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ABSTRACT 

 

MACHINE-LEARNING-ASSISTED DE NOVO DESIGN OF 

MOLYBDENUM DISULFIDE BINDING PEPTIDES 

 

Peptides are molecular entities with a diverse set of functionalities vital for 

biological processes and biotechnological applications. Among their roles, the ability of 

peptides to bind to solid materials has gathered attention, particularly as building blocks 

in constructing bio-nano interfaces and molecular linkers. Directed evolution techniques 

such as iterative phage display, have emerged as capable tools for identifying peptides 

and proteins with specific affinities for various targets despite its constraints, particularly 

its low-throughput nature. Those limits have motivated the work on more advanced 

methodologies such as deep-directed evolution, which integrates high-throughput 

sequencing. By collecting massive amounts of data, deep-directed evolution provides a 

broad landscape of sequence information, thus enabling computational modeling and 

optimization of peptide sequences. This thesis aims to develop machine learning 

workflows that capture the sequence-function relationship from the data, allowing the 

design of peptides with desired functionalities. Two machine learning approaches were 

employed: the Random Forest algorithm (RF) and deep neural networks (DNN). By 

aggregating binding score predictions from the two models, the predictor achieved a 

Pearson correlation coefficient of 0.904 and a mean absolute error of 0.0304 on the high-

confidence test set and was employed to design a candidate peptide as a proof of principle. 

Our findings emphasize the importance of including domain knowledge via peptide 

abundance weighting and amino acid encoding types while designing training strategies. 

The procedures outlined in this work demonstrate key steps towards designing a peptide 

sequence-function prediction platform with broad implications for bio-nanotechnology 

and engineering. 
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ÖZET 

 

MOLİBDEN DİSÜLFİD BAĞLAYICI PEPTİTLERİN MAKİNE 

ÖĞRENİMİ DESTEKLİ DE NOVO TASARIMI 

 

Kısa amino asit zincirleri, peptitler, biyolojik süreçler ve yüksek teknoloji 

uygulamaları için vazgeçilmez moleküllerdir. Geniş kullanım alanları arasında, moleküler 

tanıma özelliği ile bio-nano arayüzler oluşturmak ilgi toplayan bir araştırma konusu 

olmuştur. Yapılan çalışmalar sonucunda yönlendirilmiş evrim metodolojileri 

oluşturulmuş ve çeşitli hedeflere -enzim, antijen veya inorganik yapılar- bağlanan 

fonksiyonel peptit tanısı mümkün hale gelmiştir fakat bu geleneksel yaklaşım 

ölçeklenebilirlik ve sekans uzayındaki ilişkilerin anlaşılması konusunda zayıflıklar 

taşımaktadır. Bu zafiyetler, yüksek çıktılı sekanslama ve hesaplama verimlerinin artması 

ile beraber derin yönlendirilmiş evrim gibi daha güçlü teknolojilerinin geliştirilmesini 

motive etmiştir. Bu yöntemle üretilen büyük veri setleri, sekans-fonksiyon ilişkilerinin 

makine öğrenmesi ile modellenebilmesinin önünü açmıştır. Bu tezin amacı bu veri 

setlerine uygun bir makine öğrenmesi akışı oluşturmaktır. Bu düzlemde Random Forest 

algoritması ve derin nöral ağlar kullanılmış, eğitilen modellerin bağlanma puanı 

öngörüleri beraber kullanıldığında mutlak hata sırasıyla, 0.0304, Pearson korelasyon 

ölçütü 0.904 olarak elde edilmiştir. Bu modelleri kullanarak rastgele arama ve tekrarlayan 

optimizasyonlar ile güçlü bağlanan örnek bir peptit tasarlanmıştır. Bulgular alan bilgisinin 

makine öğrenme modeli eğitimdeki yerini vurgulamış, kullanılan örnek ağırlıklarının ve 

semantik amino asit vektörlerinin başarıya önemli katkıları gözlemlenmiştir. Bu çalışma 

çeşitli fonksiyonlara sahip peptit tasarlayabilen bir platform oluşturabilmek için temel 

noktaları göz önüne serer. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Organisms have been evolving to adapt to their environment, which involves 

interacting with inorganic molecules in proximity and capability of weaving complex 

structures. As there are rare examples, such as magnetotactic bacteria producing 

structures that enable them to navigate and organize using magnetic forces, other 

examples are very much in our daily lives: the formation of shells among marine species, 

and of bones, nails, and teeth.1,2,3 

This phenomenon can be exploited to craft specialized peptides that can interact 

with a vast variety of inorganic materials that can be useful for a wide spectrum of 

applications, such as in biosensing, bioremediation, and medical innovations.4,5 This 

requires the ability to design peptides that can do well in terms of a particular function. 

For this purpose, various peptide design methodologies have been developed. Rational 

design is one of the approaches where molecular features of amino acids and their 

collective properties are considered. This approach enables researchers to adjust 

hydrophobicity, electric charge, and other properties to conform the designed peptide to 

the target in question.6,7 Another widely used method to discover functional peptides is 

directed evolution. Directed evolution is a method that mimics the natural evolution 

process of biological molecules in the laboratory by iteratively diversifying genes and 

selecting improved variants. This method enables the development of genes, proteins, and 

peptides with desired functions by mimicking natural selection principles.8 Upon 

advancements in computational tools, such as GPUs, and artificial intelligence, a 

significant amount of research has been shifted to in-silico methods. Along with 

traditional machine learning algorithms, deep neural networks by using various 

approaches such as direct classification and regression, generative adversarial networks 

(GANs), and protein language models have been proposed for amino acid sequence 

design by using peptide or protein databases for training.9,10,11,12,13 
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Deep-directed evolution proposed by Yucesoy et al.14 describes an approach with 

only one iteration, where fallen phages are sequenced in every panning step to produce 

sequence data that can be utilized for training machine-learning models that are expected 

to predict function-based fitness scores for previously unseen functional amino acid 

sequences. This helps in avoiding multiple costly iterations of the experiment, decreases 

room for error that may be introduced in each of those iterations, expands the accessed 

sequence space, and enables extraction of key amino acid patterns by providing a massive 

amount of sequence information. This enables the application of innovative machine 

learning models and creates an immense potential for de novo peptide discovery.  

In this study, we aim to take a deep look at the high-throughput phage-display 

experiment data, define a pre-processing methodology, and build and compare different 

predictive models that can reliably predict MoS2 affinity of dodecapeptides, given the 

sequence in the context of deep-directed evolution. 

 

 

1.1 Molybdenum Disulfide 

 

 

There is a growing interest over the years in molybdenum disulfide in several 

areas of science, from materials science to nanotechnology. The layered structure of 

transition metal dichalcogenide is inherent and unique in providing good mechanical 

robustness and chemical stability, coupled with extraordinary electronic properties.15,16 

Such outstanding mechanical and electronic properties, together with the possibility of 

exfoliating MoS₂ into atomically thin layers, have opened up new ways for research and 

various technological applications. 

In bulk form, MoS₂ is an indirect semiconductor, while in monolayer form, it is a 

direct bandgap semiconductor.17 That makes monolayer MoS2 very suitable for 

optoelectronic applications owing to its potential to enhance the efficiency of the light 

absorption and emission processes. Coupling the features of a direct bandgap together 

with high carrier mobility makes monolayer MoS₂ a very good material for fabricating 

high-performance field-effect transistors, photodetectors, and other electronic 

devices.18,19 

The two-dimensional nature of MoS₂ monolayers retains several advantages over 

traditional bulk semiconductors with the improvement of electrostatic control, reduced 
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short-channel effects, and better scaling potential.20 Some of these attributes seem to 

prefer MoS₂ for developing next-generation flexible electronics, wearable devices, and 

ultrasensitive sensors.21 For example, on account of the atomic thickness of the MoS₂, it 

can integrate with a variety of heterostructures and composite materials, hence opening 

further possible applications.22 

 

 

 

 

Figure 1.1. Molybdenum Disulfide layers with Sulphur atoms on the surfaces and 

Molybdenum atoms in between. By Ben Mills. 

(Source: https://commons.wikimedia.org/w/index.php?curid=2976497). 

 

 

A large amount of interest has gone into the interaction of MoS₂ with biological 

molecules, more so with peptides, in recent times. It vests from the rapid developments 

in the newly developing field of organic-inorganic interfaces. Various peptides have been 

designed, synthesized, and shown to bind specifically to MoS₂ surfaces, enabling a vast 

potential in terms of functionalization and bio-interfacing strategies of that material.23 

Such peptide-MoS₂ interactions open a way for the development of new bioelectronic 

interfaces, increased biocompatibility of MoS₂-based devices, and novel sensing 

platforms.24 

https://commons.wikimedia.org/w/index.php?curid=2976497
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Precise control over the surface properties of MoS₂ can be achieved through 

peptide binding and can lead to tuning of its electronic and optical properties for 

applications. Apart from this, functionalization with peptides helps in the integration of 

MoS₂ into biological systems and may enable a variety of new techniques that can be 

integrated into biosensing, drug delivery, and tissue engineering.25 

Driven by this research, the importance of developing computational models to 

predict peptide-MoS₂ interactions and designing de novo peptides for achieving specific 

binding affinities grows. Such models would help accelerate the discovery of peptide 

sequences with optimal binding properties; therefore, one can design MoS₂-based devices 

and systems in a rational way to enhance their functionality and performance by 

employing them as molecular linkers.26 

Coupled with the versatility of peptide-based functionalization, unique properties 

provided by monolayer MoS₂ create diverse possibilities for scientific explorations and 

technological innovations. Progressive research in peptide-MoS₂ interactions could have 

enormous potential for practical applications in nanoelectronics and biomedical 

engineering. 

 

 

1.2 Directed Evolution 

 

 

Directed evolution is a powerful method for protein engineering that exploits the 

process of natural selection to evolve proteins or nucleic acids for an artificial goal. The 

technique has become a valuable tool in biotechnology, drug design, and synthetic 

biology after its first emergence in the 1990s.27 It was the result of the work of several 

researchers, including Willem P.C. Stemmer and Frances Arnold. While Stemmer28 

introduced DNA shuffling, a method for in vitro recombination of homologous genes, 

Arnold29 took the lead in the use of iterative rounds of mutation and selection to engineer 

enzymes with enhanced properties. 

Essentially, directed evolution follows the next three steps: (1) the generation of 

a variant library with high diversity; usually by random mutagenesis or recombination; 

(2) the selection or screening of variants showing the targeted properties; and (3) the 

diversification and amplification of successful variants with preference in preparation for 

sequential rounds of evolution.30 
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The self-directed cycle will permit the investigation of huge sequence spaces and 

probably finally attain solutions that rational design alone may not forecast. One of the 

primary advantages of directed evolution lies in how it engineers proteins without the 

requirement for detailed knowledge regarding protein structure-function relationships. 

This makes the technique particularly helpful for complex properties for which rational 

prediction or design might be very hard to do. Directed evolution can uncover novel 

mechanisms and strategies of protein function that enable an understanding of the 

fundamental principles in protein structure and evolution.30,31 

However, the approach of directed evolution also has its limitations. Extensive 

labor is required for several rounds of selection and diversification. Selection or screening 

methods appropriate for targeting the relevant property are hard to design for many 

protein properties. In addition to the experimental difficulties, the number of sequences 

obtained is very low to be able to convey any information on functional patterns, and 

sequence space exploration is limited to induced mutations, hence not guaranteeing an 

optimal solution.14,33  

In the last couple of years, further developments in this field have taken place, 

such as a variety of high-throughput screening techniques, increasing use of computation, 

and advancements in artificial intelligence that push guiding evolution procedures more 

efficiently.34 These developments have greatly enhanced the scope and power of the 

method of directed evolution in the engineering of proteins with increasingly complex 

and diverse functions. 

 

 

1.2 Deep-directed Evolution 

 

 

Deep-directed evolution is an emerging approach that combines next-generation 

sequencing with machine learning to change the way we explore and optimize biological 

molecules, particularly peptides and proteins. It extends traditional methods of directed 

evolution, in terms of both scope and efficiency, as it also aims to map out the sequence-

function relationship. 

Similar to directed evolution, this technique is founded on the phage display 

method which depends on expressing peptides or proteins on the surface of viruses, and 

applying a selection towards a specific function, conventionally binding affinity.34,35 
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Deep-directed evolution differentiates itself by the integration of next-generation 

sequencing, and thus enables sophisticated data analysis. As described by Yucesoy et al., 

this approach allows the collection of massive amounts of data on sequence-function 

relationship.14 By sequencing the phage DNA that is washed through successive rounds 

with increasing detergent concentrations, scientists gain access to a wealth of sequence 

information. The true potential of this technique arises when this vast data is utilized by 

advanced machine learning algorithms. Those algorithms can learn profound patterns 

within those sequences, build models, and map out the entire sequence-function 

landscape.33 

Compared with most traditional directed evolution methods, the computational 

approach has the advantage of exploring much more extensive sequence space, reducing 

time-consuming and expensive experimental iterations, and providing optimum 

sequences that would otherwise have been missed by a purely experimental approach.33,36 

The role of machine learning in deep directed evolution cannot be 

overemphasized. Such methods not only allow for the analysis of complex, high-

dimensional data, but also afford a predictive power that might inform the design of future 

experiments. Deep-directed evolution combines experimental and computational 

strategies to form a very potent new paradigm in protein engineering and drug discovery, 

with immense potential for gross acceleration in the creation of novel therapeutics, 

enzymes, and other biologically active molecules. 

 

 

1.3 Machine Learning Approaches 

 

 

Machine learning is the part of the field of artificial intelligence that deals with 

the development of algorithms and statistical models for performing a certain job by 

learning from data. It is the process of training computer systems to recognize patterns 

and make predictions from data without explicit programming. Broadly, machine learning 

algorithms can be categorized under supervised, unsupervised, and reinforcement 

learning, each of which works in a specific manner to process and learn from data. This 

technology has become quite important in areas such as image and speech recognition; it 

has also found its way into recommendation systems, autonomous vehicles and natural 

language processing. 
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In this work, we have selected Random Forest algorithm and neural networks to 

model the result of the phage-display experiments due to their battle-tested robustness 

and performance. 

 

 

1.3.1 Random Forests 

 

 

Having been introduced by Leo Breiman37 in 2001, Random Forest is an ensemble 

learning algorithm that combines multiple decision trees to make predictions, either a 

regression or a classification. The algorithm operates by constructing a multitude of 

decision trees during training and outputting the class that is the mode of the classes 

(classification) or average prediction (regression) of the individual trees.38 

The key principles of Random Forest include bootstrap aggregating (bagging), 

where random subsets of the training data are selected with replacement to train each 

decision tree, reducing variance and overfitting.37 Additionally, feature randomness is 

employed, meaning that at each node split, a random subset of features is considered, 

decorrelating the trees and improving generalization.38 Finally, ensemble voting is used, 

where the predictions from all trees are aggregated through majority voting 

(classification) or averaging (regression) to make the final prediction.39 

Random Forest offers several advantages. It often achieves high accuracy, 

outperforming individual decision trees and other algorithms.40 The algorithm is robust, 

being less prone to overfitting and capable of handling noisy data and outliers well.37 It 

can also measure the importance of each feature in the prediction process.41 Moreover, 

Random Forest is versatile, as it can handle both classification and regression tasks with 

minimal hyperparameter tuning.38  

However, Random Forest also has some disadvantages. The algorithm can be 

computationally expensive and memory-intensive, especially for large datasets.42 The 

model is less interpretable than a single decision tree due to its ensemble nature.43 In 

datasets with minority groups, Random Forest can produce results biased towards the 

majority groups due to suboptimal sampling.44  

Despite these limitations, Random Forest remains a popular and effective 

algorithm in machine learning, with applications in various domains such as 

bioinformatics, remote sensing, and finance.45  
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1.3.2 Deep Neural Networks 

 

 

Deep neural networks are an important part of machine learning models which are 

inspired by biological neural architectures. They consist of multilayer, interconnected 

nodes -neurons- with every succeeding layer transforming the input, based on a weighted 

connection with activation functions, progressively extracting features at each level. 

Recent developments in DNNs have dramatically improved their capabilities. For 

example, attention mechanisms and transformer models have revolutionized natural 

language processing by allowing models to focus on the most relevant parts of an input 

sequence by using an attention mechanism.46 GANs have enabled image generation and 

other creative capabilities by training two networks in tandem to produce realistic data.47 

Training schemes such as BERT and next-token prediction have set new benchmarks in 

understanding and generating human language, leading to advancements in chatbots, 

automated translation, and advanced text analysis.48,49 These innovations in natural 

language processing are generating fundamental knowledge that is also applicable for 

decoding genes and proteins due to their shared sequence-based nature. DNNs can 

analyze vast amounts of biological data to predict the 3D structures of proteins from their 

amino acid sequences, a task that is computationally complex and critical for 

understanding protein function. Works such as Alphafold, OmegaFold, and ESM have 

ignited widespread enthusiasm in this regard.12,50,51 

 

 

1.3.3 Language Models 

 

 

Language models are a category of machine learning models that learn to predict 

the probability distribution of tokens in a sequence, given some context. The popular 

architectures used in language modeling consist of recurrent neural networks (RNNs) and 

long short-term memory networks (LSTMs), which have lately been overtaken by 

transformer models like BERT or GPT.48,49,54,55,56 These models have produced state-of-

the-art results in a very wide array of language tasks and revolutionized the field of natural 

language processing and artificial intelligence. 
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The task of predicting the next token in a sequence, known as next token 

prediction or autoregressive language modeling, is a fundamental approach to training 

these models. By learning to predict the next token based on the preceding context, 

language models can capture the statistical patterns, semantics, and long-range 

dependencies present in the training data.52 This allows them to generate coherent and 

contextually relevant text and generate representative vectors of given text to perform 

various downstream natural language processing tasks such as text classification, named 

entity recognition, and machine translation.49,56 

In the context of peptide function prediction and design, language models can be 

employed to learn the patterns and dependencies in peptide sequences. Through training 

with large datasets of peptide sequences, these models can capture the underlying 

statistics governing the relationship between sequence elements within the provided 

sequence library along with the unique description of the 12mer peptide as a whole. This 

knowledge can then be leveraged to calculate complex vector representations of given 

amino acid sequences for downstream objectives, or to generate new sequences on 

demand.55 

 

 

1.4. Hypothesis & Aim  

 

 

In this study, we hypothesize that by applying systematic pre-processing steps 

onto high-throughput phage-display experiment data and setting up various machine-

learning models, we can accurately predict MoS2 affinity of dodecapeptides based on their 

amino acid sequences, thereby proposing an efficient de novo peptide design 

methodology in the context of deep-directed evolution. The goal is to build a framework 

that achieves the following specific aims: 

1. Process and prepare high-throughput phage display sequencing data  

2. Train machine-learning models that capture the sequence-function landscape 

3. Explore the models to design de novo peptides, optionally limited to a desired 

pattern. 
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CHAPTER 2 

 

 

MATERIALS AND METHODS 

 

 

Deep-directed evolution starts with a phage-display experiment with multiple 

panning rounds and high-throughput sequencing. The sequencing data is preprocessed 

into a filtered dataset of amino acid sequences to minimize noise while keeping the 

information as high as possible. The data is then used for training machine-learning 

models that can grasp the patterns within the sequences. The models are refined and 

confirmed with test sets. 

 

 

2.1 Acquisition of Data 

 

 

In this study, we aim to predict the binding scores of peptides given their amino 

acid sequence. To train and test our predictive models, we obtained high-throughput 

phage-display datasets produced by a previous study, through NCBI Sequence Reading 

Archive (SRA).14,58 The run files are downloaded by using the SRA Toolkit software 

provided by NCBI. 

The complete set consists of 24 FASTQ files, representing 3 biological and 2 

technical replicate runs across panning steps (wash 1, wash 2, wash 3, eluate), totaling 

around 32GB. The experiment setup that produced the sequence data is described in 

Figure 2.1. Using such a setup, three experiments were performed with two technical 

replicates for each panning round as shown.  
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Figure 2.1. Source experiment data acquisition flow for a single biological experiment 

yielding 8 FASTQ files. The files contain sequence reads of a particular 

NGS run related to a set (biological experiment), wash (panning round), and 

technical replicate run. Created with biorender.com. 

 

 

2.2 Pre-processing 

 

 

The files are processed to count the number of observations of each DNA 

sequence for each NGS run using Python software, NumPy, and Pandas libraries. 

Sequence counts of technical replicate pairs are compared to check consistency and 

merged afterward, resulting in 12 files containing DNA sequence counts for each 

biological experiment (sets) and their respective panning steps. Additionally, sequence 

counts of sets are compared on each panning round to validate consistency across 

biological replicates. Next, these 12 files are further organized into 3 tables, representing 

3 biological experiment datasets, each row containing reading counts of the panning 

rounds and eluate in that set. 
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Translation: DNA sequences are translated into amino acid sequences by 

mapping the codon table and counts of the ones that correspond to the same amino acid 

sequence are summed, while the ones that contain unidentified nucleotide readings or the 

ones that contain codons that do not correspond to valid amino acids are removed. 

Concatenation of Datasets: Sequence readings across replicates, both biological 

and technical, have slightly different outcomes for the same sets of peptides as expected, 

especially for the peptides that are observed less, which correspond to noise in a machine 

learning perspective. To average out and reduce noise between biological experiment sets, 

the data is merged into one, resulting in a single data set with ~24 million unique peptides. 

Cleaning: The dominant fraction of peptides has only 1 observation across all 

readings encompassing 24 files, and they have been filtered out from the dataset, yielding 

the root data set that contains ~8.7 million unique peptides. Removing singular peptides 

is also assumed to remove sequencing errors.  

Binding Score Calculation: To establish a single value regression problem, a 

binding score definition is required to display phage-display data as a single numerical 

value to represent peptide fitness, in terms of a particular function, in this case, MoS2 

binding affinity, by utilizing the observation counts in each of the panning steps. This is 

achieved by using the center of abundance-mass (CoAM) metric as proposed by the study 

that produced the phage-display data.14 The normalized CoAM equation is shown below: 

 

 

 

 

Equation 2.1. Calculation of binding score per peptide, based on the number of 

observations per panning step. 

 

 

Equation 2.1 assigns 0 score to peptides only observed in the first panning step 

(wash 1), and 1 to peptides observed only in the eluate, yielding a normalized binding 

score range ideal for machine learning applications.  

Encoding: Encoding transforms peptide strings into vector forms that are suitable 

for machine learning algorithms. One popular method is one-hot encoding, where each 
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amino acid in a peptide is represented as a binary vector of size 20, with a single high (1) 

value corresponding to that acid, and all others are zero. In addition to one-hot encoding, 

amino acid sequences can also be encoded by other schemes such as VHSE8 (Vectors of 

Hydrophobic, Steric, and Electronic properties59), which projects measured molecular 

properties of amino acids onto the resulting 8-dimensional vector. Another candidate for 

encoding peptides is using protein language model embeddings produced by training such 

models with extensive protein sequence data and exporting its embedding layer. For such 

use, we have chosen Facebook Research’s ESMv2 model embeddings.12  

In this study, we employ multiple encoding schemes to represent peptide 

sequences for our predictive models. For the Random Forest algorithm, we utilize two 

primary encoding methods: one-hot encoding and VHSE8 (Vector of Hydrophobic, 

Steric, and Electronic properties). For peptides of 12 amino acids in length, the one-hot 

encoding produces a 240-dimensional vector (12 x 20, where 20 represents the number 

of standard amino acids), while VHSE8 results in a more compact 96-dimensional vector 

(12 x 8). 

For our deep neural network models, we expand our encoding repertoire to include 

one-hot encoding, VHSE8, and embeddings from the ESM (Evolutionary Scale 

Modeling) framework. These encodings are utilized as 1D vectors for standard feed-

forward neural networks and as 2D vectors for transformer-based language models to 

conform to Keras’s natural language processing API,  KerasNLP.75 The ESM framework 

offers a variety of pre-trained models with different architectures and parameter counts. 

For this study, we selected an ESM model which comprises 12 layers and approximately 

35 million parameters. This model accepts inputs with embedding vectors of size 480 for 

a rich representation of the peptide sequences. The choice of these diverse encoding 

schemes allows us to compare their effectiveness in capturing the relevant features of 

peptide sequences for functional score prediction. The one-hot encoding serves as a 

baseline, providing a simple and direct representation of the amino acid sequence. VHSE8 

offers a more compact encoding that incorporates physicochemical properties, potentially 

capturing important functional characteristics of the peptides. The ESM embeddings, 

derived from large-scale unsupervised learning on evolutionary sequence data, provide a 

sophisticated representation that may capture complex patterns and relationships within 

protein sequences. By employing these varied encoding methods, we aim to identify the 

most effective approach for our peptide function prediction task and gain insights into the 

relative importance of different sequence features. 
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VHSE8 and ESM encodings are transformed using PaCMAP60 (Pairwise 

Controlled Manifold Approximation Projection) to reduce their high-dimensional 

representations to 2D space, enabling visualization of how these encoding vectors 

represent amino acid residues. This dimensionality reduction allows for the observation 

of patterns, clusters, and relationships among residues based on their encoded properties. 

Projecting high-dimensional encoding vectors to 2D space offers several advantages, 

including improved interpretability, easier pattern recognition, facilitation of comparisons 

between encoding methods, feature analysis, quality assessment of encoding 

effectiveness, hypothesis generation, and enhanced communication of findings. The 

resulting 2D projections are plotted and analyzed, providing an intuitive way to visualize 

complex relationships and identify trends that might not be apparent in higher-

dimensional spaces. 

Sample Weights: In machine learning, sample weights are employed when fitting 

a model to ensure that certain observations are considered more "important" or "reliable" 

than others, or when the dataset is unbalanced, directly influencing the learning process. 

When a dataset includes numerical target values and confidence indicators, sample 

weights can be used.  

 

 

 

 

Equation 2.2. Sample weight calculation, where Ci is the total number of observations 

of ith peptide, φ is the suppression factor for the number of observations, 

and wi is the resulting weight for ith peptide. 

 

 

The total observation count is the number of encounters/observations of a 

particular peptide in all sequencing runs. Considering the entire process described in 

Figure 2.1., the number is assumed to be affected by the randomness introduced with fluid 

sampling, the following polymerase chain reaction (PCR), and variations in sequencing 

coverage. Since the binding score calculated from the small total number of observations 

can easily be altered by tiny amounts of additional readings, the phages -or the peptides- 

that are not abundant in the sequencing data are assumed to have less reliable binding 
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scores with higher variance. Therefore, we have proposed using total observation counts 

as sample weights after a simple transformation that intends to suppress the dramatic 

differences in populations: 

Suppression factor φ helps to adjust the relation of the total number of 

observations of the peptides on sample weights. When φ equals 1, it applies the total 

number of observations, a value lower than one starts to suppress the weights and closes 

the gap between the effects of high and low-count peptides on the model. In this thesis 

work, φ is set to 0.7.  

 

 

A) 

 

B) 

 

 

Figure 2.2. A) The root dataset and its sub-datasets. B) Train/Test split and its sub-

datasets filtered with different count filter values. 

 

 

Filtering: Additional filtering, also called count filter, is applied to reduce noise, 

and observe its effect on prediction performance, where peptides with less or equal to the 

filter value are removed from the dataset, trading off between the provided amount of 



 

16 

  

information and noise input to the machine learning models. The datasets filtered by the 

total observation count feature are tagged with their corresponding count filter values, 

abbreviated as “cf”.  For example, a dataset obtained by using count filter 5 is referred to 

as “cf5 dataset”. 

Validation: To validate the models, a 20% test set is randomly selected from the 

starting dataset. To be able to prevent data leaks between training and test sets, the main 

train/test split files are further filtered separately to build datasets with higher count filter 

values as shown in Figure 2.2. 

 

 

2.3 Preliminary Analysis 

 

 

The dataset is analyzed in terms of the number of readings, distribution of peptides 

and sample weights, and amino acid frequencies with varying count filter values. 

PacMap60, a topology preserving alternative to PCA and t-SNE, is used for reducing the 

dimensionality of the peptide representations and visualizing them graphically. The same 

method is utilized for visualizing the phage-library coverage of the sequence space by 

superposing a subset of the experimental data along with randomly generated peptides. 

Further analysis is performed to observe how amino acid frequencies differ 

between strong and weak binder groups. The frequencies for low (CoAM < 0.3) and high 

(CoAM > 0.7) scoring peptides are calculated by counting amino acids by the following 

formula: 

 

 

 

 

Equation 2.3. Calculation of amino acid frequencies in a dataset. 

 

 

where Ni is the total number of ith amino acid type, Nt is the total number of all amino 

acids, and AAFi is the calculated frequency of the ith amino acid type in a complete list 

of amino acid sequences. 
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2.4 Model Training 

 

 

To fit or train, validate, and test Random Forest and neural network models, 

NumPy, Scikit-learn61, and Keras62 Python libraries are used. Previously prepared 

datasets are fed into selected models after proper conversion of string inputs (peptides) to 

vectorized forms (encodings) along with sample weights -if applicable- and various 

metrics are logged, namely mean square error, mean absolute error, and Pearson 

correlation coefficient, for validation, test, and high-confidence test datasets.  

 

 

 

 

Figure 2.3. Regression model training/testing overview, displaying the data flow, and 

the training scheme applied to Random Forest and simple FFNN models. 

Created with BioRender.com. 
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Random Forests: Fitting Random Forest models is quite straightforward thanks 

to Scikit-learn module by utilizing its Random Forest regression class as described by the 

online documentation. Models are fitted to preprocessed datasets directly after application 

of the encodings, initially with default parameters. Hyperparameters are provided as 

arguments whenever required, during the hyperparameter optimization process. Feature 

importances which measure their significance by calculating the decrease in impurity - in 

decision trees, are visualized.  

Baseline Regression: Random Forest models are built to observe the effects of 

parameters of the preprocessing, namely count filter, encoding scheme, and sample 

weighting to demonstrate the approximate effects of each parameter and draw a baseline 

for future experiments. Those trained models are evaluated principally with a common 

high-confidence test set to demonstrate their abilities to predict a peptide’s affinity since 

validation sets differ and it becomes impossible to compare model performances when 

different count filters are provided. 

 

  

 
 

Figure 2.4. Peptide Language Model training overview, displaying the data flow, and 

autoregressive training scheme. Created with BioRender.com. 
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Neural Networks: Two types of neural network models are implemented in 

Python with Keras library: Simple feed-forward regression networks and feed-forward 

regression networks based on peptide language models (PepLM). The former, once built, 

trained with 1D input of size sequence-length*encoding-size and the binding score 

(CoAM) as the target output. Transformer-based PepLMs, on the other hand, are trained 

with an autoregressive strategy on 2D input, which consists of guessing the next amino 

acid, given the previous amino acids of the peptides in the dataset. The first N amino acids 

are provided to the model along with padding zeros, and the output expected is the N+1th 

amino acid. The two dimensions of the input matrix are sequence length and embedding 

vector size. 

FFNN regression head is attached after converting the last hidden state of the 

resulting base model to a 1D vector as the input to FFNN regression head. For all models, 

early stopping is enabled, and training stops if validation loss does not decrease in the last 

40 epochs. The learning rate is adjusted by a 0.8-fold decrease if validation loss does not 

decrease in the last 15 epochs. Dropout63, weight regularization, and weight decay are 

applied in case of overfitting, during hyperparameter optimization. 

Hyperparameter Optimization: Once the main dataset is decided for fitting or 

training the models, 10% of the data is split from the training dataset and used for 

evaluating the model during hyperparameter optimization. Hyperparameter optimization 

is restricted to number of estimators (trees) and minimum samples per leaf on Random 

Forest. Neural networks require much more intricate configuration parameters such as the 

number of layers, number of hidden neurons, regularization coefficients, dropout rates, 

application of batch normalization, and optimizer parameters such as learning rate, and 

weight decay. 

Ensemble Averaging Model: To achieve the maximum prediction performance, 

the two trained models, the Random Forest and the combined PepLM+FFNN, are run in 

parallel and their results are averaged to produce the final prediction in the form of a 

simple ensemble setup, combining the powers of the different models. 
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Figure 2.5. Examples of experimented models, demonstrating the neural network 

architectures used in this work. A) A simple feed-forward neural network. 

B) Peptide language model (PepLM) that is trained on next amino acid 

prediction. C) Combined PepLM and feed-forward network that yields the 

best prediction performance among neural networks. 

 

 

2.5 Validation 

 

 

In this study, the prediction performances of models that are trained with multiple 

different count filters, and ensemble model of Random Forest and neural network are 

compared. For this purpose, along with the test set, a high-confidence test set, cf200 test 

set with count filter 200 value is built from cf5 test dataset (Figure 2.2.). Both cf5 and 

cf200 test sets are used to measure the optimized models' performance, and we also report 

the training set performance to track overfitting. The metrics mean square error, mean 
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absolute error and Pearson correlation coefficient are calculated as in hyperparameter 

optimization. The test metrics in question are obtained without applying the sample 

weighting scheme to ensure comparability with models trained with different sample 

weight suppression coefficients, φ.  

In decision-tree based models, a common method to observe the significance of 

each feature is to measure the mean decrease in impurity (MDI) of that feature. MDI is 

calculated as the average reduction in impurity each feature contributes across all trees in 

a forest, where impurity reduction is assessed using metrics like Gini impurity or entropy 

for classification and variance for regression. Features with higher MDI values are 

considered more important, as they significantly enhance the model's predictive accuracy.  

Four peptides are collected from the literature and their binding affinities are 

predicted by selected models.64,65,66 The predictions are compared with experimental 

observations. The peptides are provided in Table 2.1. 

 

 

Table 2.1. Peptides that are collected from the literature with their assumed labels.61,62,63  

 

Name Sequence Label 

GRBP5-M6 IMVTASSAYDDY Reference 

MoS2-P15 GVIHRNDQWTAP Strong  

MoS2-P28 DRWVARDPASIF Strong 

MoS2-P3 SVMNTSTKDAIE Weak 

 

 

2.6 De Novo Design of Functional Peptides 

 

 

Once the models are built, they can be used to search the sequence space for 

peptides with desired binding affinities. The sequence space can be explored with a 

stochastic search technique, such as Monte Carlo or the genetic algorithm, and can be 

accompanied by a post-exploration step with an evolutionary approach, that is mutating 

a candidate strong binder selected after the first stage. The justification for proposing 

stochastic/random search is that deterministic algorithms are NP-hard, whereas a non-

deterministic run can be executed on average in polynomial time although without any 
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guarantee of global optima.67 In this work, we have used a stochastic search approach that 

lists randomly generated peptides with highest predicted scores and further checked all 

possible mutations on the candidates iteratively. We have used the two trained machine-

learning models to generate candidate peptides that are expected to bind strongest in two 

classes, random peptides, and random peptides excluding cysteine and aromatic amino 

acids, the residues which are observed to have dramatic effects on measurable binding 

score but are assumed to be non-specific. We later compared peptides found both by the 

Random Forest and the neural network model against each other’s predicted scores, to 

lay out the differences. Finally, we have randomly explored the sequence space on the 

averaging ensemble model to produce two lists, consisting of random residues, and 

random residues excluding aromatic amino acids and sulfur-containing cysteine. The 

highest-scoring peptide is then further optimized by evaluating point mutations to 

increase the expected binding affinity to the maximum. 
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CHAPTER 3 

 

 

RESULTS AND DISCUSSION 

 

 

3.1 Datasets 

 

 

Initial analysis displays the basic characteristics of the data generated by the 

experiment in the scope of deep-directed evolution. Twenty-four FASTQ files were 

downloaded from Sequence Read Archive (SRA)58, totaling 32GB in size, and contain 

around 222 million DNA sequences, of which around 44 million are unique. Table 3.2 

demonstrates the original distribution of sequences across sets and washes. 

 

 

Tables 3.1. The number of total and unique DNA and amino acid sequences. 

 

 

 

Table 3.2. Distribution of total number of readings across panning steps and sets.  

 

 Number of Total DNA readings 

Set Set 1 Set 2 Set 3 Total 

Wash 1 ~31.6M ~47.6M ~42.5M ~121.7M 

Wash 2 ~17.2M ~7.8M ~5M ~30.1M 

Wash 3 ~0.2M ~0.1M ~0.1M ~0.5M 

Eluate ~20.8M ~23.1M ~25.7M ~69.7M 

Number of total DNA sequences  ~222M 

Number of unique DNA sequences ~44M 

Number of unique amino acid sequences ~24M 
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3.2 Pre-processing 

 

 

Raw FASTQ files were processed to enumerate sequences for each panning step. 

Technical replicates were summed, and the resulting data were organized into tabular 

format with columns representing distinct panning steps. Subsequently, nucleotide 

sequences were translated into amino acid sequences. This process generated one CSV 

file per biological experiment.  

 

 

 

 

 

 

 

Figure 3.1. Left: Initial steps of preprocessing: Counting sequences of a sequencing run, 

tabularization, and translation into amino acid sequence. Right: sample 

peptide counts across sets and washes, along with candidate target values 

for training. 

 

 

All biological sets are later summed to produce the aggregated dataset. Target 

scores were calculated using Equation 2.1. Representative data samples are illustrated in 

Figures 3.1. 

Most sequences were detected in the first panning round, and the final eluate as 

shown in Table 3.2 and Figure 3.2. The abundance of sequences in the final round points 

out that a substantial portion of the peptides can stay on the MoS2 surface. This can be 

attributed to the dynamics of binding of certain single amino acids to the material. 
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Figure 3.2. Distribution of reads across panning rounds. 

 

 

To validate sequencing and to get an insight into the experiment data, the number 

of observations of distinct peptides across technical replicates (sequencing replicates 

within each set) and biological sets are compared. Figure 3.3 and 3.4. display scatter plots 

of the number of observations per peptide, and a corresponding slope calculated over the 

best fitting line. 

 

 

 

 

Figure 3.3. Correlation plots of technical replicate pairs. 
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Figure 3.4. Correlation plots of combinations of biological sets on each panning round. 

 

 

One-hot, VHSE8, and ESM encodings are applied to the data depending on the 

experiment. It is noteworthy that VHSE8 achieves significant dimensionality reduction 

when compared to one-hot representation, while incorporating physicochemical 

information in the input vectors. This compression is particularly crucial for the Random 

Forest algorithm, which is known for its memory-intensive nature. As the size of the 

embedding vectors increases, the number of features grows correspondingly, potentially 

limiting the algorithm's deployment due to practical hardware constraints. 

 

 

Table 3.3. Input/output pair of an example peptide on different encoding schemes. 

 

 Input Target 

 12mer peptide  Encoded peptide Binding score 

One-hot VSWPWAWHSRIQ [0, 0, 0, 0, .…] (240 elements) 0.817 

VHSE8 VSWPWAWHSRIQ [0.76, -0.92, 0.1…] (96 elements) 0.817 

One-hot 2D VSWPWAWHSRIQ [[0, 0, 0, 0,…] (12x20 elements) 0.817 

ESM480 2D VSWPWAWHSRIQ [[0.096..],[...]] (12x480 elements) 0.817 
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VHSE8 and ESM (vector size=480) encodings are transformed with PaCMAP 

and plotted in 2D in Figure 3.5 to inspect the representation of amino acids. 2D 

projections generated by PaCMAP align with known amino acid classes, conforming to 

expectations regarding distances between amino acids.  Note the clusters of aromatic 

amino acids (W, Y, F), the relative proximity of negatively charged amino acids (D, E), 

the consistent distance of leucine and isoleucine (L and I, respectively). 

 

 

 
 

Figure 3.5. 2D projections of VHSE8 (A) and ESM480 (B) amino acid encodings, as 

produced by PaCMAP. 

 

 

After pre-processing, we obtained a root dataset that was filtered to peptides with 

counts more than 5 (count filter=5), referred to as cf5 dataset. It is later split into training 

and test datasets. We have further filtered the resulting training and test sets separately 

whenever required. 

 

 

3.3 Preliminary Analysis 

 

 

Figure 3.6. clearly shows that the number of data rows dramatically decreases with 

increasing total observation count filter values, remarking the uneven distribution of 

sequences. The normalized distributions of binding scores for four datasets with different 
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count filters are shown in Figures 3.7, where the data reduces in size and accumulates 

towards the mean, while filter value increases. Additionally, Figure 3.8. displays the 

normalized distributions of the total number of observations per peptide on the binding 

score range. 

 

 

 

 

Figure 3.6. Number of distinct peptides vs applied count filter value. 

 

 

Filtering results in a considerable decrease in the number of data points as the 

count filter value increases. This means that to get more confident data points, a huge 

portion of data that potentially bears significant signal, along with significant noise, is 

sacrificed. Filtering operations yield datasets that display the normal distribution 

characteristics which accumulate on the mean with decreasing standard deviation. 

Amino acid frequencies show consistent differences between weak and strong 

binders. Among the strong binder subset, Sulphur-containing Cysteine (C) and aromatics 

Phenylalanine (F), Tryptophan (W) and Tyrosine (Y) are more frequent, whereas Aspartic 

Acid (D) and Glutamic Acid (E) are more frequent within the weak binder subset. 
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Figure 3.7. Normalized distribution of unique peptides (blue) and corresponding 

normalized total observation count distribution across CoAM (binding score) 

values (orange). Note that both unique peptides and observation counts are 

centered around the mean. 

 

 

Amino acid frequencies on weak and strong binder peptides show small but 

consideration-worthy patterns on some amino acid types. All aromatic amino acid (W, Y, 

F) frequencies increase in the strong binder set, whereas all negatively charged amino 

acid (D, E) frequencies decrease. This may explain the abundance of peptides in the last 

panning round, pointing to strong binding characteristics of aromatic amino acids to MoS2 

surface. On the other hand, as illustrated in Figure 1.1., the 2D surface is made up of 

Sulphur atoms which tend to be negatively charged due to its higher electronegativity 

compared to molybdenum, explaining the negative effect of negatively charged amino 

acids on binding affinity.68,69 
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Figure 3.8. Amino acid frequencies among low affinity (dark blue, affinity < 0.3) and 

high affinity (light blue, affinity > 0.7) peptides. 

 

 

Positively charged amino acids arginine and lysine do not show consistent 

differences in frequencies, where arginine (R) slightly increases, and lysine (K) slightly 

decreases in the strong binder group. Overall, the frequencies of amino acids align with a 

previous study on peptide-MoS2 interactions where Juan Liu et al explain that amino acid 

binding to sulfur atoms on surfaces is influenced by aromatic residues like tryptophan and 

phenylalanine through favorable coordination, positively charged arginine via 

complementary charge and geometry, flexible weakly polar residues through hydrogen 

bonding with water, while negatively charged residues and bulky hydrophobic residues 

like proline, isoleucine, and leucine diminish binding due to electrostatic repulsion and 

reduced surface contact, with binding selectivity arising from the unique properties of 

both peptides and surfaces, beyond traditional hydrophobicity criteria.70 

Dimensionality reduction of peptides in sequence space aids in observing if the 

sequences cluster in correlation to the function score. Figure 3.9 demonstrates the effect 

of increasing count filter values on emergence of strong and weak binder peptide clusters. 

As the count filter value rises, there is a gradual improvement in cluster border definitions. 

The dataset with the lowest count filter value fails to generate distinct clusters of strong 

binders. This observation aligns with the assumption that a higher observation count 

correlates with increased data point confidence. 
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Figure 3.9. PacMap visualization of the dataset, using count filters 100, 150, 200, and 

400. Note the green and blue clusters emerging through increasing count 

filter values. 

 

 

Sequence space coverage of a subset of the library is visualized against random 

peptides in Figure 3.10. The figure does not display any obvious missing regions that are 

not covered by the diluted subset, nor the sequences from the actual library is a subset of 

a larger random set. This is favorable since any uncovered areas would implicate 

potentially larger prediction errors by the trained models over such regions. 
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Figure 3.10. PacMap visualization of sequence space coverage of a sampled subset of 

cf200 set (green hues) against randomly generated peptides (tiny, dark blue 

dots) where lighter green spots indicate strong binders (score > 0.65). 

 

 

3.4 Model Training 

 

 

Baseline Regression with Random Forest: Prediction performance yields of 

various count filter values are computed by fitting the unweighted training sets with the 

Random Forest algorithm, initially with default parameters and one-hot encoding. This 

initial set of experiments yields a baseline that allows comparison with different solutions.  

Table 3.4 demonstrates the negative correlation between the count filter parameter 

and the prediction performance on cf200 test dataset. It also communicates that validation 

loss is almost an order of magnitude larger than the training loss. Hence, in order to 

prevent overfitting, we have moved forward with optimizing the hyperparameters of the 
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RF algorithm by choosing the minimum samples per leaf parameter to reduce the gap 

between training & validation losses. Although cf5 dataset offers the minimum cf200 test 

loss, used datasets were filtered with higher count filter values during the optimization 

process due to limits on computational resources. Table 3.4 also emphasizes the Random 

Forest algorithm’s robustness to noise, since the prediction performance improves with 

decreasing count filter values, although signal-to-noise ratio is expected to decrease with 

inclusion of data points with lower confidence. The cf10 dataset is selected for 

hyperparameter exploration to reduce the required memory and experiment time. 

 

 

Table 3.4. Performance and storage size of Random Forest models trained on datasets 

with different count filter values and tested on cf200 test set. 

 

Training Set cf5 cf10 cf20 cf50 cf100 cf200 

Training Data Size (rows) 2.1M 1.3M 696K 261K 120K 73K 

Training Loss 0.010 0.0084 0.0054 0.0025 0.0012 0.0007 

Validation Loss 0.072 0.0600 0.0390 0.0170 0.0090 0.0048 

Test cf200 Loss 0.0028 0.0029 0.0029 0.0037 0.0043 0.0049 

Test cf200 Pearson C. C. 0.86 0.85 0.84 0.79 0.75 0.71 

Model Storage Size (GB) 16.3 9.2 4.9 1.9 0.9 0.4 

 

 

Hyperparameter optimization of Random Forest: Effects of minimum samples 

per leaf parameter are presented in Table 3.5. Training loss and validation loss values are 

minimal in the default configuration, since there is no leaf/depth limit, while the order of 

magnitudes of the training/test loss values are different, pointing to an overfit model. 

Then, stepping up the parameter value produces a slight increase in validation loss along 

with a dramatic increase in training loss that later slowly plateaus (Figure 3.11). Notably, 

the cf200 test set exhibits a more pronounced sensitivity to the minimum samples per leaf 

parameter. Considering the results, the optimum minimum samples per leaf is selected as 

5, which is the smallest increment that provides the highest marginal utility in closing the 

gap between training and validation losses as well as significantly reducing the memory 
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and storage requirements. Increasing the number of estimators is effective when the value 

is small, it plateaus afterward (see Table 3.6.). 

Table 3.5. Exploration of minimum sample per leaf parameter and its effects on 

prediction performance of models trained on cf10 dataset with number of 

estimators is set to 100. 

 

Min sample per leaf Default=1 5 10 20 

Training Loss 0.0084 0.0360 0.0480 0.0560 

Validation Loss 0.0600 0.0620 0.0630 0.0640 

Test 200 loss 0.0029 0.0034 0.0041 0.0049 

Test 200 Pearson 0.85 0.82 0.79 0.74 

 

 

 

 

 

Figure 3.11. Trajectories of training and validation loss on increasing minimum sample 

per leaf value. 
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Table 3.6. Exploration of the number of estimators parameter and its effects on 

prediction performance of models trained on cf10 dataset where minimum 

sample per leaf is set to 10. 

 

Number of estimators 20 50 100 200 400 

Training Loss 0.0490 0.0480 0.0480 0.0480 0.0480 

Validation Loss 0.0640 0.0630 0.0630 0.0630 0.0630 

Test 200 loss 0.0045 0.0042 0.0041 0.0040 0.0040 

Test 200 Pearson 0.762 0.783 0.789 0.794 0.795 

 

 

As can be seen in Table 3.7, no significant reduction in validation loss is observed 

when using sample weights, however, high-confidence test set performance increased 

significantly when datasets with lower count filter values were used in combination with 

sample weighting. Positive effects of sample weighting seem to diminish with increasing 

dataset confidence (by adjusting the count filter value). It is then possible to speculate that 

sample weighting helps fit the model better to high-confidence data while keeping the 

low-confidence data in the training set. The performance impact on high-confidence test 

set MSE loss is around ~21% and ~17% respectively for cf5 and cf10 datasets (see Table 

3.7). 

 

 

Table 3.7. Comparison of models trained with and without sample weights, on cf5 and 

cf10 datasets where minimum sample per leaf is set to 10 and number of 

estimators is 100. 

 

 cf5 training cf10 training 

Sample Weights No Yes No Yes 

Training Loss 0.041 0.047 0.048 0.052 

Validation Loss 0.076 0.076 0.063 0.063 

Test cf200 loss 0.0029 0.0023 0.0041 0.0034 

Test cf200 Pearson 0.86 0.88 0.79 0.82 
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We have also compared one-hot and VHSE8 encoding schemes, omitting ESM 

encoding due to its infeasibility in training on standard hardware since it requires around 

23 times more memory and storage than the one-hot scheme. Among the available 

encodings, VHSE8 performed significantly better, while decreasing model fitting time 

dramatically along with memory and storage demand, due to the smaller size of the input 

vector. Performance results of the models fitted with two different encodings are shown 

in Table 3.8, with VHSE8 offering around 3.5% and 20+% decrease in validation and 

high-confidence (cf200) test MSE losses, respectively, compared to one-hot encoding.  

 

 

Table 3.8. Comparison of one-hot and VHSE8 encoding schemes and training with and 

without sample weights, on cf10 dataset. 

 

 One-hot VHSE8 

 Unweighted Weighted Unweighted Weighted 

Training Loss 0.048 0.052 0.032 0.037 

Validation Loss 0.063 0.063 0.061 0.061 

Test cf200 loss 0.0041 0.0034 0.0032 0.0027 

Test cf200 Pearson 0.79 0.82 0.842 0.86 

 

 

After exploration of the performance landscape, a more thorough hyperparameter 

search for models trained with cf5 dataset is conducted using 5-fold cross-validation. It 

displays how the number of estimators and minimum samples per leaf hyperparameters 

affect the validation MSE loss. While the error minimizes with an increasing number of 

estimators, the improvement of prediction performance also decreases. Considering the 

minimum samples per leaf value, the positive effects  

Consequently, minimum samples per leaf parameter is selected as 5 and number 

of estimators parameter is selected as 200 by inspecting the results of the cross-validation 

runs (see Table 3.9.).  

Hyperparameter optimization of Neural Networks: Initial experiments laid out 

the importance of application of the Dropout technique. Experiments with low or no-

dropout models performed worse than the ones with high dropout. This view aligns with 
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the suggestion that dropout produces remarkable performance improvement when 

training on noisy targets.71 Following the experiments, the dropout value was selected as 

high as 0.5 for the best demonstrated consistent validation performance (see Table 3.10). 

 

 

Table 3.9. Hyperparameter search displaying mean-square-error (MSE) loss results of 

5-fold cross-validation with weighted cf5 training dataset and VHSE8 

encodings. 

 

 Number Of Estimators 

Min sample per leaf 20 50 100 200 300 

5 0.0812 0.0795 0.0789 0.0786 0.0785 

10 0.0816 0.0805 0.0801 0.0798 0.0798 

20 0.0822 0.0815 0.0813 0.0811 0.0811 

50 0.0829 0.0826 0.0825 0.0824 0.0824 

100 0.0834 0.0832 0.0831 0.0831 0.0831 

 

 

 

Table 3.10. Effect of dropout value on model prediction performance. 

 

Encoding Model Dropout Val MSE Val MAE 

ESM480 FFNN 1x480 0.5 0.0824 0.227 

ESM480 FFNN 1x480 0.0 0.0830 0.228 

 

 

The number of layers, thus the number of parameters are of importance for 

obtaining better models. As it grows, a considerable amount of improvement is seen in 

prediction performance, which is demonstrated in Table 3.11. It is important to emphasize 

that minor differences in unweighted prediction performance, namely on metrics MSE 

and MAE, correspond to dramatic effects on tests with high-confidence data, as also 

demonstrated in Table 3.8. 
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Table 3.11. Comparison of training results with various encoding schemes and network 

configurations. 

 

Encoding Model 
#Regression 

Params 
Val MSE Val MAE 

One-hot FFNN 1x480 116k 0.0828 0.229 

One-hot FFNN 8x480 1.73M 0.0827 0.228 

VHSE8 FFNN 1x480 47k 0.0838 0.229 

VHSE8 FFNN 8x480 1.66M 0.0828 0.227 

ESM480 FFNN 1x480 2.77M 0.0824 0.227 

ESM480 FFNN 8x480 22.1M 0.082 0.226 

ESM480 PepLM+FFNN 1x480 2.77M 0.081 0.224 

ESM480 PepLM+FFNN 8x480 22.1M 0.0802 0.221 

ESM480 PepLM+FFNN 8x2048 41.2M 0.0757 0.21 

 

 

3.5. Validation 

 

 

Subsequently, the final models are trained with all the data, using the selected 

parameter values. It is then tested against the cf5 test set and the cf200 test set. The best 

Random Forest model achieved an MSE of 0.00205, and an MAE of 0.0325 on cf200 test 

set, the minimum values observed throughout this work, while the Pearson correlation 

coefficient is as high as 0.895. The best neural network model performed slightly worse 

than the best Random Forest model (see Table 3.12). The averaging ensemble model 

performed slightly better than the two, with a Pearson correlation score of 0.904, an MSE 

of 0.00184, and an MAE of 0.0304.  

The scatter plots of experimental vs predicted binding score (CoAM) values for 

the cf200 test sets are shown in Figure 3.12 where the diagonal is the perfect prediction 

line. It is clear from the figures that the models successfully predict the binding scores of 

the peptides with a higher total number of observations, however, it may result in larger 

errors for peptides with a lower number of total observations.  On the other hand, Figure 

B.4 shows the experimental vs predicted binding score scatter plot for cf5 test set on the 

best Random Forest model along with cf200 test set, which demonstrates a big portion of 



 

39 

  

the low-confidence scores, that are coming from peptides with lower observation count, 

are not predicted correctly, while higher-confidence scores are predicted accurately. 

 

 

 

 

Figure 3.12. A, B, and C are experimental vs predictive binding score scatter plots of 

the best PepLM+FFNN, Random Forest and ensemble models, 

respectively, tested on the high-confidence (cf200) test set. The diameters 

of the points indicate the total count of the peptide, the hue projects the 

binding score, and the diagonal line marks the perfect prediction line. 

 

 

An example feature importance set of a Random Forest model is visualized in 

Figure 3.13. It highlights the significance of tryptophan (W) on positions 1, 3, 5, 7, 9, 

serine (S) particularly on 1 and 2, positively charged arginine (R) and Sulphur containing 

cysteine (C) on 11 and 12, along with leucine, histidine, threonine, and tyrosine. The 
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results are not contradictory with a recent study on peptide-MoS2 molecular dynamics 

simulations.70  

 

 

Table 3.12. Prediction performance of the final Random Forest and PepLM-based neural 

network model. 

 

 RF PepLM+FFNN RF + NN Ensemble 

Training Loss 0.0295 0.0413 0.0338 

Test cf5 MSE Loss 0.0729 0.0746 0.0723 

Test cf5 MAE 0.210 0.210 0.208 

Test cf200 MSE Loss 0. 00205 0.00242 0.00184 

Test cf200 MAE 0.0325 0.0346 0.0304 

Test cf200 Pearson  0.895 0.870 0.904 

 

 

 

 

 

Figure 3.13. Feature importance matrix derived from mean decrease in impurity 

calculated over Random Forest trees. The model is trained on the cf20 

dataset. 
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To further evaluate the models, binding scores of four experimentally evaluated 

peptides collected from the literature are predicted by the best random forest and neural 

network models as demonstrated in Table 3.13. The table demonstrates the differences 

between the two models’ predictions, and consistency of expectations regarding the 

experimental analyses and predictions.  

 

 

Table 3.13. Four peptides collected from the literature, experimental observation along 

with predictions by Random Forest and neural network models.64,65,66 

 

Peptide Sequence 

Experiment 

Result 

RF 

Prediction 

NN 

Prediction 

Ensemble 

Prediction 

GrBP5-M6 IMVTASSAYDDY  Reference 0.41 0.32 0.36 

MOS2-P15 GVIHRNDQWTAP  Strong 0.43 0.41 0.42 

MOS2-P28 DRWVARDPASIF  Strong 0.44 0.39 0.41 

MOS2-P3 SVMNTSTKDAIE  Weak 0.36 0.35 0.36 

 

 

3.6. De Novo Design of Functional Peptides 

 

 

The strongest predicted binders from randomly generated peptides are dominated 

by aromatic amino acids tryptophan (W) and phenylalanine (F) (see Figure 3.14). A 

random search for peptides without cysteine and aromatic residues produced different 

frequency magnitudes as expected, however, they still displayed similar patterns that 

emphasize arginine (R), methionine (M), leucine (L), isoleucine (I) and valine (V) as in 

Figure 3.15. 

Building on the hypothesis that the binding scores of abundant peptides are closer 

to the hypothetically true binding scores (mean absolute error less than 4% for cf200 test 

set), peptides predicted to have similar binding scores over the two different models are 

selected as the first four candidate peptides and listed in Table 3.14. The data highlights 

that the scan on Random Forest model produces peptides that are evaluated similarly by 

the neural network model. Surprisingly, a scan on the NN model produces peptides that 

are estimated to have higher scores from the RF predictions. 
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Table 3.14. Peptides with the most consistent scores as predicted by the Random Forest 

and neural network models. 

 

Model Generator Peptide RF 

Score 

NN 

Score 

Difference 

RF Random WNCWWYWFFYFD 0.729 0.729 0.000 

RF Random non-aromatic MHILRTVASLAI 0.550 0.549 0.001 

NN Random FWLWKCFIYFPD 0.653 0.894 0.241 

NN Random non-aromatic MMLLLHMTTIDA 0.533 0.826 0.293 

 

 

 

 

 

Figure 3.14. Amino acid frequencies of random peptides that are predicted to have 

strong binding characteristics by the ensemble model.   

 

 

Scores of peptides obtained by scanning the Random Forest model are consistent 

with the scores predicted by the neural network model with a mean difference of 0.09 and 

0.11, for completely random peptides and random peptides without “WYFC” residues. 
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However, this was not the case when the random search is applied to the neural network 

model, where the mean difference between predictors increases to 0.34 and 0.41 as the 

NN model’s predictions tend to be further from the mean for a portion of sequences and 

predicted strongest binders of the RF model is a subset of that of the NN model (see full 

tables in Appendix C). Yet, strong binders predicted by the neural network are aligned 

with the Random Forest predictor, in terms of scores, whether a peptide is below or above 

the average binding score, 0.35. 

 

 

 

 

Figure 3.15. Amino acid frequencies of peptides, without cysteine and aromatic amino 

acids, are predicted to have strong binding characteristics by the ensemble 

model.  

 

 

Along with consistently high scoring peptides, the highest scoring peptides for 

four categories (RF, NN, random, random without “WFYC”) are selected from a random 

exploration run. These peptides, and their respective scores are displayed in Table 3.15.  
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Table 3.15. Highest scoring peptides as predicted by the Random Forest and neural 

network models, both with and without aromatic amino acids. 

 

Model Generator Peptide RF Score NN Score Difference 

RF Random HAWEWLKMHHIL 0.742 0.353 0.389 

RF Random non-aromatic LLLIEDTNPNLE 0.583 0.776 0.193 

NN Random RNHYAYIHFCWL 0.547 0.925 0.378 

NN Random non-aromatic VIMVMMNVKQMS 0.422 0.901 0.479 

 

 

The highest scoring peptide of a random search run with around 5 million random 

peptides on the ensemble model, LRMLTRHLNVNN, without aromatic and sulphur-

containing residues is selected for final optimization (see Appendix C, Tables C.5). A 

substitution matrix is built by evaluating all possible point mutations (Appendix C, Figure 

C.1). The matrix suggests mutating the 10th residue valine (V) to leucine (L). Note that 

for this sequence, aromatic acids do not increase the predicted binding score, pointing out 

to the complex nature of amino acid sequences. After making the recommended 

substitution, a second matrix is built which proposes asparagine (N) instead of 8th residue 

leucine (L).  

The final matrix displays that the optimization is complete, and the binding score 

of the peptide is not expected to increase further, yielding the non-aromatic strong-binder 

candidate, LRMLTRHNNLNN with scores 0.55, 0.93, and 0.74 as predicted by the 

Random Forest, the deep neural network and the averaging ensemble model, respectively 

(see Appendix C, Figures C.1-3 for the substitution-prediction matrices). Figures 3.17 

and 3.18 show the visualization of the candidate peptide’s 3D structure as predicted 

respectively by Alphafold50 and OmegaFold51, rendered by UCSF Chimera.72 
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Figure 3.16. The optimized peptide, LRMLTRHNNLNN, after two substitutions to the 

initial peptide. The 3D structure is predicted by Alphafold50, rendered by 

UCSF Chimera.72 

 

 

 

 

 

Figure 3.17. The optimized peptide, LRMLTRHNNLNN. The 3D structure is predicted 

by Omegafold51, rendered by UCSF Chimera.72 
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CHAPTER 4 

 

 

CONCLUSIONS 

 

 

In this thesis, a preprocessing, fitting, and testing methodology was developed in 

the context of deep-directed evolution, to be able to predict binding scores with a deep 

learning model that employs a dodecapeptide language model within, a Random Forest 

model and an averaging ensemble of the two. The experiments emphasized the 

importance of amino acid embeddings and sample weighting, and thus, the significance 

of the inclusion of domain knowledge into the process.  

A Pearson correlation score of 0.895 with a mean absolute error of 0.0325 is 

achieved on high-confidence test dataset with the Random Forest algorithm, successfully 

predicting the outcomes of frequently observed peptides of the phage-display experiment 

data with trees of about 6GB size in storage. On the other hand, the best deep learning 

network in this work is a two-stage neural network with an autoregressive peptide 

language model (PepLM) and an 8-layer 2048 hidden units regression head. It yielded 

0.870 as the Pearson correlation score and 0.0346 as mean absolute error on the high-

confidence test set. The information is compressed into 52M parameters (occupying 

around 200MB of memory including both PepLM and the regression head), which is 

significantly smaller when compared to the Random Forest models. When the two models 

are utilized in an ensemble setup, such that their predictions are averaged, the 

performance further increases, as the Pearson correlation score becomes 0.904, while the 

mean absolute error improves to 0.0304. 

The prediction performances, overall, are satisfactory, considering the mean 

absolute error is smaller than 5% of the CoAM range [0, 1] on cf200 test set, and thus, 

the work demonstrates feasible machine learning approaches for predicting function 

scores through deep-directed evolution. To increase the performance even more, 

alternative sample weighting and encoding schemes can be utilized. It is also possible to 

improve existing models by further hyperparameter optimization, and with more 
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sophisticated ensemble approaches. As such, this work provides a proof of principle that 

can be optimized in future work. 

The analysis emphasized that aromatic amino acids bind tightly to MoS2, and 

especially tryptophan (W) dominates the higher binding score region. This is observed 

both in the dataset and the models’ predictions. It is observed that the inclusion of 

tryptophan, or other aromatic amino-acids, along with sulfur-containing cysteine in a 

sequence increases the probability of a peptide remaining in the eluate in the performed 

phage-display experiment. This might be pointing out their particular binding mode 

and/or aromatic/hydrophobic mode of binding that is resistant to detergents.  

Sequence space is explored with random peptides using the two trained models, 

and their averaging ensemble. To further refine the search, random peptides with non-

aromatic and non-sulphur-mediated binding modes -peptides without cysteine, 

tryptophan, tyrosine, and phenylalanine (W, F, Y, C)- were targeted, as this type of 

selection of binding modes may be strategically significant while looking for optimal 

candidates. The exploration yielded thousands of candidate peptides that are suggested to 

perform well in terms of MoS2 binding affinity, both with aromatic and non-aromatic 

binding modes. The highest-scoring peptide yielded by the exploration was optimized by 

evaluating iterative single amino acid mutations and resulted in a candidate peptide, 

LRMLTRHNNLNN. Additional experimental work is required to confirm the behavior 

of high-scoring peptides with different residue patterns, and question where and how the 

models’ prediction differences arise.  

Overall, deep-directed evolution has proved to be revolutionary as a peptide, and, 

potentially, protein design methodology, where millions of amino acid sequences are 

produced, enabling advanced machine learning techniques for crafting exceptional 

peptides in terms of a specific function. This work demonstrates a feasible and applicable 

set of procedures for designing de novo peptides with desired function scores, amino acid 

compositions and other properties by employing deep directed evolution.  
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APPENDIX A 

 

 

In Figure A.1, feature importance maps of models fit to various datasets, with or 

without sample weights are shown in the form of heatmap. In comparison to the top two 

rows (models are fit by cf100 and cf50 respectively), in the bottom row (cf20), the 

importance of more amino acids emerges. In the right column, where outputs of models 

with sample weights are displayed, sample weighting output seems to balance out the 

dominance of amino acids other than tryptophan, cysteine, and histidine. 
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B) 

 
C) 

 

D) 

 
E) 

 

F) 

 
 

Figure A.1. Feature importance matrices derived from various Random Forest models 

fit to datasets with different count filters, with and without applying 

sampling weights. Applied datasets are cf100, cf50, and cf20 for the first 

row, second row and third row, respectively. While the heatmaps in the first 

column (A, C, E) are the result of fitting without sample weights, the 

heatmaps in the second column (B, D, F) are generated from models fit with 

sample weights.  
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APPENDIX B 

 

 

Training and test data of simple feed-forward neural network models that are 

trained on cf5 training set, and their respective experimental-vs-prediction scatter plots 

are shown in Figures B.1 and B.2. One-layer networks, as in the first columns of the two 

figures, seem to fit the training data, however, fail to generalize the validation data. The 

networks may not have enough capacity to capture the complex patterns and may require 

more neurons.  

Adding more layers with dropout seems to prevent overfitting but still falls short 

of significantly improving the outcome. 

 

 

 

 

Figure B.1. Training and validation loss plots of one-hot and VHSE8 encoding schemes, 

and various network sizes. One-layer networks seem to overfit despite their 

small size. This is thought to stem from the fact that network capacity is not 

enough to capture the actual patterns but fits the training set.   
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Figure B.2. Experimental vs prediction scatter plots of high-confidence test set 

evaluated on simple feed-forward neural networks with one-hot and VHSE8 

encoding schemes, and various network sizes.  

 

 

 

 

 

Figure B.3. cf5 test scatter plots of experimental vs predicted values by simple feed-

forward neural networks with one-hot and VHSE8 encoding schemes, and 

various network sizes.  



 

61 

  

A) 

 

B) 

 

 

Figure B.4. Experimental vs prediction scatter plots of the optimized Random Forest 

model trained on cf5 training set, tested on cf5 test set (left) and cf200 test 

set (right).   
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APPENDIX C 

 

 

 

 

Figure C.1. Substitution matrix of LRMLTRHLNVNN, showing predicted scores by 

the ensemble model regarding each mutation in scope of the first 

optimization step after the random search. Note that aromatic residues are 

not expected to contribute to the peptides’ binding affinity to MoS2 for this 

particular sequence.  
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Figure C.2. Substitution matrix of LRMLTRHLNLNN, showing predicted scores by 

the ensemble model regarding each mutation.  
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Figure C.3. Substitution matrix of LRMLTRHNNLNN, showing predicted scores by 

the ensemble model regarding each mutation after the second optimization 

step, projecting that the peptide is in the optimal form.  

 


