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ABSTRACT

ELECTRONIC TRANSPORT IN A BOUNDARY-DRIVEN
ONE-DIMENSIONAL CHAIN WITH BULK DEPHASING

This thesis investigates the non-equilibrium steady state transport properties of interact-
ing and non-interacting fermions on 1D chain under environmental effects with the help of
the Lindblad master equation. The current operator which is used for the characterization
of the transport is defined. Because many-body systems pose computational challenges
due to their exponentially growing Hilbert space, different solution methods are studied.
The covariance matrix method is introduced for the non-interacting case, because of the
computational advantage. Approximate methods like the mean-field and the hierarchy of
correlation functions are introduced and compared among themselves for the interacting
case. Behavior of the transport is studied via exact solution method. Vectorizing the Lind-
blad master equation, a system of linear equation is obtained. Using Python programming
language and solving the system of the linear equation, the non-equilibrium steady state

density matrix and the current as a function of environmental variables are calculated.
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OZET

SINIRDAN GUDULEN BIR BOYUTLU ZINCIRDE
YIGIN ESEVRE KAYBI ALTINDA ELEKTRONIK TASINIM

Bu tezde, etkilesimli ve etkilemsimsiz fermiyonlarin bir boyutlu zincir tizerinde denge
dis1 duragan durumdaki tasinim 6zellikleri, ¢cevre etkilerini de hesaba katarak incelenmistir.
Sistem dinamigi Lindblad master denklemi kullanilarak hesaplanmigtir. Taginimi karakter-
ize eden akim operatorii tammmlanmistir. Hilbert uzayinin eksponansiyel artis gdstermesi
sebebiyle, cok parcacikli sistemlerin ¢oziimiinii hesaplamak zordur. Bu sebeple farkli
¢Oziim metodlar1 incelenmistir. Hesaplama avantajlarindan dolayi, etkilesimsiz sistemlerin
¢Oziimii icin kovaryans matris methodu tanitilmigtir. Etkilesimli sistemler i¢in ortalama
alan ve korelasyon fonksiyonlarin hiyerarsisi gibi yaklagik metodlar tamtilip, birbirleriyle
kiyaslanmigtir. Taginimin davranist kesin ¢oziim yontemi yardimiyla incelenmistir. Lind-
blad denklemi vektorize edilerek dogrusal denklem sistemi elde edilmistir. Elde edilen
dogrusal denklem sistemi, Python programlama dili kullanilarak ¢oziilmiistiir. Denge dis1

duragan durum yogunluk matrisi ve akim, farkli cevre parametrelerine gore hesaplanmustir.
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CHAPTER 1

INTRODUCTION

The transport phenomenon has been a subject of research for many years. With
our increasing knowledge in the field of quantum and developing technology, the direction
of research has shifted from macroscopic to microscopic transport. Potentially substantial
advances in nanotechnologies could arise from improvements in our knowledge of trans-
port at the quantum scale. Non-unitary dynamics of transport is an important research
topic because of real-world applications. Today, in a wide range of systems, from biolog-
ical systems to optical fiber cavity networks,!™ enhancement of transport efficiency due
to system-environment interactions is well understood. It has been shown that particles
that are localized due to disorder in the system transition to delocalized states due to de-
phasing. This phenomenon is called environment-assisted quantum transport (ENAQT).!°
Also, many-body open quantum systems have a wide literature, both numerically and ex-
perimentally, in both fermionic and bosonic systems, organic and artificial systems.!'!~16
For more detailed information, theoretical!” and cf:xperimental18 review articles can be
helpful. But there are still unknowns waiting to be discovered.

One of the most important reasons that paved the way for studies in this new field
is the development of open quantum system theory. Due to the non-negligible effects
of the environment, a new framework has been created in which energy and information
exchange with the environment is included, instead of the framework laid by Schrodinger,
Heisenberg, and Dirac. For open quantum dynamics, there are various formalisms. One of
them is the Lindblad formalism.'® With several approximations, environments’ degrees of
freedom can be ignored, and effective master equation is used.? Although it is common
to derive the Lindblad master equation from microscopic models, the equation will be
different for each bath and system Hamiltonian and the jump operators will not be local.
Therefore, to capture the main physics of transport and its relation to dephasing and
particle-particle interaction, we preferred to use the phenomenological model. It was also
shown that local coupling of reservoir is a good approximation to more realistic models.?!

Transport occurs as a result of the interaction of the reservoir with the environment
at different temperatures or potentials, and when sufficient time passes, the system tends
to enter a non-equilibrium steady state (NESS). During the work, instead of the dynamics
of the system, steady-state properties of the system are investigated. In addition to the ease

of calculation, the fact that many natural systems operate in steady state is a good reason



for this choice.” This thesis is organized as follows:

* In Chapter 2, the general framework of the open quantum system is explained and basic
examples of non-unitary processes are shown. The quantum Zeno effect which also

seen in this study is presented.

* In Chapter 3, the Hamiltonian and the Lindblad operators used throughout this thesis

are presented. The particle current operator is defined.

* In Chapter 4, different methods used to solve dynamics of the system is presented.
Approximate methods like the mean-field and the hierarchy of correlation functions are
introduced. Their pros and cons are studied. Exact solution method is introduced. The
results of this thesis are presented. The concept of transport regime is introduced and its
change with dephasing is demonstrated. In the strongly correlated systems, the change
of the Zeno regime and the local maximums occurring in the current because of driving

rate " are shown. Also, dephasing enhanced transport and its mechanism are explained.



CHAPTER 2

OPEN QUANTUM SYSTEMS

As in everything else, nature does not care about our idealizations and tries to
interact with our systems as much as it can. For this reason, the concept of "closed
system" appears only in textbooks or as a first step we use in understanding the nature of
things. Therefore, instead of the framework put forward by Schrodinger, Heisenberg and
Dirac, a new framework was created that included the exchange of energy and information
with the environment. In this chapter, [ briefly explain the formalism that I used throughout
this work and the general framework that describes the evolution of open systems. Also,
a basic open quantum system example and the Zeno effect are presented. The Zeno effect

is a feature of quantum-mechanical systems.

2.1 General Framework

(S-I_Ba%S ® HBap)

>
(S ) ,HS ) pS)
System

H

(B ) ,HB yPB )
Environment

Figure 2.1: Schematic picture of an open quantum system.



As shown in Figure 2.1, an open quantum system is a system S which is coupled
to another system B called environment or bath. System S and B can exchange particles,
energy or information between themselves. In general, combined system S + B is assumed
closed system. Therefore, dynamics of combined system S + B is governed by Schrodinger

equation. The total Hamiltonian, defined as
H=Hg®Ip+Is®@Hp+ Hy 2.1)

where Hg and Hp are the self Hamiltonian of the open system S and the environment
B respectively, H is the Hamiltonian describing the interaction between the system and
environment and /¢, is the Identity operator for the Hilbert space {e}. The most general

form of the interaction Hamiltonian H is,
H; =) As®B, (2.2)
(0%

where operators A, and B, are only act on the open system S and environment B,
respectively. Because degrees of freedom of environment is enormous, using direct
calculation for dynamics is basically impossible. Luckily, any observation of interest refer

only to the open system S and their expectation values are calculated as,

(O)r =Tr{Ops (1)} (2.3)

where

ps (t) = Trp{p(t)} (2.4)

is the reduced density matrix?® of the system S obtained by tracing out all degrees of

freedom of the environment B. T'r(, denotes the partial trace over the subsystem {e}.



The equation governing time evolution of the reduced density matrix of the system

S should be in the following form,

d

ZiPs = —ilHs, ps]+ Aps (2.5)

where the first term on the right side represents the unitary part of the dynamics generated
by the Hamiltonian Hg and the second term represents required correction because of
system environment coupling. The main goal of all different open quantum systems
approaches is to find the correction term Apg. The most general and formally exact

approach to this correction term is
t
Aps = J dt'F(t—t)[ps(t')] (2.6)
—00

called Nakajima-Zwanzig equation®> where F is a functional of the reduced density matrix
ps(t'). The differential equation in Equation (2.6) is not only depends on current state
of the system, also past states of the system. First approximation will be ignoring this
memory effect and making the process Markovian. In Markovian regime Equation (2.5)

will be in this form,

d
Ps = —i[Hg, ps] + F[ps(t)] (2.7)

the condition underlying this approximation is that system-reservoir interaction rate is
much smaller than escape rate of excitations in reservoir. In other words, bath correlation
functions decay fast with respect to relaxation time of the system.

The form of the second part of the Equation (2.7) can be determined exactly or with
different approximations from microscopic models. One of them is Redfield equation,
which is approximation to Nakajima-Zwanzig equation up to second order correction.
However, it does not guarantee protecting positivity of density matrix. Also, there is
an approach which does not take into account microscopic form of system and bath and

preserve positivity. It is called Lindblad master equation and used during this work.



2.2 Lindblad Master Equation

Lindblad formalism emerged from the question "What should a Markovian equa-
tion of motion look like?". It is a general form of the Markovian master equation. It can
also be derived from microscopic models like Redfield equation. If the level spacing of
system energy levels is much larger than the level broadening arising from environment
interactions, a secular approximation can be applied to the Redfield equation and the Lind-
blad form is obtained. A basic requirement that Lindblad form should provide is mapping
any density matrix to another density matrix. In other words, it preserves Hermiticity,
trace and positivity of density matrix. The Lindblad master equation for system’s density

matrix p can be written as>"

d _ 1

a il
7" h[H,pH;%(Lkak 2{%%/}}) (2.8)

where {, } is anticommutator, p is system density matrix, hereafter I will ignore S subscript
from system related terms, H is the system Hamiltonian, describing unitary part of the
dynamics, and L;, are set of jump operators, describing non-unitary part of the dynamics.
For simple physical insight, Equation (2.8) can be thought as during time dt system evolve
with effective Hamiltonian

i
Hopp—H— %LLL;C (2.9)

then with probability 7k<LLL 1 dt jump to new state

LipL!
p— # (2.10)
T?"(LkLkp)



2.3 Single Qubit Coupled To A Bath

To better understand the Lindblad master equation and different bath effects, let us
introduce an illustrative example. In this example, 7 is set equal to 1. A single spin system
with the Hamiltonian

H =

Q
50 (2.11)

coupled to a spin bath with inverse temperature 5 = 1/kpT. The bath considered as

infinite number of independent spin with the Hamiltonian

Hp=>"o.. (2.12)

A basic Lindblad master equation causing the diagonal elements of the density matrix to

change is

—ip = —ilHpl+T (1= f)Dlo"}(p) + T/ Dlo"](p) (2.13)

1
where D[L](p) = LpL' — §{LTL, p}, s coupling strength, and 0 < f < 1 which represent

bias between rising and lowering is the Fermi-Dirac distribution

B 1
S eP 1

f (2.14)

This can be understood considering single spin system coupled to the bath with the
interaction Hamiltonian H;, = )’ j gj(cr’b; +07"b;) where b; and b; are lowering and
rising operator respectively for the j* spin in spin bath. Each spin has w; level spacing.
Like the Fermi-Golden rule, when the system level spacing € equals bath spins’ level

spacing wj, the system and the bath interaction will resonate. Then the rising rate will be



proportional to the Fermi-Dirac occupation number f(w; = ).

The density matrix of the system is parametrized as

p= Pee  Peg (2.15)
Pge  Pgg

where p.. and pg, are excited and ground state population, respectively. Using Equation

(2.13), time evolution of the density matrix

o(6) <(Pee(0)—f)e_”+f e ey (0)e T2 ) oo

“/’mtpge(O)eirt/2 (f— Pee(o))eirt +1—f

is obtained. It is seen that non-unitary dynamics changes population terms and also affects

the coherence in Equation (2.16). The system will relax to the thermal state,

e PH f 0
pin = =<0 1_f>. (2.17)

Another type of bath is the dephasing bath. It does not change the population of the
states, only changes the coherence. The Lindblad master equation representing dephasing

and unitary evolution is

0= —ilH,p] +7Dlo](p) 218)

An analytic expression of the density matrix obtained as

—iQt ,—t
pec(0)  peg(0)e"e 7> 019

p(t) = (pge(o)eigte—'yt ng(o)



The coherence decays with time. It can be thought of as a Bloch vector making a helical

move while the length of the vector is shrinking.

2.4 The Quantum Zeno Effect

One of the most fascinating results of quantum mechanics is the quantum Zeno
effect. While the measurement frequency increases, the dynamics of the system slows
down. In order to demonstrate quantum Zeno effect® for ideal and continuous measure-
ment, consider observable A that has discrete and non-degenerate eigenvalues. Operator

A can be expressed as;

A= [ @) (@ (2.20)

where |®,,) and \,, are eigenstates of operator A and corresponding eigenvalues, respec-

tively. Assuming that the system initially prepared as eigenstate
|®(0)) = |- (2.21)
With the help of Taylor expansion of the Schrodinger equation
|D(t)) = [I —iHt— ;H2t2+...] |D(0)) (2.22)
probability of obtaining \j after measurement at t = 6, is calculated as

Pp(0) = [(®p|®(0))]* = 1 - (AE)Z6% + O(6") (2.23)



(AB)} = (@y H? | ) — (Dy H |y)* (2.24)
If measurements are made at # intervals, probability of getting A\, after time 7 = N¢
Py(7) ~ [1— (AE)Z6*]Y (2.25)

. .. T
At continuous measurement limit 6 = N —— (0 leads to N — oo for fixed 7

N
P(7) ~ [1— (AE) ] ~ exp[—(AE);T0] — 1 (2.26)

It means that system will not evolve, stay at initial state. Like ideal measurement, non-ideal
measurement also causes the quantum Zeno effect. The Lindblad jump operators can be
thought as measurement operators and The Lindblad dynamics can be considered as an

indirect continuous monitoring of the system.
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CHAPTER 3

BOUNDARY-DRIVEN QUANTUM CHAINS

In this chapter, I described the boundary-driven fermionic chain model. It is
the model which is used during this thesis to study transport properties in open quantum
system. In the first section, the system Hamiltonian is introduced. In the second section, the
environment is introduced. In the last section, current, which is used for characterization

of transport, is presented.

3.1 Fermi Hubbard Model

In order to investigate transport properties, the best way is to start from basic
models. The one that is simple and grasping physics of various materials is the Fermi-
Hubbard model. It is a good approximation for particles in 1D chain at sufficiently low
temperatures. A simple Hamiltonian in second quantized form with field operators 1, ()

is the following,

h2
H = Zfdi"wf,(r) [_vaz + Uion (1) | 15 (1)
7 3.1)
1y 20 | [l L Vil - )40

which represents the kinetic energy, lattice potential with periodicity given by lattice
vector R; and Coulomb interaction, respectively. Lattice potential obtained by the Born-
Oppenheimer approximation. Because nuclei are much heavier than the electrons, nuclei
are thought of as fixed in space. Dynamical lattice effects are neglected.

The first idea that comes to mind when periodicity is seen is the Bloch functions.
However, they are delocalized functions in real space. In order to derive the Hubbard

model, which is a tight-binding model, more localized functions are needed. In these

11



cases, Wannier functions that are Fourier transforms of the Bloch states come into play.

Wannier functions, defined as
Dia(r) = Ga(r-Ri) = —= > e Mo (32)

where wuy ,(r) is Bloch function and « is band index. Wannier functions are localized at
the site R; of the lattice. Before starting derivation, it is assumed that all the electrons
are in the lowest band and other bands are energetically unavailable. At sufficiently low
temperature, it is a good approximation. Therefore, there is no need for band index «
anymore.

Using Wannier states, creation operators for electrons are defined as

b = f d*ro;(r)vl(r) (3.3)

which have the inverse relation
= 01 )b, (3.4)
i
Putting Equation (3.4) into Equation (3.1) generalized Hubbard Hamiltonian

H = Zztwbwbﬂ7+ szljklbba ja’bkalblg (3.5)

ij O zyk:l oo’

is obtained. Considering a lattice of widely spaced atoms, the matrix elements of Equa-
tion (3.5) decay fast with increasing distance |R; — R;| and only nearest-neighbor terms
remain. First term in Equation (3.5) describe tunneling of electrons between different

sites. The second term is the interaction term that includes Hubbard repulsion, Coulomb

12



interaction between electrons, bond-charge interaction, Heisenberg exchange interaction,
and tunneling of electron pairs. Following Hubbard,?* all the terms are neglected except

hopping and on-site Coulomb interaction terms. The Fermi-Hubbard Hamiltonian

1 N

N—
—t 3, 3 (Blobiso 0 obio ) + U Y marniy (3.6)
;o

7

is obtained. The number operator defined as n;, = bngw. Because [N, H]| = 0 where

N, = Zl n;s, the Hamiltonian has block diagonal form in number state basis.

3.2 Boundary Driven Model

In the previous section, the chain in which the transport will take place was defined.

Now, we need to define particle reservoirs to drive current. Also, we need to introduce

dephasing baths.

)
H B H B

Figure 3.1: Schematic presentation of the boundary driven model.

As seen in Figure 3.1 two particle reservoirs coupled to the chain at the ends and

each site coupled to independent baths which perform dephasing. The density matrix of

13



the system evolved according to the Lindblad equation setting 7 = 1

p=Lp= —i[H, p] + ij [p] + Deyt [,0] + Ddeph [p] (3.7)

where H is Fermi Hubbard Hamiltonian representing chain

1 N

N—
==t 3, 3 (bl bisro b obio) + U Dmim, (3.8)
g

7 7

second term on the right-hand side represent left reservoir which coupled to first site,
inject particle with injection rate I'

1
Dinjlp] =T, (b* bt~ gbroblop— 5pbisb], ) (3.9)
g

third term represent right reservoir which coupled to last site N, extract particle with

extraction rate I
i Loy Loy
Deatlp] =T 3, ( boPbvg = 5bNoDNaP = 5 PbNGNG (3.10)
ag

and last term is dephasing term

1
Daepn[p] 72 (mpm 1P = 5P, ) (3.11)

14



where n; is total particle operator defined as n; = n;y +n;.

This one-way driving represents low temperature limit or the case that potential
difference between driving reservoirs are very high. Similar to the illustrative example in
Equation (2.13) and more realistically, particle exchange with the reservoir must be two-
way. The rates of this exchange are determined according to the Fermi Dirac distribution.
Assuming the left reservoir has higher chemical potential and the right reservoir has lower
chemical potential than the chain, low temperature T — 0 limit results one-way driving

f— 1.

3.3 Particle Current Operator

Transport occurs as a result of the interaction of reservoirs at different temperatures
or potentials, and when sufficient time passes, the system tends to enter a non-equilibrium
steady state (NESS). Transport is characterized by a current. Using the continuity equation,
the current operator is obtained. In the Heisenberg picture, the Lindblad master equation

shown in Equation (2.8) become for operator O

defining particle flux operator from site j to site j + 1

Jyi= it ) (V1 obso = Blobyine), 1<i<N. (3.13)

g

Using Equations (3.12) and (3.13), the continuity equation for site occupation

d
%<n]> = <J]‘_1>—<Jj>, 1<j<N (3.14)

15



is obtained. Detailed calculations are found in Appendix A. At the boundaries, similar

calculations result the continuity equations
d
2 = ing) = (1)

) = Iy 1) = ot

where reservoir flux operators

Jing =T (2—nq)

Jea:t = 1—‘77/]\]

(3.15)

(3.16)

(3.17)

(3.18)

are defined. In the NESS, n; = 0, and all the expectation of current operators are equal to

each other

ing) = ) = o = (Ine1) = ear) = ()

(3.19)

16



CHAPTER 4

METHODS AND RESULTS

In this chapter, computational methods and result of the system dynamics are
introduced. For the non-interacting chain, a highly effective exact solution method called
the covariance matrix method is presented. For the interacting system, the mean-field
approximation and improved approximate methods are described. The situations in which
they were useful and the situations in which they failed were stated. The brute-force exact
solution method used in most of the calculations throughout the thesis is described. In the

last three sections, the behavior of current in an open quantum system is studied.

4.1 Non-Interacting Fermions

Sometimes, depending on the system and the features to be observed, a complete
solution may not be necessary. An important group is systems in which the Hamiltonian is
at most quadratic in the creation and annihilation operators. For the non-interacting case,
as seen in Equation (3.6), the Hamiltonian become quadratic. In order to look at transport

properties, the covariance matrix is defined as

CTE (1) = Tr{b, b o p(t)} = By om0 4.1

Using the Lindblad master equation in Heisenberg picture Equation (3.12), dynamics of

covariance matrix

Com = it(Com 1 +Co 1 = Ol — Oy ) = (1= )
r oo 4.2)
— 5 (6171 + 51m + 5Nn + 5Nm)0n:m + F51n(51m500/

17



is obtained with open boundary conditions C %/ = ,‘;‘]’\/f +1 = 0. The derivation of this
equation can be found in Appendix A. With the help of vectorization, Equation (4.2) can
be written as, P = ZP + D where P is the vectorized covariance matrix. At the NESS, P
=-Z7'D. Z is a 4AN? x 4N? matrix, with the computational cost of inversion of the most
basic algorithm being O(NO).

4.2 Mean-field Approximation

As shown in the previous section, the covariance matrix method for quadratic
Hamiltonian provides a great advantage in calculations. However, when we take into
account the interaction term which is quartic, the Hamiltonian cannot satisty this condi-
tion. One of the simplest approximations for the Fermi-Hubbard model is the mean-field
approximation. It converts the two-body interaction term to one-body interaction, which
is between electron and mean-field of other electrons. Assuming the deviation of number

operators from the mean value is relatively small,
Nig = Nig )+ Ny (4.3)

interaction term of the Fermi Hubbard Hamiltonian Equation (3.6) become

N
UZ”i,T”i,l = UE(”Z',T@LO +{n g omg | — (g ){ng ) +0nipdng| )
i i

4.4)
~ U Y (nip(ng )+ Cnipomi = (ng )i )
i
where constant terms will be ignored. Now, dynamics of covariance matrix become
G = #(Ca + Ot = Oy = O ) +iU(C = CRin ) O,
4.5)

/ F /
=YL= 0nm) O — 5(51n +61m + ONn +ONm)Cp o + 01,001, m0ger T

18



with boundary conditions C’ %/ = ,‘g‘}l, +1 = 0. Similarly to the non-interacting case with
the help of vectorization, Equation (4.5) can be written as P = Z(P)P + D where P is
the vectorized covariance matrix. However, now coefficient matrix Z is depending on
vectorized covariance matrix P. It can be solved by non-linear system of equation methods
or iterative methods.

One of the features which the mean-field approximation failed to describe is that
current drops to zero exponentially with system size N in the interacting systems.?
However, as seen in Figure 4.1a, the mean-field solution predicts ballistic behavior. On
the other side, as seen in Figures 4.1b and 4. 1c, it can be informative sometimes. Similarly
to the exact solution, when the dephasing is at the order of the interaction strength, the

current peaks.
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Figure 4.1: Injection and extraction rates of system are I'/t = 1 for both of the graphs. (a)
Plots of the dependence of current {.J ) and the size of the system N for different
interaction strengths U. Current is calculated using mean-field method. (b)
Plots of current (J) vs dephasing rate v of 4 site system with interaction
strength U/t = 8. Currents are calculated using different methods. (c) Same
plots of (b) for 2 site system.
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4.3 Higher Order Approximations

The main problem of the interaction term is that it does not preserve the hierarchy
of correlation functions. Applying the covariance matrix method to the interaction term,
dynamics of second order correlation terms depend on fourth order correlation terms,
fourth order correlation terms depend on sixth order correlation terms and goes on.
However, by allowing higher-order correlation functions, we can get more accurate results.

Now, let us introduce new notation
Lol o)
QT = <1_[ b, Hbmjop (4.6)

Dynamics of second and fourth order correlation functions are obtained as
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Lastly dynamics of sixth order correlation functions while ignoring higher order

terms
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is obtained. Derivation of the equations can be found in Appendix B. As seen in Fig-

ures 4.1b and 4.1c, even only holding up to fourth-order correlations, it makes a great

improvement over the mean-field solution. It is a good approach, both qualitatively and

quantitatively. However, there is a relationship between system size and error here. In

Figure 4.1c, the use of up to sixth-order correlation functions gives the same result as the

exact solution for the two-site system. The problem of the sixth-order equation is that,
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although the error is small, it does not provide much speed advantage on the computation
side. There are (2V)? fourth-order correlation functions and (2/V)° sixth-order correlation
functions. For this reason, the computational cost of the forth-order method is O(N12)
and sixth-order method is O(N'®). Figure 4.1b shows that the sixth-order correlation

method is not better than the fourth-order correlation methods for all regimes.

4.4 Exact Solution

The most basic approach to an exact solution is using number states as basis.
The main problem is that the density matrix of the N site system has 2V elements.
Inside the chain, the number of spin-up and spin-down particles is conserved. At the
boundaries, non-unitary dynamics of injection and extraction do not cause superposition
of states which have different number of spin-up or spin-down particle. So, the density

matrix will be block diagonal for different spin-up and spin-down states. Now, only

N N N\ (N 2 . . .
dico =0 <( ; ) (j )) elements are needed for solution of the density matrix.

4.5 Transport Regimes

System size dependence of the current is an important classification in transport

problems. When system size N is big enough, current has the form
Joo— 4.9)

where v is transport coefficient and N is number of site. Different values of v represents
different transport regimes, as seen in Table 4.1. It can also be determined by spreading
of a localized wave-packet, but we preferred using current for simplicity.With the help of

linear fitting and logarithm of Equation (4.9)

InJ = —vinN +C (4.10)
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Table 4.1: Classification of transport regime with respect to exponent v
(Source: Lacerda, A.M. (2020). Transport in boundary-driven quantum chains
with quasiperiodic potentials (p. 63)).

H Transport regime  Transport coefficient H

Ballistic v=>0
Super-diffusive O<r<l
Diffusive v=1
Sub-diffusive v>1
Localized V=00

v is found. When transport is coherent, the non-interacting Fermi Hubbard chain is in the
ballistic regime.?® However, introducing dephasing changes this and the system goes from

ballistic to localized regime continuously with increasing dephasing as seen in Figure 4.2.

0.8 1 ——y/t="0, v=0.00
—— y/t=0.3, v=0.35
0.7 — y/t=1, v=0.66
— y/t=3,v=0.92
0.6 y/t=10, v=1.07
0.5
el
=
> 0.4
0.3
0.2
0.1
0.0
4 6 8 10 12 14 16 18
N

Figure 4.2: Plots of current {(.J) and system size N dependence in non-interacting system
(U=0) for different dephasing rate v with corresponding fitted transport coef-
ficient v. Injection and extraction rates of system are I'/t = 1.
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4.6 Effects of Environment

Like unitary quantum dynamics, non-unitary quantum dynamics behaves differ-
ently from its classical counterpart. Boundary driven quantum chain that is represented
in Equation (3.7) has two different kind of baths.

One of them is particle reservoirs which is parameterized by I', inject and extract
particles. In Figure 4.3, behavior of the current with respect to driving rate I" for different
interaction strength U is shown. Intuitively, one would expect that increasing the injection
and extraction rate will increase the current up to a limit and the increase will stop after
saturation is reached. However, unlike the classical model, current shows non-monotonic
behavior because of the quantum Zeno effect. Injection from reservoir or extraction to
reservoir can be thought of as indirect continuous monitoring of the system, and this leads
to the Zeno effect. When interaction strength is high enough, two local maximum of
current appear. In the I" » ¢ limit, regardless of interaction strength, they all converge to

the same value because the Zeno effect dominates.

1.04

0.8+

0.6 1

i3

0.4+

0.2+

0.0+

T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 20 40 60 80 100

r/t r/t
(a) (b)

Figure 4.3: Plots of current {.J) vs dephasing rate v of 4 site system with injection rate
'/t = 1 for different interaction strength U. (a) Driving rate is in the range I" €
[0,8], (b) Driving rate is in the range I" € [8,100].

Other important bath effects are caused by dephasing baths that are coupled to each
site and are parameterized by ~y. In the Figure 4.4, it is shown that how current changes with
respect to dephasing. Injection rate I" is chosen equal to hopping rate in a 4 site system.
The vast majority of non-interacting, many body systems show ballistic transport. It was
shown that dephasing causes transition from ballistic to diffusive regime in the Figure 4.2

for non-interacting system. Therefore, dephasing always negatively affects transport in
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Figure 4.4: Plots of current {.J) vs dephasing rate  of 4 site system with injection rate
'/t = 1 for different interaction strength U.

these systems. For non-interacting case and relatively small interaction strength, e.g. U/t
= 2, this negative effect is seen in Figure 4.4. However, strongly correlated systems do
not show this feature and the effects of dephasing are different. For spinless many-body
systems, enhancement of dephasing on transport is shown.?” As seen in Figure 4.4, also
for the Fermi-Hubbard model, there is a current-increasing effect up to a level, for high

interaction strengths.

4.7 Enhancement Mechanism

The main result of this thesis is that bulk dephasing can enhance the transport in
the strongly correlated system. Figure 4.5a shows this behavior in detail for the system
of 4 sites with U / t = 8. Important dephasing values are marked. These values are used
throughout this section to explain this striking behavior.

As mentioned in Chapter 3, the Hamiltonian of the system conserves the number
of spin-up and spin-down particles. This means that all spin sectors are decoupled from
each other. The transition between spin sectors is achieved through the injection and
extraction of particles at the ends of the chain. Driving part couple spin sector (n|,n4)
to (n| = 1,n4) and (n,ny = 1) where n, represents the number of spin-o particles. Since
Lindblad equation of the system Equation (3.7) has spin symmetry, spin-down was chosen

to explain the mechanism.
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Defining configuration states as

n1y,n2),...,nN | )@ |N11,M91, .., AN

4.11)

where number of spin-o particle on site i, n;, take values 0 or 1. The states in the form

|1,2,0)®|y) are decoupled from the spin-down driving, where x and y are any string of

bits of length N-2 and N, respectively. These decoupled states are called dark states, and

the weight of the dark states determines the current. To determine the weight of the dark

states, the darksity operator for spin-down D is defined as

D .= nu(l—an).

As shown in,? all particles are frozen in the first half of the chain in the NESS. Because

of that, the current is suppressed. Therefore, the system prefers to populate high energy

(4.12)

dark states and spin sector (N/2,N/2), it is seen in Figure 4.6d.

y/t

(a)

Figure 4.5: (a) Plots of current (J) vs dephasing rate vy of 4 site system with driving
rate I'/t = 1 and interaction strength U/t = 1. Important dephasing values are
marked. Inset Figure: More detailed drawing of the same figure in the range
v € [0,1]. (b) Plots of the interaction strength U vs optimal dephasing v, of

204

--- 0.57U-0.29

4 sites system with driving rate I'/t = 1 .

T T T T T T
15 20 25 30 35 40

(b)
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Let us consider U/t — oo limit for better understanding. The hopping term in
the Hamiltonian Equation (3.6) can be ignored, and only the interaction term survives.
Configuration states become eigenstates of this Hamiltonian. Each eigenstate in the same
band has the same energy and determined by the number of double occupied sites. Bands
are separated by U. Since all particles are frozen in the first half of the chain in the NESS,
they will populate dark states in the form

11,1,...,1,0,0,...,00®]1,1,...,1,0,0,...,0 (4.13)
_—— — _—— —

ny N—nl ny N—’I’LT

for the spin sector (n|,n+) eigenstates. They are maximally double occupied, therefore
they are in the highest energy band.

Taking a step forward, let us consider a finite but strong interaction limit. Taking
hopping term as perturbation, degenerate eigenstates will split because of hopping. This
leads to that band gap will be order of U and energy splitting inside the bands will be order
of t2/2U. In Figure 4.6a, this behavior can be observed. Similar to U/t — oo limit, it is
obvious that dark states population will be dominated by highest energy band.

When dephasing is introduced to the system, dephasing process induce scattering
between the eigenstates of the Hamiltonian. The energy of the system will fluctuate.
Because dephasing operator does not commute with the hopping term, on average there
is a loss of energy associated with kinetic energy. Using Equation (3.7), the effect of

dephasing on energy of the system

<H>— —27t22< bjsto + 041 objod+ ... (4.14)

j=10

is determined. There is an inverse proportionality between the terms on the right-hand
side. Increase dephasing leads to decrease in kinetic energy because of the quantum Zeno
effect. So, there is an optimum dephasing rate for enhancement.

Looking closely at the spin sector (2,2) which is the highest populated sector for
4 sites system, it is seen that the scattering between eigenstates is due to dephasing in
Figure 4.6. Scattering to more mobile states causes current enhancement. It is seen that

the dephasing rate that causes the transition between eigenstates is related to the energy
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Figure 4.6: Eigenstates of the Hamiltonian in the spin number sector (2,2) ¥, for N =

4 and U/t = 8 are calculated. Each eigenstate indexed with number k. Also
in this chain, steady state density matrix pypgs is calculated with driving
rate '/t = 1 for different dephasing rates . (a) The energy spectrum of
the eigenstates. (b) Weight of dark states in the eigenstates. (c) Weight of
eigenstates in the steady state density matrix pyggs. (d) Weight of spin
sectors in the steady state density matrix pypss-

difference between these eigenstates. In Figure 4.5b, this relation is shown for band gap.
There is a linear dependence between interaction strength U and optimal dephasing 7,
which causes maximum current. For small dephasing rate, jumps are observed to be more
dominant in the higher band. As indicated in Figure 4.5a, there is a local maximum for
dephasing value 4./t = 0.06. However, satisfactory observation could not be made
regarding the relation between enhancement in the lower dephasing values and energy
difference between states in the same band. In addition to scattering between states in the
same spin sector, spin sector populations are also changes because of dephasing as seen
in Figure 4.6d. The combination of these effects changes the dark state population and,

accordingly, the current.
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CHAPTER 5

CONCLUSION

In this thesis, transport properties of the interacting and non-interacting fermions on
1D chains under environmental effects are studied. Since, the main challenge of the many-
body systems is exponentially growing Hilbert space and as a result, the computational cost,
different solution methods are introduced. Their advantages and weaknesses are shown.
It was concluded that the mean-field approximation has an enormous speed advantage
and helps to understand the behavior of the system in certain regimes. However, the
mean-field method is error-prone at some points. The higher order correlation method is
more accurate and very effective in understanding the behavior of the system. However,
because the higher order correlation methods have high polynomial complexity while
exact solution has exponential complexity, speed advantage compared to the mean-field
method is slight for small system size.

It was shown that dephasing change ballistic behavior of the transport of the non-
interacting fermions to diffusive behavior. In contrast to this negative effect seen in the
non-interacting systems, current enhancement is observed in the interacting systems. In
the absence of dephasing, increasing interaction reduces the current, but when the system
is under the effect of dephasing, it has been shown to affect the current positively at some
points. The mechanism behind this behavior is explained with the Hamiltonian energy
spectrum. In this direction, the relation between the band gap and the optimal dephasing
values are found. One of the most important shortcomings of this study and its potential
for improvement is that only small systems can be investigated. Increasing system size
will require more advanced computational methods, e.g. tensor network, matrix product
states. It will help us understand the mechanism behind these effects and learn whether
they depend on the size of the system. As a result, the mechanism that attempts to explain
this behavior of the current is open to support and development with advanced analytical

or computational methods.
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APPENDIX A

DYNAMICS OF THE COVARIANCE MATRIX

In this chapter, derivation of the dynamical equation of the covariance matrix is

introduced. Dynamics of the covariance matrix is obtained by the equation

1> = [ H, B b oy 1+ Tr{Blb o Do) (A1)

no " mo no " mo

ool d
Cnm = %<bT b

where D(p) represent the non-unitary part of the Lindblad equation. Thanks to mean-
field approximation, the system Hamiltonian H is quadratic. The general form of the

Hamiltonian H can be expressed as

H=YHb by (A.2)

187])S
where Hff/ = —td55 (0 j—1 4 03 j+1) + U{n;z)0i05¢. Using following two equations

[szbjSU bILO‘] = bgsbjs/blw - biwbgsbjs/

- b;'rs{bjs'a bjla} (A.3)
= szsajn‘Ss’a

[B].b157,bmor] = bl bj bt — bmgrbls b
= —{bmor bl s (A4)

J
= —bjs/(smi5sg/
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and the following calculations

[H., b bimor] = [H, D} oo + bl [H, byor]
Z HSS < bjsbstbIm]bma’ + blw [bjsbjs/vb ])

ijss’
= ZHZSgb;rs mo’ _ZHU / bnabjs'
Jjs'
= Z (=165 (Oin1 + Oims1) + Unis)0inbso) bl b (A.5)

+Z t85150 (O j—1+ O j1) — Ul Y0miOsrgr )bl b

Js'
= t(b;rwbm—l-l,o’ + bjwbm—l,(f’ - bjz—l,abmdl - b;rz—&-l,abma’)
+U (<nn5> - <nm6/>) biwbma

coherent evolution of covariance matrix is obtained as

Cg:gll = Zt(C ,m+1 + C Cgfi,m - Cn 1 m) + ZU(CU it ng/,’gz/)cg,’% (A6)

n

To obtain the equation of dissipative evolution, the following identity will be useful:

1 1
(ADy(p)) = Tr{ALkpLi,— 5 ALLLip— 5 ApLi Ly}
(A.7)

_ ;<L,’Q[A,Lk]>— ;<[A,LL]L;€>
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Contribution of injection part with the help of Equations (A.3), (A.4) and (A.7)

r
BhobmoDing (0) = 5 2 (Cb1s[bhobimors bl = ([Bhrbmor s bis 1oL
r
= 5 2 (b bl + BinduaCbnot]))

I
= 5 (51m<bla’b1w> + 51n<bm0’b];a>>

(A.8)
r
= 5 (91 COtndog = bl ob10) + 010 (Btmdogr = bl )
I
= Féln(slméaa’ - 5(51n + (51m)<b;[wbm0’>
r /
=I01001m050 — 5(51% + 61m)cggn
and extraction part
r
OhobmorDeat(p)) = 5 2 (Ol bhobmat bl = [Bhirbmors ly o))
S
r
= -5 2 <5Nn530<b;r\75bma’> + 5Nm650’<bjwas>>
(A.9)
= 5 (5Nﬂ + 5Nm) <bnabma >
r /
= 5 ((5]\[” + 5Nm) ngz
is obtained. Lastly, with the help of the following relation
[ ma 1 [ ma azbzsbzs]
Z bT [B] byt bis] + [B, b b}s]> A1)

= (< lbmordindss + Bhbistimdso )

= (5zm - 5in)blwbma
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and Equations (A.7), (A.10) and the hermiticity of the corresponding dephasing Lindblad

operator n;, dephasing part

<bnabma’Ddeph( )) = Z<nl[ binotsmi] = [bjwbma’vni]nﬁ
72<n2 im — S )L Byt — (Sim — im0 By
7
= Z m m b bma: ]> (A.11)
__7 . 2/t
= _2;(5“71 - 5271) <bnabma/>

= _’7(1 - 5Tlm)<b1wbna’>
= _’Y(l - 5nm)cggm/

is obtained. When all the results are combined, dynamics of the covariance matrix

Equation (4.2) is obtained.
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APPENDIX B

HIERARCHY OF EQUATION

In this chapter, hierarchic dynamical equation of higher order correlation functions

are derived. Now, let us define new notations;

At =TTt B0
A%gj - H (B.2)
J
O'ZH .
nzl_[ m] - <H bnlal Hbmjg;.>oo (B.3)

with boundary conditions which, if any of the sub indices is equal to zero or N+1,
[I;oi Hj U;‘
[Lini Hj mj
throughout this chapter.

is equal to zero. Also, let us introduce useful equivalences which are used

[Cargz ot T =bf o bl —blof bl = (B.4)
[Ag”}lgn%ybjs’] = bm1a’1 bmga’zbjs’ b ’bm1a bmga’zbjs’ =0 (B.5)
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[A%192 pf ) —p b b =Bl b, b

mime» Yis 'm0} Ymacl, my0} Ymacl

bm10’1 (5im2650’ - sz bmga ) bT bmla’ bmga (B.6)
= 52'77125 ’bmlcr - (5im15 bT bmla )bmgaé - b;‘rsbmla’l bmgaé
= 6im25 ’bmla 6im1550’1 bmgaé
[Cgllgg’bﬂs ] bjutflbilz@bjs’ _bjs’b;rllmbjmcfz
=00 o (OjngOsay —jerbh5n) = bjwbl, o BN B
= 5]'”258/0'26:110'1 - (6jn158/01 b /b’.lr‘LlO'l)bIlgUz - b /b’.lrllal b’LQO’Q
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Now all the tools which are required are introduced. Let us start with the second order
equation. It is already obtained in Appendix A except interaction part. The interaction

term can be written in normal order as n;in;| = —CJ#A% and its contribution obtained



as
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so, adding the interaction part to the equation which is obtained in Appendix A, Equation
(4.7) is derived.
Proceeding to the fourth order equation. Starting from contribution of the hopping

term,

QB sbis + e, O AT ]) = <Z Ot bl 1 obis + Olibis1,s, AT, )

[bj+1 Jbis + L bi1s, CTIT2 AT 1))

0102 0'28
- <Z Cn1n2Am22 Z"‘177711550'1

0109 4015
- Cn1n2 Am1251+1>m2 580'/2

0109 or23 0102 ‘713 .
+ 2 A2 By Ot — Cte2 ATY 1 6ima o

ning* *moi+1 ning“ mii+1

Csag Aala 5m1 (5501 591 AO’ 0 5m2(5302

i+1,n9 " mims i+1,n1 mlmg

+ 0802 AJlUQ 52-&-17111 550'1 0501 AUlUQ 5z+1,n2 5502 )>

mo “TM1msa m1 T Tm1ma

VA
_ 0'10'20'10'2 0'10'20'1(72 01020109
- Qn1+1,n2m1m2 + in—l,ngmlmg + Qn1n2+1,m1m2
! ! VA ! !
010207109 010207109 010207109
+ Qn1n2—1,m1m2 Qn1,n2m1+1,m2 Qn17n2m1—17m2
- leaggiaé - Qalagaioé
ni,nomimao+1 ni,nemimeo—1

(B.12)
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then, interaction term
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For injection term, following four identity is introduced.
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applying (m1,mg) = (me,m1) and (0},0%) = (o), 0}) transformation to Equation (B.14),
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is obtained.
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applying (n1,n2) = (n2,n1) and (01,02) = (02,01) transformation to Equation (B.16)
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is obtained. Using Equations (B.14) - (B.17), injection part leads to following equation
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extraction part
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Lastly, contribution from dephasing term can be calculated using Equations (B.9) and
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(B.10)
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Adding all terms, Equation (4.7) is obtained. Similar calculations for sixth order cor-
relation functions will result Equation (4.8) when higher than sixth order terms are ig-

nored.
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