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ABSTRACT

ELECTRONIC TRANSPORT IN A BOUNDARY-DRIVEN

ONE-DIMENSIONAL CHAIN WITH BULK DEPHASING

This thesis investigates the non-equilibrium steady state transport properties of interact-

ing and non-interacting fermions on 1D chain under environmental effects with the help of

the Lindblad master equation. The current operator which is used for the characterization

of the transport is defined. Because many-body systems pose computational challenges

due to their exponentially growing Hilbert space, different solution methods are studied.

The covariance matrix method is introduced for the non-interacting case, because of the

computational advantage. Approximate methods like the mean-field and the hierarchy of

correlation functions are introduced and compared among themselves for the interacting

case. Behavior of the transport is studied via exact solution method. Vectorizing the Lind-

blad master equation, a system of linear equation is obtained. Using Python programming

language and solving the system of the linear equation, the non-equilibrium steady state

density matrix and the current as a function of environmental variables are calculated.
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ÖZET

SINIRDAN GÜDÜLEN BİR BOYUTLU ZİNCİRDE

YIĞIN EŞEVRE KAYBI ALTINDA ELEKTRONİK TAŞINIM

Bu tezde, etkileşimli ve etkilemşimsiz fermiyonların bir boyutlu zincir üzerinde denge

dışı durağan durumdaki taşınım özellikleri, çevre etkilerini de hesaba katarak incelenmiştir.

Sistem dinamiği Lindblad master denklemi kullanılarak hesaplanmıştır. Taşınımı karakter-

ize eden akım operatörü tanımlanmıştır. Hilbert uzayının eksponansiyel artış göstermesi

sebebiyle, çok parçacıklı sistemlerin çözümünü hesaplamak zordur. Bu sebeple farklı

çözüm metodları incelenmiştir. Hesaplama avantajlarından dolayı, etkileşimsiz sistemlerin

çözümü için kovaryans matris methodu tanıtılmıştır. Etkileşimli sistemler için ortalama

alan ve korelasyon fonksiyonların hiyerarşisi gibi yaklaşık metodlar tanıtılıp, birbirleriyle

kıyaslanmıştır. Taşınımın davranışı kesin çözüm yöntemi yardımıyla incelenmiştir. Lind-

blad denklemi vektörize edilerek doğrusal denklem sistemi elde edilmiştir. Elde edilen

doğrusal denklem sistemi, Python programlama dili kullanılarak çözülmüştür. Denge dışı

durağan durum yoğunluk matrisi ve akım, farklı çevre parametrelerine göre hesaplanmıştır.
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CHAPTER 1

INTRODUCTION

The transport phenomenon has been a subject of research for many years. With

our increasing knowledge in the field of quantum and developing technology, the direction

of research has shifted from macroscopic to microscopic transport. Potentially substantial

advances in nanotechnologies could arise from improvements in our knowledge of trans-

port at the quantum scale. Non-unitary dynamics of transport is an important research

topic because of real-world applications. Today, in a wide range of systems, from biolog-

ical systems to optical fiber cavity networks,1–9 enhancement of transport efficiency due

to system-environment interactions is well understood. It has been shown that particles

that are localized due to disorder in the system transition to delocalized states due to de-

phasing. This phenomenon is called environment-assisted quantum transport (ENAQT).10

Also, many-body open quantum systems have a wide literature, both numerically and ex-

perimentally, in both fermionic and bosonic systems, organic and artificial systems.11–16

For more detailed information, theoretical17 and experimental18 review articles can be

helpful. But there are still unknowns waiting to be discovered.

One of the most important reasons that paved the way for studies in this new field

is the development of open quantum system theory. Due to the non-negligible effects

of the environment, a new framework has been created in which energy and information

exchange with the environment is included, instead of the framework laid by Schrödinger,

Heisenberg, and Dirac. For open quantum dynamics, there are various formalisms. One of

them is the Lindblad formalism.19 With several approximations, environments’ degrees of

freedom can be ignored, and effective master equation is used.20 Although it is common

to derive the Lindblad master equation from microscopic models, the equation will be

different for each bath and system Hamiltonian and the jump operators will not be local.

Therefore, to capture the main physics of transport and its relation to dephasing and

particle-particle interaction, we preferred to use the phenomenological model. It was also

shown that local coupling of reservoir is a good approximation to more realistic models.21

Transport occurs as a result of the interaction of the reservoir with the environment

at different temperatures or potentials, and when sufficient time passes, the system tends

to enter a non-equilibrium steady state (NESS). During the work, instead of the dynamics

of the system, steady-state properties of the system are investigated. In addition to the ease

of calculation, the fact that many natural systems operate in steady state is a good reason
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for this choice.9 This thesis is organized as follows:

• In Chapter 2, the general framework of the open quantum system is explained and basic

examples of non-unitary processes are shown. The quantum Zeno effect which also

seen in this study is presented.

• In Chapter 3, the Hamiltonian and the Lindblad operators used throughout this thesis

are presented. The particle current operator is defined.

• In Chapter 4, different methods used to solve dynamics of the system is presented.

Approximate methods like the mean-field and the hierarchy of correlation functions are

introduced. Their pros and cons are studied. Exact solution method is introduced. The

results of this thesis are presented. The concept of transport regime is introduced and its

change with dephasing is demonstrated. In the strongly correlated systems, the change

of the Zeno regime and the local maximums occurring in the current because of driving

rate Γ are shown. Also, dephasing enhanced transport and its mechanism are explained.
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CHAPTER 2

OPEN QUANTUM SYSTEMS

As in everything else, nature does not care about our idealizations and tries to

interact with our systems as much as it can. For this reason, the concept of "closed

system" appears only in textbooks or as a first step we use in understanding the nature of

things. Therefore, instead of the framework put forward by Schrödinger, Heisenberg and

Dirac, a new framework was created that included the exchange of energy and information

with the environment. In this chapter, I briefly explain the formalism that I used throughout

this work and the general framework that describes the evolution of open systems. Also,

a basic open quantum system example and the Zeno effect are presented. The Zeno effect

is a feature of quantum-mechanical systems.

2.1 General Framework

Figure 2.1: Schematic picture of an open quantum system.
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As shown in Figure 2.1, an open quantum system is a system S which is coupled

to another system B called environment or bath. System S and B can exchange particles,

energy or information between themselves. In general, combined system S + B is assumed

closed system. Therefore, dynamics of combined system S + B is governed by Schrödinger

equation. The total Hamiltonian, defined as

H “ HS b IB ` IS b HB ` HI (2.1)

where HS and HB are the self Hamiltonian of the open system S and the environment

B respectively, HI is the Hamiltonian describing the interaction between the system and

environment and It‚u is the Identity operator for the Hilbert space t‚u. The most general

form of the interaction Hamiltonian HI is,

HI “
ÿ
α

Aα b Bα (2.2)

where operators Aα and Bα are only act on the open system S and environment B,

respectively. Because degrees of freedom of environment is enormous, using direct

calculation for dynamics is basically impossible. Luckily, any observation of interest refer

only to the open system S and their expectation values are calculated as,

xOyt “ TrtOρS ptqu (2.3)

where

ρS ptq “ TrBtρptqu (2.4)

is the reduced density matrix20 of the system S obtained by tracing out all degrees of

freedom of the environment B. Trt‚u denotes the partial trace over the subsystem t‚u.
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The equation governing time evolution of the reduced density matrix of the system

S should be in the following form,

d

dt
ρS “ ´irHS ,ρSs `Δρ̃S (2.5)

where the first term on the right side represents the unitary part of the dynamics generated

by the Hamiltonian HS and the second term represents required correction because of

system environment coupling. The main goal of all different open quantum systems

approaches is to find the correction term Δρ̃S . The most general and formally exact

approach to this correction term is

Δρ̃S “
ż t

´8
dt1F pt ´ t1qrρSpt1qs (2.6)

called Nakajima-Zwanzig equation22 where F is a functional of the reduced density matrix

ρSpt1q. The differential equation in Equation (2.6) is not only depends on current state

of the system, also past states of the system. First approximation will be ignoring this

memory effect and making the process Markovian. In Markovian regime Equation (2.5)

will be in this form,

d

dt
ρS “ ´irHS ,ρSs ` F rρSptqs (2.7)

the condition underlying this approximation is that system-reservoir interaction rate is

much smaller than escape rate of excitations in reservoir. In other words, bath correlation

functions decay fast with respect to relaxation time of the system.

The form of the second part of the Equation (2.7) can be determined exactly or with

different approximations from microscopic models. One of them is Redfield equation,

which is approximation to Nakajima-Zwanzig equation up to second order correction.

However, it does not guarantee protecting positivity of density matrix. Also, there is

an approach which does not take into account microscopic form of system and bath and

preserve positivity. It is called Lindblad master equation and used during this work.
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2.2 Lindblad Master Equation

Lindblad formalism emerged from the question "What should a Markovian equa-

tion of motion look like?". It is a general form of the Markovian master equation. It can

also be derived from microscopic models like Redfield equation. If the level spacing of

system energy levels is much larger than the level broadening arising from environment

interactions, a secular approximation can be applied to the Redfield equation and the Lind-

blad form is obtained. A basic requirement that Lindblad form should provide is mapping

any density matrix to another density matrix. In other words, it preserves Hermiticity,

trace and positivity of density matrix. The Lindblad master equation for system’s density

matrix ρ can be written as20

d

dt
ρ “ ´ i

ℏ
rH,ρs `

ÿ
k

γk

ˆ
LkρL:

k ´ 1
2

!
L:

kLk,ρ
)˙

(2.8)

where t,u is anticommutator, ρ is system density matrix, hereafter I will ignore S subscript

from system related terms, H is the system Hamiltonian, describing unitary part of the

dynamics, and Lk are set of jump operators, describing non-unitary part of the dynamics.

For simple physical insight, Equation (2.8) can be thought as during time dt system evolve

with effective Hamiltonian

Heff “ H ´ iℏγk

2 L:
kLk (2.9)

then with probability γkxL:
kLkydt jump to new state

ρ Ñ LkρL:
k

TrpL:
kLkρq (2.10)

6



2.3 Single Qubit Coupled To A Bath

To better understand the Lindblad master equation and different bath effects, let us

introduce an illustrative example. In this example, ℏ is set equal to 1. A single spin system

with the Hamiltonian

H “ Ω
2 σz (2.11)

coupled to a spin bath with inverse temperature β “ 1{kBT . The bath considered as

infinite number of independent spin with the Hamiltonian

HB “
ÿ
j

ωj

2 σz. (2.12)

A basic Lindblad master equation causing the diagonal elements of the density matrix to

change is

d

dt
ρ “ ´irH,ρs `Γp1 ´ fqDrσ´spρq `ΓfDrσ`spρq (2.13)

where DrLspρq “ LρL: ´ 1
2tL:L,ρu, Γ is coupling strength, and 0 ď f ď 1 which represent

bias between rising and lowering is the Fermi-Dirac distribution

f “ 1
eβΩ ` 1 . (2.14)

This can be understood considering single spin system coupled to the bath with the

interaction Hamiltonian Hint “ ř
j gjpσ´b:

j ` σ`bjq where bj and b:
j are lowering and

rising operator respectively for the jth spin in spin bath. Each spin has ωj level spacing.

Like the Fermi-Golden rule, when the system level spacing Ω equals bath spins’ level

spacing ωj , the system and the bath interaction will resonate. Then the rising rate will be

7



proportional to the Fermi-Dirac occupation number f(ωj “ Ω).

The density matrix of the system is parametrized as

ρ “
˜

ρee ρeg

ρge ρgg

¸
(2.15)

where ρee and ρgg are excited and ground state population, respectively. Using Equation

(2.13), time evolution of the density matrix

ρptq “
˜

pρeep0q ´ fqe´Γt ` f e´iΩtρegp0qe´Γt{2

eiΩtρgep0qe´Γt{2 pf ´ ρeep0qqe´Γt ` 1 ´ f

¸
(2.16)

is obtained. It is seen that non-unitary dynamics changes population terms and also affects

the coherence in Equation (2.16). The system will relax to the thermal state,

ρth “ e´βH

Z
“

˜
f 0
0 1 ´ f

¸
. (2.17)

Another type of bath is the dephasing bath. It does not change the population of the

states, only changes the coherence. The Lindblad master equation representing dephasing

and unitary evolution is

d

dt
ρ “ ´irH,ρs ` γDrσzspρq (2.18)

An analytic expression of the density matrix obtained as

ρptq “
˜

ρeep0q ρegp0qe´iΩte´γt

ρgep0qeiΩte´γt ρggp0q

¸
(2.19)
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The coherence decays with time. It can be thought of as a Bloch vector making a helical

move while the length of the vector is shrinking.

2.4 The Quantum Zeno Effect

One of the most fascinating results of quantum mechanics is the quantum Zeno

effect. While the measurement frequency increases, the dynamics of the system slows

down. In order to demonstrate quantum Zeno effect23 for ideal and continuous measure-

ment, consider observable A that has discrete and non-degenerate eigenvalues. Operator

A can be expressed as;

A “
ÿ
n

λn |ΦnyxΦn| (2.20)

where |Φny and λn are eigenstates of operator A and corresponding eigenvalues, respec-

tively. Assuming that the system initially prepared as eigenstate

|Φp0qy “ |Φky . (2.21)

With the help of Taylor expansion of the Schrödinger equation

|Φptqy “ rI ´ iHt ´ 1
2H2t2 ` ...s |Φp0qy (2.22)

probability of obtaining λk after measurement at t = θ, is calculated as

Pkpθq “ |xΦk|Φpθqy |2 “ 1 ´ pΔEq2
kθ2 ` Opθ4q (2.23)

9



pΔEq2
k “ xΦk|H2 |Φky ´ xΦk|H |Φky2

(2.24)

If measurements are made at θ intervals, probability of getting λk after time τ “ Nθ

Pkpτq « r1 ´ pΔEq2
kθ2sN (2.25)

At continuous measurement limit θ “ τ

N
ÝÑ 0 leads to N ÝÑ 8 for fixed τ

Pkpτq «
„
1 ´ pΔEq2

k
τθ

N

jN

« expr´pΔEq2
kτθs ÝÑ 1 (2.26)

It means that system will not evolve, stay at initial state. Like ideal measurement, non-ideal

measurement also causes the quantum Zeno effect. The Lindblad jump operators can be

thought as measurement operators and The Lindblad dynamics can be considered as an

indirect continuous monitoring of the system.
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CHAPTER 3

BOUNDARY-DRIVEN QUANTUM CHAINS

In this chapter, I described the boundary-driven fermionic chain model. It is

the model which is used during this thesis to study transport properties in open quantum

system. In the first section, the system Hamiltonian is introduced. In the second section, the

environment is introduced. In the last section, current, which is used for characterization

of transport, is presented.

3.1 Fermi Hubbard Model

In order to investigate transport properties, the best way is to start from basic

models. The one that is simple and grasping physics of various materials is the Fermi-

Hubbard model. It is a good approximation for particles in 1D chain at sufficiently low

temperatures. A simple Hamiltonian in second quantized form with field operators ψσprq
is the following,

H “
ÿ
σ

ż
d3rψ:

σprq
„

´ ℏ2

2m
∇2 ` Uionprq

j
ψσprq

` 1
2

ÿ
σ,σ1

ż
d3r

ż
d3r1ψ:

σprqψ:
σ1pr1qVeepr - r1qψσ1pr1qψσprq

(3.1)

which represents the kinetic energy, lattice potential with periodicity given by lattice

vector Ri and Coulomb interaction, respectively. Lattice potential obtained by the Born-

Oppenheimer approximation. Because nuclei are much heavier than the electrons, nuclei

are thought of as fixed in space. Dynamical lattice effects are neglected.

The first idea that comes to mind when periodicity is seen is the Bloch functions.

However, they are delocalized functions in real space. In order to derive the Hubbard

model, which is a tight-binding model, more localized functions are needed. In these

11



cases, Wannier functions that are Fourier transforms of the Bloch states come into play.

Wannier functions, defined as

φiαprq ” φαpr-Riq “ 1?
N

ÿ
k

e´ik¨Riuk,αprq (3.2)

where uk,αprq is Bloch function and α is band index. Wannier functions are localized at

the site Ri of the lattice. Before starting derivation, it is assumed that all the electrons

are in the lowest band and other bands are energetically unavailable. At sufficiently low

temperature, it is a good approximation. Therefore, there is no need for band index α

anymore.

Using Wannier states, creation operators for electrons are defined as

b:
iσ “

ż
d3rφiprqψ:

σprq (3.3)

which have the inverse relation

ψ:
σprq “

ÿ
i

φi̊ prqb:
iσ (3.4)

Putting Equation (3.4) into Equation (3.1) generalized Hubbard Hamiltonian

H “
ÿ
ij

ÿ
σ

tijb
:
iσbjσ ` 1

2
ÿ
ijkl

ÿ
σσ1

vijklb
:
bσb:

jσ1bkσ1blσ (3.5)

is obtained. Considering a lattice of widely spaced atoms, the matrix elements of Equa-

tion (3.5) decay fast with increasing distance |Ri ´ Rj | and only nearest-neighbor terms

remain. First term in Equation (3.5) describe tunneling of electrons between different

sites. The second term is the interaction term that includes Hubbard repulsion, Coulomb

12



interaction between electrons, bond-charge interaction, Heisenberg exchange interaction,

and tunneling of electron pairs. Following Hubbard,24 all the terms are neglected except

hopping and on-site Coulomb interaction terms. The Fermi-Hubbard Hamiltonian

H “ ´t
N´1ÿ

i

ÿ
σ

´
b:
iσbi`1,σ ` b:

i`1,σbiσ

¯
` U

Nÿ
i

niÒniÓ (3.6)

is obtained. The number operator defined as niσ “ b:
iσbiσ. Because rNσ,Hs “ 0 where

Nσ “ ř
i niσ, the Hamiltonian has block diagonal form in number state basis.

3.2 Boundary Driven Model

In the previous section, the chain in which the transport will take place was defined.

Now, we need to define particle reservoirs to drive current. Also, we need to introduce

dephasing baths.

Figure 3.1: Schematic presentation of the boundary driven model.

As seen in Figure 3.1 two particle reservoirs coupled to the chain at the ends and

each site coupled to independent baths which perform dephasing. The density matrix of

13



the system evolved according to the Lindblad equation setting ℏ “ 1

9ρ “ Lρ “ ´irH,ρs ` Dinjrρs ` Dextrρs ` Ddephrρs (3.7)

where H is Fermi Hubbard Hamiltonian representing chain

H “ ´t
N´1ÿ

i

ÿ
σ

´
b:
iσbi`1,σ ` b:

i`1,σbiσ

¯
` U

Nÿ
i

niÒniÓ, (3.8)

second term on the right-hand side represent left reservoir which coupled to first site,

inject particle with injection rate Γ

Dinjrρs “ Γ
ÿ
σ

ˆ
b:
1σρb1σ ´ 1

2b1σb:
1σρ ´ 1

2ρb1σb:
1σ

˙
, (3.9)

third term represent right reservoir which coupled to last site N, extract particle with

extraction rate Γ

Dextrρs “ Γ
ÿ
σ

ˆ
bNσρb:

Nσ ´ 1
2b:

NσbNσρ ´ 1
2ρb:

NσbNσ

˙
(3.10)

and last term is dephasing term

Ddephrρs “ γ
ÿ

i

ˆ
niρni ´ 1

2n2
i ρ ´ 1

2ρn2
i

˙
(3.11)
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where ni is total particle operator defined as ni “ niÒ ` niÓ.

This one-way driving represents low temperature limit or the case that potential

difference between driving reservoirs are very high. Similar to the illustrative example in

Equation (2.13) and more realistically, particle exchange with the reservoir must be two-

way. The rates of this exchange are determined according to the Fermi Dirac distribution.

Assuming the left reservoir has higher chemical potential and the right reservoir has lower

chemical potential than the chain, low temperature T ÝÑ 0 limit results one-way driving

f ÝÑ 1.

3.3 Particle Current Operator

Transport occurs as a result of the interaction of reservoirs at different temperatures

or potentials, and when sufficient time passes, the system tends to enter a non-equilibrium

steady state (NESS). Transport is characterized by a current. Using the continuity equation,

the current operator is obtained. In the Heisenberg picture, the Lindblad master equation

shown in Equation (2.8) become for operator O

d

dt
O “ L:O “ irH,Os `

ÿ
k

γk

ˆ
L:

kOLk ´ 1
2L:

kLkO ´ 1
2OL:

kLk

˙
. (3.12)

defining particle flux operator from site j to site j + 1

Jj :“ it
ÿ
σ

´
b:
j`1,σbjσ ´ b:

jσbj`1,σ

¯
, 1 ď j ă N. (3.13)

Using Equations (3.12) and (3.13), the continuity equation for site occupation

d

dt
xnjy “ xJj´1y ´ xJjy, 1 ă j ă N (3.14)
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is obtained. Detailed calculations are found in Appendix A. At the boundaries, similar

calculations result the continuity equations

d

dt
xn1y “ xJinjy ´ xJ1y (3.15)

d

dt
xnN y “ xJN´1y ´ xJexty (3.16)

where reservoir flux operators

Jinj “ Γ p2 ´ n1q (3.17)

Jext “ ΓnN (3.18)

are defined. In the NESS, 9ni = 0, and all the expectation of current operators are equal to

each other

xJinjy “ xJ1y “ ... “ xJN´1y “ xJexty “ xJy. (3.19)
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CHAPTER 4

METHODS AND RESULTS

In this chapter, computational methods and result of the system dynamics are

introduced. For the non-interacting chain, a highly effective exact solution method called

the covariance matrix method is presented. For the interacting system, the mean-field

approximation and improved approximate methods are described. The situations in which

they were useful and the situations in which they failed were stated. The brute-force exact

solution method used in most of the calculations throughout the thesis is described. In the

last three sections, the behavior of current in an open quantum system is studied.

4.1 Non-Interacting Fermions

Sometimes, depending on the system and the features to be observed, a complete

solution may not be necessary. An important group is systems in which the Hamiltonian is

at most quadratic in the creation and annihilation operators. For the non-interacting case,

as seen in Equation (3.6), the Hamiltonian become quadratic. In order to look at transport

properties, the covariance matrix is defined as

Cσ,σ1
n,mptq “ Trtb:

n,σbm,σ1ρptqu “ xb:
n,σbm,σ1yt. (4.1)

Using the Lindblad master equation in Heisenberg picture Equation (3.12), dynamics of

covariance matrix

9Cσ,σ1
n,m “ itpCσ,σ1

n,m`1 ` Cσ,σ1
n,m´1 ´ Cσ,σ1

n`1,m ´ Cσ,σ1
n´1,mq ´ γp1 ´ δnmqCσ,σ1

n,m

´ Γ
2 pδ1n ` δ1m ` δNn ` δNmqCσ,σ1

n,m `Γδ1nδ1mδσσ1
(4.2)
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is obtained with open boundary conditions Cσσ1
0,k “ Cσσ1

k,N`1 “ 0. The derivation of this

equation can be found in Appendix A. With the help of vectorization, Equation (4.2) can

be written as, 9P “ ZP ` D where P is the vectorized covariance matrix. At the NESS, P
= -Z´1D. Z is a 4N2 ˆ 4N2 matrix, with the computational cost of inversion of the most

basic algorithm being OpN6q.

4.2 Mean-field Approximation

As shown in the previous section, the covariance matrix method for quadratic

Hamiltonian provides a great advantage in calculations. However, when we take into

account the interaction term which is quartic, the Hamiltonian cannot satisfy this condi-

tion. One of the simplest approximations for the Fermi-Hubbard model is the mean-field

approximation. It converts the two-body interaction term to one-body interaction, which

is between electron and mean-field of other electrons. Assuming the deviation of number

operators from the mean value is relatively small,

niσ “ xniσy ` δniσ (4.3)

interaction term of the Fermi Hubbard Hamiltonian Equation (3.6) become

U
Nÿ
i

ni,Òni,Ó “ U
ÿ

i

pni,Òxni,Óy ` xni,Òyni,Ó ´ xni,Òyxni,Óy ` δniÒδniÓq

« U
ÿ

i

pni,Òxni,Óy ` xni,Òyni,Ó ´ xni,Òyxni,Óyq
(4.4)

where constant terms will be ignored. Now, dynamics of covariance matrix become

9Cσ,σ1
n,m “ itpCσ,σ1

n,m`1 ` Cσ,σ1
n,m´1 ´ Cσ,σ1

n`1,m ´ Cσ,σ1
n´1,mq ` iUpC σ̃,σ̃

n,n ´ C σ̃1,σ̃1
m,m qCσ,σ1

n,m

´ γp1 ´ δnmqCσ,σ1
n,m ´ Γ

2 pδ1n ` δ1m ` δNn ` δNmqCσ,σ1
n,m ` δ1,nδ1,mδσσ1Γ

(4.5)
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with boundary conditions Cσσ1
0,k “ Cσσ1

k,N`1 “ 0. Similarly to the non-interacting case with

the help of vectorization, Equation (4.5) can be written as 9P “ Z(P)P ` D where P is

the vectorized covariance matrix. However, now coefficient matrix Z is depending on

vectorized covariance matrix P. It can be solved by non-linear system of equation methods

or iterative methods.

One of the features which the mean-field approximation failed to describe is that

current drops to zero exponentially with system size N in the interacting systems.25

However, as seen in Figure 4.1a, the mean-field solution predicts ballistic behavior. On

the other side, as seen in Figures 4.1b and 4.1c, it can be informative sometimes. Similarly

to the exact solution, when the dephasing is at the order of the interaction strength, the

current peaks.

(a)

(b) (c)

Figure 4.1: Injection and extraction rates of system are Γ{t = 1 for both of the graphs. (a)

Plots of the dependence of current xJy and the size of the system N for different

interaction strengths U. Current is calculated using mean-field method. (b)

Plots of current xJy vs dephasing rate γ of 4 site system with interaction

strength U/t = 8. Currents are calculated using different methods. (c) Same

plots of (b) for 2 site system.
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4.3 Higher Order Approximations

The main problem of the interaction term is that it does not preserve the hierarchy

of correlation functions. Applying the covariance matrix method to the interaction term,

dynamics of second order correlation terms depend on fourth order correlation terms,

fourth order correlation terms depend on sixth order correlation terms and goes on.

However, by allowing higher-order correlation functions, we can get more accurate results.

Now, let us introduce new notation

Q
ś

i σi
ś

j σ1
jś

i ni
ś

j mj
:“ x

ź
i

b:
niσi

ź
j

bmjσ1
j
y (4.6)

Dynamics of second and fourth order correlation functions are obtained as

d

dt
Qσ1σ1

1
n1m1 “ it

´
Q

σ1,σ1
1

n1,m1`1 ` Q
σ1,σ1

1
n1,m1´1 ´ Q

σ1,σ1
1

n1´1,m1 ´ Q
σ1,σ1

1
n1`1,m1

¯
´ γp1 ´ δn1m1qQσ1σ1

1
n1m1

` iU
´

QÒÓÓσ1
1

n1n1n1m1δÒσ1 ` Qσ1ÓÒÓ
n1m1m1m1δÒσ1

1
´ QÒÓÒσ1

1
n1n1n1m1δÓσ1 ´ Qσ1ÒÒÓ

n1m1m1m1δÓσ1
1

¯
`Γδ1m1δ1n1δσ1σ1

1
´ Γ

2 pδ1n1 ` δ1m1 ` δNn1 ` δNm1qQσ1σ1
1

n1m1

d

dt
Qσ1σ2σ1

1σ1
2

n1n2m1m2 “ it
´

Q
σ1σ2σ1

1σ1
2

n1,n2m1`1,m2 ` Q
σ1σ2σ1

1σ1
2

n1,n2m1´1,m2 ` Q
σ1σ2σ1

1σ1
2

n1,n2m1m2`1 ` Q
σ1σ2σ1

1σ1
2

n1,n2m1m2´1

¯
´ it

´
Q

σ1σ2σ1
1σ1

2
n1`1,n2m1m2 ` Q

σ1σ2σ1
1σ1

2
n1´1,n2m1m2 ` Q

σ1σ2σ1
1σ1

2
n1n2`1,m1m2 ` Q

σ1σ2σ1
1σ1

2
n1n2´1,m1m2

¯
` iU

´
δn1n2p1 ´ δσ1σ2q ´ δm1m2p1 ´ δσ1

1σ1
2
q
¯

Qσ1σ2σ1
1σ1

2
n1n2m1m2

` iU
´

δσ1ÓQÒÓσ2Òσ1
1σ1

2
n1n1n2n1m1m2 ´ δσ1ÒQÒÓσ2Óσ1

1σ1
2

n1n1n2n1m1m2 ` δσ2ÒQÒÓσ1Óσ1
1σ1

2
n2n2n1n2m1m2

¯
´ iU

´
δσ2ÓQÒÓσ1Òσ1

1σ1
2

n2n2n1n2m1m2 ´ δσ1
1ÒQσ1σ2Óσ1

2ÒÓ
n1n2m1m2m1m1 ` δσ1

1ÓQσ1σ2Òσ1
2ÒÓ

n1n2m1m2m1m1

¯
` iU

´
δσ1

2ÓQσ1σ2Òσ1
1ÒÓ

n1n2m2m1m2m2 ´ δσ1
2ÒQσ1σ2Óσ1

1ÒÓ
n1n2m2m1m2m2

¯
´Γδ1n1δ1m1δσ1σ1

1
Qσ2σ1

2
n2m2

´Γδ1n2δ1m2δσ2σ1
2
Qσ1σ1

1
n1m1 `Γδ1n2δ1m1δσ2σ1

1
Qσ1σ1

2
n1m2 `Γδ1n1δ1m2δσ1σ1

2
Qσ2σ1

1
n2m1

´ Γ
2 pδNn1 ` δNn2 ` δNm1 ` δNm2 ` δ1n1 ` δ1n2 ` δ1m1 ` δ1m2qQσ1σ2σ1

1σ1
2

n1n2m1m2

´ γp2 ` δn1n2 ` δm1m2 ´ δn1m1 ´ δn1m2 ´ δn2m1 ´ δn2m2qQσ1σ2σ1
1σ1

2
n1n2m1m2 .

(4.7)
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Lastly dynamics of sixth order correlation functions while ignoring higher order

terms

d

dt
Qσ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3m1m2m3 “ it

´
Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1`1,m2m3 ` Q
σ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3m1´1,m2m3 ` Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2`1,m3

¯
` it

´
Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2´1,m3 ` Q
σ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3m1m2m3`1 ` Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3´1

¯
´ it

´
Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1`1,n2n3m1m2m3 ` Q
σ1σ2σ3σ1

1σ1
2σ1

3
n1´1,n2n3m1m2m3 ` Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2`1,n3m1m2m3

¯
´ it

´
Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2´1,n3m1m2m3 ` Q
σ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3`1,m1m2m3 ` Q

σ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3´1,m1m2m3

¯
` iU pδn1n2p1 ´ δσ1σ2q ` δn1n3p1 ´ δσ1σ3qqQσ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3m1m2m3

` iU
´

δn2n3p1 ´ δσ2σ3q ´ δm1m2p1 ´ δσ1
1σ1

2
q
¯

Qσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

´ iU
´

δm1m3p1 ´ δσ1
1σ1

3
q ` δm2m3p1 ´ δσ1

2σ1
3
q
¯

Qσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

`Γδ1n1δ1m1δσ1σ1
1
Qσ2σ3σ1

2σ1
3

n2n3m2m3 ´Γδ1n1δ1m2δσ1σ1
2
Qσ2σ3σ1

1σ1
3

n2n3m1m3

`Γδ1n1δ1m3δσ1σ1
3
Qσ2σ3σ1

1σ1
2

n2n3m1m2 ´Γδ1n2δ1m1δσ2σ1
1
Qσ1σ3σ1

2σ1
3

n1n3m2m3

`Γδ1n2δ1m2δσ2σ1
2
Qσ1σ3σ1

1σ1
3

n1n3m1m3 ´Γδ1n2δ1m3δσ2σ1
3
Qσ1σ3σ1

1σ1
2

n1n3m1m2

`Γδ1n3δ1m1δσ3σ1
1
Qσ1σ2σ1

2σ1
3

n1n2m2m3 ´Γδ1n3δ1m2δσ3σ1
2
Qσ1σ2σ1

1σ1
3

n1n2m1m3

`Γδ1n3δ1m3δσ3σ1
3
Qσ1σ2σ1

1σ1
2

n1n2m1m2

´ Γ
2 pδ1n1 ` δ1n2 ` δ1n3 ` δ1m1 ` δ1m2 ` δ1m3qQσ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3m1m2m3

´ Γ
2 pδNn1 ` δNn2 ` δNn3 ` δNm1 ` δNm2 ` δNm3qQσ1σ2σ3σ1

1σ1
2σ1

3
n1n2n3m1m2m3

´ γ p3 ` δm1m2 ` δm1m3 ` δm2m3qQσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

´ γ pδn1n2 ` δn1n3 ` δn2n3qQσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

´ γ pδm1n1 ` δm1n2 ` δm1n3qQσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

´ γ pδm2n1 ` δm2n2 ` δm2n3qQσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

´ γ pδm3n1 ` δm3n2 ` δm3n3qQσ1σ2σ3σ1
1σ1

2σ1
3

n1n2n3m1m2m3

(4.8)

is obtained. Derivation of the equations can be found in Appendix B. As seen in Fig-

ures 4.1b and 4.1c, even only holding up to fourth-order correlations, it makes a great

improvement over the mean-field solution. It is a good approach, both qualitatively and

quantitatively. However, there is a relationship between system size and error here. In

Figure 4.1c, the use of up to sixth-order correlation functions gives the same result as the

exact solution for the two-site system. The problem of the sixth-order equation is that,
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although the error is small, it does not provide much speed advantage on the computation

side. There are p2Nq4 fourth-order correlation functions and p2Nq6 sixth-order correlation

functions. For this reason, the computational cost of the forth-order method is OpN12q
and sixth-order method is OpN18q. Figure 4.1b shows that the sixth-order correlation

method is not better than the fourth-order correlation methods for all regimes.

4.4 Exact Solution

The most basic approach to an exact solution is using number states as basis.

The main problem is that the density matrix of the N site system has 24N elements.

Inside the chain, the number of spin-up and spin-down particles is conserved. At the

boundaries, non-unitary dynamics of injection and extraction do not cause superposition

of states which have different number of spin-up or spin-down particle. So, the density

matrix will be block diagonal for different spin-up and spin-down states. Now, onlyřN
i“0

řN
j“0

´`
N
i

˘`
N
j

˘¯2
elements are needed for solution of the density matrix.

4.5 Transport Regimes

System size dependence of the current is an important classification in transport

problems. When system size N is big enough, current has the form

J9 1
Nν

(4.9)

where ν is transport coefficient and N is number of site. Different values of ν represents

different transport regimes, as seen in Table 4.1. It can also be determined by spreading

of a localized wave-packet, but we preferred using current for simplicity.With the help of

linear fitting and logarithm of Equation (4.9)

lnJ “ ´νlnN ` C (4.10)
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Table 4.1: Classification of transport regime with respect to exponent ν
(Source: Lacerda, A.M. (2020). Transport in boundary-driven quantum chains

with quasiperiodic potentials (p. 63)).

Transport regime Transport coefficient

Ballistic ν “ 0
Super-diffusive 0 ă ν ă 1

Diffusive ν “ 1
Sub-diffusive ν ą 1

Localized ν “ 8

ν is found. When transport is coherent, the non-interacting Fermi Hubbard chain is in the

ballistic regime.26 However, introducing dephasing changes this and the system goes from

ballistic to localized regime continuously with increasing dephasing as seen in Figure 4.2.

Figure 4.2: Plots of current xJy and system size N dependence in non-interacting system

(U=0) for different dephasing rate γ with corresponding fitted transport coef-

ficient ν. Injection and extraction rates of system are Γ{t = 1.
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4.6 Effects of Environment

Like unitary quantum dynamics, non-unitary quantum dynamics behaves differ-

ently from its classical counterpart. Boundary driven quantum chain that is represented

in Equation (3.7) has two different kind of baths.

One of them is particle reservoirs which is parameterized by Γ, inject and extract

particles. In Figure 4.3, behavior of the current with respect to driving rate Γ for different

interaction strength U is shown. Intuitively, one would expect that increasing the injection

and extraction rate will increase the current up to a limit and the increase will stop after

saturation is reached. However, unlike the classical model, current shows non-monotonic

behavior because of the quantum Zeno effect. Injection from reservoir or extraction to

reservoir can be thought of as indirect continuous monitoring of the system, and this leads

to the Zeno effect. When interaction strength is high enough, two local maximum of

current appear. In the Γ " t limit, regardless of interaction strength, they all converge to

the same value because the Zeno effect dominates.

(a) (b)

Figure 4.3: Plots of current xJy vs dephasing rate γ of 4 site system with injection rate

Γ{t “ 1 for different interaction strength U. (a) Driving rate is in the range Γ P
[0,8], (b) Driving rate is in the range Γ P [8,100].

Other important bath effects are caused by dephasing baths that are coupled to each

site and are parameterized by γ. In the Figure 4.4, it is shown that how current changes with

respect to dephasing. Injection rate Γ is chosen equal to hopping rate in a 4 site system.

The vast majority of non-interacting, many body systems show ballistic transport. It was

shown that dephasing causes transition from ballistic to diffusive regime in the Figure 4.2

for non-interacting system. Therefore, dephasing always negatively affects transport in
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Figure 4.4: Plots of current xJy vs dephasing rate γ of 4 site system with injection rate

Γ{t “ 1 for different interaction strength U.

these systems. For non-interacting case and relatively small interaction strength, e.g. U/t

= 2, this negative effect is seen in Figure 4.4. However, strongly correlated systems do

not show this feature and the effects of dephasing are different. For spinless many-body

systems, enhancement of dephasing on transport is shown.27 As seen in Figure 4.4, also

for the Fermi-Hubbard model, there is a current-increasing effect up to a level, for high

interaction strengths.

4.7 Enhancement Mechanism

The main result of this thesis is that bulk dephasing can enhance the transport in

the strongly correlated system. Figure 4.5a shows this behavior in detail for the system

of 4 sites with U / t = 8. Important dephasing values are marked. These values are used

throughout this section to explain this striking behavior.

As mentioned in Chapter 3, the Hamiltonian of the system conserves the number

of spin-up and spin-down particles. This means that all spin sectors are decoupled from

each other. The transition between spin sectors is achieved through the injection and

extraction of particles at the ends of the chain. Driving part couple spin sector (nÓ,nÒ)

to (nÓ ˘ 1,nÒ) and (nÓ,nÒ ˘ 1) where nσ represents the number of spin-σ particles. Since

Lindblad equation of the system Equation (3.7) has spin symmetry, spin-down was chosen

to explain the mechanism.
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Defining configuration states as

|n1Ó,n2Ó, ...,nNÓy b |n1Ò,n2Ò, ...,nNÒy (4.11)

where number of spin-σ particle on site i, niσ take values 0 or 1. The states in the form

|1,x,0y b |yy are decoupled from the spin-down driving, where x and y are any string of

bits of length N-2 and N, respectively. These decoupled states are called dark states, and

the weight of the dark states determines the current. To determine the weight of the dark

states, the darksity operator for spin-down D is defined as

D :“ n1Óp1 ´ nNÓq. (4.12)

As shown in,25 all particles are frozen in the first half of the chain in the NESS. Because

of that, the current is suppressed. Therefore, the system prefers to populate high energy

dark states and spin sector (N/2,N/2), it is seen in Figure 4.6d.
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Figure 4.5: (a) Plots of current xJy vs dephasing rate γ of 4 site system with driving

rate Γ{t “ 1 and interaction strength U/t = 1. Important dephasing values are

marked. Inset Figure: More detailed drawing of the same figure in the range

γ P r0,1s. (b) Plots of the interaction strength U vs optimal dephasing γopt of

4 sites system with driving rate Γ{t “ 1 .
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Let us consider U/t Ñ 8 limit for better understanding. The hopping term in

the Hamiltonian Equation (3.6) can be ignored, and only the interaction term survives.

Configuration states become eigenstates of this Hamiltonian. Each eigenstate in the same

band has the same energy and determined by the number of double occupied sites. Bands

are separated by U. Since all particles are frozen in the first half of the chain in the NESS,

they will populate dark states in the form

|1,1, ...,1looomooon
nÓ

,0,0, ...,0looomooon
N ´ nÓ

y b |1,1, ...,1looomooon
nÒ

,0,0, ...,0looomooon
N ´ nÒ

y (4.13)

for the spin sector (nÓ,nÒ) eigenstates. They are maximally double occupied, therefore

they are in the highest energy band.

Taking a step forward, let us consider a finite but strong interaction limit. Taking

hopping term as perturbation, degenerate eigenstates will split because of hopping. This

leads to that band gap will be order of U and energy splitting inside the bands will be order

of t2/2U. In Figure 4.6a, this behavior can be observed. Similar to U{t Ñ 8 limit, it is

obvious that dark states population will be dominated by highest energy band.

When dephasing is introduced to the system, dephasing process induce scattering

between the eigenstates of the Hamiltonian. The energy of the system will fluctuate.

Because dephasing operator does not commute with the hopping term, on average there

is a loss of energy associated with kinetic energy. Using Equation (3.7), the effect of

dephasing on energy of the system

d

dt
xHy “ ´2γt

Nÿ
j“1

ÿ
σ

xb:
jσbj`1,σ ` b:

j`1,σbjσy ` ... (4.14)

is determined. There is an inverse proportionality between the terms on the right-hand

side. Increase dephasing leads to decrease in kinetic energy because of the quantum Zeno

effect. So, there is an optimum dephasing rate for enhancement.

Looking closely at the spin sector (2,2) which is the highest populated sector for

4 sites system, it is seen that the scattering between eigenstates is due to dephasing in

Figure 4.6. Scattering to more mobile states causes current enhancement. It is seen that

the dephasing rate that causes the transition between eigenstates is related to the energy
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Figure 4.6: Eigenstates of the Hamiltonian in the spin number sector (2,2) Ψp2,2q
k for N =

4 and U/t = 8 are calculated. Each eigenstate indexed with number k. Also

in this chain, steady state density matrix ρNESS is calculated with driving

rate Γ{t “ 1 for different dephasing rates γ. (a) The energy spectrum of

the eigenstates. (b) Weight of dark states in the eigenstates. (c) Weight of

eigenstates in the steady state density matrix ρNESS . (d) Weight of spin

sectors in the steady state density matrix ρNESS .

difference between these eigenstates. In Figure 4.5b, this relation is shown for band gap.

There is a linear dependence between interaction strength U and optimal dephasing γopt

which causes maximum current. For small dephasing rate, jumps are observed to be more

dominant in the higher band. As indicated in Figure 4.5a, there is a local maximum for

dephasing value γdeph{t “ 0.06. However, satisfactory observation could not be made

regarding the relation between enhancement in the lower dephasing values and energy

difference between states in the same band. In addition to scattering between states in the

same spin sector, spin sector populations are also changes because of dephasing as seen

in Figure 4.6d. The combination of these effects changes the dark state population and,

accordingly, the current.
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CHAPTER 5

CONCLUSION

In this thesis, transport properties of the interacting and non-interacting fermions on

1D chains under environmental effects are studied. Since, the main challenge of the many-

body systems is exponentially growing Hilbert space and as a result, the computational cost,

different solution methods are introduced. Their advantages and weaknesses are shown.

It was concluded that the mean-field approximation has an enormous speed advantage

and helps to understand the behavior of the system in certain regimes. However, the

mean-field method is error-prone at some points. The higher order correlation method is

more accurate and very effective in understanding the behavior of the system. However,

because the higher order correlation methods have high polynomial complexity while

exact solution has exponential complexity, speed advantage compared to the mean-field

method is slight for small system size.

It was shown that dephasing change ballistic behavior of the transport of the non-

interacting fermions to diffusive behavior. In contrast to this negative effect seen in the

non-interacting systems, current enhancement is observed in the interacting systems. In

the absence of dephasing, increasing interaction reduces the current, but when the system

is under the effect of dephasing, it has been shown to affect the current positively at some

points. The mechanism behind this behavior is explained with the Hamiltonian energy

spectrum. In this direction, the relation between the band gap and the optimal dephasing

values are found. One of the most important shortcomings of this study and its potential

for improvement is that only small systems can be investigated. Increasing system size

will require more advanced computational methods, e.g. tensor network, matrix product

states. It will help us understand the mechanism behind these effects and learn whether

they depend on the size of the system. As a result, the mechanism that attempts to explain

this behavior of the current is open to support and development with advanced analytical

or computational methods.
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APPENDIX A

DYNAMICS OF THE COVARIANCE MATRIX

In this chapter, derivation of the dynamical equation of the covariance matrix is

introduced. Dynamics of the covariance matrix is obtained by the equation

9Cσσ1
nm “ d

dt
xb:

nσbmσ
1 y “ ixrH,b:

nσbmσ
1 sy ` Trtb:

nσbmσ
1 Dpρqu (A.1)

where Dpρq represent the non-unitary part of the Lindblad equation. Thanks to mean-

field approximation, the system Hamiltonian H is quadratic. The general form of the

Hamiltonian H can be expressed as

H “
ÿ

Hss1
ij b:

isbjs1 (A.2)

where Hss1
ij “ ´tδss1pδi,j´1 ` δi,j`1q ` Uxnis̃yδijδss1 . Using following two equations

rb:
isbjs1 , b:

nσs “ b:
isbjs1b:

nσ ´ b:
nσb:

isbjs1

“ b:
istbjs1 , b:

nσu
“ b:

isδjnδs1σ

(A.3)

rb:
isbjs1 , bmσ1s “ b:

isbjs1bmσ1 ´ bmσ1b:
isbjs1

“ ´tbmσ1 , b:
isubjs1

“ ´bjs1δmiδsσ1

(A.4)
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and the following calculations

rH,b:
nσbmσ1s “ rH,b:

nσsbmσ1 ` b:
nσrH,bmσ1s

“
ÿ

ijss1
Hss1

ij

´
rb:

isbjs1 , b:
nσsbmσ1 ` b:

nσrb:
isbjs1 , bmσ1s

¯

“
ÿ
is

Hsσ
in b:

isbmσ1 ´
ÿ
js1

Hσ1s1
mj b:

nσbjs1

“
ÿ
is

p´tδsσpδi,n´1 ` δi,n`1q ` Uxnis̃yδinδsσqb:
isbmσ1

`
ÿ
js1

ptδs1σ1pδm,j´1 ` δm,j`1q ´ Uxnmσ̃1yδmjδs1σ1qb:
nσbjs1

“ tpb:
nσbm`1,σ1 ` b:

nσbm´1,σ1 ´ b:
n´1,σbmσ1 ´ b:

n`1,σbmσ1q
` U pxnnσ̃y ´ xnmσ̃1yqb:

nσbmσ1

(A.5)

coherent evolution of covariance matrix is obtained as

9Cσ,σ1
n,m “ itpCσ,σ1

n,m`1 ` Cσ,σ1
n,m´1 ´ Cσ,σ1

n`1,m ´ Cσ,σ1
n´1,mq ` iUpC σ̃,σ̃

n,n ´ C σ̃1,σ̃1
m,m qCσ,σ1

n,m (A.6)

To obtain the equation of dissipative evolution, the following identity will be useful:

xADkpρqy “ TrtALkρL:
k ´ 1

2AL:
kLkρ ´ 1

2AρL:
kLku

“ 1
2xL:

krA,Lksy ´ 1
2xrA,L:

ksLky
(A.7)
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Contribution of injection part with the help of Equations (A.3), (A.4) and (A.7)

xb:
nσbmσ1Dinjpρqy “ Γ

2
ÿ
s

´
xb1srb:

nσbmσ1 , b:
1ssy ´ xrb:

nσbmσ1 , b1ssb:
1sy

¯

“ Γ
2

ÿ
s

´
δ1mδsσ1xb1sb

:
nσy ` δ1nδsσxbmσ1b:

1sy
¯

“ Γ
2

´
δ1mxb1σ1b:

nσy ` δ1nxbmσ1b:
1σy

¯
“ Γ

2

´
δ1mxδ1nδσσ1 ´ b:

nσb1σ1y ` δ1nxδ1mδσσ1 ´ b:
1σbmσ1y

¯
“ Γδ1nδ1mδσσ1 ´ Γ

2 pδ1n ` δ1mqxb:
nσbmσ1y

“ Γδ1nδ1mδσσ1 ´ Γ
2 pδ1n ` δ1mqCσσ1

nm

(A.8)

and extraction part

xb:
nσbmσ1Dextpρqy “ Γ

2
ÿ
s

´
xb:

Nsrb:
nσbmσ1 , bNssy ´ xrb:

nσbmσ1 , b:
NssbNsy

¯

“ ´Γ
2

ÿ
s

´
δNnδsσxb:

Nsbmσ1y ` δNmδsσ1xb:
nσbNsy

¯

“ ´Γ
2 pδNn ` δNmqxb:

nσbmσ1y

“ ´Γ
2 pδNn ` δNmqCσσ1

nm

(A.9)

is obtained. Lastly, with the help of the following relation

”
b:
nσbmσ1 ,ni

ı
“

«
b:
nσbmσ1 ,

ÿ
s

b:
isbis

ff

“
ÿ
s

´
b:
isrb:

nσbmσ1 , biss ` rb:
nσbmσ, b:

iss
¯

“
ÿ
s

´
´b:

isbmσ1δinδsσ ` b:
nsbisδimδsσ1

¯
“ pδim ´ δinqb:

nσbmσ1

(A.10)
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and Equations (A.7), (A.10) and the hermiticity of the corresponding dephasing Lindblad

operator ni, dephasing part

xb:
nσbmσ1Ddephpρqy “ γ

2

Nÿ
i“1

xnirb:
nσbmσ1 ,nis ´ rb:

nσbmσ1 ,nisniy

“ γ

2
ÿ

i

xnipδim ´ δinqb:
nσbmσ1 ´ pδim ´ δinqb:

nσbmσ1niy

“ ´γ

2
ÿ

i

pδim ´ δinqxrb:
nσbmσ1 ,nisy

“ ´γ

2
ÿ

i

pδim ´ δinq2xb:
nσbmσ1y

“ ´γp1 ´ δnmqxb:
nσbnσ1y

“ ´γp1 ´ δnmqCσσ1
nm

(A.11)

is obtained. When all the results are combined, dynamics of the covariance matrix

Equation (4.2) is obtained.

33



APPENDIX B

HIERARCHY OF EQUATION

In this chapter, hierarchic dynamical equation of higher order correlation functions

are derived. Now, let us define new notations;

C
ś

i σiś
i ni

:“
ź

i

b:
niσi

(B.1)

A
ś

j σ1
jś

j mj
:“

ź
j

bmjσ1
j

(B.2)

Q
ś

i σi
ś

j σ1
jś

i ni
ś

j mj
:“ x

ź
i

b:
niσi

ź
j

bmjσ1
j
y8 (B.3)

with boundary conditions which, if any of the sub indices is equal to zero or N+1,

Q
ś

i σi
ś

j σ1
jś

i ni
ś

j mj
is equal to zero. Also, let us introduce useful equivalences which are used

throughout this chapter.

rCσ1σ2
n1n2 , b:

iss “ b:
n1σ1b:

n2σ2b:
is ´ b:

isb
:
n1σ1b:

n2σ2 “ 0 (B.4)

rAσ1
1σ1

2
m1m2 , bjs1s “ bm1σ1

1
bm2σ1

2
bjs1 ´ bjs1bm1σ1

1
bm2σ1

2
bjs1 “ 0 (B.5)
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rAσ1
1σ1

2
m1m2 , b:

iss “ bm1σ1
1
bm2σ1

2
b:
is ´ b:

isbm1σ1
1
bm2σ1

2

“ bm1σ1
1
pδim2δsσ1

2
´ b:

isbm2σ1
2
q ´ b:

isbm1σ1
1
bm2σ1

2

“ δim2δsσ1
2
bm1σ1

1
´ pδim1δsσ1

1
´ b:

isbm1σ1
1
qbm2σ1

2
´ b:

isbm1σ1
1
bm2σ1

2

“ δim2δsσ1
2
bm1σ1

1
´ δim1δsσ1

1
bm2σ1

2

(B.6)

rCσ1σ2
n1n2 , bjs1s “ b:

n1σ1b:
n2σ2bjs1 ´ bjs1b:

n1σ1b:
n2σ2

“ b:
n1σ1pδjn2δs1σ2 ´ bjs1b:

n2σ2q ´ bjs1b:
n1σ1b:

n2σ2

“ δjn2δs1σ2b:
n1σ1 ´ pδjn1δs1σ1 ´ bjs1b:

n1σ1qb:
n2σ2 ´ bjs1b:

n1σ1b:
n2σ2

“ δjn2δs1σ2b:
n1σ1 ´ δjn1δs1σ1b:

n2σ2

(B.7)

rAσ1
1σ1

2
m1m2 ,Cσ1σ2

n1n2 s “ bm1σ1
1
rbm2σ1

2
,Cσ1σ2

n1n2 s ` rbm1σ1
1
,Cσ1σ2

n1n2 sbm2σ1
2

“ bm1σ1
1
b:
n2σ2δn1m2δσ1σ1

2
´ bm1σ1

1
b:
n1σ1δn2m2δσ2σ1

2

` b:
n2σ2bm2σ1

2
δn1m1δσ1σ1

1
´ b:

n1σ1bm2σ1
2
δn2m1δσ2σ1

1

“ b:
n1σ1bm1σ1

1
δn2m2δσ2σ1

2
` b:

n2σ2bm2σ1
2
δn1m1δσ1σ1

1

´ b:
n1σ1bm2σ1

2
δn2m1δσ2σ1

1
´ b:

n2σ2bm1σ1
1
δn1m2δσ1σ1

2

` δn2m1δσ2σ1
1
δn1m2δσ1σ1

2
´ δn1m1δσ1σ1

1
δn2m2δσ2σ1

2

(B.8)

rni,A
σ1

1σ1
2

m1m2s “
ÿ
s

rb:
isbis,A

σ1
1σ1

2
m1m2s

“
ÿ
s

pAσ1
2s

m2iδim1δsσ1
1

´ A
σ1

1s
m1iδim2δsσ1

2
q

“ ´pδim1 ` δim2qAσ1
1σ1

2
m1m2

(B.9)

rni,C
σ1σ2
n1n2 s “ pδin1 ` δin2qCσ1σ2

n1n2 (B.10)

Now all the tools which are required are introduced. Let us start with the second order

equation. It is already obtained in Appendix A except interaction part. The interaction

term can be written in normal order as niÒniÓ “ ´CÒÓ
ii AÒÓ

ii and its contribution obtained
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as

ÿ
i

rCÒÓ
ii AÒÓ

ii , b:
n1σ1bm1σ1

1
s “

ÿ
i

pCÒÓ
ii rAÒÓ

ii , b:
n1σ1bm1σ1

1
s ` rCÒÓ

ii , b:
n1σ1bm1σ1

1
sAÒÓ

ii q

“
ÿ

i

pCÒÓ
ii rAÒÓ

ii , b:
n1σ1sbm1σ1

1
` b:

n1σ1rCÒÓ
ii , bm1σ1

1
sAÒÓ

ii q

“
ÿ

i

pCÒÓ
ii A

Òσ1
1

im1δin1δÓσ1 ´ CÒÓ
ii A

Óσ1
1

im1δin1δÒσ1

` Cσ1Ò
n1i AÒÓ

ii δim1δÓσ1
1

´ Cσ1Ó
n1i AÒÓ

ii δim1δÒσ1
1
q

“ CÒÓ
n1n1AÒσ1

1
n1m1δÓσ1 ´ CÒÓ

n1n1AÓσ1
1

n1m1δÒσ1

` Cσ1Ò
n1m1AÒÓ

m1m1δÓσ1
1

´ Cσ1Ó
n1m1AÒÓ

m1m1δÒσ1
1

(B.11)

so, adding the interaction part to the equation which is obtained in Appendix A, Equation

(4.7) is derived.

Proceeding to the fourth order equation. Starting from contribution of the hopping

term,

x
ÿ
i,s

rb:
i`1,sbis ` h.c,Cσ1σ2

n1n2Aσ1
1σ1

2
m1m2sy “ x

ÿ
i,s

pCσ1σ2
n1n2 rb:

i`1,sbis ` b:
isbi`1,s,A

σ1
1σ1

2
m1m2s

` rb:
i`1,sbis ` b:

isbi`1,s,C
σ1σ2
n1n2 sAσ1

1σ1
2

m1m2qy
“ x

ÿ
i,s

pCσ1σ2
n1n2A

σ1
2s

m2iδi`1,m1δsσ1
1

´ Cσ1σ2
n1n2A

σ1
1s

m1iδi`1,m2δsσ1
2

` Cσ1σ2
n1n2A

σ1
2s

m2i`1δi,m1δsσ1
1

´ Cσ1σ2
n1n2A

σ1
1s

m1i`1δi,m2δsσ1
2

` Csσ2
i`1,n2Aσ1

1σ1
2

m1m2δin1δsσ1 ´ Csσ1
i`1,n1Aσ1

1σ1
2

m1m2δin2δsσ2

` Csσ2
in2 Aσ1

1σ1
2

m1m2δi`1,n1δsσ1 ´ Csσ1
in1 Aσ1

1σ1
2

m1m2δi`1,n2δsσ2qy
“ Q

σ1σ2σ1
1σ1

2
n1`1,n2m1m2 ` Q

σ1σ2σ1
1σ1

2
n1´1,n2m1m2 ` Q

σ1σ2σ1
1σ1

2
n1n2`1,m1m2

` Q
σ1σ2σ1

1σ1
2

n1n2´1,m1m2 ´ Q
σ1σ2σ1

1σ1
2

n1,n2m1`1,m2 ´ Q
σ1σ2σ1

1σ1
2

n1,n2m1´1,m2

´ Q
σ1σ2σ1

1σ1
2

n1,n2m1m2`1 ´ Q
σ1σ2σ1

1σ1
2

n1,n2m1m2´1
(B.12)
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then, interaction term

x
ÿ

i

rCÒÓ
ii AÒÓ

ii ,Cσ1σ2
n1n2Aσ1

1σ1
2

m1m2sy “ x
ÿ

i

pCÒÓ
ii rAÒÓ

ii ,Cσ1σ2
n1n2 sAσ1

1σ1
2

m1m2 ` Cσ1σ2
n1n2 rCÒÓ

ii ,Aσ1
1σ1

2
m1m2sAÒÓ

ii qy

“ x
ÿ

i

pCÒÓ
ii pb:

n1σ1biÒδin2δÓσ2 ` b:
n2σ2biÓδin1δÒσ1qAσ1

1σ1
2

m1m2

´ CÒÓ
ii pb:

n1σ1biÓδn2iδσ2Ò ` b:
n2σ2biÒδn1iδσ1ÓqAσ1

1σ1
2

m1m2

` CÒÓ
ii pδin1δσ1Óδin2δσ2Ò ´ δin1δσ1Òδin2δσ2ÓqAσ1

1σ1
2

m1m2

´ Cσ1σ2
n1n2 pb:

iÒbm1σ1
1
δim2δÓσ1

2
` b:

iÓbm2σ1
2
δim1δÒσ1

1
qAÒÓ

ii

` Cσ1σ2
n1n2 pb:

iÒbm2σ1
2
δim1δÓσ1

1
` b:

iÓbm1σ1
1
δim2δÒσ1

2
qAÒÓ

ii

` Cσ1σ2
n1n2 pδim1δim2δÒσ1

1
δÓσ1

2
´ δim1δim2δÓσ1

1
δÒσ1

2
qAÒÓ

ii qy
“ QÒÓσ1Òσ1

1σ1
2

n2n2n1n2m1m2δσ2Ó ` QÒÓσ2Óσ1
1σ1

2
n1n1n2n1m1m2δσ1Ò

´ QÒÓσ1Óσ1
1σ1

2
n2n2n1n2m1m2δσ2Ò ´ QÒÓσ2Òσ1

1σ1
2

n1n1n2n1m1m2δσ1Ó
´ Qσ1σ2σ1

1σ1
2

n1n2m1m2δn1n2p1 ´ δσ1σ2q ´ Qσ1σ2Òσ1
1ÒÓ

n1n2m2m1m2m2δσ1
2Ó

´ Qσ1σ2Óσ1
2ÒÓ

n1n2m1m2m1m1δσ1
1Ò ` Qσ1σ2Òσ1

2ÒÓ
n1n2m1m2m1m1δσ1

1Ó
` Qσ1σ2Óσ1

1ÒÓ
n1n2m2m1m2m2δσ1

2Ò ` Qσ1σ2σ1
1σ1

2
n1n2m1m2δm1m2p1 ´ δσ1

1σ1
2
q
(B.13)

For injection term, following four identity is introduced.

xδ1m2bm2σ1
2
b:
n1σ1b:

n2σ2bm1σ1
1
y “ xδ1m2pδn1m2δσ1σ1

2
´ b:

n1σ1bm2σ1
2
qb:

n2σ2bm1σ1
1
y

“ xδ1m2δ1n1δσ1σ1
2
b:
n2σ2bm1σ1

1

´ δ1m2b:
n1σ1pδn2m2δσ2σ1

2
´ b:

n2σ2bm2σ1
2
qbm1σ1

1
y

“ δ1m2δ1n1δσ1σ1
2
Qσ2σ1

1
n2m1 ´ δ1m2δ1n2δσ2σ1

2
Qσ1σ1

1
n1m1

´ δ1m2Qσ1σ2σ1
1σ1

2
n1n2m1m2

(B.14)
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applying pm1,m2q “ pm2,m1q and pσ1
1,σ1

2q “ pσ1
2,σ1

1q transformation to Equation (B.14),

xδ1m1bm1b:
n1b:

n2bm2y “ δ1m1δ1n1δσ1σ1
1
Qσ2σ1

2
n2m2 ´ δ1m1δ1n2δσ2σ1

1
Qσ1σ1

2
n1m2 ` δ1m1Qσ1σ2σ1

1σ1
2

n1n2m1m2

(B.15)

is obtained.

xδ1n2b:
n1σ1bm1σ1

1
bm2σ1

2
b:
n2σ2y “ xδ1n2b:

n1σ1bm1σ1
1
pδn2m2δσ2σ1

2
´ b:

n2σ2bm2σ1
2
qy

“ xδ1n2δ1m2δσ2σ1
2
b:
n1σ1bm1σ1

1

´ δ1n2b:
n1σ1pδn2m1δσ2σ1

1
´ b:

n2σ2bm1σ1
1
qbm2σ1

2
y

“ δ1n2δ1m2δσ2σ1
2
Qσ1σ1

1
n1m1 ´ δ1n2δ1m1δσ2σ1

1
Qσ1σ1

2
n1m2

` δ1n2Qσ1σ2σ1
1σ1

2
n1n2m1m2

(B.16)

applying pn1,n2q “ pn2,n1q and pσ1,σ2q “ pσ2,σ1q transformation to Equation (B.16)

xδ1n1b:
n2σ2bm1σ1

1
bm2σ1

2
b:
n1σ1y “ δ1n1δ1m2δσ1σ1

2
Qσ2σ1

1
n2m1

´ δ1n1δ1m1δσ1σ1
1
Qσ2σ1

2
n2m2 ´ δ1n1Qσ1σ2σ1

1σ1
2

n1n2m1m2

(B.17)
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is obtained. Using Equations (B.14) - (B.17), injection part leads to following equation

xCσ1σ2
n1n2Aσ1

1σ1
2

m1m2Dinjy “ Γ
2

ÿ
s

pxb1srCσ1σ2
n1n2Aσ1

1σ1
2

m1m2 , b:
1ssy ´ xrCσ1σ2

n1n2Aσ1
1σ1

2
m1m2 , b1ssb:

1syq

“ Γ
2

ÿ
s

pxb1sC
σ1σ2
n1n2 rAσ1

1σ1
2

m1m2 , b:
1ssy ´ xrCσ1σ2

n1n2 , b1ssAσ1
1σ1

2
m1m2b:

1syq

“ Γ
2

ÿ
s

pxb1sC
σ1σ2
n1n2 pbm1σ1

1
δ1m2δsσ1

2
´ bm2σ1

2
δ1m1δsσ1

1
qy

´ xpb:
n1σ1δ1n2δsσ2 ´ b:

n2σ2δ1n1δsσ1qAσ1
1σ1

2
m1m2b:

1syq
“ Γ

2 pxbm2σ1
2
Cσ1σ2

n1n2bm1σ1
1
yδ1m2 ´ xbm1σ1

1
Cσ1σ2

n1n2bm2σ1
2
yδ1m1

´ xb:
n1σ1Aσ1

1σ1
2

m1m2b:
n2σ2yδ1n2 ` xb:

n2σ2Aσ1
1σ1

2
m1m2b:

n1σ1yδ1n1q
“ ´Γδ1n2δ1m2δσ2σ1

2
Qσ1σ1

1
n1m1 `Γδ1n2δ1m1δσ2σ1

1
Qσ1σ1

2
n1m2

`Γδ1n1δ1m2δσ1σ1
2
Qσ2σ1

1
n2m1 ´Γδ1n1δ1m1δσ1σ1

1
Qσ2σ1

2
n2m2

´ Γ
2 pδ1n1 ` δ1n2 ` δ1m1 ` δ1m2qQσ1σ2σ1

1σ1
2

n1n2m1m2

(B.18)

extraction part

xCσ1σ2
n1n2Aσ1

1σ1
2

m1m2Dexty “ Γ
2

ÿ
s

pxb:
NsrCσ1σ2

n1n2Aσ1
1σ1

2
m1m2 , bNssy ´ xrCσ1σ2

n1n2Aσ1
1σ1

2
m1m2 , b:

NssbNsyq

“ Γ
2

ÿ
s

pxb:
NsrCσ1σ2

n1n2 , bNssAσ1
1σ1

2
m1m2y ´ xCσ1σ2

n1n2 rAσ1
1σ1

2
m1m2 , b:

NssbNsyq

“ Γ
2

ÿ
s

pδNn2δsσ2Q
sσ1σ1

1σ1
2

Nn1m1m2
´ δNn1δsσ1Q

sσ2σ1
1σ1

2
Nn2m1m2

´ δNm2δsσ1
2
Q

σ1σ2σ1
1s

n1n2m1N ` δNm1δsσ1
1
Q

σ1σ2σ1
2s

n1n2m2N q
“ Γ

2 pδNn2Qσ2σ1σ1
1σ1

2
n2n1m1m2 ´ δNn1Qσ1σ2σ1

1σ1
2

n1n2m1m2

´ δNm2Qσ1σ2σ1
1σ1

2
n1n2m1m2 ` δNm1Qσ1σ2σ1

2σ1
1

n1n2m2m1q
“ ´Γ

2 pδNn1 ` δNn2 ` δNm1 ` δNm2qQσ1σ2σ1
1σ1

2
n1n2m1m2

(B.19)

Lastly, contribution from dephasing term can be calculated using Equations (B.9) and
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(B.10)

xCσ1σ2
n1n2Aσ1

1σ1
2

m1m2Ddephy “ γ

2
ÿ

i

xrni, rCσ1σ2
n1n2Aσ1

1σ1
2

m1m2 ,nissy

“ γ

2
ÿ

i

pxrni,C
σ1σ2
n1n2 rAσ1

1σ1
2

m1m2 ,nissy ` xrni, rCσ1σ2
n1n2 ,nisAσ1

1σ1
2

m1m2syq

“ γ

2
ÿ

i

xpδim1 ` δim2 ´ δin1 ´ δin2qrni,C
σ1σ2
n1n2Aσ1

1σ1
2

m1m2sy

“ ´γ

2
ÿ

i

pδim1 ` δim2 ´ δin1 ´ δin2q2Qσ1σ2σ1
1σ1

2
n1n2m1m2

“ ´γp2 ` δn1n2 ` δm1m2 ´ δn1m1

´ δn1m2 ´ δn2m1 ´ δn2m2qQσ1σ2σ1
1σ1

2
n1n2m1m2

(B.20)

Adding all terms, Equation (4.7) is obtained. Similar calculations for sixth order cor-

relation functions will result Equation (4.8) when higher than sixth order terms are ig-

nored.
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