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İZMİR



We approve the thesis of Kadir Can DOĞAN
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ABSTRACT

THEORETICAL INVESTIGATION OF STRUCTURAL,

VIBRATIONAL, ELECTRONIC, AND ELASTIC PROPERTIES OF

ULTRA-THIN ANISOTROPIC MATERIALS

Dimensional reduction in materials leads to significant improvements and changes

in various properties due to quantum phenomena and intense confinement of electrons.

Since the separation of graphene from bulk graphite in 2004, many different materials

with layered bulk structures have been experimentally introduced into the literature, in-

cluding hexagonal boron nitride (BN), transition metal dichalcogenides (TMDs), and in-

plane anisotropic monolayer black phosphorus (BP). Among ultra-thin materials, anisotro-

pic materials have attracted attention due to their distinct orientation-dependent vibra-

tional, electronic, optical, and mechanical features and have been shown to have high po-

tential for special applications such as polarization-sensitive photodetectors, orientation-

dependent optoelectronic devices, and orientation-sensitive sensors. The aim of this thesis

is to predict the stable structures of ultra-thin anisotropic materials such as HfTe5, TiX5,

TaX3 (X:S, Se, Te), bismuthene and magnetic MnPS3 nanoribbons and to understand their

structural, magnetic, vibrational, electronic, optical and elastic properties on a physical

basis by performing density functional theory (DFT)-based first-principles calculations.

Preliminary data via STM images are presented for the potential experimental charac-

terization of possible defects and oxidized structures of the single-layer HfTe5, whose

predicted stable structure. The existence of stable structures of titanium-based penta-

calcogenides is predicted and the direction-dependent properties of the stable phases are

investigated. The dynamic stability of Ta-based trichalcogens exhibiting anisotropy dif-

ferent from TiS3 and ZrS3 has been investigated and their crystal-orientation dependent

elastic properties are analysed. In addition, in the tilted α-bismuth known as the α phase,

the identification of the external strain direction through the Raman spectrum is examined.

The reduction of in-plane anisotropy to 1 dimension is studied through the edge type- and

width- dependent properties in magnetic MnPS3 nanoribbons. Our findings are important

for the prediction of novel anisotropic materials.
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ÖZET

ULTRA-İNCE ANİZOTROPİK MALZEMELERİN YAPISAL,

TİTREŞİMSEL, ELEKTRONİK VE ELASTİK ÖZELLİKLERİNİN

TEORİK İNCELENMESİ

Malzemelerde boyutsal azalma, kuantum fenomenleri ve elektronların yoğun

sıkışması nedeniyle çeşitli özelliklerde önemli iyileştirmelere ve değişikliklere yol açar.

2004 yılında grafenin yığın durumdaki grafitten ayrıştırılmasından bu yana, altıgen bor

nitrür (BN), geçiş metali dikalkojenitleri (TMD’ler) ve düzlem içi anizotropik tek kat-

manlı siyah fosfor (BP) dahil olmak üzere katmanlı yığın yapısına sahip bir çok farklı

malzeme deneysel olarak literatüre kazandırılmıştır. Ultra ince malzemeler arasında ani-

zotropik malzemeler, farklı yönelimlere bağlı titreşimsel, elektronik, optik ve mekanik

özellikleri nedeniyle ilgi çekmiş ve polarizasyona duyarlı fotodedektörler, yöne bağlı op-

toelektronik cihazlar ve yönelime duyarlı sensörler gibi özel uygulamalar için yüksek

potansiyele sahip oldukları gösterilmiştir. Bu tezin amacı, yoğunluk fonksiyonel teorisi

(YFT) tabanlı ilk prensip hesaplamaları yaparak HfTe5, TiX5, TaX3 (X:S, Se, Te), biz-

muten ve manyetik MnPS3 nanoşeritler gibi ultra-ince anizotropik malzemelerin kararlı

yapılarını öngörmek ve yapısal, manyetik, titreşimsel, elektronik, optik ve elastik özel-

liklerini fiziksel temelde anlamaktır. Kararlı yapısı öngörülen tek katmanlı HfTe5’in olası

kusurlarının ve bu kusurların oksitli yapılarının olası deneysel karakterizasyonu için STM

görüntüleri üzerinden ön veriler sunulmuştur. Titanyum bazlı pentakalkojenitlerin kararlı

yapılarının varlığı öngörülmüş ve kararlı fazların yön bağımlı özellikleri incelenmiştir.

TiS3 ve ZrS3 malzemelerinden farklı yapıda anizotropi sergileyen Ta-bazlı trikalkojen-

lerin dinamik kararlılıkları incelenmiş ve kristal yönelimine bağımlı elastik özellikleri ird-

elenmiştir. Bunun yanında, bizmutenin α-fazı olarak bilinen eğimli yapısında, dış gerinim

yönünün Raman spektrumu üzerinden anlaşılması çalışılmıştır. Düzlem içi anizotropinin

1 boyuta indirgenmesi, manyetik MnPS3 nanoşeritlerinin kenar tipi ve şerit genişliğine

bağımlı özellikleri üzerinden incelenmiştir. Bulgularımız, yeni anizotropik malzemelerin

öngörülmesi açısından önem arz etmektedir.
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CHAPTER 1

INTRODUCTION

The identification of novel materials, or novel characteristics of existing materi-

als, to fulfill particular industrial or scientific needs, is a stimulating intellectual endeavor

of paramount significance for our technology, environment, economy, and future. Af-

ter establishing the importance of identifying novel materials, particularly in the context

of industrial and scientific needs, a significant advancement has been witnessed with the

emergence of low-dimensional systems. These systems, which include zero-dimensional

quantum dots, one-dimensional nanoribbons, nanotubes, and nanowires, as well as two-

dimensional single-atom-thick materials,1 represent a frontier in material science. Un-

derstanding the dimensionality of these structures is crucial as it dictates their atomic ar-

rangement and distinctive properties.2 Remarkably, the same material can exhibit vastly

different characteristics when manipulated into different dimensions, as illustrated by the

striking differences between graphene and bulk graphite. The atomically thin structures

hold immense promise for both scientific inquiry and technological innovation, offering

unprecedented opportunities for advancement across various domains.3,4,5,6

Philip Russell Wallace predicted the atomic structure of graphene in 1947,7 but it

was considered unstable and unfeasible until its discovery in 2004 by Novoselov et al. us-

ing the scotch tape technique for mechanical exfoliation.8 This technique produced stable,

single atomic layers of carbon, known as graphene, which has a 2D honeycomb structure

and is a semimetal. Graphene exhibits exceptional properties such as high electron mobil-

ity (2.5x10−5 cm2V−1s−1),8,9 high thermal conductivity (3000 WmK−1),10 low absorp-

tion ratio (A = nα = %2.3), flexibility, and significant mechanical strength with its high

Young modulus (1 TPa) and intrinsic strength of 130 GPa.11 Graphene has the highest

elastic modulus and tensile strength of all known materials, owing to the sp2 hybridization

between the C atoms that form the hexagonal lattice in the atomic structure. All of these

exceptional properties of graphene has opened up the fabricate smaller and more sophisti-

cated devices for a wide range of technological applications such as energy storage,12,13,14

sensors,15,16,17 drug delivery,18,19 solar cells,20 photodetector,21,22 and transparent conduc-

tors, potentially replacing indium tin oxide (ITO) in displays.23,24,25 The discovery of

graphene marked a significant milestone in the field of low-dimensional materials, spark-

ing extensive research into other 2D semiconducting materials due to graphene’s lack of
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a band gap.26

As excellent properties in the 2D limit were identified with graphene, the focus of

interest shifted towards 2D structures. Since 2004, research on graphene-like new dozens

of 2D materials have grown increasing rapidly and the discovery of new materials contin-

ues such as transition metal dichalcogenides (TMDs),27,28,29 mono-chalcogenides,30 tran-

sition metal carbides, nitrides,31,32 transition metal dihalides,33,34 layered double hydrox-

ides,35 and mono-elemental materials like silicene, and germanene.36,37,38 2D materials

offer exceptional dynamical, thermal, and mechanical stability at high temperatures,10,39

expanding their potential applications across various fields. Their remarkable electri-

cal, optical, and mechanical properties make them invaluable for devices such as transis-

tors, photodetectors, and electroluminescent devices.40 They find utility in both charge-

based and non-charge-based technologies, spanning electronics, photonics, and biomedi-

cal fields.41,42,43,44,45,46 Integrating 2D materials into technology enables the development

of planar electronic devices with enhanced performance, lower power consumption, and

added flexibility and transparency.47 Overall, the multifaceted functionality of 2D mate-

rials serves as a significant source of inspiration for future technological advancements.

While graphene, hBN, and TMDs have been studied for their exceptional isotropic

in-plane physical features, the discovery of single-layer black phosphorus (phosphorene

or BP) in 2014 led to a significant shift in research focus towards anisotropic 2D mate-

rials.48 The early fascination surrounding BP stems from its unique property of having

a layer-dependent direct band gap, unlike graphene, and it demonstrates a carrier mo-

bility that surpasses that of MoS2. The first synthesis of bulk BP dates back a century

ago. In the early stages of 1914, it was synthesized from red phosphorus through the

application of high hydrostatic pressure at a temperature below the threshold where trans-

formation occurs rapidly under normal atmospheric pressure.49 Phosphorus manifests in

three distinct allotropes: white, red, and black phosphorus. BP emerges as a rare and

highly stable allotrope compared to white and red phosphorus. Structurally, bulk black

phosphorus exhibits a layered crystal structure similar to graphite, but its puckered double

layers distinguish it from atomically flat graphite-like materials.50 Electronically, it is a

direct gap semiconductor with 0.33 eV band gap energy and mobilities of up to 20 000

cm2V−1s−1 at room temperature.51,52,53 In addition, Tao et al. demonstrated the Young

modulus of few layer BP was found to be 58.6±11.7 and 27.2±4.1 GPa for two main

orientation, namely, zigzag (ZZ) and armchair (AC), respectively, exhibiting soft nature

of the structure (Tao et al., 2015). In addition, its puckered honeycomb lattice led to dis-

tinct in-plane structural, electronic, optical, and mechanical anisotropy.54,55,56 The synthe-
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sis of single-layer 2D BP involves stripping ordered phosphorus atoms from bulk black

phosphorus, resulting in each phosphorus atom being covalently bonded to three adja-

cent atoms through sp3 hybridization. 2D BP has attracted tremendous attention since

2014 due to its remarkable properties, including exceptional carrier mobility (up to 103

cm2V−1s−1), thickness-dependent direct band gap (2 eV in single-layer to 0.33 eV in bulk

form), and distinctive in-plane anisotropic physical characteristics which makes it supe-

rior semiconducting material. The hole effective masses were reported to be 1.140 and

0.182 m0 while the electron effective masses were shown to be 0.846 and 0.166 m0 for

the single-layer BP, indicating the highly anisotropic behavior of the structure.57 More-

over, the reported angle-dependent stiffness values for 2D BP are 39 and 92 N/m for the

AC and ZZ orientations, respectively.58 Due to highly anisotropic nature of its buckled

structure, high carrier mobility, and tunable band-gap, 2D BP holds significant promise

for applications in next-generation nanoscale devices, and optoelectronics.59,54 Therefore,

it is increasingly utilized in various electronic materials, including transistors, alongside

other 2D materials such as graphene, boron nitride, and transition metal chalcogenides.

However, the utilization of BP encountered obstacles due to its instability and degrada-

tion under ambient conditions, as well as the lack of techniques for producing extensive

and high-quality structures. Recent studies have discovered that structures similar to BP,

known as BP-analogues, show potential as effective solutions to address the limitations

of BP. Therefore, they have garnered growing attention, especially mono-elemental 2D

group V (pnictogens), owing to their distinctive and stable structures, alongside their ex-

ceptional physical and chemical characteristics.

Since the discovery of anisotropic BP in 2014, anisotropic 2D materials have

drawn increasing attention, and significant efforts have been focused on demonstrating

novel highly anisotropic structures in the 2D limit. Due to their characteristics and uses

that depend on orientation, in-plane anisotropic materials have recently become an excit-

ing area of investigation in the scientific community.60,61 The presence of reduced in-plane

symmetry in 2D structures can result in intriguing anisotropic features, hence enhancing

their roles and expanding their applications. Specifically, the use of anisotropic 2D mate-

rials would be attractive for producing passive optical polarizers and high mobility transis-

tors that can take advantage of decreased back-scattering caused by hot electrons.62 Uti-

lizing the anisotropic properties of low-symmetry materials has paved the way for appli-

cations such as integrated digital inverters63 and linear dichroic photodetectors.64 Inves-

tigating alternative layered materials that possess enhanced structural in-plane anisotropy

would provide the possibility of combining the benefits of 2D materials (such as flexi-
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bility, transparency, and a high surface to volume ratio) with fully quasi-one dimensional

(1D) characteristics.

Recently, allotropes of single-layer bismuthene have been receiving increasing

attention due to their non-radioactive nature, non-toxicity, strong diamagnetism, high sta-

bility, low cost, high surface area, strong intrinsic spin-orbit coupling (SOC), thermoelec-

tric properties, and similarity in structure to BP.65,66,67,68,69,70 Bismuthene, the 2D form

of bismuth (Bi), exhibits several structural phases including α, β, γ, p-monoclinic, f-,

and b-hexagonal.71,72 Sing et al. observed that the α and γ phases exhibit metallic and

semimetallic character, respectively, while the p-mono, b-hexa, f-hexa, and β structures

display semiconducting behavior.71 In addition, Gou et al. reported the identification of

a ferroelectric state in the tilted α phase of bismuthene, which resembles black phospho-

rus.72 Moreover, bismuthene displays topological insulator properties owing to its strong

SOC.73,74 Additionally, the semi-metal to semiconductor and trivial to topological tran-

sitions were demonstrated under the strain.75 Through manipulation of strain and SOC

strength, the topological phases of the single-layer bismuthene can be adjusted to exhibit

many properties, including being a zero band gap metal, a topological semimetal, a null-

gap Dirac semimetal, direct and indirect band gap semiconductors, and conventional insu-

lators.76 Overall, bismuthene has been announced as a promising 2D anisotropic material

for various technological applications such as nonlinear optics including as a broadband

detector, ultrafast photonics, as a phase modulator, and as an all-optical switcher with a

direct band-gap.77,78,79

In recent years, transition metal tri- and penta-chalcogenides (MX3-MX5; M=Ti,

Zr, Hf and X=S, Se, Te)80,81 have emerged as the most outstanding anisotropic fami-

lies, attributed to their highly asymmetric geometries and their orientation-dependent vi-

brational, thermal, electronic, optical, and mechanical properties. Manipulating crystal

orientation is crucial for controlling the diversity and uniformity of device performance.

Research on TMTCs dates back to the early 1960s, primarily concentrating on bulk crys-

tal structures. 2D single-layer TMTCs, rather than bulk or layered MX3, are the focus

of significant attention in both experimental and theoretical studies. Since 2015, numer-

ous transition metal tri-chalcogenides (TMTCs) have been identified, generally referred

to as MX3 compounds (metal atom, M=Ti, Zr, Hf, V, Nb, and Ta, and chalcogen atom,

X=S, Se, and Te), exhibiting quasi-1D van der Waals (vdW) structures.82,83,84 TMTCs are

connected by robust covalent connections in the one-dimensional chain direction, while

weak covalent bonds exist between neighboring chains. The presence of such extra bonds

strengthens the arrangement of the one-dimensional chains, resulting in the formation of
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two-dimensional sheets. 2D sheets of TMTCs, like other 2D structures, stack to form

3D bulk crystals using weak van der Waals forces, giving TMTCs the benefits of both

2D materials and quasi-1D features simultaneously.85,86,87,88,89 The prismatic MX6 chains

of MX3 structures are elongated along the b-axis to enhance their anisotropic properties.

TMDC families are considered crucial materials for advancing the development of future

nano-electronics and have wide-ranging potential applications. Low-symmetric struc-

tures of TMTCs enable innovative concepts and design flexibility for logic devices and

integrated circuits.88,90 From the TMTCs families, TaS3, TaSe3, and NbSe3 exhibit metal-

lic behavior at high temperatures, while other sulfides and selenides of Ti, Zr, Hf, and Nb

display semiconducting characteristics. Compared to conventional TMDs such as MoS2,

2D MX3 structures contain additional X-X bands that introduce states far below the Fermi

level, thereby altering the electronic properties of TMTCs.81 In addition, when subjected

to in-plane strain, MX3 structures demonstrate exceptional transport capabilities and can

be utilized as a high-performance thermoelectric material.91 TMTC members find di-

verse applications in fields including field emission transistors,92 solar cells, fuel cells,93

photodetectors, sensors,82 and lithium-ion batteries.94 Manipulating pressure, tempera-

ture, and tensile strain can adjust the electrical characteristics of TMTCs. The transit of

charge density waves is crucial in making these materials highly significant in the fields of

nanoscience and materials science. Particularly among the TMTCs, TaX3 structures are

fascinating 2D materials with highly conductive and lamellar crystal structure whose unit

cell is composed of X-Ta-X sandwich layers.95,96 Tantalum tri-sulfide exhibit two phases,

which is monoclinic and orthorhombic.97,98 Both crystal structures of TaS3 undergo a

phase transition to a charge density wave (CDW) phase at different temperatures. Earlier

studies have revealed fascinating physical phenomena in TaS3, including the emergence

and spread of CDW and the shift from a metallic to a semiconducting state.98,99,100 The

orthorhombic phase of TaS3 exhibits a superconducting phase with a maximum transi-

tion temperature of 3.1 K.101 Monoclinic crystal phase of TaS3 is the most extensively

researched 2D metal due to the display exciting physics related to its CDW instabilities.

The electrical transport properties of TaS3 along the chain axis are quite good and the

presence of nearly isolated chains is the most intriguing aspect of the TaS3 structure.102

Another highly anisotropic 2D family is transition metal penta-chalcogenides,

known as MX5 compounds (M= Zr or Hf; X is a chalcogen element S, Se, or Te). The lat-

tice structure of MX5 family typically exhibits a needle-like or ribbon-like growth pattern,

with its longest dimension aligned along the chain direction. Layered MTe5 structures are

very special members of topological insulators. The topological insulators (TI) are a
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novel kind of materials that behave as an insulator in its bulk but contains conducting

states on its edge or surface, which are topologically protected and robust against pertur-

bations. Such gapless boundary states exist within a bulk insulating gap and are shielded

by time-reversal symmetry.103,104 In addition, 2D topological insulator structures are of-

ten referred to as quantum spin Hall insulators (QSH).105,106 Among the several types of

topological quantum materials, semimetals are particularly fascinating due to their ability

to approach the Fermi energy, which has a direct impact on their physical properties. The

topology is categorized based on the level of band degeneracy in momentum space.107

MX5 family has garnered broad attention in the literature as promising candidates for

topological insulator materials, primarily owing to their distinctive electronic proper-

ties. Among the MX5 structures, the bulk forms of zirconium and hafnium pentatelluride

(ZrTe5 and HfTe5) have been the focus of research for over forty years due to their sig-

nificant thermo-electric power and fascinating resistivity anomaly.108,109 They have been

found to display a substantial positive magnetoresistance.110 In addition, there is signifi-

cant interest in MTe5 due to its proximity to the phase boundary between a robust TI and a

weak TI. ZrTe5 has emerged as an interesting topological material with semimetallic and

anisotropic nature.111,112 The phenomena of chiral magnetic effect,113 anomalous Hall

effect,114 pressure-driven superconductivity,115 and extraordinary thermoelectric proper-

ties116 have garnered significant interest in the ZrTe5 structure. Topological insulating

behavior is attributed to band inversion between p orbitals of two distinct Te sites at the

Γ high symmetry point, a phenomenon highly sensitive to minor changes in atomic po-

sitions. The interlayer coupling of the ZrTe5 crystal has a van der Waals nature and is

significantly weaker in comparison to the intralayer bonding strength. The ZrTe5 material

has an orthorhombic layered structure, which is defined by the Cmcm space group. The

ZrTe3 crystal structure consists of triple prisms arranged in chains along the a-direction.

These chains are connected to each other through parallel zigzag chains of Te atoms,

resulting in a 2D form of ZrTe5 in the a-c direction. The lattice constants of ZrTe5 struc-

ture are a=3.987 Å and c=13.727 Å. The ZrTe5 sheets arrange themselves in a layered

structure, stacking along the b-direction with a spacing of 7.251 Å.80 The crystal struc-

ture of MX5 generally grow with a needlelike or ribbonlike morphology, with the longest

dimension along the chain direction. The material has a semimetallic electronic nature

characterized by ellipsoidal Fermi surfaces that are both tiny and light. These surfaces are

centered at the Γ high symmetry point, which is located at the center of the bulk Brillouin

zone (BZ).117,118,119 Bulk ZrTe5 was shown to demonstrate topological edge states at the

surface step edge with a bulk band gap of 80 meV predicted to be 3D TI.80 In addition,
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the ZrTe5 single crystal is a layered material, and its 2D form is also predicted to exhibit

excellent topological insulating properties with an energy gap of 100 meV. It is classified

as a weak topological insulator, lacking any topological surface states on its terminat-

ing surface. Various experiments have offered evidence spanning from Dirac semimetal

(DSM)113 to topological insulators (TIs)120 to Weyl semimetals (WSM).114 In 2014, Weng

et al. made a prediction that 2D ZrTe5 has the potential to be a significant candidate

for a topological insulator with a substantial band gap energy. Scanning tunneling mi-

croscopy or spectroscopy (STM and STS) investigations and angle-resolved photoemis-

sion spectroscopy (ARPES) measurements also reveal the presence of topologically pro-

tected states at step edges in 2D form of ZrTe5 structure.121,122 Shahi et al. observed that

variations in characteristics of ZrTe5 can be attributed to varying defect concentrations

resulting from different growth procedures. Moreover, the anomalous Hall conductivity

of ZrTe5 structure was explained by the presence of Weyl points (WPs) that are generated

when time-reversal symmetry (TRS) is disrupted in a strong magnetic field.123 Moreover,

a magnetotransport test on ZrTe5 material revealed the presence of a chiral magnetic ef-

fect that arises from the transition between a Dirac and Weyl semimetal.113 Electronically,

single-layer ZrTe5 stands out as one of the most promising candidates for large-gap topo-

logical insulators, boasting a direct (indirect) band gap of 0.4 eV (0.1 eV). Single-layer

ZrTe5 has attracted significant attention due to its unique properties in topological phase

transitions and potential uses in electronic devices.124 ZrTe5 is resistant to lattice distor-

tions caused by external strains and exhibits behavior characteristic of stacked parallel 2D

conduction channels.125,121 Furthermore, HfTe5 has the same orthorhombic lattice struc-

ture as ZrTe5 with space group of Cmcm, but its atomic mass is significantly greater.126

Tellurides are particularly significant due to their high atomic weight and strong spin-orbit

interactions. Given the outstanding properties observed in ZrTe5, the study of anisotropic

characteristics and topological features in HfTe5 has emerged as an intriguing area of re-

search. HfTe5 emerges as an alternative 2D topological insulator, showcasing analogous

traits to ZrTe5, including strong thermoelectric properties, intriguing resistivity anomalies,

and distinctive topological features. The anisotropic electrical-transport characteristics of

HfTe5 structure have made it a subject of study as a possible topological insulator in re-

cent years.110,127,128 Additionally, HfTe5 material exhibits chiral magnetic effect and 3D

quantum Hall effect.129,130,131 The anisotropic nature and topological insulating behavior

of HfTe5 makes it a prime candidate for future experiments exploring the quantum spin

Hall effect and applications in anisotropic devices, positioning it as a leading contender

for 2D topological insulator research.
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2D materials have been demonstrated significant promise in nanoelectronics, ow-

ing to their remarkable structural, vibrational, electronic, mechanical, and optoelectronic

properties. However, the nonmagnetic nature inherent in most 2D structures imposes

considerable limitations on their potential applications in spintronic devices. Despite the

identification of their exceptional properties resulting from dimensional reduction, the

presence of intrinsic magnetism remained elusive during the early stages of research on

2D materials. Therefore, considerable efforts have been directed towards either modify-

ing existing 2D materials to incorporate magnetic features or discovering naturally mag-

netic 2D materials to overcome this limitation and unlock new possibilities in spintronics.

While it is possible to generate localized magnetic moments through defects and/or va-

cancy,132,133,134 strain engineering,135 and ribbon structures,136,137,138 the challenge persists

in achieving long-range ferromagnetic alignment in non-magnetic 2D materials. Thus,

researchers have devoted substantial efforts to the demonstration of 2D materials with

inherent long-range magnetism. By the successful synthesis of single layers of CrI3,
139

and Cr2Ge2Te6 (CGT),140 well-known 2D long-range ferromagnets, magnetism at the

atomic limit started to become the focus interest. The researchers demonstrated that both

single-layer CrI3 and CGT structures possess a notable perpendicular magnetic anisotropy

(PMA), which offers benefits such as decreased energy usage and improved thermal sta-

bility for storing high-density information.141,142,143 However, the practical application of

CrI3 (with a Curie temperature of 45 K) and Cr2Ge2Te6 (with a Curie temperature of 30

K) is limited in spintronic applications due to their comparatively low Curie temperatures.

Over the past decade, there has been a growing interest in studying new 2D magnetic ma-

terials that have higher Curie temperatures for nanoscale spintronic devices. Numerous

2D magnetic structures have been demonstrated, such as MnSe2,
144 VSe2,

145 Fe3GeTe2

(FGT),146 and CrSBr (CSB).147 Antiferromagnetic structures have attracted more atten-

tion than ferromagnetic ones among magnetic ultra-thin materials.148 This is because

they offer several advantages, including spin superfluidity,149 minimal spin-dipole in-

teraction,150 lack of net magnetization, and absence of stray fields.151 In addition, an-

tiferromagnets are more resistant to small disrupting fields and demonstrate exceptional

performance in the high-frequency range with incredibly rapid dynamics.152,153,154 Man-

ganese phosphorus tri-sulfide (MnPS3), a new type of magnetic ultra-thin material, has

recently attracted significant attention. It is highly sought after due to its non-toxic prop-

erties,155 cost-effectiveness, and remarkable stability.156 MnPS3 is a van der Waals (vdW)

antiferromagnet on a honeycomb lattice in its bulk form and its fundamental structural and

magnetic properties have been studied since the 1980s.157 It exhibits a Néel temperature
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(TN ) of around 78 K158 and a magnetic propagation vector of 	k = (0, 0, 0). It possesses

monoclinic crystal structure (space group C2/m), with lattice parameters a, b, and c 6,07,

10.52, and 6.80 Å, respectively and shows localized magnetic moment. Inelastic neutron

diffraction and magnetic susceptibility investigations demonstrate that the Mn atoms in

MnPS3 are in a high spin state, characterized by a spin value of S = 5/2, and possess a 3d

shell that is half filled.159 Easy magnetization axis of the bulk structure is oriented along

the out-of-plane anisotropy.160 The experimental band-gap of the bulk form of the mate-

rial is 3.0 eV with direct band-gap which is a wide-gap antiferromagnetic semiconductor.

The relatively weak van der Waals (vdW) binding strength, characterized by an energy

density of 0.25 J/m2, enables the easy production of a 2D ultra-thin form of MnPS3 us-

ing an easier exfoliation approach instead of the more difficult molecular beam epitaxy

(MBE) method.161,162 Near-field infrared spectroscopy measurements reveal a transition

in symmetry from C2/m to P31m in single-layer structures.163 2D MnPS3 shows a direct

band gap antiferromagnetic (AFM) semiconducting behavior similar to its bulk form.161

Single-layer MnPS3 was reported to display ultrafast domain-wall dynamics and the spin

photogalvanic effect.164,165 Shiomi et al. showcased the management of AFM domains

within MnPS3 crystals using magnetoelectric cooling techniques, while also observing the

phenomenon known as the magnon Nernst effect.164 Moreover, Li et al. demonstrated that

2D MnPS3 shows antiferromagnetism-valley coupling, valley-dependent optical proper-

ties and topological domain wall states.166 Additionally, the nonreciprocal spin Seebeck

effect and spin transport features of MnPS3 structure were showed.167

In this thesis, we focus on the structural, magnetic, vibrational, electronic, optical

and elastic properties of low-dimensional, ultra-thin anisotropic structures using DFT-

based first principles ab-initio calculations. Anisotropic materials are of significant inter-

est in scientific research and technological applications due to their unique orientation-

dependent properties, which vary based on the axis along which they are measured. The

anisotropy of the structure allows their structural, magnetic, thermal, electronic, optical,

and mechanical characteristics to differ significantly along different axes, enabling their

use in advanced device applications where specific directional properties are beneficial.

For instance, ultra-thin anisotropic structures can be used to create field-effect transistors

(FETs) with tailored electronic properties by exploiting the directional dependence of

charge carrier mobility to enhance device performance. Their unique optical properties,

such as direction-dependent absorption and emission, make them ideal for sensitive pho-

todetectors and various types of sensors. In addition, anisotropic thermal conductivity can

improve thermal management in electronic devices, as materials that conduct heat well in
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one direction but poorly in another can efficiently dissipate heat, enhancing device reli-

ability and performance. Additionally, their anisotropic magnetic properties are particu-

larly intriguing; these properties can lead to direction-dependent magnetic behavior, such

as varying magnetic anisotropy energy, which is crucial for applications in spintronics and

magnetic storage devices. The mechanical anisotropy of these materials can be tailored

for applications requiring high strength in one direction and flexibility in another, which

is particularly useful in flexible electronics and nanocomposites. Directional mechanical

properties also allow for strain engineering, where applying mechanical strain can mod-

ify the material’s electronic and optical properties, enabling tunable device characteris-

tics. Moreover, low-dimensional anisotropic materials exhibit novel quantum phenomena

due to their reduced dimensionality and directional properties. These phenomena include

anisotropic superconductivity, magnetoresistance, and quantum Hall effects, which are of

great interest for fundamental physics research and potential quantum computing applica-

tions. Furthermore, their direction-dependent electronic properties can be optimized for

improved light absorption and charge carrier separation, enhancing the efficiency of solar

cells. Anisotropic materials can also provide high ion mobility along specific directions,

leading to better performance in energy storage devices. The study of low-dimensional

anisotropic materials are essential due to their unique directional properties that offer ad-

vantages in various applications, from electronics and opto-electronics to energy devices

and beyond. Their ability to exhibit different properties along different axes allows for the

design of highly specialized materials and devices with superior performance, paving the

way for advancements in technology, and fundamental science. In this context, we first

investigate 2D anisotropy in novel highly anisotropic single-layer transition metal pen-

tachalcogenides in Chapter 3 and transition metal trichalcogenides in Chapter 4. Then,

we study black phosphorus-like anisotropic tilted α-bismuthene structure in Chapter 5.

Finally, we focus on edge- and width-dependent 1D anisotropy in magnetic ultra-narrow

manganese phosphorus trisulfide (MnPS3) nanoribbon structures in Chapter 6.
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CHAPTER 2

THEORETICAL BACKGROUND AND COMPUTATIONAL

METHODOLOGY

Understanding and solving the complex behaviors of systems comprising multiple

interacting electrons present a formidable challenge within the realm of quantum mechan-

ics. Density Functional Theory (DFT) has emerged as a valuable approach in light of the

complexities involved in solving such systems. Widely embraced and highly effective,

DFT serves as a key quantum mechanical method for exploring the fundamental charac-

teristics of these interacting many-electron systems, encompassing solids and molecules

alike. Its application spans across diverse domains including physics, chemistry, and ma-

terials science, facilitating investigations into a numeorous of properties such as ground

state analysis, magnetic behavior, vibrational dynamics, electronic structure, optical, and

mechanical properties. This section of the thesis delves into the fundamental principles of

computational many-body theory and the associated approximate functionals crucial for

understanding this domain.

2.1. The Many Body Problem

The Schrödinger equation stands as a cornerstone in contemporary research and

applications, especially concerning the description of quantum particles and their interac-

tions. Significance of the schrödinger equation lies in its ability to accurately predict the

behavior of particles in diverse systems. In particular, when dealing with multiple parti-

cles, the solution to the Schrödinger equation manifests as the many-body wavefunction,

providing invaluable insights into the collective behavior of the quantum particles that

interact with each other and enabling the analysis of complex quantum phenomena. The

quantum mechanical wave function includes all the information regarding the attributes of

a given system. The wave function, denoted as Ψ, has a crucial significance in the field of

quantum mechanics. The mathematically expression of the wave function of any system

in the non-relativistic regime can be derived by solving the time-independent Schrödinger

equation,
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ĤΨ = EΨ (2.1)

where the operator Ĥ is the energy operator known as the Hamiltonian operator, E is

the energy eigenvalue of that quantum state, and Ψ represents the wave function associ-

ated with each energy eigenvalue. In the conventional framework of matter modeling, the

Schrödinger equation is typically formulated to describe the behavior of a system contain-

ing multiple electrons. When dealing with an N-body system that involves interactions

between particles beyond electrons, the Hamiltonian has a wider range of scope. This

comprehensive approach allows for considering various particles and their complex inter-

actions within the system. When considering an many-body system, the Hamiltonian can

be expressed as follows:
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(2.2)

The Hamiltonian operator encompasses all the terms that describe all possible interaction

within a quantum mechanical system consisting of N electrons. where � is the Planck

constant, 1/4πε0 is the Coulomb constant, the indices i and j denote the electrons, e is

the electron charge, me is the electron mass, MA is the mass of nuclei, ZA and ZB are

the nuclear charges, and r and R represent the spatial coordinate of corresponding elec-

tron or atom, respectively. The first and second terms represent the kinetic energy of

the system with respect to the electrons and nuclei. Due to the mass of nuclei is signif-

icantly larger than the mass of electrons, as implied by the Born-Oppenheimer Approxi-

mation (Born and Oppenheimer, 1927), the second term can be neglected. The third term

is the Coulombic interactions between electrons and nuclei (electron-nucleus attraction).

Lastly, the fourth (electron-electron repulsion) and fifth (nucleus-nucleus repulsion) terms

account for the Coulomb repulsion between electrons and nuclei, respectively. Solving

the Schrödinger equation offers valuable insights into the energy states of simple quan-

tum systems like the hydrogen atom or a confined electron. However, when dealing

with more complex systems with multiple interacting particles or intricate geometries,

the Schrödinger equation becomes more complicated, making it increasingly challenging

and nearly impossible to solve without any approximation. Therefore, many approxima-

tions have been proposed to simplify the solution process for Schrödinger equation of a

many-body systems.
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2.1.1. Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is a fundamental simplification in compre-

hending complex quantum systems. It was formulated in 1927 by Max Born and J. Robert

Oppenheimer, and is a method that involves the separation of the electron and nuclei de-

grees of freedom. The Born-Oppenheimer approximation is based on the fundamental

assumption that nuclei possess significantly greater mass in comparison to the electrons,

enabling researchers to focus primarily on the electronic behavior while treating the nu-

clei as stationary. Hence, the contribution of the kinetic energy of the nuclei in Equation

2.2 can be neglected, given its insignificance compared to the kinetic energy of electrons.

Furthermore, the fifth term, representing the repulsion between nuclei, remains constant

due to the fixed arrangement of nuclei. With these considerations, the Hamiltonian, fo-

cusing on the remaining three terms, adopts the structure commonly referred to as the

electronic Hamiltonian.
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2me

∑
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4πε0

∑
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2

| 	ri − 	RA | +
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∑
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1

4πε0

e2

| 	ri − 	rj | (2.3)

Electronic Hamiltonian captures the essential interactions among electrons within the sys-

tem, facilitating a focused analysis of electronic properties and behaviors. With this ap-

proximation, the solution to the Hamiltonian, which is the wavefunction, becomes depen-

dent on the electronic coordinates (	ri), as the nuclear motion is considered to be relatively

slow and can be treated as fixed. Consequently, the corresponding Schrödinger equation

can be represented as follows,

ĤeΨe({ri}) = EeΨe({ri}) (2.4)

The solution to Schrödinger equation under the Born-Oppenheimer approximation (Eq.

2.4), appears to be more straightforward compared to its most general form. However,

despite its apparent simplicity, the electron-electron interaction term in Eq. 2.3 poses a

challenge due to the correlated motion of electrons. Therefore, it is necessary to consider

the instantaneous coordinates of each electron, which effectively entails the utilization

of 3N variables for an N-electron system. Various approximations were suggested to

solve the Schrödinger equation for N-interacting electrons. The primary objective of these

approximations is to transform the N-electron Schrödinger equation into an effective one-

electron Schrödinger equation. One such approach is Thomas-Fermi Model and Density
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Functional Theory (DFT) , both of which consider electron density as a fundamental

quantity.

2.1.2. Thomas-Fermi Model

The concept of expressing electronic energy in relation to electron density was ini-

tially proposed by Llewellyn Thomas and Enrico Fermi in the 1927. The Thomas-Fermi

(TF) theory assumes that electron-electron and electron-nucleus interactions are treated

within classical frameworks. The TF model was groundbreaking in its proposal to utilize

Locally uniform 
   electron gas

dr
r

n (r)

Figure 2.1. The figure illustrating the fundamental concept of the local density approx-

imation and Thomas-Fermi theory depicts a radial slab, dr, where the local

charge density n(r) corresponds to the density of a uniform homogeneous

electron gas.

electronic charge density as the fundamental variable instead of the wavefunction, mak-

ing it the earliest manifestation of density functional theory. The concept can be readily

grasped with the assistance of Fig. 2.1. Even though the charge density corresponds to

a non-uniform electron gas, the number of electrons within a given element, dr, can be

represented as n(r)dr, where n(r) denotes the charge density for a uniform electron gas

at that specific point. The TF model demonstrates that the overall kinetic energy of the

electrons can be exclusively described in relation to the electron density n(r) that varies

over space, expressed as:

T [n] = CF

∫
n5/3(r)dr (2.5)

where CF (Fermi coefficient) is equal to 2.81 in atomic units and n(r) is the electron
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density. The total energy of the system, in terms of electron density, can be obtained

by including interaction terms for electron-electron and electron-nucleus interactions, as

follow:

E[n] = CF

∫
n5/3(r)dr +

1

2

∫ ∫
n(r1)n(r2)

| r1 − r2 | dr1dr2 − Z

∫
n(r)

r
dr (2.6)

The second and third terms correspond to electron-electron and electron-nucleus interac-

tions, respectively. After identifying the total energy functional, the ground state energy

of the system can be computed by minimizing the functional, E[n], with respect to all

possible electron densities, n(r), which must adhere to the following condition:

N =

∫
n(r)d3r (2.7)

The precision of the TF equation is constrained due to the approximate nature of the de-

rived expression for the kinetic energy. Additionally, the approach neglected to account

for the exchange and correlation effects between electrons a consequence of the Pauli

exclusion principle. Dirac developed a local approximation method to describe the elec-

tron exchange, yielding an electron energy functional within an external potential Vext, as

follows:

E[n] = C1

∫
n5/3(r)dr +

∫
drVext(r)n(r)+

C2

∫
n4/3(r)dr +

1

2

∫ ∫
n(r1)n(r2)

| r1 − r2 | dr1dr2
(2.8)

where
∫
n5/3(r) is the local density approximation of the kinetic energy, C1 = 2.81 =

3/10(3π2)2/3 Hatree,
∫
n4/3(r) represents the exchange with C2 = −3/4(3/π)1/3 =

−0.739 Hatree and 1
2

∫ ∫ n(r1)n(r2)
|r1−r2| dr1dr2 is the classical electrostatic Hartree energy.

The main goal of the TF model is not only centered on precisely ascertaining the

energy of the lowest possible condition. However, its primary objective is to illustrate that

the overall energy of the system can be efficiently examined and comprehended by utiliz-

ing the concept of electron density. The TF model has found application in determining

the equation of state for elements. However, the approach starts with a simplistic approx-

imation, overlooking crucial aspects such as the chemistry and physics underlying the

shell structure of atoms and the binding energy of molecules. It fails to offer an accurate

depiction of electrons within substances. The TF approximation is inadequate for mod-

ern electronic structure calculations. Nonetheless, despite its shortcomings, the TF model

has been instrumental in advancing the development of more precise quantum mechanical
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models and continues to hold significance as a fundamental concept in condensed matter

physics.

2.1.3. Density Functional Theory

In order to comprehend how a specific system behaves, obtain information about

the density of the system, and predict its response to external perturbation, it is essential

to solve the Schrödinger equation for that system. The precise solution of the equation

is only achievable for a limited number of small systems, such as a particle confined in

a box, a hydrogen atom, and a simple harmonic oscillator. The equation is unsolvable

exactly for many many-electron systems. Understanding and solving the complex behav-

ior of interacting many-electron systems poses a major challenge in quantum mechanics.

Among various methodologies, Density Functional Theory (DFT) stands out as one of

the most common quantum mechanical methodologies used to approximate solutions to

the Schrödinger equation in many-body systems. Renowned for its success, DFT serves

Ion

Many-Body Perspective DFT Perspective

e-

e-

e-e-

(Ion) - (e-) interaction

(e-) - (e-) interaction

Electron Density

Ion

Figure 2.2. DFT approach to a many-body system.

as a highly powerful approach for modeling and describing the ground state properties,

structural magnetic, vibrational, electronic, and optical properties of metals, semicon-

ductors, and insulators. It reduces computational cost and its applications span multiple

disciplines including physics, chemistry, biology, and materials science. DFT has proven

its effectiveness not only in analyzing conventional bulk and low-dimensional materials

but also in elucidating the properties of intricate molecules. The term "density functional

theory" originates from the utilization of functionals grounded in electron density. By

employing the functionals, which are based on electron density [n(r)], it effectively ana-

lyzes the properties of many-electron systems. It is a theoretical framework that focuses
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mainly on the charge density as the fundamental physical feature in the ground state. The

primary concept behind DFT is to represent the lowest energy state of a system of interact-

ing fermions through a functional of the electronic density, rather than directly using the

many-body wavefunction. Preferring electron density over the wavefunction simplifies

the dimensional complexity of the problem. Such a system, governed by the conserva-

tion principle of electron number, confines the behavior of the entire many-body system

purely from 3N dimensions to three spatial coordinates, owing to the fact that n(r) in-

herently possesses three degrees of freedom. Reducing the number of degrees of freedom

facilitates the application of DFT to complex structures and improves the manageability

of calculations. The electron density is defined as:

n(r) = N

∫
...

∫
| Ψ(r1, r2, ..., rN) |2 dr1dr2...drN−1 (2.9)

The function n(r) quantifies the probability of locating any of the N electrons, assuming

that the remaining N-1 electrons are positioned randomly. Ψ(r1, r2, ..., rN) is the solu-

tion to the Schrödinger equation, representing the quantum state of N electrons, where

each ri denotes the position of an electron. In summary, the use of DFT has garnered

Figure 2.3. Depiction of the first Hohenberg-Kohn theorem.

attention across several disciplines for several reasons: its simplicity in working with a

3-dimensional density, n(r), compared to a 3N-dimensional wave function, (Ψ); its com-

putational efficiency; and its capability to analyze infinite periodic systems.

2.1.4. Hohenberg-Khon Theorems

Following the introduction of the Thomas-Fermi model, Hohenberg and Kohn in

1964 developed Density Functional Theory (DFT) as a precise framework for many-body

systems. Hohenberg-Khon theorems enable the representation of the electronic Hamil-

tonian in terms of the electron density, denoted as n(r). The Hohenberg-Khon model
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consists of two fundamental theorems. The first theorem of the Hohenberg-Kohn ap-

proach establishes a unique relationship between an external potential Vext(r) (such as

the Coulomb potential stem from nuclei) and the electron density n(r). It asserts that

there cannot be two different external potentials leading to the same electron density as

seen in Fig. 2.3. According to the theorem, the ground and excited-state properties of a

quantum mechanical system can be determined solely by its ground state electron density

functional.

The second theorem posits that the electron density functional achieving the min-

imum total energy, denoted as E[n], corresponds to the precise ground-state density of the

system.The global minimum of this functional can be obtained by variational derivation,

by initially selecting a trial function that embodies both its Hamiltonian and wave func-

tion. Thus, employing the trial wave function enables the determination of the ground

state energy for a system governed by a Hamiltonian derived from an external potential,

Vext. Consequently, the total energy functional for a specific external potential can be

expressed as follows:

E =
< Ψ0 | H | Ψ0 >

< Ψ0 | Ψ0 >
=< H >= T [n] + Vint[n] + EII

∫
d3rVext(r)n(r) (2.10)

T[n] represents the kinetic energy of electrons, Vint is the energy of electron-electron

interactions, and EII refers to the interaction energy between nuclei. FHK[n] is a constant

which indicates to the total kinetic energy of electrons.

T [n] + Vint[n] = FHK [n] (2.11)

Hohenberg-Kohn theorems offer an approach to compute the ground state energy of

many-body systems using an electron density functional. However, no specific informa-

tion is provided regarding the type of energy functional employed. Therefore, the energy

functional is unknown.

2.1.5. Kohn-Sham Equations

Kohn and Sham developed a model building upon the Hohenberg-Kohn theorem,

allowing for the minimization of the energy functional by adjusting the charge density

across all possible densities containing N electrons (a many-body particle system) in 1965.

They propose a conceptual framework where the many-body particle problem is viewed
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as a system of non-interacting electrons navigating within an effective potential. The

E, n(r)

   Real system of interacting 
electrons via Coulomb forces

   Kohn-Sham fictitious system 
    of non-interacting electrons

Figure 2.4. Illustration of the real system of electrons that interact with each other and

the Kohn-Sham fictitious system of non-interacting electrons with each

other.

purpose of Kohn-Sham is to determine the electron density in the lowest energy state of

a system of interacting electrons by solving the Schrödinger equation for non-interacting

electrons. Kohn and Sham facilitated practical implementations of DFT by introducing

the following hypothesis: i- A system of interacting electrons can be mapped onto an

auxiliary system of non-interacting electrons, sharing the same ground state charge den-

sity n(r) as the interacting system, ii- The auxiliary Hamiltonian is selected to include the

conventional kinetic operator and an effective potential, Veff (r) , exerted on an electron at

a given point r as shown in Fig. 2.4. The Hamiltonian incorporates the effects of electron-

electron interactions, often known as many-body effects, by including an additional factor

termed the exchange-correlation functional, Exc[n]. The expression for the ground-state

energy functional under the Kohn-Sham principles can be formulated as:

EKS =

∫
n(r)Vext(r)d

3r+FHK [n] =

∫
n(r)Vext(r)d

3r+T [n]+EH [n]+Exc[n] (2.12)

where Eexc is exchange and correlation energy, and EH [n] represents the Hartree energy

and can be written as:

EH [n] =
e2

2

∫
d3rd3r′

n(r)n(r′)
| r − r′ | (2.13)

An essential step involves defining an effective potential, which is formulated as:

Veff =
δ
[∫

n(r)Vext(r) dr+ EHartree[n] + Exc[n]
]

δn(r)
(2.14)

The effective potential can be expressed in the following form:
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Veff = Vext(r) +

∫
n(r′)
|r− r′| dr

′ + Vxc(r) (2.15)

Here, Vxc(r) represents the exchange-correlation potential obtained from the exchange-

correlation energy. The accuracy of findings derived from the Kohn-Sham equations is

notably impacted by the selection of the exchange-correlation functional, which serves as

an approximation to the true exchange-correlation potential. In addition, the ground state

density for the Kohn-Sham system of non-interacting electrons can be expressed as:

n(r) = 2
∑
i

|ψi(r)|2 (2.16)

By utilizing the formulation for the effective potential, the Schrödinger equation in Kohn-

Sham Density Functional Theory (DFT) can be restated as an equation resembling that of

a single-electron system:
ĤKSφi(r) = Eiφi(r) (2.17)

The parameters HKS and Ei represent the effective Kohn-Sham Hamiltonian and energy

eigenvalues, respectively. [
−1

2
∇2 + Veff

]
φi = Eiφi (2.18)

where φi indicates the eigenfunctions, specifically referred to as the Kohn-Sham one-

electron orbitals, that govern the electron density. The relationship between Kohn-Sham

orbitals and the ground-state electron density functional is expressed as follows:

n(r) =
N∑
i=1

| φi |2 (2.19)

Since the effective potential Veff is dependent on the density n(r), solving the Kohn-

Sham equation requires a specific procedure: (1) start with an initial estimation of the

electron density (assume a trial density function), (2) derive the effective potential based

on this density, (3) calculate corresponding Kohn-Sham orbitals, φi, and (4) evaluate the

updated electron density corresponding to these orbitals and compare it with the initial

approximation. The iterative process continues until successive outputs converge to a

consistent energy level.

The self-consistent approach is a basic method in various scientific domains, espe-

cially in quantum mechanics, electromagnetism, fluid dynamics, material science, com-
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putational physics, and chemistry. The capacity of the approach to handle complex rela-

tionships and develop solutions renders it an essential instrument for comprehending and

investigating diverse scientific domains. This effective approach entails solving a series of

equations repeatedly until a dependable solution is achieved. The self-consistent method

incorporates feedback between the solution and the problem, taking into consideration

the mutual dependency of variables. It leads to a more precise characterisation of so-

phisticated systems. During iterative process, the solution is continuously refined until it

reaches a self-consistent state that fulfills all constraints and equations. Within the frame-

work of density functional theory, a notable application of self-consistent approach is

embodied in the Kohn-Sham equations. These equations provide a solid basis for solving

the many-body Schrödinger equation and examining electronic structure and character-

istics in various systems. By mapping interacting electron systems onto non-interacting

electrons governed by an effective potential, Kohn-Sham equations enable precise char-

acterization of materials and molecules at atomic and molecular scales. Thus, despite

their approximations, they stand as an indispensable tool in the interdisciplinary fields of

physics, chemistry, material science, and biology for investigating complex systems.

2.1.6. Exchange-Correlation Functionals

Exchange-correlation functionals are crucial in DFT for investigating the elec-

tronic structure of atoms, molecules, and solids using computational methods. Within a

system including many-electrons, the exchange-correlation functionals (Exc[n]) approx-

imately depict the exchange and correlation effects arising from their interactions. An

accurate approximation of the exchange-correlation can provide a realistic electron den-

sity and the ground state energy. Hence, it is crucial to employ the accurate approxima-

tion of exchange-correlation energy for a given material. Although DFT offers a reliable

explanation of the ground state properties in theory, the precise nature of the exchange-

correlation potential that may effectively account for all interactions between electrons is

still unidentified. Hence, the impacts of the Pauli exclusion principle and the Coulomb

potential on electron-electron interactions need to be approximated by suitable function-

als based on electron density. Nevertheless, there are widely accepted approximations

to the exchange-correlation potential that enable accurate calculation of certain physi-

cal quantities. The Local Density Approximation (LDA) and the Generalized Gradient

Approximation (GGA) are two methods used in computational physics and chemistry to

approximate the electron density in a system.
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Local Densiy Approximation (LDA): The Local Density Approximation (LDA), intro-

duced by Kohn and Sham in 1965, a basic approximation applicable to systems with

gradually varying density. It is one of the most commonly employed approximations for

the exchange-correlation potential. According to LDA, the exchange-correlation energy

is presumed to be equivalent to that of a uniformly distributed electron gas at the same

coordinates, with the functional being dependent on coordinates as seen in Fig. 2.5.

n’  n(r2)

n’  n(r2)

r1

r2

Figure 2.5. Representation of the local density approximation involves substituting the

precise exchange-correlation energy density at each point r with that of a

uniform, homogeneous electron gas having a density equivalent to n(r).

Therefore, the inhomogeneous system of a molecular or crystalline structure is approx-

imated by utilizing the local density of the homogeneous electron gas. Despite its fun-

damental approximation, LDA yields highly highly accurate results, particularly for bulk

materials, and forms the foundation of DFT codes. It performs effectively even in sys-

tems with rapidly varying charge densities and is particularly works for metallic systems.

However, it tends to underestimate atomic ground-state energies and ionization energies,

while overestimating binding energies. The system is divided into volumes with uniform

electron densities, following the local density approximation. The exchange-correlation

energy of an inhomogeneous system can be written as (Ceperley and Alder, 1980):

ELDA
xc [n] =

∫
n(r)εhomxc [n(r)]d3r (2.20)

Here, εhomxc represents the exchange-correlation energy density of a homogeneous electron

gas with an electron density, n(r). The LDA method provides accurate approximations

for several ground state parameters such as lattice constant, density of states, band struc-

ture, stiffness, Poisson ratio, and bulk moduli. Although the decay of potentials in finite

systems is exponential when using LDA, this decay is significantly slower and follows a

Coulombic pattern in real systems.

Generalized Gradient Approximation (GGA): In systems characterized by rapidly vary-
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ing charge densities, the exchange-correlation energy significantly departs from the uni-

form result, potentially making the LDA approximation inadequate. Beyond LDA, the

Generalized Gradient Approximation (GGA) incorporates gradient and higher-order spa-

tial derivatives of the electron density to rectify this deviation. In GGA, the electron

concentrations exhibit spatial variation, rather than remaining constant throughout divi-

sions, and fluctuate in a gradient manner. The exchange-correlation functional can be

expressed using the Generalized Gradient Approximation as follows:

EGGA
xc [n] =

∫
fGGA(n(r),∇n(r))d3r (2.21)

where n(r) represents the possible electron density, and ∇n(r) is the gradient of the elec-

tron density. Because GGA rely on the gradient of the electron density, GGA functionals

are referred to as semi-local functionals. Some often employed and effective types of

Generalized Gradient Approximation (GGA) are Perdew, Burke, and Ernzerhof (PBE)

(Perdew et al., 1996), Perdew and Wang (PW91) (Perdew and Wang, 1992), and Becke

(B88) (Becke, 1988).

2.1.7. Heyd-Scuseria-Ernzerhof (HSE) Functional

Hybrid-GGAs introduced by Becke try to overcome the difficulties encountered

by GGAs by including exchange energy from Hatree-Fock expression into local/semi-

local GGA/LDA exchange and correlation functions. It is possible to estimate the pre-

cise electronic band dispersions of materials through DFT calculations utilizing LDA and

GGA functionals. However, both approaches tend to underestimate the band gap of the

structures due to their limited precision and efficiency in calculating the true exchange-

correlation energy of the systems. Consequently, the experimentally observed electronic

band gap may not be accurately approximated. Heyd-Scuseria-Ernzerhof (HSE) func-

tional has emerged as a promising solution to address the limitations of traditional exchange-

correlation functionals. The hybrid-functionals combine the strengths of both Hartree-

Fock and DFT methods, offering improved accuracy in predicting electronic properties.

HSE functional employs a sophisticated approach that combines a fraction of exact ex-

change obtained from Hartree-Fock (HF) theory with the exchange computed from tra-

ditional density functionals (GGA or LDA). In this approach, the correlation component

is solely derived from the standard density functionals, resulting in a balanced treatment
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of electronic interactions within the system. As an example, HSE functional incorporates

25% of the exact exchange derived from Hartree-Fock theory with 75% of the exchange

derived from the Perdew-Burke-Ernzerhof (PBE) functional, a common form of gener-

alized gradient approximation (GGA) exchange. HSE functional has gained popularity

for their ability to significantly reduce computational costs while offering enhanced ac-

curacy. They achieve this by decomposing exchange interactions into short-range (SR)

and long-range (LR) terms and defining the Coulomb operator accordingly. This decom-

position enables a more efficient treatment of electronic interactions, leading to improved

computational efficiency without sacrificing accuracy. For the HSE functional, exchange-

correlation energy of the material can be expressed as follows:

EHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (2.22)

Here, EHF,SRx denotes the contribution from short-range Hartree-Fock (HF) exchange,

EPBE,SRx and EPBE,LRx represent the short- and long-range components of the Perdew-

Burke-Ernzerhof (PBE) exchange energy, and Ec signifies the PBE correlation energy.

The parameter a determines the weight of HF exchange in the hybrid functional. By

blending exact exchange from HF theory with exchange from traditional density func-

tionals, HSE-type functionals strike a balance between accuracy and computational effi-

ciency. This approach significantly improves the prediction of electronic band gaps and

other properties, making it a valuable tool in material sciences, condensed matter physics,

and computational chemistry alike.

2.1.8. Hellman-Feynman Theorem

The Hellmann-Feynman theorem (1939), attributed to Henry C. Hellmann and

Richard P. Feynman, correlates the derivative of a system’s total energy concerning an

external parameter with the expected value of the derivative of the Hamiltonian. The

theorem states that the force acting on a nucleus may be expressed solely in terms of

the charge density, n(r), without considering the effects of electron exchange, correla-

tion, and kinetic energy. One of the primary advantages of the Hellmann-Feynman the-

orem lies in its computational efficiency. The theorem offers a straightforward method

to compute the derivative of energy directly from the eigenstates and eigenvalues of the

Hamiltonian, eliminating the requirement to solve the Schrödinger equation for different

parameter values. It defines a mathematical relationship between the energy of system and
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the associated forces. In addition, the Hellmann-Feynman theorem plays a crucial role in

DFT-based calculations as it enables the determination of optimal structural parameters,

including lattice constants, bond lengths, and bond angles. The Hellmann-Feynman the-

orem states that for any parameter that affects the energy eigenvalue and corresponding

eigenstate of a Hamiltonian, the derivative of the energy eigenvalue with respect to that

parameter is equal to the expectation value of the derivative of the Hamiltonian with re-

spect to the same parameter. Assuming the parameter represents the spatial position of an

atom located at R, for a Hamiltonian that is a function of the parameter R with eigenfunc-

tion φ(R) and eigenvalue E(R), the derivative of the energy with respect to R equals the

expectation value of the derivative of the Hamiltonian with respect to R. Moreover, the

minimum energy corresponds to zero force. Therefore, the corresponding relationship is

given by:

∂E

∂R
=

〈
Ψ0

∣∣∣∣∣∂Ĥ∂R
∣∣∣∣∣Ψ0

〉
(2.23)

The theorem is particularly useful for finding the force associated with any param-

eter in the Hamiltonian of a system, such as the position of a nucleus R. The force can be

derived by taking the negative derivative of the energy eigenfunction.

FI = − ∂E

∂RI

(2.24)

Moreover, the minimum energy corresponds to zero force. The force is solely determined

by the electron density, n(r), and the nuclei.

2.2. Theory of Phonons

DFT offers a powerful framework not only for determining ground state properties

but also for computing various excited state properties of materials. Analyzing phonon

band dispersion spectra is particularly crucial for characterizing newly predicted materi-

als, as it provides insights into their dynamic behavior and stability. Through DFT, nearly

flawless vibrational spectra can be calculated, serving as valuable benchmarks for ex-

perimental validation and refinement of theoretical predictions. The Hellmann-Feynman

theorem serves as a fundamental tool in phonon calculations within DFT, establishing

a relationship between the derivatives of total energy and Hamiltonian through a simple

parameter. Given that the ground state undergoes changes with the ionic motions, the
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total energy of a structure can be viewed as a function of atomic positions. By selecting

the partial coordinate of the nuclei as the parameter in the Hellmann-Feynman theorem,

it becomes feasible to compute all the forces acting within the structure. The essential

quantities such as the energy (E = Etot(Ri), force acting on a nucleus located at posi-

tion (Ri), and the force constants (Cij = dF/dRj) can be expressed accordingly. The

straightforward formulation outlined above also enables the calculation of various other

properties, including dielectric constants, effective charges, electron-phonon interactions,

Helmholtz free energy, internal energy, specific heat, and entropy of the materials, using

the obtained vibrational features. The quantum mechanical portrayal of lattice vibrations

is commonly known as a "phonon". The phonon band dispersion of a material is a plot

that represents its vibrational characteristics over the Brillouin zone. The small displace-

ment method (SDM) serves as a valuable tool for determining the frequencies of phonons

at any arbitrary q-vector across the Brillouin zone. It treats the crystalline and molecular

structures as a system of interconnected balls, allowing for straightforward calculations.

The propagation of lattice vibration waves, triggered by initial disturbances applied to the

atoms and facilitated by the electrons, illustrates the dynamic nature of atomic motion.

The atomic vibrations of a crystal or molecule can be described by analyzing the poten-

tial energy term expanded around the places where the atoms are in equilibrium. The

energy of the system can be accurately characterized using the harmonic approximation

as long as the atoms remain in close proximity to their equilibrium locations. Specifically,

atomic displacements generate restorative forces that restore the system to its equilibrium

state, corresponding to the behavior governed by Hooke’s law in simple harmonic motion:

F = −kx (2.25)

where k denotes the spring constant, and x represents the distance between atoms and

their equilibrium position. Within the framework of DFT, calculations are carried out at

the absolute zero temperature (0 K). Consequently, the resulting solution inherently lacks

any information regarding vibrations. However, as previously mentioned, when an atom

is moved from its equilibrium position, it creates a force that tries to bring it back, which

can be determined. This methodology is widely recognized as the small displacement

method. The force constant matrix is derived by perturbing the location of an atom by a

tiny increment within a sufficiently large supercell. The number of atoms moved depends

on the symmetry of the system. The Hellman-Feynman forces are computed for each

displacement, and a force matrix is then generated. The potential energy of a system can

be mathematically described by using the harmonic approximation as follows:
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Uharm = Eground +
1

2

∑
lsα,l′tβ

φlsα,l′tβRlsαRl′tβ (2.26)

where Eharm denotes the total energy of the crystal at equilibrium positions, Rls denotes

the displacement of s atom in unit cell, l, α, and β are the direction of the displacement in

cartesian coordinates, and φlsα,l′tβ represents the force constant matrix. The force constant

matrix, denoted as Flsα, emerges from the differentiation of the harmonic energy relation

with respect to forces and displacements. It serves to establish the connection between the

force acting on each atomic site and the displacements of neighboring sites, represented

as Rl′tβ . The relationship can be mathematically described as follows:

Flsα =
dUharm

dRlsα

= −
∑
l′tβ

φlsα,l′tβRl′tβ (2.27)

and the force constant matrix can be straightforwardly expressed as:

φlsα,l′tβ =
d2Uharm

dRlsαdRl′tβ
(2.28)

Force and displacements exhibit linear dependence on each other, provided that the atomic

displacements remain sufficiently small.From a computational perspective, maintaining

atomic displacements within the range of 0.01-0.04 Åleads to satisfactory outcomes. Con-

sequently, determining the vibrational properties at each atomic site involves identifying

the eigenvalues of the dynamical matrix, where the elements correspond to Flsα.

D =
1√

msmt

∑
lsα,l′tβ

φlsα,l′tβRl′tβeiq.T (2.29)

The force constant matrix can be also utilized to determine the elements of the dynamical

matrix for any q-vector in the Brillouin zone. To ensure accurate calculations, supercells

are utilized with periodic boundary conditions. Choosing adequately large supercells is

crucial in order to minimize the impact of forces near the boundary of the cell. Signif-

icantly, for numerous metals, the electron screening effect facilitates convergence even

with smaller supercells. In the context of the SDM, the phonon frequencies of a material

can be determined by generating the force constant matrix following the application of

small displacements to the atoms within periodically repeating supercells. The total num-

ber of phonon branches in the phonon band dispersion is determined by the total degrees

of freedom in the material, which is 3N for a system comprising N atoms in the primitive
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cell. These phonon branches can be further classified into two categories: acoustic and

optical. The initial 3 phonon branches, termed as acoustic phonon frequencies, corre-

spond to collective movements of atoms with lower frequencies. They characterize the

overall lattice dynamics and are associated with the translational motion of the entire

crystal lattice. In contrast, the remaining (3N-3) branches, referred to as optical phonon

branches, represent vibrations characterized by higher frequencies. The optical vibrations

are often linked to specific atomic motions, such as stretching or bending of bonds within

the crystal lattice (out-of-phase motions of atoms). They provide valuable insights into

the local atomic interactions and structural properties of the material.

2.3. Raman Spectroscopy

Quantum mechanics has been crucial in understanding how electromagnetic radi-

ation interacts with matter, giving rise to optical phenomena such as photon absorption,

scattering, emission, reflection, and transmission. Classical wave theory faced challenges

in describing certain light scattering phenomena, leading to the discovery of Raman scat-

tering. Influenced by Einstein and Smoluchowski’s light-quantum framework, C.V. Ra-

man aimed to correlate a medium’s scattering ability with its molecular structure. Adolf

Smekal laid the theoretical groundwork for the Raman effect in 1923, and C.V. Raman

along with K.S. Krishnan experimentally discovered it in 1928. This discovery revolu-

tionized vibrational spectroscopy and molecular physics. Raman spectroscopy examines

atomic vibrations within a material, facilitating the identification of its chemical struc-

ture, phase, and crystallinity. Its versatility is evident in various applications, such as

chemical identification and quantification, characterization of molecular structures, anal-

ysis of bonding effects, identification of vibrational, rotational, and electronic transitions,

crystallographic orientation analysis, detection of counterfeit drugs, and analysis of the

chemical composition of historical documents.

In this technique, a monochromatic light beam emitted by a laser within the visi-

ble, near infrared, or near UV range (350-1000 nm) is directed onto a sample, interacting

with the phonons (quantized vibrational modes) within the material. During this interac-

tion, both elastic (Rayleigh) and inelastic (Raman) scattering are detected as seen in Fig.

2.6. If the change in momentum and energy are zero (Δ	p = 0,ΔE = 0), elastic scattered

photons are detected. If the change in energy is not zero (Δ	p = 0,ΔE �= 0), inelastic

scattered photons are observed, forming the basis of Raman spectroscopy. According to

quantum mechanics, when electromagnetic radiation interacts with a material, it becomes
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excited and transitions to a short-lived virtual energy level. In Rayleigh scattering, the

Incident Light

Material

Rayleigh

Raman Anti-Stokes

Scattering
Raman Stokes

Scattering

Scattering

Virtual States

Vibrational States

1st Electronic
Excited State

Electronic
Ground State Rayleigh

Scattering
IR Raman Stokes

Scattering
Raman Anti-Stokes

Scattering

Photon

Figure 2.6. Illustration of three types of scattering process that can occur when light

interacts with a material, and the energy level diagram shows the origin

of Rayleigh, Stokes, and Anti-Stokes Raman scatter. The energy level

diagram depicts the states involved in Raman spectroscopy.

molecule returns to its lowest energy state without losing energy due to the instability

of the virtual state. This scattering is much more intense than Raman scattering, which

occurs roughly once in every 10 million photons. In the Raman spectrum, Rayleigh inten-

sities are observed at a frequency difference of zero since the scattered light matches the

incident light’s frequency. Raman scattering involves the material shifting to a higher en-

ergy state (Stokes Raman scattering) or a lower energy state (Anti-Stokes Raman scatter-

ing). Stokes scattering is generally more intense and is usually analyzed as it corresponds

to positive energies in the Raman spectrum. The Raman shift provides information on

the phonons of the examined material, typically ranging between 50 and 8000 cm−1 in

wavenumber, reflecting the characteristic molecular vibrations of the sample. When a

material encounters an electromagnetic wave, the wave’s electric field interacts with the

molecules’ electric characteristics. Even materials lacking an electric dipole moment can

develop induced dipole moments due to the wave’s influence. This interaction creates

or alters a dipole moment, leading to Raman bands formed by the oscillating induced

dipole caused by the interaction between light waves and the polarizability of a vibrating

molecule.

In order to determine the Raman activity of a vibrational modes, it is necessary to

begin with a fundamental formulation of the intensity. The intensity of an output from a

physical source can be defined as the ratio of the average power to the area over which

the scattering rate is recorded. In Raman spectroscopy, this intensity is directly related to

the amplitude of the scattered light, which is influenced by factors such as the number of
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scattering centers and their polarizability. Thus, analyzing the intensity of Raman scat-

tering provides valuable insights into the vibrational activity of molecules and materials

under investigation. The intensity can be expressed as follows:

I =
P

A
(2.30)

where P represents the mean power emitted by the source, while A represents the surface

area. As previously described, in a Raman spectroscopy experiment, incoming light inter-

acts with vibrating atoms in the sample, leading to inelastic scattering due to the Raman

effect. According to classical electrodynamics, an oscillating dipole emits radiation with

an average power denoted by P (measured in watts).

P =
4π3υ4

0|μ|2
3ε0c3

(2.31)

Quantum mechanically, the intensity of a transition from state |υ > to < υ
′ | can be

-

- -+
-

+ -
--

-

Without Electric Field With Electric Field

 

Figure 2.7. Induced dipole illustration under the influence of an electric field.

described as follows:

I =
4π3υ4

0

3Aε0c3
< υ

′ |μ2|υ > (2.32)

here, υ0 represents the frequency of the incident light, c is the velocity of light, and μ

signifies the electric dipole moment of the oscillating dipole. The electric dipole moment

is connected to the incident electric field through the given relationship:

μind = αE

α = α0cos(2πυ0t)
(2.33)

here, the oscillating electric field E produces an induced dipole moment in the oscillating

matter as shown in Fig. 2.7 and α represents its ability to polarize under the influence of

an electric field. Polarizability is a fundamental physical property that describes how the
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distribution of electrons within a molecule or atom responds to an external electric field.

It indicates the extent to which the electron cloud surrounding the atom or molecule can

be deformed by the electric field. Essentially, polarizability quantifies the susceptibility of

this temporary charge distribution, determining its strength and configuration. Addition-

ally, polarizability is affected by variations in bond length; for example, when the bond

length increases, the polarizability also tends to increase. In addition, from a classical

perspective, light can be defined as a transverse wave consisting of an oscillating electro-

magnetic field that is perpendicular to the direction of wave propagation. The magnitude

of the oscillating electric field for a light wave with vibrational frequency of a molecule

or atom υ0 is given by:
E = E0cos(2πυ0) (2.34)

where E0 denotes the amplitude of the oscillating electric field. As the molecule or a

atom undergoes continual rotational and vibrational movements, its electronic distribution

undergoes constant fluctuations. Therefore, in order to describe the motion of individual

atoms in a vibrational mode of a material, the polarizability, α, should be expanded into

a Taylor series in terms of the normal mode (Qk) of the nuclear displacements. If Qk =

r − r0, the polarizability is expressed up to first order term as follows:

α = α0 +

(
∂α

∂Qk

)
0

Qk (2.35)

where α0 denotes the polarizability of the molecule at its equilibrium position (Qk = 0)

and the Qk represents the normal mode (vibrational coordinate) that describes the collec-

tive movement of individual atoms involved in the kth vibrational mode. For polyatomic

molecules, Qk is 3N-6, and for linear molecules, it is 3N-5. Given that the motion of the

atoms in the vibrational mode is being analyzed using the harmonic approximation, where

all atoms are assumed to behave as harmonic oscillators, the solution for the normal mode

Qk can be expressed as:
Qk = Q0cos(2πυk) (2.36)

here υk represents the frequency of the kth normal mode. The induced electric dipole can

be characterized by three scattering terms.

By utilizing the E and α, μ can expressed as follows:

μ = α0E0cos(2πυ0 + E0Q0

(
∂α

∂Qk

)
0

{cos[2π(υ0 − υk)] + cos[2π(υ0 + υk)]} (2.37)
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where cos(2πυ0) denotes the elastic or Rayleigh scattering term, corresponding to the

unshifted frequency of the incident light, resulting in elastic dispersion. cos[2π(υ0 −
υk)] represents the Stokes Raman scattering term and last term is the Anti-Stokes Raman

scattering term containing cos[2π(υ0+υk)]. As apparent from the relationship, the dipole

moment fluctuates not only with the oscillation of the molecule but also in accordance

with the frequency of the electromagnetic wave. These processes collectively lead to the

phenomenon known as Raman scattering, which involves a net energy transfer between

the incident light and the system. However, since the analysis of the Raman spectrum

relies on experimental data obtained from the Stokes Raman intensity, we will focus solely

on this term in our simulations. By employing the Stokes Raman scattering term of the

induced dipole moment, we can calculate its intensity as follows:

ISR =
4π3υ4

0E
2
0

3Aε0c3
< υ

′ |
(

∂α

∂Qk

)2

0

cos2[2π(υ0 − υk)Q
2
0]|υ > (2.38)

After expressing I0 = 1/2E2
0ε0c as the intensity of the incident light, and taking the time

average of the cosine term (which equals 1/2), we obtain the Stokes Raman scattering

intensity as follows:

ISR =
4π3υ4

0E
2
0

3Aε0c3
| < υ

′ |
(

∂α

∂Qk

)
0

|υ > |2 (2.39)

here, the initial and final states can be conceptualized of as the polarization vectors of

the incident light and scattered radiation. The intensity of Stokes Raman scattering is

directly proportional to the rate of change in polarizability in relation to the normal mode

of a vibration. This term is referred to as the Raman activity, which is expressed as

| < υ
′ |
(

∂α
∂Qk

)
0
|υ > |2 and the term

(
∂α
∂Qk

)
0

is a 3×3 Raman tensor for the kth vibrational

mode, written by:

R =

⎡
⎢⎢⎣

∂α11

∂Qk

∂α12

∂Qk

∂α13

∂Qk

∂α21

∂Qk

∂α22

∂Qk

∂α23

∂Qk

θα31

∂Qk

θα32

∂Qk

∂α33

∂Qk

⎤
⎥⎥⎦ (2.40)

Since the Raman tensor includes the alteration of the polarizability with respect to the

normal mode, it is a vibrational mode-dependent feature. Generally, it can be mathemat-

ically represented using group theory for every vibrational mode. Direct calculation of

the polarizability or its variation with respect to the normal mode is not feasible utilizing

the VASP in our DFT computation approach. Alternatively, we can compute the dielec-

tric tensor for the material, and calculate how it changes in response to vibrations using
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the VASP program. Therefore, the alteration in the dielectric tensor can be linked to the

change in polarizability using the following equation:

∂αij

∂Qk

=

(
V

4π

)
∂εij
∂Qk

(2.41)

To qualify for a vibrational mode to be considered Raman active, the Raman tensor must

be a non-zero tensor, resulting in a non-zero intensity. In addition, if the Raman tensor

for a vibrational mode is not zero, the direction-dependent activity of the mode can be

determined by modifying the experimental system. Alterations in the polarization state

z

yx

ê i(0
,0,z

) ê
s (x,0,z)

Figure 2.8. An illustrative configuration for the Raman scattering process. The sym-

bols êi and ês denote the polarization vectors of the incident and the scat-

tered light, respectively.

of the incoming light impact the characteristics and informational aspects of the scattered

radiation. However, this applies only to the expression ês

(
∂α
∂Qk

)
êi, where ês and êi rep-

resent the polarization vectors of the scattered radiation and incident light, respectively.

When employing the braket notation, it represents the process of averaging over all an-

gles of orientation of the sample in relation to the experimental framework. Therefore, the

Raman activity term can be represented using Raman constants, which are unaffected by

the experimental configuration. Angular averaging is necessary to determine the intensity

of Raman scattering, especially in systems with randomly oriented molecules. Assuming

that the incident light is polarized in the z-direction and propagating along the z-axis, as

illustrated in Fig. 2.8. The scattered radiation is detected along the y-direction and may be

polarized in the x- and z-directions, as indicated by the relationship provided in following

formulas:
μz = αzzE0z

μx = αxzE0z

(2.42)
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Therefore, two prospective terms will manifest as the scattered intensity: < α̃2
zz > and

< α̃2
xz >. The symbol α̃ represents the derivative of the polarizability with regard to

the normal mode (Qk). The presence of these two terms indicates that their combination

enables the computation of either the overall intensity of the scattered radiation or the

individual intensities aligned with and perpendicular to the incoming light. The final

average for these terms will be expressed in relation to the Raman invariants.

α̃s ≡ 1

3
(α̃xx + α̃yy + α̃zz)

β ≡ 1

2
{(α̃xx − α̃yy)

2 + (α̃yy − α̃zz)
2 + (α̃zz − α̃xx)

2

+ 6[(α̃xy)
2 + (α̃yz)

2 + (α̃xz)
2]}

(2.43)

The terms α̃s and β denote the components of the polarizability tensor that correspond

to isotropic and anisotropic derivatives, respectively. Expressing the intensity using these

two variables is crucial because they remain unchanged regardless of alterations in the

sample orientation. Therefore, employing these identities enables us to describe the scat-

tered intensity consistently across different experimental setups. Ultimately, by employ-

ing isotropic and anisotropic polarizability derivative tensors, the Raman activity can be

formulated as:
RA = 45α̃2 + 7β2 (2.44)

Upon conducting a comprehensive mathematical analysis, it becomes evident that while

the experimental setup depicted in Fig. 2.8 may vary, the total averaged Raman activity

remains constant. However, the only parameter that changes when modifying the experi-

mental setup is the proportion of perpendicular Raman activity to parallel Raman activity,

commonly referred to as the depolarization ratio, as expressed below:

ρ =
I⊥
I‖

(2.45)

The total intensity of Raman scattering in the two main polarization orientations (perpen-

dicular and parallel) remains constant when the sample under experimental investigation

is averaged for orientation, thus ensuring consistency across different experimental se-

tups.
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2.4. Mechanical Properties of Materials

The mechanical characteristics of materials are highly significant and key proper-

ties that must be thoroughly investigated to facilitate the proper integration of that material

into emerging technologies across a wide range of applications, from the construction of

buildings and bridges to the development of advanced technologies. These properties pro-

vide crucial insights into how materials respond to external forces and strains, ultimately

determining their structural integrity and performance under different conditions. The

mechanical characteristics of a material are intricately linked to the interatomic forces

within the material, which resist structural changes and determine its behavior. Exper-

imental investigations into mechanical characteristics involve testing their response to

applied forces per unit area (stress), and the resulting deformation per unit length (strain).

Particularly within experimental environments, materials may experience strain or defor-

mation. Understanding the mechanical features of materials allow us to tailor materials

to meet specific requirements, such as strength, flexibility, and durability. These features

not only elucidates the behavior of material under various conditions but also informs

the design and development of robust materials for diverse applications. Furthermore,

mechanical properties encompass a range of characteristics, each serving a distinct pur-

pose. For instance, hardness refers to a material’s resistance to scratching, while ductil-

ity describes its capacity to undergo plastic deformation without fracturing. Meanwhile,

toughness is associated with a material’s ability to absorb energy before fracturing. Addi-

tionally, it is crucial that the strain energy of a given crystal remains consistently positive

for all possible values of applied external strain. Otherwise, the crystal structure would

indicate mechanical instability within the crystal. The quadratic form (1/2Cijeiej) of the

strain energy is positive definite for all real values of strains unless all the strains are zero.

The positivity of the energy imposes further restrictions on the elastic constants, Cij , de-

pending on the crystal structure. Elastic constants characterize the ability of a material to

deform under small stresses and then returning to its original shape after stress ceases.

2.4.1. Elastic Constants

Elastic constants are fundamental physical characteristics that define the elastic

behavior of materials. They provide insights into how materials respond to applied stress

and deformation. The elastic constants constants are derived by analyzing the correlation
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between the stress exerted on a material and the resulting strain, offering crucial insights

about the material’s mechanical properties and its capacity to withstand external forces

while maintaining its original shape. The tension test stands as one of the primary meth-

ods for evaluating a material’s mechanical response to applied stress. It plays a crucial role

in predicting and analyzing the behavior of materials under various loading conditions.

By subjecting a material to tension, key properties of a material such as strength, duc-

tility, and mechanical characteristics, including elastic constants like Young’s modulus,

Poisson’s ratio, and bulk modulus, can be evaluated. Elastic constants are determined by

analyzing stress-strain measurements obtained within the material’s linear elastic range.

When a material is subjected to loading within this elastic region, it retains the ability to

completely restore its original shape once the applied load is removed, highlighting the

reversible nature of its deformation process. The elastic properties of materials play a

crucial role in laying the groundwork for innovative solutions in future engineering ap-

plications. When a material is subjected to tensile stress, a linear relationship emerges

between the applied loads and the resulting stress and strain, particularly noticeable for

low values of the applied loads. The region of low load, exhibited by metals and fragile

materials, is referred to as the elastic region. However, for ductile materials like rub-

ber, the stress-strain relation may not display linear behavior, or it may exist only for

extremely small applied loads. Despite these differences, most materials display elastic

behavior, with stress and strain related linearly through Hooke’s Law, which serves as the

foundation for understanding the linear relationship between stress and strain in elastic

materials.

2.4.1.1. Young Modulus

The concept of Young’s modulus was initially proposed by Thomas Young and

subsequently named in his honor. Young’s modulus, commonly referred to as the mod-

ulus of elasticity, is a fundamental mechanical property that provides insight into the

inherent tensile or compressive stiffness of a material, especially along its axial direction

or its resistance to elastic deformation. It serves as a quantitative measure, expressing

the relationship between the stress applied to the material and the resulting strain expe-

rienced along this particular axis. On the atomic scale, the elastic modulus refers to the

minor changes in interatomic spacing and the stretching of interatomic bonds that can be

considered as strain. Following that, the modulus of elasticity quantifies the material’s

ability to withstand the separation of neighboring atoms. The values of the Young Modu-
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lus varies among different material due to the different types of atomic bonding character

in materials. Young’s modulus (E) is mathematically defined as the ratio of the stress (σ)

applied to a material to the resulting strain (ε. By quantifying the amount of deformation

a material undergoes in response to applied forces, Young’s modulus plays an essential

role in comprehending and predicting the mechanical behavior of materials, thereby fa-

cilitating their appropriate utilization in various engineering and structural applications.

The relationship between the applied load (stress) and strain in the elastic region can be

described by:
σ = Eε (2.46)

where σ represents the applied load, ε denotes the change in the dimension of the material

along the direction of the applied load, and E represents the constant of proportionality,

referred to as ’Young’s Modulus’ of a material. Young’s modulus is a constant, known

as the modulus of elasticity, which can take on various forms depending on the direction

and nature of the applied load. In the SI unit system, its unit is gigapascals (GPa), and the

slope of a linear segment of the stress-strain relation corresponds to E.

2.4.1.2. Poisson Ratio

The Poisson ratio is a significant elastic constant that characterizes how a mate-

rial responds to an applied load in directions perpendicular to the unloaded directions. It

defined as the lateral strain to longitudinal strain ratio, offers valuable information into a

material’s behavior under stress. The Poisson ratio was introduced by the French physi-

cist and mathematician Simeon Poisson in the early 19th century. It refers to the negative

ratio of the lateral strain (εlateral) to the longitudinal strain (εaxial). The Posisson ratio is a

dimensionless parameter that indicates the degree of lateral contraction or expansion rel-

ative to longitudinal deformation when a material is under stress, and it can be expressed

as follows:
υ = −εlateral

εlong.
(2.47)

The strains along unloaded directions typically exhibit opposite signs compared to the

loaded direction in most crystal structures. Hence, including the minus sign in the formula

ensures a positive value for the Poisson ratio. In general, when subjected to uniaxial

stretching, the most of the crystal tend to narrow. The primary factor is that the majority

of crystals exhibit greater resistance to changes in volume, a natural consequence of their

bulk modulus, compared to their resistance to changes in shape, influenced by their shear
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modulus. The positive Poisson ratio is a result of the reorientation of interatomic bonds

that occurs during deformation. Most of the crystal structure exhibit a Poisson ratio value

ranging from 0 to 0.5 indicates that when a material undergoes axial tensile strain, it will

contract laterally. Conversely, when the material experiences compressive strain, it will

expand laterally. However, it is worth noting that although the majority of materials have

a Poisson ratio that is positive, there are specific materials, whether they arise naturally

or are hand-made, that demonstrate a negative Poisson ratio ranging between -1 and 0.

Unlike materials with positive Poisson ratios, those with negative Poisson ratios tend to

elongate in one direction when stretched along perpendicular directions which are known

as auxetic materials. Compared to materials with positive Poisson ratios, auxetic materials

can exhibit superior physical properties. The Poisson ratios of materials are determined by

their atomic or molecular geometries. Metals exhibit a highly ordered structure, leading to

Poisson ratios typically around 0.3 whereas polymers, with their non-uniform structures,

tend to have ratios closer to 0.5. Moreover, materials exhibiting a greater Poisson ratio

tend to possess greater ductility, while materials with a lower ratio tend to be more brittle.

Understanding the Poisson ratio is essential for evaluating the shrinkage and expansion

properties of materials under applied stress. It helps determine the compressive or tensile

strains along unloaded directions when the material experiences uniaxial stretching or

compression, which is crucial for various engineering applications.

2.4.2. Elastic Constants in 2D Limit

In previous sections, we introduced the definitions of two fundamental elastic

properties, namely Young’s modulus and Poisson’s ratio, for materials in bulk form. How-

ever, it is necessary to revise those elastic constants when analyzing 2D materials due to

dimensional reduction and confinement in the 2D limit. While there has been notable

advancement in experimental investigations into the mechanical properties of 2D materi-

als, conducting experimental study on the fundamental mechanical properties of ultrathin

2D materials remains difficult. Hence, theoretical calculations emerge as highly efficient

tools for predicting the mechanical behaviors of such structures. In addition, due to their

atom-scale thickness, 2D materials exhibit predominantly in-plane characteristics. In or-

der to apply the principles of mechanical parameters from 3D systems to 2D systems, all

the parameters from the 3D systems are adjusted by dividing them by the thicknesses of

the 2D materials. This section presents a concise explanation of two fundamental elastic

constants and describes our methodology for computing them at the atomic level.
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2.4.2.1. In-plane Stiffness

The in-plane stiffness serves as a quantitative measure of a material’s rigidity or

flexibility. It is determined by the geometry of the structure and the strength of the atomic

bonds between the individual atoms under consideration. In the framework of the 2D

limit, the modulus of elasticity is referred to as in-plane stiffness, C. In the case of two-

dimensional systems, it is important to note that materials lack periodic boundary condi-

tions in the direction perpendicular to the plane (out-of-plane). As a result, the modulus

of elasticity, which represents the stiffness within the plane, is directly influenced by the

stress and strain experienced within the plane. Therefore, the σ should be reformulated in

the form of condition as:
σxx = Cxxεxx

σyy = Cyyεyy
(2.48)

The directions xx and yy represent certain orientations inside the 2D crystal structure.

Within a hexagonal crystal symmetry, the xx and yy directions are often referred to as

the zigzag (ZZ) and armchair (AC) orientations. Isotropic materials exhibit identical stiff-

ness in all directions due to the crystal symmetry of their interatomic bonding within

the structure. On the other hand, anisotropic materials demonstrate varying stiffness val-

ues depending on their orientation relative to the crystal structure. Direction-dependency

implies that a material’s ability to withstand external forces will not be consistent in all

directions, which can be beneficial when utilizing the material in nanoscale applications.

The determination of in-plane stiffness in the atomic level can be achieved by relating the

strain energy to the applied strain. Strain energy in a material is the alteration in the over-

all energy of the crystal due to the application of strain. The strain energy must adhere

to the following expression as the elastic constants are evaluated within the linear elastic

range:

ES = c1ε
2
xx + c2ε

2
yy + c3ε

2
xy (2.49)

here, ES represents the strain energy, which is the overall energy variation between de-

formed and unstrained configurations. After calculating the coefficients ci, the in-plane

stiffness along any specific direction can be determined using the following formula:

Cx =
1

A0

(
2c2 − c23

2c1

)

Cy =
1

A0

(
2c1 − c23

2c2

) (2.50)
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where A0 represents the area of the structure that is not subject to strain.

The in-plane stiffness can be determined by utilizing the elastic parameters ob-

tained through the calculation of the elasticity tensor. As previously mentioned, in-plane

stiffness refers to the correlation between stress and strain within the linear elastic range.

The elasticity tensor, which establishes the relationship between the applied load (stress)

and the strain tensor, has a dimension of 6×6 and is defined by the provided form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The elastic constants, denoted as Cijkl, exhibit certain symmetry characteristics, namely

Cijkl = Cjikl, Cijkl = Cijlk, and Cijkl = Cklij . By considering all the symmetry aspects of

the structure, the number of independent constants in this 36-element tensor is reduced to

21. However, the number 21 signifies the highest possible quantity of independent com-

ponents. The range of the crystal structure’s symmetry may differ from 3 to 21, depending

on its configuration. The expression for the elasticity tensor of isotropic materials is given

by Voight notation as follows due to symmetry of the crystal:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C33 0 0

0 0 0 0 C33 0

0 0 0 0 0 C33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The relationship between C33 and C11 and C12 can be expressed by the equation: C33 =

(C11 − C12)/2. The Voight notation enables the establishment of relationships between

mechanical constants by means of these elastic constants. When the tensor elements

Cij are known, the Young modulus and Poisson ratio can be interconnected using the

following formula:
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C11 =
E(1− υ)

(1 + υ)(1− 2υ)

C12 =
Eυ

(1 + υ)(1− 2υ)

(2.51)

here, E denotes the Young modulus or modulus of elasticity, while υ denotes the Poisson

ratio. The relationship between the three-dimensional modulus of elasticity, E, and its

two-dimensional equivalent, C, can be established by taking into account the effective

thickness of a single-layer material in two dimensional form. The effective thickness,

denoted as he, is often defined as the sum of the actual thickness of the layer and the

spacing between layers in its bulk form. The relationship between the in-plane stiffness

(C) and Young modulus (E) is expressed by the following expression:

C = Ehe (2.52)

By utilizing the relationships between C-E and E-υ, we can rewrite the expressions in

terms of elastic constants, Cij , as follows:

C = heC11[1−
(
C11

C12

)2

] (2.53)

The elasticity tensor can be obtained as an outcome of DFT-based first-principles simu-

lations and it is feasible to compute the in-plane stiffness of a material using two distinct

approaches, outlined here.

Similar to the calculation of the elasticity tensor components, Poisson’s ratio can

also be determined using the elastic constants obtained from the elasticity tensor. The

Poisson ratio can be calculated from the components Cij using the following equation:

υ =
C12

C11

(2.54)

When analyzing anisotropic crystal structures, the elastic constant described above can

be modified to determine the Poisson ratio of the material, which varies depending on

the direction. By substituting C22 into the above equation, one can determine the Poisson

ratio in direction-2, and so forth. So far, the elastic mechanical constants have been estab-

lished and an overview of the calculation methodologies using DFT-based computations

has been provided. In the following part will provide further clarification on additional

mechanical qualities, such as yield stress, ultimate strength, fracture behavior, elastic and

plastic region of structures by outlining the stress-strain relationship curve and discussing
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its implications for material behavior.

2.5. Computational Parameters

This section introduces the general computational framework utilized to analyze

the materials discussed in subsequent sections. In this thesis, in order to investigate the

structural, magnetic, vibrational, electronic, and elastic properties of ultra-thin low di-

mensional materials, first-principles calculations were carried out by conducting spin-

polarized calculations within Density Functional Theory as implemented in the Vienna

ab-initio Simulation Package (VASP).168 The VASP code employs an iterative approach

to solve the Kohn-Sham equations for a material with periodic boundary conditions,

utilizing a plane-wave basis set calculates an approximate solution to the many-body

Schrödinger equation of the structure. The plane-wave projector-augmented wave (PAW)

method was employed to portray the potentials of individual atoms within the all struc-

tures. The Perdew-Burke-Ernzerhof (PBE) form169 of the generalized gradient approxi-

mation (GGA) was adopted to describe the exchange-correlation effects on electrons. In

addition, the hybrid DFT-HSE06 functional170 was implemented to provide a more pre-

cise calculation of the band gap of materials, since bare-GGA tends to underestimate the

band gap of semiconducting materials. The electronic band dispersion calculations incor-

porated spin-orbit interactions, which are crucial effects for certain materials, particularly

those with larger atomic radius. The DFT-D2 method by Grimme171 was employed to

consider the weak van der Waals forces between individual atoms within the structures,

particularly crucial for layered materials. The Dudarev’s DFT+U method was employed

to address the limitations of the GGA functional in accurately describing strongly cor-

related systems with partially filled d subshells, particularly accounting for significant

correlations between the Hf, Ti, Ta, and Mn-d orbitals. This method combines the on-

site local Coulomb parameter, U , and the exchange parameter, J , into a single parameter,

namely Ueff = U − J . The optimized Ueff parameter was taken to be 4.0, 5.8, 3.06, and

5.0 eV for HfTe5, TiX3, TaX3 (X=S, Se, and Te), and MnPS3 structures in all calculations.

The Bader methodology was employed in order to ascertain the charge distribution on the

structures and the analysis of charge transfer occurring within the structures.172 Structural

optimizations were carried out using the parameters provided below. The energy thresh-

old of the plane-wave basis set was set at 500 eV for all calculations. To achieve minimum

total energy, the energy difference between each sequential step was adjusted to 10−5 eV

and the convergence threshold for the total Hellmann-Feynman forces within the unit cell
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was set to 0.05 eV/Å. Additionally, to ensure accurate calculations and broadening of the

density of states (DOS), a Gaussian smearing width of 0.05 eV was employed, and the

pressure on the unit cell was reduced to below 1.0 kilobar along all three directions. In

order to accurately determine charge densities, Brillouin Zone integration was performed

utilizing dense Γ-centered k-point samplings. To avoid potential interactions between

repeating layers of ultra-thin single-layer structures along the out-of-plane direction, a

sufficiently large vacuum gap was taken into account.

In order to investigate the dynamical stability, vibrational characteristics were cal-

culated for a large supercell of the structures under consideration using the small displace-

ment methodology, as implemented in the VASP, with PHON code.173 The total energy

convergence criterion was tightened to 10−8 eV in order to study the dynamical matrix

in calculations of phonon band dispersions. Each atom in the primitive unit cell was ini-

tially distorted by 0.01 Å and the corresponding dynamical matrix was constructed. Then

the vibrational modes were obtained by a direct diagonalization of the dynamical matrix.

Moreover, the vibrational properties of the structures were investigated in terms of the

off-resonant zone-centered Raman activity of each phonon modes at Γ point. For this

purpose, firstly, the vibrational phonon modes were computed using the small displace-

ment methodology as implemented in VASP. Then the derivative of macroscopic dielec-

tric tensor with respect to the each normal mode was calculated and the corresponding

Raman activities were obtained. In addition to the dynamical stability, thermal stabili-

ties were investigated by performing the ab-initio Quantum Molecular Dynamics (QMD)

simulations at finite temperatures. The simulations were carried out at room temperature

(300 K) using the Nosé-Hoover thermostat to control the temperature, employing a time

step of 2 femtoseconds (fs) for integration. In order to investigate the mechanical stabil-

ity of the considered structures, the elastic stiffness tensors were calculated and Poisson

ratios and stiffness values of the structures are obtained. Furthermore, to investigate the

chemical stabilities, the cohesive energies of structures under consideration were calcu-

lated using the following equation: Ecoh = ( 1∑

i
ni
(
∑
i

niEi)− ET ), where i represents the

atoms composing the structure; ni, Ei, and ET denotes the number of i atom in the unit

cell, the energy of single i atom, and the total energy per unit cell, respectively. Using the

local potential distribution along out-of-plane direction, the work functions are calculated

by following formula: φ = Evac − EF , where φ denotes the work functions, Evac is the

vacuum energy, and EF represents the Fermi energy.
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CHAPTER 3

NOVEL HIGHLY ANISOTROPIC SINGLE-LAYER

TRANSITION METAL PENTACHALCOGENIDES

In this chapter, the structural, vibrational, electronic, optical, and elastic proper-

ties of single-layer HfTe5 and its defected structures were investigated by means of ab

initio calculations. It was found that free-standing HfTe5 is dynamically and mechani-

cally stable indirect band gap semiconductor possessing in-plane anisotropy. In addition,

several point defects and their oxidized structures were shown to be distinguishable by

means of the STM simulations. The rest of chapter is organized as follows; the structural,

vibrational, thermal, electronic, optical, and elastic properties of HfTe5 are presented in

Section 3.1. Additionally, identification of point defects and their oxidized structures in

single-layer HfTe5 are given in this section. In the Section 3.2, structural, vibrational,

electronic and elastic features of titanium pentachalcogenides (TiX5, X=S, Se, and Te)

are presented.

Table 3.1. For the single-layer HfTe5; the optimized in-plane lattice parameters, a and
c; the atomic bond lengths between individual atoms, dHf−Tech , dHf−Teout ,

dTeout−Teout , dTech−Tein ; vertical distance between uppermost and lower-

most Te atoms (thickness), t; the cohesive energy per atom, Ecoh; the work

function, Φ; and electronic band gap energy ESOC
g .

a c dHf−Tech dHf−Teout dTeout−Teout dTech−Tein t Ecoh Φ EHSE+SOC
g

(Å) (Å) (Å) (Å) (Å) (Å) (Å) (eV/atom) (eV) (eV)
HfTe5 3.99 13.88 3.02 2.99 2.80 3.35 5.37 1.740 4.36 0.158

3.1. Hafnium Pentatelluride

The optimized atomic structure of single-layer HfTe5 is illustrated in Fig. 3.1(a)

from top and side views. The crystal structure of HfTe5 is made up of two Hf-Te5 units,

which are oppositely orientated along the out-of-plane direction, are connected together

through Te atoms, giving rise to orthorhombic symmetry. Within the primitive unit cell

of single-layer HfTe5, there exist three type of Te atoms, namely the outer (Teout), inner

(Tein), and the chain (Tech) atoms as shown in Fig. 3.1(a). Note that the two Hf-Te5

units are connected through the Tech atoms. The optimized in-plane lattice parameters, a
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and c, are found to be 3.99 and 13.88 Å, respectively, indicating the in-plane anisotropy

of HfTe5. Note that the vacuum is inserted along the b lattice vector. The direction a

is defined to be parallel to Hf-chains (Hf
‖
ch) while c is defined to be perpendicular to

Hf-chains (Hf⊥
ch). The structural parameters were reported from the experimental ob-

servations for the bulk structure are a = 3.97 Å, b = 14.49 Å, and c = 13.72 Å.174

Apparently, as the HfTe5 is dimensionally reduced from bulk to single-layer, it expands

along a direction (Hf
‖
ch), while it shrinks along the c direction (Hf⊥

ch). The corresponding

Hf-Te bond lengths are found to be 3.02 Å for Hf-Tech while that of Hf-Teout is calcu-

lated to be slightly shorter (2.99 Å). In addition, the outer Te atoms are found to form

Te-dimers with the corresponding Te-Te bond length of 2.79 Å and the one formed be-

tween Tech atoms is 2.92 Å. Moreover, the vertical distance between the outermost Te

atoms, which is defined as the thickness of single-layer HfTe5, is found to be 5.37 Å (see

Table 3.1). Bader charge analysis reveals that upon forming single-layer HfTe5, charge
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Figure 3.1. For the single-layer HfTe5 structures, (a) top and side views of the struc-

ture. (b) The phonon band dispersions (left panel) with the corresponding

Raman spectrum (right panel) and (c) atomic vibrations of each Raman-

active phonon mode.

donation occurs from Hf atom to Te atoms such that each Hf donates 1.7 e− to the sur-

rounding five Te atoms. The amount of 0.6, 0.5, and 0.1 e− are received by the Tein,

Teout, and Tech, respectively. Bader analysis indicates the partially ionic bonding charac-

ter between Hf and Te atoms. The well-known anisotropic single-layer black phosphorus

(BP) was reported the consist of phosphorus atoms connected through covalent bonds.175

Similarly, single-layer magnetic CrI3 structure was shown to display strongly covalent

character between the Cr and I atoms.176 As compared to anisotropic BP and magnetic

CrI3, single-layer HfTe5 structure may be more resistive to oxidation due to its partially

ionic nature. Using the local potential distribution along the out-of-plane direction shown

in Fig. 3.2(a), the work function is calculated using the formula: Φ = Evac − EF . Work
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function (Φ), which is defined as the amount of energy required to remove a charge car-

rier (electron/hole) located at the Fermi energy to vacuum as a free particle. In order

to compare the work function of HfTe5 with that of Hf-based single layers, the work

function for various Hf-based structures are calculated and shown in Fig. 3.2(b). It is
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Figure 3.2. (a) Local potential profile of HfTe5 plane averaged along the out-of-plane

direction and (b) work functions of Hf-based single-layer structures. The

Fermi energy (EF ) and the work function (Φ) are ilustrated as insets in (a).

seen that HfTe5 has the second lowest work function (4.36 eV) among different phases

of Hf-based single layers. In order to analyze the strength of the binding between the

atoms, the cohesive energy Ecoh of the HfTe5 structure is calculated using the following

formula: Ecoh = mEHf +nETe−EHfTe5/(m+n), where m and n stand for the number

of Hf and Te atoms, respectively, in a unit cell. EHf and ETe are the single atom ener-

gies of Hf and Te, respectively. Cohesive energy provides the information about energy

required to separate individual atoms in a material and bring them into vacuum as free

atoms. The calculated cohesive energy is 1.740 eV/atom, which is significantly lower

than those for HfX3, 1T- and 1H- HfX2 (S,Se, and Te). Although, the cohesive energy

of HfTe5 is smaller than that of other Hf-based structures, the formation of HfTe5 layers

may be feasible through top-down synthesis approaches such as exfoliation from its bulk

structure.

The dynamical stability of single-layer HfTe5 is determined by calculating its

phonon band dispersions through the whole BZ and it is presented in Fig. 3.1(b). It

is shown that the phonon branches are almost free from any imaginary frequencies indi-

cating the dynamical stability of the structure as a free-standing layer. The crystal struc-

ture of the 12-atom primitive cell of HfTe5 possesses 3 acoustical and 33 optical phonon

branches. The frequency of the highest optical branch is found to be 201 cm−1. The cal-
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culated Raman spectrum of single-layer HfTe5 is shown on the right panel of Fig. 3.1(b).

As labeled from I to VII, single-layer HfTe5 exhibits seven Raman active phonon peaks as

simulated at the Γ point of the BZ. The vibrational characteristics of each Raman active
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Figure 3.3. For the Quantum Molecular Dynamics simulations of HfTe5 (a) total en-

ergy fluctuations, (b) final structure at 300K, and (c) variation in bond

lengths of dHf−Tech , dHf−Teout , dTeout−Teout , and dTech−Tein as a function

of the temperature.

mode are also shown by the eigenvector of individual atoms in Fig. 3.1(c). The highest

frequency Raman active mode is calculated to occur at 164 cm−1 which is dominated by

the mixed in-plane and out-of-plane vibration of Tech atoms. The Tein atoms have tiny

contribution with pure in-plane vibration against each other. The phonon modes labeled

as II, III, and IV are found to be purely in-plane and have the frequencies of 89, 120, and

128 cm−1, respectively. The remaining three peaks, having frequencies of 84, 134, and

158 cm−1, are shown to be mixed in- and out-of-plane vibrations of Hf and Te atoms.

The thermal stability of HfTe5 is examined by performing QMD simulations at

room temeperature. The simulation run for totally 3.5 ps with a time step of 2 fs between

each step. As shown in Fig. 3.3(a), the total energy fluctuations of the structure varies

between 2 to 10 meV which states that single-layer HfTe5 is thermally stable around room

temperature. In order to support its thermal stability, the crystal structure of HfTe5 is also

visualized and shown in Fig. 3.3(b). In addition, we provide graphs showing the varia-

tions in atomic positions (bond lengths) with respect to the changing temperature. Fluc-

tuations in bond length of four different types, namely dHf−Tech , dHf−Teout , dTeout−Teout ,

and dTech−Tein are presented as a function of the temperature from 0 to 300K in Fig.

3.3(c). It appears from the graphs that four bonds fluctuate around their equilibrium po-

sitions. It was reported for ZrTe5 that changing temperature has effects on electronic fea-

tures of pentatellurides.177 The fluctuations in bond lengths may give predictions on the

electronic features of HfTe5 related to structural changes. Due to small fluctuations one
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expects robust electronic behavior for HfTe5. Overall, there does not occur any structural

reconstructions in HfTe5 around room temperature indicating the stability of the structure.
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Figure 3.4. Cleavage energy of single-layer HfTe5 crystal structure as a function of

seperation distance.

It is worth noting that common methods for exfoliating bulk materials include

mechanical exfoliation, chemical vapor deposition (CVD), and liquid-phase exfoliation.

It is highly beneficial to study the mechanical exfoliation energy needed to separate the

single-layer HfTe5 from its bulk structures. For this purpose, we first obtained energy-

minimized four-layer slabs of the HfTe5 nanosheets, maintaining the identical stacking

pattern observed in their bulk counterpart. In the next step, the last layer was steadily sep-

arated toward the out-of-plane vacuum direction, with a small step of 0.5 Å. Subsequently,

the change in energy of the systems is calculated and the cleavage energy is obtained in

meV/Å2. As seen in the Fig. 3.4, the relative energies exhibited rapid initial increments

and then reached to a converged value. According to our simulations, the exfoliation

energy of 42 meV/Å2 is predicted for the isolation of the single-layer HfTe5, which is

comparable to that of graphene,178 ZrTe3,
179 and WO2:

178 21, 25 and 62 meV/Å2, re-

spectively. Considering our predicted exfoliation energy, the prospect of experimentally

isolating single-layer HfTe5 from its bulk structures appears highly promising.

Electronic band structure and the corresponding partial density of states (PDOS)

are calculated in order to investigate the electronic properties of single-layer HfTe5. Al-

though, it is not shown in Fig. 3.5(a) single-layer HfTe5 is a metal without considering the

effect of SOC. In addition, since the bare-GGA tends to underestimates the band gap of
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semiconductors, electronic band structure calculations are performed within HSEO6 cor-

rection. HfTe5 is found to be a semiconductor with an indirect band gap energy of 0.158

eV using HSE06 correction. The valence band maximum (VBM) and the conduction
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Figure 3.5. (a) The calculated electronic band dispersions of HfTe5 with (b) corre-

sponding partial density of states. (c) The atomic orbital contributions to

charge densities of the VBM and the CBM states. (d) Effective masses of

electrons and holes in single-layer HfTe5 for different orientation angles.

band minimum (CBM) are found to reside at the Γ and between the X-Γ, respectively.

The atomic orbital contributions to the VBM and CBM states are shown in Fig. 3.5(c)

and it is found that while VBM is composed of pz of the Tein atoms while CBM state

arises from the mixed pz and py (out-of-plane) orbitals of the Teout atoms, which are also

supported by the PDOS shown in Fig. 3.5(b).

We further analyze both the electron and hole effective masses of single-layer

HfTe5 by considering the in-plane anisotropy of the structure. The effective masses are

calculated by parabolic fitting of the band extrema using the formula E=�2k2/2m∗. The

hole effective masses along the X − Γ and Γ− Z high symmetry directions of the VBM

are calculated to be 0.073 and 2.758 m0, respectively, where m0 is the free electron mass.

In addition, the electron effective masses are found to be 0.316 and 0.476 m0 along the

X − Γ direction from X and Γ points, respectively. In addition, the in-plane anisotropy

of the structure on the effective masses is obtained by plotting the orientation-dependent

behavior of the masses using the formula:180
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m∗ =
1

[(cos2θ/m∗
Hf

‖
ch

) + (sin2θ/m∗
Hf⊥

ch

)]
(3.1)

where θ is the angle between an arbitrary direction and the Hf
‖
ch orientation (which is

defined as the parallel direction along the Hf-chains). The coefficients m∗
Hf

‖
ch

and m∗
Hf⊥

ch

represent the effective masses along the Hf
‖
ch and Hf⊥

ch directions to the Hf-chains, re-

spectively. It is shown that both electron and hole effective masses display decreasing

trend along the Hf
‖
ch direction, which is much greater for the hole effective mass. More-

over, behavior of holes is found to be more anisotropic as compared to that of electrons

as a consequence of the anisotropy of the VBM states (see Fig. 3.5(d)).

The carrier mobility μ of 2D materials can be determined by using the following

equation:

μ =
e�3C2D

kBTm∗md(Ei
1)

2
(3.2)

where � is the Planck constant, C2D is the elastic modulus, kB is the Boltzmann con-

stant, T is the temperature, m∗ is the effective masss of charge carriers, and md =√
m∗

Hf
‖
ch

m∗
Hf⊥

ch

is the average effective mass. E1 is the deformation potential (DP) con-

stant, which is proportional to the band edge (VBM or CBM) shift induced by external

strain. E1 is calculated from ΔE = E1(Δl/l0), in which ΔE is the energy shift of the

band edge position along Hf
‖
ch and Hf⊥

ch directions, the energies of the band edges are

calculated with respect to the vacuum level. l0 is the unstrained lattice constant along the

transport direction, and Δl is the deformation of l0 along the same direction. For VBM,

E1 is found to be -4.320, and 1.442 eV along Hf
‖
ch and Hf⊥

ch, respectively. In the case of

CBM, values are found to be -0.360, and 1.800 eV, respectively. DP values also show the

anisotropic nature of single-layer HfTe5. By performing the first-principles calculations

Table 3.2. For the single-layer HfTe5; deformation energy, E1; the effective mass m∗;

elastic moduli, C2D; and the carrier mobilities, μ.

Direction Carrier Type E1 m∗ C2D μ2D

(eV) (m0) (N/m) (m2V−1s−1)

Hf
‖
ch Electron -0.360 0.316 38 5.107

Hole -4.320 0.073 38 0.132
Hf⊥

ch Electron 1.800 0.476 62 0.221
Hole 1.442 2.758 62 0.051

and using deformation potential theory, it is examined the carrier mobilities of HfTe5

structure along Hf
‖
ch and Hf⊥

ch directions. The carrier mobilities at room temperature

(300K) show strong in-plane anisotropy. The calculated carrier mobilities of single-layer
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HfTe5 structure are summarized in Table 3.2. The hole mobilities are calculated to be

0.132, and 0.051 m2V −1s−1, while the electron mobilities are found to be 5.107, and

0.221 m2V −1s−1, along Hf
‖
ch and Hf⊥

ch directions, respectively. As compared to the hole

mobility of ZrTe5 (0.3 and 0.15 m2V −1s−1 along a- and c-axis),181 the hole mobilities

of the HfTe5 structure are lower for two directions. Moreover, the electron mobilities of

black phosphorus (BP) were reported to be 0.11 and 0.008 m2V −1s−1, while the hole

mobilities were found to be 0.070 and 0.260 m2V −1s−1 along armchair and zigzag direc-

tions, respectively.182 Electron mobility of single-layer HfTe5 is higher than BP along two

orientation. Hole mobility of HfTe5 is lower (higher) along zigzag (armchair) directions

of BP.
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Figure 3.6. For single-layer HfTe5 structure, calculated in- and out-of-plane (a) com-

ponent of the imaginary parts of the dielectric function, (b) absorption, (c)

reflectance, and (d) transmittance spectra, as a function of photon energy.

The GGA-PBE approximation is carried out to understand the light-matter interac-

tion and optical properties of single-layer HfTe5 structure, as illustrated in Figs. 3.6(a-d).

Absorption coefficient, reflectance, and transmittance spectra are simulated through cal-

culation of the frequency-dependent complex dielectric function. Firstly, the acquired real

(ε1) and imaginary (ε2) parts of the dielectric function are used to calculate the refractive

index (n) and extinction coefficient (κ), using the given formulas:
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n =
1√
2

(
ε1 +

(
ε21 + ε22

)1/2)1/2

κ =
1√
2

(
−ε1 +

(
ε21 + ε22

)1/2)1/2
(3.3)

and furthermore, reflectance R(ω) and transmittance T(ω) spectra were predicted using

the following equations:

R(ω) =
(n− 1)2 + κ2

(n+ 1)2 + κ2

T (ω) = (1−R(ω))2e−α|ω|l
(3.4)

where l is the layer thickness, and α(ω) is the absorption coefficient, which is calculated

by the formula:

α(ω) =
√
2ω

[(
(ε1(ω))

2 + (ε2(ω))
2
) 1

2 − ε1(ω)
] 1

2

(3.5)

It is considered both in-plane and out-of-plane light polarizations to understand the effect

of dipole orientation on the optical response of the structure. Because of the anisotropic

geometry of the HfTe5 nanosheet along the x-, y-, and z-axis, the optical properties are

anisotropic for light polarizations along the in-plane (E||x and E||z) and out-of-plane

(E||y) directions. The imaginary part of the dielectric constant (Im[ε] of the structure

versus photon energy for all polarization directions are shown in Fig. 3.6(a). For x (Hf
‖
ch)

and z (Hf⊥
ch) directions the lowest energy peaks, which correspond to the direct transition

at the Γ point of the electronic band structure, are found to be at 0.30 eV. We next inves-

tigate the optical absorption coefficient of single-layer HfTe5. The absorption coefficient

determines how deeply light of a specific energy (or wavelength) can penetrate into a ma-

terial before being absorbed. The absorption coefficients are illustrated in Fig. 3.6(b),

the optical absorption of the structure is found to be highly anisotropic. In the absorption

spectra, the first three absorption peaks are found at energies of 0.31 eV, 0.52 eV, and

0.92 eV for the x direction, and 0.30 eV, 0.64 eV, and 0.90 eV for the z direction. The

peaks at 0.3 eV corresponds to the optical band gap (Eopt) of the structure and it arises

from the in-plane dipole orientation, and almost compatible with our predicted band gap

for single-layer HfTe5 crystal. The highly anisotropic optical absorption along the HfTe5

nanosheet can be useful for the employment in the direction-dependent optoelectronic

nanodevices. In contrast to in-plane absorption, much weaker out-of-plane absorption is

expected because of the enhanced quantum effects in the 2D limit, which lead to the de-

crease of the strength of dipole oscillations along the direction perpendicular to the sheet

normal. The first peak along the out-of-plane direction occurs in between 2-2.5 eV. The

reflectivity of single-layer HfTe5 is shown in Fig. 3.6(c). The in-plane reflectivity of the
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HfTe5 is significantly higher than that of along out-of-plane direction. On the other hand,

the transmittance of the structure in the out-of-plane direction is considerably greater than

its transmittance in the in-plane direction. Maximum reflectivity for HfTe5 along in-plane

polarization is obtained at energy range between 0.6 and 1.5 eV while it is at energy range

of 4.0-4.5 eV along out-of-plane direction. Our results show that the reflectivity along per-

pendicular polarization is larger than the parallel one at low frequencies. The calculated

transmittance spectrum indicates that the transmission rate remains close to 0% in both

the out-of-plane and in-plane directions range from 4 to 5 eV, which can be attributed to

the small band gap energy of the material. Presented results confirm appealing anisotropic

optical characteristics of the HfTe5. Anisotropic optical features of HfTe5 are promising

for design of novel optoelectronic nanodevices that exploit their anisotropic properties,

such as polarization-sensitive photodetectors.

Table 3.3. For single-layer HfTe5, the relaxed ion elastic coefficients Cij; the corre-

sponding in-plane stiffness C, and Poisson ratio υ, along Hf
‖
ch and Hf⊥

ch

directions.

C11 C13 C31 C33 C66 Ca Cc υa υc
(N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (N/m)

HfTe5 66 13 13 40 20 38 62 0.32 0.20

The strain energy of a given crystal must always be positive for all possible values

of applied strain, otherwise the crystal would be mechanically unstable. The quadratic

form (1/2Cijeiej) of the strain energy is positive definite for all real values of strains unless

all the strains are zero. The positivity of the energy imposes further restrictions on the

elastic constants, Cij , depending on the crystal structure. Elastic constants characterize the

ability of a material to deform under small stresses and then returning to its original shape

after stress ceases. For orthorombic structure the Born-Huang criteria183 of mechanical

stability in terms of the elastic strain tensor constants, C11, C33, C13, and C66, reads as:

C66 > 0 and C11C33−C2
13 > 0.184 As listed in Table 3.3, the calculated Cij values satisfy

the Born criteria indicating the mechanical stability of orthorhombic single-layer HfTe5.

The linear-elastic properties of the mechanically stable HfTe5 layer can be represented by

two independent constants, namely the in-plane stiffnes (C) and the Poisson ratio (υ). For

determination of the linear elastic constants, the elastic strain tensor elements, Cij , are

used to calculate the corresponding C and υ values for all orientations of the lattice and

those for two main directions are listed in Table 3.3.

The in-plane stiffness is a measure of a rigidity or the flexibility of a material and

depends on the geometry of the structure and the strength of the atomic bonds between the
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individual atoms under consideration. Among 2D materials, graphene is known to have

the highest C value (330 N/m),185 which is a direct result of strong sp2 C-C bonding.

As referenced to that of graphene, stiffness of single-layer HfTe5 (38 and 62 N/m for the

lattice directions of a and c, respectively) are considerably small indicating its soft nature.

As shown in Fig. 3.7(b-c), the elasticity of HfTe5 is quite orientation-dependent. The

( )C( ) in N/m(a) (c)(b)

20
30

40
50

60

10

0.25

Hfch

Hfch

90
135

180

270
315

45

225

0

90
135

180

270
315

45

225

0

0.05
0.10

0.15
0.20

0.30

Figure 3.7. (a) Schematic representation of the orientation angle (θ). (b) The angle-

dependent in-plane stiffness (C) and (c) that of Poisson ratio (υ). a and c in

HfTe5 structures represent the directions perpendicular and parallel to the

Hf chains, respectively.

stiffness value along the Hf-chains is calculated to be almost half of that perpendicular

to the Hf-chains. This means that the structure is less stiff along the Tech atoms. The

orientation dependency is calculated using the formula:

C(θ) =
(C11C33 − C2

13)

C33cos4(θ) + Acos2(θ)sin2(θ) + C11sin4(θ)
(3.6)

where the numbers A defined as A=(C11C33-C
2
11)/C66-2C13 and B=C11+C33-(C11C33-C

2
13)/

C66. Using the above equations, in-plane stiffness along arbitrary orientations can be de-

termined. Similarly, such an anisotropy is also found for the Poisson ratio which is defined

as the ratio of transverse contraction strain to longitudinal extension. The orientation-

dependency can be obtained using the formula:

υ(θ) =
(C13cos

4(θ)− Bcos2(θ)sin2(θ) + C13sin
4(θ))

C33cos4(θ) + Acos2(θ)sin2(θ) + C11sin4(θ)
(3.7)

For the two main orientations, the Poisson ratio values are found to be 0.32 and 0.20 along

the a and c lattice orientations, respectively. Apparently, the response of the lattice to the

uniaxial strain is more sensitive along the Hf-Hf chains.

In experiments, depending on the synthesis technique and transfer procedure of

the 2D material, various types of defects are likely to be formed or can be controllably
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created. Commonly observed defect types in 2D materials include vacancies, antisite

defects, substitutions, and adatoms.186,187 It is also feasible to have oxidation of the va-

cancies due to unoccupied orbitals of the atoms around the vacancies. Therefore, in order

to figure out the possible defects and their oxidized structures, six different types of va-

cancy defects are considered in single-layer HfTe5. As shown in top panels of Figs. 3.8(a)

and (b), the following defect types are studied, namely; vacany of one chain Te atom from

the top and down of the chain (V u
Teu

, V d
Tech

), vacany of outer and inner Te atom (VTeout ,

VTein), vacany of a Te dimer (V dim
Teout

) and vacany of a Hf atom (VHf ). For the optimized

defected structures, the expansion or the compression rate of the lattice is calculated with

respect to the lattice parameter of bare HfTe5. As seen in Table 3.4, most of the defects

Table 3.4. For various defects in HfTe5, the type of the defect; the expansion rate of

the lattice parameters (− and + stand for compression and expansion, re-

spectively), a and c; the defect formation energy Efor; and the net magnetic

moment of the defect domain, μ. For comparability, formation energies of

Te-Hf vacancies are given in eV/(Te-Hf).

Δa Δc Efor Δμ
Defect Type (%) (%) (eV) (μB)
V u
Tech

-1.00 -1.15 1.62 0

V d
Tech

-1.08 -1.22 1.62 0
VTeout -0.41 -0.14 1.13 0
VTein -0.25 -1.72 2.16 0
V dim
Teout

-1.91 +1.15 2.27 1
VHf +0.25 -4.03 3.38 1

lead to shrinkage in the lattice, while Hf and two Te defects shrink and expand along

Hf
‖
ch and Hf⊥

ch directions. Different types of single Te vacancies lead to the shrinking

of the lattice along both orientations. However, as two outer Te atoms are missing in the

structure, the optimized structure shrinks along the Hf
‖
ch direction while it expands along

the Hf⊥
ch direction. The shrinkage occurs along the Hf-Hf chains due to the attraction

between Hf atoms. In contrast, formation of the Hf vacancy gives rise to the shrinking

of the lattice along the Hf⊥
ch direction while expansion occurs along the a direction. The

reason for such opposite behavior of VHf is that Hf atoms along the chain get closer and

thus the lattice expands along the Hf
‖
ch direction. As the lattice expands along the Hf

‖
ch

direction, the Tech atoms tend to get closer and the lattice shrinks along the Hf⊥
ch direc-

tion. Defect formation energies of each defect type are calculated by using the equation:

Eformation = Edefect −Ebare ±ΣniEi, where Ebare and Edefected represent the total ener-

gies of the bare and defected single-layer HfTe5 supercells, respectively, while ni and Ei

denote the total number of and the total energy of the vacant atom. The + sign is used
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for the adsorbed atoms while the − sign for the vacant atoms. The chemical potentials

for Hf and Te atoms are calculated from their bulk forms and using the single-layer en-

ergy of HfTe5 by the following formula: μHfTe5 = μHf + 5μTe, where μHf and μTe

(a)

Vu

Tech
Vd

Tech
V
Teout

V
Hf

V
Tein

Vdim

Teout

O-Vu
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O-Vd

Tech
O-VTeout

O-VTein
O-Vdim

Teout
O-VHf

(b)

Figure 3.8. (a) Top views and simulated STM images of defected HfTe5 and (b) those

for the oxidized defect structures. The dashed red circles indicate the va-

cant atom in the structure and the blue dashed circles stand for the O atoms.

Turquoise lines represent the line profile of STM images of defected and

oxidized defected structures.

represent the chemical potentials of Hf and Te atoms, respectively, while μHfTe5 is the

total energy of single-layer HfTe5. The defect formation energies of V u
Tech

, V d
Tech

, VTeout ,

VTein , V dim
Teout

, and VHf vacancies are calculated to be 1.62, 1.62, 1.13, 2.16, 2.27, and

3.38 eV/atom, respectively. The formation of VTeout is the most favorable defect among

the all considered types. On the other hand, the formation of VHf is the less favorable

since it has the highest formation energy. To determine the nature of magnetic coupling

between a defect domain and its host lattice, the net magnetic moment (in Δμ) of the each

defect type is calculated and the results are listed in Table 3.4. While the non-magnetic

feature of single-layer HfTe5 is preserved via V u
Tech

, V d
Tech

, VTeout , and VTein defects, the

V dim
Teout

and VHf vacancies give rise to a local magnetism with 1 μB of magnetic moment

per structure. The origin of magnetization for V dim
Teout

is the magnetic contribution re-

sulting from the unoccupied orbitals of the two Hf atoms bonding with the vacant outer

dimer. The magnetization for the VHf arises from the unpaired Hf-d orbitals. The pres-

ence of intrinsic and extrinsic defects makes them sensitive to oxygen present in their

46



environment, and the presence of oxygen in the environment can cause to oxidation of

the material especially from the defect site. Particularly, exposure to air frequently results

in the oxidation of materials, which has a significant effect on the functional properties

and efficacy of devices constructed.188 In order to study the effect of oxygen adsorption

on the vacancies, equal number of O atoms with that of vacant atoms are adsorbed on the

vacant sites as shown in Fig. 3.8(b). For the optimized oxygen substituted structures, the

expansion or the compression rate of the lattice is calculated with respect to the lattice

parameters of defected HfTe5. As listed in Table 3.5, each of the O-adsorbed vacancy

defect exhibits opposite behavior along the two lattice orientations by means of the lat-

tice expansion rates, which causes the increase of the in-plane anisotropy of the structure.

The highest shrinking and expansion occurs for the O-adsorption in VHf due to the atomic

radius difference of O and Hf atoms that a single O atom does not fill the location of a

Hf vacancy. The binding energy of O atoms on the vacant sites are calculated by using

Table 3.5. For the oxygen substituted in defected single-layer HfTe5, we present the

different types of oxidation; the expansion rate of the lattice parameter (-

and + stand for compression and expansion, respectively), a and c; the de-

fect formation energy Efor; the net magnetic moment of the defect domain,

μ; the electronic ground state; and the energy band gap of defected struc-

ture. For comparability, binding energy for oxygen atom adsorbed on the

Te-Hf vacancies are given in eV/Te-Hf.

Δa Δc Efor Δμ
Defect Type (%) (%) (eV) (μB)
O-V u

Tech
0.25 -0.58 5.35 0

O-V d
Tech

0.33 -0.65 5.35 0
O-VTeout -0.75 0.84 6.07 0
O-VTein -0.83 1.46 6.74 0
O-V dim

Teout
-0.08 2.27 5.12 0

O-VHf -3.24 5.40 -1.18 1

the equation: Ebinding = Evacancy + EO − EO−adsorb, where Evacancy represents the total

energy of the defected structure while EO and EO−adsorb stand for the total energies of the

single O atom and O-adsorbed defected single-layer, respectively. The binding energies

of O adsorption on the various vacant sites are calculated to be 5.35, 5.35, 6.07, 6.74, 5.12

and -1.18, respectively for the O-V u
Tech

, O-V d
Tech

, O-VTeout , O-VTein , O-V dim
Teout

and O-VHf .

Apparently, the negative value of binding energy for the O-VHf indicates that the oxygen

substitution is not favorable at the Hf-vacancy site. It is also found that the energetically

most favorable adsorption site for the O atom are the inner and outer Te positions. If two

O atoms fill the vacancy positions created by the outer Te-dimer, the binding energy of a
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single O is lower than that of a single O at the VTeout site. While the non-magnetic feature

of single-layer HfTe5 is preserved via O-V u
Te1

, O-V d
Tech

, O-VTeout , O-VTein , V dim
Teout

, oxygen

substituted structure of Hf vacancy (O-VHf ) give rise to local magnetism with 1 μB of

magnetic moment. The origin of magnetization for 0-VHf stems from the Hf-d orbitals.

Scanning Tunneling Microscopy (STM) is a powerful imaging technique for visu-

alizing surfaces at the atomic scale. It allows one to observe individual atoms on surface

with a good accuracy. It also provides atomically precise information about the crystal

structure. Here, we present our calculated STM images for six different vacancy and their

oxygen substituted structures (see Fig. 3.8). In the bare HfTe5 layer, the top Te-dimers

are found to be at a higher position and thus closer to the tip in STM simulation. So the

bright spots belong to the top Te-dimers. As shown in Fig. 3.8(a), as either V u
Tech

or V d
Tech

are created in single-layer HfTe5, one line of the Te-dimers become less bright and thus,

the defected site can be distinguished. If the upper Tech is missing in the structure, the Te-

dimer atoms closer to the vacant site will be monitored as less bright. In contrast, as the

bottom Tech is removed, the Te-dimer atoms closer to the vacant site are at higher position

and are brighter than their twins. In the case of VTeout , one of the top dimers is broken

and remaining Te atom optimizes at the center. The structure of VTeout can be monitored

in STM as one single bright spot centered between Te-dimers. As an inner Te atom is

missing in the lattice, namely the VTein is formed, the top Te-dimers are not affected and

the STM image looks very similar to the bare structure, thus the defect site is not distin-

guishable. In contrast, the V dim
Teout

structure can be clearly observed in STM measurement

since a dark site appears within the location of Te-dimer missing in the structure. In the

case of Hf-vacancy, the Te-dimers closest to the Hf-vacancy site look still bright while

the Te-dimer away from the vacancy becomes less brighter since the two Te atoms are

attracted by a Hf atom which shifts closer to the Te-dimer. In addition, the STM line pro-

files along the apparent atoms are also shown on the STM images as seen in Fig. 3.8. The

difference between the intensities representing different atoms can also be distinguished

from the amplitudes of the line profiles.

In O-substituted structures, the O atoms can also be distinguished in some of the

vacant structures by STM image analysis. When an O atom is adsorbed at the vacant site

in V u
Tech

, O atom binds to the Hf atom and the Te atoms looking darker optimize at upper

position and become brighter while one Te close to O atom still remains to be darker.

Clearly, as seen at the first panel of Fig. 3.8(b), the presence of O atom at the V u
Tech

site

can be monitored via STM analysis. In the case of O adsorption on the V d
Tech

, the Te atoms

on the vacancy site of dimers are still brighter, however, the remaining Te atoms within
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the dimers are darker as compared to that of bare vacancy. The O atom at the VTeout site

can also be monitored via STM since the bright centered Te atom quite shifts and is not

at the center of neighboring Te-dimers anymore. The O-VTein and VTein structures are not

distinguishable through the STM analysis since the outer Te-dimers are not affected by

the adsorption of O atom at the inner site. Similarly, the O atoms can not be monitored in

the case of V dim
Teout

since two O atoms bind with neighboring Hf atoms and the Te-dimers

are not affected and look still as bright spots. Finally, in the Hf-vacany structure by the O

adsorption, the neighboring four Te atoms become less bright and thus, the presence of O

atom can be monitored.

Table 3.6. For the single-layer TiX5; the optimized in-plane lattice parameters, a and
c; the atomic bond lengths between individual atoms, dT i−Xch

, dT i−Xout ,

dXout−Xout ; vertical distance between uppermost and lowermost Te atoms

(thickness), t; the cohesive energy per atom, Ecoh; the work function, Φ;

and electronic band gap energy ESOC
g .

a b dT i−Xch
dT i−Xout dXout−Xout t Ecoh ESOC

g

(Å) (Å) (Å) (Å) (Å) (Å) (eV/atom) (eV)

TiS5 3.39 11.42 2.56 2.52 2.07 5.71 4.679 0.06

TiSe5 3.61 12.25 2.70 2.67 2.37 6.13 5.229 0.16

TiTe5 3.92 13.67 2.97 2.92 2.74 6.94 5.760 0

3.2. Titanium Pentachalcogenides

The optimized atomic structures of single-layer TiX5 (X=S, Se, and Te) are shown

in Fig. 3.9(a) and (c), highlighting top and side views of the materials. The lattice struc-

ture of TiX5 consists of two Ti-X5 units that are oppositely oriented along the out-of-plane

direction and connected through chalcogen atoms, resulting in orthorhombic lattice sym-

metry. Within the primitive unit cell of single-layer TiX5, there exist three type of X

atoms, namely the outer (Xout), inner (Xin), and the chain (Xch) atoms as shown in Fig.

3.9(c). The two Ti-X5 units are connected through the Xch atoms in the lattice. The geo-

metrical calculations show that the optimized in-plane anisotropic lattice parameters are

a/b=3.39/11.42 Å, 3.61/12.25 Å, 3.92/13.67 Å for TiS5, TiSe5, and TiTe5, respectively

(see Table 3.6). The direction a is defined as parallel to Ti chains (T i
‖
ch), while b is defined

as perpendicular to Ti chains (T i⊥ch). The corresponding Ti-X bond lengths are found to

be 2.56 Å, 2.70 Å, and 2.97 Å for Ti-Sch, Ti-Sech, and Ti-Tech, respectively. The Ti-X

bond lengths for Ti-Sout, Ti-Seout, and Ti-Teout are slightly shorter, calculated to be 2.52
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Å, 2.67 Å, and 2.92 Å, respectively. Additionally, the outer S, Se, and Te atoms are found

to form dimers with the corresponding S-S, Se-Se, and Te-Te bond lengths of 2.07, 2.37,

2.74 Å, respectively, while the one formed between the Sch, Sech, and Tech atoms are

2.27, 2.55, and 2.94 Å, respectively. As the atomic radius of the chalcogenide atoms in-

creases from S to Te, the bond length between Ti and X atoms also increases. It indicates

Ti S Se Te

b

a

(a)(a)(

(a)

(b)

(c)

Sout

S ch

Sin

Seout

Se ch
Sein

Teout

Te ch

Tein

Figure 3.9. For the single-layer ultra-thin TiX5 (X=S, Se, and Te) structures, (a) top

views of the crystal structures, (b) simulated STM images, and (c) side

views of the lattice structures.

the presence of relatively weaker bonds, implying that less energy is needed to remove

the chalcogenide atom from the crystal structure. Moreover, the reason for the decrease

in bond length among chalcogens in the order Te > Se > S can be attributed to the in-

creasing electronegativity in the S > Se > Te. Furthermore, the vertical distance between

outermost chalcogen atoms, defined as the thickness of the single-layer TiS5, TiSe5, and

TiTe5 are found to be 5.71 Å, 6.13 Å, 6.94 Å, respectively. In order to investigate the

detailed features of crystal structures, here, we present our simulated scanning tunneling

microscopy (STM) images for single-layer TiS5, TiSe5, and TiTe5 structures as seen in

Fig. 3.9(b). In the TiX5 layers, the top chalcogen dimers are found to be at a higher posi-

tion and therefore closer to the tip in the STM simulation. Thus, the bright spots belong

to the top chalcogen dimers, and as the atomic radius of the chalcogen atom increases,

the brightness of the spots in the STM simulation also increases. In order to analyze the
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strength of the binding between the atoms and chemical stability of the structures, the

cohesive energies Ecoh of the TiX5 structures are calculated. The calculated cohesive en-

ergies are 4.679, 5.229, and 5.760 eV/atom, consistent with a decrease in binding energy

observed with decreasing radius and decreasing electronegativity.
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Figure 3.10. Phonon band dispersions of single-layers (a) TiS5, (b) TiSe5, and (c) TiTe5,

respectively.

The dynamical stability of free-standing single-layer TiX5 structures are assessed

by calculating their phonon band dispersions through the entire BZ and it is presented in

Fig. 3.10(a-c). As illustrated, the phonon branches are almost free from any imaginary

frequencies except around the Γ point, indicating the dynamical stability of the structures

except TiS5. The presence of imaginary frequencies in the phonon spectrum of single-

layer TiS5 indicates its structural instability. Small imaginary frequencies near the Γ

point in the out-of-plane acoustic mode result from numerical artifacts caused by the

lack of precision in the fast Fourier transform (FFT) grid. Specifically, TiS5 structure

dynamically unstable with a negative frequency -172.6 cm−1, while TiSe5 and TiTe5 are

dynamically stable as a free-standing layer. The crystal structure of the 12-atom primitive

cell of TiX5 exhibits 3 acoustical and 33 optical phonon branches. The frequency of the

highest optical phonon branch at the Γ high symmetry point of the TiSe5 and TiTe5 crystal

structures are 345.7 cm−1 and 272.1 cm−1, respectively. It is seen that the frequency

of phonon modes (including the maximum phonon frequency, wmax) gradually decrease

(phonon softening) with increasing the weight the chalcogenide atom. The force constant

matrices demonstrate that this decrease is attributable to both the increased mass of the X

atoms and the reduced strength of interatomic connections.

The electronic band structure and the corresponding partial density of states (PDOS)

are calculated in order to analyze the electronic features of single-layer TiX5 crystals.
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Electronic band structure calculations are conducted across the whole BZ to explore the

electron behavior in the momentum space of the TiX5 structure, considering spin-orbit

interactions (SOC) along with the U-Hubbard term. TiS5 and TiSe5 are found to be
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Figure 3.11. (a) The calculated electronic band dispersions (SOC) of single-layer TiX5

structures. The Fermi energy (EF ) level is set to the top of valence states

and (b) corresponding partial density of states of single-layer TiX5 crystals.

a semiconductor with a direct band gap energy of 0.06 and 0.16 eV, respectively, while

TiTe5 structure possesses metallic behavior as seen in Fig. 3.11(a-c). The valance band

maximum (VBM) and the conduction band minimum (CBM) are found to at the between

Γ and X high symmetry points.

In order for a crystal to remain mechanically stable, the strain energy must always

be positive for all potential values of applied strain. The quadratic form (1/2Cijeiej)

representing the strain energy is always positive for any real values of strains, except

when all the strains are zero. The energy’s positivity imposes additional constraints on

the elastic constants, Cij , which vary according to the crystal structure. Elastic constants

quantify a material’s capacity to undergo deformation in response to minor loads and

thereafter revert back to its initial shape once the stress is removed. The Born-Huang

requirements for mechanical stability in an orthorhombic structure, as described by the

elastic strain tensor constants C11, C22, C12, and C66, can be expressed as stated in the

work of Born and Huang (1955)183 and Bhattacharya (2022) [C66 > 0 and C11C33−C2
13 >

0].184 The Cij values obtained for orthorhombic single-layer TiX5, as presented in Table

3.7, satisfy the Born conditions, indicating the mechanical stability of the material. For

the HfTe5 layer, its mechanical stability is characterized by two distinct parameters: the

in-plane stiffness (C) and the Poisson ratio (υ). The linear elastic constants are determined

using the elastic strain tensor elements, Cij, to compute the corresponding C and υ values
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for all lattice orientations and those for two main directions are presented in Table 3.7.

Table 3.7. For single-layer TiX5, the relaxed ion elastic coefficients Cij; the corre-

sponding in-plane stiffness C, and Poisson ratio υ, along T i
‖
ch and T i⊥ch

directions.

C11 C13 C31 C33 C66 Ca Cc υa υc
(N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (N/m)

TiS5 98 18 18 50 31 92 47 0.35 0.18

TiSe5 83 18 18 49 28 76 45 0.36 0.22

TiTe5 66 15 15 44 26 60 41 0.34 0.23

The in-plane stiffness is a quantitative measure of the rigidity or flexibility of a

material. It is determined by the structure’s geometry and the strength of the atomic con-

nections between the individual atoms being analyzed. As listed in Table 3.7, the stiffness

values of TiS5, TiSe5, and TiTe5 are 92/47, 76/45, and 60/41 N/m along the parallel and

perpendicular direction, respectively. As compared to the single-layer HfTe5 (38/65 N/m),

TiX5 structures exhibit stiffer character along a direction while possessing softer feature

along b direction. As seen in Fig. 3.12, the elasticity of TiX5 crystals exhibits direction-
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Figure 3.12. (a) Schematic representation of the orientation angle (θ). (b) The angle-

dependent in-plane stiffness (C) and (c) that of Poisson ratio (υ). a and b

in TiX5 structures represent the directions perpendicular and parallel to the

Ti chains, respectively.

dependence. The Poisson ratio, which is defined as the ratio of transverse contraction

strain to longitudinal extension, also shows anisotropy. For the two main directions, the

Poisson ratio values of TiS5, TiSe5, and TiTe5 are calculated to be 0.35/0.18, 0.36/0.22,

and 0.34/0.23 along the a and c lattice orientations, respectively. The lattice structures are

more sensitive to uniaxial strain along the Ti-Ti chains, similar to HfTe5.
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CHAPTER 4

NOVEL HIGHLY ANISOTROPIC SINGLE-LAYER

TRANSITION METAL TRICHALCOGENIDES

In this chapter, the structural, vibrational, electronic, optical and elastic properties

of single-layer TaX3 structures were investigated by means of ab-initio calculations. It

was found that free-standing TaX3 crystal structures are dynamically and mechanically

stable metallic materials, exhibiting in-plane anisotropy. The rest of paper is organized

as follows; Structural and vibrational properties of TaX3 layers are presented in Section

4.1. Electronic, optical (Section 4.2), and elastic properties (Section 4.3) of single-layers

of TaX3 are illustrated.

4.1. Structural and Vibrational Properties

The optimized atomic structures of single-layer TaX3 are illustrated in Fig. 4.1(a)

and (b) showcasing top and side views. Single-layer TaX3 crystal structures consist of two

different types of atoms (Ta, and X:S, Se, Te) with monoclinic lattice symmetry (P21/m),

and the unit cell is composed of X-Ta-X sandwich layers. For TaS3, TaSe3, and TaTe3, the

Table 4.1. For the single-layer 2D TaX3: the optimized in-plane lattice parameters (a
and b), vertical distance between uppermost and lowermost S atoms (t),
the cohesive energy per atom (Ecoh), and the work function, (Φ).

a b t Ecoh Φ
(Å) (Å) (Å) (eV/atom) (eV)

TaS3 14.60 3.42 7.75 4.79 4.64
TaSe3 15.60 3.55 7.95 4.29 4.37
TaTe3 17.15 3.77 8.75 3.80 4.12

optimized in-plane anisotropic lattice parameters are calculated to be a/b = 14.60/3.42,

15.60/3.55, and 17.15/3.77, respectively. Highly anisotropic nature of TaX3 crystals is

originated by extending the prismatic TaX6 chains of TaX3 along the b-axis. The increase

in the atomic radius of the chalcogenide atom from S to Te leads to an elongation in the

bond length between Ta and X atoms. Specifically, bond lengths vary between 2.56-2.71,
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2.67-2.91, and 2.87-4.95 for TaS3, TaSe3 and TaTe3, respectively. The thicknesses (which

 STa  Se  Te

a
b

a
b

a
b

(a)

(b)

(c)

Figure 4.1. For single-layer TaX3 structures (a) top and (b) side view of the optimized

atomic structures. (c) Simulated STM images of TaS3, TaSe3 and TaTe3
crystals.

is defined to be the vertical distance between uppermost and lowermost chalcogenide

atoms) of the single layers are calculated to be 7.75, 7.95, and 8.75 Åfor TaS3, TaSe3

and TaTe3, respectively. According to spin-polarized calculations, it is found that TaX3

systems are not magnetic. The calculated structural parameters are summarized in Table

4.1. The lattice parameters, bond lengths, and geometric thickness exhibit an increas-

ing trend with the expanding atomic radius of the chalcogenide (X) atom in single-layer

TaX3 structures. Additionally, in order to analyze the strength of the binding between the

atoms, the cohesive energy per atom Ecoh of the TaX3 structures are calculated using the

following formula: Ecoh = mETa+nEX −ETaX3/(m+n), where m and n stand for the

number of Ta and X atoms, respectively, in the unit cell. ETa and EX are the single atom

energies of Ta and X, respectively. The cohesive energy offers insights into the energy

needed to separate individual atoms within a material and move them into a vacuum as

independent atoms. The cohesive energies for TaS3, TaSe3 and TaTe3 are calculated as

4.79, 4.29, 3.80 eV/atom, respectively. The cohesive energy decreases as the size of the

structures increases. The cohesive energy of TiS3 (4.72 eV/atom), TiSe3 (4.37 eV/atom),

TiTe3 (3.81 eV/atom), ZrS3 (5.21 eV/atom), ZrSe3 (4.75 eV/atom), ZrTe3 (4.26 eV/atom),

HfS3 (5.49 eV/atom), HfSe3 (4.72 eV/atom), and HfTe3 (4.20 eV/atom) are reported.189

The cohesive energy values of TaX3 structures are comparable to those of Ti-based struc-

tures, while the cohesive energies of the Zr and Hf-based structures are higher than TaX3.

The formation of TaX3 layers can potentially be achieved through top-down synthesis
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approaches, such as exfoliation from its bulk structures. Work function provides insights

into the electronic properties and surface behavior of the materials. The work functions of

electrode metals govern the Schottky barrier height of metal-semiconductor connections,

hence impacting the injection of charge carriers. Utilizing the suitable metal as the elec-
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Figure 4.2. The phonon band dispersions of single-layer TaS3, TaSe3 and TaTe3 crystals.

trode is a highly effective method for enhancing connections. Using the local potential

distribution along the out-of-plane direction, the work function values are calculated to

be 4.65, 4.37, 4.12 for TaS3, TaSe3 and TaTe3, respectively. The work function values

of ZrS3, ZrSe3, HfS3, HfSe3, are reported to be 5.57, 5.17, 5.48, 5.11 eV, respectively.82

Bader charge analysis reveals that the formation of three single-layers of TaX3 structures,

charge donation occurs from the Ta atom to the surface and internal chalcogen X atoms

which indicates the partially ionic character between the individual atoms. The amount

of charge donation decreased as the electronegativity of chalcogen X atoms decreased.

In addition, Bader charge analysis indicate that electrostatic interactions play a critical

role in keeping the structural integrity of single-layer TaX3 crystals. Scanning tunneling

microscopy (STM) is a highly effective imaging technique that enables precise visualiz-

ing of individual atoms at the atomic scale, offering essential understanding into surface

structures. The simulated STM images for TaS3, TaSe3 and TaTe3 are illustrated in Fig.

4.1(c). The bright regions represent the chalcogenide atoms located on the outermost

surface, respectively.

The dynamical stability of single-layers of TaX3 are determined through their

phonon band dispersions through the whole Brillouin Zone (BZ) and it is presented in Fig.

4.2. It appears from the dispersions that all phonon branches are free from any imaginary

frequencies which shows the dynamical stability of free-standing TaX3 layers. Increasing

the atomic number of chalcogen atoms in the TaX3 nanosheets resulted in phonon modes

with smaller frequency ranges, indicating reduced group velocity while maintaining the
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general pattern of dispersions. The crystal structures of the 24-atom primitive cell of TaX3

possesses 3 acoustical and 69 optical phonon branches none of which are degenerate at

the Γ point due to the structural anisotropy of the structures. The frequency of the highest

optical branch is found to be 485, 275, and 202 cm−1 for TaS3, TaSe3 and TaTe3, respec-

tively. The dispersive nature of the highest optical branches in TaX3 structures is due to

the presence of surface chalcogen atoms. In contrast, bulk structures, which lack surface

atoms, exhibit localization and flat branches in the highest optical modes. When transi-

tioning from TaS3 to TaTe3, the force constants decrease as the chalcogen atom becomes

heavier, indicating weaker bonds formed by the heavier chalcogenide atom. Therefore,

soft crystals composed of heavier chalcogenide atoms exhibit significant phonon soften-

ing in their spectrum, as illustrated in the Fig. 4.2. The dominant vibrations in the phonon

modes are found to occur in the out-of-plane direction, specifically the outermost chalco-

genide (S-S, Se-Se, and Te-Te) pairings. Larger atomic bond lengths lead to a higher

dielectric constant, causing a more significant change in polarizability in the crystal when

exposed to light. The increase in Raman activity of the phonon modes from TaS3 to TaTe3

is due to the higher macroscopic static dielectric constants.

4.2. Electronic and Optical Properties

Electronic band structure and the corresponding partial density of states (PDOS)

are calculated in order to investigate the electronic features of single-layer TaS3, TaSe3

and TaTe3, respectively. As shown in Fig.4.3, single-layer TaX3 structures exhibit metallic

behavior unlike TiX3 and ZrX3 which belong to the same material group. The electronic

states around the Fermi level are predominantly influenced by tantalum atoms rather than

chalcogenide atoms. It is the presence of tantalum that imparts metallic character to TaX3

structures.

The GGA-PBE approximation is employed to investigate the light-matter inter-

action and optical properties of single-layer TaX3 structures, as depicted in Figs. 4.4(a-

c). The simulation of absorption coefficient, reflectance, and transmittance spectra is

achieved by calculating the frequency-dependent complex dielectric function. To begin

with, the obtained real (ε1) and imaginary (ε2) components of the dielectric function are

utilized to compute the refractive index (n) and extinction coefficient (κ). Furthermore,

absorption coefficient α(ω), reflectance R(ω) and transmittance T(ω) spectra were pre-

dicted. To comprehend the impact of dipole orientation on the optical response of the

structure, both in-plane and out-of-plane light polarizations are taken into account. The
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TaX3 nanosheet exhibits anisotropic optical properties due to its anisotropic geometry

along the x-, y-, and z-axis. This anisotropy is observed when the light polarizations are

aligned with the in-plane directions (E||x and E||y) as well as the out-of-plane direc-

tion (E||z). The imaginary part of the dielectric constant (Im[ε] of the TaS3, TaSe3,

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

En
er

gy
 (e

V
)

X S X S X S PDOSPDOSPDOS

TaS3 TaSe3 TaTe3

Ta
S

Ta
Se

Ta
Te

Figure 4.3. (a) The calculated electronic band structures of TaS3, TaSe3 and TaTe3
single-layers with (b) corresponding partial density of states.

and TaTe3 structures versus photon energy for all polarization directions are shown in

Fig. 4.4(a-c), respectively. Next, we examine the optical absorption coefficient of single-

layer TaX3 structures, which denotes the extent to which a material can absorb light of

a particular energy (or wavelength) before it can no longer permeate the material. The

absorption coefficients of the TaS3, TaSe3, and TaTe3 are showed in Fig. 4.4(a-c), re-

spectively. The optical absorption profiles of the structures exhibit anisotropic character.

The TaX3 nanosheet exhibits a significant difference in optical absorption in different

directions, making it suitable for application in optoelectronic nanodevices that rely on

direction-dependent properties. Unlike the strong absorption that occurs within the plane,

out-of-plane absorption is significantly weaker due to the enhanced quantum effects in

the 2D state. Such effects induce a reduction in the intensity of dipole oscillations along

the direction perpendicular to the normal of the sheet. The reflectivity of single-layers of

TaX3 are illustrated in Fig. 4.4(a-c), respectively.

The in-plane reflectivity of the TaX3 are considerably greater than its reflectiv-

ity along out-of-plane direction. Conversely, the transmittance of the TaX3 materials in

the out-of-plane direction is considerably greater than its transmittance in the in-plane

orientation. Maximum reflectivity for TaS3 and TaSe3 along in-plane and out-of-plane

polarizations are obtained in the energy range between 3-4 eV. For TaTe3, the maximum
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reflectivity is attained in the energy range of 2-3 eV for the x- and z-directions, and in

the range of 0-1 eV for the y-direction. Our simulations demonstrate that the reflectivity

of single-layer TaX3 along the out-of-plane polarization direction is lower than that along

the in-plane direction. The transmittance spectrum calculation reveals that the transmis-
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Figure 4.4. Calculated in- and out-of-plane component of the imaginary parts of the

dielectric function, absorption, reflectance, and transmittance spectra as

a function of photon energy for single-layers (a) TaS3 (b) TaSe3 and (c)

TaTe3 crystal structure.

sion rate remains almost 0% in both the out-of-plane and in-plane directions within the

energy range of 4 to 5 eV, which can be attributed to the metallic character of the struc-

tures. The optical characteristics of the TaTe3 structure display anomalies in comparison

to TaS3 and TaSe3. The difference mainly stems from the electronic band structure of

TaTe3 where the increasing atomic weight of the chalcogenide atoms causes the band

gaps between electronic states to close, resulting in degeneracy. The presented results re-

veal attractive anisotropic optical characteristics of the TaS3, TaSe3, and TaTe3 structures.

The anisotropic optical properties of TaX3 layers show great potential for developing new

optoelectronic nanodevices that can take advantage of their anisotropic features, particu-

larly for polarization-sensitive photodetectors.

4.3. Elastic Properties

Linear-elastic parameters describe how a material responds to small stresses by

deforming within the linear range. For monoclinic structure, the Born-Huang criteria of
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mechanical stability in terms of the elastic strain tensor constants, C11, C22, C12, and

C66, should satisfy the following conditions: C66 > 0 and C11 + C22 − 2C12 > 0.190

According to our calculated values for C11, C22, C12, and C66, single-layers of TaX3

Table 4.2. For single-layer TaS3, TaSe3 and TaTe3 structures, the relaxed ion elastic

coefficients Cij the corresponding in-plane stiffness C, and Poisson ratio

υ, along a and b direction.

C11 C12 C21 C22 C66 Ca Cb υac υzz
(N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (N/m)

TaS3 105 21 21 169 40 102 165 0.12 0.20

TaSe3 102 18 18 159 34 100 155 0.11 0.18

TaTe3 94 14 14 130 28 92 128 0.11 0.15

display mechanical stability indicating that TaX3 crystal structures preserves their shape

under small loads. The linear-elastic features of the mechanically stable TaX3 layers

can be represented by two independent constants, namely the in-plane stiffness (C) and

the Poisson ratio (υ). The in-plane stiffness is a property that indicates the rigidity or

flexibility of a material. It is influenced by the geometry of structure and the strength of the

atomic connections between the individual atoms. As seen in Fig. 4.5(b) and (c), elastic

properties of TaX3 structures are highly orientation-dependet. As listed in Table 4.2 for
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Figure 4.5. (a) Schematic representation of the orientation angle (θ). (b) The angle-

dependent in-plane stiffness (C) and (c) that of Poisson ratio (υ) of TaX3

layers.

TaS3, TaSe3 and TaTe3, the C values are 102/165, 100/155, and 92/128 in the parallel and

perpendicular direction, respectively. The larger the bond lengths result in the smaller

the in-plane stiffness. When the in-plane stiffness decreases, the restoring forces in the

structure become effective over a shorter range of applied strain, resulting in a smaller

harmonic strain zone for soft materials. The TaX3 structures show greater resistance to

strains in the y-direction than in the x-direction. The structures have quasi-1D ribbons
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aligned in the x-direction and strongly linked connections in the y-direction. It causes

less strength in the x-axis but leads to more durable structures in the y-axis. Moreover,

the Poisson ratio characterizes a response of material in the perpendicular direction to an

external uniaxial strain leading to longitudinal extension. Poisson ratios exhibit direction-

dependent characteristics, displaying small changes in the parallel direction from single-

layer TaS3 to TaTe3 (0.12 for TaS3, 0.11 for TaSe3, and 0.11 for TaTe3). Conversely, in

the perpendicular direction, the Poisson ratios for TaS3, TaSe3, and TaTe3 are 0.20, 0.18,

and 0.15, respectively. Single-layer TaS3 exhibits larger responses to the applied stress

along the both parallel and perpendicular direction.
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CHAPTER 5

ANISOTROPIC SINGLE-LAYER TILTED α-BISMUTHENE

In this chapter, the structural, vibrational, electronic, and elastic properties of

single-layer tilted α-Bi and its vibrational spectrum under external uniaxial strain were

investigated by means of ab-initio calculations. It was found that free-standing tilted α-

Bi is a dynamically and mechanically stable indirect band gap semiconductor possessing

in-plane anisotropy. In addition, strain-induced modifications can be identified by means

of the Raman spectrum analysis. The rest of paper is organized as follows; Structural,

vibrational and thermal properties of tilted α-Bi are presented in Section 5.1. Electronic

(Section 5.2), and elastic properties (Section 5.3) of α-Bi are illustrated. In addition, strain

characterization via vibrational spectrum is shown in Sec. 5.4.

5.1. Structural and Vibrational Properties

The optimized atomic structure of single-layer α-Bi is shown in Fig. 5.1(a). The

α-Bi has a distorted atomic structure which consist of two sub-layers of Bi atoms, which

is similar to that of black phosphorus. The α-Bi undergoes structural distortion that the

atomic sub-layers become tilted unlike black phosphorus. In addition, α-Bi has par-

Table 5.1. For the optimized free-standing structure of single-layer α-Bi; the in-plane

lattice parameters (a and b), tilting between BiA and BiB atoms (Δh); the

atomic bond lengths between A and B type Bi atoms, din
A−B, dout

A−B; vertical

distance between uppermost and lowermost Bi, t; the cohesive energy per

atom, Ecoh; the work function, Φ; and electronic band gap calculated within

HSE06 (EHSE06
g ).

a b Δh dinA−B doutA−B t Ecoh Φ EHSE06
g

(Å) (Å) (Å) (Å) (Å) (Å) (eV/atom) (eV) (meV)

α-Bi 4.44 4.87 0.62 3.08 3.02 3.67 2.84 3.55 304

tial sp2 configuration in contrary to the tetrahedral sp3 configuration of black phospho-

rus,191,192 which is the main reason of the tilting between neighboring sublattices and loss

of centrosymmetry. There are two different types of bismuth atoms in α-Bi labeled as BiA

and BiB, which are shown by purple and blue colors, respectively (see Fig. 5.1(a)). Tilt-
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ing between BiA and BiB atoms (Δh) is found to be 0.62 Å. The optimize in-plane lattice

parameters (a and b to be 4.44 and 4.87 Å, respectively) reveal the in-plane anisotropic

nature of the structure. There exists two types of Bi-Bi bonding which are named as

din
A−B and dout

A−B are calculated to be 3.08 and 3.02 Å, respectively as listed in Table 5.1.

The spin-polarized calculations reveal the non-magnetic ground state of single-layer α-

(a)

Δh din

dout

B
A

A

B

(b)(((((((((((((((((((((((((a)))))))))))

b

a

Figure 5.1. For the single-layer α-Bi structure, (a) top and side views of the crystal

structure, and (b) simulated STM image. Corresponding electron localiza-

tion function contour map for the plane containing directly connected top

Bi atoms is shown in (a).

Bi. In addition, the thickness (the vertical distance between uppermost and lowermost Bi

atoms) of single-layer α-Bi is 3.67 Å. In order to analyze the chemical stability of strength

of α-Bi, the cohesive energy per atom, Ecoh, is calculated to be 2.84 eV/atom which is sig-

nificantly lower than black phosphorus (3.61 eV/atom). The work function (Φ) is found

as 3.55 eV for single-layer α-Bi which is much lower than that of black phosphorus (4.81

eV) indicating that the energy required to remove an electron from α-Bi is much lower

as compared to the case of black phosphorus. Moreover, Bader charge analysis shows

that upon the formation of α-Bi structure, charge donation occurs from the BiB atoms to

BiA atoms with an amount of 0.05 e−/BiB which indicates the partially covalent charac-

ter between the individual atoms. To gain deeper understanding of the chemical bonding

character in α-Bi structure, the electron localization function (ELF) is examined. Typi-

cally, areas with ELF values approaching 1 (red region) suggest strong covalent bonding

or presence of lone pair electrons, while lower ELF values indicate delocalization (≈0.5),
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ionic bonds, or weak van der Waals interactions. Fig. 5.1(a) display the ELF contour

maps for plane containing top BiB atom. The small ELF values in regions between Bi
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Figure 5.2. (a) The phonon band dispersions, (b) Raman activity of zone-centered

vibrations, and the corresponding (c) atomic vibrations of Raman active

phonon modes in single-layer α-Bi.

atoms reflect that ionic interactions are almost dominant. Scanning tunneling microscopy

(STM) is highly effective imaging method in order to utilize surfaces at the atomic scale.

STM technique enables the precise observation of individual atoms on a surface. As pre-

sented in Fig. 5.1(b), the BiB atoms can be observed as bright spots and thus, single-layer

α-Bi has a stripe-like surface characteristic owing to its tilted structure.

The dynamical stability of single-layer α-Bi is determined through its phonon

band dispersions and the result is shown in Fig. 5.2(a). It appears from the dispersions

that all phonon branches are free from any imaginary frequencies which shows the dy-

namical stability of the free-standing α-Bi. There are 3 acoustical and 9 optical phonon

branches none of which are degenerate at the Γ point due to the structural anisotropy of the

structure. The vibrational frequency of the highest optical phonon branch at the Γ point is

found to be 122 cm−1 which may give information about the Bi-Bi bond strength. In or-

der to have detailed inofmration about the vibrational characterics of the optical branches,

the first-order off-resonant Raman spectrum of α-Bi is calculated and the results are pre-

sented in Fig. 5.2(b). The calculated Raman spectrum of single layer α-Bi reveals that

four optical phonon modes are Raman active and possess non-zero Raman activity. Such
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Raman active modes are labeled as I-IV and their corresponding vibrational eigenvectors

are shown in Fig. 5.2(c). The highest activity is calculated for the mode-II whose fre-

quency is found to be at 85 cm−1. The phonon mode-II has a pure in-plane vibrational

character, in which BiA and BiB vibrate oppositely. In contrast, the modes I and IV pos-

sess out-of-plane vibrational characteristics, whose frequencies are found to be at 49 and

113 cm−1, respectively. The mode-I arises from the out-of-phase vibrations of the top and

bottom BiA-BiB pairs. In addition, the mode-IV presents the in-phase vibration of the top

and bottom BiA-BiB pairs while each BiA and BiB atoms vibrate out-of-phase. Finally,

the phonon mode-III having frequency of 98 cm−1 is found to exhibit in-plane vibrational

character, in which BiA and BiB atoms vibrate oppositely.
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Figure 5.3. For the QMD simulations of α-Bi structure, (a) total energy fluctuations,

(b) the crystal structure at 300K, and (c) variation in bond lengths of dout
A−B

and din
A−B as a function of total simulation time at room temperature.

In addition to the dynamical stability analysis of α-Bi, we further investigate the

thermal stability of the free-standing layer by performing ab-initio Quantum Molecular

Dynamics (QMD) simulations at room temperature. The total time for our simulation

is considered to be 5 picoseconds (ps) with time steps of 2 femtoseconds (fs) between

each step. The variations in total energy of the structure is shown in Fig. 5.3(a) and it is

found that the average fluctuations reside between ±30 meV which is the range for a 64-

atom supercell, indicating that the total energy variation per Bi-atom is less than 1 meV.

Apparently, the total energy variation per atom of 1 meV reveals the thermal stability of

the single-layer α-Bi. The crystal structure of α-Bi at room temperature at the end of the

65



5 ps simulation is also shown in Fig. 5.3(b). It is seen that there exists tiny distortions

in the lattice with no structural reconstructions. Therefore, the crystalline morphology of

α-Bi is preserved around room temperature. In addition, fluctuations in bond length of
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Figure 5.4. (a) The calculated electronic band dispersions (GGA and HSE06) of

single-layer α-Bi structure. The Fermi energy (EF ) level is set to the top

of valence states. The blue dashed line and red solid lines represent the

band structures calculated within HSE06 and GGA, respectively. (b) Cor-

responding partial density of state of α-Bi and (c) atomic orbitals contribut-

ing to the VBM and CBM states. Isosurface value for the atomic orbitals

in (c) is taken to be 2.5x10−5e−/3. (d) Effective masses of electrons and

holes for different orientation angles.

the two different types, namely din
A−B and dout

A−B, are presented in Fig. 5.3(c). It appears

from the graphs that both bonds fluctuate around their equilibrium positions, an indication

of the thermal stability of the structure.

5.2. Electronic Properties

Electronic features of α-Bi are investigated by means of the electronic band struc-

ture and the corresponding partial density of states (PDOS). As shown in Fig. 5.4(a),

single-layer α-Bi exhibits semiconducting behavior with an indirect electronic band gap

of 304 meV. The valence band maximum (VBM) state resides between the Γ and the Y

high symmetry points while the conduction band minimum (CBM) lies in between the S

and the X points of the BZ. PDOS plots reveal that top valence states of α-Bi is com-

posed of partial contributions from BiA and BiB atoms the bottom conduction states are
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significantly dominated by BiA atoms. In order to understand the atomic-orbital contribu-

tions to the edge electronic states, the band decomposed charge densities are calculated

and the results are presented in the Fig. 5.4(c). It is shown that a hybridization between

the in-plane orbitals of BiA and BiB atoms occurs in the VBM state. However, the charge

distribution in the CBM state is distributed only around the BiA atoms.

We further analyze both the electron and hole effective masses of single-layer

α-Bi by considering the in-plane anisotropy of the structure. The effective masses are

calculated by parabolic fitting of the band extrema using the formula E=�2k2/2m∗. The

hole effective masses along the Γ and the Y directions of the VBM are calculated to be

0.331 and 0.467 m0, respectively, where m0 is the free electron mass. The hole effective

masses were reported to be 1.140 and 0.182 m0 for the black phosphorus57 indicating the

higher anisotropic nature of the structure. In addition, the electron effective masses are

0.112 and 0.152 m0 along the S − X and the X − Γ directions, respectively, which are

smaller than those for black phoshporus (0.846 and 0.166 m0).
57 In addition, the in-plane

anisotropy of the structure of α-Bi is combined with the effective masses by plotting the

orientation-dependent behavior of the masses using the formula:

m∗ =
1

[(cos2θ/m∗
zz) + (sin2θ/m∗

ac)]
(5.1)

where θ is the angle between an arbitrary direction and the zigzag orientation and the co-

efficients m∗
zz and m∗

ac represent the effective masses along the zigzag (ZZ) and armchair

(AC) directions, respectively. It is shown that both electron and hole effective masses

display decreasing trend along the ZZ direction, which is much greater for the electron

effective mass. Moreover, behavior of holes is found to be more isotropic as compared to

that of electrons as a consequence of the anisotropy of the CBM states (see Fig. 5.4(d)).

5.3. Elastic Properties

Linear-elastic parameters characterize the ability of a material to deform under

small loads. For orthorombic crystals, the Born-Huang criteria183 gives detailed informa-

tion about the mechanical stability of the material. The linear-elastic parameters obtained

from the elastic tensor, namely C11, C22, C12, and C66, should satisfy the following condi-

tions: C66 > 0 and C11C22−C2
12 > 0.193 According to our calculated values for C11, C22,

C12, and C66 (see Table 5.2), single-layer α-Bi exhibits mechanical stability indicating
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that α-Bi preserves its shape unders small strains. For the mechanically stable α-Bi, the

Table 5.2. The relaxed-ion elastic coefficients, Cij; and the corresponding in-plane

stiffness, C; and Poisson ratio, υ; along ZZ and AC directions in single-

layer α-Bi.

C11 C12 C21 C22 C66 Cac Czz υac υzz
(N/m) (N/m) (N/m) (N/m) (N/m) (N/m) (N/m)

α-Bi 39 17 17 19 19 24 11 0.90 0.43

linear-elastic properties can be analyzed in terms of two independent constants, namely

the in-plane stiffnes (C) and the Poisson ratio (υ). The orientation dependency of both C

and υ are obtained using the equations given below:

C(θ) =
(C11C22 − C2

12)

C22cos4(θ) + Acos2(θ)sin2(θ) + C11sin4(θ)

υ(θ) =
C12cos

4(θ)− Bcos2(θ)sin2(θ) + C12sin
4(θ)

C22cos4(θ) + Acos2(θ)sin2(θ) + C11sin4(θ)

(5.2)

where the numbers A=(C11C22-C
2
12)/C66-2C12 and B=C11+C22-(C11C22-C2

12)/C66 are used

for simplifying the equations. Note that the ZZ and AC values of both constants can be

calculated for the angles 0 and 90 degrees, respectively. As presented in Fig. 5.5, the in-

plane stiffness is found to be 24 and 11 N/m for the ZZ and AC directions, respectively.

Apparently, α-Bi possesses ultra soft behavior along the AC orientation and it becomes

quite stiffer as the external strain is applied along the ZZ direction. As the external strain is

applied with an angle around 40 degrees, the in-plane stiffness is maximized and becomes

43 N/m. As compared to the stiffness values reported for the other mono-elemental single

layers such as graphene (330 N/m),11 silicene (62 N/m),194 and germanene (48 N/m).194

α-Bi has much softer character than graphene and comparable stifness with those of sil-

icene and germanene. Moreover, the reported orientation-dependent stiffness values for

single layers of black phoshporus (39 and 92 N/m)58 and black arsenic (20 and 55 N/m)58

for the AC and ZZ orientations, respectively, reveal the less anisotropic nature of α-Bi.

Poisson ratio, represents the perpendicular response of a material to an external

uniaxial strain and is known to be positive for most of the materials. Most materials have

tendency to compress in one direction when expanded in the perpendicular direction. The

υ values of single-layer α-Bi along the two main orientations are calculated to be 0.90

and 0.43 for the ZZ and AC directions, respectively. The high υ values of α-Bi indi-

cate its strong ability to preserve the equilibrium area. As compared to the values for
graphene (0.16),194 silicene (0.30),194 and germanene (0.33),194 α-Bi is more responsive
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Figure 5.5. (a) Schematic representation of the orientation angle θ, (b) the angle-

dependent in-plane stiffness (C) and (c) that of Poisson ratio (υ).

to the external uniaxial strains. Similar to the high υ values of single-layer α-Bi, black

arsenic was reported to exhibit 0.33 and 0.91 for the AC and ZZ orientations.58 The pois-

son ratio along the orientation angle of 45 degrees is found to be negative (-0.02) for

α-Bi, which indicates the auxetic behavior of the material. Such behavior reveals that

as α-Bi is exposed to an external strech along the 45 degrees, the structure gets streched

along the perpendicular direction. The negative Poisson ratio of α-Bi (-0.02) is predicted

to be lower than well-known auxetic materials such as black arsenic (-0.093),195 penta-

graphene (-0.078),196 and black phosphorus (-0.027).56

5.4. Strain Characterization via Vibrational Spectrum

Raman spectroscopy is an efficient experimental methodology not only to demon-

strate the correct structural phase but also to understand whether the material is exposed

to any external strain or not. Although, strain can be operated controllably on a material,

it is also possible that strain may internally occur as a result of substrate effect. There-

fore, it is critical to distinguish the direction and the strength of the strain by analyzing

the vibrational properties of the materials. In this section, the effect of uniaxial strains

on the phononic properties of single-layer α-Bi are discussed by means of the phonon

band dispersions and the corresponding Raman spectra. The uniaxial strains are applied

on the α-Bi structure along the two main orientations, namely the ZZ and AC directions,

between the ±5% strengths. As the compressive and tensile strains are applied, all the

atoms are fully relaxed except for the lattice parameters. First of all, the dynamical stabil-

ity of single-layer α-Bi is obtained for the higher limits of both compressive and tensile
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strains. The corresponding phonon band dispersions are presented in Figs. 5.6(a) and (b).
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Figure 5.6. The phonon band dispersions under ±5% strains along the (a) ZZ and (b)

AC directions.

Apparently, single-layer α-Bi exhibits dynamical stability by means of the phonons as it

is either compressed or streched up to 5% strains. As the Bi-Bi bond distances vary with

the type and the strength of the applied strain, there exist phonon softening/hardening de-

pending on the type of the applied strain. It feasible to observe such phonon shifts through

the analysis of Raman features of α-Bi. The frequency shifts result from the strains can

be detected by the Raman spectra. In addition, in order to understand the strain-behavior

of each phonon mode, the corresponding mode Gruneissen parameters are also calculated

using the equation:

γ(q) = − a0
2ω0(q)

[
ω+(q)− ω−(q)

a+ − a−

]
(5.3)

where a0 is the relaxed (unstrained) lattice parameter, ω0(q) is the unstrained phonon fre-

quency at wave vector q, ω+(q) and ω−(q) are the phonon frequencies under tensile and

compressive uniaxial strains, respectively, and a+ and a− are the strained and the com-

pressed lattice parameters, respectively. The calculated Raman spectra for each strain

type and the corresponding strength are presented in Figs. 5.7(a) and (b). The Raman
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active phonon mode, labeled as mode-I, is shown to exhibit phonon softening (hardening)

via applied tensile (compressive) strains independent of the strain direction. The calcu-

lated mode Gruneissen parameters of mode-I (0.20 and 0.30 for the ZZ and AC strain

directions, respectively) indicate that the mode is more sensitive to the applied uniaxial

strain along the AC direction since the central BiA-BiB pair vibrate out-of-phase with the

surrounding BiA and BiB atoms. The frequency of the mode-I is found to vary between
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Figure 5.7. Raman spectra of single-layer α-Bi under the effect of (a) ZZ and (b) AC

strains.

51-44 and 53-43 cm−1 for the ZZ and AC strains, respectively. The phonon mode-II is

shown to display similar behavior with that of mode-I under ZZ-strain while it exhibits

phonon softening (hardening) via applied compressive (tensile) strains. Such contrary

behavior can be used to identify the direction of the applied strain on the structure. The

opposite behavior of the mode-II under ZZ and AC strains is also predicted through the

mode Gruneissen parameters for the two strain directions. The γ is found to be 0.23 and

-0.41 for the ZZ and AC strain directions, respectively. Apparently, the variation in fre-

quency along the ZZ strain (86-78 cm−1) is almost half of that along the AC strain (91-73

cm−1). Although, individual atoms vibrate along the ZZ direction, as the uniaxial strain

is applied along AC direction the central BiA and BiB atoms separate along the AC direc-

tion. A similar behavior is predicted for the mode-III which has in-plane characteristic

along the AC direction. The γ is calculated to be 0.10 and -0.41 for the ZZ and AC strain

directions, respectively indicating that the AC strain has similar impact on both mode-II

and mode-III. As compared to those for the mode-II, the frequency variation is smaller

for the mode-III (96-91 cm−1) along the ZZ strain and similar (105-87 cm−1) along the

AC strain. Finally, the mode-IV is found to display phonon softening (hardening) under

compressive (tensile) strains both directions. Such anomalous behavior can be attributed

to the change in the bond length under applied strains that the dout
A−B gets smaller as the
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lattice is stretched and it gets larger as the lattice is compressed. The corresponding γ

value is found to be almost the same for the two strain directions (-0.17 and -0.18 for

the ZZ and AC directions). In order to identify the direction of the uniaxial strain, the

opposite behaviors of the modes II and III under ZZ and the AC strains can be used. In

addition, the frequency difference between the two modes can also be considered that for

the ZZ strain the difference gets larger (smaller) under tensile (compressive) strains. Sim-

ilar anisotropic behavior in vibrational spectrum was observed for BP.197 It was reported

that three Raman active modes (A1
g, B2g, and A2

g) of BP display red shift for A1
g mode and

blue shift for B2g, and A2
g, in armchair direction under compressive strain. Conversely,

A1
g shifts blue, and B2g, and A2

g modes shift red in tension. In zigzag direction strained,

B2g, and A2
g modes exhibit red shift, and A1

g shows blue shift under tension. Under com-

pression B2g, and A2
g modes shift blue, while A1

g shifts red. Apparently, in anisotropic

materials theoretical support of the experimental observations on the strain type and di-

rection is quite important.
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CHAPTER 6

EDGE- AND WIDTH-DEPENDENT ANISOTROPY IN

ULTRA-NARROW 1D MAGNETIC MANGANESE

PHOSPHORUS TRI-SULFIDE (MNPS3) NANORIBBONS

Until now, we have explored 2D anisotropy. Now, we are shifting our focus to 1D

anisotropy arising from edge and width variations in the magnetic MnPS3as they undergo

dimensional reduction. Despite numerous investigations on the bulk and 2D structures of

MnPS3, studies on one dimensional (1D) form of MnPS3 crystal has not been reported up

to date. In this chapter, 1D nanoribbon (NR) forms of ultra-thin MnPS3 were investigated

by means of the structural, magnetic, and electronic properties by using Density Func-

tional Theory (DFT)-based ab-initio calculations. The edge type and width-dependent

electronic and magnetic features were discussed in terms of the magnetic orders, elec-

tronic band structures, and STM images. The rest of paper is organized as follows; Struc-

tural, magnetic, and electronic properties of 2D single-layer MnPS3 are presented in Sec.

6.1. In Sec. 6.2, the edge and width dependent properties of different type of MnPS3 NRs

along AC and ZZ directions are presented.

6.1. 2D Single-layer of MnPS3

2D single-layer form of MnPS3 consists of three different types of atoms (Mn, P,

and S atoms) which are packed in a hexagonal lattice structure. Magnetic Mn+2 cations

in the crystal structure are arranged in a honeycomb lattice, and are octahedrally coordi-

nated to six sulfide atoms with P-P dimers located vertically in the middle of the hexagonal

plane (see Fig. 6.1(a-d)). In addition, the P-P dimers are coordinated in a tetrahedral man-

ner with three sulfur atoms to form a [P2S6]
4− bi-pyramid. The magnetic ground state of

single-layer MnPS3 is determined through the total energy analysis for the considered four

spin configurations shown in Fig. 6.1(a-d). Four different magnetic states are named as

ferromagnetic (FM), Néel, zigzag, and stripy antiferromagnetic (AFM) states. In the Néel

AFM state, Mn atoms arranged antiferromagneticly along both zigzag (ZZ) and armchair

(AC) directions. The zigzag AFM state represents that Mn atoms are aligned ferromag-
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netically along the ZZ direction and antiferromagnetically along the AC direction. In

Ferromagnetic Zigzag AFM(a) (b) (c) (d)
E= 107 meV E= 45 meV

Neel AFM Stripy AFM
Ground State E= 44 meV

Figure 6.1. Spin arrangements of (a) FM, (b) Néel, (c) zigzag, and (d) stripy AFM.

The yellow, and blue colors represent the spin-up and spin-down state Mn

atoms, respectively.

the case of stripy AFM state, Mn atoms exhibit AFM alignment in the ZZ direction and

FM alignment in the AC direction. The total energy calculations reveal that Néel type

AFM aligned spins on Mn atoms, where each magnetic site is anti-aligned with its near-

est neighbors, is energetically favorable over the other three magnetic states. The energy

differences (ΔE) with respect to the FM, zigzag-, and stripy-AFM states are calculated

to be 107, 45, and 44 meV per formula unit, respectively as shown in Fig. 6.1(a-d). The

magnetic moment per Mn atom is found to be 5 μB due to the presence of unpaired elec-

trons in the 3d orbitals. As listed in Table 6.1, the optimized in-plane lattice parameters

of 2D MnPS3 for the Néel AFM state are found to be a=b=6.07 Å, slightly larger than

bulk form (6.06 Å). The bond lengths between the Mn-S and P-S atoms are found to be

2.63, and 2.03 Å, respectively, which is consistent for P-S found in bulk, while Mn-S

is slightly smaller than that of bulk, and the Mn-Mn distance is calculated as 3.50 Å. In

addition, the vertical distance between the outermost S atoms, which is defined as the

thickness of single-layer MnPS3, is found to be 3.31 Å. The Bader charge analysis in-

dicates that when single-layer of MnPS3 is formed, Mn and P atoms donate electrons

to S atoms. Specifically, each Mn and P atom donates 1.2 and 1 e−, respectively, and

each S atom gains 0.7 e− from the neighboring Mn and P atoms, which is also the case

when the bulk structure is found, indicating partially covalent bonding character between

the individual atoms. Using the local potential distribution along the out-of-plane direc-

tion, the work function is calculated to be 6.07 eV, which is slightly smaller than that of

bulk MnPS3 (6.13 eV), using the formula; φ = Evac − EF , where φ represents the work

function, Evac denotes the vacuum energy, and EF is the Fermi energy. The work func-
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tion of MnPS3 is slightly higher as compared to that of well-known 2D materials such

as MoS2 (5.10 eV), h-BN (4.70 eV),198 CrI3 (5.35 eV),199 VSe2 (5.52 eV),200 implying

high chemical stability of the surface of MnPS3. Cohesive energy gives information

Table 6.1. For the single-layer 2D and bulk MnPS3: the optimized in-plane lattice

parameters (a and b), the atomic bond lengths between individual atoms

(dMn−S , dP−S), vertical distance between uppermost and lowermost S

atoms (t), the amount of donated electron for manganese (ρMn), and phos-

phor (ρP ), the amount of received electron for sulfur (ρS), the cohesive

energy per atom (Ecoh), electronic band gap energy (Eg), and the work

function, (φ).

a b dMn−S dP−S t ρMn ρP ρS Ecoh Eg φ

(Å) (Å) (Å) (Å) (Å) e− e− e− (eV/atom) (eV) (eV)
2D Néel-AFM 6.07 6.07 2.63 2.03 3.03 -1.2 -1 +0.7 4.40 2.50 6.07

Bulk Néel-AFM 6.06 6.06 2.62 2.03 - -1.2 -1 +0.7 4.43 2.38 6.13

about structural stability and the energy needed to separate individual atoms in a structure

and bring them into a vacuum as free atoms. The cohesive energy Ecoh of the single-

layer MnPS3 structure is calculated as 4.40 eV/atom by using the following equation;

Ecoh = 1
m+n+l

[mEMn + nEP + lES − Estructure], where m, n and l stand for the total

number of Mn, P, and S atoms, respectively. EMn, EP , ES are the total energy of each

isolated atom Mn, P, and S atom and Estructure is the total energy of the corresponding

ultra-thin structure. The cohesive energy of 2D MnPS3 is slightly smaller than that of the

bulk structure (4.43 eV). The cohesive energy of CrI3 (3.05 eV/atom), Cr2Ge2Te2 (3.21

eV/atom), and CrSBr (4.11 eV/atom) are lower than that of MnPS3, which indicates the

stronger bond formations in MnPS3.

It is crucial to investigate the magneto-crystalline anisotropy in magnetic mate-

rials for determining the stability of magnetization against thermal excitation. The non-

collinear calculations are carried out for 2D Néel-AFM MnP3 structure in order to in-

vestigate the easy-axis of single-layer MnPS3. Magnetic anisotropy energy (MAE) per

conventional cell is calculated by using the equation EMAE = E‖ − E⊥. Non-collinear

spin calculations indicate that the easy magnetization axis of the Néel-AFM single-layer

MnP3 is oriented along the in-plane direction with small negative MAE.159 The corre-

sponding result reveals that single-layer MnP3 exhibits antiferromagnetic properties, with

the direction of magnetization can be altered with low energies.

The dynamical stability of single-layer MnPS3 is determined by calculating its

phonon band dispersions along the high-symmetry points of the hexagonal Brillouin

Zone (BZ) and the results are presented in Fig. 6.2(a). The absence of any imaginary

frequencies through the whole BZ indicates the dynamical stability of the free-standing
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2D MnPS3 layer. The crystal structure of MnPS3 possesses 3 acoustical and 27 optical

phonon branches. The frequency of the highest optical branch is found to be at 549 cm−1

at the Γ point of BZ. Low frequency phonon bands are dominated by Mn-S vibrations,
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Figure 6.2. (a) The phonon band dispersions, and (b) electronic band structure and

partial density of states (PDOS) of single-layer MnPS3.

while the middle and high frequency modes mostly originate from the internal molecular-

like vibrations of the [P2S6] group. In addition, vibrations of two flat bands at 371 and

443 cm−1 and the high frequency bands are mostly independent of the Mn-vibrations.

Mixed in-plane and out-of-plane vibrations characterize the first flat band, while the sec-

ond branch is solely attributed to the in-plane vibrations. The presence of two flat bands

is attributed to the vibration modes of the P2S6 clusters, in which the S atoms in the up-

per and lower layer exhibit either symmetrical or anti-symmetrical vibrations. Moreover,

out-of-plane vibration of P atoms are dominant at the highest optical modes.

The electronic features of single-layer MnPS3 are obtained through the electronic

band structure and the corresponding partial density of states (PDOS) as shown in Fig.

6.2(b). In its ground state phase, single-layer MnPS3 is found to be an AFM semiconduc-

tor with a direct band gap energy of 2.50 eV at the K point which is slightly lower than

the bulk band gap energy (3.0 eV).161 The valence band maximum (VBM) and the con-

duction band minimum (CBM) states are located at the K point of the BZ. Apparent from

the PDOS, the VBM and CBM states are mainly dominated by the hybridization between

Mn-S orbitals. Due to the D3d symmetry of the trigonal anti-prismatic MnS6 octahedron,
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the Mn-3d orbitals can be separated into a single dz2 orbital and two-fold degenerate dxz,

dyz, dxy, and dx2−y2 orbitals. The VBM is primarily influenced by the hybridization of

Ribbon Growth Direction

Mn-1 P-1

Mn-2 P-2

Mn-3 P-3

1-1 1

2

3

2-1

3-2

... ...

...

Mn Edged P Edged
Armchair Nanoribbons Zigzag Nanoribbons(a) (b)

Mn-P Edged

...

Figure 6.3. Structural illustrations of MnPS3 nanoribbons (a) Mn-Mn, Mn-P, and P-P

edged armchair nanoribbons, (b) Mn-P line zigzag nanoribbons. Numbers

show the maximum width of the corresponding nanoribbons for this study.

Mn dxz, dyz, px, and py orbitals, which confirms the superexchange interactions between

the Mn-d orbitals facilitated by the S-p orbitals. On the other hand, the CBM is formed

by the dxz, dyz, dxy, and dx2−y2 orbitals of Mn, as well as the S px and S py orbitals, and

the P-p,s orbitals.

6.2. Single-layer 1D Nanoribbons of MnPS3

In this section, width-dependent structural, magnetic, and electronic properties of

1D nanoribbons of MnPS3 are presented. The different structures of 1D forms of MnPS3

are obtained by cutting the 2D structure along the two main orientations, namely armchair

(AC) and zigzag (ZZ) orientations, as shown in Figs. 6.3(a) and (b). The constructed

armchair nanoribbons (ANRs) are classified with respect to their edge-type formation as

shown in Fig. 6.3(a). The three structures are formed such that both edges are ended

up with Mn atoms (Mn-Mn) or with P atoms (P-P) or one edge is formed by Mn while

the other edge is formed by P atoms (Mn-P). In the case of zigzag nanoribbons (ZNRs),

both edges are formed by Mn-P lines independent of the width of the NR. Depending on

the width, ANRs are labelled as MnN -ANR, MnN -PN -ANR, and PN -ANR, where MnN

and PN denote the number of Mn and P layers, respectively within the NR. In addition,

ZNRs are labelled as Nz-ZNR, where Nz represents width of ZNRs. The representative

illustration of each NR type is given in Figs. 6.3(a) and (b). For the widest ANR structure

considered with Mn-edge consists of five Mn layers, the Mn-P edged NRs comprise six
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Mn and three P layers, and P-edge NRs composed of five P layers. For the ZNRs, the

widest structure considered in our study is constructed to have five Mn-P lines. In or-

der to comprehend the impact of confining charge carriers in one dimension on magnetic

characteristics, the FM and various AFM configurations are analyzed with for each width

in the case of both ANRs and ZNRs. The energetic stability of the NRs are obtained

Mn-2 Mn-3 Mn-4 Mn-5 Mn-6

No Dimerization
Dimerized S Atom

(a)

Néel AFM State Néel AFM State

(b)

Dimerized 

Figure 6.4. (a) Structural illustrations of Mn-Mn edged armchair nanoribbons with

varying widths of two, three, four, five, and six layer, and (b) correspond-

ing simulated STM images of Mn-Mn edged armchair nanoribbons.

by calculating the cohesive energy per atom for each structure. Moreover, chemical sta-

bility of NR surfaces is determined by computing the work functions (φ), which involves

utilizing the local potential distribution along the out-of-plane direction.

6.2.1. Mn-Edged ANRs of MnPS3

The optimized crystal structures of MnN -ANRs with varying widths are depicted

in Fig. 6.4(a). In order to identify the ground state of each NR, various spin configurations

are considered and the charge density differences for the ground state magnetic phases are

presented. Total energy calculations reveal that Néel and dimerized Néel AFM configura-

tions are energetically more favorable over the other spin configurations for Mn-2,4,6 and

Mn-3,5,7 ANRs, respectively. Structurally, the P atoms, being the first nearest neighbors

to S edges, weaken the bond between the S atoms and induce repulsion among them (S-S

repulsion). In contrast, P atoms, being the second nearest neighbors to S atoms, have

no significant effect on the interaction of the edge atoms. It is found that the interaction

between P and S atoms is stronger when P is the first-nearest neighbor to S atoms. The
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main reason is that P-P dimers are coordinated in tetrahedral manner with S atoms, and

the presence of P atoms has no impact on the formation of dimerization of S atoms. On
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Figure 6.5. For Mn-edged armchair nanoribbons with varying widths, (a) lattice pa-

rameters, (b) total magnetizations, (c) cohesive energies, and (d) work

functions.

the other hand, the presence of Mn atoms located at the sulfur edges induces the dimer-

ization. The dimerization is caused by the strong affinity of Mn atoms that Mn atoms

donate electrons to S atoms. The electron donation weakens the bonding between the S

atoms, giving rise to the formation of S-dimerization. Furthermore, Mn atoms are octahe-

drally coordinated to six sulfide atoms in 2D structure. However, Mn atoms are unable to

establish ideal six-fold coordination of octahedral symmetry at the edges in MnN -ANRs,

and it leads to formed dimerization between S atoms. The reason of the non-dimerization

and dimerization are particularly evident in Mn-4 and Mn-6 NRs, where two different

structures facilitate a clear understanding of the mechanism. Consequently, edge recon-

structions in MnN -ANRs exhibit variability based on the proximity of P and Mn atoms

to the edges. Additionally, depending on whether the number of Mn layers is even or

odd (Mn2 structure), dimerization of S atoms occurs at the edges. Scanning Tunneling

Microscopy (STM) is a highly effective technique for visualizing surfaces at the atomic

limit. It enables the observation of individual atoms on a surface with high precision. In

addition, it provides atomically precise information about the crystal structure. Here, we

present our calculated STM images for Mn-Mn terminated ANRs with different widths
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as seen in Figs. 6.4 (b). The bright spots belong to the top S atoms. In nanoribbons

consisting of an even number of Mn layers, the edge S atoms that are non-dimerized look

less bright. Conversely, in Mn-3,5 ANRs, sulfur atoms dimerize, making the edge atoms

appear brighter. Therefore, dimerization and non-dimerization of S atoms at the edges can

be distinguished via STM images for Mn-edged ANRs. In the case of an odd number of

Mn layers, the additional Mn layer hinders the formation of a tetrahedral structure, lead-

ing to the formation of S dimers. The optimized lattice parameters may seem to fluctuate

as shown in the Fig. 6.5(a), both Néel and dimerized Néel AFM structures consistently

exhibit an overall increase until reaching the 2D limit. Despite the Mn-3,5,7 having a total

magnetic moment of 10 μB as seen in the Fig. 6.5(b), both structures exhibit a preference

for the dimerized Néel AFM phase as the magnetic ground state. In the odd case, the net

magnetism arises from additional Mn layers. To quantify the energetic stability, we com-

pute the cohesive energy, Ec in eV/atom, of different Mn-edged ANRs. Cohesive energies

for Mn-edged ANRs are calculated to be 4.19, 4.28, 4.30, 4.33, 4.33, and 4.35 eV, respec-

tively for the widths varying from 2-to-7 as seen in the Fig. 6.5(c). The cohesive energy
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Figure 6.6. The calculated electronic band structures of Mn-edged armchair nanorib-

bons with varying widths of two, three, four, five, six, and seven layer.

values exhibit a continuous and consistent increase as the number of Mn layers increases,

and at larger widths saturates to the 2D case. The cohesive energy results indicate that the

S-S dimer formation results in higher cohesive energy. Moreover, using local potential

distribution along the out-of-plane direction, the work functions of the Mn-edged ANRs

are calculated to be 5.53, 5.23, 5.76, 5.23, 5.84, and 5.24 eV for the widths varying from

2-to-7 as shown in Fig. 6.5(d). When comparing the φ values of Néel and dimerized Néel

AFM phases, it is evident that the values for Neel AFM structures display increasing trend

and saturate towards the 2D limit. In the case of dimerized Néel AFM phase, the work

function exhibits mostly a stable trend.
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Electronic properties of Mn-edged ANRs are investigated in terms of the elec-

tronic band structures and the width-dependent electronic band gap energies. As seen in

the Fig. 6.6, all of the considered Mn-edged ANRs display semiconducting behavior as in

the case of 2D structure. Considering the even number edge Mn-edged ANRs, all struc-

tures are direct band gap semiconductors with increasing band gap energies from Mn-2

to Mn-6 ANR. Both the VBM and CBM states even number edge ANRs are shown to

P-2 P-3 P-4 P-5

Tilted P-P Dimer

(a)

Néel AFM State

(b)

Figure 6.7. (a) Structural depictions of P-P edged armchair nanoribbons with varying

widths of P-2, P-3, P-4, and P-5, and (b) corresponding simulated STM

images of P-P edged armchair nanoribbons.

reside at the Γ point. The Mn-edged ANRs with odd number of widths display decreasing

trend in terms of the band gap energy (1.89, 1.87, and 1.84 eV for the Mn-3, Mn-5, and

Mn-7 ANRs, respectively). While the Mn-3 ANR is a direct band gap semiconductor, the

CBM state shifts to between the Γ-X for the wider NRs that Mn-5 and Mn-7 ANRs are

indirect gap semiconductors. The Mn-edged ANRs with odd number of Mn-layers have

two common features that on one edge S-S dimerization occurs and dimerized Néel AFM

phase leads to the formation of net magnetism. The band gap energy of Mn-edged ANRs

having even number of Mn-layers increases with increasing NR width and is expected to
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reach the 2D limit for wider structures. In contrast, the band gap energy of odd number

edge ANRs decreases with increasing NR width, which is dominated by the presence of

S-S dimers on the edges which are absent in perfect 2D layer.

6.2.2. P-Edged Armchair Nanoribbons of MnPS3

The optimized atomic structures of P-edged ANRs with different widths and edge

reconstructions are demonstrated in Fig. 6.7(a). The widths are named with respect to

the number of phosphorus layers, ranging from the widest width comprised of seven

phosphorus layers to the narrowest width formed by two phosphorus layers. Structural

optimizations reveal that all of the P-edged ANRs display the same structural behavior

on the edges. In single-layer 2D structure, the P-P dimers are formed in a tetrahedral

arrangement and binded to three S atoms to create a [P2S6]
4− bipyramid. In the case
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Figure 6.8. (a) The lattice parameters, (b) cohesive energies, (c) work functions and

(d) band gap variations of P-edged armchair nanoribbons with different

widths.

of P-edged ANRs, unoccupied atomic orbitals at the edges result in formation of tilted-

dumbbell structure due to the absence of a S atom in the bipyramid as seen in Figs. 6.7(a).

The P atom forming the P-P dimer is unable to establish a tetrahedral configuration with

three S atoms. The upper P atom at the P-P dimer tilts in an upward and rightward di-

rection to approach the tetrahedral structure, resulting in a tilted-dumbbell shape at the
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edge. Such a configuration is found to occur regardless of the width of the NR. Magnetic

phase calculations of P-edged ANRs indicate a tendency to be at the Néel AFM phase

as a ground state interaction, and AFM ordering persists down to the thinnest P-edged

ANRs. The predicted STM images for P-edged ANRs with varying widths are illustrated

in Fig. 6.7(b). The S atoms binded to the upper P atom of tilted dimers are as bright

spots in STM images. In addition, the tilted-dumbbell structure of P atoms can be identi-

fied near the S atoms at edges. The optimized lattice parameters of the P-edged ANRs is

found to decrease and approaches to the 2D limit as the width increases, as shown in Fig.

6.8(a). The cohesive energies of various P-edged ANRs are calculated to be 3.99, 4.14,

4.22, 4.26, 4.29, and 4.31 eV/atom, for the P-2, P-3,P-4, P-5, P-6, and P-7 structures,

respectively. As appear from the Fig. 6.8(b), the cohesive energies display a gradual and

uniform increasing trend with increasing width. The formation of tilted dumbbell shaped

P atoms at the edges causes the reduction of the cohesive energies as compared to those

of Mn-edged ANRs. The work functions of P-edged ANRs are calculated to be 5.88,

5.82, 5.80, and 5.80, 5.80, and 5.81 eV by utilizing local potential distribution. For the

narrowest P-edged ANR, the work function is determined by the edge structure and as

the ribbon width increases, the work function values are found to reach almost a constant

value due to the weak contribution of edge atoms to the work function.
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Figure 6.9. Electronic band structures of P-2, P-3, P-4, P-5, P-6 and P-7 armchair

nanoribbons.

Electronic band structures reveal that P-edged ANRs are AFM semiconductors

regardless of the ribbon width as shown in Fig. 6.9. For the narrowest P-edged ANR,

the calculated band gap energy is larger than that of wider NRs due to the dominating

confinement effects. As the width increases, the band gap energy suddenly decreases

from P-2 to P-3 ANR and tends to saturate around 2.15 eV. For the P-7 ANR, there exists

a 0.01 eV of increment in the band gap energy and it is expected to saturate to the 2D limit
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for larger NRs (see Fig. 6.8(d)). Apparently, except for the narrowest P-edged ANR, the

wider structures are found to exhibit indirect band gap semiconducting behavior. While

4-2 5-3 6-31-1 2-1 3-2

S-S Dimerization

(a)

(b)

Dimerized Néel AFM 
Néel AFM No Dimerization

Figure 6.10. (a) Structural illustration of Mn-P edged ANRs with different widths of

1-1, 2-1, 3-2, 4-2, 5-3, and 6-3. The labels indicate the number of Mn, and

P layers, respectively in each configuration. (b) Corresponding simulated

STM images of Mn-P terminated armchair nanoribbons.

the VBM and CBM reside at the Γ point for P-2 ANR, the CBM state shifts towards the X

high symmetry point resulting in the indirect behavior. The band gap energies are found

to be 2.39, 2.15, 2.14, 2.15, 2.15, and 2.16 eV, respectively, for P-edged ANRs.

6.2.3. Mn-P Edged Armchair Nanoribbons of MnPS3

The optimized crystal structures of Mn-P edged ANRs with various edge recon-

structions are presented in Fig. 6.10(a). The two types of edge reconstructions, S-S

dimerized and non-dimerized edges, are also shown on the figure. The widths of NRs are

determined by the number of Mn and P layers and are denoted by MnN -PM -ANR where

N and M stand for the number of Mn and P layers, respectively. In the rest of the section,

the different width ANRs are labelled as N -M ANR. The widest ANR considered in our

study comprises eight Mn and four P layers, while the narrowest structure is formed by

one layer of Mn and P. Structurally, 2-1 Mn-P edged ANR exhibits slightly different edge

reconstructions as compared to the rest of the Mn-P edged ANRs. One edge of all Mn-P

edged ANRs is formed by the tilted P-P dumbell structure, except for the 2-1 Mn-P edged

ANR in which the P-P dumbells are not tilted. The S-S dimerization on one edge of 2-1

Mn-P edged ANR causes the P-P dumbells on the other edge to keep their untilted form.

Note that for the 4-2 and 6-3 Mn-P edged ANRs, the formation of S-S dimerization does

not affect the tilting of P-P dumbells on the other edge since there exist at least one P-layer
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in the center of the ANR. Another signature of having either S-S dimer or non-dimerized

edge is that if the last two atomic lines of the ribbon on the Mn edge are P and Mn layers,

then S-S dimerization does not occur. In contrast, if such two atomic lines are formed by

two Mn lines, then the edge S atoms tend to dimerize (see Fig. 6.10(a)). Apparently, if

the existing number of Mn layers is even, then the Mn edge of ANR is formed by S-S

dimerizations. However, in the case of odd numbered Mn layers, the S atoms on the Mn

edge are not dimerized. As confirmed by the STM images shown in Fig. 6.10(b), as the S

atoms on the edges are dimerized, the upper S atoms lying on the second Mn layer appear

to be brighter than those in the non-dimerized structure. Note that in the S-S dimerized

ANRs, the edge S atoms do not appear in the STM image since the dimerized S atoms get

lower in height from the surface as they form S-S dimers. In contrast, as the edge S atoms

do not form dimers, one of the edge S atoms reside on the surface and is observable in

the STM image. The calculated lattice parameters of the Néel AFM structures are found
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Figure 6.11. (a) The calculated lattice parameters, (b) total magnetizations, (c) cohesive

energies, and (d) work functions of Mn-P edged armchair nanoribbons with

different widths.

to display an increasing trend except for the narrowest ANR. In the case of ANRs having

dimerized Néel AFM state, the optimized lattice parameters are found to be very close to

that of 2D structure (Fig. 6.11(a)). The various spin configurations are examined for each

Mn-P edged ANRs and the total energy analysis indicates that Mn-P edged ANRs exhibit
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a preference for Néel AFM (1-1, 2-1, 6-3, and 8-4 ANRs) and dimerized Néel AFM con-

figurations (3-2, 5-3, and 7-4 ANRs) with a total magnetic moment of 10 μB as seen in

Fig. 6.11(b). It appears from the magnetic ground state analysis that for the odd number
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Figure 6.12. The calculated electronic band structure of Mn-P terminated armchair

nanoribbons with varying widths of 1-1, 2-1, 3-2, 4-2, 5-3, 6-3, 7-4, and 8-

4. The chart below the band structures present the relationship between the

width of the ribbon and the variation in band gap values for Mn-P edged

ANRs.

of layers of Mn the magnetic ground state is dimerized Néel AFM except for the narrow-

est ANR. In order to determine the chemical stability of Mn-P edged ANRs, the cohesive

energies are calculated in eV/atom. Cohesive energies of Mn-P edged ANRs are calcu-

lated to be 3.92, 4.02, 4.15, 4.21, 4.25, and 4.28 eV respectively, as seen in Fig. 6.11(c).

The cohesive energies possess a gradual increase with increasing ANR width. Moreover,

work function values are calculated for the two surfaces since an internal out-of-plane

dipole is created within the ANRs. Having P-P dumbells on one edge and Mn-layer on

the other edge causes the formation of dipole due to different local potentials on each sur-

face. Therefore, the work functions are calculated for both surfaces in the case of Mn-P

edged ANRs. The work function values are calculated to be 5.78, 5.59, 5.61, 5.23, 5.68,
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and 5.19 eV for one surface and 5.91, 5.60, 5.69, 5.32, 5.76, and 5.26 eV the other surface.

The highest potential difference between the two surfaces occur for the narrowest ribbon

(0.13 eV) due to the tilted P-P dumbells dominating the structural formation of the ribbon.

The lowest potential difference is found in the case of 2-1 Mn-P edged ANR (0.01 eV)

due to the untilted P-P dumbells on the edge of the ribbon. Although, there exist tilted

P-P dumbells on one edge for the wider ribbons, the potential difference between the two

surfaces decrease with increasing ribbon width since the averaged potential is dominated

by the central atoms.

The width-dependent electronic band structures are calculated by also considering

the 7-4 and 8-4 Mn-P edged ANRs in order to correctly analyze the width behavior of the

electronic band gap energy. As shown in Fig. 6.12(a), all the Mn-P edged ANRs exhibit

semiconducting behavior regardless of the ribbon width. The NRs of 1-1, 2-1, 3-2 and

4-2 Mn-P edged structures are found to be direct band gap semiconductors, whose VBM

and CBM states reside at the Γ point of the BZ. For the wider ANRs, namely 5-3, 6-3,

7-4, and 8-4, all structures are shown to display indirect band gap behavior, whose CBM

state shifts to between Γ-X points of the BZ. The narrowest Mn-P edged ANR has an

band gap energy of 2.55 eV which is the highest among all considered ANRs and even

larger than that of 2D structure.

6.2.4. Zigzag Nanoribbons of MnPS3

The optimized structures of zigzag nanoribbons (ZNRs) with varying widths are

shown in Fig. 6.13(a), for which the widths are identified by the number of zigzag lay-

ers. In order to determine the magnetic ground state, four different spin configurations

(FM, Néel-, zigzag-, and stripy-AFM) are constructed. Total energy calculations reveal

that the first and second narrowest ZNRs exhibit Néel-AFM coupling, while wider ZNRs,

considered up to seventh width, demonstrate FM coupling between the Mn atoms with

tiny opposite spin contributions of edge S atoms which are binded to two Mn atoms. The

first and second ZNRs display distinctive structures as seen in Fig. 6.13(a). At the edge

of the structures, Mn atoms bond with nearby S atoms, causing the intervening S atoms

to move downward and elongating the bond length between them. However, the influ-

ence of the edge S atoms is insufficient to impact the magnetic interaction in the first and

second ZNRs, leading to an AFM ground state. The transition from the AFM ground

state in first and second ZNRs to the FM ground state in the third to seventh ZNRs is

attributed to the influence of edge S atoms facilitating a superexchange interaction be-
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tween the two Mn atoms. While located along the ZZ lines, Mn atoms contribute to the

formation of FM arrangement. Additionally, edge S atoms between the two Mn atoms

ZZ-1 ZZ-2 ZZ-3 ZZ-4 ZZ-5 ZZ-6(a)

Néel AFM 
Ferromagnetic 

(b)

Figure 6.13. (a) Optimized structures of ZZ nanoribbons with varying widths of 1, 2, 3,

4, 5, and 6. The labels indicate the number of layer, and (b) corresponding

simulated STM images of ZNRs.

disrupt the FM interactions between Mn atoms, leading to a decrease in the total magne-

tization. The interplay of edge effects, electron transfer between Mn and S atoms, and

the interior structure influences the magnetic arrangement, resulting in the emergence of

FM. In addition, we provide our calculated STM images of ZNRs for varying width as

shown in Fig. 6.13(b). Firstly, in the case of ZNRs, the S atoms between the two Mn

atoms are not observable by means of the brightness. For all widths of ZNRs, the lowest

edge atoms are not visible in the STM images, and the surrounding S atoms appear to be

less bright. Moreover, the brightest triangle-shaped spots appearing in the STM images

are attributed to the bipyramid formed by the P-P dimers surrounded by the neighboring S

atoms. Lastly, the less bright triangular-shaped spots are found to appear from the incom-

plete formation of the bipyramid structure due to the missing S atoms. The total energy

difference between AFM and FM states are calculated for the 3-7 ZNRs in order to de-

termine the critical width for which the Néel-AFM state becomes energetically favorable

over the FM state. The energy difference gradually decreases as the width of the ribbon

increases (see Fig. 6.14(a)). Upon plotting and quadratic fitting the energy difference

between Néel-AFM and FM for widths ranging from three to seven, the Néel-AFM inter-

action is predicted to be favorable over the FM state at eighth width ZNR. Simultaneously,

the lattice parameter shows a gradual increase from the third to seventh ZNR, excluding

the first and second, and eventually approaches to that of 2D limit (see Fig. 6.14(b)). From

third to seventh width ZNR, nanoribbons exhibit a progressively increasing net magnetic

moment as shown in Fig. 6.14(c). In addition, the net magnetic moment can be calculated

using the formula 20n− 8, where 20n represents a total magnetization increase of 20 μB
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per atom for FM and n stands for the width of the ZNRs. The term 8 corresponds to a

net decrease in total magnetic moment due to the presence of S atoms between two Mn

atoms at the edges. The decrease arises from the superexchange interaction, where each
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Figure 6.14. For the zigzag nanoribbons, (a) total energy difference between AFM and

FM magnetic ground states, (b) the calculated lattice parameters, (c) total

magnetizations, (d) cohesive energies, (e) work functions, and (f) band gap

variations.

S atom weakens the interaction between the Mn atoms, leading to an magnetic moment

reduction of −2μB per S atom. To determine the stability of the ZNRs, cohesive energies

are calculated to be 3.94, 4.14, 4.18, 4.23, 4.26, 4.28, and 4.30 eV for the widths from 1

to 7, respectively. The cohesive energy consistently and progressively increases with the

number of width, ultimately reaching a saturation point at the 2D limit (see Fig. 6.14(d)).

Furthermore, as presented in (see Fig. 6.14(e)), the work function values of ZNRs are

calculated to be 5.22, 5.65, 6, 5.99, 5.96, 5.95, and 5.91 eV by using local potential dis-

tribution along the out-of-plane direction. Except for the first and second ZNRs, work

function gradually decreases.

The Fig. 6.15 presents the electronic band dispersions of ZNRs as a function of

the ribbon width. The calculated electronic band structures show that ZNRs exhibit ei-

ther AFM or FM semiconducting behavior, and even metallic character depending on the

ribbon width. Band dispersions of the ZNRs are significantly influenced by the superex-

change interaction between Mn and S atoms (Mn-S-Mn). The band gap energies of ZNRs

are calculated to be 0.85, 1.95, 0, 0.04, 0, 0.04, and 0.04 eV from ZZ-1 to ZZ-7 NRs,

respectively. The band gap of ZZ-1 and ZZ-2 widens as the width increases, exhibiting

antiferromagnetic semiconducting behavior. However, after the second width, ZNRs un-
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dergo a transition from an Néel AFM to a ferromagnetic magnetic ground state due to the

superexchange interaction between Mn atoms, resulting in differences in their electronic

properties. Nanoribbons consist of even number of zigzag layers exhibit semiconducting
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Figure 6.15. The calculated electronic band structures of zigzag nanoribbons with dif-

ferent widths ranging from 1 to 6.

behavior with 0.04 band gap energy, while those with an odd number of zigzag layers

demonstrate metallic character with zero band gap energy, until the seventh layer for

structures with FM ground state. In the seventh layer, metallic behavior ceases as the

energy distinction between the FM and AFM ground states nearly converges to zero. The

odd-even oscillations persist up to the sixth width; however, upon reaching the seventh

width, they vanish as the energy difference between the AFM and FM states decreases

and approaches the Néel AFM state. After the ZZ-7, when the ground state of ZNRs

returns to Néel AFM, their band gaps will saturate towards the 2D limit with increasing

width.
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CHAPTER 7

CONCLUSION

The orientation-dependent behavior of ultra-thin two-dimensional (2D) and one-

dimensional (1D) materials is of significant interest due to their anisotropic features,

which enable various advanced applications. Polarization-dependent photodetectors, cru-

cial in imaging, communications, and sensing, leverage these anisotropic properties to

detect and respond to the polarization state of light. Nanomechanical devices exploit the

orientation-dependent mechanical characteristics of materials to create innovative sen-

sors and transducers. Additionally, anisotropic materials are essential for polarization-

sensitive optical components such as waveguides, lenses, and filters, used in optical com-

munication, displays, and imaging technologies. In nanoelectronics, these properties are

employed to develop high-performance transistors, logic gates, and memory devices with

enhanced functionality and efficiency. Similarly, the anisotropic features of materials in

optoelectronic devices facilitate the creation of efficient LEDs, solar cells, and photonic

integrated circuits, customized for specific applications by manipulating the crystal lattice

orientation.

In the present thesis, a comprehensive exploration of the fundamental anisotropic

properties in single-layer structures was conducted, with a focus on the confinement ef-

fects in two-dimensional (2D) and one dimensional (1D) crystal lattices. In addition,

the basics of density functional theory (DFT) were elucidated. DFT serves as a corner-

stone in understanding the structural, magnetic, vibrational, electronic, optical, and elastic

properties of materials, providing a theoretical framework for the comprehensive analy-

ses conducted in this study. Alongside the application of these theoretical methods, two

studies recently published as original scientific papers within the scope of this thesis were

provided.

First of all, the highly anisotropic structural, vibrational, thermal, electronic, opti-

cal, and elastic properties of single-layer HfTe5 were investigated.201 Total energy and ge-

ometry optimizations reveal that 2D single-layer form of HfTe5 exibits in-plane anisotropy.

Phonon band structure shows the dynamical stability of the free-standing layer and the

predicted Raman spectrum displays seven characteristic Raman active phonon peaks. In

addition to the dynamical stability, HfTe5 is shown to exhibit thermal stability at room

temperature as confirmed by Quantum Molecular Dynamics simulations. Moreover, the
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obtained elastic-stiffness tensor elements indicate the mechanical stability of the HfTe5

with its orientation-dependent soft nature. The electronic band structure calculations

show the indirect-gap semiconducting behavior of HfTe5 with a narrow electronic band

gap energy. Optical properties of HfTe5, in terms of its imaginary dielectric function, ab-

sorption coefficient, reflectance, and transmittance, are shown to exhibit strong in-plane

anisotropy. Furthermore, structural analysis of several point defects and their oxidized

structures are investigated by means of the simulated STM images. Among the consid-

ered vacancy defects, namely V u
Tech

, V d
Tech

, VTeout , VTein , V dim
Teout

, and VHf , the formation

of VTeout is the most favorable defect. While V dim
Teout

, and VHf defects lead to local mag-

netism, only the oxygen substituted VHf structure possesses magnetism among the oxi-

dized defects. Moreover, it was found that all the bare and oxidized vacant sites can be

distinguished from each other through the STM images. Overall, our study indicates not

only the fundamental anisotropic features of single-layer HfTe5 but also shows the sig-

natures of feasible point defects and their oxidized structures which may be useful for

future experiments on 2D HfTe5. Moreover, another highly anisotropic family, TiX5, was

investigated in terms of its structural, vibrational, electronic, and elastic properties. The

analysis of geometry optimizations, phonon band dispersions, and linear-elastic coeffi-

cients of single-layer TiSe5 and TiTe5 provided insights into the structural, dynamical,

and mechanical stability of these structures, respectively. On the other hand, although

TiS5 shares the same crystal phase as TiSe5, TiTe5, and HfTe5, it is not dynamically sta-

ble due to the presence of imaginary frequencies in its phonon band dispersion, despite

demonstrating mechanical stability. Electronically, TiS5 and TiSe5 are direct band gap

semiconductor with electronic band gaps of 0.06 eV and 0.16 eV, respectively, while

TiTe5 is a metal. Orientation-dependent linear-elastic characteristics of TiX5 demonstrate

their structural anisotropy.

Secondly, the stability and fundamental properties of single-layer TaS3, TaSe3,

and TaTe3 were investigated by performing DFT-based ab initio calculations. The geom-

etry optimization, phonon band dispersion, and linear-elastic properties of single-layer

TaX3 were found to possess the structural, dynamic, and mechanical stability of the free-

standing layers. Additionally, our calculated STM images of TaX3 layers revealed that

structures with the same underlying framework but different chalcogen atoms can be dis-

tinguished from one another. Electronically, TaX3 layers was found to show metallic

character. The optical characteristics of individual TaX3 structures were demonstrated

by analyzing their imaginary dielectric function, absorption coefficient, reflectance, and

transmittance. The findings indicated that each structure exhibited optical anisotropy. The
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linear-elastic characteristics of each crystal structure exhibit direction-dependent mechan-

ical responses, providing insight into their highly anisotropic and soft character.

Next, the anisotropic structural, vibrational, electronic, and elastic properties of

single-layer α-Bi were investigated by performing DFT-based first-principles calcula-

tions.202 Structural optimizations show that free-standing α-Bi possesses tilted black phosphorus-

like anisotropic structure. The phonon band dispersions and the linear-elastic parameters

reveal the dynamical and mechanical stability of the α-Bi structure, respectively. In addi-

tion, quantum molecular dynamics simulations indicate the thermal stability of the single-

layer at room temperature. Electronically, it was found that α-Bi exhibits indirect band

gap semiconducting behavior. Both the hole and electron effective masses were shown

to be orientation-dependent with the latter being more anisotropic. Such anisotropic ef-

fective masses reveal the orientation-dependent transport properties in single-layer α-Bi.

Moreover, the orientation-dependent elastic features of α-Bi show that at angle of 45 de-

grees with respect to the zigzag orientation, an auxetic behavior was predicted for the

structure. Furthermore, the impact of uniaxial strains along the two main orientations

(zigzag and armchair directions) were investigated on the vibrational properties of single-

layer α-Bi. The phononic stability of the structure was first predicted at the strain limits

(±5) for both directions and the results reveal the preserved stability of the single-layer

under both compressive and tensile strains. The calculated Raman spectra under uniaxial

strains show that the type (compressive or tensile) and the direction of the applied strain

can be deduced from the Raman spectra analysis. Overall, strain-induced modifications

in the Raman spectrum of 2D α-Bi in terms of the peak positions may be a useful tool for

the characterization of induced strain in experimental studies.

Lastly, we investigated the edge and width-dependent anisotropy in 1D manganese

phosphorus tri-sulfide (MnPS3) nanoribbons to analyze 1D anisotropy. 1D nanoribbon

forms of manganese phosphorus tri-sulfide (MnPS3) were investigated in terms of the

structural, magnetic, and electronic properties. For the 2D free-standing stable struc-

ture of MnPS3, Néel-antiferromagnetic (AFM) interaction was shown to emerge as the

energetically most favorable phase. By cutting single-layer MnPS3 along the two high-

symmetry orientations, namely armchair (AC) and zigzag (ZZ) directions, leads to the

formation of 1D nanoribbons (NRs) of MnPS3. Depending on the edge atoms, it was

found that three different armchair NRs (ANRs) of MnPS3 can be formed, namely Mn-

Mn, P-P, and Mn-P edged structures, while the formed zigzag NRs (ZNRs) were shown

to be edge-independent. The optimized geometries of ANRs show structural variations

at the edges such that S-S dimerization occurs for the Mn-Mn ANRs having odd layer
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number of Mn atoms while even layer number of Mn atoms in Mn-P edged ANRs reveal

the existence of S-S dimers at one edge. In addition, a tilted P-P dumbbell formation

occurs regardless of the ribbon width in P-P edged ANRs. Magnetically, either Néel or

dimerized Néel-AFM ground states were found to describe magnetic properties of MnPS3

ANRs, where the latter exists as the number of Mn layers is odd. Moreover, the superex-

change interaction between the edge Mn and S atoms leads to a ferromagnetic ground

state in ZNRs except for the two narrowest structures. The Scanning Tunneling Mi-

croscopy (STM) image analysis reveal that either S-S dimerization or the formation of

P-P dumbells can be identified via STM images. Electronically, Mn-Mn, P-P, and Mn-P

edged ANRs were shown to exhibit semiconducting behavior similar to the 2D form of

MnPS3, which is an antiferromagnetic semiconductor. In contrast, ZNRs were shown

to exhibit either antiferromagnetic semiconducting nature for the two narrowest ribbons

and either ferromagnetic half-metallic or semiconducting behavior for the wider ribbons.

Overall, our predictions on the 1D NR forms of MnPS3 reveal that both ANRs and ZNRs

of MnPS3 provide opportunity to design nanostructures whose electronic and magnetic

features were significantly edge reconstruction and ribbon width dependent.
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