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ABSTRACT

RADIATIVE AND TOPOLOGICAL PROPERTIES

OF ONE-DIMENSIONAL ATOMIC CHAINS

In this thesis, the topological and vacuum-mediated collective properties of a one

dimensional diatomic chain consisting of two identical two-level atoms per unit cell are

examined. In the subspace where there is a fixed number of excitations on the chain, the

system is described by a non-Hermitian effective Hamiltonian which takes the dissipative

effects into account. In the presence of a single excitation on the chain, collective radiative

behavior for an infinite chain is revealed from the complex energy bands corresponding

to the effective Hamiltonian whose eigenstates are Bloch type states. For a finite chain

with a single excitation, the radiative properties are revealed by the exact diagonalization

of the effective Hamiltonian of the system. We identify the conditions for the existence of

subradiant states. The considered model is an extended, non Hermitian SSH model due to

mediated long range interactions and dissipation. For this system, we calculate the complex

Berry phase to reveal the topological properties, then we identify the edge states for the

topologically non-trivial cases. Furthermore, radiation patterns from radiant, subradiant

and topological edge states are shown by computing the Poynting vector in the radiation

zone.
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ÖZET

TEK BOYUTLU ATOMİK ZİNCİRLERİN

IŞINIMSAL VE TOPOLOJİK ÖZELLİKLERİ

Bu tezde, bir boyutlu, her birim hücresinde iki özdeş iki seviyeli atom bulunan bir diatomik

zincirin topolojik ve vakum aracılı kolektif özellikleri incelenmiştir. Zincir üzerinde sabit

sayıda uyarılmanın olduğu altuzayda, sistem, dissipatif etkileri dikkate alan non-Hermityen bir

efektif Hamiltonyen ile tanımlanmaktadır. Zincirde tek bir uyarım varlığında, sonsuz bir zincir

için kolektif radyatif davranış, öz durumları Bloch tipi durumlar olan etkin Hamiltoniyene

karşılık gelen karmaşık enerji bantlarından ortaya çıkarılmıştır.Tek bir uyarıma sahip sonlu

bir zincir için radyatif özellikler, sistemin etkin Hamiltonyeninin tam diyagonalizasyonuyla

ortaya çıkarılmıştır. Altışınımlı durumların varlık koşulları belirlenmiştir. Ele alınan model,

uzun menzilli etkileşimler ve dissipasyon nedeniyle genişletilmiş, non-Hermityen bir SSH

modelidir. Bu sistem için topolojik özellikleri ortaya çıkarmak amacıyla kompleks Berry

fazı hesaplanmış ve ardından topolojik olarak trivial olmayan durumlar için kenar durumları

belirlenmiştir. Ayrıca, ışınımlı, altışınımlı ve topolojik kenar durumlarından gelen radyasyon

desenleri, radyasyon bölgesindeki Poynting vektörünün hesaplanmasıyla gösterilmiştir.
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CHAPTER 1

INTRODUCTION

A system of closely spaced atoms sharing a common environment is known to

decay collectively with a rate larger or smaller than that of an individual atom. This

phenomenon was first pointed out by Dicke in his seminal work showing the enhanced

spontaneous emission for a gas of emitters confined to a container with dimensions

smaller than the radiation wavelength and referred to such states as superradiant states
of the gas.1–3 The innate counterpart of these states are the ones that are formed due

to destructive interatomic interference, leading to a reduced collective decay rate, are the

subradiant states.4 A stimulating work of Ficek and Tanaś proposed to exploit subradiance

to achieve decoherence-free two-atom entangled state without isolating the two-atom

system from the environment.5 Ordered lattices of emitters allow collective effects to

survive outside the Dicke regime.6,7 Their subradiant behavior offers many practical

applications such as efficient photon storage,8–11 high reflectivity atomic mirrors12 and

atomic clocks13 with enhanced stability. 1D arrays of atoms can also be employed as

atomic waveguides, where the subradiant states serve as guided modes by prohibiting

decay into free space.14 Collective dynamics are also being studied in the context of

waveguide QED, since waveguide mediated interactions between emitters survive beyond

subwavelength limit.15–18

Topologically non-trivial systems are of interest due to their accommodation to

implementing efficient quantum technologies such as single photon generation with en-

hanced indistinguishability,19 fast and robust quantum-state transfer.20,21 Diatomic 1D

arrays with mediated interactions differ from the standard Su–Schrieffer–Heeger (SSH)

model22 by inherent long-range interactions within the chain and non-Hermiticity due to

dissipation. In such non-Hermitian models, the adiabatic connection can be determined

using the complex Berry phase calculated on a biorthogonal basis, serving as a topological

invariant.23
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1.1 Time Evolution for Closed Systems

It is known from the fundamental postulates of quantum mechanics that a pure

state of a system isolated from its environment evolves according to the time-dependent

Schrödinger Equation, and its time evolution is reversible. Namely, the time evolution of

such states can be described by a unitary operator U such that,

i�
d

dt
|Ψptqy “ H |Ψptqy ÝÑ |Ψptqy “ U |Ψp0qy , U “ e´ i

�
Ht

Here, time evolution operator is defined in Schrödinger picture and for time independent

Hamiltonians, which is the case for isolated systems. The conjugate transpose of the time

evolution operator is its inverse, such that; U :ptqUptq “ 𝟙 as long as the Hamiltonian is

a Hermitian operator. This is always the case for closed systems, where the probability

xΨptq|Ψptqy is conserved throughout the time evolution. This can be easily generalized

for the mixed states using density operators;

ρ “
ÿ

i

pi |Ψiy xΨi| (1.1)

Where, pi are the probabilities of the system to be found in state |Ψiy. The evolution

of the pure states t|Ψiyu P H in Schrödinger picture is defined by the unitary operator

U “ e´ i
�

Ht. Therefore, in Schrödinger picture, ρptq can be found as:

ρptq “
ÿ

i

pi U |Ψiy xΨi| U : “ U ρ U : (1.2)

Differentiating by t gives us the Schrödinger picture von Neumann equation as follows;

9ρptq “ 1
i �

rH, ρptqs (1.3)

Where r‚, ‚s is the commutator such that rH, ρptqs “ HUρU : ´UρU :H , and we exploited

the fact that rH, U :s “ 0.
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1.2 Open System Dynamics

Time evolution for a system interacting with its surroundings is no longer a re-

versible process due to vulnerability to phenomena like dissipation and decoherence.

Apart from Section 1.1, the dynamics of an open system can neither be described by von

Neumann equation nor be carried by a unitary operator, since conservation of probability

is no longer ensured. In this section, I will discuss the master equation approach for

a system interacting with a Markovian bath, and there also will be a short introductory

discussion of quantum trajectories.

Figure 1.1: A schematic description of a closed composite system containing an open

system of consideration and its environment. Its state ρ lives in in H “
HS b HB .

To present the basis of what will be discussed about an open system, the situation

to be considered is visualized in Figure 1.1. The open system lies in Hilbert space HS

and its time-dependent state is described by the density matrix ρSptq. Similarly, for its

environment, we have ρB P HB , and for the total universe of system and bath, we have

ρ P H “ HS b HB . The total Hamiltonian of this composite system, can be written as:

HT “ HS b 1B ` 1S b HB ` V , (1.4)

Here, HS and HB are the interaction-free Hamiltonians of the system and the bath re-

spectively. And V is the interaction. Since the interaction Hamiltonian V operates on

HS b HB , without loss of generality, it can be decomposed into operators acting on the

3



two Hilbert spaces HS and HB as:

V “
ÿ
α

Aα b Bα (1.5)

Aα and Bα are operators on the Hilbert space of the system HS and the reservoir HB

respectively. This decomposition can be shown non rigorously by choosing complete

orthonormal bases t|ϕiyu and t|φjyu in HS and HB . The set t|ϕiy b |φiyu forms an

orthonormal basis on HS b HB . Then, we will have,

V “
ÿ

i,j k,l

Vi,j;k,lp|ϕiy xϕk|q b p|φjy xφl|q, (1.6)

where we used the completeness relation for both subsystems. Here, Vi,j;k,l are the matrix

elements of interaction term. V is already written as a linear combination of operators

lying on each subspace, such that reshaping gives; V “ ř
α cαAα b Bα where α runs over

all possible combinations of indices. Lastly, we can redefine the operators absorbing the

scalar coefficients cα coming from matrix elements into either of them and obtain Equation

(1.5). Having the total Hamiltonian and the description of considered system-environment

setup, we can proceed delving into the dynamics of this system.

1.2.1 Gorini-Kossakowski-Sudarshan-Lindblad Master Equation

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation describes the

dynamics of an open system weakly coupled to a Markovian bath. To derive this, we begin

by considering the total system-environment setup. The total universe consisting both of

the environment and the system is closed and therefore, its time evolution is described by

the von Neumann Equation (1.3). We begin solving the interaction picture von Neumann

equation for ρ P HS b HB by integrating both sides;

ρptq “ ρp0q ´ i

�

ż t

0
rHI , ρpt1qs dt1 (1.7)
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Differentiating again, with respect to time t, by using Von neumann equation for ρptq
again, we obtain an integro-differential equation:

dρptq
dt

“ ´ i

�
rHI , ρp0qs ´ 1

�2

ż t

0
rHIptq, rHIpt1q, ρpt1qssdt1 (1.8)

One more iteration gives a term which contains coupling constant of third order;

dρptq
dt

“ ´ i

�
rHI , ρp0qs ´ 1

�2

ż t

0
rHIptq, rHIpt1q, ρptqssdt1 ` Opg3q (1.9)

And, further iterations will contain higher order coupling constants. In the realm of

Born approximation, weak coupling limit, we can neglect Opg3q and higher order terms.

Further, we take Born approximation one step further and claim that, the system and bath

remains separable at all times ρ « ρSptq b ρB . We could have also neglect higher order

terms in Equation (1.9) under Born approximation beforehand by replacing ρSpt1q by ρSptq
in Equation (1.8) assuming that the past does not effect the future of the system state which

is consistent with markov approximation.24 Lastly, since we are particularly interested in

system dynamics, we trace out the reservoir degrees of freedom to obtain:

dρSptq
dt

“ ´ 1
�2

ż t

0
trBrHIptq, rHIpt1q, ρsptq b ρBss dt1 (1.10)

Notice that we can choose that initially mean of Bα is zero trBtrHIptq, ρp0qsu “ 0. In

Equation (1.10), time evolution of density matrix depends on past times. In order to

achieve a memoryless form, we substitute t1 by t ´ t1 and set the upper limit of the integral

to infinity. This is valid under Markovian approximation since the elapsed time for the

system is much greater than the time for bath, for t1 " τB , making the integrand disappears

fast.24

dρSptq
dt

“ ´ 1
�2

ż 8

0
trBrHIptq, rHIpt ´ t1q, ρsptq b ρBss dt1 (1.11)

Equation (1.11) is the Redfield equation.25 It is Markovian as desired but does not guar-

antee the preservation of positivity of the density matrix.26 Since negative properties are

not physically acceptable, the map we provide should be completely positive and trace

preserving. Positivity can be guaranteed by applying a secular approximation which is

the well known rotating wave approximation in quantum optics. In order to do so, we

first, decompose the Hermitian system operators Aα : HS Ñ HS forming the interaction

5



Hamiltonian in Equation (1.5).

Aαpωq “
ÿ

ε1´ε“�ω

P pεq Aα P pε1q (1.12)

Where, the operator P pεq projects onto the eigenstate with eigenvalue ε, and the index

ω runs over all energy differences 1
�
pε1 ´ εq. The operators Apωq are eigenoperators of

superoperator rHS , ‚s following;

rHS , Aαpωqs “
ÿ
�ω

HSP pεqAαP pε1q ´
ÿ
�ω

P pεqAαP pε1qHS

“ pε ´ ε1q
ÿ
ε1´ε

P pεqAαP pε1q “ ´�ωAαpωq (1.13)

And,

rHS , A:
αpωqs “ �ωA:

αpωq (1.14)

The time evolution of Aαpωq in interaction picture are found as;

eiHStAαpωqe´iHSt “ e´iωtAαpωq (1.15)

eiHStA:
αpωqe´iHSt “ eiωtA:

αpωq (1.16)

Giving A:
αpωq “ Aαp´ωq. The interaction picture interaction Hamiltonian is Hermitian

and reads as:

HIptq “
ÿ
α,ω

e´iωtAαpωq b Bαptq “
ÿ
α,ω

eiωtA:
αpωq b B:

αptq (1.17)

Where, Bαptq “ eiHBtBαe´iHBt. Recalling the Markovian Master Equation (1.11) for

Equation (1.17), we have:

9ρS “ ´ 1
�2

ż 8

0
trBtHIptqHIpt ´ t1qρSptqρB ´ HIpt ´ t1qρSptqρBHIptq
´ HIptqρSptqρBHIpt ´ sq ` ρSptqρBHIpt ´ t1qHIptqu dt1

“ ´ 1
�2

ż 8

0
trBtHIptqHIpt ´ t1qρSptqρB ´ HIpt ´ t1qρSptqρBHIptqu dt1 ` h.c.

(1.18)

6



Here, the tensor products are dropped for simplicity. Now we will substitute the interaction

Hamiltonian in Equation (1.17). Since, HI is Hermitian, we can use the first equality

for HIpt ´ t1q “ ř
β,ω e´iωpt´t1qAβpωq b Bβpt ´ t1q and the second one for HIptq “ř

α,ω1 eiω1tA:
αpω1q b B:

αptq.

9ρS “ ´ 1
�2

ÿ
ω,ω1;α,β

ż 8

0
dt1 trBteiω1tA:

αpω1qB:
αptqe´iωpt´t1qAβpωqBβpt ´ t1qρSptqρB

´ e´iωpt´t1qAβpωqBβpt ´ t1qρSptqρBeiω1tA:
αpω1qB:

αptqu ` h.c.

(1.19)

Simplifying this expression using the fact that system operators are not affected by the

trace operation over bath degrees of freedom, and exploiting the cyclic property of trace,

we obtain:

9ρS “ ´ 1
�2

ÿ
ω,ω1;α,β

ż 8

0
dt1 e´ipω´ω1qteiωt1

trBtB:
αptqBβpt ´ t1qρBu

ˆ tA:
αpω1qAβpωqρSptq ´ AβpωqρSptqA:

αpω1qu ` h.c.

(1.20)

Where the expression;

trBtBαptqBβpt ´ t1qu “ @
BαptqBβpt ´ t1qD

(1.21)

are the bath correlation functions. And the remaining integral;

καβpωq “ 1
�2

ż 8

0
eiωt1 @

BαptqBβpt ´ t1qD
dt1 (1.22)

is spectral correlation tensor of the form:24

καβ “ 1
2Γpωq ` iΩpωq (1.23)

We can apply the rotating wave approximation by neglecting the fast oscillating

terms ω ‰ ω1 to obtain the following:

9ρS “ ´ 1
�2

ÿ
ω,ω1;α,β

καβpωqtA:
αpω1qAβpωqρSptq ´ AβpωqρSptqA:

αpω1qu ` h.c. (1.24)

7



Defining Γαβ � καβ `κα̊β , and Ωαβ � ´i
2 pκαβ ´κα̊βq we obtain GKSL master equation:

9ρSptq “ ´ i

�
rH, ρSs ` DrρSs (1.25)

With the dissipator:

DrρSs “
ÿ
α,β

ΓαβpAαρSA:
β ´ 1

2tA:
βAα, ρSuq (1.26)

This is also called the dissipator. and H “ �
ř

α,β ΩαβA:
αAβ is the Hamiltonian with a

Lamb shift correction. We can also put Equation (1.25) into a form referred to as Lindblad

equation by diagonalizing the positive semi-definite matrix Γ by a unitary operator U ;

U :ΓU “ Λ (1.27)

where Λ is a diagonal matrix with eigenvalues λk P ℝě0. Then, we can define Lk as;

Lk “
ÿ
α

UαkAα (1.28)

Reshaping this way, we can write Equation (1.25) as:

9ρ “ ´ i

�
rH, ρs `

ÿ
k

λkpLkρL:
k ´ 1

2tL:
kLk, ρuq (1.29)

which is the Lindblad master equation.

1.2.1.1 Quantum Trajectories

The quantum trajectory approach (also referred to as jump approach or Monte

Carlo wave function method) describes the state of the system at a time as the sum of all

possible trajectories. The idea is that the open system evolves continuously under a non

Hermitian effective Hamiltonian in between sudden jumps.27–29 To do so, we begin by

8



rewriting the GKSL Master Equation (1.25) in the form

9ρptq “ Lρ (1.30)

Where the superoperator L is the generator of the time evolution with ρpt ` dtq «
ρptq ` dtLρptq. A formal solution to Equation (1.30) is;

ρptq “ eLtρp0q (1.31)

Form of superoperator L is evident from Equation (1.25). And consists of the parts:

L‚ “ i

�
rH, ‚s `

ÿ
α,β

ΓαβpAα ‚ A:
β ´ 1

2tA:
βAα, ‚uq “ L0 ‚ `

ÿ
αβ

Kαβ‚ (1.32)

WithL0‚ “ i
�
rH, ‚s andKαβ‚ “ ΓαβpAα‚A:

β ´ 1
2tA:

βAα, ‚uq. Without loss of generality,

we can write Equation (1.31) in the following form (dropping the bullets for simplicity):

ρptq “ etL0`ř
αβrJαβ`pKαβ´Jαβqsutρp0q (1.33)

WithJαβr‚s “ Aα‚A:
β . We can isolate the jump part by defining S “ ertL0`ř

αβpKαβ´Jαβqsut

Iterative solution gives a Dyson’s series;

ρptq “
8ÿ

m“0

ż t

0
dtpmq . . .

ż t2

0
dt1rSpt ´ tpmqqp

ÿ
nα

JαβqSptpmq ´ tpm´1qq ˆ . . .

¨ ¨ ¨ ˆ p
ÿ
nα

JαβqSpt1qsρp0q

In time ordered form such that t ą tpmq ą tpm´1q ą ¨ ¨ ¨ ą t2 ą t1. This gives an

expansion as follows:

ρSptq “Sptqρp0q `
ÿ
nα

" ż t

0
dt1Spt ´ t1qJpSpt1qρp0qq

`
ż t

0
dt1Spt ´ t1qJ̀

ż t1

0
dt2Spt1 ´ t2qJpSpt2qρp0qq˘ ` . . .

*

Here, the jump operators J obviously represent the occurrence of instantaneous jumps in

the system’s state, while the continuous (but non-unitary) evolution in between successive

9



jumps is described by the superoperator S. Since the system evolves continuously under

S, we can define operators S as:

Srρs “ SρS: (1.34)

Where S “ eiHeff t. The defined effective Hamiltonian Heff is non Hermitian since in

between jumps, the time evolution is still irreversible and therefore, S is not a unitary

evolution operator. This effective Hamiltonian describing the continuous dynamics of the

system is written as:

Heff “ H ´ i�

2
ÿ
α,β

ΓαβAαA:
β (1.35)

We can also rewrite Equation (1.25) by separating the terms resposible for contin-

uous evolution and jump terms in the dissipator with the non-Hermitian effective Hamil-

tonian Heff :

9ρs “ ´ i

�
pHeffρs ´ ρsH

:
eff q `

ÿ
α,β

Γαβ Aα ρs A:
β (1.36)

1.2.2 Quantum Optical Master Equation

This section, leans on the simple situation when an atom is interacting with an

external field. The overall Hamiltonian is again expressed as sum of uncoupled system

Hamiltonian, free quantized field Hamiltonian and the interaction Hamiltonian.

H “ HS ` HB ` HI (1.37)

Hamiltonian of the isolated two level atom is:

HS “ �ω0
2 σz (1.38)

Where, ω0 is the transition frequency, and σz “ |ey xe| ´ |gy xg| “ σ`σ´ ´ σ´σ` is

well known Pauli z matrix. The environment is considered as 3D vacuum field. And the

second quantized Hamiltonian of the multi mode field can be written in normal order by

10



choosing ground state energy zero as

HB “
ÿ
#”q ,ν

�ωqb:
νbν (1.39)

Here, #”q is the wave vector with q “ ωq

c , indices ν are over the field polarizations ê1,2 and

b, b: are the annihilation and creation operators respectively. Lastly, the Hamiltonian for

atom-field interaction can be written in dipole approximation as:

HI “ ´ #”

d ¨ #”

Eprq (1.40)

where,
#”

d is the atomic dipole operator satisfying;
#”

d “ #”μ |ey xg| ` #”μ ˚ |gy xe| “ #”μσ` `
#”μ ˚σ´ with dipole moment #”μ “ xg| #”

d |ey which is going to be considered real. The

diagonal elements are zero, since the position operator (and therefore dipole operator) has

odd parity.
#”

E is the external field at the position of the dipole. Such that;

#”

Ep #”r q “ i
ÿ
#”q ,ν

c
�ωq

2ε0V
ê #”q νb #”q νeip #”q ¨ #”r q ` h.c. (1.41)

By decomposing the interaction Hamiltonian in terms of bath and system related operators

as in Equation (1.5), we have,

#”

d ptq “
ÿ
ω

e´iωt #”

Apωq “
ÿ
ω

eiωt #”

A:pωq (1.42)

With that, and the interaction picture electric field, we write the interaction picture Hamil-

tonian as

HIptq “ ´ #”

d ptq ¨ #”

Eptq “ ´
ÿ
ω

e´iωt #”

Apωq #”

Eptq (1.43)

We have
A

#”

Eptq
E

“ trBt #”

EptqρBu “ 0 and the bath correlation functions introduces in

Equation (1.21) are:

trBtEiptqEjpt ´ t1qu “ @
EiptqEjpt ´ t1qD

(1.44)

11



where i, j run over cartesian coordinates. For ordinary vacuum, we have;

x0|b #”q ,νb:
#”

q1 ,ν1 |0y “ δk,k1δλ,λ1

x0|b:
#”q ,νb #”

q1 ,ν1 |0y “ 0

x0|b #”q ,νb #”

q1 ,ν1 |0y “ 0

x0|b:
#”q ,νb:

#”

q1 ,ν1 |0y “ 0

(1.45)

Substitution into Equation (1.22) gives;

κijpωq “
ÿ
#”q ,ν

1
�2

ˆ
�ωk

2ε0V

˙
êi

#”q ,ν êj
#”q ,ν

ż 8

0
dt1e´ipωk´ωqt1

(1.46)

To go further, we can make use of the completeness relation for the polarization vectors;

ÿ
λ

êi
#”q ,ν êj

#”q ,ν “ δij ´ kikj

| #”

k |2 (1.47)

Moreover, we apply the continuum limit to the summation over the wave vectors. For

normalization length L, such that L3 “ V , we have, qi “ 2πni
L , dqi “ 2π

L dni. Hence;

d3q “ p2π
L q3d3n.Therefore, we have;

1
V

ÿ
q

ÝÑ
ż 1

V
d3n “

ż
V

V

1
p2πq3 d3q “ 1

p2πq3

ż
d3q (1.48)

With the dispersion relation ωq “ cq, and d3q being q2 sin θ dq dθ dφ “ q2dq dΩ “
ω2

q

c3 dωq dΩ in spherical coordinates. We can construct the integral as;

1
V

ÿ
q

ÝÑ 1
p2πq3c3

ż 8

0
dωqω2

q

ż
dΩ (1.49)

Substituting this limit yields;

κijpωq “ 1
p2πq3c3�2

ż 8

0
dωqω2

q

ż
dΩ

ˆ
�ωq

2ε0

˙ˆ
δij ´ qiqj

| #”q |2
˙ ż 8

0
e´ipωq´ωqt1

dt1 (1.50)
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The integration over solid angle results in 1;

ż
dΩ

ˆ
δij ´ qiqj

| #”q |2
˙

“ 8π

3 δij (1.51)

Moreover, From Sokhotski-Plemelj theorem,27 the integral over t’ takes the form;

ż 8

0
dt1 e´ipωk´ωqt1 “ πδpωk ´ ωq ´ iℙ

1
pωk ´ ωq (1.52)

Such That;

κijpωq “ κ “ 1
2Γpωq ` iΩpωq

“ 1
6π2c3ε0�

δij

ż 8

0
dωkω3

k

ˆ
πδpωk ´ ωq ´ iℙ

1
pωk ´ ωq

˙ (1.53)

The term Ωpωq gives the renormalization to energy levels due to interaction with vacuum

as a principal value integral, and Γpωq gives the single atom decay rate as:

Γ “ μ2ω3

3ε0πc3�
(1.54)

Which is the spontaneous emission rate for a two level atom. Note that, the term μ2 “ #”

d ¨ #”

d

did not naturally come from calculations. However, since μ is a constant scalar, we could

have embedded its value into bath operators B instead of system operators and obtain μ2

from bath correlation functions. Further, For
#”

Apωq “ σ´, we have the Master Equation

(1.25) in the form:

9ρs “ κpσ´ρsptqσ` ´ σ`σ´ρsptqq ` h.c. (1.55)

1The integral is,

ż
dΩ

ˆ
δij ´ qiqj

| #”q |2
˙

“
ż π

0

ż 2π

0
δij sin θ dθ dφ ´

ż π

0

ż 2π

0

qiqj

| #”q |2 sin θ dθ dφ

The first Part of this integral gives
şπ
0

ş2π
0 δij sin θ dθ dφ “ 4πδij . and the second part gives for q̂i “ qi

q :

´
ĳ

q̂iq̂jdΩ “ ´4π

3 δij

This is so, since the mean of components of unit vector in all directions is zero (q̄i “ q̄j “ q̄q “ 0), and

we have q̄2
i ` q̄2

j ` q̄2
k “ 1. The result of the integration can also be achieved by doing the integration for

components of q̂.
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which is also called quantum optical master equation.

1.2.2.1 System Consisting Of N Atoms and Collective Effects

This section is a generalization of the previous discussion to more than one atom.

The system, reservoir, and interaction Hamiltonians for this system are as follows:

Hs
pnq “

Nÿ
n“1

�ω
pnq
0
2 σ̂pnq

z , HB “
ÿ
k,λ

�ωk b̂:
λpkqb̂λpkq, HI

pnq “ ´
Nÿ
n1

dpnq ¨ Eprpnqq

And the interaction Hamiltonian is;

HI “ ´
ÿ
n

ÿ
ω

e´iωpnqtApnqpωq ¨ Bpnqptq (1.56)

where,

Apnqpωq “ #”μ pnqσpnq
´ , Bpnqptq “ Eprn, tq (1.57)

Yields, by the light of previous considerations;

9ρS “
ÿ
m,n

κnmpσpnq
´ ρsptqσpmq

` ´ σ
pmq
` σ

pnq
´ ρsptqq ` h.c.

“
ÿ
m,n

1
2pΓnmpωq ` iΩnmqpωqpσpnq

´ ρsptqσpmq
` ´ σ

pmq
` σ

pnq
´ ρsptqq ` h.c.

(1.58)

with,

κij
pnmq “ 1

2Γ
nm
ij pωq ` iΩnm

ij pωq

And self interaction terms recover the previous result for single atom decay rate:

Γpnnq
ij “ Γn “ μ2ω

pnq
0

3

3ε0πc3�

14



And for n ‰ m, we need to solve,

κ
pnmq
ij “

ż 8

0
dωk

ω3
k

16πε0c3�
Mij

ˆ
πδpωk ´ ωq ´ iℙ

1
pωk ´ ωq

˙
(1.59)

The Mij’s are results of solid angle integration2. For ease of calculation, we assume that

the dipole moments are parallel to each other. The result of this integration gives the

collective decay rate Γp #”r nmq, and the coherent dipole-dipole interaction strength Ωprnmq
as:5

Γnm “ 3
?
ΓnΓm

2

"
C1

sinpk0rnmq
k0rnm

` C2

„
cospk0rnmq
pk0rnmq2 ´ sinpk0rnmq

pk0rnmq3

j*
(1.60)

and

Ωnm “ 3
?
ΓnΓm

4

"
´ C1

cospk0rnmq
k0rnm

` C2

„
sinpk0rnmq
pk0rnmq2 ` cospk0rnmq

pk0rnmq3

j*
(1.61)

Where, C1 and C2 are some constants determined depending on the cosine of the angle

between the dipole moments, and the direction of the distance between the atoms (| #”r nm| “
| #”r m ´ #”r n| “ |m ´ n|a), such that for parallel dipoles; C1 “ r1 ´ pμ̂ ¨ r̂nmq2s and

C2 “ r1´3pμ̂ ¨ r̂2
nms. Distance dependence of this collective parameters are demonstrated

in Figure 1.2 for two identical atoms with dipole moments parallel to each other. Figure

shows that the collective dynamics are mostly effective in the limit where the distance is

less than half the wavelength and they damp as the distance increases. To investigate the

dynamics of the system state, we can further exploit the discussions above. And we can

write Equation (1.58) as (see Section 1.2.1.1):

9ρS “ ´ipHeffρs ´ ρsH
:
eff q `

ÿ
n,m
i,j

Γnmσ
pnq
´ ρsσ

pmq
` (1.62)

where, the effective Hamiltonian is:

Heff “ H ´ i

2
ÿ
nm

Γnmσ
pnq
` σ

pmq
´ (1.63)

2For example, for two atoms M is the following matrix;

M “
»
– 4π

k3R3 pkR cos kR ` pk2R2 ´ 1q sin kRq 0 0
0 4π

k3R3 pkR cos kR ` pk2R2 ´ 1q sin kRq 0
0 0 8π

k3R3 psin kR ´ kR sin kRq

fi
fl

15



Figure 1.2: The collective parameters as functions of interatomic distance for two identical

atoms with parallel dipole moments. d̂ ¨ r̂nm “ 1, 1{?
3, 0 are plotted in red,

green, and blue, respectively. In left panel, vertical axis shows Γnm{Γ and

in right panel, it shows Ωnm{Γ where, Γ is decay rate of a single atom, in

both plots, horizontal axis shows the ratio of interatomic distance to resonant

wavelength (rnm{λ0).

And H is the system Hamiltonian with a Lamb Shift renormalization. It reads:

H “
ÿ
nm

Ωnmσ
pmq
` σ

pnqq
´ (1.64)

1.3 Su–Schrieffer–Heeger Model

A dimerized one-dimensional lattice is energetically more stable than a monatomic

chain with a band gap opening at Fermi level due to increased unit cell length. This

phenomenon of the tendency of a regularly ordered chain to dimerize is called the
Peierls instability.30 In their pioneering work, W. P. Su, J. R. Schrieffer, and A. J. Heeger

investigated the conductive properties of polyacetalyne which is an example of such

structures.22 The SSH model generally describes a closed one-dimensional diatomic system

with nearest-neighbor hoppings,31 as illustrated in Figure 1.3.

The model has the following tight binding Hamiltonian.

H “ v
Nÿ

i“1
c:

A,icB,i ` w
N´1ÿ
i“1

c:
A,i`1cB,i ` h.c. (1.65)

Here, v is the intracell and w is intercell hopping amplitudes. And the two sublattices A

and B are as shown in Figure 1.3. Switching to reciprocal space with the help of Fourier
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Figure 1.3: Schematic description of standard SSH model with staggered nearest neighbor

hopping amplitudes v and w being hopping from sublattice A to B and from

B to A respectively. Choice of a unit cell is always as shown in square which

makes v and w the intracell and intercell hopping amplitudes respectively.

transform of annihilation operators:

ak “ 1?
N

Nÿ
n“1

e´i
#”
k ¨n #”a cA,n

bk “ 1?
N

Nÿ
n“1

e´i
#”
k ¨n #”a cB,n

With periodic boundary conditions, we have the bulk Hamiltonian:

H “ v
ÿ

kPr´π,πs
a:

kbk ` b:
kak ` w

ÿ
k

eikaa:
kbk ` e´ikab:

kak “
ÿ
k

Ψ:
kHpkqΨk (1.66)

With spinors Ψk “
˜

ak

bk

¸
. Therefore, we have:

Hpkq “
˜

0 v ` we´ika

v ` weika 0

¸
(1.67)

This 2 ˆ 2 Hamiltonian can be written in terms of Pauli matrices, as:

Hpkq “ #”γ pkq ¨ #”σ (1.68)

The vector #”γ pkq “ pv`w cospkaq, w sinpkaq, 0q is closely related to topological invari-

ant of the system. The winding of γpkq around the origin in a closed loop over k gives the

topological invariant associated with the model of consideration.For the parametrization

in Equation (1.68), the Berry’s phase can be obtained as:

Φ “ 1
2

ż π

´π

γpkq
|γpkq|2 ˆ d

dk
γpkqdk “ 1

2

ż π

´π

dϕpkq
dk

dk “ πW (1.69)
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Figure 1.4: The phase ϕpkq “ argpγxpkqq ` iγypkqq for v ă w (left) and v ą w
(right).

Where ϕpkq “ argpγxpkqq ` iγypkqq. This phase ϕ is plotted in Figure 1.4 for

v ą w and v ă w. In the left panel of the figure (v ă w), the phase ϕ increases without

returning to its original point. This makes the integral in Equation (1.69) over closed path

nonzero. Therefore, this corresponds to the topologically non-trivial case. On the right

panel, v ą w and the angle φ returns to its initial point over a closed loop, making the

Berry phase 0.

Figure 1.5: The winding of #”γ pkq are shown in upper panel and the band diagrams of the

SSH chain are plotted in lower panel. From left to right, we have v ą w, v “
w, v ă w respectively.
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In Equation (1.69), W is called the winding number and represents the number of

windings of #”γ pkq around the origin in a closed loop. ϕ will be the angle that #”γ pkq makes

with its vertical axis. The windings and band diagrams for different intercell/intracell

hoppings are shown in Figure 1.5. For v ă w, the origin is enclosed by the closed path

of γpkq with W “ 1 making the system topologically non-trivial. For v ą w, we have a

topologically trivial system with W “ 0. Note that band closing occurs at w “ v making

the topological invariant undefined, This is the topological phase transition point.
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CHAPTER 2

THE MODEL AND RESULTS

This chapter leans on a particular model. The atomic system of consideration will

be a singly excited one-dimensional diatomic chain, and the environment will be again a

three-dimensional vacuum. The detailed description of the model is presented in Section

2.2. Although some relevant calculations were done in the previous chapter, for the sake of

completeness, some steps will be briefly introduced again without diving into details that

are already discussed. Before introducing the diatomic model, as an example, collective

dynamics of an infinite monatomic chain will be discussed in Section 2.1.

2.1 Collective Dynamics of Infinite Monatomic Chain

This section leans on the particular example of a one-dimensional singly excited

infinite monatomic chain. The chain consists of equally spaced, identical, two-level atoms

with dipole moments parallel to each other. Introducing one excitation to the infinite

system such that the Bloch states read:

|Ψsyspkqy “
ÿ
n

eiknacn |ny (2.1)

Where |ny “ σn` |gy indicates that one excitation is in nth atom while all other atoms are

in ground state. And, the effective bulk Hamiltonian obeys;

Heff pkq |Ψsyspkqy “ Ek |Ψsyspkqy (2.2)

We have, in real space, Heff “ ř
nmpΩnm ´ i

2Γnmqσn`σm´ where n, m indicates atoms.

Since σn`σm´ |Ψsyspkqy “ eikmaσn` |gy, and we can substitute it to obtain coherent and
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dissipative interactions as follows:

Ωk “
ÿ
n,m

eikpn´mqaΩnm (2.3a)

Γk “
ÿ
n,m

eikpn´mqaΓnm (2.3b)

Where the real space collective parameters are as in Equations (1.60) and (1.61).

Then we have the Green’s function in reciprocal space:

Gk “ Ωk ´ i

2Γk (2.4a)

Giving complex energies Ek with Equation (2.2) of the from :

Ek “ Gk “ 3Γ
4

ÿ
n,m

e´ipk´k0qrnmt´C1
1

pk0rnmq ` C2p ´i

pk0rnmq2 ` 1
pk0rnmq3 qu (2.5)

Again, C1 “ r1 ´ pμ̂ ¨ r̂nmq2s and C2 “ r1 ´ 3pμ̂ ¨ r̂2
nmqs. The real part Ek gives the

dispersion, and the imaginary part gives the collective decay rate. This example model

shows collective subradiant behavior when the atomic spacings a is smaller than half

the resonant wavelength as can be seen in Figure 2.1. The figure shows decay rates and

dispersions in first Brillouin zone for parallel dipoles. In the first panel of the figure, the

interatomic spacing a lies within the discussed critical region such that a “ 0.4λ0 ă 0.5λ0.

And we can observe completely subradiant modes for |k| ą |k0|. However, this single

0
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Figure 2.1: Real plower panelq and imaginary pupper panelq bands are plotted for
#”

d {{ #”r .

columns show different lattice parameters a “ 0.4λ0, 0.5λ0, 0.6λ0 from left

to right. Green lines which only lie on first Brillouin zone when a ă 0.5λ0
are the light lines (k “ ˘k0).
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band example is not suitable for investigating the topological properties since we cannot

define a topological invariant ensuring protected edge/surface states for such models.

2.2 Description of The Diatomic Model

The discussions in the following sections will all be about a singly excited one-

dimensional diatomic chain immersed in a 3D vacuum field. The two level atoms forming

the chain are all identical and separated by alternating spacings. The chain is illustrated

in Figure 2.2. Here, all atoms have natural frequencies ω0 when isolated, The unit cell

length is indicated by a, and the interatomic distance within a unit cell is denoted by b.

This model can be considered as an extended non Hermitian SSH model.

Figure 2.2: Schematic of the atomic system.

The model Hamiltonian, again, consists of the uncoupled atomic system Hamilto-

nian HA, Hamiltonian of the bath HB and interaction Hamiltonian HI .

H “ HS ` HB ` HI (2.6)

Total Hamiltonian of the atomic system can be written under dipole approximation as:

H “ HS ` HB ` HI “
ÿ
nα

�ωnα
0

2 σnα
z `

ÿ
#”q ,ν

�ωqb:
νp #”q qbνp #”q q ´

ÿ
nα

#”

d nα ¨ #”

Ep #”r nαq (2.7)

Where, the index n runs through all unit cells, and α runs through the two sublattices A

and B. Here,
#”

d nα is the dipole operator for the atom at unit cell n and sublattice α and
#”

Ep #”r nαq is the external field at the position of the dipole. Such that;

HI “ ´
ÿ
nα

#”

d nα ¨ #”

E “ ´
ÿ
q,ν
n,α

gnα
qν pei #”q ¨ #”r nασnα` bqν ` h.cq (2.8)

22



Where gnα
qν “ #”

d nα ¨ eqν

b
�ωq

2ε0V “ #”

d ¨ eqν

b
�ωq

2ε0V “ gqν for identical atoms with parallel

dipole moments. Giving the total Hamiltonian in Schrödinger picture:

H “
ÿ
nα

�ω0
2 σnα

z `
ÿ
qν

�ωqb:
qνbqν ´

ÿ
q,ν
n,α

gqνpei #”q ¨ #”
Rnα

σnα` bqν ` h.cq. (2.9)

It can be seen from previous sections that the dynamics of the atomic chain can be described

by the following quantum optical master equation:

9ρS “
ÿ
n,m
α,β

κnα;mβpσnα´ ρSptqσmβ
` ´ σmβ

` σnα´ ρSptqq ` h.c.
(2.10)

Where, κnα;mβ is the one-sided Fourier transform of bath correlation functions, defined

as

κnα;mβ “ |μ|2
�2

ż 8

0
dt1eiωnαt1 xEmβptqEnαpt ´ t1qy “ 1

2Γnα;mβ ` iΩnα;mβ (2.11)

Collective atomic parameters Γnα;mβ “ κnα;mβ ` κn̊α;mβ , and Ωnα;mβ “ ´ i
2pκnα;mβ ´

κn̊α;mβq are respectively, related to collective decay rate, and coherent dipole-dipole

interaction due to coupling between atoms through the reservoir. After the calculation of

Equation (2.11) for vacuum field, they are found to be as follows:

Γnα;mβ “ 3Γ
2

"
C1

sin
`
k0rnα;mβ

˘
k0rnα;mβ

` C2

„cos
`
k0rnα;mβ

˘
pk0rnα;mβq2 ´ sin

`
k0rnα;mβ

˘
pk0rnα;mβq3

j*
(2.12)

and

Ωnα;mβ “ 3Γ
4

"
´ C1

cos
`
k0rnα;mβ

˘
k0rnα;mβ

` C2

„sin
`
k0rnα;mβ

˘
pk0rnα;mβq2 ` cos

`
k0rnα;mβ

˘
pk0rnα;mβq3

j*
(2.13)

Where, Γ is the spontaneous emission rate of an individual atom, which is the same for all

identical atoms forming the chain. C1 and C2 are some constants determined depending

on the cosine of the angle between the dipole moment, and the direction of the chain, such

that; C1 “ r1 ´ pμ̂ ¨ r̂nα;mβq2s and C2 “ r1 ´ 3pμ̂ ¨ r̂nα;mβq2s. The Master Equation (2.10)

can be rewritten in the Lindblad form as,

9ρs “ ´irH, ρsptqs ` Dpρsptqq (2.14)
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with dissipator,

Dpρsptqq “
ÿ
n,m
α,β

Γnα;mβσnα´ ρsσ
mβ
` ´ 1

2
� ÿ

n,m
α,β

Γnα;mβσmβ
` σnα´ , ρs

(
(2.15)

H is the renormalization of uncoupled system Hamiltonian HS with a Lamb shift-like

correction.

H “
ÿ
n,m
α,β

Ωnα;mβσmβ
` σnα´ (2.16)

Further, We can separate the continuous(jump free) non-unitary dissipation terms and the

jump term in Equation (2.15) and rewrite the master equation by defining a non-Hermitian

effective Hamiltonian for the system dynamics.

9ρs “ ´ i

�
pHeffρs ´ ρsH

:
eff q `

ÿ
n,m
α,β

Γnα;mβσnα´ ρsσ
mβ
` (2.17)

With non-Hermitian effective Hamiltonian,

Heff “ HLS ´ i

2
ÿ
n,m
α,β

Γnα;mβσnα` σmβ
´ “ ´i

ÿ
n,m
α,β

κnα;mβσnα` σmβ
´ (2.18)

You may find more discussion about this step in Section 1.2.1.1. Here H generates

coherent unitary dynamics, and non-unitary of evolution comes from the non-Hermiticity

of Heff due to the second part with dissipative rate Γnα;mβ , and κnα;mβ is defined in

Equation (2.11) in reciprocal space, for infinite diatomic chain, the corresponding ansatz

wavefunction will be of the form;

|Ψky “ cA

∣
∣
∣ΨA

k

D ` cB

∣
∣
∣ΨB

k

D
(2.19)

With,

|Ψα
k y “

ÿ
n

eiknaσ
pnαq
` |gy (2.20)

Satisfying, Schrödinger equation for the effective Hamiltonian:
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Heff

˜
cA

cB

¸
“ E˘

˜
cA

cB

¸
(2.21)

Since we have σ
pmq
` σ

pnq
´ |Ψky “ e´ikrnm |Ψky we have the Green’s functions

Gα;βpkq “ ´iκα;βpkq “ Ωα;βpkq ´ i
2Γα;βpkq as:

GAApkq “ GBBpkq “Gαα “ 3Γ
4

ÿ
n,m

e´ipk´k0qrnm

"
´ C1

1
pk0rnmq

` C2

„ ´i

pk0rnmq2 ` 1
pk0rnmq3

j* (2.22a)

GABpkq “
ÿ
n,m

3Γ
4 e´ikrnmeik0|rnm`b|

"
´ C1

1
k0|rnm ` b|

` C2

„ ´i

k2
0|rnm ` b|2 ` 1

k3
0|rnm ` b|3

j* (2.22b)

GBApkq “
ÿ
n,m

3Γ
4 e´ikrnmeik0|rnm´b|

"
´ c1

1
k0|rnm ´ b|

` C2

„ ´i

k2
0|rnm ´ b|2 ` 1

k3
0|rnm ´ b|3

j* (2.22c)

Where, for the hoppings between same sublattices Gαα, Equation (2.22a) is the same as

that of a monatomic chain which is shown in Equation (2.5). We therefore have, for the

effective Hamiltonian Heff pkq “ ř
αβ Gαβpkqσα`σβ

´, the following energies;

E˘ “ Gαα ˘
b

GpαβqGpβαq (2.23)

2.3 Subradiant Behavior

When an atomic system interacts with its surroundings, the atoms forming the

chain become mutually coupled to the environment, leading to interatomic correlations

mediated by interactions with a common field. And the information is kept in the chain

rather than the individual atoms. This results in a collective photon emission. The

wavefunctions of the atomic chain are superpositions of the different atomic states and due
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constructive/destructive quantum interference between these atomic states the collective

decay rate may be enhanced/reduced relative to that of an independent atom leading to

occurrence of superradiance/subradiance.1

The discussions in this section will be based on the collective decay rates 2IrEs
for different states of the system in the single excitation framework. Where E’s are

the complex eigenvalues that corresponds to the considered eigenstate of non Hermitian

effective Hamiltonian of the atomic chain. For infinite chain, I will refer to the states

as subradiant when the decay rates IrEks become zero for some modes. However, for

a finite chain, the boundaries of the chain prevent an excitation from having an infinite

lifetime. Therefore, I will refer to states that have much smaller decay rates than that of

an individual atom, such that IrEs ! 0.5 Γ as subradiant.

2.3.1 Infinite Diatomic Chain

Similar to the monatomic case, as discussed in Section 2.2, we have the bloch

states in reciprocal space (see Equation (2.19)):

|Ψky “ cA

∣
∣
∣ΨA

k

D ` cB

∣
∣
∣ΨB

k

D “ 1?
N

ÿ
n,α

eiknacα |nαy (2.24)

And, the effective Hamiltonian Heff “ ř
n,m
α,β

Gnα;mβpkqσnα` σmβ
´ becomes.

Heff pkq “
˜

GAApkq GABpkq
GBApkq GBBpkq

¸
(2.25)

The Green functions are as given in Equation (2.22). They are all complex, and GABpkq ‰
GB̊Apkq. And E˘pkq “ GAA ˘ ?

GAB GBA. The real and imaginary parts of E˘pkq for

different lattice parameters are plotted in Figure 2.3. As in Figure 2.1, the real parts give

the dispersion while the imaginary parts give the decay rates for the corresponding modes.

As can be seen in top row of Figure 2.3, for a “ 0.4 λ0, we observe a subradiant

regime outside the region enclosed by the light line k “ ˘k0, namely outside ´k0 ă k ă
k0, where the decay rates of all modes diminish. This means that the excitation stays in the

chain and do not decay into free space. At a “ 0.5λ0, the imaginary parts of E˘pkq touch

at the two end of first Brillouin zone. And lastly, there is no subradiant behavior performed

by the chain observed since the imaginary parts of the complex energies never become

zero when the lattice parameter is greater than half the transition wavelength (a ą 0.5λ0).
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Figure 2.3: The band diagrams for real (bottom) and imaginary (top) parts of energies

for different lattice parameters (a “ 0.4λ0, 0.5λ0, 0.6λ0 respectively). In

all cases, dipole moments are oriented parallelly to the chain and intracell

separations are the same (b “ 0.15λ0).

This can also be discussed in terms of crystal momentum k meaningfully by considering

that in order to obtain subradiant modes, it requires the light line to lie inside the first

Brillouin zone of the such that |π
a | ą |k0| “ | ˘ 2π

λ0
|, giving a ă λ0

2 .

Figure 2.4: Plots of IrE˘s in logarithmic scale for a
λ0

“ 0.7.

Another key point to consider here, is that the one dimensional diatomic chain of

interest display subradiant behavior with modes having zero decay rate depending on the

length of a unit cell relative to natural wavelength and not on the atomic spacings. In
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the upper panel of Figure 2.4 Imaginary parts of energies are plotted in logarithmic scale

for the case where interatomic spacings are less than half the wavelength, but unit cell

length is larger than the critical value ( a
λ0

“ 0.7, b
a “ 0.5 ´ 10´4). It is clear that there is

no subradiant regime for this case. The bottom row of Figure 2.4 shows the decay rates

for a
λ0

“ 0.7 and b
a “ 0.5. In this configuration, we actually have a monatomic chain

with unit cell length 0.35λ0 ă 0.5λ0 and as expected from Section 2.1, we indeed see

subradiant modes between k “ ˘k0
2 .The reason that the period of spatial repetition plays

a crucial role suppressing the emission is that it is the states belonging to same sublattices

that interfere destructively.

2.3.2 Finite Diatomic Chain

In one excitation framework, the real space non-Hermitian tight binding Hamilto-

nian given in Equation (2.18) for a finite chain of N unit cells, has 2N complex eigenvalues

that are shown in Figure 2.5 for different dipole moment orientations (θ “ 0, arccos 1?
3 , π

2 )

and a
λ0

“ 0.3. Again, the imaginary parts of the eigenvalues denote half the collective

decay rates of the corresponding eigenstates (IrEis “ Γi
2 ), while the real parts are the

energies associated with them. It can be seen that, for some states, emission is extremely

suppressed. However, due to the boundaries of the chain, the decay rates of the subradiant

states are not zero, but considerably small relative to the decay rate Γ of an individual

atom.

Figure 2.5: The figures are for the configurations where the dipole moments forming

the chain make an angle θ “ 0, θ “ cos´1p 1?
3q, θ “ π

2 with the chain

axis respectively. The intercell and intracell separations are chosen such that

a “ 0.3λ0, b “ 0.8a. In every plot, the number of unit cells is 50. Left vertical

axes (blue) show the real parts of energy eigenvalues and the right axes (red)

show the imaginary parts in logarithmic scale.
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2.4 Topological Properties of Atomic Chain

The model considered here has some crucial distinctions with the standard SSH

model that are discussed briefly in Section 1.3. Firstly, the diatomic chain of consideration

is interacting with its environment and vulnerable to dissipation. Therefore, the Hamilto-

nian that effectively describes its dynamic is no longer Hermitian. One other distinction is

that the SSH model leans on situations where only nearest-neighbor hoppings are allowed.

But this model displays all-to-all hoppings between atoms with amplitudes that decay

polinomially with interatomic distance, with a dominant factor 1
rnα;mβ

. This is especially

problematic for the insurance of a quantized Berry phase, since intra-sublattice hoppings

may break chiral symmetry since the Hamiltonian will have non-zero diagonal elements.

This, for instance, is the case for a one-dimensional diatomic lattice with nonidentical

sites.

2.4.1 Infinite Chain and Calculation of Complex Berry Phase

We can see that the real and imaginary parts of Ωαβ and Γαβ are related such that;

RpΩABpkqq “ RpΩBApkqq “ ΩR, RpΓABpkqq “ RpΓBApkqq “ ΓR

IpΩABpkqq “ ´IpΩBApkqq “ ΩI , IpΓABpkqq “ ´IpΓBApkqq “ ΓI
(2.26)

Therefore, The effective Hamiltonian can be written as;

Hk “
«

Gαα pΩR ` 1
2Γ

Iq ` ipΩI ´ 1
2Γ

Rq
pΩR ´ 1

2Γ
Iq ` ip´ΩI ´ 1

2Γ
Rq Gαα

ff

“Gαασ0 ` pΩR ´ i

2Γ
Rqσx ` p´ΩI ´ i

2Γ
Iqσy “ ÝÑγ ¨ ÝÑσ ` Gαασ0

(2.27)

Which lacks a term proportional to σz since the diagonal elements are equal. Here, the

vector #”γ is defined in the same way as in Section 1.3 but its components are now complex.
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This makes Equation (2.27) of the form;

H “
«

Gαα γx ´ iγy

γx ` iγy Gαα

ff
(2.28)

With right eigenstates;

∣
∣
∣ΨR˘

D “ 1b
2pγ2

x ` γ2
yq

«
γx ´ iγy

˘
b

γ2
x ` γ2

yq

ff
(2.29)

And, complex eigenvalues, E˘ “ Gαα ˘
b

γ2
x ` γ2

y . The left eigenvalues and eigenstates

are the ones of H:.

∣
∣
∣ΨL˘

D “ 1b
2pγ2

x ` γ2
yq˚

»
– γx̊ ´ iγẙ

˘
b

γ2
x ` γ2

y

˚

fi
fl (2.30)

And they are biorthogonal to the right states shown in Equation (2.29). Here, the star is

for complex conjugation. The corresponding energy eigenvalues satisfy; EL˘ “ E˚̆ “
Gα̊α ˘

b
γ2

x ` γ2
y

˚
.

The Berry phase is defined for biorthogonal basis as;

Q˘ “
¿

BZ

@
ΨL˘

ˇ̌Bk

ˇ̌
ΨR˘

D
dk (2.31)

This is often referred to as cBerry/complex Berry phase.23 To proceed,
∣
∣
∣ΨR˘

D
and,

∣
∣
∣ΨL˘

D
can be parameterized as;

∣
∣
∣ΨR˘

D “ 1a
2cospα

2 qsinpα
2 q

«
cos

`
α
2

˘
˘sinpα

2 qeiφ

ff
(2.32)

∣
∣
∣ΨL˘

D “ 1b
2 cos

`
α
2

˘
sinpα

2 q

«
sinpα

2 q
˘ cos

`
α
2

˘
eiφ

ff
(2.33)
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Where α and φ take real values and are defined such that, tan α “ |γx`iγy|
∣
∣
∣

?
γ2

x`γ2
y

∣
∣
∣

and, the

phase φ “ Argrγx ` iγys ´ Argr
b

γ2
x ` γ2

y s. This yields, a real valued cBerry phase;

Q˘ “
ż π

a

´ π
a

9φ dk (2.34)

The phase φ is plotted in first Brillouin zone for different spacings in Figure 2.6. For
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Figure 2.6: Phases ϕ are plotted in first Brillouin zone for different b

a values. In left

panel, the phases are plotted for parallel dipole moments, In middle and right

panels, the dipole moments are perpendicular, and making an angle arccos 1?
3

respectively. Since for θ “ π
2 , arccos

a
1{3 we have singularities at k “ ˘k0,

a Yukawa potential with ε “ 0.01 is used to alter that.
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three different dipole orientations of interest. One can see from the plots that regardless of

orientation of dipoles, the obtained complex Berry phases require same conditions to be

nonzero over a Brillouin zone as the standard SSH model requires for non-trivial topology.

We obtain the closed integral over k of 9φ as zero for b ă 0.5a namely, intracell hopping

amplitudes being greater than intercell hopping amplitudes, and nonzero for b ą 0.5a.

2.4.2 Finite Chain and Edge States

When the eigenvalue equation is solved for real space tight binding Hamiltonian

in Equation (2.18) of N unit cells, As predicted from the bulk properties, mid gap edge

states arise when the distance b between two atoms in the unit cell is greater than half of

the lattice parameter a. In the previous section, the mid-gap states in Figure 2.5 are the

edge states and their decay rates are around that of an individual atom.

Figure 2.7: One of the two edge states of an atomic chain with 50 unit cells for different b
a

values. left, middle and right panels are for θ “ 0, arccos 1?
3 , π

2 respectively.

It can be seen from figures that as b gets closer to a
2 , probability distributions

start to delocalize towards the bulk.

The probability distributions of the edge states are plotted in Figure 2.7. It can be

seen that the states get highly localized around the boundaries of the chain as we approach

fully dimerized limit, namely, as b
a gets larger. Participation ratio (PR) can be used as a

measure of localization of a state, It is usually defined as:

PR “ 1
2N

1ř2N
i“1 |ψpriq|4

(2.35)

Where, it measures localizations at atomic positions, and i’s are over atomic indices.
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A completely delocalized state ψprq “ 1?
2N

, we would have PR “ 1 and For a state

ψprq “ δij that is completely localized at rj , we would have, PR “ 1
2N . The participation

ratios are plotted in Figure 2.8 for both trivial and topological cases. It can be seen that in

topological case, the edge states do have very small participation ratios near 1
2N .
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Figure 2.8: The figures show participation ratios of all states for, again θ “ 0, arccos 1?
3 , π

2
respectively from top to bottom. The insets show the probability distributiions

of all states. The right panel is in topologically trivial regime with b
a “ 0.3

and the left is topologically nontrivial with b
a “ 0.8. In these figures, the chain

has 50 unit cells..
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2.5 Radiative Properties of Atomic Chain

In this chapter, the Poynting vector of the emitted radiation from different states of

the atomic chain will be investigated at times much larger than the lifetime of an excitation.

In single excitation realm, the time dependent state of the whole model is,

|Ψptqy “ |Ψ0ptqy ` |ΨRptqy (2.36)

Where |Ψ0ptqy is the state of the model before emission, and |ΨRptqy is the state after the

occurrence of collective emission from the chain.

|Ψ0ptqy “ |Ψatptqychain b |0yfield

|ΨRptqy “ |gychain b
∣
∣
∣ΨphptqD

field

(2.37)

The initial (before de-excitation) state of the field is vacuum state |0y, and the atomic chain

is singly excited having the state |Ψatptqy “ ř
nα cnαptqσnα` |gy. As before, the expression

σnα` |gy is used to state that all atoms forming the chain are in their ground state except for

the atom at position #”r nα. Therefore, it is evident that the initial atomic state |Ψatptqy is a

superposition of singly excited atomic states. After the chain emits photon to the field, its

state is denoted as |gy implying that the chain, and of course all atoms forming the chain

are in ground state, in a similar manner, the field is in
∣
∣
∣ΨphptqD “ ř

qν cqνptq |1qνy and as

in previous sections, the summation is over field modes #”q and polarizations ν. We can

rewrite Equation (2.36) explicitly in the form:

|Ψptqy “
ÿ
nα

cnαptqσnα` |gy b |0y `
ÿ
qν

cqνptq |gy b |1qνy (2.38)

The wavefunctions of the excited atomic systems can be found via Weisskopf-Wigner

method under the same approximations that we have done.27 Yet they are already known

from previous sections, for an infinite chain of atoms, we have, cnαptq “ 1?
N

e´ i
�

Ekteiknacnα,

Ek’s are the complex energy bands for infinite chain from section 2.2, and for finite chain,

the eigenvectors and eigenvalues of effective Hamiltonian given by Equation (2.18) are

found numerically obeying cnαptq “ e´ i
�

Etcnα. It is worth reminding that since the con-

tinuous evolution of the initial atomic chain is defined by the non Hermitian Hamiltonian
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Heff , the eigenvalues are complex. Recall the total Hamiltonian in Equation (2.9).

H “
ÿ
nα

�ω0
2 σnα

z `
ÿ
qν

�ωqb:
qνbqν ´

ÿ
q,ν
n,α

gqνpei #”q ¨ #”r nασnα` bqν ` h.cq. (2.39)

With, the local coupling constant for identical atoms, and parallel dipole moments; gqν “
#”

d ¨ #”e qν

b
�ωq

2ε0V . Switching to interaction picture by the use of the unitary operator Û ,

Û “ eiw0tpř
nα

1
2 σnα

z `ř
qν b

:
qνbqνq (2.40)

The transformed state vector becomes |Ψ1y “ Û |Ψy By the use of Schrödinger equation,

i� 9|Ψy1 “ H 1 ∣
∣
∣Ψ1D “ i� 9U |Ψy ` Ui� 9|Ψy “ i� 9U |Ψy ` UH |Ψy “ H 1Û |Ψy (2.41)

The Hamiltonian in this picture becomes

H 1 “ i� 9UU : ` UHU : (2.42)

Giving,

H 1 “
ÿ
qν

Δqb:
qνbqν ´

ÿ
q,ν
n,α

gqνpei #”q ¨ #”r nασnα` bqν ` h.cq (2.43)

Here, the detuning Δq is defined as,

Δq “ �pωq ´ ω0q (2.44)

Substituting Equations (2.43) and (2.38), into Schrödinger equation, we find the following

differential equation for cqν :

i� 9cqνptq “ Δqcqνptq ´
ÿ
nα

gqνe´i #”q ¨ #”r nαcnαptq (2.45)

Initially, the atomic chain is in excited state and no photon is present in reservoir. Therefore,

with the initial condition cqp0q “ 0, Equation (2.45) is solved for the photon amplitude cq
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as:

cqνptq “
ÿ
nα

gqνe´ #”q ¨ #”r nα
e´ i

�
Et ´ e´ i

�
Δqt

Δq ´ E
cnαp0q (2.46)

In the limit t " �

EI
, the time evolution of atomic system amplitudes goes to zero e´ i

�
Et Ñ

0. Therefore, cqνptq can be expressed as,

cqνptq “ ´
ÿ
nα

gqνe´ #”q ¨ #”r nα
e´ i

�
Δqt

Δq ´ E
cnαp0q (2.47)

Note that at the times we considered (t " �

EI
) we also have |Ψ0y Ñ 0. Therefore, after a

time sufficiently longer than excitation lifetime, we have:

∣
∣
∣Ψ1ptqD “

ÿ
qν

cqνptq |gy |1qνy (2.48)

Where, |Ψ1ptqy “ |Ψpt " �{EIqy Now that we have all the necessary information about

the total state at late times, we can investigate the directional power flow of the emitted

radiaton. The Poynting vector in vacuum is

#”

S “ 1
μ0

A
: #”

E ˆ #”

B :
E

(2.49)

Where the expectation value is over the state at late times which is given in Equation (2.48)

for large t, and vacuum contribution to the expectation value is eliminated by applying

normal order. This gives an open form

#”

S “ 1
μ0

A
p #”

Ep´q ˆ #”

Bp`q ´ #”

Bp´q ˆ #”

Ep`qq
E

(2.50)

Where, Ep˘q and Bp˘q are the positive and negative frequency parts of electric and

magnetic fields respectively, and they read:

#”

Ep`q “ i
ÿ
qν

c
�ωq

2ε0V
bqνei #”q ¨ #”r #”e qν ,

#”

Ep´q “ r #”

Ep`qs:,

#”

Bp`q “ i
ÿ
qν

d
�

2ε0V ωq
bqνei #”q ¨ #”r p #”q ˆ #”e qνq, #”

Bp´q “ r #”

Bp`qs:.
(2.51)
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We can use completeness relations for both system and bath, and obtain the following

nonzero contributions.

#”

S “ 1
μ0

pxΨptq| #”

Ep´q |gy |0y ˆ xg| x0| #”

Bp`q |Ψptqy
´ xΨptq| #”

Bp´q |gy |0y ˆ xg| x0| #”

Ep`q |Ψptqyq
(2.52)

Where the last two terms are complex conjugation of the rest. From these, for instance,

xg| x0| #”

Ep`q |Ψ1ptqy term with positive frequency part of the electric field gives us,

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i

ÿ
qν
n,α

c
�ωq

2ε0V
gqν

#”e qνei #”q ¨p #”r ´ #”r nαqe´ i
�
Δqt cnαp0q

Δq ´ E
(2.53)

The summation over the polarizations ν of the radiation can be taken beforehand con-

sidering that when the coupling constant for identical dipoles gqν “ #”

d ¨ #”e qν

b
�ωq

2ε0V is

substituted, the only ν dependence is in p #”

d ¨ #”e qνq #”e qν term which is mutual for both

infinite and finite chain.

ÿ
ν

p #”

d ¨ #”e qνq #”e qν “
ÿ

i

ÿ
j

dip #”ejq
ÿ
ν

r #”e qνsir #”e qνsj (2.54)

In order to further simplify this, we can apply the fact that, since the unit vector along

propagation direction q̂ , and the unit polarization vectors are orthogonal to each other,

they obey completeness relation.

ÿ
ν

r #”e qνsir #”e qνsj “ δij ´ rq̂sirq̂sj (2.55)

With the help of Equation (2.55), Equation (2.54) is simplified as

ÿ
ν

p #”

d ¨ #”e qνq #”e qν “
ÿ

i

ÿ
j

diĵpδij ´ rq̂sirq̂sjq “
ÿ

i

diî ´ p
ÿ

i

dirq̂siqp
ÿ
j

rq̂sj ĵq (2.56)

Meaningly, we simplified the expression to

ÿ
ν

p #”

d ¨ #”e qνq #”e qν “ #”

d ´ p #”

d ¨ q̂qq̂ (2.57)

Since
ř

i diî “ #”

d ,
ř

i dirq̂si “ #”

d ¨ q̂, and
ř

jrq̂sj ĵ “ q̂. Substituting Equation (2.54) and
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the coupling constant gqν , Equation (2.53) becomes:

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i

ÿ
q

n,α

�ωq

2ε0V
ei #”q ¨p #”r ´ #”r nαqcnαp0q e

´i
�
Δqt

Δq ´ E
r #”

d ´ p #”

d ¨ q̂qq̂s (2.58)

2.5.1 Radiation From Infinite Chain

For infinite chain of atoms, we have E “ Ek “ GAA ˘ ?
GABGBA and cnαp0q “

1?
N

eiknacα. Therefore, Equation (2.58) reads:

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i�?

N2ε0V

ÿ
n

eipk´qzqna pcA ` e´iqzbcBqp0q

ˆ
ÿ
#”q

r #”

d ´ p #”

d ¨ q̂qq̂s ωq ei #”q ¨ #”r e
´i
�
Δqt

Δq ´ Ek

(2.59)

Where we exploited the fact that #”q ¨ #”r nα “ qzrnα. And notice that we took the summation

over α is also taken:

ÿ
α

e´i #”q ¨ #”r nαcαp0q “ e´iqznapcA ` e´iqzbcBq (2.60)

And,
#”

d nα “ #”

d mβ “ #”

d . While moving to the continuum limit, we can impose the

periodicity along along z on #”q .

ÿ
#”q

Ñ A

p2πq2

ÿ
qz

ĳ
qKdqKdϕ (2.61)

Where, qz is the component of the photon momentum in the parallel direction to the chain,

qK is the component in the radial direction and the azimuth ϕ is the angle that #”q makes

with the chain. In Equation (2.59), we can easily carry out the summation over the unit

cells;

ÿ
n

eipk´qzqna “ Nδk,qz (2.62)
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Restricting the component of photon momentum on chain direction to k. Substitution

yields:

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i�A

?
N

p2πq22ε0V

ÿ
qz ,α

pcA ` e´iqzbcBqp0q δk,qz

ˆ
ĳ

r #”

d ´ p #”

d ¨ q̂qq̂s ωq qK ei #”q ¨ #”r e
´i
�
Δqt

Δq ´ Ek
dqK dϕ

(2.63)

And A
V “ 1

L where L is the normalization length. At this step, I will take the summation

over qz making q “ a
q2K ` k2. However, I will not change the notation and denote it

as q. Therefore, it is useful to keep in mind that qz is constant and equals to the crystal

momentum k.

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i�

?
N

p2πq22ε0L
pcA ` e´ikbcBq

ˆ
ĳ

r #”

d ´ p #”

d ¨ q̂qq̂s ωq qK ei #”q ¨ #”r e
´i
�
Δqt

Δq ´ Ek
dqK dϕ

(2.64)

The integration over the azimuthal angle ϕ of the radiation can be isolated as,

ż 2π

0
r #”

d ´ p #”

d ¨ q̂qq̂sei #”q ¨ #”r dϕ (2.65)

The integral in Equation (2.65) is a Laplace integral with a pure imaginary phase. Since

the integral has a rapidly oscillating exponential, one can apply the method of stationary

phase, stating that the most contribution will come from the neighborhood of the stationary

point of the phase.32 Stationary point of the phase is where cos ϕ has its maximum which

corresponds to the situation where the azimuths of #”q and #”r are the same. Therefore, we

have;

ż 2π

0
r #”

d ´ p #”

d ¨ q̂qq̂sei #”q ¨ #”r dϕ « fpqKqeikz

c
2π

ρqK
reiρqK´i π

4 ` e´iρqK`i π
4 s

« 2πfpqKqeikzJ0pρqKq
(2.66)

Where, fpqKq “ #”

d ´ p #”

d ¨ q̂qq̂ and ρ is the radial distance from the chain. We also

have
b

2π
qKρreiρqK´i π

4 ` e´iqKρ`i π
4 s “ 2πpHp1q

0 ` H
p2q
0 q “ 2πJ0pρqKq . Where JppρqKq

is Bessel function of first kind, and, H
p1q
p , H

p2q
p Denotes Hankel functions of the first

and second kinds respectively. With asymptotic forms H
p1q
p pzq “

b
2

πz eipz´ π
2 p´ π

4 q, and,
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H
p2q
p pzq “

b
2

πz e´ipz´ π
2 p´ π

4 q. Substituting what we have in hand, we obtain

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i�

?
N

Lp4πqε0
pcA ` e´ikbcBqeikz

ˆ
ż 8

0
qKωqr #”

d ´ p #”

d ¨ q̂qq̂se´iωqt JppρqKq
Δq ´ Ek

dqK
(2.67)

Where, now, after summation over n, and integration over ϕ, the z component of #”q is

fixed as k, and the radial direction of q̂ is fixed to the radial direction ρ̂ of the position

vector #”r ,. In order to determine the final expression for (2.53), we are only left with the

integration over radial component of #”q . The lower limit of the integral can be extended

without worrying about the signs of exponential ˘π
4 terms, since their sign will be taken

care of by sgnp´qKρq coming from the stationary phase method. And, we can make

narrow band approximation q « q1
0 with �ωq “ RrEks ` �ω0 “ �cq1

0 considering that

the imaginary parts of energies are relatively small and, q2K « q12
0 ´ k2 for non-oscillatory

terms except from the one in denominator.

xg| x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “´i�c

?
N

Lp4πqε0
pcA ` e´ikbcBqeikz

d
2

πρ
a

q12
0 ´ k2

ˆ
ÿ
α

pq12
0 ´ k2qr #”

d ´ p #”

d ¨ q̂qq̂s

ˆ
ż 8

´8
dqK e´iωqt eipρqK´ π

4 q ` e´ipρqK´ π
4 q

Δq ´ Ek

(2.68)

This approximation we made is valid since we applied the rotating wave approximation,

we are imposing that the spectral width of emitted light is narrow around a mean frequency

cq1
0, i.e. the amplitude Cq is non-zero only inside the range Δω, which is small compared

to the mean photon frequency of emitted light. |ωk ´ cq1
0| � Δω ! cq1

0.33 34 Poles of

the integral over qK in Equation (2.68) is at qK “ qK
0 where, q0 � 1

�cpEk ` �ω0q and,

pqK
0 q2 ` k2 “ pq0q2

, since IrEks is always negative, there is no pole in the upper half

plane. For the first exponential term, we can close the contour from the lower half-plane.

However, for the term including Hankel function of second kind, since r ` ct is always

positive, we obtain exponential growth in lower half-plane, we need to close the contour

from upper half plane and the result of the integration is zero. Embedding the constant

e´i π
4 terms into coefficients cα, this gives:

ż 8

´8
dqK

1
Δq ´ Ek

peipρqK´ π
4 q ` e´ipρqK´ π

4 qqe´iωqt

“ 2πi

�c
e´iq0ct`pρqK

0 qθpt ´ ρ

c
q

(2.69)
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The Heaviside step function θpt ´ ρ
c q comes from the fact that for ρ ą ct, we should close

the contour in the upper half plane obtaining zero since there is no pole. And it also takes

care of the fact that at time t, physically, the radiation cannot be found at positions ρ ą ct.

Gathering all together, we have, for Equation (2.53),

xg| x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “

?
N

L2ε0

c
2

πρ
pq12

0 ´ k2q 3
4 r #”

d ´ p #”

d ¨ q̂qq̂spcA ` e´ikbcBq

ˆ eip´q0ct`ρqK
0 `kzq θpt ´ ρ

c
q

(2.70)

Again, I used the notation: �cq1
0 “ RrEks`�ω0 coming from narrow band approximation,

q0 “ 1
�cpEk ` �ω0q and pqK

0 q2 ` k2 “ q02 coming from the contour integration.

In a similar fashion, the positive frequency magnetic field term gives,

@
Ψ1ptq

∣
∣
∣

#”

Bp´q |gy |0y “
?

N

L2ε0c

c
2

πρ
pq12

0 ´ k2q 3
4 rq̂ ˆ #”

d spcA ` eikbcBq

ˆ e´ip´q0̊ ct`ρqK
0

˚`kzq θpt ´ ρ

c
q

(2.71)

This makes the Poynting vector introduced in Equation (2.49) lie along q̂:

#”

S “ 1
μ0

xΨptq| #”

Ep´q |gy |0y ˆ xg| x0| #”

Bp`q |Ψptqy ` h.c. (2.72)

2.5.2 Radiation From A Finite Chain

For a finite chain, after the summation over field polarizations is taken, Equation

(2.58) is,

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i

ÿ
q

n,α

�ωq

2ε0V
ei #”q ¨p #”r ´ #”r nαqcnαp0q e

´i
�
Δqt

Δq ´ E
r #”

d ´ p #”

d ¨ q̂qq̂s (2.73)

An important remark is that the indices nα in complex energies Enα do not correspond

to atoms at unit cell n sublattice α instead, Enα are the eigenvalues of tight binding

Hamiltonian in Equation (2.18) that correspond to state with amplitude cnα out of 2N

eigenvalues and eigenvectors. We can define the distance from atom at position #”r nα to

the point of consideration as #”r nα “ #”r ´ #”r nα beforehand. And an important distinction

from above calculations is that since the chain is now finite, the cylindrical symmetry is
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broken and we cannot impose periodic boundary conditions in any direction for #”q . We

no longer have the advantage to take n summation beforehand to restrict the z direction of

photon momentum to k. To proceed with the summation over #”q , we have:

ÿ
#”q

Ñ V

p2πq3

ż
q2dqdΩ (2.74)

In continuum limit. This makes Equation (2.73):

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´i

�

2ε0p2πq3

ÿ
n,α

cnαp0q
ż

q2 ωq ei #”q ¨ #”r nα r #”

d ´ p #”

d ¨ q̂qq̂s

ˆ e´ i
�
Δq t

Δq ´ Enα
dq dΩ

(2.75)

Where, again, #   ”rnα “ #”r ´ #”r nα is the distance between the point of interest, and the atom

at position #”r nα. The integral over the solid angle Ω can be isolated as follows.

ż
ei #”q ¨ #”r nα r #”

d ´ p #”

d ¨ q̂qq̂s dΩ (2.76)

Performing Stationary phase approximation for integration over the solid angle Ω, where,

the stationary point occurs when #”q {{r̂nα we obtain:

ż
ei #”q ¨ #”r nα r #”

d ´ p #”

d ¨ q̂qq̂s dΩ “ 2π

iqrnα
peiqr ´ e-iqrqr #”

d ´ p #”

d ¨ r̂nαq̂rnαs (2.77)

Substitution gives:

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´ �

2ε0p2πq2

ÿ
n,α

1
rnα

cnαp0q r #”

d ´ p #”

d ¨ r̂nαq̂rnαs

ˆ
ż

q ωq
peiqr ´ e-iqrqe´ i

�
Δq t

Δq ´ Enα
dq

(2.78)

Again, applying the narrow band approximation, we have for �ωq “ ER ´ �ω0 “ �cq1
0,

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´ �c

2ε0p2πq2

ÿ
n,α

1
rnα

cnαp0q r #”

d ´ p #”

d ¨ r̂nαq̂rnαs

ˆ q12
0

ż 8

0

peiqr ´ e-iqrqe´ i
�
Δq t

Δq ´ Enα
dq

(2.79)
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In remaining integral, the eiω0t
ş8
0 e´iqprnα`ctqdq Ñ 0 since always rnα ` ct ą 0. and in

the q integral we can extend the lower limit to infinity as before. Remaining expression

has a pole at q “ 1
�cp�ω0 ` RrEnαs ` iIrEnαsq “ q0 which is always in the lower half

plane since IrEnαs ă 0. As discussed above while considering an infinite chain, using

the residue theorem, we obtain:

ż 8

´8
eiqprnα´ctq
Δq ´ Enα

dq “ 2πi

�c
eiq0prnα´ctqθpct ´ rnαq (2.80)

Gathering these, we obtain the following.

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´ i�

4πε0

ÿ
n,α

1
rnα

cnαp0q r #”

d ´ p #”

d ¨ r̂nαq̂rnαs

ˆ q12
0 eiq0prnα´ctqθpct ´ rnαq

(2.81)

Simplifying the expression using BAC-CAB r #”

d ´ p #”

d ¨ r̂nαq̂rnαs “ r #”

d p̂rnα ¨ r̂nαq ´ p #”

d ¨
r̂nαq̂rnαs “ r̂nα ˆ p #”

d ˆ r̂nαq, we have:

x0| #”

Ep`q ∣
∣
∣Ψ1ptqD “ ´ i�

4πε0

ÿ
n,α

1
rnα

cnαp0q p̂rnα ˆ p #”

d ˆ r̂nαqq

ˆ q12
0 eiq0prnα´ctqθpct ´ rnαq

(2.82)

Similarly,
#”

Bp´q term gives,

xΨptq| #”

Bp´q |gy |0y “ i�

4πε0c

ÿ
n,α

1
rnα

cnαp0q p̂rnα ˆ #”

d q

ˆ q12
0 e´iq0̊ prnα´ctqθpct ´ rnαq

(2.83)

And the Poynting vector in Equation (2.49) as:

#”

S “ 1
μ0

xΨptq| #”

Ep´q |gy |0y ˆ xg| x0| #”

Bp`q |Ψptqy ` h.c. (2.84)

Figure 2.9, The Poynting vectors of radiation from states with different character-

istics are visualized in the x´z plane for a finite chain of 50 unit cells in the radiation zone

at t " 1
IpEq . The chain lies between z “ ´7.62 and z “ 7.62, lattice parameter is taken as

0.3λ0, and the intacell separation is 0.8a. Since the chain lies along z axis (x “ 0, y “ 0),
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to avoid taking the plane in which the chain lies on, there is an offset by y “ 5a in figures.

In all plots, t “ 10ω0
Γ

EI
except from the most radiant state of the chain with θ “ π

2 for

which, the radiation is illustrated at t “ 50ω0
Γ

EI
. The bottom row of the figure shows the

directional power flow from the most subradiant state for the three angles of consideration

in logarithmic scale. It most clearly reveals for dipoles oriented parallelly to the chain that

the emission from the subradiant state is significantly suppressed in the radial direction

of the alignment of the chain. Implying that, the emission occurs from the ends of the

finite chain, and it is suppressed from the bulk. However, it is less clear to see for other

alignments. In the central row, emission from the state with the shortest lifetime is shown

to be dominant in the direction radial to the bulk of the chain, except for θ “ π
2 , since the

radial direction is also the direction of the dipole moments. Plots in the top row are for

edge states localized at one end of the finite chain. Notice that they display a radiation

pattern similar to that of individual dipoles, given the dipole moment orientations. It was

also shown in Section 2.3.2 that decay rates of the edge states were close to single atom

decay rate.
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Figure 2.9: The figures in the right column are for the configurations where the dipole

moments forming the chain are parallel to chain direction (
#”

d{{̂z, θ “ 0). figures

in the central column are for θ “ arccos
`
1{?

3
˘
, and in the left column,

#”

d K ẑ
(θ “ π

2 ), the intercell and intracell separations are chosen such that a “ 0.3λ0,

b “ 0.8a. In every plot, the number of unit cells is 50, the chain lies on z
axis. And the Poynting vector is plotted at around t

ω0
“ 10 Γ

EI
except for the

most radiant state of perpendicular dipoles, Poynting vector from this state is

demonstrated at t
ω0

“ 50 Γ
EI

. The dipole moments lie on x ´ z plane in every

case. And the rows are for states with different properties. The top row shows

one of the edge states for each situation, the middle row shows the most radiant

states, and the bottom row shows radiation for subradiant states in logarithmic

scale.
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CHAPTER 3

CONCLUSION

In this thesis, the topological and radiative behaviors of a one-dimensional diatomic

chain immersed in vacuum field is investigated. Radiative properties of the model are

discussed via the decay rates obtained from the complex eigenvalues of effective non-

Hermitian Hamiltonian describing the interacting system with a fixed excitation number.

It is shown for a singly excited infinite chain with two identical atoms per unit cell that

radiative dark states arise when the lattice constant is smaller than half the resonant

wavelength of the atoms. It is shown that the same condition applies for a finite chain to

have subradiant states with decay rates close to zero. However, decay rates of these states

remain nonzero because of finite-size effects.

The presence of dissipation and vacuum mediated long range hoppings distin-

guishes the system of interest from the standard SSH model. However, for obtaining a

topologically non-trivial phase, the criteria are shown to be the same as SSH model. For

this model, the hopping amplitudes depend only on the atomic spacings. When the intracell

hopping amplitudes are smaller than the intercell hopping amplitudes, the chain exhibits

non-trivial topology and this occurs when b
a ă 0.5. The Hamiltonian that effectively

describes open system dynamics of consideration is non-Hermitian, so orthogonality of

eigenstates are not guaranteed anymore. Therefore, the bulk boundary correspondence is

shown on a biorthogonal basis, using the complex Berry phase. In real space, the mid-gap

edge states are shown to highly localize at the edges as the intracell separation gets larger

compared to half the unit cell length. The radiative decay rates of these localized states

are close to that of an individual atom.

When the dipoles are aligned parallel to the chain, radiation in radial direction is

suppressed for subradiant states, while the intensity of radiation from states with largest

decay rates is highest in the radial direction. On the other hand, the edge states display a

radiation pattern similar to that of a single dipole radiation.

46



REFERENCES

1. Dicke, R. H.; Physical, P.; Aboratory, I. Coherence in Spontaneous Radiation Pro-

cesses. Physical Review 1954, 93, 99.

2. Rehler, N. E.; Eberly, J. H. Superradiance. Physical Review A 1971, 3, 1735.

3. Lehmberg, R. H. Radiation from an N-atom system. I. General formalism. Physical
Review A 1970, 2, 883–888.

4. Gross, M.; Haroche, S. Superradiance: An essay on the theory of collective sponta-

neous emission. Physics Reports 1982, 93, 301–396.

5. Ficek, Z.; Tanaś, R. Entangled states and collective nonclassical effects in two-atom

systems. Physics Report 2002, 372, 369–443.

6. Zhang, Y. X.; Mølmer, K. Theory of Subradiant States of a One-Dimensional Two-

Level Atom Chain. Physical Review Letters 2019, 122, 203605.

7. Zhang, Y. X.; Mølmer, K. Subradiant Emission from Regular Atomic Arrays: Uni-

versal Scaling of Decay Rates from the Generalized Bloch Theorem. Physical Review
Letters 2020, 125, 253601.

8. Facchinetti, G.; Jenkins, S. D.; Ruostekoski, J. Storing Light with Subradiant Corre-

lations in Arrays of Atoms. Physical Review Letters 2016, 117, 243601.

9. Kalachev, A. Quantum storage on subradiant states in an extended atomic ensemble.

Physical Review A - Atomic, Molecular, and Optical Physics 2007, 76, 043812.

10. Asenjo-Garcia, A.; Moreno-Cardoner, M.; Albrecht, A.; Kimble, H. J.; Chang, D. E.

Exponential improvement in photon storage fidelities using subradiance "selective

radiance" in atomic arrays. Physical Review X 2017, 7, 1–36.

11. Cech, M.; Lesanovsky, I.; Olmos, B. Dispersionless subradiant photon storage in

one-dimensional emitter chains. Physical Review A 2023, 108, L051702.

12. Rui, J.; Wei, D.; Rubio-Abadal, A.; Hollerith, S.; Zeiher, J.; Stamper-Kurn, D. M.;

Gross, C.; Bloch, I. A subradiant optical mirror formed by a single structured atomic

layer. Nature 2020 583:7816 2020, 583, 369–374.

13. Henriet, L.; Douglas, J. S.; Chang, D. E.; Albrecht, A. Critical open-system dynamics

in a one-dimensional optical-lattice clock. Physical Review A 2019, 99, 023802.

47



14. Masson, S. J.; Asenjo-Garcia, A. Atomic-waveguide quantum electrodynamics.

Physical Review Research 2020, 2, 043213.

15. Tiranov, A.; Angelopoulou, V.; van Diepen, C. J.; Schrinski, B.; Sandberg, O.

A. D.; Wang, Y.; Midolo, L.; Scholz, S.; Wieck, A. D.; Ludwig, A.; Sørensen, A. S.;

Lodahl, P. Collective super- and subradiant dynamics between distant optical quantum

emitters. Science 2023, 379, 389–393.

16. Gonzalez-Tudela, A.; Martin-Cano, D.; Moreno, E.; Martin-Moreno, L.; Tejedor, C.;

Garcia-Vidal, F. J. Entanglement of two qubits mediated by one-dimensional plas-

monic waveguides. Physical Review Letters 2011, 106, 020501.

17. Solano, P.; Barberis-Blostein, P.; Fatemi, F. K.; Orozco, L. A.; Rolston, S. L. Super-

radiance reveals infinite-range dipole interactions through a nanofiber. Nature Com-
munications 2017 8:1 2017, 8, 1–7.

18. Loo, A. F. V.; Fedorov, A.; Lalumiere, K.; Sanders, B. C.; Blais, A.; Wallraff, A.

Photon-mediated interactions between distant artificial atoms. Science 2013, 342,

1494–1496.

19. Wang, Y.; Xu, H.; Deng, X.; Liew, T. C.; Ghosh, S.; Xiong, Q. Topological single-

photon emission from quantum emitter chains. npj Quantum Information 2024 10:1
2024, 10, 1–9.

20. Lang, N.; Büchler, H. P. Topological networks for quantum communication between

distant qubits. npj Quantum Information 2017 3:1 2017, 3, 1–10.

21. D’angelis, F. M.; Pinheiro, F. A.; Guéry-Odelin, D.; Longhi, S.; Impens, F. Fast

and robust quantum state transfer in a topological Su-Schrieffer-Heeger chain with

next-to-nearest-neighbor interactions. Physical Review Research 2020, 2, 033475.

22. Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Solitons in Polyacetylene. Physical Review
Letters 1979, 42, 1698.

23. Lieu, S. Topological phases in the non-Hermitian Su-Schrieffer-Heeger model. Phys-
ical Review B 2018, 97, 1–7.

24. Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford Uni-

versity Press, 2007.

25. Redfield, A. G. The Theory of Relaxation Processes. Advances in Magnetic and
Optical Resonance 1965, 1, 1–32.

26. Manzano, D. A short introduction to the Lindblad master equation. AIP Advances
2020, 10.

48



27. Barnett, S.; Radmore, P. Oxford Scholarship Online Methods in Theoretical Quantum

Optics. 2017,

28. Orszag, M. Quantum optics: Including noise reduction, trapped ions, quantum trajec-

tories, and decoherence, third edition. Quantum Optics: Including Noise Reduction,
Trapped Ions, Quantum Trajectories, and Decoherence, Third Edition 2016, 1–485.

29. Daley, A. J. Quantum trajectories and open many-body quantum systems. Advances
in Physics 2014, 63, 77–149.

30. Peierls, R. E.; Peierls, R. E. Oxford Scholarship Online Quantum Theory of Solids.

2007, 1–17.

31. Shen, S.-Q. Topological Insulators. 2017, 187.

32. Bender, C. M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having

PT Symmetry. Physical Review Letters 1998, 80, 5243.

33. Fedorov, M. V.; Efremov, M. A.; Kazakov, A. E.; Chan, K. W.; Law, C. K.;

Eberly, J. H. Spontaneous emission of a photon: wave-packet structures and atom-

photon entanglement. Phys. Rev. 2005, 72, 032110.

34. Rzazewski, K.; Zakowicz, W. Spontaneous emission from an extended wavepacket.

Journal of Physics B: Atomic, Molecular and Optical Physics 1992, 25, L319.

49


