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Department of Photonics, İzmir Institute of Technology

Prof. Dr. Metin Hüseyin SABUNCU
Department of Electrical and Electronics Engineering, Dokuz Eylül University

28 June 2024

Prof. Dr. Mehmet Salih DİNLEYİCİ
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ABSTRACT

DIELECTRIC FILM CHARACTERIZATION BEYOND CLASSICAL

LIMITS EXPLOITING SPATIALLY STRUCTURED ENTANGLED

PHOTON PAIRS

Quantum optics introduces new opportunities, alternative methodologies, and po-

tentially groundbreaking technologies centered around generating, manipulating, and de-

tecting distinct quantum states of light. This field opens up new avenues for exploration

and application in instrumentation, measurement, and metrology. From this point of view,

the main objective of the thesis is to propose a novel quantum entanglement-based phase

diffraction scheme for the thickness characterization of ultra-thin transparent dielectric

films on an optical fiber beyond classical limits. In addition, since coincidence detec-

tion and optical coherence have an essential role in the suggested system, we also present

a practical and non-sophisticated measurement procedure for thermal light characteriza-

tion by extracting time bin information from spatially distributed intensity data using a

standard CCD camera.

To accomplish the aforementioned purposes, we first examine the effect of entan-

glement on measurement systems, specifically optical microscopy, since it intrinsically

offers better optical resolution. Then, the spatial entanglement concept is integrated with

the phase diffraction scheme for dielectric film characterization on a curved surface. An

alternative configuration with thermal photons is also demonstrated. According to the

outcomes, the thickness of the transparent dielectric films can be accurately estimated be-

low one-twentieth of the wavelength of interest. In the second part, we have introduced

a proof-of-concept experimental setup by exploiting the single-pixel intensity measure-

ments of a conventional CCD camera to extract thermal light photon statistics and second-

order coherence function. In this way, we proved that the bunched light phenomenon can

be observed with off-the-shelf detectors beyond coherence time. A comprehensive feasi-

bility analysis of the CCD camera is also reported.

Finally, the results are evaluated with pros and cons, drawing a road map for future

works. We have briefly explained promising perspectives including the N-fold detection

scheme, the influence of pump coherence on the characterization system and practical

engineering applications of proposed photon statistics setup.
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ÖZET

UZAYSAL YAPILANDIRILMIŞ DOLANIK FOTON ÇİFTLERİNDEN

FAYDALANARAK KLASİK KIRINIM SINIRLARI ÖTESİNDE

DİELEKTRİK FİLM KARAKTERİZASYONU

Kuantum optiği, ışığın farklı kuantum durumlarını üretmeye, manipüle etmeye ve

tespit etmeye odaklanan yeni fırsatlar, alternatif metodolojiler ve potansiyel olarak çığır

açıcı teknolojiler sunar. Bu alan enstrümantasyon, ölçüm ve metrolojide keşif ve uygu-

lama için yeni yollar açmaktadır. Buradan hareketle tezin temel amacı, klasik sınırların

ötesinde bir optik fiber üzerindeki ultra-ince şeffaf dielektrik filmlerin kalınlık karakteri-

zasyonuna dayalı yeni bir kuantum dolaşıklık tabanlı faz kırınım şeması önermektir. Ek

olarak, önerilen sistemde çakışma tespiti ve optik tutarlılık önemli bir rol oynadığından,

standart bir CCD kamera kullanarak mekansal olarak dağıtılmış yoğunluk verilerinden

zaman aralığı bilgisini çıkararak termal ışık karakterizasyonu için pratik ve karmaşık ol-

mayan bir ölçüm prosedürü de sunuyoruz.

Yukarıda belirtilen amaçları gerçekleştirmek için öncelikle kuantum dolanıklığın

ölçüm sistemleri üzerindeki etkisini, özellikle de doğası gereği daha iyi çözünürlük sun-

duğundan, optik mikroskopiyi inceledik. Daha sonra, uzaysal dolaşıklık kavramı, kav-

isli bir yüzey üzerinde dielektrik film karakterizasyonu için faz kırınım şeması ile en-

tegre edilir. Termal fotonlarla alternatif bir konfigürasyon da gösterilmiştir. Sonuçlara

göre, şeffaf dielektrik filmlerin kalınlığı, ilgilenilen dalga boyunun yirmide birinin altında

doğrulukta tahmin edilebilmektedir. İkinci bölümde, termal ışık foton istatistiklerinin ve

ikinci dereceden tutarlılık fonksiyonunun çıkarılması için geleneksel bir CCD kameranın

tek piksel yoğunluk ölçümlerinden yararlanarak kavram kanıtı deney düzeneğini tanıttık.

Böylece, kümelenmiş ışık olgusunun tutarlılık süresinin ötesinde kullanıma hazır dedek-

törlerle gözlemlenebileceğini kanıtladık. CCD kameranın kapsamlı bir fizibilite analizi

de rapor edilmiştir.

Son olarak, sonuçlar artıları ve eksileri ile değerlendirilerek gelecekteki çalışmalar

için bir yol haritası çizilmiştir. N-katlı algılama şeması, pompa tutarlılığının karakteriza-

syon sistemi üzerindeki etkisi ve önerilen foton istatistik kurulumunun pratik mühendislik

uygulamaları dahil olmak üzere umut verici perspektifleri kısaca açıkladık.
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4.75 and (ΔIexp)
2 = 3.12 (b) with +1 DC offset: Īexp = 5.75 and

(ΔIexp)
2 = 3.12 (c) with +5 DC offset: Īexp = 9.75 and (ΔIexp)
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pixel-1: Īexp = 3.00 and (ΔIexp)
2 = 0.05 (b) pixel-2: Īexp = 2.99 and
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CHAPTER 1

INTRODUCTION

Over the last decades, many research and studies have aimed to understand the

quantum features held within light, which contribute towards establishing quantum optics.

Such investigations not only enlighten us to realize and explore the quantum behaviors

of light but also introduce new paradigms in our understanding of its interactions with

matter, marking a transformative epoch in the landscape of optical science (Agarwal,2012;

Garrison and Chiao, 2008; Simon et al., 2017). The theoretical framework of the field of

quantum optics offers the opportunity to exploit powerful tools that can not be explained

classically. The generation and detection of non-classical light states are the primary goals

of quantum optics. These states have drawn much attention, especially in metrology and

information technology.

In light of all these considerations, my Ph.D. research mainly presents novel and

practical instrumentation, measurement, and metrology techniques and procedures, fo-

cusing on two main subjects: (1) novel quantum-based solutions for enhancing the thick-

ness determination of ultra-thin dielectric films in the characterization systems beyond

classical limits and (2) design and construction of practical photon statistics and optical

coherence setups utilizing ordinary, non-sophisticated and low-cost laboratory pieces of

equipment, including comprehensive analysis supported by numerical simulations and

experiments. To achieve and realize the purposes above, five fundamental research ar-

eas in classical and quantum optics have been combined: dielectric film characterization,

phase diffraction, quantum metrology, photon statistics, and photoelectric detection of

light. Therefore, this chapter is devoted to clearly explaining the motivation of the thesis

by evaluating and discussing essential studies in the literature. This way, the advances

and fundamental shortcomings in these research areas are shown to the readers by em-

phasizing their strong and weak sides.

1.1. Dielectric Films in Optical Fiber Sensors

Thin dielectric films constitute an essential subject area within the field of fiber

optic sensor technologies, finding prominent applications in devices such as fiber Bragg
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gratings (FBG) and surface plasmon resonance (SPR) sensors (Mishra and Gupta, 2012;

Alwis et al., 2012). These sensors usually serve as transducers, interrogators or sensing

elements. They have numerous application areas for crucial parameters such as temper-

ature (Mishra et al., 2016; Leal-Junior et al., 2018), strain (Sampath et al., 2018), gas

sensing (Mishra et al., 2016; Zhou et al., 2021), humidity (Woyessa et al., 2016; Premku-

mar and Vadivel, 2017) and molecular interactions (Gong et al., 2021; Sezemsky et al.,

2021). In general, they are intricately conjuncted with specific sub-wavelength dielectric

films to achieve more intelligent sensing capabilities, as evidenced in existing literature

(Li et al., 2020; Wang et al., 2017). Nevertheless, the performance of these sensors is

significantly affected by subtle variations in the thickness and surface roughness of the

employed dielectric films (Zhang et al., 2013; Verma et al., 2019; Rajendran et al., 2024).

Therefore, precise and well-defined optical characterization of the films has become an

important and challenging subject for quality assurance in recent years.

Figure 1.1. (a) Typical configuration of polymer coated optical fiber (Zamarreño et al.,

2011) (b) Sensitivity variation of dielectric layer (IO) for various thickness

(Kapoor and Sharma, 2020)

Figure 1.1(a) gives a typical and basic configuration of dielectric film-coated op-

tical fiber. The cladding part of the fiber is usually removed and replaced by a particular

thin film (e.g., indium-tin oxide, poly-vinyl alcohol, poly-acrylic acid) that is sensitive in

pursuit of measuring the desired quantity. The desired quantity can be determined pre-

cisely by evaluating the variations in the spectrum of incident light, explicitly depending
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on the parameters of dielectric coating (e.g., refractive index and thickness) (Riza et al.,

2020). However, nanoscale variations on the thickness of dielectric films strongly affect

the sensitivity (or resolution) of the optical fiber sensor as seen in Figure 1.1(b). This

specific example reveals that the sensitivity takes its maximum value at around 30 nm and

even a few nanometers of variation in film thickness can reduce sensitivity to insufficient

levels.

As the thickness of dielectric films is a small fraction of the wavelength of inter-

est, notably around 50 nm, particularly in the context of SPR sensors, the precise and

accurate determination of optical properties at the nanoscale is essential and challenging

task for optimizing sensor precision. In literature, the prevalent methods for thickness

characterization mostly depends on advanced interferometric (Kim, 2022; Nestler and

Helm, 2017) and spectroscopic (Yoshino et al., 2017; Debnath et al., 2009) techniques.

However, the implementation of these techniques demands intricate procedures involving

expensive and finely calibrated measurement equipment. Furthermore, the complexity of

the characterization process significantly increases, particularly for curved substrates due

to the geometric nuances and the necessity for pointwise scanning of the sample. Hence,

these consequences compels the need to advance methods dealing with the complexities

needed to achieve higher precision, especially when using curved substrates.

1.2. Phase Diffraction in Optical Characterization

Phase diffraction is a wealthy subject and potent property to characterize the op-

tical properties of transparent objects (e.g., solids, liquids, dielectric films). It arises from

the interaction between an incident light wave and a phase object (Ekici and Dinleyici,

2017). Since the phase of the diffracted field from the phase objects is extremely sen-

sitive to slight variations on the thickness and refractive index through the optical path

length, it carries valuable information about the system (Tavassoly et al., 2001; Sabatyan

and Tavassoly, 2009; Tavassoly and Saber, 2010). The general scheme of the conven-

tional phase diffraction-based optical characterization systems and experimental setup is

given in Figure 1.2 and Figure 1.3, respectively. The working principle mainly depends

on Fresnel diffraction theory exploiting the tracing incident wavefront through the optical

path (Volpe et al., 2017). In the proposed system, the wavefront is usually modeled by the

paraxial complex rays, including amplitude and phase. The input wavefront undergoes

specific phase delays while traversing through the phase object such as optical fiber. At

the end of tracing, the field distribution on the detector (or image plane) is obtained. Given
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the phase’s exquisite sensitivity to small variations in the optical parameters through the

optical path, the resulting diffraction pattern on the detector is modified. Considering that

the thickness of the dielectric film is a variable of the optical path, the nanoscale variations

in thickness can be extracted by evaluating the minima shifts and amplitude deviations on

the recorded intensity pattern (Ataç, 2019).

Figure 1.2. Illustration of classical phase diffraction from optical fiber with a plane

wave input

In the literature, some proposed phase diffraction schemes utilize optical and com-

putational manipulations to detect sub-wavelength thickness variations in the order of a

few tens of nanometers. It has been demonstrated (Ataç and Dinleyici, 2020) that the

thickness of a nanoscale thin film can be determined approximately with a resolution of

about one-tenth of the wavelength of interest, leveraging the combination of conventional

phase diffraction technique and spatially structured illumination. Besides, the system

should have been optimized with neural networks to increase the resolution further (Ataç

et al., 2023). Although the results are far beyond the classical diffraction limits, which

approximately correspond λ/2 (Monticone et al., 2014), recent developments in fiber op-

tic sensor technologies need more precise measurements to extract optical properties of

phase objects on nanoscales since they have a substantial effect on the performance of

sensors (Liu et al., 2020; Villeneuve-Faure et al., 2018). Despite the phase diffraction’s

recognition as a potent, straightforward, and cost-effective method in optical characteri-
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zation techniques, the classical light sources and measurement procedures utilized in the

schemes impose inherent limitations on thickness resolution. Therefore, shifting char-

acterization techniques to quantum-based models could be a solution to enhance system

resolution.

Figure 1.3. (a) The scheme for phase diffraction from the coated optical fiber (b) ex-

perimental photo (Ataç et al., 2023)

1.3. Quantum Metrology for Optical Characterization

Metrology occupies a central and indispensable role in the domains of science

and engineering. In essence, its focal point is the pursuit of optimal precision in diverse

parameter estimation tasks, along with the identification of measurement methodologies

capable of attaining such precision (an interferometer example given in Figure 1.4). At

the beginning of metrology science, it focused on classical and semi-classical systems,

encompassing mechanical systems explicable by classical physics and optical systems
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modeled through classical wave optics (Sirohi, 2017; Bernd et al., 2012). However, due to

the constraints imposed by classical physics (e.g., diffraction limit, shot noise), classical

metrology is naturally limited in its precision (Xiang and Guo, 2013). Therefore, new

methodologies and techniques have been investigated to improve system precision beyond

classical limits, especially by exploiting the inherent advantages of quantum optics, the

most common example of which is quantum entanglement (Nawrocki, 2015).

Figure 1.4. A classical optical metrology setup: Conventional Mach−Zehnder inter-

ferometry with coherent light input and intensity difference detection. BS:

Beam splitter, PS: Phase shifter Di: Detector

Fundamentally, all processes of measurement are subject to the principles of quan-

tum mechanics (Taylor and Bowen, 2016). This reality points to the fact that it is imper-

ative to incorporate quantum mechanics into the analysis to ascertain the ultimate con-

straints of these technologies. Therefore, like quantum computing, quantum information

processing, or quantum cryptography, metrology has undergone a reexamination to in-

corporate the consequences of quantum mechanics (Dowling and Seshadreesan, 2014).

From this point of view, quantum metrology has demonstrated the capacity to achieve

measurement precision surpassing classical limits (DeMille et al., 2024), evolving into

a compelling frontier of research with promising potential applications in recent years

as quantum sensing (Giovannetti et al., 2011), quantum imaging (Shih, 2007; Cameron

et al., 2024) and quantum lithography (Dowling, 2008).

Quantum metrology mainly provides a theoretical framework suitable for assess-

ing the precision performance of measurement devices leveraging quantum mechanical

probes endowed with non-classical features such as entanglement or squeezing (Giovan-
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netti et al., 2006). In Figure 1.5, a typical scenario of parameter estimation is given. In the

concept of the system, the preparation of probes in appropriate quantum states is initiated,

subject them to evolution through the process, and employ a well-suited detection strat-

egy to measure the probes at the output. Subsequently, a comparative analysis between

the input and output probe states is conducted, facilitating the estimation of the unknown

parameter associated with the physical process. It has been proven that when N probes

are characterized by quantum entanglement conversely N classical probes, the determi-

nation of the unknown parameter becomes possible with a precision that scales inversely

as 1/N , which is known as Heisenberg limit, in optical interferometry systems (Holland

and Burnett, 1993; Demkowicz-Dobrzański et al., 2012). In addition, the same quantum

enhancement method can be utilized in atomic spectroscopy where spin-squeezed states

have been used to enhance the precision of frequency calibration (Meyer et al., 2001)

Figure 1.5. A schematic of the quantum parameter estimation

It has also been proven that the utilization of intensity correlations, as a metrol-

ogy technique, could improve the optical resolution by coincidence detection for micro-

scopic applications (Simon and Sergienko, 2010a). In the last decade, similar correlation

techniques have been used in quantum-based imaging systems by the concept of spatial

entanglement generated via spontaneous parametric down-conversion (SPDC) (Simon

and Sergienko, 2010b; Abouraddy et al., 2002; D’Angelo et al., 2001). By consider-

ing the effect of quantum entanglement on system precision, the utilization of quantum

entanglement-based systems for dielectric film characterization, as a probe, may be help-

ful in improving system sensitivity. This idea may be integrated with the phase diffraction

scheme. To further improve the system resolution, spatially entangled photons are also

combined with a pinhole to block stray lights, which is the essential principle of confocal

quantum microscopy (Karmakar, 2019). In this way, the carried thickness information

traversing to the phase object is doubled courtesy of entangled photons, and confocality

is provided with the help of a compatible aperture. Considering the main objective of
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the thesis, this approach may provide significant enhancement for the determination of

ultra-thin film thickness more accurately.

1.4. Photon Statistics of Light Sources

The probability distribution of the photon number carries significant information

to describe the physical processes or systems. Together with the optical mode’s structure

and the state of coherence, these statistics furnish a comprehensive account of light prop-

erties. Therefore, accurate assessment of photon statistics is a necessity for numerous

applications, such as non-classical light sources (Waks et al., 2004), quantum metrology

(Couteau et al., 2023) and quantum communication (Wakui et al., 2014). Statistical cor-

relations, on the other hand, find applications in a wide range of areas, from describing

both classical and quantum nature of light (Turunen et al., 2022; Yu et al., 2023; Torres

et al., 2003) to the emerging field of imaging (Gatti et al., 2004; Albarelli et al., 2020;

Gilaberte Basset et al., 2019). In the literature, there are various studies and methods for

photon statistics (Hloušek et al., 2019; Zubizarreta Casalengua et al., 2020) and coherence

properties of the light (Laiho et al., 2022; Boitier et al., 2009; Kuhn et al., 2016; Liu et al.,

2019). However, measurement complexity and adequate instrumentation requirements

vary significantly by fundamental source types: thermal, coherent, and non-classical.

Figure 1.6. Photon statistics of light: super Poisson, Poisson and sub-Poisson (Fox,

2006)
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Figure 1.7. A second order correlation function g(2)(τ) measurement setup

The determination of photon number, specifically through the photon counting

process, primarily relies on quantum projective light intensity measurements within each

detector integration period. This procedure can be conceptualized as an iterative approach

involving multiple sequential measurements on an identical photon state, wherein the

counting outcome signifies the photon number distribution of the light. From the semi-

classical perspective, this outcome corresponds to the intensity distribution since photon

number is proportional to the intensity of light (Mandel, 1958). Considering all-optical

light source types, there are three main photon number distribution categories: super Pois-

son, Poisson, and sub-Poisson distribution, as given in Figure 1.6. Within the classical

optics framework, a perfectly coherent beam characterized by a constant intensity stands

as the pinnacle of stability. As such, it serves as a fundamental benchmark for catego-

rizing diverse light sources and modalities by evaluating the standard deviation inherent

in their photon number distributions. Therefore, the Poisson distribution constitutes a

rudimentary model employed in the statistical inference of photon statistics (Sparavigna,

2021) since it represents the coherent light statistics. On the other hand, the thermal light

reveals Bose-Einstein or super-Poisson distribution due to the large time-varying inten-

sity fluctuations which corresponds that the variance (Δn) of the distribution is greater

than the mean value (n̄) (Fox, 2006). However, on the contrary to thermal distribution,

sub-Poisson statistics has very narrow variance value which indicates that it is more stable

and deterministic than perfectly coherent light due to having regular time arrivals between

photons (Paul, 1982). In the literature, sub-Poisson distribution is regarded as the clear

signature of the quantum nature of light which has no direct classical counterpart. To
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extract accurate and reliable photon counting information by avoiding classical results

and treatments due to the time averaging, the integration time of the detector should be

shorter than the coherence time of the light (Mandel, 1958). Otherwise, the distribution

approximate Poisson distribution regardless of the utilized light source.

Figure 1.8. Illustration of photon time arrivals for antibunched, coherent and bunched

light

Another approach for the extraction of light source characteristics is based on the

realization of second-order coherence function g(2)(τ) measurements, in addition to the

threefold classification of light depending on whether the statistics are sub-Poissonian,

Poissonian, or super-Poissonian. The approach is implemented with two detectors by

evaluating the time delay between optical paths of photons. In the literature, this two-fold

or joint detection scheme is usually called as coincidence detection. A basic scheme for

coincidence detection is given in Figure 1.7. The main reason of this measurement type is

about that first-order correlation function does not completely reflect the statistical prop-

erties of light (Ekici, 2021). By evaluating g(2)(τ), the light is described as antibunched,

coherent, or bunched. In the case of antibunched light, photons are emitted with consis-

tent intervals between them, as opposed to random spacing. (Leuchs et al., 2015). On the

other hand, in thermal light sources, photons move together in groups, forming bunches

that result in high fluctuations in photon number or intensity (Morgan and Mandel, 1966).

As in photon counting experiments, exposure time of the detector is highly significant.

Otherwise, fluctuations in photon number disappear, causing the g(2)(τ) to converge to-

wards one.

In g(2)(τ) classification, the value of g(2)(τ) is evaluated and we encounter scenar-

ios in which photons disperse at consistent temporal intervals or aggregate into bunches.

The light is considered as coherent light when g(2)(0) equals one since there are ran-
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dom time arrivals between photons. If g(2)(0) is greater than one, the source is defined

as thermal or bunched light due to the fact that it comprises a photon stream character-

ized by bunched photon formations. Actually, it means that upon detecting a photon at

time t = 0, there is an elevated likelihood of detecting another photon in close temporal

proximity compared to more extended time intervals. Therefore, the bunches of photons

coincide with high-intensity fluctuations. Lastly, the case g(2)(0) < 1 is corresponds to

the non-classical source where it is called as anti-bunched light. There is a sharp dip is

observed in the g(2)(τ) graph (see Figure 1.9). In the antibunched light, there is a well-

defined spacing between photons. Bunched and coherent light align with classical results,

unlike anti-bunched light, which lacks a classical counterpart and is thus a purely quan-

tum optical phenomenon. An illustration of three optical sources in terms of the photons

streams and their characterizations according to the second-order correlation function are

given in Figure 1.8 and Table 1.1, respectively.

Figure 1.9. Second order correlation function g(2)(τ) for three different light sources
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Table 1.1. Characterization of light sources according to the second-order coherence

function

Source type Photon stream g(2)(0)
Thermal source Bunched >1
Coherent source Random =1

Non-classical source Anti-bunched <1

1.5. Photoelectric Detection of Light

The interaction between light and matter exhibits inherent randomness or stochas-

tic behavior. Therefore, any attempt to measure light entails inevitable fluctuations. These

fluctuations are ascribed to quantum phenomena, wherein light undergoes absorption

solely in discrete units of energy, commonly referred to as quanta. The most elemental

strategy for explaining these phenomena requires an investigation of the principles en-

capsulated within the framework of quantum electrodynamics (QED) (Bromberg, 2016).

Hence, the quantization of electromagnetic fields becomes imperative, and the conse-

quences of foundational postulates in quantum mechanics are to be scrutinized within

the framework of the detection problem. While fundamentally essential, this methodol-

ogy presents a challenge, demanding a comprehensive knowledge of quantum mechanics

mathematics and relying minimally on physical intuition.

Semi-classical theory of photodetection, the light is classically but the photoelec-

tric effect in the detector is quantized, is useful formalism to mitigate rigorous quantum

mechanical approach and offers the advantage of relative simplicity in terms of requisite

mathematical prerequisites, while also affording a more extensive application of physical

intuition (Goodman, 2015). The primary advantage of this approach is its ability to estab-

lish the photon number-intensity relationship from a classical perspective (Straka et al.,

2018). In the literature, it has been demonstrated that the projections of the semi-classical

theory align entirely with those of the more rigorous quantum mechanical methodology

in addressing all detection issues associated with the photoelectric effect (Mandel et al.,

1964). Given that a significant majority of optical detection problems are grounded in

the photoelectric effect, the initial assumption incurs relatively minimal sacrifice of gen-

erality and semi-classical theory provide it. A basic scheme for the photo-detection of

light is given in Figure 1.10. It is assumed that the input light is very faint due to the

quantum efficiency of conventional photon detectors (Mandel and Wolf, 1995). The in-
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put field interacts with atoms in the photo-cathode, causing the photoelectric effect and

freeing individual electrons. These electrons, in turn, trigger the release of more elec-

trons in the electron multiplier region of the tube, generating a detectable current pulse.

The counted pulses represent the release of individual electrons from the photo-cathode.

Actually, the number of electrons reflects the photon number over the intensity values,

created by photocurrents.

Although semi-classical approach is suitable for the light source characterization

where the light has Poisson and super-Poisson distribution, it is impossible to extract

sub-Poisson statistics which needs fully quantum mechanical treatment (Loudon, 2000).

However, at this complicated situation, we encounter the requirement of a perfect and

sophisticated laboratory environment problem to obtain accurate photon statistics because

the random sampling nature of optical components (i.e., beam splitters) and low quantum

efficiency, especially for single photon detection, ruin the original statistics of photons.

Considering these necessary conditions, there is need for specific detectors having high

quantum efficiencies. In addition, the detectors should have shorter integration time than

the light source to provide meticulous statistical analysis due to the coherence problem of

optical sources as we mentioned in previous section. Among the types of light sources, the

coherent source have longer coherence time whereas thermal light sources generally have

coherence time smaller than nanoseconds (Tan et al., 2014). If the detector’s integration or

exposure time is not adequate for photon statistics and optical coherence measurements,

the results are indeed time average, which evolves Poisson distribution by deviating from

the accurate form. This strongly indicates that the selection of detector plays a significant

role in the observation of photon statistics and optical coherence in particular when the

quantum efficiency and noise factors of the detector as well as the integration time issue

are considered (Zambra et al., 2005; Boitier et al., 2009). Since commercially available

CCD cameras usually have exposure time in the order of several tens of milliseconds and

quantum efficiency at around %50, observing photon statistics with these devices a non-

sophisticated laboratory environment remains a significant gap in the literature, is still

challenging.
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Figure 1.10. An illustration of the a single-photon counting PMT

1.6. Outline of the thesis

The outline of the remainder of the thesis chapters is presented here. The thesis

structure follows logical order to enhance understanding of the basic work here.

Chapter 2 provides a theoretical background and mathematical preliminaries for

quantum entanglement and two-photon diffraction. Comprehensive analysis of entangled

photon pairs generation from SPDC and its impact on the system resolution is discussed

analytically and in numerical simulations.

Quantifying light according to the photon statistics and second-order coherence

function is given in Chapter 3. The photon distributions and antibunching phenomenon

are explained in detail. The theory of photodetection from the semi-classical perspective

is examined, including coincidence detection.

Chapter 4 presents a novel quantum-based approach for ultra-thin dielectric film

characterization exploiting the phase diffraction of spatially entangled photons. The re-

sults demonstrate that the transverse spatial correlations significantly improve the accurate

determination of film thickness. An alternative method utilizing thermal photon input is

also investigated.

Chapter 5 proposes a practical measurement procedure for photon statistics and

coherence measurements of thermal light beyond coherence time. The proof-of-concept

experiments were conducted with measurements in the CCD pixels, proving the observa-

tion of bunching phenomenon on the ordinary detectors.

Chapter 6 focuses on concluding remarks and future directions.
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CHAPTER 2

ENTANGLEMENT AND BIPHOTON DIFFRACTION

This chapter presents the theoretical background of the biphoton phase diffraction

for quantum-based dielectric film thickness measurement setups and simulations. At first,

we start with a fundamental introduction to the entangled state. Then, we examine the

spontaneous parametric down-conversion (SPDC), the most common method to generate

an entangled state, including the polarization effects through the process. After delineat-

ing a brief quantum detection process with optical coherence, we demonstrate the impact

of spatially entangled photon diffraction on the resolution limit by verifying it with ana-

lytical models and simulations.

2.1. Quantum Entangled Photons

One of the most surprising consequences of quantum mechanics is the quantum

entanglement effect, which describes the strong connection that forms between two or

more particles that are located at different locations in space. It was proposed first as

a gedanken experiment by Einstein−Podolsky−Rosen (EPR) in the seminal paper (Ein-

stein et al., 1935). The paper introduces an entangled two-particle system based on the

superposition of two-particle wave-function. Two main assumptions, locality and reality,

was made by EPR. The locality claim that objects are only influenced by their immedi-

ate surroundings. And the reality means that if we can predict a measurement’s outcome

with certainty before the measurement, then that outcome doesn’t depend on the choice

of measurement technique.

In the theoretical framework, within a maximally entangled bipartite system, the

determination of an observable (be it associated with space-time or spin) for an individ-

ual subsystem is indeterminate. However, upon measuring a specific value for such an

observable in one subsystem, the corresponding value for the other subsystem becomes

unequivocally fixed, irrespective of the spatial separation between the particles. This im-

plies that while each subsystem may exhibit entirely random or all conceivable values

for a given physical observable during its propagation, the non-local correlations between

them become definitively established upon executing a joint measurement. From a mathe-
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matical standpoint, the entanglement of two particles, denoted as particle one and particle

two, manifests when their joint quantum state can not be factorized into the quantum states

of the individual particles. An elementary representation of entangled state is (Einstein

et al., 1935):

|ψ〉 =
∑
x,y

δ(x+ y − c0) |x〉 |y〉 (2.1)

where x and y are assumed as the momentum or the position of particle one and two,

respectively, and c0 is a constant. The physical interpretation of entanglement through

the equation is that measuring a quantum observable on particle one affects the outcome

of the same observable for particle two, and vice versa, by transcending the inter-particle

distance and circumventing any need for manipulating particle two. This information, via

non-factorability, can easily be extracted from the delta function.

Another traditional example of an entangled two-particle system, suggested by

Bohm is a singlet state, refers to a system in which all electrons are paired, of two spin

1/2 particles:

|ψ〉 = 1√
2
(|↑〉1 |↓〉2 − |↓〉1 |↑〉2) (2.2)

where |↑〉 and |↓〉 represents spin-up and spin-down, respectively. At first sight from this

equation, two options are absolutely indistinguishable with equal probabilities. This in-

ference is the actual definition of superposition. Secondly, there is a sign between two

parts of the entangled state where it could be minus or plus. It expresses the stable

phase relation, in other words, correlation. The correlation term here actually implies

the experimental evidence of coherence. Therefore, superposition and correlation in the

wave-function are two inevitable terms that build up quantum entanglement.

Lastly, the most basic examples are four polarized Bell states (or EPR-Bohm-Bell

states) which are a set of polarization states for a pair of entangled:

φ± =
1√
2
(|H〉1 |H〉2 ± |V 〉1 |V 〉2) (2.3)

ψ± =
1√
2
(|H〉1 |V 〉2 ± |V 〉1 |H〉2) (2.4)

where |H〉i and |V 〉i represent two orthogonal polarization bases.
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2.2. Entangled Photon Generation

Spontaneous parametric down-conversion (SPDC) is a powerful and common

method to generate entangled photon pairs. The term "spontaneous" indicates that the

process occurs in the crystal spontaneously. Meanwhile, "parametric" highlights the

conservation of total energy throughout the entire process. On the other hand, "down-

conversion" refers that generated photons have lower frequency than the pump (Cata-

lano, 2014). It is a χ(2) non-linear optical phenomenon via the interaction of three waves

(Di Giuseppe et al., 2002). The highly intense pump field is annihilated to generate sig-

nal (s) and idler (i) photons by conserving energy and momentum. The names of signal

and idler are based on a historical story, likely attributable to the frequent use of non-

degenerate processes in the early stages of SPDC experimentation. During this period,

one radiation occupied the visible range (and was, therefore, easily detectable and visible,

referred to as the "signal"), while the other existed in the infrared spectrum (generally

escaping detection, thus labeled as the "idler") (Shih, 2003).

The limitations in SPDC arising from the principles of energy and momentum

conservation, called as phase matching conditions, result in entanglement between the

two down-converted photons across multiple degrees of freedom, encompassing aspects

such as energy-time (Strekalov et al., 1996), position-momentum (Zhang et al., 2019),

polarization (Shih, 1999), and angular position-orbital angular momentum (Rarity and

Tapster, 1990). The generation probability of signal and idler photons depends on the

phase matching function, and the efficiency is maximum during the perfect phase match-

ing. Figure 2.1 illustrates the energy-level diagram of the SPDC process, wherein the

absorption of a photon at frequency ωp leads to the transition of the absorber to a vir-

tual state. Subsequently, it undergoes decay to the ground state, emitting photons at two

distinct frequencies ωs and ωi, respectively.

ωp = ωs + ωi (2.5)


kp = 
ks + 
ki (2.6)
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Figure 2.1. Nonlinear optical process of SPDC: (a) Energy level diagrams of SPDC

(b) Down-conversion process through second-order nonlinear crystal (Jha,

2009)

2.2.1. Biphoton State of SPDC

To define the process step-by-step, we start with Maxwell equations since they

provides information about the behavior of electromagnetic field in a medium deprived of

free charges and currents:

∇ · 
D(
r, t) = 0 (2.7)

∇ · 
B(
r, t) = 0 (2.8)

∇× 
E(
r, t) = −∂

B(
r, t)

∂t
(2.9)

∇× 
H(
r, t) = −∂

D(
r, t)

∂t
(2.10)

Here, we focus on the medium that is assumed magnetically isotropic but electri-

cally anisotropic. The electric displacement vector inside the medium:


D(
r, t) = ε0 
E(
r, t) + 
P (
r, t) (2.11)

where 
P (
r, t) is polarization vector. When the pump field is highly intense, the polariza-

tion field is expressed as a power series taking high order contributions:
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P (
r, t) = ε0

[
χ(1) 
E(
r, t)︸ ︷︷ ︸

linear

+χ(2) 
E2(
r, t) + χ(3) 
E3(
r, t) + ...︸ ︷︷ ︸
non−linear

]
(2.12)

To derive interaction Hamiltonian for SPDC, we start with the classical total en-

ergy density of electromagnetic field:

HEM =
1

2

∫
d3r( 
D(
r, t) · 
E(
r, t) + 
B(
r, t) · 
H(
r, t)) (2.13)

Since the nonlinear interaction beyond second order is considered here to not apprecia-

bly affect the polarization, the classical Hamiltonian for the electromagnetic field can be

broken up into two terms, one linear, and one nonlinear:

HEM = HL +HNL (2.14)

where

HNL =
1

2

∫
d3
r 
D(
r, t) · 
E(
r, t)

=
1

2
ε0

∫
d3
rχ(2)(
r;ω(
kp), ω(
ks), ω(
ki)) 
Ei(
r, t) 
Ej(
r, t) 
Ek(
r, t)

(2.15)

where Einstein notation is used for representation of pump, signal and idler. Now, we

need to make transition from the classical representation to quantum representation. To

make this, electric field functions 
E(
r, t) are replaced by the field observables Ê(
r, t)

which can be defined as:

Ê+(
r, t) =
1

V 1/2

∑
�k,s

i

√
�ω(
k)

2ε0
â�k,s(t)
ε�k,se

i �k·�r (2.16)

where s, ε and â�k,s(t) represent component of polarization, unit polarization vector and

photon annihilation operator, respectively. Then, quantum Hamiltonian of electromag-

netic field becomes:
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Ĥ = HL +
1

2
ε0

∫
d3
r

(
− 1

V

∑
�ks,s

∑
�ki,s

χ(2)(
r;ω(
kp), ω(
ks), ω(
ki))

×
√

�ω(
ks)ω(
ki)

4ε20
e−i(�ks+�ki)·�rEi(
r, t)â

†
�ks,s

(t)â†�ki,i(t)
ε�ks,s
ε�ki,i + h.c.

)
(2.17)

In the equation above, we take the pump field classically since the pump field is

usually several orders of magnitude larger than signal and idler fields. If we define the

pump field in terms of plane waves:

Ei(
r, t) =
1

2π

∫
d2
qpEi(
qp, t)
ε�kp︸ ︷︷ ︸

Ẽi(�qp,t)

ei(�qp·�r)ei(kpzz−ωpt) (2.18)

Then, Hamiltonian becomes:

Ĥ = ĤL +
1

4π
ε0

∫
d3
rd2
qp

(
− 1

V

∑
�ks,s

∑
�ki,s

χ(2)(
r;ω(
kp), ω(
ks), ω(
ki))

√
�ω(
ks)ω(
ki)

4ε20

× e−i(�qs+�qi−�qp)·�re−i(ksz+kiz−kpz)e−iωptẼi(
qp, t)â
†
�ks,s

(t)â†�ki,i(t)
ε�ks,s
ε�ki,i
ε�kp + h.c.

)
(2.19)

Let us define Δ
q = 
qs + 
qi − 
qp and Δkz = ksz + kiz − kpz. If the crystal is rectangular

with side lengths Lx, Ly and Lz and the crystal is isotropic (does not depend on 
r), we

can simplify our equation to:

Ĥ = ĤL+
1

4π
ε0

∫
d2
qp

(
−LxLyLz

V

∑
�ks,s

∑
�ki,s

χ(2)(
r;ω(
kp), ω(
ks), ω(
ki))

√
�ω(
ks)ω(
ki)

4ε20

×sinc(ΔqxLx

2

)
sinc

(ΔqyLy

2

)
sinc

(ΔqzLz

2

)
e−iωptẼi(
qp, t)â

†
�ks,s

(t)â†�ki,i(t)
ε�ks,s
ε�ki,i
ε�kp+h.c.
)

(2.20)

At this point, we start to derive the state of the entangled photons generated by

SPDC. We assume that the pump photon starts interacting with crystal at time t=0. The

20



state at that time is |ψ(0)〉 = |vac〉s |vac〉i. The biphoton state evolves under interaction

Hamiltonian HNL:

|ψ(t)〉 = e−
i
�

∫ t
0 ĤNLdt |ψ(0)〉 (2.21)

Since the parametric interaction is assumed to be very weak weak, the state in Equation

(2.21) can be approximated by the first two terms of perturbation expansion:

|ψ(t)〉 ≈
(
1− i

�

∫ t

0

ĤNLdt
′
)
|ψ(0)〉 (2.22)

We assume that polarizations of down-converted photons are fixed, so that we can neglect

sums over s. With this, the sum over the components of the nonlinear susceptibility is

proportional to the value deff = 1
2
χ(2). Besides, since nonlinear crystal is much larger

than the optical wavelengths the sums over ks and ki can be replaced by integrals:

lim
V→∞

1

V

∑
�k,s

=
1

(2π)3
�
�
�
��∑

ss

∫
d3
ks (2.23)

Then, interaction Hamiltonian simplifies (Schneeloch and Howell, 2016):

HNL = CNLdeff

∫∫
d3
ksd

3
ki

√
ω(
ks)ω(
ki)

∫
d2
qp

[ 3∏
m=1

sinc

(
ΔkmLm

2

)]

× Ẽi(
qp, t)e
iΔωta†(
ks)a†(
ki) (2.24)

If we substitute in Equation (2.22), the down-converted field can be expressed as:

|Ψ〉 ≈ C0 |0s〉 |0i〉

+ C1

∫∫
d3 
ksd

3
kiΦ(
ks, 
ki)

√
ω(
ks)ω(
ki)e

iΔωT
2 sinc

(
ΔωT

2

)
a†(
ks)a†(
ki) |0s〉 |0i〉

(2.25)

where biphoton wavefunction (or phase-matching function) is:

Φ(
ks, 
ki) =

∫
d2
qp

[ 3∏
m=1

sinc

(
ΔkmLm

2

)]
υ(
qp) (2.26)
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where υ(
qp) is normalized pump amplitude spectrum.

For the simplicity, there can be made some more assumptions. In this way not only

the system models are simplified but also mathematical calculations become smoother

especially considering analytic and numerical integrations. Therefore, if we assume the

pump field to be plane and monochromatic, the crystal size is infinite and interaction time

is infinite, the Hamiltonian in Equation (2.17) can be simplified and the state at the output

of the crystal can be represented as (Shih, 2012):

|Ψ〉 = A

∫
d3 
ksd

3
kiδ(ωp − ωs − ωi)δ(
kp − 
ks − 
ki)â
†
�ks,s

(t)â†�ki,i |0〉s |0〉i (2.27)

2.2.2. Polarization Properties in SPDC

Determining the generation and emission directions of down-converted photons

relies on constraints decided by the conservation of energy and momentum, commonly

referred to as phase-matching conditions. When the propagation directions of the down-

converted signal and idler photons align with that of the pump photon, it is termed collinear

phase matching. Conversely, in non-collinear phase matching, the signal and idler pho-

tons propagate in directions not aligned with the pump photon. As seen from the Equation

(2.25) and (2.26), the efficiency of SPDC is directly related with the phase matching func-

tion Φ(
ks, 
ki) where efficiency takes the maximum value under perfect phase matching

condition. When the phase mismatch in Δkz �= 0 increases, the efficiency of SPDC

decreases. Also, there is a classification for the values of down-converted photon’s fre-

quency where the degenerate case corresponds that the photons have equal wavelengths

and the non-degenerate case corresponds that the photons have different wavelengths.

We start by identifying the different polarization scenarios that could satisfy the

phase-matching condition. To analyze the polarization effects, we specifically focus on

the collinear case. In this configuration, the phase matching constraint Δkz = 0 requires

the equation below (Powers and Haus, 2017):

npμ(ωp)ωp

c
=
nsμ(ωs)ωs

c
+
niμ(ωi)ωi

c
(2.28)
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where mentioned earlier p, s, i, ω represents the pump, signal, idler and frequency, re-

spectively. The sub-index μ implies two conditions. If the direction of polarization is

perpendicular to the optic axis, it is ordinary polarized and μ = o. However, it is called

extraordinary polarized and μ = e when the direction of polarization is parallel to the

optic axis. For this reason, npe(ωp) represents the refractive index of extra-ordinary pump

photon having frequency ωp. Combining the Equation (2.28) with energy conservation

constraint ωp = ωs + ωi, the equation becomes:

npμ − nsμ =
ωi

ωp

(niμ − nsμ) (2.29)

As seen from the equation above, there can be different polarization scenarios for

pump, signal and idler photons including the type of uniaxial crystal. However, only a

few combinations are survived due to the phase matching constraints given in Table 2.1

(Karan et al., 2020).

Figure 2.2. Perfect phase matching diagrams of SPDC for the cases: (a) collinear (b)

non-collinear

Table 2.1. Polarization scenarios for signal and idler photons

Type Positive uniaxial crystal Negative uniaxial crystal
type-I o→e+e e→o+o

type-II
o→e+o e→o+e
o→o+e e→e+o

The general and common visualization for phase matchings is given in Figure 2.3.

There are two rings, one for ordinary and the second for extraordinary. These pairs of

photons coming on the opposite sides of laser beam due to the momentum conservation.
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Their colours also represent the energy conservation. The overlap regions of the cones

provide superposition (or indistinguishability of photons). For experimental procedures,

SPDC has two fundamental categories, type-I and type-II, based on the abovementioned

analyses (Briggs et al., 2021). In type-I SPDC, the photon pairs have the same polariza-

tion. For the degenerate emission, the photon pairs also have equal wavelengths emerge

in a cone centering on the pump beam. On the other hand, in type-II SPDC, the photon

pairs are orthogonally polarized and emitted into two cones (ordinary and extraordinary).

For the degenerate collinear case, the photon pairs have equal wavelengths, and two cones

are tangent to each other at one line at the pump beam direction, which means that the

pump photon and the SPDC photon pair propagate together (parallel each other). This

specialized case is obtained via tilting the of the non-linear crystal (Lee et al., 2016).

Figure 2.3. Phase matching outputs of SPDC (a) type-I (b) collinear degenerate type-II

2.3. Quantum Theory of Optical Coherence

In quantum field theory, positive frequency part of electric field operator Ê+(
rt)

is called as photon annihilation operator and negative part Ê−(
rt) is called as photon cre-

ation operator. When the Ê+(
rt) applied to an n photon state, it produces (n-1) photon

state and its Hermitian adjoint Ê−(
rt) produces (n+1) photon state. The further applica-

tions of annihilation operator reduce the number of photons until state in which the field

is empty of all photons.
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Ê+(
rt) |vac〉 = 0 (2.30)

〈vac| Ê−(
rt) = 0 (2.31)

In experiments, the detection process is corresponds to the absorption process

which means that the field we are measuring is the one associated with photon annihi-

lation, the complex field Ê+(
rt). To express absorption process, we need to define the

concept of probability amplitude which represents the transition of photon to the initial

state |i〉 to a final state |f〉 as:

〈f | Ê+(
rt) |i〉 (2.32)

For an ideal photon detector (assuming negligible size) which has a frequency-

independent photo-absorption probability, the rate at which it records photons is propor-

tional to the sum over all final states |f〉 of the squared absolute values of the Equation

(2.32). In other words, the probability per unit time that a photon be absorbed by an ideal

detector at point 
r at time t is proportional to (Stöhr, 2019):

∑
f

| 〈f | Ê+(
rt) |i〉 |2 =
∑
f

〈i| Ê−(
rt) |f〉 〈f |︸ ︷︷ ︸
I

Ê+(
rt) |i〉 = 〈i| Ê−(
rt)Ê+(
rt) |i〉

(2.33)

where I is identity operator. In the quantum-based perspective, the result is crucial to

note that such a detector for quanta corresponds to the the mean value of the product

Ê−(
rt)Ê+(
rt), and not the square of the real field Ê(
rt) (Glauber, 1963).

Capturing photon intensities using a single photon detector does not fully encom-

pass the spectrum of measurements feasible for the field. However, it fundamentally

delineates the majority of traditional optical experiments. Therefore, a second type of

measurement, called as coincidence detection, we may make consists of the use of two

detectors situated at different points r (for signal) and r′ (for idler) to detect photon coin-

cidences. Then, this transition takes the form (Shih, 2020):
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∑
f

| 〈f | Ê+(
r′t′)Ê+(
rt |i〉 |2 =
∑
f

〈i| Ê−(
rt)Ê−(
r′t′) |f〉 〈f | Ê+(
r′t′)Ê+(
rt |i〉

= 〈i| Ê−(
rt)Ê−(
r′t′)Ê+(
r′t′)Ê+(
rt |i〉 (2.34)

The interpretation of Equation (2.34) is the probability that one photon recorded at 
r at

time t and another at 
r′ at time t′. When it expands to the N-fold coincidence of photons

for arbitrary N for the difficult elaborate experiments. The total rate for such coincidences

will be proportional to:

∑
f

| 〈f | Ê+(
r′t′)Ê+(
rt |i〉 |2 = 〈i| Ê−(
r1t1)...Ê−(
rntn)Ê+(
rntn)...Ê
+(
r1t1 |i〉 (2.35)

2.4. Two-Photon Diffraction

The generalized diffraction geometry for signal (or idler) is given in Figure 2.4.

Each photon pairs are correlated in itself but mimic classical independent point sources

between each other (Saleh et al., 2000). The signal (or idler) photon can be born at any po-

sition on the source (point B), propagates through the optical path rBX , and is annihilated

at point X on the detector plane where 
r and 
ρ represent the transverse position vector

on the source and detector planes, respectively. All biphoton probability amplitudes are

superposed on the detector plane after propagation.

In our model, the configuration assumes that the entangled photons are produced

by degenerate collinear type-II SPDC (ωs = ωi = ωp/2 = ω). The signal and idler

photons are born at the same position, and their propagation angles are close to zero with

respect to the pump direction (kpz). The critical point is that we obtain entanglement (see

Equation (2.27)) in both in space and polarization with the help this phase matching type

(Shih and Sergienko, 1994).

The joint-detection probabilityG(2) between two points at the output of the source

can be measured using two photon-counting detectors (D1 and D2). According to central

theorem of quantum optics Glauber theory of photodetection and optical coherence, the

joint-detection probability at the detectors between D1 (at point ρs) and D2 (at point ρi)

26



is expressed as (Glauber, 1963):

G(2)(
ρs, zs, ts; 
ρi, zi, ti) =

∣∣∣∣ 〈0|Êi
(+)

(
ρi, zi, ti)Ês
(+)

(
ρs, zs, ts)
∣∣∣Ψ〉 ∣∣∣∣2

= |Φ(
ρs, zs, ts; 
ρi, zi, ti)|2
(2.36)

where Φ(
ρs, zs, ts; 
ρi, zi, ti) corresponds to the biphoton wavefunction.

Figure 2.4. Diffraction geometry for spatially entangled photons from source plane to

detector plane

The electric field operator of the system can be written in Fourier integral repre-

sentation using optical transfer function g(
κj, ωj; 
ρk, z) as:

Ê+(
ρk, z, tj) =

∫
d
κjdωjg(
κj, ωj; 
ρk, z)âj(
κj, ωj) (2.37)

where ωj , 
κj and âj are the frequency, transverse wavevector, and annihilation operator of

the signal and idler, respectively. According to the Huygens-Fresnel principle, the Fresnel

propagator of the system (in Figure 2.4) for free space is:

g(
κj, ωj; 
ρk, z) =

∫
aper

d
r
A(
r)

rBX

ei�κj ·�re−i
ωj
c
rBX (2.38)

where A(
r) and ei�κj ·�r is aperture function and the phase factor associated with the each

transverse wavevectors 
κ on source plane. Also 
ρk is the transverse coordinates on detec-

tors where k = 1 for signal and k = 2 for idler due to the coincidence detection. The
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optical path length rBX is written using Fresnel approximation assuming r, ρ � z. We

also assume rBX ≈ z for magnitude part since it is less sensitive than phase.

rBX =
√
z2 + |
rj − 
ρk|2 ≈ z

(
1 +

|
rj − 
ρk|2
2z2

)
≈ z

(
1 +

�
�
���r2j

2z2
+

ρ2k
2z2

− 
rj · 
ρk
z2

)
(2.39)

If the electric field operators for both signal and idler are substituted in Equation

(2.36) using Equation (2.27) , the transverse part of the biphoton wavefunction is obtained

as:

Φ(
ρ1, z; 
ρ2, z) =
〈
0|Êi

(+)
(
ρ1, z)Ês

(+)
(
ρ2, z)

∣∣∣Ψ〉
= 〈0|C1

∫
d
κs

∫
aper

d
r
A(
r)

z
ei�κs·�re−iωs

cz
(�r· �ρ1)â(
κs, ωs)︸ ︷︷ ︸

Ês

× C2

∫
d
κi

∫
aper

d
r′
A(
r′)
z

ei�κi·�r′e−i
ωi
cz

(�r′· �ρ2)â(
κi, ωi)︸ ︷︷ ︸
Êi

× C0

∫
d
κsd
κiδ(
κs + 
κi)â

†(
κs, ωs)â
†(
κi, ωi) |0, 0〉︸ ︷︷ ︸

|Ψ〉

(2.40)

where C0, C1 and C2 include phase factors and constants. Then, we can obtain:

Φ(
ρ1, z; 
ρ2, z) = Φ0

∫
aper

d
rA(
r)e−iωs
cz

(�r· �ρ1)
∫
aper

d
r′A(
r′)e−i
ωi
cz

(�r′· �ρ2)

×
∫
d
κsd
κiδ(
κs + 
κi)e

i( �κs·�r+ �κi·�r′) (2.41)

where Φ0 includes all phase factor and constants. Assuming flat intensity distribution:

A(
r) =

⎧⎨
⎩1, inside the slit

0, otherwise
(2.42)

and since the last integral in Equation (2.41) yields δ(
r − 
r′), the wavefunction becomes:
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Φ(
ρ1, z; 
ρ2, z) = Φ̃0

∫
aper

d
re−i ω
cz

(�r· �ρ1+�r· �ρ2) (2.43)

where the joint detection probability is the absolute square of Equation (2.43). If the

equation is examined for the circular aperture case using polar coordinates:

∫ R

0

∫ 2π

0

rdrdθe−iωr
cz

(ρ1 cos θ1+ρ2 cos θ2) =
2J1(

R
z
ω
c
|
ρ1 + 
ρ2|)

R
z
ω
c
|
ρ1 + 
ρ2|

(2.44)

Since signal and idler photons fall at the same pixels on the detectors in the per-

fect spatial entanglement case, 
ρ1 = 
ρ2 = 
ρ is taken calculating diffraction pattern on

the detector plane which corresponds two times narrower diffraction pattern comparing

classical case as given in Figure 2.5.

Figure 2.5. Diffraction profile of circular aperture for classical and spatially entangled

case
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CHAPTER 3

PHOTON STATISTICS AND PHOTODETECTION

THEORY

This chapter briefly explain two fundamental perspectives photon statistics, and

optical coherence, emphasizing their importance, especially for light source character-

ization. Since the theory of photodetection is essential to obtain accurate and precise

statistical results, we tried to establish a bridge between them. The common and specific

measurement technique, "coincidence detection," is also discussed with advantages and

disadvantages by evaluating its suitability with detector requirements for various experi-

ments.

3.1. Photon Counting Procedure

The measurement of photon statistics, namely the photon counting procedure, pri-

marily hinges upon quantum projective measurements of light intensity conducted within

each integration (or exposure) time of the detector. Since the distributions associated with

photon numbers carry a significant wealth of information essential for characterizing the

underlying physical processes or systems, photon counting can be defined as an important

process in optics (Stevens, 2013; Kumazawa et al., 2019). It has large application areas

from non-classical optical sources to quantum communication as mentioned in Section

1.4. A general photon counting setup configuration is given in Figure 3.1. It usually

comprises an exceedingly sensitive light detector on the single photon level coupled to an

electronic counting mechanism. The detector generates short voltage pulses, which are

electron counts, in response to the incident field, while the counter records the quantity of

emitted pulses within a defined temporal interval.

At first glance, the extraction of statistics may seem straightforward in that the de-

tector’s emission of electrons serves as conclusive evidence for the existence of discrete

energy packets, or photons, in the incident light beam. As well, the fluctuations in the

count rate are anticipated to provide insights into the statistical properties of the incoming

photon stream. However, the argument is more complex than it appears. A longstanding

question in optical physics pertains to whether the individual events recorded by pho-
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ton counters are inherently connected to photon statistics or merely artefacts resulting

from the complexities of the detection process (Koczyk et al., 1996). Therefore, there is

needed to distinguish two fundamental but different perspectives: (1) the intrinsic pho-

ton statistics of the input light and (2) the statistical nature of the photodetection process.

Therefore, it is clear that high-quality detectors are needed (Morton, 1968). Due to the

sufficiency of the semi-classical approach in our proposed model, which provides sim-

plicity, we generally use it to explain the photon counting process in the following, where

the light is classical, but the photoelectric effect is quantized.

Figure 3.1. A coherent source photon counting scheme

The primary objective of the photon counting experiments is to quantify the pho-

tons incident upon the detector within a defined time interval. We start assuming that the

incident beam consist of a stream of photons. The photon flux, denoted as Φ, is character-

ized as the mean quantity of photons traversing a cross-sectional area of the beam within

a specified time unit as:

Φ =
IA

�ω
=

P

�ω
(3.1)

where A is the area of the beam and P is the power. Since the quantum efficiency is very

important parameters for photon counting experiments due to the fact that it represents

the ratio between the number of counts and number of incident photons, it is needed to

taken into account. Therefore, the average number of counts (N(Δt)) is written as:

N(Δt) = ηΦT (3.2)

where average count rate R is:

R =
N

Δt
= ηΦ =

ηP

�ω
counts s−1 (3.3)

31



Considering that typical detectors have dead time at around 1 μs, the classical definition

for upper limit is around 106 counts s−1. If the conventional quantum efficiency of detec-

tor is included to the calculations, other limit or requirement for photon counting process

is working with very faint light (on the order of pW).

Figure 3.2. A section from an input beam containing fixed number of photons (a)

equally spaced (b) non-equally spaced

In Figure 3.2, there are two illustrations of a beam with a fixed number of pho-

tons. The distribution of photons through the section varies, may be equally spaced or

not, according to the type of incident field (e.g., thermal, coherent, or non-classical). By

evaluating the number of photon distribution in each segment, the photon statistics are

extracted. However, there is a need to be careful that the length of the segment directly

affects and determines the obtained statistics. Since the length corresponds to the time in-

terval, the analogy can be made between the time interval and exposure time of detectors.

The effect of time interval is shown in 3.3. It is apparent that longer time intervals cause

incorrect photon statistics due to the averaging, especially for optical sources with consid-

erably lower coherence time. Therefore, the accurate detection of both photon statistics

and optical fluctuations is not possible in optical systems with ordinary detectors with a

long exposure time. Hence, the integration time of detectors is significant in extracting ac-

curate and precise photon statistics and optical coherence analysis, which are two distinct

perspectives for light source characterization.

If the same scenario is considered for a realistic detector case, the effect of detec-

tor’s frame time is given in Figure 3.4. The sampling rate is in terms of 1/frame rate where

one frame rate corresponds actual camera frame rate and two frame rate corresponds half
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Figure 3.3. Illustration of the time interval effect on the mean (μ) and variance (σ)

values

Figure 3.4. The convergence of Bose-Einstein distribution to the Poisson distribution

due to the increasing frame time of the detector

of actual frame rate. It can be easily seen that when camera’s exposure time increases,

means poor quality, the distribution deviates from its accurate form and approximate to

the Poisson distribution.

Furthermore, random sampling of the photons causes again incorrect information

for photon statistics. This situation may arise for some reasons such as (1) due to ineffi-

cient detector collection, only a portion of the light emitted from the source is gathered,

or (2) reductions in optical components occur as a result of absorption, scattering, or re-

flections from surfaces, or (3) the inefficiency in the detection process arises from the

utilization of detectors with low quantum efficiency. The first situation involves stochas-

tic photon selection from the source, the second entails random photon removal from the

beam, and the third encompasses the random selection of a subset of photons for de-
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tection. The first two problem result in degradation of photon statistics, while the third

compromises the correlation between photon statistics and photo-electron statistics. Con-

sidering that extraction of photon statistics and optical coherence functions of quantum

light sources is very sensitive and fragile, quality of detectors and avoiding from optical

loss are crucial parameters (Chunnilall et al., 2014).

3.2. Photon Number Distributions

The field of quantum optics focuses on examining the consequences of treating

light as a stream of photons rather than a classical wave. Although the distinctions be-

tween these perspectives are subtle, they require careful scrutiny to detect significant de-

viations from classical theories. In general, there are three main categories in the photon

statistics approach: Poisson, super-Poissonian, and sub-Poissonian. Notably, the obser-

vation of Poisson and super-Poissonian statistics aligns with classical light theory, while

sub-Poissonian statistics serve as a clear signature of the quantum nature or photon nature

of light. However, they need to be examined in detail because the complexity of measure-

ments and the need for suitable equipment vary significantly, such that sub-Poissonian

light is highly susceptible to optical losses and inefficient detection methods.

In the photon statistics classification, the implementations are usually realized

over the mean photon (n̄) and variance (Δn)2 values, especially with their ratios. The

ratio between two parameters gives an insight about source characteristics such that large

variance values are the strong indication of the bunching phenomenon due to the large

fluctuations on the mean photon number. The summary of three fundamental light sourc

category according to the n̄/(Δn)2 ratio is given Table 3.1. In the followings, we examine

these classes in details.

Table 3.1. Characterization of light sources according to the photon number statistics

Source type Intensity n̄/(Δn)2

Incoherent, thermal or chaotic source Fluctuated >1
Coherent source Constant =1

Non-classical source Constant <1
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3.2.1. Poisson Statistics

The Poisson distribution is a probability distribution utilized in the domains of

probability theory, statistics, and physics. The discrete distribution quantifies the prob-

ability associated with a specific number of events. Employed as a modeling tool, the

Poisson distribution serves to predict the frequency of events occurring within a given

temporal or spatial interval. It has large application areas from photon counting exper-

iments to modeling of nuclear decay of atoms (Hu, 2008). The distribution has some

fundamental assumptions in the theory: (1) an event is described by integers; (2) the inci-

dence of an event has no influence on the probability of a subsequent event, indicative of

the independence of occurrences; (3) the average event rate remains independent of the

unfolding of any particular occurrences.

In optics, Poissonian light sources are widely employed in fields such as pho-

ton counting, quantum optics experiments, and telecommunications, owing to their pre-

dictable and well-behaved statistical properties (Goodman, 2015). The classical and well-

known example of a coherent light source is lasers. Since individual photons are emitted

randomly (see Figure 3.5) from the laser’s active medium, they exhibit Poissonian pho-

ton statistics. The experiments are realized in faint light condition. The reason is that as

the intensity of the coherent light source increases, the statistical behavior of the detected

photons becomes less Poissonian and more deterministic. The general representation of

coherent light-wave photon statistics with constant intensity is (Saleh and Teich, 2019):

P (n) =
n̄n

n!
e−n̄ (3.4)

(Δn)2 = n̄ (3.5)

where n is the number of photons, n̄ is the mean and (Δn)2 is the variance in the count

number.

In light sources exhibiting Poissonian behavior, the arrival of photons follows a

statistical pattern in which the fluctuations in photon counts are directly related to the

square root of the average photon count. This unique characteristic, specific to the Pois-

son distribution, implies that the timing and intensity of photon arrivals are statistically

independent, maintaining a consistent average photon count over time.
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Figure 3.5. Illustration of random arrivals of photons from the coherent light source

through the constant optical power. Each interval represents integration

time of the detector.

3.2.2. Super-Poissonian Statistics

A light source that is governed by Super-Poissonian statistics has time-varying

light intensities. It is characterized by photon statistics that deviate from the Poisson dis-

tribution, indicating correlations or fluctuations in photon arrival times with large (Δn)2/n̄.

In practical terms, this means that in super-Poissonian light sources, such as electromag-

netic radiation emitted by hot body, certain types of lasers or chaotic light-emitting sys-

tems, the photon count variance exceeds the average photon count, resulting in a greater

degree of uncertainty in photon arrival times. A typical example of a light source with

super-Poisson behavior is thermal light, a type of electromagnetic radiation emitted by

a hot object. Considering the single mode thermal radiation, the probability that there

will be n photons in the mode ω obeys the Bose-Einstein distribution given as (Saleh and

Teich, 2019):

Pω(n) =
1

n̄+ 1

(
n̄

n̄+ 1

)n

(3.6)

(Δn)2 = n̄+ n̄2 (3.7)

where n is the number of photons, n̄ is the mean and (Δn)2 is the variance in the count

number. It can be seen that Pω(n) has the maximum number for n = 0 and decreases for

larger n (see Figure 3.6). The critical point is that the Bose-Einstein distribution is valid

for only single mode thermal field. When the number of modes in the input thermal field

increases, the distribution start to deviate from Bose-Einstein. Considering that there are

multi-mode fields in most studies, the general formula for the Nm thermal modes is:
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(Δn)2 = n̄+
n̄2

Nm

(3.8)

Figure 3.6. Photon statistics of light sources with Bose-Einstein and Poisson distribu-

tions (Fox, 2006)

The key feature of light sources exhibiting Bose-Einstein statistics is that photons

arriving in bunches rather than having a deterministic or random. This effect called as

photon bunching. When such a light beam hits a photodetector, more photon pairs are

detected in close proximity to each other than at greater distances apart.

3.2.3. Sub-Poissonian Statistics

As we know from Section 1.4, sub-Poissonian light exhibits a photon number dis-

tribution narrower than that of Poisson statistics (see Figure 1.6). These light sources are

called as antibunched light source which demonstrates greater stability compared to per-

fectly coherent light (Scully and Zubairy, 1997). Sub-Poissonian light lacks a classical

equivalent and observation of sub-Poissonian statistics a distinct indicator of the quan-

tum nature of light. The time intervals between photons are more regular than random

time interval. In perfect or highly sub-Poisson case, the variance value is represented as

(Δn)2 = 0. This situation also called as photon number state. Furthermore, the photon

count number is the same for each experiment and equals to the mean number. The pho-

ton number (N) of a beam in the time interval T would be the integer value determined by

(Fox, 2006):
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N = Int
(
η
T

Δt

)
(3.9)

which would be exactly the same for every measurement. Int represents the integer

output of the equation. Since the result is interpreted as deterministic, the expectation

is that the photon distribution should be delta function as given in Figure 3.7. Photon

streams, having Δn = 0, is called as number or Fock state. These states are the purest

form of sub-Poissonian light. The probability of P (n) to find ni photons in one mode is

either one for n = ni and zero for n �= ni which is the clear indication that photon number

is fully determined. The quantum representation of Fock state is given as the eigenstate

of the photon number operator ni:

n̂i |ni〉 = ni |ni〉 (3.10)

where the eigenvalue ni of the photon number operator describes the number of photons

in a specific mode i. The light sources with Fock state n = 1 is called as single photon

sources.

Figure 3.7. Photon number statistics of a sub-Poissonian light with n̄=4
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3.3. Semi-classical Theory of Photodetection

When light impinges upon specific metallic surfaces, it can cause the release of

electrons, a phenomenon known as the photoelectric effect (Klassen, 2011). These emit-

ted particles are referred to as photoelectrons. By placing a positively charged electrode

near the photoemissive cathode to attract these photoelectrons, an electric current is gen-

erated in response to the incident light. This setup transforms the device into a photoelec-

tric detector for the optical field, is a crucial instrument in photometry. Various methods

are available to amplify the photoelectric current (Garrison and Chiao, 2008). One no-

table amplification device is the photomultiplier, illustrated schematically in Figure 3.8.

The photoelectrons are accelerated sufficiently so that when they strike the positive elec-

trode, they trigger the release of several secondary electrons for each incident primary

electron. These secondary electrons, in turn, are accelerated to strike other surfaces with

secondary emission capabilities. After more similar stages of amplification, each photo-

electron emission from the aperture results in a pulse comprising millions of electrons at

the anode. This pulse is substantial enough to be detected by an electronic counter. By

calculating these photoelectric pulses, an experimental light detector is achieved.

Figure 3.8. A photomultiplier tube scheme with secondary electron emissions

Experimental findings indicate that photoelectric emission from a specific surface

occurs exclusively when the incident light’s frequency surpasses a predefined threshold,
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as illustrated in the accompanying Figure 3.9. Once this critical frequency is exceeded,

the rate of photoelectron emission per unit time correlates proportional with the intensity

of the incident light (Grynberg et al., 2010). Simultaneously, the average kinetic energy

of the emitted photoelectrons remains unaffected by variations in light intensity. Compre-

hending this phenomenon proved challenging within the classical framework of physics.

Einstein found it most plausible to explain if electrons within the metal were confined

to a potential well with a minimum binding energy. In this conceptualization, light is

considered to consist of discrete particles or photons (quantas) with an energy of �ω at

frequency ω. The photon flux is directly proportional to the light intensity or power flow.

When a photon is absorbed at the photoelectric surface, it gives its energy to an electron.

However, unless the photon energy �ω exceeds a threshold value E0, it is insufficient to

release the electron.

Figure 3.9. Characteristic of photoelectric emission

While the basic quantum model provided some insights into the photoelectric ef-

fect, a more comprehensive framework, encompassing quantum mechanics and quantum

electrodynamics, was necessary for a detailed description and the derivation of probability

expressions for photoelectric emission at different time instances. Although a fully quan-

tized treatment represents the exact solution to this problem, for numerous applications,

there is no imperative need to fully quantize the electromagnetic field. Instead, one can

comprehend the photodetector’s response by persisting with a classical electromagnetic
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wave representation of the field as long as the photoelectrons are subjected to quantum

mechanics. In this scenario, the field acts as an external potential, perturbing the bound

electrons of the photocathode. This approach is termed the semi-classical approach, prov-

ing considerably more straightforward than the fully quantized treatment. Although it has

some limitations under some circumstances (Shapiro, 2009), it is a practical and useful

model for engineering applications. Therefore, we will investigate the photodetection

theory mainly from a semi-classical perspective.

3.3.1. Photodetection Probability

In the semi-classical approximation, the photodetection probability P (t)Δt is

written as given in Equation (3.11) under some assumptions (Mandel and Wolf, 1995).

These assumptions are that there are N-bound electrons on the illuminated photoelectric

surface, the incident light in the form of a plane wave perpendicular to the photocathode,

there is minimal depletion of bound states, and no significant mutual influence among

different photoemissions.

P (t)Δt ∼ ηI(
r, t)Δt (3.11)

where 
r is an arbitrary point on the photocathode surface and η is a constant characteriz-

ing the detector efficiency for a particular frequency and particular polarization. In this

point, it should be noted that P (t)Δt is differential probability, which means that we are

interested in detections in one or more differential time intervals. This relation is only

valid for ηI(
r, t)Δt� 1 due to providing photon number-intensity proportionality. Even

if the time interval is very small, the condition will not be met for high-intensity values

since the perturbation can not be terminated at the lowest non-vanishing term due to the

high order contributions. Therefore, we will exclude the option based high-intensity lev-

els which is one of the reason that why photon statistics experiments are realized in very

faint light condition. However, Equation (3.11) should be modified for realistic cases by

considering the randomly fluctuating electromagnetic field. There is need to introduce a

collection of realizations for the optical field which is ensemble averaging since physically

significant results are derived only through the process of averaging across all members

of the ensemble. If the ensemble is denoted by 〈〉, the differential photoelectric detection

probability of a fluctuating field is rewritten as:
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P1(
r, t)Δt = η〈I(
r, t)〉Δt (3.12)

On the other hand, in terms of integral detection probability, the expected number N is

written for the average number of photoelectric detections in a finite time interval from t

to T is:

〈N〉 = η

∫ t+T

t

〈I(
r, t′)〉dt′ (3.13)

If the field exhibits stationary, the average of I(
r, t), naturally unaffected by the variable

time t. Then, the equation above becomes:

〈N〉 = η〈I(
r)〉T (3.14)

which is proportional to T.

3.3.2. Multiple Photoelectric Detection and Correlations

After deriving the expression for the differential probability of a photoelectric

detection occurring at a specific point and time, we can extend this to scenarios where

multiple detections are recorded at different times and detectors. Therefore, let us con-

sider the case that there are two photodetectors of quantum efficiencies α1, α2 with areas

S1, S2 centered at points 
r1, 
r2 where we assume that the plane wave is normally inci-

dent due to the fact that each illuminated detectors are small enough, as given in Figure

3.10. We are interested in the joint detection probability P2(
r1, t1,Δt1;
r2, t2,Δt2) that

photodetections will be registered by one detector at time t within Δt1, and by the other

detector at time t2 within Δt2, with t2 > t1.

We will assess the joint probability of detection in two stages. We first calculate

the differential probability for first photodetection as:

P (
r1, t1,Δt1) = α1S1I(
r1, t1)Δt1 (3.15)

where I(
r1, t1) is the light intensity or photon density at 
r1, t1 in the coherent state.
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Then, using this state to be initial state for the second measurement, calculate the

probability for the second detection. The differential probability of second measurement

is represented as:

P (
r2, t2,Δt2) = α2S2I(
r2, t2)Δt2 (3.16)

These probabilities are then multiplied together to yield P2(
r1, t1,Δt1;
r2, t2,Δt2):

P2(
r1, t1,Δt1;
r2, t2,Δt2) = α1S1I(
r1, t1)Δt1α2S2I(
r2, t2)Δt2 (3.17)

where it is written in more general form as:

P2(
r1, t1;
r2, t2) = η1η2〈I(
r1, t1)I(
r2, t2)〉 (3.18)

It is noted that this probability involves intensity correlation function in the second order.

In addition, for a fluctuating field,

〈I(
r1, t1)I(
r2, t2)〉 �= 〈I(
r1, t1)〉〈I(
r2, t2)〉 (3.19)

and so

P2(
r1, t1;
r2, t2) �= P1(
r1, t1)P1(
r2, t2) (3.20)

where P1(
r, t) is the single probability density for photodetection. This implies that two

photodetections at 
r1, t1 and 
r2, t2 are not independent but correlated. Although two

photodetection events do not affect each other, they are correlated by the fluctuations of

common electromagnetic waves. It can be explained as, in general, correlations between

successive photoelectric pulses are to be expected. This is true even if one photoemission

can not physically influence another one. The reason is that each photodetection yields

information about the field that affects our estimate of the probability of another photode-

tection. We can express this in another way that invokes a more classical picture of the

optical field by saying that intensity fluctuations cause the photodetections at two or more

space-time points to be correlated.
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Figure 3.10. Multiple photodetection with two detectors

The normalized intensity correlation function λ(
r1, t1;
r2, t2) can be express to

define the degree of correlation as:

λ(
r1, t1;
r2, t2) ≡ 〈I(
r1, t1)I(
r2, t2)〉
〈I(
r1, t1)〉〈I(
r2, t2)〉 − 1 (3.21)

Then, we can re-express the joint detection probability in the form:

P2(
r1, t1;
r2, t2)Δt1Δt2 = α1S1〈I(
r1, t1)〉Δt1α2S2〈I(
r2, t2)〉Δt2[1 + λ(
r1, t1;
r2, t2)]

= P1(
r1, t1)Δt1P2(
r2, t2)Δt2[1 + λ(
r1, t1;
r2, t2)]

(3.22)

The normalized correlation function λ(
r1, t1;
r2, t2) provides a measure of the lack of

statistical independence of the photoelectric pulses. Only for states of the field for which

λ = 0 do the pulses become independent.

We can also say that the different photodetections need not necessarily refer to

different detectors, but single photodetector can be used. In this case the quantum effi-

ciencies and surface areas are necessarily equal and light intensities differ only in time

arguments. This formula can be generalized for N-photodetection events by calculating

the expectation:
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PN(
r1, t1,Δt1; .....;
rN , tN ,ΔtN) =
N∏
l=1

αlSlΔtl〈I(
r1, t1)....I(
rN , tN)〉

=
N∏
l=1

[αlSlΔtl]Γ
(N,N)(
r1, t1, .., 
rN , tN ;
rN , tN , .., 
r1, t1)

(3.23)

A consequence arising from correlations is the occurrence of photoelectric bunch-

ing, wherein emissions from a photodetector are more likely to cluster together than to

occur at distant time intervals. If we examine two detections at times t and t + τ by a

single photodetector (omitting the position dependency 
r on the detector), two-fold pho-

todetection probability is written as:

P2(t, t+ τ) = η2〈I(t)I(t+ τ)〉 (3.24)

As τ → ∞, it follows for an ergodic process that 〈I(t)I(t+ τ)〉 → 〈I〉2, or (Mandel and

Wolf, 1995)

P2(t, t+ τ) → P 2
1 (t) for τ → ∞ (3.25)

so that the detections become independent when they are far separated in time.

A graphical representation illustrating the joint probability density, denoted as

P2(t, t + τ), for photoelectric detection against the time interval τ , as depicted in Figure

3.11. The highest value of P2(t, t + τ) is observed at zero separation distance τ , grad-

ually diminishing to the constant value P 2
1 (t) for larger τ . This phenomenon manifests

exclusively in fluctuating fields, particularly those generated by thermal sources as given

in section 3.2.2. The observed effect has been linked to the bosonic nature of thermal

photons, which exhibit a tendency to bunch. Since the light field is defined as an elec-

tromagnetic wave in our case, the bunching effect is observed over the light intensity

fluctuations. For examining non-classical sources, antibunching case, the semi-classical

approach is not adequate.
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Figure 3.11. Expected joint detection probability for photodetection at two different

times as a function of time difference τ

3.3.3. Correlation Measurement Technique: Coincidence Detection

The photoelectric detection occurring within an optical field exhibits spatial and

temporal correlations. One method to demonstrate this correlation is by effectively multi-

plying the output currents of two detectors. Another, powerful and the most known proce-

dure for gathering information about the joint probability P2(
r1, t;
r2, t+ τ) is to feed the

photoelectric pulses from the two detectors to a coincidence counter (Ficek and Swain,

2005), as given in Figure 3.12, to measure the rate at which pulses from the two detectors

arrive "in coincidence". A coincidence counter delivers an output pulse whenever pulses

appear at its two inputs simultaneously or in coincidence, and not otherwise. However,

the phrase "in coincidence" must be interpreted by reference to the intrinsic time resolu-

tion Tr of the circuit, which is limited by the width or rise time of pulses. By definition,

two pulses at two inputs that begin at time t and t + τ , respectively, will be judged to be

coincidence if |τ | ≤ Tr

2
(see the channels in Figure 3.12). If P2(
r1, t;
r2, t + τ)ΔtΔτ is

the joint probability that one pulse appears at one input at time t within Δt and another

input at time t + τ within Δτ , the average rate Rc at which coincidence circuit delivers

output pulses will be:

Rc =

∫ Tr/2

−Tr/2

P2(
r1, t;
r2, t+ τ)dτ (3.26)
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Using Equation (3.22), the last equation becomes (Mandel and Wolf, 1995):

Rc = R1R2Tr

(
1 +

1

Tr

∫ Tr/2

−Tr/2

λ(
r1, t;
r2, t+ τ)dτ

)
(3.27)

in which R1 ≡ α1S1〈Î(
r1)〉 and R2 ≡ α2S2〈Î(
r2)〉 are the average rates at which pulses

arrive in the two input channels. The first term on the right side of equation represents the

random or accidental contribution to the coincidence rate Rc, resulting the purely random

overlap of input pulses. However, the second term represents excess contribution to the

light intensity fluctuations which can be either positive or negative.

Figure 3.12. A typical correlation experiment setup based on coincidence detection

If we assume stationary and cross-spectrally pure light, we can write intensity

correlation function in terms of second order correlation function as:

λ(
r1, t;
r2, t+ τ) = |γ(
r1, 
r2, τ)|2 = |γ(
r1, 
r2, 0)|2|γ(τ)|2 (3.28)

From the coherence time definition from the statistical optics (Saleh and Teich, 2019):

∫ ∞

−∞
|γ(τ)|2dτ = Tc (3.29)
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where Tc represents the coherence time of light. Since Tr is greatly exceeded the correla-

tion time in coincidence time experiments, we may replace the integral limits in Equation

(3.27) by ±∞ to a reasonable approximation:

∫ Tr/2

−Tr/2

|γ(τ)|2dτ ≈
∫ ∞

−∞
|γ(τ)|2dτ = Tc (3.30)

Then, it becomes:

Rc = R1R2Tr[1 + (Tc/Tr)|γ(
r1, 
r2, 0)|2] (3.31)

It can be concluded from the equation above that the light fluctuations is to produce an

excess contribution to the coincidence rate Rc, over accidental rate R1R2Tr, but the fea-

sibility of detecting this excess strongly depends on the ratio Tc/Tr. If the coherence

time of light is considered as a few nanoseconds on the experiments, the coincidence cir-

cuit resolving time must be on the order of 10−8 or 10−9 s. If resolving time becomes

greater, the contribution due to the correlation can not be detected due to the averaging.

Therefore, not only the statistical distribution approximate Poisson distribution but also

the second order correlation function approximate to one. Considering entangled photons

with coherence time smaller than picoseconds as in (Halder et al., 2008; Durak, 2020),

coincidence detector resolving time should be around picoseconds to detect correlation on

the detector for entanglement case. Besides, if we consider the entangled photon case with

no coincidence due to the time separation between signal and idler photons, we can not

talk about correlation since there is no overlap between signal and idler photons pulses.

At this time, we only obtain the multiplication independent single photons probabilities

on the detectors independently. The coincidence rate becomes:

Rc = R1R2Tr (3.32)

which corresponds to the product of average intensities measured by the two detectors.

Other problem can be about the coincidence detection is the successive births of

entangled photon pairs in a short time period. In this case, the detectors can not detect

one photon pair (i.e., due to the dead time of the detector). However, this situation has

a low probability in SPDC since the conversion efficiency (biphotons made per incident
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pump photon) is of the order 10−8 (Schneeloch and Howell, 2016). Lastly, if the ther-

mal and coherent source cases are examined, the resolving time issue is again a problem.

Although coherent light has coherence length in several meters which corresponds coher-

ence time on the order nanoseconds, the conventional scientific cameras can not resolve

information in terms of both optical coherence function and photon statistics. As a result,

the selection of detector plays a significant role in the field of photodetection to extract ac-

curate statistics. Although, each light source has different requirements, detectors above

a certain specifications are needed to perform even the simplest measurements.
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CHAPTER 4

ENTANGLEMENT-BASED THIN FILM

CHARACTERIZATION

This chapter presents a novel scheme based on the phase diffraction of spatially

structured entangled photons to characterize the thickness of nanoscale dielectric films

coated on optical fiber. The photons are tracked as rays by neglecting minor decoherence

effects due to the short optical path length inside the phase object, simplifying the mathe-

matical model. We have demonstrated that the transverse spatial correlations significantly

improve the accurate determination of film thickness. The spatially entangled photons

are also combined with a narrower aperture to yield confocality, further improving the

thickness precision.

4.1. Biphoton Phase Diffraction from Optical Fiber

The general scheme of the classical phase diffraction model was given in Figure

1.2. The input field diffracts from the phase object and propagates to the sensor array

exposing specific phase delays due to the three-layer geometry. Therefore, every point

of the input field is represented by independent rays at the beginning of the phase object

and tracked paraxially to obtain optical path length. After the wavefront is obtained at the

output face of the fiber, the resultant diffraction pattern is calculated using the Huygens’-

Fresnel diffraction formula (Makris and Psaltis, 2011). Then, the pattern is evaluated by

curve fitting methods to extract optical parameters of phase object.

However, the mathematical model may show some differences in entanglement-

based systems. In our model, we are interested in degenerate (ωs = ωi) collinear type-II

SPDC where the generated signal and idler photons have equal but opposite wave vectors

due to the momentum conservation at the output of non-linear crystal. This situation

causes different scattering angles, transmission amplitudes, and optical path lengths for

both photons. The scattering angles (α) are very close to zero with respect to the pump

photon direction (kpz) in nearly collinear SPDC (see Figure 4.1(a)). The probability of

possible scattering angles is at about ±30 mrad (Strekalov et al., 1995), as given in Figure

4.1(b) where the standard deviation (σ) is 10 mrad. As seen from Figure 4.1(b), the photon
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pairs born %95.4 probability with scattering angles smaller than ±20 mrad.

Figure 4.1. (a) Scattering angle geometry for nearly collinear emission (b) Probability

of possible scattering angles of entangled photons generated by collinear

SPDC

The exact tracing of a signal photon inside the optical fiber is given in Figure 4.2.

The radius of core and cladding are represented by a and b, and ns, ncl, and nco are the

refractive index surrounding medium, cladding, and core, respectively. The optical path

length of the signal photon can be written as neglecting the core due to small size and

ncl ≈ nco :

ϕ(x) = nsOA+ nclAB + nsBP (4.1)

where according to the Snell law:

ns sin(θ1 + α) = ncl sin(θ2) (4.2)

and
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OA =
b(1− cos(θ1))

cos(α)
(4.3)

AB = 2b cos(θ2) (4.4)

BP =
b(1− cos(2θ2 − θ1))

cos(2(θ2 − θ1))
(4.5)

Then, Equation (4.1) becomes:

ϕ(x) = ns
b(1− cos(θ1))

cos(α)
+ 2nclb cos(θ2) + ns

b(1− cos(2θ2 − θ1))

cos(2(θ2 − θ1))
(4.6)

Also an arbitrary point P on the x-plane can be represented as:

P (x) = b sin(2θ2 − θ1)− b tan(2θ1 − 2θ2)(1− cos(2θ2 − θ1)) (4.7)

Figure 4.2. Exact tracing geometry of a photon traversing to phase object

The amplitude of the tracked field at point P can be written as:

AP (x) = t1jt2jAini (4.8)
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where t1j and t2j are the Fresnel coefficients at point A and B for signal and idler (j=s,i),

respectively and Aini is the initial amplitude at the beginning of the phase object (point

A). Since the signal and idler photons are orthogonal each other, the Fresnel coefficients

are also different for both. Assuming the signal photon has vertical polarization, t1s and

t2s are written as:

t1s =
2ns cos(θ1 + α)

ns cos(θ1 + α) + ncl cos(θ2)
(4.9)

t2s =
2ncl cos(θ2)

ncl cos(θ2) + ns cos(θ1 + α)
(4.10)

Figure 4.3. Paraxial tracing geometry of a photon traversing to phase object

Furthermore, the tracing process may also be modeled via paraxial tracing, as

our experimental design, to obtain a simple model given in Figure 4.3. At this time, it

is assumed that the signal and idler photons experience same phase delay through the

system. The simple analytical expressions of signal’s (or idler’s) optical path lengths can

be written as:

ϕ(x) = exp(iφs), |x| > b

ϕ(x) = exp(i[φs + φcl]), a < |x| < b

ϕ(x) = exp(i[φs + φcl + φco]), 0 < |x| < a (4.11)
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where a, b are the core and the cladding radii, respectively. Furthermore, φs, φd, φcl and

φco are represented as:

φs = 2knsb,

φcl = 2k(ncl − ns)
√
b2 − x2,

φco = 2k(nco − ncl)
√
a2 − x2 (4.12)

Figure 4.4. Simulation result of biphoton phase diffraction from 300 μm aperture for

exact (blue) and paraxial (orange) tracing

In simulations, we investigate the necessity of exact photon tracing on the entanglement-

based systems by comparing paraxial tracing. We choose aperture size as 300 μm to

ensure the validity of paraxial approximation since the effect of exact amplitudes and

phases increase by blocking stray biphotons. The normalized intensity patterns of exact

and paraxial tracing biphoton phase diffraction are given in Figure 4.4. The scattering an-

gles of signal and idler photons are taken ± 30 mrad which is approximately upper limit

of angle. Although the exact paths and amplitudes are different on nano-scales, the result

show no noticeable differences in amplitudes and zeros crossing of the patterns.

To verify our integration used in mathematical equations, we also make computa-

tional error and convergence analysis. The system model is created in "Matlab" environ-

ment. In the code, we used integral2 command for integration. It transforms the region

of integration to a rectangular shape and subdivides it into smaller rectangular regions as

needed. Also, we convert the integration to the summation via discritization for various

54



step sizes. According to the results, the deviation (σ) between two different method is on

the order of 10−5 given in below.

σ =
N∑
i=1

|yi − ȳi|
N

(4.13)

where yi is the integral2 result and ȳi is the summation result. Therefore, there is no

significant differences between two methods for the utilization in system model.

Figure 4.5. Diffraction pattern differences between summation having 10 nm step size

(blue) and integral2 command (orange)

Table 4.1. The convergence analysis between summation and integral2 command for

various step sizes

20 nm 15 nm 10 nm 5 nm 1 nm
σ 2.3043×10−5 2.3042×10−5 2.3042×10−5 2.3032×10−5 2.3024×10−5

4.2. Mathematical Model of Proposed System

The general overview of the proposed setup for dielectric film characterization

is given in Figure 4.6. In the beginning, the degenerate collinear type-II SPDC process
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is used, assuming the pump is sufficiently plane and the nonlinear crystal is very thin.

Since the conservation of momentum requires well-defined, equal, and opposite exiting

angles for signal and idler photons at the output of crystal, all photons can be modeled

as rays (Pittman et al., 1996). Furthermore, the signal and idler photons have very small

angles with respect to the pump direction (kpz) (Strekalov et al., 1995). This means that

they propagate same direction with the pump. This then allows us to make a simple and

practical model in the following manner: parallel wavevectors for signal and idler photons

with opposite polarizations. This way, spatially entangled photons can be tracked using

paraxial ray approximation. The critical point is that collinearity provides paraxial tracing

where orthogonality contributes to the visibility in the system.

Figure 4.6. Proposed spatial entanglement based phase diffraction setup for transpar-

ent dielectric film characterization

The geometry of phase object and optical paths are given in Figure 4.7. The

pairs are exposed to specific phase delays due to curved geometry and carry thickness

information to the diffraction pattern. By courtesy of entanglement, phase delay inside

traversing phase object region and so carried thickness information at the detectors is

doubled. This causes significant deviations in amplitude and position on the resultant

diffraction pattern. It is also seen from Figure 4.7 that the photon pair takes the longest

path p3 inside dielectric coating whereas p4 is the stray path. Therefore, the aim is to limit

the entangled photons by locating a narrow aperture close to the phase object. In this way,

we can obtain confocality and detect nanometer thickness variations in the diffraction

pattern more precisely via suppressing stray biphotons which propagate through air.
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Figure 4.7. Optical paths for the regions of curved geometry

In mathematical model, the spatially entangled photon pairs born at any position

on the aperture plane. Then, they propagate through the coated optical fiber experiencing

different paths corresponding to the cross-section plane. Since the deflections through the

fiber and inclination factor have no significant effect on intensity for large phase objects

(Sabatyan and Tavassoly, 2007), the optical path lengths can be expressed as:

ϕ(x) = exp(iφs), |x| > c

ϕ(x) = exp(i[φs + φd]), b < |x| < c

ϕ(x) = exp(i[φs + φd + φcl]), a < |x| < b

ϕ(x) = exp(i[φs + φd + φcl + φco]), 0 < |x| < a (4.14)

where a, b and c are the core, the cladding and the coated optical fiber radii, respectively.

In addition, φs, φd, φcl and φco are represented as:

φs = 2knsc,

φd = 2k(nd − ns)
√
c2 − x2,

φcl = 2k(ncl − nd)
√
b2 − x2,

φco = 2k(nco − ncl)
√
a2 − x2 (4.15)
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where ns, nd, ncl and nco are refractive indices of the surrounding medium, the dielectric

film, the cladding and the core, respectively.

After paraxial tracing, the resultant biphotons are exposed diffraction between

exiting face of the fiber (diffraction plane) and detector plane. In the scheme, the filter

(F) is used for pump suppression, and the signal and idler photons are separated by a

polarizing beam splitter (PBS). The signal and idler have the same path length to the

detectors. At the end, they are detected by coincidence detector arrays D1 and D2. The

biphoton diffraction pattern is obtained by the coincidence counts recorded as a function

of the spatial coordinates of ρ1 on the detector D1 and ρ2 on the detector D2. For this

setup with aperture width d, the joint detection probability can be calculated as:

G(2)(ρ1, z; ρ2, z) =
∏

(TD)

∣∣∣∣Φ̃0

∫ d/2

−d/2

dxϕ(x)e−i ω
cz

(x·ρ1+x·ρ2)
∣∣∣∣2 (4.16)

where
∏
(TD) is a rectangular-shaped function. It takes the value "1" if the difference

between detector click times is less than a particular value and "0" otherwise (Sergienko

et al., 1995). It depends on the length (L) of the crystal and is expressed as:

∏
(TD) =

⎧⎨
⎩1, 0 < TD < DL

0, otherwise
(4.17)

where D ≡ 1/υs(i) − 1/υi(s) and, υs and υi are the group velocity of signal and idler.

4.3. Numerical Simulations and Discussion

In this sub-section, we mainly focus on the contribution of the spatial entangle-

ment concept to the precise determination of film thickness. We also investigate how

changing the aperture size improves thickness resolution further. Experimental param-

eters from the literature are used as the simulation parameters to implement proposed

model. We evaluate two scenarios for the comparisons of two different down-conversion

wavelengths. Firstly, a CW (continuous wave) 351 nm line of an argon-ion laser is used

to pump beta barium borate (BBO) (β − BaB2O4), which is cut for degenerate collinear

type-II phase matching, to produce orthogonally polarized entangled photons (Strekalov

et al., 1995). Secondly, we change the pump with a CW 458 nm line of an argon-ion laser

as given in the (D’Angelo et al., 2001). The wavelength of the biphotons is 702 nm and
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916 nm in these two different scenarios, respectively. The distance between the phase

object and detectors is z = 2 m. The radius of core and cladding are a = 2.2 μm and

b = 62.5 μm and the refractive indices are nco = 1.4591 and ncl = 1.4537, respectively.

Indium-tin oxide (ITO) and polyvinyl alcohol (PVA) are chosen as the transparent coating

materials, which have a refractive index 1.71 and 1.47 at the wavelength of interest (Shao

et al., 2018; Kapoor and Sharma, 2020). Both detectors are preceded by a spectral filter

(F) centered at the degenerate wavelength 702 nm for the ITO case and 916 nm for the

PVA case (Pittman et al., 1995). The coincidence detector arrays are assumed to have 20

μm pixel sizes which is in the suitable range (Madonini et al., 2021).

Figure 4.8. Simulation results of diffraction pattern deviation for 200 μm aperture: (a)

classical case with 351 nm pump for non-coated and 200 nm ITO coated

fiber (b) spatially entangled case with 351 nm pump for non-coated and

200 nm ITO coated fiber (c) classical case with 458 nm pump for non-

coated and 200 nm PVA coated fiber (d) spatially entangled case with 458

nm pump for non-coated and 200 nm PVA coated fiber (Ataç and Dinleyici,

2023b)

To show the influence of biphotons on the system precision, we simulated two

different cases given in Figure 4.8. The utilization of spatially entangled photons allows

us to achieve the inherently higher thickness resolution due to the intensity correlations

since the phase delay inside the phase object increases by factor 2. As seen from Figure

4.8(a) and (c), the deviation between non-coated and 200 nm coated optical fiber is not
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distinct for the classical phase diffraction method (Ekici and Dinleyici, 2017) which is

realized with plane wave case for two different coating materials at two down-conversion

wavelengths. However, the effect of the nanoscale film becomes observable for entan-

gled photon pairs in Figure 4.8(b) and (d) courtesy of spatial correlations. Despite the

large aperture size compared with the phase object, the zero crossings shift and amplitude

changes significantly. Since the number of alternative paths decreases at the polarizing

beam splitter due to the well-defined polarizations of entangled photons, which prevent

background noise, the diffraction pattern also has high visibility.

Figure 4.9. Simulation results of diffraction pattern deviation of non-coated and 200

nm ITO coated fiber with 351 nm pump for various aperture size (a) 1000

μm (b) 500 μm (c) 250 μm (d) 150 μm (Ataç and Dinleyici, 2023b)

To provide further enhancement on the resolution, we utilized the fundamental

principle of confocal microscopy with an aperture (single slit in our case). In this way,

we can block stray biphotons traversing through the air, which causes suppression of the

thickness information about the film. The diversity of normalized diffraction patterns be-

tween non-coated and 200 nm ITO coated fibers with different aperture sizes are depicted

in Figure 4.9. As expected, the 1000 μm aperture, much larger than the phase object, the

pattern is nearly a single slit biphoton diffraction pattern due to the domination of stray

biphotons. Therefore, we can not extract the thickness value since there is no discrepancy
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between the patterns for sub-wavelength coating thicknesses. However, despite the ultra

thin film thickness, it can be discriminated from non-coated fiber for 150 μm aperture.

As seen from Figure 4.9(d), minimums shift approximately 540 μm and the amplitudes

change significantly. The separation between first minima for non-coated and 200 nm

ITO coated fiber according to the various aperture sizes is given in Figure 4.10.

Figure 4.10. The distance between first minima for various aperture sizes (200 nm ITO

coating) (Ataç and Dinleyici, 2023b)

Table 4.2. Evaluation of main lobe amplitude ratio and minima shift for various ITO

coating thickness (Ataç and Dinleyici, 2023b)

Coating thickness 200 nm 100 nm 50 nm 25 nm 10 nm
Amplitude ratio 2.51 1.8 1.35 1.2 1.06

Minima shift 540 μm 270 μm 135 μm 67.5 μm 25 μm

The other investigation is about the detectable thickness value for proposed setup.

We focus on thickness around 50 nm due to importance in SPR sensors. The aperture

size is fixed as 150 μm which is comparable with the size of the phase object. In this

way, the diffraction pattern includes more thickness information about the coating. The

numerical simulations are given in Figure 4.11. Observable differences arise despite film

thickness. The position shift of first minima versus coating thickness up to 100 nm is

given in Figure 4.12. The shift of the first minimum is at around 70 μm for 25 nm coating,
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and it increases with larger thickness values. Furthermore, representative data is provided

in Table 4.2 to demonstrate the amplitude ratio and minimum shift between coated and

non-coated fiber. The outputs reveal that the dielectric film thickness up to 25 nm can be

accurately estimated. The thickness below 25 nm may not be measured due to the small

main lobe amplitude ratio and minimum deviations on the biphoton diffraction pattern as

well as the low-intensity values on coincidence detection and noise noise factors.

Figure 4.11. Simulation results for 150 μm aperture with 351 nm pump (a) non-coated

and 100 nm ITO coated (b) non-coated and 75 nm ITO coated (c) non-

coated and 50 nm ITO coated (d) non-coated and 25 nm ITO coated (Ataç

and Dinleyici, 2023b)
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Figure 4.12. The distance between first minima versus various ITO coating thickness

(for fixed 150 μm aperture) (Ataç and Dinleyici, 2023b)

4.4. An Alternative Model: Thermal Photon Phase Diffraction

Entangled photons generated by SPDC exhibit several properties analogous to the

ordinary photons generated by incoherent sources (Saleh et al., 2000). This means that

each photon pairs are correlated in itself but mimic classical independent point sources

between each other. Therefore, entangled photons can be also imitated as independent

point sources generated by chaotic light sources (Scarcelli et al., 2004; Zhai et al., 2005).

In this way, main disadvantages of utilization of entangled photons in our system can

be eliminated: (1) strict alignment in experimental setup for phase matching, (2) low

conversion efficiency (biphotons made per incident pump photon) on the order 10−8.

In the quantum theory of photodetection, the second order correlation function is

calculated as:

G(2)(t1, 
r1; t2, 
r2) = Tr

[
ρE

(−)
1 (t1, 
r1)E

(−)
2 (t2, 
r2)E

(+)
2 (t2, 
r2)E

(+)
1 (t1, 
r1)

]
(4.18)

where the density matrix is:

ρ ∝
∑
�q

∑
�q′

|1�q1�q′〉 〈1�q1�q′| (4.19)

where the light source is modeled as an incoherent statistical mixture of two photons with
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equal probability of having any transverse momentum 
q and 
q′.
The transverse part of second order correlation function can be written as (Scar-

celli et al., 2006):

G(2)(
x1; 
x2) =
∑
�q,�q′

〈1�q1�q′|E(−)
1 (
x1)E

(−)
2 (
x2)E

(+)
2 (
x2)E

(+)
1 (
x1)|1�q1�q′〉

=
∑
�q,�q′

|〈0|E(+)
2 (
x2)E

(+)
1 (
x1)|1�q1�q′〉|2

(4.20)

where 
xj is the transverse coordinate of jth detector. Also the electric field operator can

be written as:

E
(+)
j (xj) =

∑
�q

gj(
xj; 
q)â(
q) (4.21)

where â(
q) is the annihilation operator for the mode corresponding to 
q and gj(
xj; 
q) is the

Green’s function associated to the propagation of the field from the source to the detector.

Figure 4.13. Hanbury-Brown-Twiss (HBT) configuration

Substituting electric field operators in HBT setup given in Figure 4.13, joint de-

tection probability becomes:

G(2)(
x1; 
x2) =
∑
�q,�q′

|g1(
x1, 
q)g2(
x2, 
q′) + g1(
x1, 
q′)g2(
x2, 
q)|2 (4.22)

Then,

G(2)(
x1; 
x2) =
∑
�q

|g1(
x1, 
q)|2
∑
�q′

|g2(
x2, 
q′)|2 + |
∑
�q

g∗1(
x1, 
q)g2(
x2, 
q)|2 (4.23)
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which equals:

G(2)(
x1; 
x2) = G
(1)
11 (
x1)G

(1)
22 (
x2) + |G(1)

12 (
x1, 
x2)|2 (4.24)

The first term in Equation (4.24) represents the product of the average intensities mea-

sured by the two detectors. However, the second term corresponds to the intensity fluc-

tuations or two photon interference term. This equation is the basis of HBT effect. A

fundamental difficulty in observing this effect is the small relative magnitude of second

term when the coherence time of detected field is much smaller than the detection time

interval.

If the coincidence rate for thermal case is written including time resolution of

detectors and coherence time of light, it becomes (Mandel and Wolf, 1995):

G(2)(
x1; 
x2) = R1R2Tr[1 + (Tc/Tr)|G(1)
12 (
x1, 
x2)|2] (4.25)

in which R1 ≡ α1S1〈Î(
r1)〉 and R2 ≡ α2S2〈Î(
r2)〉 are the average rates at which pulses

arrive in the two input channels.

Figure 4.14. Proposed thermal photons based phase diffraction setup
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The critical point is that photon coincidence rate in our proposed SPDC model

with spatially entangled photons is:

G(2)(
x1; 
x2) = |Ψ(
x1, 
x2)|2 = |G(1)
12 (
x1, 
x2)|2 (4.26)

which means that there is no background term. Therefore, although diffraction patterns

are the same for thermal photons and entangled cases, they have different visibilities.

Figure 4.15. Simulation results for 300 μm aperture with 351 nm pump (a) spatially

entangled photons (b) thermal photons

The general overview of the proposed setup with thermal photons is given in Fig-

ure 4.14. The numerical simulations assume same conditions with entangled case. We

take time resolution of detectors Tr = 25 μs and coherence time of thermal photons

Tc = 8 μs, respectively. The resultant diffraction patterns for spatially entangled and

thermal case are given in Figure 4.15. It can be seen that the visibility is %100 in en-

tanglement case. This situation is already evident from the Equation (4.26). However, it
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reduces approximately V = 0.35 in thermal case due to the DC offset. Therefore, the

only difference between diffraction patterns is visibility as expected due to the analogy

between thermal photons and entangled photons. This configuration proves that the pro-

posed method may be realized with thermal source instead of spatially entangled photons.

Figure 4.16. Proposed thermal photon based phase diffraction setup for transparent di-

electric film characterization with single detector

Furthermore, we propose a configuration eliminating the utilization of two detec-

tors in coincidence detection as given in Figure 4.16. The proposed setup needs one large

detector array because we utilize the sensor’s surface as two independent areas or detec-

tors. Since the detector array behaves as having a self-coincidence circuit, we can avoid

the time-synchronization problem. By adjusting the same optical path for the photons,

we can realize coincidence detection in a single detector. Although this configuration can

be problematic for large diffraction patterns (especially in far-field systems), it may be an

alternative in scenarios with limited budgets.
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CHAPTER 5

THERMAL LIGHT CHARACTERIZATION WITH A CCD

In this section, we propose a novel, practical, and low-cost experimental procedure

for characterizing thermal light photon number statistics and normalized second order op-

tical coherence function g(2)(τ) using an ordinary CCD camera. The main idea is obtain-

ing time-bin information from the spatially distributed intensity values. Since theoretical

analysis indicates that confined area measurements of thermal light naturally lead to the

Bose-Einstein statistics in the very faint light condition, the proposed model is mainly

based on evaluating single pixels intensities of the CCD array. Considering that operating

at the single-photon levels is not readily achievable in conventional CCD cameras, the

photon number-intensity relation has been leveraged utilizing semi-classical approach. In

this way, the photon counts on single pixels mapped to the intensity values have enabled

the demonstration of thermal distribution and bunch light phenomenon. Furthermore, we

also demonstrate that g(2)(0) of the thermal light source is well above the coherent case

and close to the theoretical value two which is the signature of thermal light.

5.1. Mathematical Model and Experimental Preliminaries

In the proposed model, we focus on examining thermal light’s photon statistics

and second-order correlation function with an ordinary scientific CCD camera. However,

both the generation of thermal light with an adjustable coherence time and its detection

are not simple procedures, particularly in scenarios with limited budgets. Therefore, the

practical engineering methods for these purposes, including mathematical preliminaries,

are given below.

5.1.1. Pseudo-thermal Light Generation and Statistical Analysis

A rotating scattered medium (e.g., rotating ground glass) illuminated with a laser

light can produce a speckle pattern (Diament and Teich, 1970). This pattern results from

the interference of diffusely transmitted light, which alternates between constructive and
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destructive interference across various spatial areas. (Lib and Bromberg, 2022). The light

emanating from this setup is referred to as pseudo-thermal because its coherence char-

acteristics resemble those of true thermal light sources such as a Light Emitting Diodes

(LEDs) (Pieper et al., 2018). It has chaotic statistics where correlation time can be ad-

justed according to the parameters such as rotating speed of medium and beam waist of

laser light (Gatti et al., 2006). To investigate the photon number statistics and coherence

properties of thermal sources by relaxing coherence time problem in the detection, the

pseudo-thermal source concept was introduced (Ahmad et al., 2019). By doing so, fluc-

tuations in light intensity can be directly measured using detectors. Analyzing the time

series representing intensity, facilitated by the extended or long coherence time (Kuusela,

2017), allows for the determination of photon statistics through numerical methods. The

obtained counting results, which is in terms of intensity values, can also serve as an in-

dication of the bunching phenomenon of light, where groups of photons moving together

cause pronounced fluctuations in intensity.

The general overview of pseudo-thermal light generation and its detection with a

detector array, which is CCD camera in our case, is given in Figure 5.1. The model based

on the generation of scattered light while laser light traversing to the rotating scattering

medium (RSM) such as rotating ground glass (RGG). Since the medium contains ran-

domly distributed large number of scatterers (or granules) due to the number of surface

details, they produce speckles from the input field having Np photons. Therefore, we

mainly interested in the analysis of randomly distributed Np photons on K pixels. In our

scheme, nρ represents the recorded photon counts at pixel ρ in frame k with equal proba-

bilities. nρ satisfy the energy conservation
∑

ρ nρ = Np which corresponds conservation

constraint of total photon count. The total number of combinations on the detector array

can simply be written according to the Binomial distribution (Landau and Lifshitz, 2013):

C :=

(
Np +K − 1

K − 1

)
=

(Np +K − 1)!

(K − 1)!(Np)!
(5.1)

The probability that n photons are received by a single pixel can be written using

that how Np − n photons are distributed the rest of K − 1 pixels:

P (Np)
n =

1

C

(
Np − n+K − 2

K − 2

)
for 0 ≤ n ≤ Np (5.2)
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Figure 5.1. (a) Pseudo-thermal light generated by rotating scattered medium and its

detection with a detector array (b) A typical demonstration of detection

process

Then, the probability is written for n� Np condition as:

P
(Np)
n+1

P
(Np)
n

=
(Np − n+K − 3)!

(K − 2)!(Np − n− 1)!

(K − 2)!(Np − n)!

(Np − n+K − 2)!

= ����������
(Np − n+K − 3)!

�����(K − 2)!�������
(Np − n− 1)

�����(K − 2)!(Np − n)��������
(Np − n− 1)!

(Np − n+K − 2)����������
(Np − n+K − 3)!

=
Np − n

Np − n+K − 2
=

1

1 + K−2
Np−n

� 1

1 + K
Np

(5.3)

As seen from the Equation (5.3), the result is constant and smaller than one, which

indicates that the statistics obey the thermal distribution by fitting to the exponential func-

tion. Therefore, when the total number of the whole scattered photons obey the conser-

vation constraint of photon count, the behavior of quantifying photon numbers acquired
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within a confined region inherently provides access to thermal light statistical character-

istics. If the incoming light statistics with a certain distribution (Pin) to the scattered

medium is taken into account such as following a Poisson distribution (i.e. laser light)

from the scattering of N photons:

Pn =
∑
N

Pin(N)P (N)
n (5.4)

where the probability ratio between consecutive photon numbers becomes for n� N̄p as

(Li et al., 2020):

P
(N̄p)
n+1

P
(N̄p)
n

� 1

1 + K
N̄p

(5.5)

where N̄p is the mean photon value of the input light.

5.1.2. Feasibility of Photon Counting with a CCD Camera

A CCD camera, a standard device in scientific imaging, operates by capturing

light across its pixel array, converting the accumulated charge to voltage, amplifying it,

and generating a digital output reflecting electron counts per pixel. It has high sensi-

tivity and expansive dynamic range (Giles et al., 1998). There are various types, such

as intensified CCD (ICCD) and electron-multiplying CCD (EMCCD) (Moomaw, 2007).

The CCD’s primary advantage lies in its efficient use of large pixel area for light capture,

making it particularly versatile in low-light conditions where traditional charge-to-voltage

conversion may introduce significant noise. To address this, techniques such as binning,

which merges multiple pixels to enhance signal-to-noise ratio (SNR), can be employed

during readout. Additionally, integrating a gain register before conversion can amplify

electron counts through impact ionization, rendering it an EMCCD, thus further improv-

ing performance in low-light environments.

In any given image, noise is an inevitable factor. Despite receiving an equal num-

ber of photons on average, individual pixels exhibit variance in their output values, fol-

lowing a Gaussian distribution. The actual measure of a camera’s performance lies not in

the amplitude of its signal output, but rather in the SNR, which delineates the ratio be-

tween the desired signal and the ambient noise level. For the 8-bit quantization, the SNR

can be expressed as (Chen et al., 2009):
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SNR = 20log
255

σN
(5.6)

where σN corresponds to the RMS of the image noise (or the standard deviation of noise).

The noise includes all factors, we called them as artefacts, such as read noise, fixed pat-

tern noise and dark current noise. Since the proposed method contains CCD as a main

component of novelty, the effect of these artefacts as a DC offset, especially including

standard deviation, is required before the experiments where it gives an insight about the

feasibility of off-the-shelf CCDs for photon counting and coherence measurements.

Typically, photon counting experiments utilize highly sensitive light detectors

functioning at the single photon level alongside electronic counting systems. While these

detectors register electron counts that validate the presence of photons in the incoming

light, variations in these counts provide valuable information about the statistical char-

acteristics of the photon stream. Nevertheless, an ongoing question is whether events

registered by photon counters are an inherent property of the photon statistics or simply

a creation of the detection process. Therefore, the experiments should require expensive

and high quality of detectors (Dennis, 2012). In the literature, these detectors are usually

single photon detectors, on-off detectors or photon number resolving detectors (Kwiat

et al., 1993; Takeuchi et al., 1999; Esmaeil Zadeh et al., 2017; Chrapkiewicz, 2014;

Jönsson and Björk, 2019). In addition to these devices, after recent advancements, some

specific CCD cameras, such that Electron-Multiplying CCDs (EMCCD) and Intensified

CCD (ICCD) cameras are used for photon counting and correlation experiments (Smith

et al., 2004; Kumar and Marino, 2019; Bolduc et al., 2017; Oemrawsingh et al., 2002).

However, this situation should be reconsidered for traditional CCD cameras, which have

many advantages such as affordability and easy availability, because CCD cameras are

not considered suitable for photon experiments. The main reason is that achieving op-

timal performance for single-photon scale with ordinary CCDs and mitigating internal

noise are cumbersome problems. Nevertheless, a feasibility analysis should be performed

based on the type of experiment. Considering the qualification of laboratories particularly

in undergraduate level, the realization of statistics experiments with such simple and low-

cost device may need practical engineering solutions. Therefore, we tried to implement

a more humble measurement technique by combining the statistical analysis of confined

area measurements of thermal light with the pseudo-thermal light concept and an ordinary

CCD camera.

Coincidence detection is an indispensable measurement technique due to the wide
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range applications from classical correlations to the classical correlations (Bennink et al.,

2004; Bennink et al., 2002). However, it is known that all coincidence detection methods

such as two scanning single-photon detectors, two scanning slits or array of single-photon

detectors are suffer from either too much loss of light, or strict alignment requirements

with expensive and sophisticated devices, or multiple measurements, which adversely

affect the accuracy of measurements (Bhattacharjee et al., 2022). Furthermore, this de-

tection type needs highly precise time synchronization (Unternährer et al., 2016). In the

literature, the methods are mainly based on probability algorithms with or without tresh-

olding (Defienne et al., 2018; Reichert et al., 2018) especially for entangled photon pairs.

However, although the two-photon detector issue has been solved, the cost and require-

ment of adequate laboratory environment are still problems. To overcome this challeng-

ing task, the CCD camera exposure time as its coincidence circuit can be exploited which

provides self-time synchronization and cost-effectiveness for experiments.

Figure 5.2. Connection between classical fluctuations in intensity around the mean in-

tensity (Iav) and photon bunching in a thermal light where photon bunching

corresponds to the high intensity fluctuations.

The electron count readings produced by CCD cameras are represented by the

intensity values. From the semi-classical standpoint, the probability density of photon

counts is related to the intensity of light (see Figure 5.2) (Straka et al., 2018). As we

know from the Section 3.3.1, at low intensity values, the relation between probability of

photodetection P (t) and detected light intensity I(t) in a short time interval Δt is (Mandel

and Wolf, 1995):
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P (t)Δt ∼ ηI(t)Δt (5.7)

where η represents the quantum efficiency of the CCD camera . Despite the infinitesimally

small time intervals involved, the condition remains unfulfilled and detection probability

can not be defined in terms of intensity values. Considering that CCDs commonly offer

time differentials, Δt, on the order of milliseconds, it becomes imperative to engage in

operations within the domain of exceedingly low-intensity values.

Furthermore, the relation between the variance of photocount number (ΔN)2 and

variance of impinging photons (Δn)2 on the detector is (Loudon, 2000):

(ΔN)2 = η2(Δn)2 + η(1− η)n̄ (5.8)

where n̄ is the mean number. As seen from the Equation (5.8), minimum quantum effi-

ciency of detector should be at around 50% to detect intensity fluctuations. If we investi-

gate the cases for η:

• For η = 1, the fluctuations in photocounts faithfully mirror the variations in the

incoming photon stream.

• For η � 1, the fluctuations in photocounts converge towards a Poissonian outcome

due to the averaging.

• If the incident light shows Poissonian statistics, which means that (Δn)2 = n̄, the

statistical characteristics of photocounts consistently yield a Poisson distribution

independent from the η.

Therefore, one may conclude that accurate photon statistics measurement man-

dates the utilization of high-efficiency detectors since in the regime of exceedingly low

efficiencies, the interval between photoelectrons would exhibit complete randomness, re-

sulting in Poissonian counting statistics across all potential incoming distributions. With

such detectors in place, photocount statistics offer a genuine assessment of the incoming

photon statistics, showcasing an enhanced fidelity that correlates with the heightened ef-

ficiency of the detector. In Figure 5.3, it has been demonstrated that quantum efficiency

of commercially available standart CCDs are at around %50. Since their η value in only

around half ot the ideal value one, it can be inferred that conventional CCDs may be
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used to extract approximate photon statistics and coherence function measurements over

intensity values.

Figure 5.3. A typical spectral sensitivity curve for commercially available CCDs (Pho-

tonics)

5.2. Experimental Setup and Measurement Results

Test benches for the proof of concept experiments (see Figure 5.4) were con-

structed for the investigation of the photon number statistics and coherence of two optical

sources: pseudo-thermal and coherent. The 632.8 nm single mode He-Ne laser having

1.5 mW power was used in the experiments as the coherent light source. The neutral-

density filters were used to obtain very faint light, decreasing the power of the input field.

In the detection part, the SONY XC-711 series CCD camera having 40ms exposure time

was used. The camera also has 768 (H) × 493 (V) pixels with 17 (H) μm × 11 (V) μm

pixel size. For the generation of pseudo-thermal light, the rotator combined with scatter-

ing medium having 4 Hz to 3.7 kHz frequencies was exploited. For the photon statistics

and coherence analysis, 10000 frames were recorded for each experiment. Furthermore,

for the comparisons, the experiment results were fitted to the numerical calculations and

the radius of errors were calculated.
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Figure 5.4. (a) Coherent light scheme (b) Pseudo-thermal light scheme where F is neu-

tral density filter to obtain very faint light; R is a rotating diffuser. (c) An

experiment photo for pseudo-thermal light measurements

For the experimental measurements and calculations, the coherence time of pseudo-

thermal light must be known. In the literature, it has been shown that the coherence time

of a source obtained via Gaussian beam with the limit of very many scatterers is given as

(Kuusela, 2017):

tc =
W0

υ
√
(1 +D/L)2 + y2

(5.9)

whereW0 is the minimum beam waist, υ is the velocity of diffuser at the center of the laser

spot, D is the distance between laser and glass and L is the distance between scattered

medium and detector. Also the parameter y = kW0

2L
with wavenumber of the laser k.

With the help of Equation. (5.9), the coherence time of the pseudo-thermal field can be

adjusted, which is extremely important for light sources having the Bose-Einstein and

super-Poisson photon statistics. In experiments, the distances D and L is taken as 45

cm and 8 cm, respectively. To receive all scattered light, the rotator is placed close to the

CCD. The pseudo-thermal light experiments were realized with rotator frequency fr = 25

Hz, which approximately corresponds to the tc = 3 μs.
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5.2.1. Photon Statistics Measurements

The general overview of the photon statistics measurement schemes and an exper-

imental setup photo is given in Figure 5.4. The coherent case is realized with a nearly

uniform plane wave obtained via a beam expander. For the pseudo-thermal case, the pri-

mary coherence time in experiments is determined as tc = 3 μs. For the comparisons,

we also investigate the effect of coherence time on the proposed system by adjusting the

coherence time as tc = 68 ns. At the beginning of experiments, the feasibility of the

CCD, including noise floor needs to be examined. We realized two experiments with

two different gain (G) levels of CCD, G=1000 and G=0, respectively. In a light-deprived

environment, the frames are recorded to calculate the average DC offset on the pixels.

The average standard deviations of background offset (σN ) are computed individually for

each pixel. These results correspond to the noise floor, such as electronic noise due to

the inherent nature of CCD and compression noise while obtaining frame photos, which

cause a DC offset to the frames. It has been found that σN = 1.7315 and σN = 0.4701

for G=1000 and G=0, respectively. The experimental image photo and its standard devi-

ation analysis are given in Figure 5.5. The average intensity for G=0 is ĪN = 0.3057 (in

video recording, it reaches 5.27), which offsets our results. Since the faint light condition

is required for photon counting experiments where intensity levels (red channel is used)

are at about 2 or 3 on average, the CCD experiments with zero gain should introduce fair

results.

Figure 5.5. Experimental noise floor photo from a frame (b) Standard deviation (σN )

of CCD camera pixels in the average (G=0)

The intensity values presented in the results (both coherent and pseudo-thermal
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cases) are DC offset subtracted intensity values, a necessary step to preserve accuracy

during variance computation, as large mean values can lead to significant loss of pre-

cision (Chan et al., 1983). It involves shifting the data by an estimated mean, prior to

variance calculations (Higham, 2002). Additionally, when intensity recordings are af-

fected by a DC offset caused by noise sources such as photon noise, dark noise, read

noise or compression algorithms, the ratio between mean and variance deviates from the

ideal distribution, which is crucial for accurately extracting photon statistics (Fox, 2006).

To address this, the DC offset across all pixels throughout the frames is computed from

the recorded frames in a light-deprived laboratory environment and subtracted from each

pixel in every frame. This procedure ensures that photon counts reflect the source more

accurately. The intensity of a pixel in the frame j is calculated as follows:

Ij = Ij − ĪN (5.10)

where ĪN the mean intensity of DC offset on the CCD array through the all frames. To

illustrate the effect of DC offset, let’s take a thermal light photon number series with and

without DC offset as:

A = [5 5 0 1 4 0 6] → without DC offset

B = [8 8 3 4 7 3 9] → with DC offset

When we examine the mean and variance of these vectors, ĪA = 3, (ΔIA)
2 = 6.6667,

ĪB = 6 and (ΔIB)
2 = 6.6667. Since the Poisson distributions are interpreted according

to the their mean and variance ratio, noise is directly affect the distribution. Besides,

the second order coherence functions of these vectors are completely different where

g(2)(0) = 1.6349 for vector A and g(2)(0) = 1.1587 for vector B.

To visualize this problem, we also give a numerical simulation example using a

Poisson distribution provided in Figure 5.6 as a reference. Initially, we assumed that the

distribution in Figure 5.6 (a) is the actual distribution originating from the light source.

Then, we observed the influence of DC offset with 1, 5, and 10 intensity values, re-

spectively, on the distribution. As seen from the results, the distributions almost entirely

deviate from actual distributions in Figure 5.6 (a) and (b). Therefore, it can be concluded

that the noise factors (as a DC component on pixels) strongly influences the distribution

and fluctuation results, preventing the accurate distribution and coherence function.
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Figure 5.6. Deviation of Poisson distribution due to the DC offset (a) actual: Īexp =
4.75 and (ΔIexp)

2 = 3.12 (b) with +1 DC offset: Īexp = 5.75 and

(ΔIexp)
2 = 3.12 (c) with +5 DC offset: Īexp = 9.75 and (ΔIexp)

2 = 3.12
(d) with +10 DC offset: Īexp = 14.75 and (ΔIexp)

2 = 3.12

The proposed setup’s main goal is to examine thermal light on the pixels of an or-

dinary CCD array. Before these measurements, we initially examined the photon statistics

of coherent light, intending to serve as a reference and benchmark for thermal source out-

comes. The normalized histogram of the detected intensity numbers can be constructed by

gathering sufficient measurements to represent the photon number distribution. We also

realized coherent light experiments in two different gain levels to show the effect of noise

on measurement accuracy and precision. For a fair comparison with the pseudo-thermal

light source, we studied confined areas represented by the CCD pixels. At G=1000, the

photon statistics of four different pixels through a cross-section of the CCD are given in

Figure 5.7. Pixels have been selected from the CCD’s sides and center through a cross-

section. The experimental intensity number distribution outcomes show the Poisson dis-

tribution. Although there are small fluctuations in the mean (Īexp) and variance (ΔIexp)
2

of intensity values, which corresponds to red channel intensity in RGB values, they are

approximately equal to each other which obey the Poisson distribution property. How-

ever, it can be seen that the mean number is not constant and shows a great discrepancy

between pixels. From the theoretical framework, this is not possible with conventional

CCD cameras due to the long exposure time, which causes time averaging. The main

reason for observing this situation is the standard deviation of noise floor, which causes

DC offset with variance due to the detector’s high gain adjustment. Since we study with
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very faint light levels, it substantially affects the distribution of mean intensity and leads

to deviations that should not occur.

Figure 5.7. Intensity distribution of laser light through a cross-section (G=1000) (a)

pixel-1: Īexp = 4.57 and (ΔIexp)
2 = 4.54 (b) pixel-2: Īexp = 6.69 and

(ΔIexp)
2 = 6.32 (c) pixel-3: Īexp = 8.48 and (ΔIexp)

2 = 7.98 (d) pixel-4:

Īexp = 3.62 and (ΔIexp)
2 = 3.41

At G=0, the photon statistics of four different pixels through a cross-section of the

CCD are given in Figure 5.8. Again, the pixels have been selected both from the sides and

the center of the CCD. The results demonstrate that the intensity histograms converge to

the sub-Poisson distribution due to the time averaging as expected. This constant intensity

proves that the fluctuations coming from the noise floor are negligible because its effect

on the variance of distribution is so weak as given in Figure 5.8. The (ΔIexp)
2/Īexp ratio

on the CCD pixels is given in Figure 5.9. The average mean of the pixels is around 3. The

constant intensity value between frames can be observed with a fractional variance on all

the pixels of the CCD, as shown in the figures. 96.11% of the pixels exhibit a ratio smaller

than 0.15, which is a strong indication of uniform sub-Poisson distribution over the detec-

tor array. The negligible deviations between sub-Poisson distribution and experimental

results are due to the utilization of an imperfect detector, non-uniformity of plane wave at

some regions and loss factor through optical path. For the investigation of pseudo-thermal

source in the next part, these results are used as a reference and benchmark.
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Figure 5.8. Intensity distribution of laser light through a cross-section (G=0) (a) pixel-

1: Īexp = 3.00 and (ΔIexp)
2 = 0.05 (b) pixel-2: Īexp = 2.99 and

(ΔIexp)
2 = 0.009 (c) pixel-3: Īexp = 2.96 and (ΔIexp)

2 = 0.03 (d) pixel-

4: Īexp = 2.90 and (ΔIexp)
2 = 0.12

In the second part, we analyze the outcomes of pseudo-thermal light experiments.

We have shown that the bunching phenomenon is observed even though CCD’s exposure

time is much higher than the coherence time of light. The coherence time of light is

adjusted to tc = 3 μs. The average mean and the variance of the pixels are around

2 and 3.75, respectively. Therefore, the calculated (ΔIexp)
2/Īexp ratio is approximately

1.85. The distribution of ratio is given in Figure 5.10. The results reveal that 96.32%

of the pixels exhibit a ratio greater than 1.5. However, it can be seen that the statistical

behavior of pixels is different from each other on the contrary to coherent case. The ratio

mainly indicates the bunching phenomenon of thermal light since a bunch of photons

moving together in groups causes high-intensity fluctuations, so the distribution has large

variance values. According to the measurements, the pixels with small intensity values,

or small number of photons, can be closely approximated by a Bose-Einstein distribution

as expected from the Equation 5.5. Four different single-pixels results obeying the Bose-

Einstein distribution are given in Figure 5.11. The pixels have been different sides of the

CCD according to the mean intensity values of pixels. They agree with the theoretical

Bose-Einstein distribution.
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Figure 5.9. (ΔIexp)
2/Īexp on the CCD camera pixels for laser light (G=0)

Figure 5.10. (ΔIexp)
2/Īexp on the CCD camera pixels for thermal light (tc = 3 μs)

On the other hand, as the mean value increases, which means that more photons

fall to the pixel in the average, the expectation is that the distribution starts to evolve from

Bose-Einstein to the Poisson distribution. These deviations are observed in the pixels

with a high mean number especially having mean intensity value above 2.5. Although

the distribution deviates from the Bose-Einstein distribution, it has still large variance

values which indicates the super-Poisson distribution. The intensity distributions of two

diverged pixels are given in Figure 5.12. Figure 5.12 (a), while bearing similarity to

the Bose-Einstein distribution, contains radius of errors especially in 1 and 2 intensity

values. However, Figure 5.12 (b) is almost entirely deviant. Therefore, it can be stated

that obtaining a reliable thermal light distribution for values where the mean intensity

exceeds number 3 (cutting edge) may be problematic in standard CCDs.
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Figure 5.11. Intensity distribution of pixels obeying Bose-Einstein distribution (a)

pixel-1: Īexp = 1.08 and (ΔIexp)
2 = 1.9215 (b) pixel-2: Īexp = 0.99

and (ΔIexp)
2 = 1.68 (c) pixel-3: Īexp = 1.91 and (ΔIexp)

2 = 4.55 (d)

pixel-4: Īexp = 1.47 and (ΔIexp)
2 = 2.45

The outcomes have proven that although the coherent light shows the same Pois-

son distribution statistics in every pixel, the behavior is not the same for the thermal

source, which indicates that Bose-Einstein and super-Poisson statistics can be observed

with the single pixel analysis of ordinary CCDs. Additionally, considering that the output

from the CCD is within the range of 0-255 and our operating range is between 0-3, ap-

proximately a 1/100 ratio in intensity values is required for observations to be conducted.

Figure 5.12. Intensity distribution of two deviated pixels from Bose-Einstein to Pois-

son due to increasing mean intensity value (a) pixel-5: Īexp = 2.48 and

(ΔIexp)
2 = 5.95 (b) pixel-6: Īexp = 3.20 and (ΔIexp)

2 = 5.59
.
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We also examine the feasibility of our proposed system for increased rotator speed

which corresponds low coherence. Therefore, we make an independent experiment where

the diffuser frequency is adjusted to fr = 1500 Hz, which generates pseudo-thermal light

having tc = 68 ns. The mean and variance intensity values are around 1.87 and 2.33,

respectively. (ΔIexp)
2/Īexp ratio is approximately 1.3 as seen from the Figure 5.13. As

the previous results, the distributions obey the Bose-Einstein distribution for small number

of intensity values. The outcomes indicates that the acquisition of time information from

spatial intensity data is applicable for thermal light having very low coherence time which

prove that the measurement is valid regardless of the coherence of thermal light.

Figure 5.13. (ΔIexp)
2/Īexp on the CCD camera pixels for thermal light (tc = 68 ns)

Figure 5.14. Intensity distribution of thermal light (tc = 68 ns) pixels obeying Bose-

Einstein distribution (a) pixel-1: Īexp = 0.99 and (ΔIexp)
2 = 1.55 (b)

pixel-2: Īexp = 1.20 and (ΔIexp)
2 = 1.8911

.
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5.2.2. Second Order Coherence Measurements

We start this subsection with coherence length measurements of our coherent

source He-Ne laser before temporal and spatial coherence experiments. In this way, we

not only verify the coherence degree (both temporal and spatial) of our source but also

re-extract the characteristics of this extensively employed light source over the years.

For this purpose, we employed a most common interferometric-based method known as

Michelson interferometer. It is an amplitude-splitting interferometer conceived by Albert

Michelson in 1890, marking him as the first American physicist to be awarded the Nobel

Prize (1907) for advancements in optics. Michelson, in collaboration with Morley, em-

ployed this interferometer in their renowned sequence of experiments designed to validate

the existence of the ether. The experimental setup of Michelson interferometer is given

in Figure 5.15. In the configuration, the laser light is directed onto a beam splitter (BS),

comprising a glass plate with a partially reflective surface. Approximately 50% of the

incident light is reflected, while the remaining 50% is transmitted. The reflected light,

denoted as beam 1, encounters mirror M1, undergoing reflection back towards the beam

splitter. Simultaneously, the transmitted light, identified as beam 2, is reflected back to-

wards the beam splitter by movable mirror M2. Half of the intensity of each reflected

beam is transmitted or reflected toward the observation screen. At the screen, the two

beams intersect, leading to constructive or destructive interference contingent upon the

relative phase shift between the two plane waves. By adjusting the optical path of beam 2

via movable mirror M2, we can obtain information about coherence of optical source.

Figure 5.15. Michelson Interferometer setup

Then, we realized coherence function measurements for both temporal and spa-

tial. For the temporal second order correlation function g(2)(τ) measurements, we used
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the setup in Figure 5.4 by leveraging CCD camera frames. For the spatial second or-

der correlation function measurements, the utilized setup for coherent source are given in

Figure 5.16. To dispose of the two detectors requirement for the coincidence detection,

CCD camera pixels are divided in two parts as it behaves two different detectors having

same frame rate. This way, we can also eliminate the time-synchronization problem be-

tween detectors in coincidence circuits. Furthermore, for the relaxation coherence time,

the two arms are arranged to have approximately same optical path to the CCD camera.

The divided light beams fall onto the centers of the first and second portions of the CCD.

Figure 5.16. The experimental setup for spatial coherence measurement for laser light.

F is ND filter to prevent saturation; M is a mirror; BS is beam splitter.

5.2.2.1. Coherence Length Measurements

To find the laser coherence length, we systematically acquired 8 distinct measure-

ments by incrementally distancing from the source. The starting point is 120 cm in our

setup due to the fact that beam expander occupy large area. Since the coherence length of

a beam of light (lc) is defined as the maximum difference in path length between two inter-

fering beams such that an interference pattern is still visible, we calculate the visibility of

interference pattern for 8 different points according to the Equation (5.11). Recorded in-

terference patterns for two different distances between laser and CCD are given in Figure

5.17. As expected, the visibility decreases with increased optical path.
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V =
Ii(max) − Ii(min)

Ii(max) + Ii(min)

(5.11)

where Ii(max) and Ii(min) represent the maximum and minimum value of interfered inten-

sity, respectively.

Figure 5.17. Recorded intensity patterns and cross section plots for distance (a) at 120

cm (b) at 530 cm

To obtain the coherence length curve using discrete measurements, we exploit

polynomial fitting. The approximated polynomial is given below:

p(x) = p1x
4 + p2x

3 + p3x
2 + p4x+ p5 (5.12)

where p1 = −1.031 × 10−9, p2 = 1.363 × 10−6, p3 = −4.913 × 10−4, p4 = −0.06326,

and p5 = 98.03. According to the curve fitting result, the coherence length of the laser is

at around 8 m as given in Figure 5.18.

We know that the coherence length depends on the distribution of the frequencies

that create the beam. The broader the frequency distribution, the shorter the coherence

length. The length of cavity approximately 15 cm for the laser. We extract coherence time

(tc), line-width (Δλ) and spectral width (Δυ) of the laser. The results reveal that the co-

herence time, line-width and spectral width of laser is approximately 26.6 ns, 0.05 pm and
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36 MHz, respectively. For more detailed formulations and calculations, see (Ackermann

and Eichler, 2007).

lc = c tc (5.13)

tc =
1

Δυ
(5.14)

Δυ = c
Δλ

λ2
(5.15)

where c is the speed of light.

Figure 5.18. Polynomial fitting result for the He-Ne laser coherence length

5.2.2.2. Temporal Coherence Measurements

The second-order temporal correlation function of the light is defined by:

g(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉
〈E∗(t)E(t)〉〈E∗(t+ τ)E(t+ τ)〉 =

〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉 (5.16)

where E(t) and I(t) are electric field and intensity of light at time t, respectively. Based
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on this definition, the g(2)(τ) describes the correlation between two temporally separated

intensity signals with time difference τ = t2− t1 from one light source. Since the number

of counts registered on a photoncounting detector is proportional to the intensity accord-

ing to the Equation (5.7), we can write g(2)(τ) in terms of photon numbers as:

g(2)(τ) =
〈n1(t)n2(t+ τ)〉
〈n1(t)〉〈n2(t+ τ)〉 (5.17)

where ni(t) represents the number of counts registered on detector i at time t. If the

analysis is made between single detector frames, there is no need to sub-index i (as in our

case). Also 〈·〉 designates the statistical averaging that is done over a large ensemble of

different realizations of the input field.

Figure 5.19. g(2)(0) result on the CCD camera pixels for coherent light

In part 5.2.1, we have demonstrated the pseudo-thermal light photon statistics by

examining the single pixels of the CCD camera. We have seen that although most of pixels

reveal thermal distribution behavior while some pixels do not due to the mean intensity

value of pixels. However, the distribution is the same for nearly all pixels in the coherent

source case. In this part, same recorded frames in the previous sections are examined

by the normalized second order temporal correlation function g(2)(τ) perspective. This

way, not only we can make validation about the statistics of light source but also we

try to establish a relationship between two different evaluation criterion. Through the

measurements, the exposure time of the CCD is used as the time difference τ , which

indicates that we scrutinize the correlation between frames. In order to conduct a fair
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assessment, camera pixels with extracted photon statistics were examined in terms of

g(2)(τ). The experiments are realized for both coherent and thermal light.

Figure 5.20. Coherent light g(2)(τ) results for four different pixels on the CCD camera.

τ is in terms of the frame number.

g(2)(τ) of coherent light on the CCD array and selected four pixel results are given

in Figure 5.19 and 5.20, respectively. According to the coherent light outcomes, g(2)(0)

starts with a value close to the 1 and shows negligible fluctuations at around 1 which obey

the theory (see Figure 1.9). This attitude is valid for almost all pixel as photon statistics

analysis of coherent light. 93.04% of the pixels have g(2)(0) between 1 and 1.05. The

percentage reaches 99.9% for the range between 1 and 1.1. The average g(2)(0) of all

pixels is 1.0207. Since the selected pixels are the same with photon statistics part, it can

be concluded that the pixel having large variance (as in Figure 5.8 (d)) also has slightly

high g(2)(0) value which corresponds approximately 1.014.

For the thermal light g(2)(0) measurements, we use the main idea which is the dis-

tribution of time-bin information to the spatial information as mentioned in previous sec-

tions. As the frequency of multiphoton events rises, the temporal gap between successive

photon arrivals contracts relative to the prescribed sampling duration. Alternatively ex-

pressed, the sampling duration extends beyond the coherence time of the emitted photons.

When we examine the pseudo-thermal light results, all pixels have distinct characteristics

similar to photon statistics results. g(2)(τ) of thermal light on the CCD array and selected
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four pixel results are given in Figure 5.21 and 5.22, respectively. The average g(2)(0) of

all pixels is 1.7264. This outcome indicates thermal light and bunching phenomenon As

the mean intensity value increases further, the distribution gets closer to the Poisson dis-

tribution. For the pixel obeying Bose-Einstein distribution, as expected (Guo et al., 2018),

g(2)(τ) decreases gradually to 1 in increasing τ which is determined by exposure time. It

can be seen in Figure 5.22, the g(2)(τ) exhibits a sharp decline with τ = 1.

Figure 5.21. g(2)(0) result on the CCD camera pixels for thermal light (tc = 3 μs).

Table 5.1. g(2)(0) classification of thermal light pixels

>1.5 >1.6 >1.7 >1.8 >1.9
g(2)(0) 97.68% 82.06% 54.84% 28.29% 11.84%

On the other hand, for the pixel diverging from Bose-Einstein distribution, g(2)(0)

starts from 1.5 revealing that source characteristics move away from thermal statistics

and goes to the coherent light statistics. This inference can be easily seen from Figure

5.22. Pixels with a larger g(2)(0) exhibit better conformity with Bose-Einstein distribution

(for comparison of same pixels see Figure 5.11). Therefore, it can be concluded that

although photon statistics and second order correlation function measurements are two

different approach for source characterization and have no direct relationship, they are in

agreement with each other. On the other hand, there are undesired fluctuations around 1

in the incremental τ values because g(2)(τ) should one expect τ due to the long exposure
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time of the detector. For example, the mean value of g(2)(1) is equal to the 0.998 and

95.22% of the pixels have g(2)(1) between 0.95 and 1.05. These fluctuations may occur

due to rotating diffuser granule size, some scattered field diffractions at the sharp edges

of CCD and utilization of CCD which can be defined as imperfect detector for statistical

measurements.

Figure 5.22. Thermal light g(2)(τ) results for four different pixels on the CCD camera

(tc = 3 μs). τ is in terms of the frame number.

We also evaluate the g(2)(τ) for τc = 68 ns. The g(2)(0) distribution on the CCD

array is given in Figure 5.23. Since this is an independent measurement having distinct

coherence time, the distribution change completely from the previous thermal light mea-

surements. However, the results indicates same implication. According to the outcomes,

g(2)(0) has large values for the intensity distributions obeying the Bose-Einstein distribu-

tion, which corresponds a small number of intensity values.
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Figure 5.23. g(2)(0) results on the CCD camera pixels for thermal light (tc = 68 ns)

5.2.2.3. Spatial Coherence Measurements

The second-order spatial correlation function of the light is defined by:

g(2)(x1, x2) =
〈E∗(x1)E∗(x2)E(x2)E(x1)〉
〈E∗(x1)E(x1)〉〈E∗(x2)E(x2)〉 =

〈I(x1)I(x2)〉
〈I(x1)〉〈I(x2)〉 (5.18)

where E(xj) and I(xj) are electric field and intensity of light at position or pixel i, re-

spectively. Like second order temporal correlation function, we can write g(2)(x1, x2) in

terms of photon numbers as:

g(2)(x1, x2) =
〈n1(x1)n2(x2)〉
〈n1(x1)〉〈n2(x2)〉 (5.19)

where ni(t) represents the number of counts registered on detector i at position or pixel

xj .

For spatial coherence experiments, we used experimental setup, which is given in

Figure 5.16. The CCD camera sensor area was treated as if there were two separate detec-

tors. We examined the spatial coherence between the light beams directed into two distinct

areas. The optical paths were adjusted to be as closely aligned as possible since the re-

quirement of temporal coherence has been relaxed (Zhang et al., 2009). However, it does

not seem quite feasible in a non-sophisticated laboratory environment, especially consid-

ering the wavelength of light. To show the exact distribution of the light, the recorded
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pattern in Figure 5.24 (a) was not taken in very faint light conditions. After this step, the

light was attenuated.

Figure 5.24. Spatial coherence measurements for coherent source (a) Recorded CCD

pattern from a frame (b) Joint detection probability between pixels in first

and second side of CCD camera (c) Normalized spatial second order cor-

relation function g(2)(xi, xj) on the CCD camera pixels (d) Normalized

spatial second order correlation function g(2)(xi, xi) through the diagonal

cross section

The joint detection probability of two beams is given in Figure 5.24 (b). Since

both areas have 384 pixels (768/2) horizontally, the probability should take its maximums

at around one-fourth of the total number of pixels. Furthermore, the g(2)(x1, x2) has

very small and negligible fluctuations at around one and become more stable through the

center points of the diagonal cross-section as expected (see Figure 5.24 (c) and (d)). The

results prove that spatial correlation measurements, especially in extended patterns, CCD

cameras are effective solutions.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

Within this dissertation, we first present a novel methodology based on the phase

diffraction properties of spatially structured entangled photons. This approach is designed

to effectively characterize the thickness of nanoscale dielectric films on optical fibers.

The proposed method involves tracking photons as rays while disregarding minor de-

coherence effects resulting from the short optical path length within the phase object,

leading to a simplified mathematical model. Notably, we have illustrated that the utiliza-

tion of transverse spatial correlations significantly enhances the precision in determining

film thickness. In the model, spatially entangled photons are integrated with a narrower

aperture to achieve confocality, thereby further refining thickness precision. Simulation

results indicate that the amplitude ratio reaches 1.2, and zero crossings shift to approxi-

mately 70 μm for a 25-nanometer film-coated optical fiber. Despite the low conversion

efficiency affecting detector intensity in SPDC, this observable and measurable deviation

corresponds to nearly 4 pixels on a 20 μm pixel-size detector array. By assessing these

deviations, accurate determination of film thickness becomes feasible. Consequently, the

spatial entanglement-based phase diffraction design emerges as a potent technique for

characterizing transparent curved dielectric film thickness, particularly up to 25 nm, a

critical requirement for various optical fiber sensor applications.

We have also demonstrate an alternative scheme depending on phase diffraction

of thermal photons instead of spatially entangled photons. The suggested system provides

a cost-effective and practical solution, especially suitable for non-sophisticated conven-

tional laboratories. This enables circumvention of issues such as low generation proba-

bilities of entangled photons and strict laboratory alignment. According to the results, the

sole distinction between thermal photons and entangled photons appears to be in terms

of visibility. Although it may produce sub-optimal results for detectors with exceedingly

high exposure times, minima shifts and amplitude variations are measurable in a sufficient

laboratory environment.

As optical coherence and coincidence detection techniques forms an essential in

the proposed characterization system, a comprehensive analysis of photon statistics and

optical coherence is undertaken through the introducing an innovative and straightforward

measurement procedure for thermal light characterization. The proof-of-concept exper-
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imental design is constructed to extract photon number statistics and second degree of

coherence of thermal light sources by leveraging single pixel measurements through a

CCD camera. The semi-classical approach is used in the analysis which provides simple

and practical model. Before the experiments, a comprehensive feasibility analysis of CCD

was conducted. Coherent source is also examined to serve a reference for thermal source

outcomes. In light of the photon statistics outcomes, it is evident that the Bose-Einstein

statistics associated with scattered light can be extracted by scrutinizing individual pixel

intensity values, notwithstanding the extended exposure time of the detector. The re-

sults reveal that as the mean photon number increases, the photon number distribution

showcases a transition from a Bose-Einstein distribution to a Poisson distribution. Sub-

sequently, we examine and evaluate both temporal and spatial second-order coherence

function measurements. The exposure time of the CCD is exploited time difference in

temporal g(2)(τ) measurements. While the cameras exposure is used as an internal coin-

cidence circuit in temporal coherence measurements, the sensor area of the CCD camera

is treated as though it comprised two distinct detectors in spatial coherence experiments.

At small intensities, the degree of temporal coherence is well above reference coherent

case value. These results are the clear signature of thermal light. Hence, Bose-Einstein

distribution and bunch light phenomenon can be observed over the pixel intensity values

of CCD which is a conventional, non-sophisticated commercially available detector.

For the future works, the N-fold detection scheme may be integrated to the char-

acterization system to increase the thickness resolution since the studies have been proven

that the maximally entangled multiphoton entangled states (NOON) acquire N times sen-

sitivity to the system (Mitchell et al., 2004; Afek et al., 2010). Superradiance (Oppel

et al., 2014) or multiphoton interference phenomena (Oppel et al., 2012) can also be

used in the system model. Besides, it is known that the coherence properties of pump

affect the biphoton wavefunction directly (Cui et al., 2024; Defienne and Gigan, 2019;

Boucher et al., 2021). Therefore, tunable control of spatial correlations between photon

pairs produced by SPDC can be considered a topic worthy of investigation. At last, the

identification of nanoscale thickness in dielectric films can pose challenges due to the in-

adequacy and prolonged nature of classical curve matching algorithms. Neural network

and signal processing algorithms (Ataç et al., 2023; Ataç and Dinleyici, 2023a) may also

helpful for thickness classification with relatively small tolerances.

By considering the effect of pixel size on the acquired photon statistics, the utilized

CCD detector type may be changed with a sensor array having small pixel size. In this

way, the number of photons impinged on detector decrease and bunching effect may be
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observed almost all pixels of detector. Furthermore, the optical losses through propagation

path (i.e. beam splitter, ND filters, quantum efficiency of detector) may be examined and

taken into account for more realistic models since this situation causes random sapling of

photons and so less accurate results. Lastly, taking into account the operational principles

of Optical Coherence Tomography (OCT) and multi-layer dielectric films, the proposed

model for incoherent light statistics could prove useful in determining layer thickness or

refractive index profiles.
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