully applied. 

Residual plots graph for R1 (Tartrazine) is shown in Figure 4.9 Residual plot 

graphics were drawn using the PLS method on Minitab16. Residual plots are graphical 

representations used to analyze the residuals in a regression analysis. These plots help in 

assessing the goodness of fit of a regression model and in diagnosing potential problems 

with the model. 
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Figure 4.9. Residual Plots for R1 

As can be seen Figure 4.9, there are four different residual plots showing the error 

(residual) analysis of the model. These residual plots show that there are some systematic 

errors in the residuals of the model and that the residuals do not fully comply with the 

normal distribution assumption. This indicates that the model needs to be improved or 

further investigation should be done to determine the source of the errors. Either more 

variables can be included to improve predictive capability of the model, the parameters 

are retuned or different modelling is carried out. 

PLS Model Selection Plot for R1 (Tartrazine) is shown in Figure 4.10 PLS Model 

Selection were drawn using the PLS method on Minitab16. The PLS model selection plot 

is a visual tool used in the context of Partial Least Squares Regression to help determine 

the optimal number of components to include in the model. The goal is to balance model 

complexity and predictive accuracy, avoiding overfitting or underfitting the model. 
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Figure 4.10. PLS Model Selection Plot R1 

In this Figure 4.10, PLS shows (R²) values by number of components for model 

selection. Black dots represent R² values in the model's fitted set, and red squares 

represent R² values in the model's cross-validation set. R² values in the training set 

approach 1 almost linearly as the number of components increases, indicating that the 

model performs quite well on the training data. However, R² values in the cross-validation 

set reach a constant level after a certain number of components and do not increase. The 

optimal number of components is approximately 6, because at this point the R² value in 

the cross-validation set reaches its highest level and the addition of additional components 

does not contribute to the generalizability of the model. This shows that the number of 

components that need to be taken into consideration to prevent overfitting of the model 

is 6. This analysis highlights that the number of components must be carefully selected to 

optimize the model's performance on both training data and new data. 

PLS Coefficient Plot for R1 (Tartrazine) were drawn and examined, shown in 

Figure 4.11 PLS Coefficient plot were drawn using the PLS method on Minitab16. The 

PLS coefficient plot is a graphical representation used in Partial Least Squares Regression 

to visualize the importance and direction of each predictor variable's contribution to the 

model. This plot helps in understanding which variables have the most significant impact 

on the response variable and whether their relationship is positive or negative. 
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Figure 4.11. PLS Coefficient Plot R1 

As can be seen in Figure 4.11, the coefficients that the PLS model estimates using 

various components for the %R1 response. The 300 predictions on the x-axis represent 

independent variables; On the y axis are the coefficient values of these predictions. As 

seen in the graph, coefficient values for most of the predictions are close to zero, 

indicating that these variables do not play a significant role in the model. However, the 

coefficient values of some predictions show significant positive or negative deviations. 

For example, the coefficients of predictions in the ranges 1-100 and 260-300 have higher 

absolute values, indicating that these predictions have a significant effect in the model. 

Such higher coefficients indicate that the relevant predictions have a stronger impact on 

the dependent variable (%R1). Positive coefficients mean that the dependent variable will 

increase as the predictions increase, and negative coefficients mean that the dependent 

variable will decrease as the predictions increase. Overall, this graph visually reveals 

which predictions of the model have a greater impact on the independent variable and 

which predictions are less significant in the model. This type of analysis increases the 

interpretability of the model and helps identifies important predictions. 

After applying the PLS coefficient plot, the PLS Standard Coefficient plot was 

drawn, the standardized version of the graph minimizes the error and increases the 

applicability, this increases the examinability of the data. (Figure 4.12) The PLS standard 

coefficient plot is a variation of the PLS coefficient plot where the coefficients are 

standardized. This means that the coefficients are adjusted to have a mean of zero and a 
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standard deviation of one, making them comparable across different scales of predictor 

variables. This standardization allows for better interpretation of the relative importance 

of each predictor variable in the model. 

 

Figure 4.12. PLS Std. Coefficient Plot R1 

As can be seen in Figure 4.12, the standardized coefficients of the PLS model for 

the %R1 response and reveals the effects of the predictions according to the 5 components 

used in the model. For example, it can be seen that predictions in the range of 20-80 

mostly have positive coefficients and these predictions have a positive effect on the 

dependent variable (%R1). On the other hand, the fact that the predictions in the range of 

250-300 are represented by negative coefficients indicates that these predictions have a 

negative effect on the dependent variable. These deviations in the graph clearly show 

which predictions the model emphasizes the effect on the independent variable. The 

surrounding almost zeros for the middle part predictions (80-250) informs that these 

predictions have little effect in the model and would not consequently induce a significant 

impact on the dependent variable. As a result, the model becomes more interpretable as 

it can assess how these predictions may affect the independent variable and the weight of 

these predictions within the model. 

4.6. The PLS Results of the R2 (Brilliant Blue, Blue) 
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The PLS method was also applied for R2 (Brilliant Blue) using the data set containing 

the visible spectra (400 to 700 nm) of 35 samples as calibration and independent 

validation sets, 6 samples were selected as independent validation, and 29 samples were 

selected for the calibration set. Estimates were made using the PLS method for R2 

(Brilliant Blue) and absolute error values were examined (Table 4.3). 

Table 4.3. Results of Calibration Set for R2 by using PLS 

Calibration Data 
No References R2 Predicted R2 Absolute Error 
s1 0.000 0.000 0.000 
s2 0.000 0.000 0.000 
s3 0.004 0.004 0.000 
s4 0.000 0.000 0.000 
s6 0.009 0.008 0.001 
s7 0.000 0.000 0.000 
s8 0.004 0.003 0.001 
s9 0.009 0.009 0.000 
s10 0.013 0.012 0.001 
s11 0.000 0.000 0.000 
s12 0.004 0.004 0.000 
s14 0.013 0.016 0.003 
s15 0.017 0.017 0.000 
s16 0.000 -0.001 0.001 
s17 0.004 0.005 0.000 
s18 0.009 0.009 0.001 
s19 0.013 0.013 0.001 
s20 0.017 0.016 0.001 
s21 0.021 0.020 0.001 
s22 0.017 0.017 0.000 
s24 0.017 0.017 0.000 
s25 0.017 0.017 0.000 
s26 0.000 0.000 0.000 
s27 0.000 0.000 0.000 
s28 0.017 0.016 0.001 
s29 0.017 0.016 0.001 
s31 0.000 0.000 0.000 
s33 0.017 0.017 0.000 
s34 0.000 0.001 0.001 

As seen in Table 4.3, the reference and predicted values in the calibration set were 
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compared, and then absolute error values were calculated for each sample in the 

calibration set R2 (Brilliant Blue). The difference between the estimates and the reference 

values shows the absolute error value; the smaller this difference is, the better the estimate 

shows the result. The absolute error values here show that the estimate was made well. 

Table 4.4. Results of Validation Set for R2 from PLS 

Validation Data 

No References R2 Predicted R2 Absolute Error 

s5 0.004 0.004 0.001 

s13 0.009 0.010 0.002 

s23 0.017 0.017 0.000 

s30 0.000 0.000 0.000 

s32 0.017 0.017 0.000 

s35 0.000 0.001 0.001 

Predictions and references for validation data were compared as seen in Table 4.4. 

Validation data is generated to evaluate the model's generalization ability, assist in model 

selection and fine-tuning, perform realistic performance analysis, and provide feedback 

for improvement. This is a critical step in the modelling process and is a must-use tool to 

obtain an accurate, reliable and generalizable model. 

The result of the PLS calibration model for R2 (Brilliant Blue) was plotted and 

these results were examined. Calibration and validation data are shown (Figure 4.13). 
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Figure 4.13. A) Actual R2 Concentrations vs. Predicted R2 Concentrations by PLS B) 
Statistical Parameters of R2 

As can be seen Figure 4.13 the relationship between the predicted R2 Brilliant 

Blue (w/w %) values and the actual R2 (w/w %) values obtained using the calibration and 

validation sets. The regression coefficient of the model was found to be 0.9891 for the 

calibration and validation set, respectively. The standard error of calibration (SEC) and 

the standard error of prediction (SEP) values were calculated as 0.00080 and 0.00093 

(w/w %), for calibration and independent validation sets, respectively. The PLS method 

was successfully applied. 

Residual plots graph for R2 (Brilliant Blue) were drawn and examined, shown in 

Figure 4.14 Residual plot graphics were drawn using the PLS method on Minitab16. 
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Figure 4.14. Residual Plots for R2 

In this Figure 4.14, standardized residuals are listed on the y-axis and plotted on 

the normal distribution curve on the x-axis. In the top left graph, the majority of the points 

are aligned along the blue line, indicating that the residuals are normally distributed and 

comply with the model's assumptions. However, a few extreme points are observed, and 

these points indicate that the model deviates from the normal distribution in some data. 

PLS Model Selection Plot for R2 (Brilliant Blue) were drawn and examined, 

shown in Figure 4.15 PLS model selection were drawn using the PLS method on 

Minitab16. 
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Figure 4.15. PLS Model Selection Plot R2 

Shown in this Figure 4.15 are the PLS model's R-squared (R²) values for R2%. 

The black dots in the graph represent the R² values in the fitted set of the model, and the 

red squares represent the R² values in the cross-validation set of the model. R² values in 

this set rise rapidly as the number of components increases and almost reach 1, indicating 

that the model provides an excellent fit on the training data. However, R² values in the 

cross-validation set stabilize after approximately 4 components and adding more 

components does not improve performance. The R² value here is approximately 0.9891. 

This graph shows that the number of components is 4, very good results are observed in 

the fitted data of the model, and the fact that it shows a more realistic performance in the 

cross-validation data compared to the fitted data shows that the generalization ability of 

the model is good and reliable predictions can be made on new data. The result shows 

that the model exhibits high performance in both calibration and validation data and that 

the optimal number of components is selected correctly. 

PLS Coefficient Plot for R2 (Brilliant Blue) were drawn and examined, shown in 

Figure 4.16 PLS Coefficient plot were drawn using the PLS method on Minitab16. 
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Figure 4.16. PLS Coefficient Plot R2 

The majority of the estimates approach zero on a coefficient basis and are shown 

in the Figure 4.16, but some estimates show significant positive or negative deviations. 

More precisely, the negative coefficient for interest estimates over time between 80 and 

120 is −0.0025, and the other the negative coefficient for interest estimates over time 

between 280 and 300. 

PLS coefficient graph and PLS Standard Coefficient graph are drawn, the 

standardized version of the graph minimizes the error and increases the applicability, 

which increases the tractability of the data. As can be shown in Figure 4.17 for R2 

(Brilliant Blue). 
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Figure 4.17. PLS Std. Coefficient Plot R2 

The PLS standard coefficient plot is a variation of the PLS coefficient plot where 

the coefficients are standardized. This means that the coefficients are adjusted to have a 

mean of zero and a standard deviation of one, making them comparable across different 

scales of predictor variables. This standardization allows for better interpretation of the 

relative importance of each predictor variable in the model. Data from the graph shows 

that estimates between 20 and 160 have uniformly negative coefficients, with the lowest 

coefficient in this range being around -0.0075. On the other hand, there are estimates with 

positive coefficients in the range of 160-260, the largest of these coefficients being around 

0.15. This shows that it has a positive effect on the dependent variable. This also shows 

that Figure 4.17. the low values in the negative coefficient estimates are between 280 and 

300, around -0.01. 

4.7. The PLS Results of the R3 (Allura Red, Red) 

The PLS method was also applied for R3 (Allura red) using the data set containing 

visible spectra (400 to 700 nm) of 35 samples as calibration and independent validation 

sets, 6 samples were selected as independent validation, and 29 samples were selected for 

the calibration set. Predictions were made using the PLS method for R3 (Allura Red) and 
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compared with the reference values and absolute error values were examined (Table 4.5). 

Table 4.5. Results of Calibration Set for R3 by using PLS 

Calibration Data 

No References R3 Predicted R3 

Absolute 

Error 

s1 0.000 0.000 0.000 
s2 0.007 0.007 0.000 
s3 0.000 0.000 0.000 
s4 0.014 0.014 0.000 
s6 0.000 0.000 0.000 
s7 0.021 0.021 0.000 
s8 0.014 0.012 0.002 
s9 0.007 0.007 0.000 
s10 0.000 0.000 0.000 
s11 0.028 0.028 0.000 
s12 0.021 0.021 0.000 
s14 0.007 0.007 0.000 
s15 0.000 0.000 0.000 
s16 0.035 0.035 0.000 
s17 0.028 0.028 0.000 
s18 0.021 0.021 0.000 
s19 0.014 0.014 0.000 
s20 0.007 0.007 0.000 
s21 0.000 0.000 0.000 
s22 0.028 0.028 0.000 
s24 0.000 0.000 0.000 
s25 0.000 0.000 0.000 
s26 0.028 0.028 0.000 
s27 0.028 0.028 0.000 
s28 0.028 0.028 0.000 
s29 0.028 0.028 0.000 
s31 0.000 0.000 0.000 
s33 0.000 0.000 0.000 
s34 0.028 0.027 0.001 

As seen in Table 4.5, the reference and predicted values in the calibration set were 

compared and then the absolute error values were calculated for each sample in the 

calibration set R3 (Allura Red). Here the absolute error values show better results 

compared to other colors (Tartrazine(R1) and Brilliant Blue(R2)).  
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Table 4.6. Results of Validation Set for R3 from PLS 

Validation Data 

No References R3 Predicted R3 Absolute Error 

s5 0.007 0.007 0.000 
s13 0.014 0.015 0.001 
s23 0.028 0.028 0.000 
s30 0.000 0.000 0.000 
s32 0.000 0.000 0.000 

s35 0.028 0.027 0.001 

The estimates and references for the validation data were compared as seen in 

Table 4.6 The difference between the estimate data and the reference data was examined 

and the absolute error values were shown. The absolute error value was found to be low 

for R3 (Allura Red).  

The result of the PLS calibration model for R3 (Allura Red) was plotted and these 

results were examined. The calibration and validation data are shown (Figure 4.18). 

 

Figure 4.18. A) Actual R3 Concentrations vs. Predicted R3 Concentrations by PLS B) 
Statistical Parameters of R3 

As can be seen Figure 4.18 the relationship between the predicted R3 Allura Red 

(w/w %) values and the actual R3 (w/w %) values obtained using the calibration and 



53  

validation sets. The regression coefficient of the model was found to be 0.9991 for the 

calibration and validation set, respectively. The standard error of calibration (SEC) and 

the standard error of prediction (SEP) values were calculated as 0.00038 and 0.00055 

(w/w %), for calibration and independent validation sets, respectively. The PLS method 

was successfully applied. 

Residual plots graph for R2 (Allura Red) were drawn and examined, shown in 

Figure 4.19 Residual plot graphics were drawn using the PLS method on Minitab16. 

 

Figure 4.19. Residual Plots for R3 

In this Figure 4.19. contains four different plots showing the residual analysis for 

the model's %R3 response. The performance of the model was evaluated by examining 

the normal probability plot in the graph, the residuals against the predicted values (versus 

fits), the residual histogram and the residuals against the observation order. For versus 

fits and versus order, the residuals are positive or negative, especially in certain 

observation intervals. It was observed that it concentrated in this direction. This may 

indicate the presence of some systematic errors in the model depending on time or 

observation order. But as a result, the accuracy and generalization ability of the model 

seem to be successful. 

PLS Model Selection Plot for R3 (Allura Red) were drawn and examined, shown 

in Figure 4.20. PLS model selection were drawn using the PLS method on Minitab16. 
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Figure 4.20. PLS Model Selection Plot for R3 

This Figure 4.20. shows R-squared (R²) values by number of components for the 

R3% response of the PLS (Partial Least Squares) model. The R² values in this set rise 

rapidly as the number of components increases, reaching almost 1, and the model closest 

to 1 is included in this graph. The model appears to fit the training data perfectly. R² 

values in the cross-validation set reach their highest value of approximately 0.9991 when 

the number of components reaches 4, and adding more components does not improve 

performance. At this point, the optimal number of components was determined to be 4 

because at this point the model exhibits the best overall performance by preventing 

overlearning. The graph shows that the model exhibits high performance on both training 

and validation data and that the optimal number of components is selected correctly. 

PLS Coefficient Plot for R3 (Allura Red) were drawn and examined, shown in 

Figure 4.21 PLS Coefficient plot were drawn using the PLS method on Minitab16. 
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Figure 4.21. PLS Coefficient Plot for R3 

In this Figure 4.21, there are 300 predictions on the X axis, and the coefficient 

values of these predictions are on the Y axis. For most of the estimates in the graph, the 

coefficients are close to zero, but the coefficients of some estimates show significant 

positive or negative deviations. In particular, estimates in the range 100-160 have positive 

coefficients, with the highest value in this range being approximately 0.005. This shows 

that these estimates have a positive impact on the dependent variable (%R3). Predictions 

in the range of 260-300 are marked with negative coefficients, and the lowest value in 

this range is approximately -0.01. This shows that these predictions have a negative 

impact on the dependent variable. Positive coefficients indicate that the dependent 

variable will increase as the estimates increase, and negative coefficients indicate that the 

dependent variable will decrease as the estimates increase. 

PLS coefficient graph and PLS Standard Coefficient graph are drawn, the 

standardized version of the graph minimizes the error and increases the applicability, 

which increases the tractability of the data. As can be shown in Figure 4.22 for R3 (Allura 

Red). 
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Figure 4.22. PLS Std. Coefficient Plot for R3 

In this Figure 4.22, the %R3 response of the PLS model is observed. For most of 

the predictions in the chart, the coefficients are close to zero, but the coefficients of some 

predictions show significant positive or negative deviations. In particular, predictions in 

the range 100-200 have positive coefficients, with the highest value in this range being 

approximately 0.0125. This shows that the predictions have a positive effect on the 

dependent variable (%R3). On the other hand, predictions in the ranges 1-80 and 220-300 

are marked with negative coefficients, and the lowest value in these ranges is 

approximately -0.005. This indicates that these predictions have a negative effect on the 

dependent variable. The general structure of the graph shows that certain predictions have 

a greater impact in the model and that these predictions play a critical role in predicting 

the dependent variable. Positive coefficients indicate that the dependent variable will 

increase as the predictions increase, and negative coefficients indicate that the dependent 

variable will decrease as the predictions increase. This analysis allows the model to 

visually evaluate which predictions have a stronger effect on the independent variable and 

the contribution of these predictions in the model. 

4.8. The GILS Results of the R1 (Tartrazine, Yellow) 

Thirdly, GILS method was applied, the data set containing visible spectra (400 to 

700 nm) of 35 samples was divided into two subsets as calibration and independent 
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validation sets. Among the 35 samples, 6 were selected as independent validation, mostly 

repeated samples as given in Table 3.2 the remaining 29 samples were used as calibration 

sets. Estimates were made for R1 (Tartrazine) using GILS method. (Figure 4.23) 

 

Figure 4.23. Actual R1 Concentrations vs. Predicted R1 Concentrations by GILS 

As can be seen Figure 4.23, the regression coefficient of the model for R1 

(Tartrazine) was found to be 0.9992. Calibration and validation data for respectively the 

standard error of calibration (SEC) and the standard error of prediction (SEP) values were 

calculated as 0.00956 and 0.00121 (w/w %), respectively. The GILS method was 

successfully applied, and the error ranges were determined and predicted. The most 

efficient prediction was made with the GILS method. The created model shows good 

efficiency. High performance is observed compared to other methods. These results also 

showed that mixtures containing binary and ternary mixtures of these three dyes 

(Tartrazine yellow, Brilliant blue and Allura red) may be sufficient for the prediction of 

Tartrazine yellow (R1) color in cleaning products. 

4.9. The GILS Results of the R2 (Brilliant Blue, Blue) 

The results of the GILS calibration model for R2 (Brilliant Blue) were plotted and 

examined. Calibration and validation data are shown (Figure 4.24). Predicted values are 

y = 0.9988x + 3E-05
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plotted versus actual values. 

 

Figure 4.24. Actual R2 Concentrations vs. Predicted R2 Concentrations by GILS 

As can be seen Figure 4.24, the regression coefficient of the model for R2 

(Brilliant Blue) was found to be 0.9938. Calibration and validation data for respectively 

the standard error of calibration (SEC) and the standard error of prediction (SEP) values 

were calculated as 0.00060 and 0.00072 (w/w %), respectively. The GILS method was 

successfully applied, and the error ranges were determined and predicted. The most 

efficient prediction was made with the GILS method. 

4.10. The GILS Results of the R3 (Allura Red, Red) 

The results of the GILS calibration model for R3 (Allura Red) were plotted and 

examined. Calibration and validation data are shown (Figure 4.25). Predicted values are 

plotted versus actual values. 
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Figure 4.25. Actual R3 Concentrations vs. Predicted R3 Concentrations by GILS 

As can be seen Figure 4.25, the regression coefficient of the model for R3 (Allura 

Red) was found to be 0.9995. Calibration and validation data for respectively the standard 

error of calibration (SEC) and the standard error of prediction (SEP) values were 

calculated as 0.00029 and 0.00052 (w/w %), respectively. The GILS method was 

successfully applied, and the error ranges were determined and predicted. The most 

efficient prediction was made with the GILS method. 

The most efficient prediction was made with the GILS method. The model created 

shows good efficiency. High performance is observed compared to other methods. As a 

result of all analyses, an almost perfect prediction was made as a result of the modelling 

applied according to the results for R3 (Allura Red). GILS made as a result of 

comparisons, it creates the most efficient model and provides predictions. 

4.11. Summary of Values for R1, R2 and R3 

As can be seen in Table 4.7, the results of the applied SLR, PLS and GILS 

methods are analyzed. According to the results, the most efficient prediction method was 

determined and the Standard Error of Cross-Validation (SEC), Standard Error of 
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Prediction (SEP) and Regression Coefficient (R²) values were compared among them. 

Table 4.7. Summary of Values for R1, R2 and R3 

COLOR 

Simple Least Squares 
Regression 

 Calibration Model Results 
Partial Least Squares  

Calibration Model Results 

Genetic Inverse Least 
Squares 

 Calibration Model Results 

SECV  
w/w% 

SEP  
w/w% R² 

SECV 
w/w% 

SEP  
w/w% R² 

SECV  
w/w% 

SEP  
w/w% R² 

R1 
(Yellow) 0.00966 0.00183 0.9956 0.00086 0.00132 0.9987 0.00956 0.0012 0.9992 

R2 (Blue) 0.00089 0.00109 0.9868 0.00080 0.00093 0.9891 0.00060 0.0007 0.9938 

R3 (Red) 0.00135 0.00179 0.9886 0.00038 0.00055 0.9991 0.00029 0.0005 0.9995 

Standard Error of Cross-Validation, Standard Error of Prediction and R² values of 

the methods used were compared among themselves. To calculate the SEC value, it is 

necessary to calculate the standard deviation of the differences between the model's 

predictions and the actual values. The smaller this value, the better the predictive ability 

of the model. SEP, on the other hand, tests the overall performance and reliability of the 

model, and these two values serve the same purpose. The R² value is an important measure 

of performance that indicates how well a model explains the variance of the dependent 

variable. An R² value close to 1 indicates that the model explains the dependent variable 

well and can make predictions with high accuracy. It is seen that GILS gives the healthiest 

results for these three methods. SEP and SEC values are the ones with low values and R² 

value is the highest among these values. 
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CHAPTER 5 

CONCLUSIONS 

As a result, three different dye amounts (R1, R2 and R3) were estimated in the 

surface cleaning product in this study. These colors are yellow (R1, Tartrazine), blue (R2, 

Brilliant Blue) and red (R3, Allura Red) to obtain various absorbance values at different 

wavelengths. Using the mixture design method, 35 different surface cleaner samples 

containing various concentrations of dyes were prepared. The composition of these 

samples was determined in the visible region (400-700 nm). The dye amounts of the 

prepared samples were taken as reference and these references were estimated using the 

chemometric modelling methods SLR, PLS and GILS. Data were generated using the raw 

UV-Visible spectra of the samples. Calibration and validation data were generated for 

each dye before applying the methods. Several graphs were plotted and interpreted based 

on each chemometric modelling. These interpretations were used to compare how close 

the predictions were to the reference values. Among the three methods, the GILS method 

appears to be the most efficient modelling and provides the best prediction. The 

regression coefficients (R²) of the GILS model ranged from 0.9938 to 0.9995, the standard 

error of the cross-validation (SEC) values ranged from 0.00029 to 0.00956 and the 

standard error of the prediction (SEP) ranged from 0.00052 to 0.00121 (%w/w). Finally, 

the models developed in this study perform well, with the GILS model performing well, 

making the best prediction and also providing very good results. 
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