

MACHINE-LEARNING-ASSISTED DE NOVO

DESIGN OF MOLYBDENUM DISULFIDE BINDING

PEPTIDES

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

 MASTER OF SCIENCE

in Biotechnology

By

Alp Deniz ÖĞÜT

July 2024

İZMİR

We approve the thesis of Alp Deniz ÖĞÜT

Examining Committee Members:

Asst. Prof. Deniz Tanıl YÜCESOY

Department of Bioengineering, İzmir Institute of Technology

Asst. Prof. Mehmet Serkan APAYDIN

Department of Computer Science, Acıbadem University

Asst. Prof. Emrah İNAN

Department of Computer Science, İzmir Institute of Technology

Prof. Dr. Uğur SEZERMAN

Department of Biostatistics and Medical Informatics, Acıbadem University

Prof. Dr. Engin ÖZÇİVİCİ

Department of Bioengineering, İzmir Institute of Technology

12 July 2024

Asst. Prof. Deniz Tanıl YÜCESOY

Supervisor, Department of Bioengineering

İzmir Institute of Technology

Asst. Prof. Mehmet Serkan APAYDIN

Co-Supervisor, Department of

Computer Science

Acıbadem University

Assoc. Prof. Ceyda Öksel KARAKUŞ

Head of the Department of Bioengineering

Prof. Dr. Mehtap EANES

Dean of the Graduate School of

Engineering and Sciences

ACKNOWLEDGEMENTS

I am grateful to my advisors Dr. Deniz Tanıl YÜCESOY and Dr. Mehmet Serkan

APAYDIN for their constant assistance, guidance, and sincere efforts throughout this

study, as they helped me gain wonderful insights into the complicated matters at hand.

 I would also like to thank my dear colleagues Nursevim ÇELİK, Gizem ÇULHA,

and İlker KAN along with valuable members of Yucesoy Laboratory, where I had the

opportunity to share, discuss, and improve ideas and interpretations from different

perspectives. Special appreciation is reserved for İlayda TÜLÜ, Kerem HAZNEDAR,

and Eda YURDAMİL for their genuine interest, effort, and contributions in this work.

 Finally, I’m deeply grateful to my family for being such loving, understanding,

and encouraging parents. They have been the light for me with their empathy, critical

thinking, sense of justice, and hard work. I am also eternally grateful to my partner and

our son for filling my life with meaning, joy, and love.

iv

ABSTRACT

MACHINE-LEARNING-ASSISTED DE NOVO DESIGN OF

MOLYBDENUM DISULFIDE BINDING PEPTIDES

Peptides are molecular entities with a diverse set of functionalities vital for

biological processes and biotechnological applications. Among their roles, the ability of

peptides to bind to solid materials has gathered attention, particularly as building blocks

in constructing bio-nano interfaces and molecular linkers. Directed evolution techniques

such as iterative phage display, have emerged as capable tools for identifying peptides

and proteins with specific affinities for various targets despite its constraints, particularly

its low-throughput nature. Those limits have motivated the work on more advanced

methodologies such as deep-directed evolution, which integrates high-throughput

sequencing. By collecting massive amounts of data, deep-directed evolution provides a

broad landscape of sequence information, thus enabling computational modeling and

optimization of peptide sequences. This thesis aims to develop machine learning

workflows that capture the sequence-function relationship from the data, allowing the

design of peptides with desired functionalities. Two machine learning approaches were

employed: the Random Forest algorithm (RF) and deep neural networks (DNN). By

aggregating binding score predictions from the two models, the predictor achieved a

Pearson correlation coefficient of 0.904 and a mean absolute error of 0.0304 on the high-

confidence test set and was employed to design a candidate peptide as a proof of principle.

Our findings emphasize the importance of including domain knowledge via peptide

abundance weighting and amino acid encoding types while designing training strategies.

The procedures outlined in this work demonstrate key steps towards designing a peptide

sequence-function prediction platform with broad implications for bio-nanotechnology

and engineering.

v

ÖZET

MOLİBDEN DİSÜLFİD BAĞLAYICI PEPTİTLERİN MAKİNE

ÖĞRENİMİ DESTEKLİ DE NOVO TASARIMI

Kısa amino asit zincirleri, peptitler, biyolojik süreçler ve yüksek teknoloji

uygulamaları için vazgeçilmez moleküllerdir. Geniş kullanım alanları arasında, moleküler

tanıma özelliği ile bio-nano arayüzler oluşturmak ilgi toplayan bir araştırma konusu

olmuştur. Yapılan çalışmalar sonucunda yönlendirilmiş evrim metodolojileri

oluşturulmuş ve çeşitli hedeflere -enzim, antijen veya inorganik yapılar- bağlanan

fonksiyonel peptit tanısı mümkün hale gelmiştir fakat bu geleneksel yaklaşım

ölçeklenebilirlik ve sekans uzayındaki ilişkilerin anlaşılması konusunda zayıflıklar

taşımaktadır. Bu zafiyetler, yüksek çıktılı sekanslama ve hesaplama verimlerinin artması

ile beraber derin yönlendirilmiş evrim gibi daha güçlü teknolojilerinin geliştirilmesini

motive etmiştir. Bu yöntemle üretilen büyük veri setleri, sekans-fonksiyon ilişkilerinin

makine öğrenmesi ile modellenebilmesinin önünü açmıştır. Bu tezin amacı bu veri

setlerine uygun bir makine öğrenmesi akışı oluşturmaktır. Bu düzlemde Random Forest

algoritması ve derin nöral ağlar kullanılmış, eğitilen modellerin bağlanma puanı

öngörüleri beraber kullanıldığında mutlak hata sırasıyla, 0.0304, Pearson korelasyon

ölçütü 0.904 olarak elde edilmiştir. Bu modelleri kullanarak rastgele arama ve tekrarlayan

optimizasyonlar ile güçlü bağlanan örnek bir peptit tasarlanmıştır. Bulgular alan bilgisinin

makine öğrenme modeli eğitimdeki yerini vurgulamış, kullanılan örnek ağırlıklarının ve

semantik amino asit vektörlerinin başarıya önemli katkıları gözlemlenmiştir. Bu çalışma

çeşitli fonksiyonlara sahip peptit tasarlayabilen bir platform oluşturabilmek için temel

noktaları göz önüne serer.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF EQUATIONS .. x

LIST OF TABLES ... xi

CHAPTER 1. INTRODUCTION ... 1

1.1 Molybdenum Disulfide .. 2

1.2 Directed Evolution... 4

1.2 Deep-directed Evolution .. 5

1.3 Machine Learning Approaches .. 6

1.3.1 Random Forests .. 7

1.3.2 Deep Neural Networks.. 8

1.3.3 Language Models .. 8

1.4. Hypothesis & Aim .. 9

CHAPTER 2. MATERIALS AND METHODS .. 10

2.1 Acquisition of Data.. 10

2.2 Pre-processing ... 11

2.3 Preliminary Analysis ... 16

2.4 Model Training .. 17

2.5 Validation .. 20

2.6 De Novo Design of Functional Peptides ... 21

CHAPTER 3. RESULTS AND DISCUSSION .. 23

3.1 Datasets.. 23

3.2 Pre-processing ... 24

3.3 Preliminary Analysis ... 27

3.4 Model Training .. 32

3.5. Validation ... 38

3.6. De Novo Design of Functional Peptides .. 41

CHAPTER 4. CONCLUSIONS ... 46

vii

REFERENCES ... 48

APPENDICES

APPENDIX A ... 57

APPENDIX B ... 59

APPENDIX C ... 62

viii

LIST OF FIGURES

Figure Page

Figure 1.1. Molybdenum Disulfide monolayers..3

Figure 2.1. Source experiment overview..11

Figure 2.2. Cleaning, filtering, training/test split and subset generation flow.................15

Figure 2.3. Regression model training overview...17

Figure 2.4. Language model training overview...18

Figure 2.5. Neural network architectures overview...20

Figure 3.1. Samples across preprocessing steps and sets..24

Figure 3.2. Distribution of reads across panning rounds..25

Figure 3.3. Correlation plots of technical replicates..26

Figure 3.4. Correlation plots of biological sets..26

Figure 3.5. PacMap visualization of VHSE and ESM480 amino acid encodings...........27

Figure 3.6. Minimum number of peptide observations and dataset size….......................28

Figure 3.7. Distribution of peptides and counts across binding scores............................29

Figure 3.8. Amino acid frequencies of strong and weak binders in the dataset...............30

Figure 3.9. PacMap visualization of strong and weak binder peptides............................31

Figure 3.10. PacMap visualization of random and actual amino acid sequences............32

Figure 3.11. Loss trajectories of a RF model on different count filter values…….....….34

Figure 3.12. Experimental vs prediction scatter plots of the trained models...................39

Figure 3.13. Random Forest feature importances per residue and position.....................40

Figure 3.14. Amino acid frequencies of high scoring random peptides...........................42

Figure 3.15. Amino acid frequencies of high scoring non-aromatic peptides..................43

Figure 3.17. 3D visualization of the sample optimized peptide by Alphafold................45

Figure 3.18. 3D visualization of the sample optimized peptide by Omegafold..............45

Figure A.1. Random forest residue importances heatmaps...58

Figure B.1. Training and validation loss plots of simple neural networks......................59

Figure B.2. Experiment-prediction plots of simple neural networks on cf200 test set...60

Figure B.3. Experiment-prediction plots of simple neural networks on cf5 test set…...60

Figure B.4. Experiment vs prediction plots of the best neural model.............................61

ix

Figure Page

Figure C.1. Initial substitution matrix for the candidate..62

Figure C.2. Second substitution matrix for the candidate..63

Figure C.3. Final substitution matrix, demonstrating the local peak...............................64

x

LIST OF EQUATIONS

Equation Page

Equation 2.1. Calculation of binding score...12

Equation 2.2. Calculation of sample weights..14

Equation 2.3. Calculation of amino acid frequencies in a dataset...................................16

xi

LIST OF TABLES

Table Page

Table 2.1. Experimentally evaluated peptides selected from the literature.....................21

Table 3.1. Number of total and unique DNA sequences...23

Table 3.2. Distribution of total number of readings across panning steps and sets.........23

Table 3.3. Machine learning input/output pair of an example peptide............................26

Table 3.4. Baseline regression performances for various datasets..................................33

Table 3.5. Effects of minimum samples per leaf value..34

Table 3.6. Effects of number of estimators on Random Forest performance..................35

Table 3.7. Effects of using sample weights on Random Forest performance..................35

Table 3.8. Effects of different encoding schemes on Random Forest performance........36

Table 3.9. Cross-validation hyperparameter walk on Random Forest.............................37

Table 3.10. Neural network performance results with different dropout values.............37

Table 3.11. Neural network performance results with different architectures.................38

Table 3.12. Performances of the selected models..40

Table 3.13. Predictions for the selected peptides from the literature...............................41

Table 3.14. Candidate peptides with consistent predicted scores....................................42

Table 3.15. Candidate peptides with highest predicted scores by each model................44

1

CHAPTER 1

INTRODUCTION

Organisms have been evolving to adapt to their environment, which involves

interacting with inorganic molecules in proximity and capability of weaving complex

structures. As there are rare examples, such as magnetotactic bacteria producing

structures that enable them to navigate and organize using magnetic forces, other

examples are very much in our daily lives: the formation of shells among marine species,

and of bones, nails, and teeth.1,2,3

This phenomenon can be exploited to craft specialized peptides that can interact

with a vast variety of inorganic materials that can be useful for a wide spectrum of

applications, such as in biosensing, bioremediation, and medical innovations.4,5 This

requires the ability to design peptides that can do well in terms of a particular function.

For this purpose, various peptide design methodologies have been developed. Rational

design is one of the approaches where molecular features of amino acids and their

collective properties are considered. This approach enables researchers to adjust

hydrophobicity, electric charge, and other properties to conform the designed peptide to

the target in question.6,7 Another widely used method to discover functional peptides is

directed evolution. Directed evolution is a method that mimics the natural evolution

process of biological molecules in the laboratory by iteratively diversifying genes and

selecting improved variants. This method enables the development of genes, proteins, and

peptides with desired functions by mimicking natural selection principles.8 Upon

advancements in computational tools, such as GPUs, and artificial intelligence, a

significant amount of research has been shifted to in-silico methods. Along with

traditional machine learning algorithms, deep neural networks by using various

approaches such as direct classification and regression, generative adversarial networks

(GANs), and protein language models have been proposed for amino acid sequence

design by using peptide or protein databases for training.9,10,11,12,13

2

Deep-directed evolution proposed by Yucesoy et al.14 describes an approach with

only one iteration, where fallen phages are sequenced in every panning step to produce

sequence data that can be utilized for training machine-learning models that are expected

to predict function-based fitness scores for previously unseen functional amino acid

sequences. This helps in avoiding multiple costly iterations of the experiment, decreases

room for error that may be introduced in each of those iterations, expands the accessed

sequence space, and enables extraction of key amino acid patterns by providing a massive

amount of sequence information. This enables the application of innovative machine

learning models and creates an immense potential for de novo peptide discovery.

In this study, we aim to take a deep look at the high-throughput phage-display

experiment data, define a pre-processing methodology, and build and compare different

predictive models that can reliably predict MoS2 affinity of dodecapeptides, given the

sequence in the context of deep-directed evolution.

1.1 Molybdenum Disulfide

There is a growing interest over the years in molybdenum disulfide in several

areas of science, from materials science to nanotechnology. The layered structure of

transition metal dichalcogenide is inherent and unique in providing good mechanical

robustness and chemical stability, coupled with extraordinary electronic properties.15,16

Such outstanding mechanical and electronic properties, together with the possibility of

exfoliating MoS₂ into atomically thin layers, have opened up new ways for research and

various technological applications.

In bulk form, MoS₂ is an indirect semiconductor, while in monolayer form, it is a

direct bandgap semiconductor.17 That makes monolayer MoS2 very suitable for

optoelectronic applications owing to its potential to enhance the efficiency of the light

absorption and emission processes. Coupling the features of a direct bandgap together

with high carrier mobility makes monolayer MoS₂ a very good material for fabricating

high-performance field-effect transistors, photodetectors, and other electronic

devices.18,19

The two-dimensional nature of MoS₂ monolayers retains several advantages over

traditional bulk semiconductors with the improvement of electrostatic control, reduced

3

short-channel effects, and better scaling potential.20 Some of these attributes seem to

prefer MoS₂ for developing next-generation flexible electronics, wearable devices, and

ultrasensitive sensors.21 For example, on account of the atomic thickness of the MoS₂, it

can integrate with a variety of heterostructures and composite materials, hence opening

further possible applications.22

Figure 1.1. Molybdenum Disulfide layers with Sulphur atoms on the surfaces and

Molybdenum atoms in between. By Ben Mills.

(Source: https://commons.wikimedia.org/w/index.php?curid=2976497).

A large amount of interest has gone into the interaction of MoS₂ with biological

molecules, more so with peptides, in recent times. It vests from the rapid developments

in the newly developing field of organic-inorganic interfaces. Various peptides have been

designed, synthesized, and shown to bind specifically to MoS₂ surfaces, enabling a vast

potential in terms of functionalization and bio-interfacing strategies of that material.23

Such peptide-MoS₂ interactions open a way for the development of new bioelectronic

interfaces, increased biocompatibility of MoS₂-based devices, and novel sensing

platforms.24

https://commons.wikimedia.org/w/index.php?curid=2976497

4

Precise control over the surface properties of MoS₂ can be achieved through

peptide binding and can lead to tuning of its electronic and optical properties for

applications. Apart from this, functionalization with peptides helps in the integration of

MoS₂ into biological systems and may enable a variety of new techniques that can be

integrated into biosensing, drug delivery, and tissue engineering.25

Driven by this research, the importance of developing computational models to

predict peptide-MoS₂ interactions and designing de novo peptides for achieving specific

binding affinities grows. Such models would help accelerate the discovery of peptide

sequences with optimal binding properties; therefore, one can design MoS₂-based devices

and systems in a rational way to enhance their functionality and performance by

employing them as molecular linkers.26

Coupled with the versatility of peptide-based functionalization, unique properties

provided by monolayer MoS₂ create diverse possibilities for scientific explorations and

technological innovations. Progressive research in peptide-MoS₂ interactions could have

enormous potential for practical applications in nanoelectronics and biomedical

engineering.

1.2 Directed Evolution

Directed evolution is a powerful method for protein engineering that exploits the

process of natural selection to evolve proteins or nucleic acids for an artificial goal. The

technique has become a valuable tool in biotechnology, drug design, and synthetic

biology after its first emergence in the 1990s.27 It was the result of the work of several

researchers, including Willem P.C. Stemmer and Frances Arnold. While Stemmer28

introduced DNA shuffling, a method for in vitro recombination of homologous genes,

Arnold29 took the lead in the use of iterative rounds of mutation and selection to engineer

enzymes with enhanced properties.

Essentially, directed evolution follows the next three steps: (1) the generation of

a variant library with high diversity; usually by random mutagenesis or recombination;

(2) the selection or screening of variants showing the targeted properties; and (3) the

diversification and amplification of successful variants with preference in preparation for

sequential rounds of evolution.30

5

The self-directed cycle will permit the investigation of huge sequence spaces and

probably finally attain solutions that rational design alone may not forecast. One of the

primary advantages of directed evolution lies in how it engineers proteins without the

requirement for detailed knowledge regarding protein structure-function relationships.

This makes the technique particularly helpful for complex properties for which rational

prediction or design might be very hard to do. Directed evolution can uncover novel

mechanisms and strategies of protein function that enable an understanding of the

fundamental principles in protein structure and evolution.30,31

However, the approach of directed evolution also has its limitations. Extensive

labor is required for several rounds of selection and diversification. Selection or screening

methods appropriate for targeting the relevant property are hard to design for many

protein properties. In addition to the experimental difficulties, the number of sequences

obtained is very low to be able to convey any information on functional patterns, and

sequence space exploration is limited to induced mutations, hence not guaranteeing an

optimal solution.14,33

In the last couple of years, further developments in this field have taken place,

such as a variety of high-throughput screening techniques, increasing use of computation,

and advancements in artificial intelligence that push guiding evolution procedures more

efficiently.34 These developments have greatly enhanced the scope and power of the

method of directed evolution in the engineering of proteins with increasingly complex

and diverse functions.

1.2 Deep-directed Evolution

Deep-directed evolution is an emerging approach that combines next-generation

sequencing with machine learning to change the way we explore and optimize biological

molecules, particularly peptides and proteins. It extends traditional methods of directed

evolution, in terms of both scope and efficiency, as it also aims to map out the sequence-

function relationship.

Similar to directed evolution, this technique is founded on the phage display

method which depends on expressing peptides or proteins on the surface of viruses, and

applying a selection towards a specific function, conventionally binding affinity.34,35

6

Deep-directed evolution differentiates itself by the integration of next-generation

sequencing, and thus enables sophisticated data analysis. As described by Yucesoy et al.,

this approach allows the collection of massive amounts of data on sequence-function

relationship.14 By sequencing the phage DNA that is washed through successive rounds

with increasing detergent concentrations, scientists gain access to a wealth of sequence

information. The true potential of this technique arises when this vast data is utilized by

advanced machine learning algorithms. Those algorithms can learn profound patterns

within those sequences, build models, and map out the entire sequence-function

landscape.33

Compared with most traditional directed evolution methods, the computational

approach has the advantage of exploring much more extensive sequence space, reducing

time-consuming and expensive experimental iterations, and providing optimum

sequences that would otherwise have been missed by a purely experimental approach.33,36

The role of machine learning in deep directed evolution cannot be

overemphasized. Such methods not only allow for the analysis of complex, high-

dimensional data, but also afford a predictive power that might inform the design of future

experiments. Deep-directed evolution combines experimental and computational

strategies to form a very potent new paradigm in protein engineering and drug discovery,

with immense potential for gross acceleration in the creation of novel therapeutics,

enzymes, and other biologically active molecules.

1.3 Machine Learning Approaches

Machine learning is the part of the field of artificial intelligence that deals with

the development of algorithms and statistical models for performing a certain job by

learning from data. It is the process of training computer systems to recognize patterns

and make predictions from data without explicit programming. Broadly, machine learning

algorithms can be categorized under supervised, unsupervised, and reinforcement

learning, each of which works in a specific manner to process and learn from data. This

technology has become quite important in areas such as image and speech recognition; it

has also found its way into recommendation systems, autonomous vehicles and natural

language processing.

7

In this work, we have selected Random Forest algorithm and neural networks to

model the result of the phage-display experiments due to their battle-tested robustness

and performance.

1.3.1 Random Forests

Having been introduced by Leo Breiman37 in 2001, Random Forest is an ensemble

learning algorithm that combines multiple decision trees to make predictions, either a

regression or a classification. The algorithm operates by constructing a multitude of

decision trees during training and outputting the class that is the mode of the classes

(classification) or average prediction (regression) of the individual trees.38

The key principles of Random Forest include bootstrap aggregating (bagging),

where random subsets of the training data are selected with replacement to train each

decision tree, reducing variance and overfitting.37 Additionally, feature randomness is

employed, meaning that at each node split, a random subset of features is considered,

decorrelating the trees and improving generalization.38 Finally, ensemble voting is used,

where the predictions from all trees are aggregated through majority voting

(classification) or averaging (regression) to make the final prediction.39

Random Forest offers several advantages. It often achieves high accuracy,

outperforming individual decision trees and other algorithms.40 The algorithm is robust,

being less prone to overfitting and capable of handling noisy data and outliers well.37 It

can also measure the importance of each feature in the prediction process.41 Moreover,

Random Forest is versatile, as it can handle both classification and regression tasks with

minimal hyperparameter tuning.38

However, Random Forest also has some disadvantages. The algorithm can be

computationally expensive and memory-intensive, especially for large datasets.42 The

model is less interpretable than a single decision tree due to its ensemble nature.43 In

datasets with minority groups, Random Forest can produce results biased towards the

majority groups due to suboptimal sampling.44

Despite these limitations, Random Forest remains a popular and effective

algorithm in machine learning, with applications in various domains such as

bioinformatics, remote sensing, and finance.45

8

1.3.2 Deep Neural Networks

Deep neural networks are an important part of machine learning models which are

inspired by biological neural architectures. They consist of multilayer, interconnected

nodes -neurons- with every succeeding layer transforming the input, based on a weighted

connection with activation functions, progressively extracting features at each level.

Recent developments in DNNs have dramatically improved their capabilities. For

example, attention mechanisms and transformer models have revolutionized natural

language processing by allowing models to focus on the most relevant parts of an input

sequence by using an attention mechanism.46 GANs have enabled image generation and

other creative capabilities by training two networks in tandem to produce realistic data.47

Training schemes such as BERT and next-token prediction have set new benchmarks in

understanding and generating human language, leading to advancements in chatbots,

automated translation, and advanced text analysis.48,49 These innovations in natural

language processing are generating fundamental knowledge that is also applicable for

decoding genes and proteins due to their shared sequence-based nature. DNNs can

analyze vast amounts of biological data to predict the 3D structures of proteins from their

amino acid sequences, a task that is computationally complex and critical for

understanding protein function. Works such as Alphafold, OmegaFold, and ESM have

ignited widespread enthusiasm in this regard.12,50,51

1.3.3 Language Models

Language models are a category of machine learning models that learn to predict

the probability distribution of tokens in a sequence, given some context. The popular

architectures used in language modeling consist of recurrent neural networks (RNNs) and

long short-term memory networks (LSTMs), which have lately been overtaken by

transformer models like BERT or GPT.48,49,54,55,56 These models have produced state-of-

the-art results in a very wide array of language tasks and revolutionized the field of natural

language processing and artificial intelligence.

9

The task of predicting the next token in a sequence, known as next token

prediction or autoregressive language modeling, is a fundamental approach to training

these models. By learning to predict the next token based on the preceding context,

language models can capture the statistical patterns, semantics, and long-range

dependencies present in the training data.52 This allows them to generate coherent and

contextually relevant text and generate representative vectors of given text to perform

various downstream natural language processing tasks such as text classification, named

entity recognition, and machine translation.49,56

In the context of peptide function prediction and design, language models can be

employed to learn the patterns and dependencies in peptide sequences. Through training

with large datasets of peptide sequences, these models can capture the underlying

statistics governing the relationship between sequence elements within the provided

sequence library along with the unique description of the 12mer peptide as a whole. This

knowledge can then be leveraged to calculate complex vector representations of given

amino acid sequences for downstream objectives, or to generate new sequences on

demand.55

1.4. Hypothesis & Aim

In this study, we hypothesize that by applying systematic pre-processing steps

onto high-throughput phage-display experiment data and setting up various machine-

learning models, we can accurately predict MoS2 affinity of dodecapeptides based on their

amino acid sequences, thereby proposing an efficient de novo peptide design

methodology in the context of deep-directed evolution. The goal is to build a framework

that achieves the following specific aims:

1. Process and prepare high-throughput phage display sequencing data

2. Train machine-learning models that capture the sequence-function landscape

3. Explore the models to design de novo peptides, optionally limited to a desired

pattern.

10

CHAPTER 2

MATERIALS AND METHODS

Deep-directed evolution starts with a phage-display experiment with multiple

panning rounds and high-throughput sequencing. The sequencing data is preprocessed

into a filtered dataset of amino acid sequences to minimize noise while keeping the

information as high as possible. The data is then used for training machine-learning

models that can grasp the patterns within the sequences. The models are refined and

confirmed with test sets.

2.1 Acquisition of Data

In this study, we aim to predict the binding scores of peptides given their amino

acid sequence. To train and test our predictive models, we obtained high-throughput

phage-display datasets produced by a previous study, through NCBI Sequence Reading

Archive (SRA).14,58 The run files are downloaded by using the SRA Toolkit software

provided by NCBI.

The complete set consists of 24 FASTQ files, representing 3 biological and 2

technical replicate runs across panning steps (wash 1, wash 2, wash 3, eluate), totaling

around 32GB. The experiment setup that produced the sequence data is described in

Figure 2.1. Using such a setup, three experiments were performed with two technical

replicates for each panning round as shown.

11

Figure 2.1. Source experiment data acquisition flow for a single biological experiment

yielding 8 FASTQ files. The files contain sequence reads of a particular

NGS run related to a set (biological experiment), wash (panning round), and

technical replicate run. Created with biorender.com.

2.2 Pre-processing

The files are processed to count the number of observations of each DNA

sequence for each NGS run using Python software, NumPy, and Pandas libraries.

Sequence counts of technical replicate pairs are compared to check consistency and

merged afterward, resulting in 12 files containing DNA sequence counts for each

biological experiment (sets) and their respective panning steps. Additionally, sequence

counts of sets are compared on each panning round to validate consistency across

biological replicates. Next, these 12 files are further organized into 3 tables, representing

3 biological experiment datasets, each row containing reading counts of the panning

rounds and eluate in that set.

12

Translation: DNA sequences are translated into amino acid sequences by

mapping the codon table and counts of the ones that correspond to the same amino acid

sequence are summed, while the ones that contain unidentified nucleotide readings or the

ones that contain codons that do not correspond to valid amino acids are removed.

Concatenation of Datasets: Sequence readings across replicates, both biological

and technical, have slightly different outcomes for the same sets of peptides as expected,

especially for the peptides that are observed less, which correspond to noise in a machine

learning perspective. To average out and reduce noise between biological experiment sets,

the data is merged into one, resulting in a single data set with ~24 million unique peptides.

Cleaning: The dominant fraction of peptides has only 1 observation across all

readings encompassing 24 files, and they have been filtered out from the dataset, yielding

the root data set that contains ~8.7 million unique peptides. Removing singular peptides

is also assumed to remove sequencing errors.

Binding Score Calculation: To establish a single value regression problem, a

binding score definition is required to display phage-display data as a single numerical

value to represent peptide fitness, in terms of a particular function, in this case, MoS2

binding affinity, by utilizing the observation counts in each of the panning steps. This is

achieved by using the center of abundance-mass (CoAM) metric as proposed by the study

that produced the phage-display data.14 The normalized CoAM equation is shown below:

Equation 2.1. Calculation of binding score per peptide, based on the number of

observations per panning step.

Equation 2.1 assigns 0 score to peptides only observed in the first panning step

(wash 1), and 1 to peptides observed only in the eluate, yielding a normalized binding

score range ideal for machine learning applications.

Encoding: Encoding transforms peptide strings into vector forms that are suitable

for machine learning algorithms. One popular method is one-hot encoding, where each

13

amino acid in a peptide is represented as a binary vector of size 20, with a single high (1)

value corresponding to that acid, and all others are zero. In addition to one-hot encoding,

amino acid sequences can also be encoded by other schemes such as VHSE8 (Vectors of

Hydrophobic, Steric, and Electronic properties59), which projects measured molecular

properties of amino acids onto the resulting 8-dimensional vector. Another candidate for

encoding peptides is using protein language model embeddings produced by training such

models with extensive protein sequence data and exporting its embedding layer. For such

use, we have chosen Facebook Research’s ESMv2 model embeddings.12

In this study, we employ multiple encoding schemes to represent peptide

sequences for our predictive models. For the Random Forest algorithm, we utilize two

primary encoding methods: one-hot encoding and VHSE8 (Vector of Hydrophobic,

Steric, and Electronic properties). For peptides of 12 amino acids in length, the one-hot

encoding produces a 240-dimensional vector (12 x 20, where 20 represents the number

of standard amino acids), while VHSE8 results in a more compact 96-dimensional vector

(12 x 8).

For our deep neural network models, we expand our encoding repertoire to include

one-hot encoding, VHSE8, and embeddings from the ESM (Evolutionary Scale

Modeling) framework. These encodings are utilized as 1D vectors for standard feed-

forward neural networks and as 2D vectors for transformer-based language models to

conform to Keras’s natural language processing API, KerasNLP.75 The ESM framework

offers a variety of pre-trained models with different architectures and parameter counts.

For this study, we selected an ESM model which comprises 12 layers and approximately

35 million parameters. This model accepts inputs with embedding vectors of size 480 for

a rich representation of the peptide sequences. The choice of these diverse encoding

schemes allows us to compare their effectiveness in capturing the relevant features of

peptide sequences for functional score prediction. The one-hot encoding serves as a

baseline, providing a simple and direct representation of the amino acid sequence. VHSE8

offers a more compact encoding that incorporates physicochemical properties, potentially

capturing important functional characteristics of the peptides. The ESM embeddings,

derived from large-scale unsupervised learning on evolutionary sequence data, provide a

sophisticated representation that may capture complex patterns and relationships within

protein sequences. By employing these varied encoding methods, we aim to identify the

most effective approach for our peptide function prediction task and gain insights into the

relative importance of different sequence features.

14

VHSE8 and ESM encodings are transformed using PaCMAP60 (Pairwise

Controlled Manifold Approximation Projection) to reduce their high-dimensional

representations to 2D space, enabling visualization of how these encoding vectors

represent amino acid residues. This dimensionality reduction allows for the observation

of patterns, clusters, and relationships among residues based on their encoded properties.

Projecting high-dimensional encoding vectors to 2D space offers several advantages,

including improved interpretability, easier pattern recognition, facilitation of comparisons

between encoding methods, feature analysis, quality assessment of encoding

effectiveness, hypothesis generation, and enhanced communication of findings. The

resulting 2D projections are plotted and analyzed, providing an intuitive way to visualize

complex relationships and identify trends that might not be apparent in higher-

dimensional spaces.

Sample Weights: In machine learning, sample weights are employed when fitting

a model to ensure that certain observations are considered more "important" or "reliable"

than others, or when the dataset is unbalanced, directly influencing the learning process.

When a dataset includes numerical target values and confidence indicators, sample

weights can be used.

Equation 2.2. Sample weight calculation, where Ci is the total number of observations

of ith peptide, φ is the suppression factor for the number of observations,

and wi is the resulting weight for ith peptide.

The total observation count is the number of encounters/observations of a

particular peptide in all sequencing runs. Considering the entire process described in

Figure 2.1., the number is assumed to be affected by the randomness introduced with fluid

sampling, the following polymerase chain reaction (PCR), and variations in sequencing

coverage. Since the binding score calculated from the small total number of observations

can easily be altered by tiny amounts of additional readings, the phages -or the peptides-

that are not abundant in the sequencing data are assumed to have less reliable binding

15

scores with higher variance. Therefore, we have proposed using total observation counts

as sample weights after a simple transformation that intends to suppress the dramatic

differences in populations:

Suppression factor φ helps to adjust the relation of the total number of

observations of the peptides on sample weights. When φ equals 1, it applies the total

number of observations, a value lower than one starts to suppress the weights and closes

the gap between the effects of high and low-count peptides on the model. In this thesis

work, φ is set to 0.7.

A)

B)

Figure 2.2. A) The root dataset and its sub-datasets. B) Train/Test split and its sub-

datasets filtered with different count filter values.

Filtering: Additional filtering, also called count filter, is applied to reduce noise,

and observe its effect on prediction performance, where peptides with less or equal to the

filter value are removed from the dataset, trading off between the provided amount of

16

information and noise input to the machine learning models. The datasets filtered by the

total observation count feature are tagged with their corresponding count filter values,

abbreviated as “cf”. For example, a dataset obtained by using count filter 5 is referred to

as “cf5 dataset”.

Validation: To validate the models, a 20% test set is randomly selected from the

starting dataset. To be able to prevent data leaks between training and test sets, the main

train/test split files are further filtered separately to build datasets with higher count filter

values as shown in Figure 2.2.

2.3 Preliminary Analysis

The dataset is analyzed in terms of the number of readings, distribution of peptides

and sample weights, and amino acid frequencies with varying count filter values.

PacMap60, a topology preserving alternative to PCA and t-SNE, is used for reducing the

dimensionality of the peptide representations and visualizing them graphically. The same

method is utilized for visualizing the phage-library coverage of the sequence space by

superposing a subset of the experimental data along with randomly generated peptides.

Further analysis is performed to observe how amino acid frequencies differ

between strong and weak binder groups. The frequencies for low (CoAM < 0.3) and high

(CoAM > 0.7) scoring peptides are calculated by counting amino acids by the following

formula:

Equation 2.3. Calculation of amino acid frequencies in a dataset.

where Ni is the total number of ith amino acid type, Nt is the total number of all amino

acids, and AAFi is the calculated frequency of the ith amino acid type in a complete list

of amino acid sequences.

17

2.4 Model Training

To fit or train, validate, and test Random Forest and neural network models,

NumPy, Scikit-learn61, and Keras62 Python libraries are used. Previously prepared

datasets are fed into selected models after proper conversion of string inputs (peptides) to

vectorized forms (encodings) along with sample weights -if applicable- and various

metrics are logged, namely mean square error, mean absolute error, and Pearson

correlation coefficient, for validation, test, and high-confidence test datasets.

Figure 2.3. Regression model training/testing overview, displaying the data flow, and

the training scheme applied to Random Forest and simple FFNN models.

Created with BioRender.com.

18

Random Forests: Fitting Random Forest models is quite straightforward thanks

to Scikit-learn module by utilizing its Random Forest regression class as described by the

online documentation. Models are fitted to preprocessed datasets directly after application

of the encodings, initially with default parameters. Hyperparameters are provided as

arguments whenever required, during the hyperparameter optimization process. Feature

importances which measure their significance by calculating the decrease in impurity - in

decision trees, are visualized.

Baseline Regression: Random Forest models are built to observe the effects of

parameters of the preprocessing, namely count filter, encoding scheme, and sample

weighting to demonstrate the approximate effects of each parameter and draw a baseline

for future experiments. Those trained models are evaluated principally with a common

high-confidence test set to demonstrate their abilities to predict a peptide’s affinity since

validation sets differ and it becomes impossible to compare model performances when

different count filters are provided.

Figure 2.4. Peptide Language Model training overview, displaying the data flow, and

autoregressive training scheme. Created with BioRender.com.

19

Neural Networks: Two types of neural network models are implemented in

Python with Keras library: Simple feed-forward regression networks and feed-forward

regression networks based on peptide language models (PepLM). The former, once built,

trained with 1D input of size sequence-length*encoding-size and the binding score

(CoAM) as the target output. Transformer-based PepLMs, on the other hand, are trained

with an autoregressive strategy on 2D input, which consists of guessing the next amino

acid, given the previous amino acids of the peptides in the dataset. The first N amino acids

are provided to the model along with padding zeros, and the output expected is the N+1th

amino acid. The two dimensions of the input matrix are sequence length and embedding

vector size.

FFNN regression head is attached after converting the last hidden state of the

resulting base model to a 1D vector as the input to FFNN regression head. For all models,

early stopping is enabled, and training stops if validation loss does not decrease in the last

40 epochs. The learning rate is adjusted by a 0.8-fold decrease if validation loss does not

decrease in the last 15 epochs. Dropout63, weight regularization, and weight decay are

applied in case of overfitting, during hyperparameter optimization.

Hyperparameter Optimization: Once the main dataset is decided for fitting or

training the models, 10% of the data is split from the training dataset and used for

evaluating the model during hyperparameter optimization. Hyperparameter optimization

is restricted to number of estimators (trees) and minimum samples per leaf on Random

Forest. Neural networks require much more intricate configuration parameters such as the

number of layers, number of hidden neurons, regularization coefficients, dropout rates,

application of batch normalization, and optimizer parameters such as learning rate, and

weight decay.

Ensemble Averaging Model: To achieve the maximum prediction performance,

the two trained models, the Random Forest and the combined PepLM+FFNN, are run in

parallel and their results are averaged to produce the final prediction in the form of a

simple ensemble setup, combining the powers of the different models.

20

Figure 2.5. Examples of experimented models, demonstrating the neural network

architectures used in this work. A) A simple feed-forward neural network.

B) Peptide language model (PepLM) that is trained on next amino acid

prediction. C) Combined PepLM and feed-forward network that yields the

best prediction performance among neural networks.

2.5 Validation

In this study, the prediction performances of models that are trained with multiple

different count filters, and ensemble model of Random Forest and neural network are

compared. For this purpose, along with the test set, a high-confidence test set, cf200 test

set with count filter 200 value is built from cf5 test dataset (Figure 2.2.). Both cf5 and

cf200 test sets are used to measure the optimized models' performance, and we also report

the training set performance to track overfitting. The metrics mean square error, mean

21

absolute error and Pearson correlation coefficient are calculated as in hyperparameter

optimization. The test metrics in question are obtained without applying the sample

weighting scheme to ensure comparability with models trained with different sample

weight suppression coefficients, φ.

In decision-tree based models, a common method to observe the significance of

each feature is to measure the mean decrease in impurity (MDI) of that feature. MDI is

calculated as the average reduction in impurity each feature contributes across all trees in

a forest, where impurity reduction is assessed using metrics like Gini impurity or entropy

for classification and variance for regression. Features with higher MDI values are

considered more important, as they significantly enhance the model's predictive accuracy.

Four peptides are collected from the literature and their binding affinities are

predicted by selected models.64,65,66 The predictions are compared with experimental

observations. The peptides are provided in Table 2.1.

Table 2.1. Peptides that are collected from the literature with their assumed labels.61,62,63

Name Sequence Label

GRBP5-M6 IMVTASSAYDDY Reference

MoS2-P15 GVIHRNDQWTAP Strong

MoS2-P28 DRWVARDPASIF Strong

MoS2-P3 SVMNTSTKDAIE Weak

2.6 De Novo Design of Functional Peptides

Once the models are built, they can be used to search the sequence space for

peptides with desired binding affinities. The sequence space can be explored with a

stochastic search technique, such as Monte Carlo or the genetic algorithm, and can be

accompanied by a post-exploration step with an evolutionary approach, that is mutating

a candidate strong binder selected after the first stage. The justification for proposing

stochastic/random search is that deterministic algorithms are NP-hard, whereas a non-

deterministic run can be executed on average in polynomial time although without any

22

guarantee of global optima.67 In this work, we have used a stochastic search approach that

lists randomly generated peptides with highest predicted scores and further checked all

possible mutations on the candidates iteratively. We have used the two trained machine-

learning models to generate candidate peptides that are expected to bind strongest in two

classes, random peptides, and random peptides excluding cysteine and aromatic amino

acids, the residues which are observed to have dramatic effects on measurable binding

score but are assumed to be non-specific. We later compared peptides found both by the

Random Forest and the neural network model against each other’s predicted scores, to

lay out the differences. Finally, we have randomly explored the sequence space on the

averaging ensemble model to produce two lists, consisting of random residues, and

random residues excluding aromatic amino acids and sulfur-containing cysteine. The

highest-scoring peptide is then further optimized by evaluating point mutations to

increase the expected binding affinity to the maximum.

23

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Datasets

Initial analysis displays the basic characteristics of the data generated by the

experiment in the scope of deep-directed evolution. Twenty-four FASTQ files were

downloaded from Sequence Read Archive (SRA)58, totaling 32GB in size, and contain

around 222 million DNA sequences, of which around 44 million are unique. Table 3.2

demonstrates the original distribution of sequences across sets and washes.

Tables 3.1. The number of total and unique DNA and amino acid sequences.

Table 3.2. Distribution of total number of readings across panning steps and sets.

 Number of Total DNA readings

Set Set 1 Set 2 Set 3 Total

Wash 1 ~31.6M ~47.6M ~42.5M ~121.7M

Wash 2 ~17.2M ~7.8M ~5M ~30.1M

Wash 3 ~0.2M ~0.1M ~0.1M ~0.5M

Eluate ~20.8M ~23.1M ~25.7M ~69.7M

Number of total DNA sequences ~222M

Number of unique DNA sequences ~44M

Number of unique amino acid sequences ~24M

24

3.2 Pre-processing

Raw FASTQ files were processed to enumerate sequences for each panning step.

Technical replicates were summed, and the resulting data were organized into tabular

format with columns representing distinct panning steps. Subsequently, nucleotide

sequences were translated into amino acid sequences. This process generated one CSV

file per biological experiment.

Figure 3.1. Left: Initial steps of preprocessing: Counting sequences of a sequencing run,

tabularization, and translation into amino acid sequence. Right: sample

peptide counts across sets and washes, along with candidate target values

for training.

All biological sets are later summed to produce the aggregated dataset. Target

scores were calculated using Equation 2.1. Representative data samples are illustrated in

Figures 3.1.

Most sequences were detected in the first panning round, and the final eluate as

shown in Table 3.2 and Figure 3.2. The abundance of sequences in the final round points

out that a substantial portion of the peptides can stay on the MoS2 surface. This can be

attributed to the dynamics of binding of certain single amino acids to the material.

25

Figure 3.2. Distribution of reads across panning rounds.

To validate sequencing and to get an insight into the experiment data, the number

of observations of distinct peptides across technical replicates (sequencing replicates

within each set) and biological sets are compared. Figure 3.3 and 3.4. display scatter plots

of the number of observations per peptide, and a corresponding slope calculated over the

best fitting line.

Figure 3.3. Correlation plots of technical replicate pairs.

26

Figure 3.4. Correlation plots of combinations of biological sets on each panning round.

One-hot, VHSE8, and ESM encodings are applied to the data depending on the

experiment. It is noteworthy that VHSE8 achieves significant dimensionality reduction

when compared to one-hot representation, while incorporating physicochemical

information in the input vectors. This compression is particularly crucial for the Random

Forest algorithm, which is known for its memory-intensive nature. As the size of the

embedding vectors increases, the number of features grows correspondingly, potentially

limiting the algorithm's deployment due to practical hardware constraints.

Table 3.3. Input/output pair of an example peptide on different encoding schemes.

 Input Target

 12mer peptide Encoded peptide Binding score

One-hot VSWPWAWHSRIQ [0, 0, 0, 0, .…] (240 elements) 0.817

VHSE8 VSWPWAWHSRIQ [0.76, -0.92, 0.1…] (96 elements) 0.817

One-hot 2D VSWPWAWHSRIQ [[0, 0, 0, 0,…] (12x20 elements) 0.817

ESM480 2D VSWPWAWHSRIQ [[0.096..],[...]] (12x480 elements) 0.817

27

VHSE8 and ESM (vector size=480) encodings are transformed with PaCMAP

and plotted in 2D in Figure 3.5 to inspect the representation of amino acids. 2D

projections generated by PaCMAP align with known amino acid classes, conforming to

expectations regarding distances between amino acids. Note the clusters of aromatic

amino acids (W, Y, F), the relative proximity of negatively charged amino acids (D, E),

the consistent distance of leucine and isoleucine (L and I, respectively).

Figure 3.5. 2D projections of VHSE8 (A) and ESM480 (B) amino acid encodings, as

produced by PaCMAP.

After pre-processing, we obtained a root dataset that was filtered to peptides with

counts more than 5 (count filter=5), referred to as cf5 dataset. It is later split into training

and test datasets. We have further filtered the resulting training and test sets separately

whenever required.

3.3 Preliminary Analysis

Figure 3.6. clearly shows that the number of data rows dramatically decreases with

increasing total observation count filter values, remarking the uneven distribution of

sequences. The normalized distributions of binding scores for four datasets with different

28

count filters are shown in Figures 3.7, where the data reduces in size and accumulates

towards the mean, while filter value increases. Additionally, Figure 3.8. displays the

normalized distributions of the total number of observations per peptide on the binding

score range.

Figure 3.6. Number of distinct peptides vs applied count filter value.

Filtering results in a considerable decrease in the number of data points as the

count filter value increases. This means that to get more confident data points, a huge

portion of data that potentially bears significant signal, along with significant noise, is

sacrificed. Filtering operations yield datasets that display the normal distribution

characteristics which accumulate on the mean with decreasing standard deviation.

Amino acid frequencies show consistent differences between weak and strong

binders. Among the strong binder subset, Sulphur-containing Cysteine (C) and aromatics

Phenylalanine (F), Tryptophan (W) and Tyrosine (Y) are more frequent, whereas Aspartic

Acid (D) and Glutamic Acid (E) are more frequent within the weak binder subset.

29

Figure 3.7. Normalized distribution of unique peptides (blue) and corresponding

normalized total observation count distribution across CoAM (binding score)

values (orange). Note that both unique peptides and observation counts are

centered around the mean.

Amino acid frequencies on weak and strong binder peptides show small but

consideration-worthy patterns on some amino acid types. All aromatic amino acid (W, Y,

F) frequencies increase in the strong binder set, whereas all negatively charged amino

acid (D, E) frequencies decrease. This may explain the abundance of peptides in the last

panning round, pointing to strong binding characteristics of aromatic amino acids to MoS2

surface. On the other hand, as illustrated in Figure 1.1., the 2D surface is made up of

Sulphur atoms which tend to be negatively charged due to its higher electronegativity

compared to molybdenum, explaining the negative effect of negatively charged amino

acids on binding affinity.68,69

30

Figure 3.8. Amino acid frequencies among low affinity (dark blue, affinity < 0.3) and

high affinity (light blue, affinity > 0.7) peptides.

Positively charged amino acids arginine and lysine do not show consistent

differences in frequencies, where arginine (R) slightly increases, and lysine (K) slightly

decreases in the strong binder group. Overall, the frequencies of amino acids align with a

previous study on peptide-MoS2 interactions where Juan Liu et al explain that amino acid

binding to sulfur atoms on surfaces is influenced by aromatic residues like tryptophan and

phenylalanine through favorable coordination, positively charged arginine via

complementary charge and geometry, flexible weakly polar residues through hydrogen

bonding with water, while negatively charged residues and bulky hydrophobic residues

like proline, isoleucine, and leucine diminish binding due to electrostatic repulsion and

reduced surface contact, with binding selectivity arising from the unique properties of

both peptides and surfaces, beyond traditional hydrophobicity criteria.70

Dimensionality reduction of peptides in sequence space aids in observing if the

sequences cluster in correlation to the function score. Figure 3.9 demonstrates the effect

of increasing count filter values on emergence of strong and weak binder peptide clusters.

As the count filter value rises, there is a gradual improvement in cluster border definitions.

The dataset with the lowest count filter value fails to generate distinct clusters of strong

binders. This observation aligns with the assumption that a higher observation count

correlates with increased data point confidence.

31

Figure 3.9. PacMap visualization of the dataset, using count filters 100, 150, 200, and

400. Note the green and blue clusters emerging through increasing count

filter values.

Sequence space coverage of a subset of the library is visualized against random

peptides in Figure 3.10. The figure does not display any obvious missing regions that are

not covered by the diluted subset, nor the sequences from the actual library is a subset of

a larger random set. This is favorable since any uncovered areas would implicate

potentially larger prediction errors by the trained models over such regions.

32

Figure 3.10. PacMap visualization of sequence space coverage of a sampled subset of

cf200 set (green hues) against randomly generated peptides (tiny, dark blue

dots) where lighter green spots indicate strong binders (score > 0.65).

3.4 Model Training

Baseline Regression with Random Forest: Prediction performance yields of

various count filter values are computed by fitting the unweighted training sets with the

Random Forest algorithm, initially with default parameters and one-hot encoding. This

initial set of experiments yields a baseline that allows comparison with different solutions.

Table 3.4 demonstrates the negative correlation between the count filter parameter

and the prediction performance on cf200 test dataset. It also communicates that validation

loss is almost an order of magnitude larger than the training loss. Hence, in order to

prevent overfitting, we have moved forward with optimizing the hyperparameters of the

33

RF algorithm by choosing the minimum samples per leaf parameter to reduce the gap

between training & validation losses. Although cf5 dataset offers the minimum cf200 test

loss, used datasets were filtered with higher count filter values during the optimization

process due to limits on computational resources. Table 3.4 also emphasizes the Random

Forest algorithm’s robustness to noise, since the prediction performance improves with

decreasing count filter values, although signal-to-noise ratio is expected to decrease with

inclusion of data points with lower confidence. The cf10 dataset is selected for

hyperparameter exploration to reduce the required memory and experiment time.

Table 3.4. Performance and storage size of Random Forest models trained on datasets

with different count filter values and tested on cf200 test set.

Training Set cf5 cf10 cf20 cf50 cf100 cf200

Training Data Size (rows) 2.1M 1.3M 696K 261K 120K 73K

Training Loss 0.010 0.0084 0.0054 0.0025 0.0012 0.0007

Validation Loss 0.072 0.0600 0.0390 0.0170 0.0090 0.0048

Test cf200 Loss 0.0028 0.0029 0.0029 0.0037 0.0043 0.0049

Test cf200 Pearson C. C. 0.86 0.85 0.84 0.79 0.75 0.71

Model Storage Size (GB) 16.3 9.2 4.9 1.9 0.9 0.4

Hyperparameter optimization of Random Forest: Effects of minimum samples

per leaf parameter are presented in Table 3.5. Training loss and validation loss values are

minimal in the default configuration, since there is no leaf/depth limit, while the order of

magnitudes of the training/test loss values are different, pointing to an overfit model.

Then, stepping up the parameter value produces a slight increase in validation loss along

with a dramatic increase in training loss that later slowly plateaus (Figure 3.11). Notably,

the cf200 test set exhibits a more pronounced sensitivity to the minimum samples per leaf

parameter. Considering the results, the optimum minimum samples per leaf is selected as

5, which is the smallest increment that provides the highest marginal utility in closing the

gap between training and validation losses as well as significantly reducing the memory

34

and storage requirements. Increasing the number of estimators is effective when the value

is small, it plateaus afterward (see Table 3.6.).

Table 3.5. Exploration of minimum sample per leaf parameter and its effects on

prediction performance of models trained on cf10 dataset with number of

estimators is set to 100.

Min sample per leaf Default=1 5 10 20

Training Loss 0.0084 0.0360 0.0480 0.0560

Validation Loss 0.0600 0.0620 0.0630 0.0640

Test 200 loss 0.0029 0.0034 0.0041 0.0049

Test 200 Pearson 0.85 0.82 0.79 0.74

Figure 3.11. Trajectories of training and validation loss on increasing minimum sample

per leaf value.

35

Table 3.6. Exploration of the number of estimators parameter and its effects on

prediction performance of models trained on cf10 dataset where minimum

sample per leaf is set to 10.

Number of estimators 20 50 100 200 400

Training Loss 0.0490 0.0480 0.0480 0.0480 0.0480

Validation Loss 0.0640 0.0630 0.0630 0.0630 0.0630

Test 200 loss 0.0045 0.0042 0.0041 0.0040 0.0040

Test 200 Pearson 0.762 0.783 0.789 0.794 0.795

As can be seen in Table 3.7, no significant reduction in validation loss is observed

when using sample weights, however, high-confidence test set performance increased

significantly when datasets with lower count filter values were used in combination with

sample weighting. Positive effects of sample weighting seem to diminish with increasing

dataset confidence (by adjusting the count filter value). It is then possible to speculate that

sample weighting helps fit the model better to high-confidence data while keeping the

low-confidence data in the training set. The performance impact on high-confidence test

set MSE loss is around ~21% and ~17% respectively for cf5 and cf10 datasets (see Table

3.7).

Table 3.7. Comparison of models trained with and without sample weights, on cf5 and

cf10 datasets where minimum sample per leaf is set to 10 and number of

estimators is 100.

 cf5 training cf10 training

Sample Weights No Yes No Yes

Training Loss 0.041 0.047 0.048 0.052

Validation Loss 0.076 0.076 0.063 0.063

Test cf200 loss 0.0029 0.0023 0.0041 0.0034

Test cf200 Pearson 0.86 0.88 0.79 0.82

36

We have also compared one-hot and VHSE8 encoding schemes, omitting ESM

encoding due to its infeasibility in training on standard hardware since it requires around

23 times more memory and storage than the one-hot scheme. Among the available

encodings, VHSE8 performed significantly better, while decreasing model fitting time

dramatically along with memory and storage demand, due to the smaller size of the input

vector. Performance results of the models fitted with two different encodings are shown

in Table 3.8, with VHSE8 offering around 3.5% and 20+% decrease in validation and

high-confidence (cf200) test MSE losses, respectively, compared to one-hot encoding.

Table 3.8. Comparison of one-hot and VHSE8 encoding schemes and training with and

without sample weights, on cf10 dataset.

 One-hot VHSE8

 Unweighted Weighted Unweighted Weighted

Training Loss 0.048 0.052 0.032 0.037

Validation Loss 0.063 0.063 0.061 0.061

Test cf200 loss 0.0041 0.0034 0.0032 0.0027

Test cf200 Pearson 0.79 0.82 0.842 0.86

After exploration of the performance landscape, a more thorough hyperparameter

search for models trained with cf5 dataset is conducted using 5-fold cross-validation. It

displays how the number of estimators and minimum samples per leaf hyperparameters

affect the validation MSE loss. While the error minimizes with an increasing number of

estimators, the improvement of prediction performance also decreases. Considering the

minimum samples per leaf value, the positive effects

Consequently, minimum samples per leaf parameter is selected as 5 and number

of estimators parameter is selected as 200 by inspecting the results of the cross-validation

runs (see Table 3.9.).

Hyperparameter optimization of Neural Networks: Initial experiments laid out

the importance of application of the Dropout technique. Experiments with low or no-

dropout models performed worse than the ones with high dropout. This view aligns with

37

the suggestion that dropout produces remarkable performance improvement when

training on noisy targets.71 Following the experiments, the dropout value was selected as

high as 0.5 for the best demonstrated consistent validation performance (see Table 3.10).

Table 3.9. Hyperparameter search displaying mean-square-error (MSE) loss results of

5-fold cross-validation with weighted cf5 training dataset and VHSE8

encodings.

 Number Of Estimators

Min sample per leaf 20 50 100 200 300

5 0.0812 0.0795 0.0789 0.0786 0.0785

10 0.0816 0.0805 0.0801 0.0798 0.0798

20 0.0822 0.0815 0.0813 0.0811 0.0811

50 0.0829 0.0826 0.0825 0.0824 0.0824

100 0.0834 0.0832 0.0831 0.0831 0.0831

Table 3.10. Effect of dropout value on model prediction performance.

Encoding Model Dropout Val MSE Val MAE

ESM480 FFNN 1x480 0.5 0.0824 0.227

ESM480 FFNN 1x480 0.0 0.0830 0.228

The number of layers, thus the number of parameters are of importance for

obtaining better models. As it grows, a considerable amount of improvement is seen in

prediction performance, which is demonstrated in Table 3.11. It is important to emphasize

that minor differences in unweighted prediction performance, namely on metrics MSE

and MAE, correspond to dramatic effects on tests with high-confidence data, as also

demonstrated in Table 3.8.

38

Table 3.11. Comparison of training results with various encoding schemes and network

configurations.

Encoding Model
#Regression

Params
Val MSE Val MAE

One-hot FFNN 1x480 116k 0.0828 0.229

One-hot FFNN 8x480 1.73M 0.0827 0.228

VHSE8 FFNN 1x480 47k 0.0838 0.229

VHSE8 FFNN 8x480 1.66M 0.0828 0.227

ESM480 FFNN 1x480 2.77M 0.0824 0.227

ESM480 FFNN 8x480 22.1M 0.082 0.226

ESM480 PepLM+FFNN 1x480 2.77M 0.081 0.224

ESM480 PepLM+FFNN 8x480 22.1M 0.0802 0.221

ESM480 PepLM+FFNN 8x2048 41.2M 0.0757 0.21

3.5. Validation

Subsequently, the final models are trained with all the data, using the selected

parameter values. It is then tested against the cf5 test set and the cf200 test set. The best

Random Forest model achieved an MSE of 0.00205, and an MAE of 0.0325 on cf200 test

set, the minimum values observed throughout this work, while the Pearson correlation

coefficient is as high as 0.895. The best neural network model performed slightly worse

than the best Random Forest model (see Table 3.12). The averaging ensemble model

performed slightly better than the two, with a Pearson correlation score of 0.904, an MSE

of 0.00184, and an MAE of 0.0304.

The scatter plots of experimental vs predicted binding score (CoAM) values for

the cf200 test sets are shown in Figure 3.12 where the diagonal is the perfect prediction

line. It is clear from the figures that the models successfully predict the binding scores of

the peptides with a higher total number of observations, however, it may result in larger

errors for peptides with a lower number of total observations. On the other hand, Figure

B.4 shows the experimental vs predicted binding score scatter plot for cf5 test set on the

best Random Forest model along with cf200 test set, which demonstrates a big portion of

39

the low-confidence scores, that are coming from peptides with lower observation count,

are not predicted correctly, while higher-confidence scores are predicted accurately.

Figure 3.12. A, B, and C are experimental vs predictive binding score scatter plots of

the best PepLM+FFNN, Random Forest and ensemble models,

respectively, tested on the high-confidence (cf200) test set. The diameters

of the points indicate the total count of the peptide, the hue projects the

binding score, and the diagonal line marks the perfect prediction line.

An example feature importance set of a Random Forest model is visualized in

Figure 3.13. It highlights the significance of tryptophan (W) on positions 1, 3, 5, 7, 9,

serine (S) particularly on 1 and 2, positively charged arginine (R) and Sulphur containing

cysteine (C) on 11 and 12, along with leucine, histidine, threonine, and tyrosine. The

40

results are not contradictory with a recent study on peptide-MoS2 molecular dynamics

simulations.70

Table 3.12. Prediction performance of the final Random Forest and PepLM-based neural

network model.

 RF PepLM+FFNN RF + NN Ensemble

Training Loss 0.0295 0.0413 0.0338

Test cf5 MSE Loss 0.0729 0.0746 0.0723

Test cf5 MAE 0.210 0.210 0.208

Test cf200 MSE Loss 0. 00205 0.00242 0.00184

Test cf200 MAE 0.0325 0.0346 0.0304

Test cf200 Pearson 0.895 0.870 0.904

Figure 3.13. Feature importance matrix derived from mean decrease in impurity

calculated over Random Forest trees. The model is trained on the cf20

dataset.

41

To further evaluate the models, binding scores of four experimentally evaluated

peptides collected from the literature are predicted by the best random forest and neural

network models as demonstrated in Table 3.13. The table demonstrates the differences

between the two models’ predictions, and consistency of expectations regarding the

experimental analyses and predictions.

Table 3.13. Four peptides collected from the literature, experimental observation along

with predictions by Random Forest and neural network models.64,65,66

Peptide Sequence

Experiment

Result

RF

Prediction

NN

Prediction

Ensemble

Prediction

GrBP5-M6 IMVTASSAYDDY Reference 0.41 0.32 0.36

MOS2-P15 GVIHRNDQWTAP Strong 0.43 0.41 0.42

MOS2-P28 DRWVARDPASIF Strong 0.44 0.39 0.41

MOS2-P3 SVMNTSTKDAIE Weak 0.36 0.35 0.36

3.6. De Novo Design of Functional Peptides

The strongest predicted binders from randomly generated peptides are dominated

by aromatic amino acids tryptophan (W) and phenylalanine (F) (see Figure 3.14). A

random search for peptides without cysteine and aromatic residues produced different

frequency magnitudes as expected, however, they still displayed similar patterns that

emphasize arginine (R), methionine (M), leucine (L), isoleucine (I) and valine (V) as in

Figure 3.15.

Building on the hypothesis that the binding scores of abundant peptides are closer

to the hypothetically true binding scores (mean absolute error less than 4% for cf200 test

set), peptides predicted to have similar binding scores over the two different models are

selected as the first four candidate peptides and listed in Table 3.14. The data highlights

that the scan on Random Forest model produces peptides that are evaluated similarly by

the neural network model. Surprisingly, a scan on the NN model produces peptides that

are estimated to have higher scores from the RF predictions.

42

Table 3.14. Peptides with the most consistent scores as predicted by the Random Forest

and neural network models.

Model Generator Peptide RF

Score

NN

Score

Difference

RF Random WNCWWYWFFYFD 0.729 0.729 0.000

RF Random non-aromatic MHILRTVASLAI 0.550 0.549 0.001

NN Random FWLWKCFIYFPD 0.653 0.894 0.241

NN Random non-aromatic MMLLLHMTTIDA 0.533 0.826 0.293

Figure 3.14. Amino acid frequencies of random peptides that are predicted to have

strong binding characteristics by the ensemble model.

Scores of peptides obtained by scanning the Random Forest model are consistent

with the scores predicted by the neural network model with a mean difference of 0.09 and

0.11, for completely random peptides and random peptides without “WYFC” residues.

43

However, this was not the case when the random search is applied to the neural network

model, where the mean difference between predictors increases to 0.34 and 0.41 as the

NN model’s predictions tend to be further from the mean for a portion of sequences and

predicted strongest binders of the RF model is a subset of that of the NN model (see full

tables in Appendix C). Yet, strong binders predicted by the neural network are aligned

with the Random Forest predictor, in terms of scores, whether a peptide is below or above

the average binding score, 0.35.

Figure 3.15. Amino acid frequencies of peptides, without cysteine and aromatic amino

acids, are predicted to have strong binding characteristics by the ensemble

model.

Along with consistently high scoring peptides, the highest scoring peptides for

four categories (RF, NN, random, random without “WFYC”) are selected from a random

exploration run. These peptides, and their respective scores are displayed in Table 3.15.

44

Table 3.15. Highest scoring peptides as predicted by the Random Forest and neural

network models, both with and without aromatic amino acids.

Model Generator Peptide RF Score NN Score Difference

RF Random HAWEWLKMHHIL 0.742 0.353 0.389

RF Random non-aromatic LLLIEDTNPNLE 0.583 0.776 0.193

NN Random RNHYAYIHFCWL 0.547 0.925 0.378

NN Random non-aromatic VIMVMMNVKQMS 0.422 0.901 0.479

The highest scoring peptide of a random search run with around 5 million random

peptides on the ensemble model, LRMLTRHLNVNN, without aromatic and sulphur-

containing residues is selected for final optimization (see Appendix C, Tables C.5). A

substitution matrix is built by evaluating all possible point mutations (Appendix C, Figure

C.1). The matrix suggests mutating the 10th residue valine (V) to leucine (L). Note that

for this sequence, aromatic acids do not increase the predicted binding score, pointing out

to the complex nature of amino acid sequences. After making the recommended

substitution, a second matrix is built which proposes asparagine (N) instead of 8th residue

leucine (L).

The final matrix displays that the optimization is complete, and the binding score

of the peptide is not expected to increase further, yielding the non-aromatic strong-binder

candidate, LRMLTRHNNLNN with scores 0.55, 0.93, and 0.74 as predicted by the

Random Forest, the deep neural network and the averaging ensemble model, respectively

(see Appendix C, Figures C.1-3 for the substitution-prediction matrices). Figures 3.17

and 3.18 show the visualization of the candidate peptide’s 3D structure as predicted

respectively by Alphafold50 and OmegaFold51, rendered by UCSF Chimera.72

45

Figure 3.16. The optimized peptide, LRMLTRHNNLNN, after two substitutions to the

initial peptide. The 3D structure is predicted by Alphafold50, rendered by

UCSF Chimera.72

Figure 3.17. The optimized peptide, LRMLTRHNNLNN. The 3D structure is predicted

by Omegafold51, rendered by UCSF Chimera.72

46

CHAPTER 4

CONCLUSIONS

In this thesis, a preprocessing, fitting, and testing methodology was developed in

the context of deep-directed evolution, to be able to predict binding scores with a deep

learning model that employs a dodecapeptide language model within, a Random Forest

model and an averaging ensemble of the two. The experiments emphasized the

importance of amino acid embeddings and sample weighting, and thus, the significance

of the inclusion of domain knowledge into the process.

A Pearson correlation score of 0.895 with a mean absolute error of 0.0325 is

achieved on high-confidence test dataset with the Random Forest algorithm, successfully

predicting the outcomes of frequently observed peptides of the phage-display experiment

data with trees of about 6GB size in storage. On the other hand, the best deep learning

network in this work is a two-stage neural network with an autoregressive peptide

language model (PepLM) and an 8-layer 2048 hidden units regression head. It yielded

0.870 as the Pearson correlation score and 0.0346 as mean absolute error on the high-

confidence test set. The information is compressed into 52M parameters (occupying

around 200MB of memory including both PepLM and the regression head), which is

significantly smaller when compared to the Random Forest models. When the two models

are utilized in an ensemble setup, such that their predictions are averaged, the

performance further increases, as the Pearson correlation score becomes 0.904, while the

mean absolute error improves to 0.0304.

The prediction performances, overall, are satisfactory, considering the mean

absolute error is smaller than 5% of the CoAM range [0, 1] on cf200 test set, and thus,

the work demonstrates feasible machine learning approaches for predicting function

scores through deep-directed evolution. To increase the performance even more,

alternative sample weighting and encoding schemes can be utilized. It is also possible to

improve existing models by further hyperparameter optimization, and with more

47

sophisticated ensemble approaches. As such, this work provides a proof of principle that

can be optimized in future work.

The analysis emphasized that aromatic amino acids bind tightly to MoS2, and

especially tryptophan (W) dominates the higher binding score region. This is observed

both in the dataset and the models’ predictions. It is observed that the inclusion of

tryptophan, or other aromatic amino-acids, along with sulfur-containing cysteine in a

sequence increases the probability of a peptide remaining in the eluate in the performed

phage-display experiment. This might be pointing out their particular binding mode

and/or aromatic/hydrophobic mode of binding that is resistant to detergents.

Sequence space is explored with random peptides using the two trained models,

and their averaging ensemble. To further refine the search, random peptides with non-

aromatic and non-sulphur-mediated binding modes -peptides without cysteine,

tryptophan, tyrosine, and phenylalanine (W, F, Y, C)- were targeted, as this type of

selection of binding modes may be strategically significant while looking for optimal

candidates. The exploration yielded thousands of candidate peptides that are suggested to

perform well in terms of MoS2 binding affinity, both with aromatic and non-aromatic

binding modes. The highest-scoring peptide yielded by the exploration was optimized by

evaluating iterative single amino acid mutations and resulted in a candidate peptide,

LRMLTRHNNLNN. Additional experimental work is required to confirm the behavior

of high-scoring peptides with different residue patterns, and question where and how the

models’ prediction differences arise.

Overall, deep-directed evolution has proved to be revolutionary as a peptide, and,

potentially, protein design methodology, where millions of amino acid sequences are

produced, enabling advanced machine learning techniques for crafting exceptional

peptides in terms of a specific function. This work demonstrates a feasible and applicable

set of procedures for designing de novo peptides with desired function scores, amino acid

compositions and other properties by employing deep directed evolution.

48

REFERENCES

1. Scheffel, A.; Gruska, M.; Faivre, D.; Linaroudis, A.; Plitzko, J. M.; Schüler, D.

An Acidic Protein Aligns Magnetosomes along a Filamentous Structure in

Magnetotactic Bacteria. Nature 2005, 440 (7080), 110–114.

https://doi.org/10.1038/nature04382

2. Arias, J. L.; Fernández, M. S. Biomimetic Processes through the Study of

Mineralized Shells. Materials Characterization 2003, 50 (2-3), 189–195.

https://doi.org/10.1016/s1044-5803(03)00088-3

3. Sharma, V.; Srinivasan, A.; Roychoudhury, A.; Rani, K.; Tyagi, M.; Dev, K.;

Nikolajeff, F.; Kumar, S. Characterization of Protein Extracts from Different

Types of Human Teeth and Insight in Biomineralization. Scientific Reports 2019,

9 (1), 9314. https://doi.org/10.1038/s41598-019-44268-2

4. Yucesoy, D. T.; Karaca, B. T.; Cetinel, S.; Caliskan, H. B.; Adali, E.; Gul-

Karaguler, N.; Tamerler, C. Direct Bioelectrocatalysis at the Interfaces by

Genetically Engineered Dehydrogenase. Bioinspired Biomim. Nanobiomaterials

2015, 4 (1), 79–89. https://doi.org/10.1680/bbn.14.00022

5. Yucesoy, D. T.; Akkineni, S.; Tamerler, C.; Hinds, B. J.; Sarikaya, M. Solid-

Binding Peptide-Guided Spatially Directed Immobilization of Kinetically

Matched Enzyme Cascades in Membrane Nanoreactors. ACS Omega 2021, 6 (41),

27129–27139. https://doi.org/10.1021/acsomega.1c03774

6. Yucesoy, D. T.; Khatayevich, D.; Tamerler, C.; Sarikaya, M. Rationally Designed

Chimeric Solid‐binding Peptides for Tailoring Solid Interfaces. Med. Devices

Sens. 2020, 3 (3), e10065. https://doi.org/10.1002/mds3.10065

7. Hu, X.; Liao, M.; Gong, H.; Zhang, L.; Cox, H.; Waigh, T. A.; Lu, J. R. Recent

Advances in Short Peptide Self-Assembly: From Rational Design to Novel

Applications. Current Opinion in Colloid & Interface Science 2020, 45, 1–13.

https://doi.org/10.1016/j.cocis.2019.08.003

8. Wang, Y.; Xue, P.; Cao, M.; Yu, T.; Lane, S. T.; Zhao, H. Directed Evolution:

Methodologies and Applications. Chemical Reviews 2021, 121 (20), 12384-

12444. https://doi.org/10.1021/acs.chemrev.1c00260

49

9. Witten, J.; Witten, Z. Deep Learning Regression Model for Antimicrobial Peptide

Design. bioRxiv 2019, 1-18. https://doi.org/10.1101/692681

10. Lin, E.; Lin, C.-H.; Lane, H.-Y. De Novo Peptide and Protein Design Using

Generative Adversarial Networks: An Update. J. Chem. Inf. Model. 2022, 62 (4),

761–774. https://doi.org/10.1021/acs.jcim.1c01361

11. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.;

Kabeli, O.; Shmueli, Y.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.;

Candido, S.; Rives, A. Evolutionary-Scale Prediction of Atomic-Level Protein

Structure with a Language Model. Science 2023, 379 (6637), 1123–1130.

https://doi.org/10.1126/science.ade2574

12. Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick,

C. L.; Ma, J.; Fergus, R. Biological Structure and Function Emerge from Scaling

Unsupervised Learning to 250 Million Protein Sequences. Proceedings of the

National Academy of Sciences 2021, 118 (15), e2016239118, 1-12.

https://doi.org/10.1073/pnas.2016239118

13. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair,

S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Advances in

neural information processing systems, 2014, 27.

https://doi.org/10.48550/arXiv.1406.2661

14. Yucesoy, D. T.; Rath, S. S.; Rodriguez, J. L.; Francis-Landau, J.; Nakano-Baker,

O.; Sarikaya, M. Deep Directed Evolution of Solid Binding Peptides for

Quantitative Big-Data Generation. BioRxiv 2021, 1-26.

https://doi.org/10.1101/2021.01.26.428348

15. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S.

Electronics and Optoelectronics of Two-Dimensional Transition Metal

Dichalcogenides. Nature Nanotechnology 2012, 7 (11), 699–712.

https://doi.org/10.1038/nnano.2012.193

16. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The

Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide

Nanosheets. Nature Chemistry 2013, 5 (4), 263–275.

https://doi.org/10.1038/nchem.1589

https://doi.org/10.1021/acs.jcim.1c01361

50

17. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A

New Direct-Gap Semiconductor. Physical Review Letters 2010, 105 (13), 136805.

https://doi.org/10.1103/physrevlett.105.136805

18. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer

MoS2 Transistors. Nature Nanotechnology 2011, 6 (3), 147–150.

https://doi.org/10.1038/nnano.2010.279

19. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive

Photodetectors Based on Monolayer MoS2. Nature Nanotechnology 2013, 8 (7),

497–501. https://doi.org/10.1038/nnano.2013.100

20. Akinwande, D.; Petrone, N.; Hone, J. Two-Dimensional Flexible

Nanoelectronics. Nature Communications 2014, 5 (1), 5678.

https://doi.org/10.1038/ncomms6678

21. Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2

Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano

2014, 8 (4), 3992–4003. https://doi.org/10.1021/nn5009148

22. Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature 2013, 499

(7459), 419–425. https://doi.org/10.1038/nature12385

23. Hardy, J. G.; Amend, M. N.; Geissler, S.; Lynch, V. M.; Schmidt, C. E. Peptide-

Directed Assembly of Functional Supramolecular Polymers for Biomedical

Applications: Electroactive Molecular Tongue-Twisters (Oligoalanine–

Oligoaniline–Oligoalanine) for Electrochemically Enhanced Drug Delivery.

Journal of materials chemistry. B 2015, 3 (25), 5005–5009.

https://doi.org/10.1039/c5tb00106d

24. Ding, S.; Cargill, A. A.; Medintz, I. L.; Claussen, J. C. Increasing the Activity of

Immobilized Enzymes with Nanoparticle Conjugation. Current Opinion in

Biotechnology 2015, 34, 242–250. https://doi.org/10.1016/j.copbio.2015.04.005

25. Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L. R.; Gu, Z.; Zhao, Y. Functionalized

Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities

for Safe and Synergetic Wound Antibacterial Applications. ACS Nano 2016, 10

(12), 11000–11011. https://doi.org/10.1021/acsnano.6b05810

51

26. Marketa Hnilova; Deniz Tanil Yucesoy; Mehmet Sarikaya; Candan Tamerler.

Controlling Biological Functionalization of Surfaces by Engineered Peptides.

Ceramic transactions /Ceramic transactions 2013, 137–150.

https://doi.org/10.1002/9781118751015.ch15

27. Arnold, F. H. Design by Directed Evolution. Accounts of Chemical Research

1998, 31 (3), 125–131. https://doi.org/10.1021/ar960017f

28. Stemmer, W. P. C. Rapid Evolution of a Protein in Vitro by DNA Shuffling.

Nature 1994, 370 (6488), 389–391. https://doi.org/10.1038/370389a0

29. Arnold, F. H.; Volkov, A. A. Directed Evolution of Biocatalysts. Current Opinion

in Chemical Biology 1999, 3 (1), 54–59. https://doi.org/10.1016/S1367-

5931(99)80010-6

30. Romero, P. A.; Arnold, F. H. Exploring Protein Fitness Landscapes by Directed

Evolution. Nature Reviews Molecular Cell Biology 2009, 10 (12), 866–876.

https://doi.org/10.1038/nrm2805

31. Bloom, J. D.; Arnold, F. H. In the Light of Directed Evolution: Pathways of

Adaptive Protein Evolution. Proceedings of the National Academy of Sciences

2009, 106 (Supplement_1), 9995–10000.

https://doi.org/10.1073/pnas.0901522106

32. Avoigt, C.; Kauffman, S.; Wang, Z.-G. Rational Evolutionary Design: The

Theory of in Vitro Protein Evolution. Advances in protein chemistry 2001, 55, 79-

160. https://doi.org/10.1016/S0065-3233(01)55003-2

33. Yang, K. K.; Wu, Z.; Arnold, F. H. Machine-Learning-Guided Directed Evolution

for Protein Engineering. Nature Methods 2019, 16 (8), 687–694.

https://doi.org/10.1038/s41592-019-0496-6

34. Smith, G. Filamentous Fusion Phage: Novel Expression Vectors That Display

Cloned Antigens on the Virion Surface. Science 1985, 228 (4705), 1315–1317.

https://doi.org/10.1126/science.4001944

35. Sidhu, S. S.; Lowman, H. B.; Cunningham, B. C.; Wells, J. A. [21] Phage Display

for Selection of Novel Binding Peptides. Methods in enzymology 2000, 328, 333-

IN5. https://doi.org/10.1016/S0076-6879(00)28406-1

52

36. Biswas, S.; Khimulya, G.; Alley, E. C.; Esvelt, K. M.; Church, G. M. Low-N

Protein Engineering with Data-Efficient Deep Learning. Nature Methods 2021,

18 (4), 389–396. https://doi.org/10.1038/s41592-021-01100-y

37. Breiman, L. Random Forests. Machine Learning 2001, 45 (1), 5–32.

https://doi.org/10.1023/a:1010933404324

38. Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R news,

2002, 2 (3), 18-22. https://journal.r-project.org/articles/RN-2002-022/RN-2002-

022.pdf (accessed Apr 28, 2024).

39. Biau, G.; Scornet, E. A Random Forest Guided Tour. TEST 2016, 25 (2), 197–

227. https://doi.org/10.1007/s11749-016-0481-7

40. Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D.; Fernández-

Delgado, A. Do We Need Hundreds of Classifiers to Solve Real World

Classification Problems? Journal of Machine Learning Research 2014, 15, 3133–

3181. http://hdl.handle.net/10347/17792 (accessed on Jun 12, 2024)

41. Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding Variable

Importances in Forests of Randomized Trees. Advances in Neural Information

Processing Systems 2024, 26. https://hdl.handle.net/2268/155642 (accessed on

Jun 25, 2024).

42. Segal, M. R. Machine Learning Benchmarks and Random Forest Regression.

Escholarship.org 2004, 1-14. https://escholarship.org/uc/item/35x3v9t4

(accessed on May 18, 2024).

43. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A

Survey of Methods for Explaining Black Box Models. ACM Computing Surveys

2018, 51 (5), 1–42. https://doi.org/10.1145/3236009

44. Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in Random Forest

Variable Importance Measures: Illustrations, Sources and a Solution. BMC

Bioinformatics 2007, 8, 1-21. https://doi.org/10.1186/1471-2105-8-25

45. Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of

Applications and Future Directions. ISPRS Journal of Photogrammetry and

Remote Sensing 2016, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

https://hdl.handle.net/2268/155642

53

46. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.;

Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Advances in Neural

Information Processing Systems 2017, 30, 5998–6008.

https://doi.org/10.48550/arXiv.1706.03762

47. Aggarwal, A.; Mittal, M.; Battineni, G. Generative Adversarial Network: An

Overview of Theory and Applications. International Journal of Information

Management Data Insights 2021, 1 (1), 100004.

https://doi.org/10.1016/j.jjimei.2020.100004

48. Malach, E. Auto-Regressive Next-Token Predictors are Universal Learners.

arXiv.org 2023, 1-15. https://doi.org/10.48550/arXiv.2309.06979

49. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv.org 2018, 1-16.

https://doi.org/10.48550/arXiv.1810.04805

50. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.;

Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer,

C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.;

Jain, R.; Adler, J.; Back, T. Highly Accurate Protein Structure Prediction with

Alphafold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-

021-03819-2

51. Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie,

Q.; Berger, B.; Ma, J.; Peng, J. High-Resolution de Novo Structure Prediction

from Primary Sequence. BioRxiv 2022, 1-37.

https://doi.org/10.1101/2022.07.21.500999

52. Bengio Y.; Ducharme R.; Vincent P.; Janvin C. A Neural Probabilistic Language

Model. Journal of Machine Learning Research 2003, 3, 1137-1155.

https://doi.org/10.5555/944919.944966

53. Mikolov, T.; Ilya Sutskever; Chen, K.; Corrado, G. S.; Dean, J. Distributed

Representations of Words and Phrases and Their Compositionality. arXiv

(Cornell University) 2013. https://doi.org/10.48550/arxiv.1310.4546

54. Mikolov, T.; Karafiát, M.; Burget, L.; Černocký, J.; Khudanpur, S. Recurrent

Neural Network Based Language Model. Interspeech 2010, 2 (3), 1045-1048.

https://doi.org/10.21437/interspeech.2010-343

54

55. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Computation

1997, 9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

56. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language

Understanding by Generative Pre-Training. Preprint 2018, 1-12.

https://static.aminer.cn/upload/pdf/1319/1601/76/5f8eab579e795e9e76f6f6a0_0.

pdf (accessed on May 29, 2024).

57. Müller, A. T.; Hiss, J. A.; Schneider, G. Recurrent Neural Network Model for

Constructive Peptide Design. Journal of Chemical Information and Modeling

2018, 58 (2), 472–479. https://doi.org/10.1021/acs.jcim.7b00414

58. Leinonen, R.; Sugawara, H.; Shumway, M. The Sequence Read Archive. Nucleic

Acids Research 2010, 39 (Database), D19–D21.

https://doi.org/10.1093/nar/gkq1019

59. Mei, H.; Liao, Z. H.; Zhou, Y.; Li, S. Z. A New Set of Amino Acid Descriptors

and Its Application in Peptide QSARs. Biopolymers 2005, 80 (6), 775–786.

https://doi.org/10.1002/bip.20296

60. Wang, Y.; Huang, H.; Rudin, C.; Shaposhnik, Y. Understanding How Dimension

Reduction Tools Work: An Empirical Approach to Deciphering T-SNE, UMAP,

TriMap, and PaCMAP for Data Visualization. Journal of Machine Learning

Research 2021, 22 (201), 1–73. https://doi.org/10.48550/arXiv.2012.04456

61. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.;

Duchesnay, É. Scikit-learn: Machine learning in Python. Journal of machine

Learning research 2011, 12, 2825-2830.

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

(accessed on Apr 5, 2024)

62. Chollet, F. Keras. 2015. https://keras.io (accessed on Apr 5, 2024).

63. Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. R.

Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors.

ArXiv.org 2012. https://doi.org/10.48550/arXiv.1207.0580

55

64. Hayamizu, Y.; So, C. R.; Dag, S.; Page, T. S.; Starkebaum, D.; Sarikaya, M.

Bioelectronic Interfaces by Spontaneously Organized Peptides on 2D Atomic

Single Layer Materials. Scientific Reports 2016, 6 (1), 33778.

https://doi.org/10.1038/srep33778

65. Sun, L.; Li, P.; Seki, T.; Tsuchiya, S.; Kazuki Yatsu; Narimatsu, T.; Mehmet

Sarikaya; Yuhei Hayamizu. Chiral Recognition of Self-Assembled Peptides on

MoS2 via Lattice Matching. Langmuir 2021, 37 (29), 8696–8704.

https://doi.org/10.1021/acs.langmuir.1c00792

66. Cetinel, S.; Shen, W.-Z.; Aminpour, M.; Bhomkar, P.; Wang, F.; Borujeny, E. R.;

Sharma, K.; Nayebi, N.; Montemagno, C. Biomining of MoS2 with Peptide-Based

Smart Biomaterials. Scientific Reports 2018, 8 (1), 3374.

https://doi.org/10.1038/s41598-018-21692-4

67. Zabinsky, Z. B. Random search algorithms. Department of Industrial and Systems

Engineering, University of Washington, USA 2009, 1-16.

https://people.bordeaux.inria.fr/pierre.delmoral/random-search-SO.pdf (accessed

on Jun 11, 2024).

68. Mann, J. B.; Meek, T. L.; Knight, E. T.; Capitani, J. F.; Allen, L. C. Configuration

Energies of the D-Block Elements. J. Am. Chem. Soc. 2000, 122 (21), 5132–5137.

https://doi.org/10.1021/ja9928677

69. Allen, L. C. Electronegativity Is the Average One-Electron Energy of the

Valence-Shell Electrons in Ground-State Free Atoms. J. Am. Chem. Soc. 1989,

111 (25), 9003–9014. https://doi.org/10.1021/ja00207a003

70. Liu, J.; Zeng, J.; Zhu, C.; Miao, J.; Huang, Y.; Heinz, H. Interpretable Molecular

Models for Molybdenum Disulfide and Insight into Selective Peptide

Recognition. Chem. Sci. 2020, 11 (33), 8708–8722.

https://doi.org/10.1039/d0sc01443e

71. Jindal, I.; Nokleby, M.; Chen, X. Learning Deep Networks from Noisy Labels

with Dropout Regularization. In 2016 IEEE 16th International Conference on

Data Mining (ICDM); IEEE, 2016; pp 967–972.

https://doi.org/10.1109/ICDM.2016.0121

72. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.;

Meng, E. C.; Ferrin, T. E. UCSF Chimera—A Visualization System for

Exploratory Research and Analysis. J. Comput. Chem. 2004, 25 (13), 1605–1612.

https://doi.org/10.1002/jcc.20084

56

73. Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine Intelligence in Peptide

Therapeutics: A Next‐generation Tool for Rapid Disease Screening. Med. Res.

Rev. 2020, 40 (4), 1276–1314. https://doi.org/10.1002/med.21658

74. Wei, L.; Zhou, C.; Su, R.; Zou, Q. PEPred-Suite: Improved and Robust Prediction

of Therapeutic Peptides Using Adaptive Feature Representation Learning.

Bioinformatics 2019, 35 (21), 4272–4280.

https://doi.org/10.1093/bioinformatics/btz246

75. Watson, M., Qian, C., Bischof, J., & Chollet, F. KerasNLP. 2022.

https://github.com/keras-team/keras-nlp (accessed on Jul 8, 2024).

57

APPENDIX A

In Figure A.1, feature importance maps of models fit to various datasets, with or

without sample weights are shown in the form of heatmap. In comparison to the top two

rows (models are fit by cf100 and cf50 respectively), in the bottom row (cf20), the

importance of more amino acids emerges. In the right column, where outputs of models

with sample weights are displayed, sample weighting output seems to balance out the

dominance of amino acids other than tryptophan, cysteine, and histidine.

58

A)

B)

C)

D)

E)

F)

Figure A.1. Feature importance matrices derived from various Random Forest models

fit to datasets with different count filters, with and without applying

sampling weights. Applied datasets are cf100, cf50, and cf20 for the first

row, second row and third row, respectively. While the heatmaps in the first

column (A, C, E) are the result of fitting without sample weights, the

heatmaps in the second column (B, D, F) are generated from models fit with

sample weights.

59

APPENDIX B

Training and test data of simple feed-forward neural network models that are

trained on cf5 training set, and their respective experimental-vs-prediction scatter plots

are shown in Figures B.1 and B.2. One-layer networks, as in the first columns of the two

figures, seem to fit the training data, however, fail to generalize the validation data. The

networks may not have enough capacity to capture the complex patterns and may require

more neurons.

Adding more layers with dropout seems to prevent overfitting but still falls short

of significantly improving the outcome.

Figure B.1. Training and validation loss plots of one-hot and VHSE8 encoding schemes,

and various network sizes. One-layer networks seem to overfit despite their

small size. This is thought to stem from the fact that network capacity is not

enough to capture the actual patterns but fits the training set.

60

Figure B.2. Experimental vs prediction scatter plots of high-confidence test set

evaluated on simple feed-forward neural networks with one-hot and VHSE8

encoding schemes, and various network sizes.

Figure B.3. cf5 test scatter plots of experimental vs predicted values by simple feed-

forward neural networks with one-hot and VHSE8 encoding schemes, and

various network sizes.

61

A)

B)

Figure B.4. Experimental vs prediction scatter plots of the optimized Random Forest

model trained on cf5 training set, tested on cf5 test set (left) and cf200 test

set (right).

62

APPENDIX C

Figure C.1. Substitution matrix of LRMLTRHLNVNN, showing predicted scores by

the ensemble model regarding each mutation in scope of the first

optimization step after the random search. Note that aromatic residues are

not expected to contribute to the peptides’ binding affinity to MoS2 for this

particular sequence.

63

Figure C.2. Substitution matrix of LRMLTRHLNLNN, showing predicted scores by

the ensemble model regarding each mutation.

64

Figure C.3. Substitution matrix of LRMLTRHNNLNN, showing predicted scores by

the ensemble model regarding each mutation after the second optimization

step, projecting that the peptide is in the optimal form.

