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ABSTRACT 

 

OPTIMIZATION OF INJECTION MOLDING PROCESS 

PARAMETERS FOR CYCLE TIME  

 

Plastic, an integral part of modern life, is widely used in various sectors such as 

automotive, aerospace, and healthcare. The rapid advancements in the plastic industry 

have improved plastic processing technologies. Among contemporary production 

methods, plastic injection molding has become one of the most commonly used 

techniques. As industrial markets evolve rapidly, the need to shorten product cycle times, 

reduce production costs, and increase production speeds to respond swiftly to demand has 

become increasingly urgent. In this context, the thesis addresses the reduction of cycle 

times through the optimization of process parameters in the injection molding process. 

By utilizing experimental data available in the literature, a mathematical model of the 

injection molding process has been developed using a hybrid method known as Neuro-

regression approach and cross-validation technique. To minimize the cycle time of the 

injection molding process, multi-objective optimization scenarios were created using 

seven different process parameters and two parameters affecting product quality. 

Optimization studies were carried out using stochastic optimization methods with the 

"Simulated Annealing," "Random Search," "Nelder-Mead," and "Differential Evolution" 

algorithms in the "Wolfram Mathematica" program with the help of the "NMinimize" 

tool. When comparing the obtained optimization results with those in the literature, it was 

found that the model and optimization methods used in the study are reliable and 

applicable. 
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ÖZET 

 

ÇEVRİM SÜRESİ İÇİN ENJEKSİYON KALIPLAMA PROSES 

PARAMETRELERİNİN OPTİMİZASYONU 

 

Modern yaşamın en önemli parçası haline gelen plastik, otomotiv, havacılık, tıp 

gibi çeşitli sektörlerde sıkça kullanılmaktadır. Plastik endüstrisindeki hızlı gelişmeler, 

plastik işleme teknolojilerini geliştirmiştir. Günümüzün üretim yöntemlerinde, plastik 

enjeksiyon kalıplama, en yaygın kullanılan üretim yöntemlerinden olmuştur. Endüstriyel 

pazarlar hızla gelişirken, ürün çevrim sürelerini kısaltma, üretim maliyetlerini düşürmek 

ve üretim hızlarının arttırılmasıyla talebe hızlı cevap verme ihtiyacı giderek daha acil hale 

gelmiştir. Bu bağlamda, tez çalışmasında enjeksiyon kalıplama prosesinin proses 

parametrelerinin optimizasyonu ile çevrim süresinin kısaltılması ele alınmıştır. 

Literatürde bulunan deneysel veriler kullanılarak, hibrit bir yöntem olan Nöro-regresyon 

yaklaşımı ve çapraz doğruluma tekniği ile enjeksiyon kalıplama prosesinin matematiksel 

modellemesi yapılmıştır. Enjeksiyon kalıplama prosesinin çevrim süresinin minimize 

etme amacıyla, yedi farklı proses parametresi ve iki adet ürün kalitesine etki eden 

parameter kullanılarak çok amaçlı optimizasyon senaryoları oluşturulmuştur. 

Optimizasyon çalışmaları, "Simulated Annealing", "Random Search", "Nelder-Mead" ve 

"Differential Evolution" algoritmaları kullanılarak "Wolfram Mathematica" programında 

"NMinimize" aracı yardımıyla stokastik optimizasyon yöntemleri ile gerçekleştirilmiştir. 

Elde edilen optimizasyon sonuçları ve literatürdeki sonuçlar karşılaştırıldığında 

çalışmada kullanılan modelin ve optimizasyon yöntemlerinin güvenilir ve uygulanabilir 

olduğu görülmüştür. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Literature Survey  

 

Throughout history, humans have continuously developed new materials to meet 

their evolving needs. Plastic, which has become an integral part of modern life, reflects 

humanity's ingenuity and finds applications in various sectors such as automotive, 

aerospace, medicine, and even in sensitive areas like the human body. The rapid 

advancement of plastics can be attributed to the incorporation of special additives into 

base materials like PP, PVC, and PE, allowing for customizable production based on 

specific requirements. Its flexibility, high insulation properties, ease of cleaning, 

reusability, and durability contribute to its value addition to the economy, offering 

effective solutions to users needs. 1 

The rapid advancements in the plastic industry also encompass plastic processing 

technologies. Particularly, significant progress has been made in the not-so-new plastic 

injection technology, making it the most widely used processing technique. This progress 

extends beyond just manufacturing products; it has also influenced every aspect from 

product design to material and machinery selection. Across Europe and many parts of the 

world, considerable importance is placed on the advancements in the plastic industry. 2 

 

 

 

Figure 1.1. 3D model of a part that can be produced by injection molding 
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Nowadays manufacturing method, plastic injection molding serves as a 

cornerstone for crafting top-tier plastic products. As markets evolve rapidly, the need to 

trim down product cycle times becomes increasingly pressing. In this context, injection 

molding is a widely used manufacturing process, and optimizing its parameters is crucial 

for enhancing production efficiency. Several studies have successfully tackled this 

challenge, each employing different methodologies and achieving notable improvements 

in cycle time reduction. 

 

 

Figure 1.2. 3D model of a part produced by injection molding 

 

Mukras et al. an experimental-based multi-objective optimization framework for 

determining the optimal injection molding process parameters to reduce product defects. 

The research focuses on two main defects affecting product quality: warpage and 

volumetric shrinkage. Seven critical injection molding process parameters were analyzed: 

mold temperature, melt temperature, packing pressure, packing time, cooling time, 

injection speed, and injection pressure. The methodology employed a face-centered 

central composite design (FCCCD) approach to establish specific test points within a 

defined domain. These test points were used to conduct injection molding experiments, 

and the resulting products were evaluated for warpage and volumetric shrinkage. Distinct 

relationships between the process parameters and defects were developed based on 

experimental data, forming the foundation for the optimization process. A genetic 

algorithm (GA) was utilized to formulate and solve a multi-objective optimization 

problem aimed at minimizing both defects simultaneously. The optimization results 

indicated a significant trade-off between minimizing warpage and volumetric shrinkage. 

To validate these results, additional experiments were conducted under the assumption of 

equal importance for both defects. The experimental results closely matched the 

optimization results, with a discrepancy of about 7%. 3  
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Xu et al. due to, injection molding is a widely used process in manufacturing 

polymer products and warpage during the process can negatively affect mechanical 

performance study on this topic. They proposed using a combination of artificial neural 

network (ANN) and particle swarm optimization (PSO) algorithms for this optimization. 

Optimizing process parameters is essential for improving product performance. Their 

approach includes an integrated finite element analysis (FEA) to evaluate the injection 

molding process, residual stresses, and mechanical performance. A back propagation 

neural network (BPNN) model maps the relationship between process parameters and 

mechanical performance, while the PSO algorithm optimizes these parameters. In a case 

study of a polycarbonate (PC) vehicle window, optimized parameters reduced the 

maximum von Mises stress by 12.9%. This study demonstrates that optimizing process 

parameters can significantly enhance the mechanical performance of polymer products. 4  

Ozcelik and Erzurumlu have developed various optimization methods to 

minimize distortion of thin-shelled plastic parts produced by injection molding. In this 

context, they proposed an effective optimization methodology using artificial neural 

network (ANN) and genetic algorithm (GA). In their study, PC Button Base was used as 

an example and process condition parameters such as mold temperature, melt 

temperature, printing pressure, printing time, runner type, entry location and cooling time 

were evaluated to ensure minimum distortion. Finite element analysis was performed for 

the process parameter combinations arranged using a three-level full factorial 

experimental design, and according to the analysis of variance (ANOVA) results, the 

effects of printing pressure, mold temperature, melt temperature, printing time, cooling 

time, runner type and inlet location on distortion were , respectively. 33.7%, 21.6%, 

20.5%, 16.1%, 5.1%, 1.5% and 1.3%. The artificial neural network model created using 

the most important process parameters was integrated with the genetic algorithm, 

optimum process parameter values were found and a significant improvement was 

achieved by reducing the distortion of the initial model by 51%. This study makes a 

significant contribution to the literature by providing an optimization method that can be 

applied to solving warpage problems of thin-shelled plastic parts with complex 

geometries. 5 

In another study optimize the tensile strength and flexural modulus in the injection 

molding process for recycled polypropylene. Seven process parameters were examined, 

namely melting temperature, injection pressure, injection speed, injection time, holding 
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pressure, holding time and cooling time. Suitable values were determined by experiments 

and optimized using Taguchi methods and desirability functions. The results show that 

the factors that most affect tensile strength are melting temperature, injection time and 

holding time; It has been shown that the factors that most affect the flexural modulus are 

melting temperature, holding time and injection pressure. The best parameters were 

determined as 180°C melting temperature, 55 MPa injection pressure, 30 mm/s injection 

speed, 8 sec injection time, 20 MPa holding pressure, 3 sec holding time and 25 sec 

cooling time. These parameters resulted in a tensile strength of 199 kgf/cm² and a flexural 

modulus of 10,050 kgf/cm². Regression analysis showed that there is a quantitative 

relationship between process parameters and product quality, with tensile strength at 85% 

R2 value and flexural modulus at 59% R2 value. 6 

In another study used the Taguchi method and analysis of variance (ANOVA) to 

determine the most important parameters that cause skew during the molding process. 

Process parameters were then optimized to reduce warpage through a numerical approach 

using SolidWorks Plastics. The results show that ambient temperature is the most 

important parameter for warpage (42.116%), followed by melting temperature 

(41.278%). Among other parameters, mold temperature contributed 5.16%, injection 

pressure 1.32%, cooling time 1.19%, and pressure holding time 0.59%. Warpage 

decreased by 7.72% from 1.4556 mm to 1.33803 mm with optimized parameters. 7 

In another study, various optimization methods were developed to minimize warpage of 

injection molding parts. An adaptive optimization method using the Kriging backup 

model was used in the study. The Kriging surrogate model was used to approximate the 

relationship between warpage and process parameters, replacing the time-consuming 

MoldFlow analysis. In his experiments on a mobile phone model, he observed that the 

warpage was reduced by 38% compared to the lowest warpage value in the samples. 

This finding shows that the optimization method is effective in reducing warpage of 

injection molding parts. Examining the optimization results, he determined that the 

mold temperature had little effect on the warpage, while the injection time was a very 

important factor in the selected range; but the injection time causes sharp changes in 

warpage. Packing time also emerged as an important factor, and after a certain value but 

it was understood that long pressing times had no effect on warpage. At the end of the 

study, a problem was identified. When the total packing time is too short, the 
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performance of the parts is bad affected, and when packing time is too long, it causes 

waste of energy and material. 8 

Kurtaran et al. conducted a comprehensive study to determine the optimum values 

of process parameters in the injection molding of a bus roof lamp base. They discussed 

basic process parameters such as mold temperature, melt temperature, packaging 

pressure, packaging pressure time and cooling time. In their approach, they took 

advantage of the finite element software MoldFlow, statistical experimental design, 

artificial neural networks and genetic algorithms. They performed finite element analyzes 

for the designed process parameter combinations using a statistical three-level full 

factorial experimental design. Based on the results of these analyses, they created a 

prediction model for deformation using a feed-forward artificial neural network. This 

artificial neural network model was validated for predictive ability and then integrated 

with an efficient genetic algorithm to find optimal process parameter values. The 

optimization results showed that the genetic algorithm reduced the deformation of the 

initial bus ceiling lamp base model by 46.5%. 9  

Kurtaran and Erzurumlu developed an effective optimization methodology using 

response surface methodology (RSM) and genetic algorithm (GA) to minimize the 

warpage of thin-shelled plastic parts produced by injection molding. In this study, a bus 

ceiling lamp base is considered as an example of a thin-shelled plastic part. Process 

condition parameters such as mold temperature, melt temperature, packing pressure, 

packing time and cooling time were determined to ensure minimum warpage. Finite 

element (FE) analyzes were performed for the combinations of process parameters 

organized using the statistical three-level full factorial experimental design method, and 

the most critical process parameters affecting warpage were determined by analysis of 

variance (ANOVA). From the ANOVA results, it is shown that packaging pressure, mold 

temperature, melting temperature, packaging time, and cooling time affect warping by 

37.39%, 31.35%, 26.94%, 3.65%, and 0.6%, respectively by the warpage. A prediction 

model was created in terms of the most important process parameters for warpage 

(packing pressure, mold temperature, and melt temperature), and this model was 

combined with an effective GA to find the optimum process parameter values. GA 

improved the warpage by approximately 46%, significantly reducing the warpage of the 

initial model. This study reveals that the proposed optimization methodology can also be 

used for the improvement of other thin-shell plastic parts. 10  
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In this study, a method to optimize injection molding parameters to reduce product 

cycle time while ensuring product quality by minimizing defects like volumetric 

shrinkage and warpage. Seven parameters were considered, and experiments were 

conducted to determine their effects on defects. Using the kriging technique, relationships 

between parameters, cycle time, and defects were established. An optimization problem 

was formulated to minimize cycle time while keeping defects within acceptable limits. 

The problem was solved using the Fmincon function from Matlab. Results revealed a 

trade off between cycle time and defects, showing that reducing cycle time led to 

increased defects and vice versa. Validation experiments closely matched simulation 

results, with small differences observed in cycle time and defects. Specifically, the 

validation experiment showed differences of 6.7% in cycle time, 3.2% in warpage, and 

8% in volumetric shrinkage compared to the simulation optimization results. 11 

 

1.2. The Aim of Thesis 

 

This study introduces a method for enhancing the efficiency of injection molding 

by reducing cycle time. The method entails establishing connections between process 

parameters and both product quality and cycle time.  

 Investigating the correlation between injection molding process variables and 

cycle time, shrinkage, and warpage through mathematical modeling. 

 Comparing cycle times, shrinkage, and warpage achieved using stochastic 

methods such as Differential Evolution (DE), Nelder-Mead (NM), Simulated 

Annealing (SA), and Random Search (RS). 

 Assessing the outcomes of the optimization algorithms in comparison with each 

other and with existing findings in the literature. 11 
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CHAPTER 2 

 

 INJECTION MOLDING AND PROCESS PARAMETERS 

 

The plastic injection process involves creating plastic items by melting 

thermoplastic raw materials using a mold. This process is carried out using plastic 

injection machines, enabling serial production with high precision and efficiency. 

Moreover, it has the potential to deliver environmental advantages by incorporating 

recycled material. 12 

The plastic injection process starts by melting and transforming thermoplastic 

materials, typically in granular or powdered form, into a liquid state. Following this, the 

liquid plastic is transferred into the funnel of a high-pressure injection machine. The 

machine then injects the material into the mold cavity, maintaining pressure for a specific 

duration. After this period, the mold is opened, and the finished product is removed. 13 

Advantages of Plastic Injection Molding; 

 Suitable for mass production. 

 Enables the easy production of complex shapes. 

 High tolerance quality. 

 Low probability of faulty production. 

 Capable of reaching high production numbers compared to other manufacturing 

methods. 

 Suitable for additive manufacturing (such as flame-retardant additives). 

Disadvantages of Plastic Injection Molding; 

 Investment costs are high. 

 Extensive knowledge and experience are necessary for the production of plastic 

injection molds. 

 The preparatory stage for plastic injection mold production can be costly due to 

the tests and processes. 

The manufacturing process of a plastic injection part consists of four stages as 

clamping, injection, cooling and ejection. The initial stage in the injection molding 

procedure is clamping. Injection molds are commonly crafted in two sections resembling 

a clamshell. During the clamping step, the two metallic plates of the mold are brought 
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together using a machine press. After the two metallic plates are pressed together, the 

injection process starts. Initially, the plastic material, often in granular or powdered form, 

undergoes melting until it becomes a fully liquid state. Subsequently, this liquid is 

injected into the mold. The cooling stage, the mold is left undisturbed, allowing the hot 

plastic within to cool and solidify into a finished product that can be safely extracted from 

the mold. After the product has cooled down, a clamping mechanism gradually separates 

the two halves of the mold and the mold opened, facilitating the safe and easy extraction 

of the finished product. After the mold is open, a ejector mechanism gently pushes the 

solidified product out of the mold cavity and the process is completed. 

 

 

Figure 2.1. 3D Model of an injection mold 

 

2.1. Process Parameters 

 

The quality of products produced by injection molding depends on many factors. 

In addition to product geometry and material properties, the injection molding process 

itself is also a crucial factor. In this section, we will examine seven parameters of the 

injection molding process. These parameters are injection speed, injection pressure, 

cooling time, packing pressure, mold temperature, packing time, and melt temperature. 12 

Determining the injection time in injection molding is indeed a critical step. 

Choosing an appropriate injection time for homogeneous filling of the material directly 

affects the quality of the product. Especially in the production of parts with different 
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thicknesses or complex geometries, the correct adjustment of the injection time ensures 

that the part has the desired properties. 12 

 

 

Figure 2.2. Parts of a injection molding machine 11 

 

Starting with a slow injection allows the material to fill the mold successfully 

without damaging it. Then, a fast injection ensures complete filling of the material, 

followed by a slow injection again to complete the process, allowing the material to settle 

and fill properly. This process should be adjusted according to the flow properties of the 

material, mold geometry, and product requirements. Failure to determine the optimum 

injection time can result in non-uniform filling of the material in the mold, leading to a 

decrease in product quality. Variations in filling in different parts of the material can lead 

to problems such as warping, shrinking, or draw ratio in the product. Therefore, 

determining the appropriate injection time for each product is of critical importance to 

improve product quality and ensure the production of parts with desired properties. 12 

Injection speed is the velocity at which thermoplastic material is introduced into 

the injection mold. Employing a high injection speed is advantageous for thin-walled part 

production as it allows swift filling of the mold, ensuring complete cavity filling before 

material solidification. Conversely, for thick-walled parts, high injection speeds are 

undesirable as they may hinder thorough cavity filling and lead to unwanted material 

accumulation within the mold, resulting in surface defects and uneven thickness. 2 
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Thus, for thick-walled part manufacturing, employing a slower injection speed 

yields superior outcome. A slower injection speed promotes more uniform material 

distribution and improved cavity filling, resulting in a more consistent structure and 

reduced surface imperfections, ultimately enhancing part quality and functionality. 2 

Injection pressure represents the force required to fill the injection mold. This 

pressure pushes the injected material towards the mold, ensuring it fills all the cavities. If 

the injection pressure is too high, it can lead to deformations in the product. These 

deformations often result in unwanted changes in the shape or dimensions of the part. 

Conversely, insufficient injection pressure can cause incomplete filling of the mold, 

resulting in the creation of defective parts. Therefore, determining the correct injection 

pressure is crucial. The optimum injection pressure should be set to ensure complete mold 

filling without causing unwanted deformations in the product. This is a critical factor in 

producing high-quality and flawless parts. 2 

Cooling time is the time it takes for the product to cool after being removed from 

the mold. The correct cooling time ensures that the product hardens to the desired size 

and shape. Rapid cooling can lead to stress and cracking, while slow cooling can extend 

production time. 14 

Packing pressure is the pressure applied to compress the thermoplastic material in 

the mold after injection. The correct packing pressure is important for compressing the 

material and ensuring the dimensional stability of the product. 14 

Mold temperature is the temperature of the inner surface of the injection mold. 

The correct mold temperature affects the fluidity of the material and the filling process. 

Incorrect mold temperature can affect the surface quality and dimensional tolerances of 

the product. 14 

Packing time is the time the thermoplastic material is compressed in the injection 

mold. The correct packing time ensures that the material is compressed to the desired 

density. 14 

Melt temperature is the temperature of the thermoplastic melt before molding. The 

correct melt temperature affects the fluidity of the material and filling performance. 

Incorrect melt temperature can result in filling deficiencies or surface defects. 14 

Each of these parameters is important to control in the injection molding process, 

and adjusting them correctly can improve product quality and reduce costs.  
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CHAPTER 3 

 

MODELING AND REGRESSION ANALYSIS 

 

Mathematical modeling is the process of mathematically describing a real-world 

phenomenon or system. In a more theoretical definition, mathematical modeling is the 

definition of the relationship between input and output parameters in the data set obtained 

as a result of physical problems using mathematical equations. In this process, it is very 

important to determine the experiments that need to be carried out with the appropriate 

experimental design method in order to define the relationship between input and output 

parameters with the highest accuracy value. 15 

In this chapter, the definitions of the concepts of mathematical modeling, 

regression analysis and neuro-regression approach, which are the basis of the thesis, are 

briefly and concisely discussed. Figure 3.1 shows the design process that ends with 

finding the most optimal solution for a problem. 

 

 

Figure 3.1. Flow diagram for the optimal design 

 

3.1. Regression Analysis  

 

Regression analysis is a statistical technique used to understand how one variable 

is affected by one or more other variables. It is often used to understand how the 

dependent variable is explained by the independent variables. In other words, regression 

analysis is a statistical technique used in creating a mathematical model. In this context, 

regression analysis can be considered a part of modeling. 16 Regression analysis can be 

classified as simple linear regression, simple non-linear regression, multiple linear 

regression and multiple non-linear regression, based on the number of variables of the 

problem and model type. 17 
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3.1.1. Simple Linear Regression 

 

Simple linear regression is a type of regression analysis that examines the effect 

of a single independent variable on a single dependent variable. The main purpose of this 

type of regression is to define the linear function that best expresses the relationship 

between the dependent and independent variables. 18 The simple linear regression model 

showing the relationship between variables is included in Equation 3.1; 

 

   𝑦 =  𝛽0 + 𝛽1𝑋 + 𝜀                                                      (3.1) 

 

where 𝛽0 is the point where line intersects y-axis and also regression constant. β1 

is the slope of the line / the regression coefficient, lastly 𝜀 is the error value.  

 

3.1.2. Simple Non-linear Regression 

 

Simple non-linear regression is a regression analysis that examines situations 

where the dependent variable does not show a linear relationship with the independent 

variables. In this case, modeling of the dependent variable cannot be done with a linear 

function and a non-linear function or model is usually used. Simple nonlinear regression 

is preferred on complex data sets or when a linear model is not appropriate. For example, 

non-linear regression can be used in case such as the change of a dependent variable over 

time. The simple non-linear regression model showing the relationship between variables 

is included in Equation 3.2; 

 

 𝑦 =  𝛽0 + 𝛽1𝑋
2 + 𝜀                                                    (3.2)    

           

where β0 is the point where line intersects y-axis and also regression constant. β1 

is the slope of the line / the regression coefficient, lastly ε is the error value. 18 

 

3.1.3. Multiple Linear Regression 

 

Multiple linear regression is a method of regression analysis that examines the 

effect of multiple independent variables on one or more dependent variables. This 
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analysis is used to model situations where the dependent variable is affected by more than 

one independent variable. 18 The Multiple linear regression model is generally expressed 

by the following formula; 

 

𝑦 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 +  𝜀                                  (3.3) 

 

3.1.4. Multiple Non-Linear Regression 

 

Multiple non-linear regression is a method of regression analysis performed using 

a non-linear model to examine the effect of multiple independent variables on one or more 

dependent variables. This type of analysis is used to more accurately model the 

relationship between the independent variables and the dependent variable. It is also 

suitable when the data is complex and a linear model is not appropriate. Equation 3.4 is 

the general form of multiple non-linear regression model. 18 

 

𝑦 =  𝛽0 + 𝛽1𝑋1
2 + 𝛽2𝑋2

2 +⋯+ 𝛽𝑛𝑋𝑛
2 +  𝜀                                    (3.4) 

 

When performing regression analysis, the performance of the model is determined 

according to the values of the coefficient of determination (R2). This value shows the 

percentage of changes in the dependent variable that can be explained by the independent 

variables. The coefficient of determination value may take a negative value in some 

special cases. This event means that the model is not suitable for the defined problem. 

Additionally, R2 taking the value of zero means that the independent variables cannot 

explain the dependent variable in any way. R2 value being 1 or close to 1 means that the 

reliability of the model is high. In modeling studies in the literature, this value is 

considered to be around 0.90 for a good model. The mathematical formulation of the R-

squared value is given in Equation 3.5, 3.6 and 3.7; 

 

  𝑅2 = 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇
                                                              (3.5) 

 

𝑆𝑆𝐸 = ∑ (�̂�𝑖 −𝑖 𝑦 )𝟐                                                   (3.6) 
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𝑆𝑆𝑇 = ∑ (𝑦𝑖 −𝑖 y )2                                              (3.7) 

 

In these equations, SSE is sum of squared regression, SST is total variation in the 

data, yi is the y value for observation I, y  is the mean of y value,  �̂�𝑖 is the predicted value 

of y for observation i.  

 

3.2. Artificial Neural Network 

 

Artificial neural network (ANN) is an artificial intelligence model designed based 

on the functioning of the neural networks of the human brain. Artificial neural networks 

are used to perform a variety of functions such as identifying, classifying or predicting 

complex data patterns. 

The basic components of artificial neural networks are: 19 

Input Layer: It is the layer that represents the input of the data set. Each input 

represents a feature or variable. 

Hidden Layers: These are the layers consisting of nerve cells located between 

the input and output layers. They are used to understand complex patterns present in the 

data set. Additionally, there may be more than one hidden layer in the artificial neural 

network. 

Output Layer: This is the layer where the outputs of the artificial neural network 

occur. Depending on the type of operation, the output layer may have one or more outputs. 

 

3.3. Neuro-Regression Modeling  

 

Optimum design can be obtained by the following steps as Neuro-regression 

modelling, boundedness of the model and optimization. 20  Neuro-regression modelling 

(NRM) is a hybrid method that combines the strengths of regression analysis and artificial 

neural network to increase the reliability of modeling predictions. Neuro-regression 

modeling is often used when modeling non-linear relationships. It is also effective when 

modeling complex relationships with multiple independent variables. In cases where 

traditional regression models cannot be successful in non-linear structures, neuro-

regression models can be preferred due to their performance. 
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In the NRM approach, the data set; It can be divided into three subheadings: 

training, testing and validation. During the training phase, data is used to create the 

mathematical model. The aim here is to enable the model to learn the physical and 

mathematical nature of the problem by using the data set consisting of inputs and outputs 

included in the system. Although the data used in the training phase is generally set to be 

70-80% of the entire data set, this percentage may change. If successful models can be 

obtained by keeping the training set percentage at lower levels, lower percentages can be 

used. The test set is a data set separated from the entire data set to evaluate the 

performance of the model obtained at the end of the training process. This data set 

accounts for 10% to 15% of the total data set. It consists of data that the model has not 

seen before during training and is used to check the generalization ability of the model. 

The validation set is a data set used to adjust the performance of the model in the training 

process. This set makes up the remaining part (10-15%) of the total data set. A validation 

set is used to ensure that the model does not overfit the training data set. 16, 21 

 

3.4. Cross Validation 

 

Cross-validation is a method used to check the performance and generalization 

ability of the model in applications such as machine learning. In this validation technique, 

sample observation sections are obtained from the training set. After the model is set 

based on the training set, its performance is measured against new validation sets. For 

example, the model is trained on the first layer and tested on the remaining layers. Then, 

while the model is trained on the second layer, it is tested on the remaining layers and this 

process is repeated. In short, cross-validation is used to detect problems such as 

overfitting and increase generalization ability. Additionally, it enables more reliable 

model predictions to be made in problems with small numbers of data. Also, the most 

commonly used cross-validation method is k-fold cross-validation. 22, 23 
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CHAPTER 4 

 

OPTIMIZATION  

 

4.1 Introduction  

 

Optimization is the application of processes or methods aimed at maximizing or 

minimizing the objective functions of a system within certain constraints to make it as 

efficient as possible. In short, it is the collection of methods applied to solve a problem in 

the best possible way or to bring a system to the optimal state. Maximizing or minimizing 

means achieving the greatest success in the shortest time. Optimization is mostly applied 

to find solutions to existing problems. Optimization studies are developed according to 

the specific requirements of the problem under consideration. Problems with limited 

decision variables are referred to as constrained models, while those without such 

limitations are defined as unconstrained models. 24 

 

4.2 Definition of an Optimization Problem  

 

The optimization problem is expressed mathematically as follows; 

 

Maximum or minimum :                𝑓𝑖(𝑥)                                                                              (4.1) 

 

                                                   𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)                                                    (4.2)    

                                                                          

Subject to                                         ℎ𝑗(𝑥) = 0,                     (𝑗 = 1,2,3, … , 𝐽)                          (4.3) 

 

                                      𝑔𝑘(𝑥) ≤ 0,                   (𝑘 = 1,2,3, … , 𝐾)                         (4.4) 

 

here x is optimization variables, 𝑓𝑖(𝑥) is objective function,  ℎ𝑗(𝑥), and 𝑔𝑘(𝑥) are equality 

and inequality constraints of the optimization problem respectively. In short, the purpose 

of mathematical definition of the optimization problem is to determine the decision 

variables that obtain the best value.  
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Optimization classified into two types, single and multi-objective optimizations, 

according to their purposes. 25-27 

 

4.2.1 Single Objective Optimization 

 

Single-objective optimization, which can be expressed mathematically, is the 

determination of the parameters that the model must have in order to find the most 

appropriate value for a problem. In such problems, there is a single objective such as 

reducing mass or cost, and increasing efficiency. 

Single objective optimization problems can be described mathematically as 

follows; 

 

Minimum :                         𝑓(𝑥)                                                                                    (4.5)   

                    

                                          𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)                                                               (4.6)    

                                                                          

Subject to                              ℎ𝑗(𝑥) = 0,                     (𝑗 = 1,2,3, … , 𝑘)                                     (4.7) 

 

                             𝑔𝑖(𝑥) ≤ 0,                    (𝑖 = 1,2,3, … ,𝑚)                                      (4.8) 

 

where f (x) is objective function which is parameter to be optimized and the x values are 

called the design parameters. Additionally, hj (x) and gi (x) functions express the constraint 

range established for the optimization of the objective function. Figure. 4.1 indicated that 

maximization and minimization of the objective function. As it can be seen in figure, − f 

(x) can be maximized to minimize f (x). 25, 26 

 

4.2.2 Multi Objective Optimization 

 

Engineering problems encountered in real life involve many objectives that 

require both durable and cheap, or both durable and light. Since single-objective 

optimization cannot meet these requirements at the same time, meaningful results cannot 

be obtained. For this reason, multi-objective optimization algorithms have been 

developed by researchers.28 Multi-objective optimization is the simultaneous 
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optimization of multiple objectives. Therefore, such problems have a set of solutions 

rather than a single optimal solution.  

 

 

Figure 4.1. The maximum and minimum of the objective function 

 

Multi objective optimization problems can be described mathematically as 

follows; 

 

Minimum:                          𝑓1(𝑥),  𝑓2(𝑥)…  𝑓𝑡(𝑥)                                                           (4.9)  

                                             

                                        𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛)                                                           (4.10)  

                                                                            

Subject to                              ℎ𝑗(𝑥) = 0,                     (𝑗 = 1,2,3, … , 𝑘)                                     (4.11) 

 

                            𝑔𝑖(𝑥) ≤ 0,                    (𝑖 = 1,2,3, … ,𝑚)                                      (4.12) 

 

where f (x) is objective function which is parameter to be optimized, while the x 

values are called the design parameters. Also, hj (x) and gi (x) functions are defined as the 

constraint range established for the optimization of the objective function. This 

optimization problem can be written as a maximization or minimization.26 
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4.3 Traditional and Non-Traditional Optimization Methods 

 

Traditional optimization (deterministic methods) aims to solve problems using 

mathematical formulas or analytical techniques. It is generally effective for problems with 

continuously differentiable functions. For example, it includes techniques such as 

Lagrange multipliers and constraint variation 29. 

Stochastic systems are also systems in which there is a random relationship 

between inputs and outputs based on probability distribution. In stochastic optimization, 

decision variables, constraints or objective functions contain uncertainty. Therefore, 

problems are described by probability distributions or stochastic processes. Stochastic 

methods, which operate based on computational simulation of concepts or problems, are 

used across all disciplines, thanks to their ability to produce discrete solutions and obtain 

solutions close to global optimum, regardless of the starting point.30 

Stochastic studies that began with genetic algorithms have been expanded to 

include other stochastic methods such as Differential Evolution (DE), Simulated 

Annealing (SA), Random Search (RS), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Tabu Search (TS), and Artificial Bee Colony (ABC). Within the 

scope of the thesis, optimization scenarios were solved with Modified Differential 

Evolution (MDE), Modified Simulated Annealing (MSA), Modified Nelder-Mead 

(MNM) and Modified Random Search (MRS) algorithms, which are frequently used in 

engineering problems. In general, the term modified algorithm refers to a customized or 

improved version of certain features or functionality of a base algorithm. These 

modifications are often aimed at providing solutions better suited to a particular 

application or type of problem.26, 31 

 

4.3.1 Modified Differential Evolution Algorithm 

 

Differential Evolution (DE) is a population-based optimization algorithm based 

on the principles of natural selection and genetic crossover. It is also widely used to solve 

continuous and multidimensional optimization problems. Differential Evolution (DE) 

does not directly handle constraints but is effective for optimizing problems where 

constraints are embedded within the objective function. Among various algorithms, DE 
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stands out as one of the most robust methods for optimizing problems with real-valued 

parameters.  

The Modified Differential Evolution (MDE) algorithm has been developed by 

introducing adjustments that alter the scale factor and crossover rate. These adaptations 

facilitate the avoidance of stagnation for all solutions in the original DE algorithm. The 

primary advantage of the MDE algorithm lies in the scalability and convergence speed of 

each solution.30, 32, 33 The flowchart of the algorithm is given in Figure 4.2.30   

 

 

Figure 4.2. Flowchart of Differential Evolution Algorithm 30 

 

4.3.2 Modified Nelder-Mead Algorithm 

 

The Nelder-Mead optimization algorithm is used for locating the minimum point 

within a local context in multi-dimensional optimization problems that do not have 

constraints. Since it is not a global algorithm, it is not suitable for optimization problems 

with large local minimum. However, it can give effective results in optimization problems 

involving a small number of local minimum. The NM algorithm, which has four control 
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parameters: reflection, expansion, construction and shrinkage factor, is an iterative 

method. 

NM optimization algorithm cannot solve constrained optimization problems. 

Therefore, a Modified Nelder-Mead (NNM) algorithm is obtained by adding a "penalty 

function" to the traditional flow 34-36. The flowchart of the algorithm is given in Figure 

4.3.37  

 

 

Figure 4.3. Flowchart of Nelder-Mead Algorithm 30 

 

4.3.3 Modified Simulated Annealing Algorithm 

 

Simulated annealing (SA) is a meta-heuristic local search technique used for 

discrete and to a lesser extent continuous optimization problems. One of the main features 

of this method is the attempt to find the global optimum by moving away from local 

optima by allowing steps that worsen the objective function. In short, it is among the 

algorithms used to obtain the best solutions. 

Modified Simulated Annealing (MSA) is more powerful than the traditional 

Simulated Annealing method because it increases the ability to find the global optimum 
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using hybrid algorithms and can also quickly identify local minimum.21, 38, 39 The 

flowchart of the algorithm is given in Figure 4.4.30 

 

 

Figure 4.4. Flowchart of Simulated Annealing Algorithm 30 

 

4.3.4 Modified Random Search Algorithm 

 

The Random Search (RA) method, also known as the Monte-Carlo method, was 

the earliest optimization algorithm utilizing stochastic processes. The algorithm begins 

by generating a population with randomly chosen starting points. It then evaluates the 

local minimum convergence of these starting points using a local search method. The best 

local minimum point identified through this process is selected as the solution. 

Also, Modified Random Search (MRS), methods like conjugate gradient, Quasi-

Newton, Newton, Levenberg-Marquardt, and non-linear interior point methods are 

employed to optimize the placement of all variables within the objective function.40, 41 

The flowchart of the algorithm is given in Figure 4.5.42 
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Figure 4.5. Flowchart of Random Search Algorithm 42 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1. Problem Statement   

 

In this thesis, an optimization study was conducted to reduce the cycle time of the 

injection molding process, which is significant for industrial production and used in the 

manufacturing of plastic parts with low tolerance and complex structures. While 

performing the optimization study, attention was paid to ensuring that product defects 

such as shrinkage and warpage remained within acceptable ranges, alongside other 

process parameters that affect the cycle time. 

In the Saad Mukras’ study 11, as seen in Table 5.1, seven process parameters 

(injection speed, injection pressure, cooling time, packing pressure, mold temperature, 

packing time, and melt temperature) and two product defects (shrinkage and warpage) 

were identified. From the experimental data, the lower and upper limits of the process 

parameters and acceptable product defects were determined. The relationships between 

the process parameters, cycle time, and product defects were examined, interpreted, and 

compared. 

 

Table 5.1. Process Parameters of injection molding process 11 

Inputs Outputs 

Injection speed (IS) 

Injection pressure (IP) 

Cooling time (CT) 

Packing pressure (PP) 

Mold temperature (MOT) 

Packing time (PT) 

Melt temperature (MT) 

Cycle Time (CYCT) 

Shrinkage (SK) 

Warpage (WP) 

 

Saad Mukras 11 conducted his experiments using Arburg Allrounder 420C model 

injection molding unit and a simple mold with product dimensions of 117mm x 93mm 

and a thickness of 3mm. The most important factor affecting the injection time is the 

fluidity of the material being molded and its behavior in response to speed. For example, 

while polyethylene group polymers are suitable for high-speed molding, polypropylene 
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materials yield better results when molded at lower speeds compared to polyethylene 

materials. In the related study, the experimental work was conducted with polyethylene 

material (HDPE M80064), and the material properties are shown in Table 5.2.11 

 

Table 5.2. Properties of HDPE M80064 11 

Property of HDPE M80064 Value 

Stress at yield 33 MPa 

Melt flow rate (at 190°C and 2.16 kg) 8 g/10 min 

Density 964 kg/m3 

 

To determine the optimal combination of process parameters for achieving the 

shortest cycle time, it's necessary to establish and refine a relationship between these 

parameters and the cycle time and Table 5.4 11 shows these relationships. This 

optimization must consider constraints related to acceptable product defects, defined by 

two additional relationships that link process parameters to product defects, such as 

warpage and volumetric shrinkage, and these are shown in Table 5.3.11 

 

Table 5.3. Acceptable Product Defects 11 

Parameters Minimum Maximum 

Warpage (mm) 1.97 6.49 

Shirinkage (cm3) 2.9 16 

 

Table 5.4. Relationship between process parameters of injection molding process and  

                    cycle time and product defects 

Process Parameters Relationship with outputs 

Injection speed (IS) 
Increasing the injection speed reduces cycle time while increasing 

warpage and shrinkage. 

Injection pressure (IP) 
Increasing the injection pressure shortens the cycle time and 

reduces warpage and shrinkage. 

Cooling time (CT) 
Increasing the cooling time reduces warpage and shrinkage and 

increases cycle time. 

Packing pressure (PP) 
While increasing the packing pressure reduces warpage and 

shrinkage, a clear comment cannot be made about the cycle time. 

Mold temperature 

(MOT) 

Increasing the mold temperature increases warpage and shrinkage 

and also increases cycle time. 

Packing time (PT) 
Increasing packaging time reduces warpage and shrinkage but 

increases cycle time. 

Melt temperature (MT) 
Increasing the melt temperature increases warpage and shrinkage 

and increases cycle time. 
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Table 5.5. Experimental Results 11 

INPUT  OUTPUT  

No 

IS  

mm/s 

 

IP  

bar 

 

CT 

 sec 

 

PP  

bar 

 

MOT 

°C 

 

PT  

sec 

 

MT 

°C 

 

WP  

mm 

 

SK  

cm3 

 

CYCT 

Sec 

 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

3 15 450 10 400 15 3 200 6 4.59 24.7 

4 15 450 30 400 15 9 200 2.9 2.45 49.8 

5 15 800 10 100 15 3 200 4.5 5.26 24.5 

6 15 800 30 100 15 9 200 3.4 3.95 49.8 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

8 15 800 30 400 15 3 200 6 4.49 43.8 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

10 60 450 30 100 15 9 200 3.7 4 48.9 

11 60 450 10 400 15 9 200 3.5 2.63 30.3 

12 60 450 30 400 15 3 200 7.7 4.62 42.7 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

14 60 800 30 100 15 3 200 9.1 5.21 41.9 

15 60 800 10 400 15 3 200 7 4.1 22.9 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

17 15 450 10 100 45 3 200 4.7 5.33 25.6 

18 15 450 30 100 45 9 200 9 4.05 49.9 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

20 15 450 30 400 45 3 200 6.8 5.09 43.8 

21 15 800 10 100 45 9 200 4 4.1 30.9 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

24 15 800 30 400 45 9 200 4 3.15 49.8 

25 60 450 10 100 45 9 200 4.5 4.19 29.8 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

27 60 450 10 400 45 3 200 8.6 5.31 23.3 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

29 60 800 10 100 45 3 200 11 5.53 22.4 

30 60 800 30 100 45 9 200 3.8 4.14 47.9 

31 60 800 10 400 45 9 200 6 2.28 29.4 

32 60 800 30 400 45 3 200 7.9 4.27 41.9 

33 15 450 10 100 15 3 250 8.4 5.92 24.4 

34 15 450 30 100 15 9 250 5.2 3.85 49.7 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

36 15 450 30 400 15 3 250 8 5.35 43.7 

37 15 800 10 100 15 9 250 5 3.95 31.2 

38 15 800 30 100 15 3 250 7.6 5.85 43.7 

39 15 800 10 400 15 3 250 6.7 5.48 24.6 

40 15 800 30 400 15 9 250 6.4 3.02 49.7 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

42 60 450 30 100 15 3 250 6 6.06 42.1 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

44 60 450 30 400 15 9 250 5.2 3.2 48.1 

45 60 800 10 100 15 3 250 16 6.16 22.6 

46 60 800 30 100 15 9 250 7.1 4.07 47.8 

47 60 800 10 400 15 9 250 6 3.29 29.5 

48 60 800 30 400 15 3 250 9.1 5.48 41.9 

 

(cont. on next page) 
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Table 5.5. (cont.) 

INPUT  OUTPUT  

No 

IS  

mm/s 

 

IP  

bar 

 

CT 

 sec 

 

PP  

bar 

 

MOT 

°C 

 

PT  

sec 

 

MT 

°C 

 

WP  

mm 

 

SK  

cm3 

 

CYCT 

Sec 

 

49 15 450 10 100 45 9 250 5.8 4.54 30.8 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

51 15 450 10 400 45 3 250 9.9 5.95 24.3 

52 15 450 30 400 45 9 250 8.4 3.84 49.8 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

54 15 800 30 100 45 9 250 8.8 4.43 49.7 

55 15 800 10 400 45 9 250 7 3.94 31.0 

56 15 800 30 400 45 3 250 8.6 5.87 43.9 

57 60 450 10 100 45 3 250 8.1 6.49 22.6 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

59 60 450 10 400 45 9 250 9.3 4.13 29.4 

60 60 450 30 400 45 3 250 8.3 6.11 42.2 

61 37,5 625 20 250 30 6 200 6.2 4.2 35.4 

62 37,5 625 20 250 30 6 250 8 4.84 35.3 

63 37,5 625 20 250 15 6 225 9 4.26 35.3 

64 37,5 625 20 250 45 6 225 3.6 4.87 35.4 

65 15 625 20 250 30 6 225 7.3 4.31 35.9 

66 60 625 20 250 30 6 225 7.6 4.51 35.0 

67 37,5 450 20 250 30 6 225 6.5 4.44 35.6 

68 37,5 800 20 250 30 6 225 7.6 4.45 35.3 

69 37,5 625 20 100 30 6 225 4.8 4.97 35.4 

70 37,5 625 20 400 30 6 225 7.5 4.27 35.4 

71 37,5 625 10 250 30 6 225 6.3 4.61 26.1 

72 37,5 625 30 250 30 6 225 5.7 4.5 45.4 

73 37,5 625 20 250 30 3 225 7.4 5.61 32.4 

74 37,5 625 20 250 30 9 225 5.6 3.63 38.3 

75 37,5 625 20 250 30 6 225 7.2 4.54 35.3 

76 60 800 10 100 45 9 250 7.65 4.31 28.2 

77 60 800 30 100 45 3 250 8.01 5.66 42.2 

78 60 800 10 400 45 3 250 11.2 4.53 21.9 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 
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5.2. Neuro-Regression Modeling Results 

 

Neuro-regression modeling (NRM) is a hybrid approach that merges the benefits 

of regression analysis with those of artificial neural networks to enhance the accuracy of 

predictive models. This technique is particularly useful for capturing non-linear 

relationships and effectively handling complex interactions involving multiple 

independent variables as detailed in Section 3.2. 

In this thesis, the initial step in optimizing cycle time involves mathematical 

modeling. Before starting the optimization process, Neuro-Regression analysis, which 

combines Artificial Neural Network (ANN) techniques with traditional regression 

analysis was employed to enhance the accuracy, robustness, and reliability of the model 

predictions. Neuro-Regression analysis was used to model three output variables. The 

dataset, shown in Table 5.5, was randomly divided into three parts. Each segment 

consisted of 80% training data, 20% testing data, with an additional 10% of the training 

data used as validation data. This division resulted in 79 original data sets being 

categorized into five sub-groups, including training, testing, and validation groups, 

utilizing different k-fold cross-validation methods (described in Section 3.4) to assess the 

quality, reliability, robustness, and potential overfitting of the empirical model. These k-

fold cross-validation groups are detailed in Appendix A. 

At this phase, the aim was to utilize 12 different regression models sourced from 

the literature, listed in Table 5.6. The coefficients (IS, IP, CT, PP, MOT, PT, MT, CYT, 

SK, WP) in these models were defined using the data provided in Appendix A. 

Subsequently, R²training R²adjusted, R²testing, and R²validation values were calculated using 

“Wolfram Mathematica 10” to evaluate the reliability and robustness of the models. 

After identifying suitable models based on the coefficient of determination (R²), 

it is crucial during model selection to consider the lower and upper limits of the output 

within the desired physical range. This approach ensures that the mathematical models 

developed for the optimization process can accurately predict cycle time, warpage, and 

shrinkage parameters, along with the optimal process parameters to achieve the desired 

outcomes. To provide a detailed explanation of the k-fold cross-validation process, only 

the Neuro-Regression results for cycle time across 60 models are presented in Table 5.7. 

The results for other outputs are available in Appendix B. For a model to be selected from 

the 60 Neuro-Regression results generated by 12 different models, the coefficient of 
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determination values for all data groups should exceed 0.90, and the maximum-minimum 

values must be within an acceptable range according to the problem's physical 

requirements. Each data group is color coded in Table 5.7. The first-order logarithmic 

multiple non-linear (FOLN) model group was chosen for the cycle time output because it 

had better coefficient of determination and lower upper limit values for all data groups 

compared to others. Additionally, the values in all groups are significant and acceptable 

for the FOLN model, making it the preferred choice. Consequently, the fourth group data 

and model (FOLN4) were selected for cycle time optimization analysis (Eq.5.1). The R² 

values for training, testing, and validation, along with the maximum-minimum values for 

this model, are 0.998257, 0.963582, 0.959767, 50.0832, and 21.2556, respectively. 

 

𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 = 6.7498 + 16.804xLog[CT] − 0.7732xLog[IP] − 1.583xLog[IS]

− 0.4012xLog[MOT] − 2.6471xLog[MT] − 0.4180x[Log[PP] 

+5.565xLog[PT] (5.1) 

 

The analysis results for the shrinkage parameter, the second output, are provided 

in Appendix C. For a model to be chosen from the 60 Neuro-Regression results generated 

by 12 different models, the coefficient of determination values for all data groups must 

be greater than 0.90, and the maximum-minimum values should fall within an acceptable 

range according to the problem's physical requirements. Based on these criteria, the model 

group with the highest correlation value and the simplest form (a linear equation) was 

selected for the shrinkage output. Table 5.8 shows the chosen model group for this output. 

As shown in the table, the first group and model (L) were selected at random for the 

optimization analysis of shrinkage (Eq.5.2). The R² values for training, testing, and 

validation, along with the maximum-minimum values for this model, are 0.994287, 

0.9465, 0.972329, 6.52953, and 2.48942, respectively. 

The analysis results for the warpage parameter are provided in Appendix D. For a 

model to be chosen from the 60 Neuro-Regression results generated by 12 different 

models, the coefficient of determination values for all data groups must be greater than 

0.90 and the maximum-minimum values should fall within an acceptable range according 

to the problems. 
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Table 5.6. Multiple regression model types including linear, quadratic, trigonometric, 

logarithmic, and their rational forms 31 

(cont. on next page) 
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Table 5.6 (cont.) 
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Table 5.7 K-folds cross validation results of the Neuro-regression model for Cycle time 

Models R2 training R2 testing 
R2 

validation 
Maximum Minimum 

L1 0.999568 0.989042 0.987301 50.3377 22.5436 

L2 0.999533 0.99705 0.927734 50.393 22.3843 

L3 0.999543 0.991708 0.993982 50.3594 22.2136 

L4 0.999804 0.980056 0.99602 50.1389 22.3399 

L5 0.99952 0.996868 0.987905 50.332 22.4008 

LR1 0.999741 0.99476 0.997102 50.5389 21.8247 

LR2 0.999717 0.998953 0.95494 50.5024 21.9626 

LR3 0.999755 0.991632 0.99787 50.7963 22.1029 

LR4 0.972732 0.115168 0.413481 ∞ ∞ 

LR5 0.999759 0.994537 0.998007 51.1599 22.0895 

SON1 0.999875 0.993801 0.996669 48.8516 21.8279 

SON2 0.999872 0.99588 0.985072 50.9829 21.7642 

SON3 0.999885 0.989309 0.999925 50.8447 21.7175 

SON4 0.99998 0.987566 0.999306 50.0223 22.0589 

SON5 0.999874 0.993887 0.998478 52.0226 21.7601 

SONR1 0.996219 0.77602 0.942262 58.3891 21.2811 

SONR2 0.995881 0.393605 0.882625 76.9801 23.706 

SONR3 0.995599 -0.34415 0.954694 77.7397 22.7213 

SONR4 0.995991 0.72239 0.915258 57.554 23.6485 

SONR5 0.75662 -3.29838 -1.73009 72.9159 11.6262 

FOTN1 0.999677 0.996216 0.998336 77.8571 -47.1218 

FOTN2 0.999605 0.996455 0.965956 50.2909 22.2598 

FOTN3 0.999693 0.99417 0.999545 98.9265 -5.3652 

FOTN4 0.999937 0.982755 0.998163 89.9144 -5.81346 

FOTN5 0.999676 0.997797 0.993351 103.127 -5.86926 

FOTNR1 0.999757 -0.582858 0.996865 1.06844 x 109 -1.45309 x 109 

FOTNR2 0.999752 0.998484 0.96197 826600 -1.98678 x 106 

FOTNR3 0.972815 0.0725967 0.790992 1.73847 x 106 -2.29909 x 1013 

FOTNR4 0.999957 0.982521 0.998432 983320 -48604.3 

FOTNR5 0.980183 -0.16534 0.125922 3.53352 x 108 -1.18453 x 107 

SOTN1 0.999875 0.353848 0.996708 70.1185 -6.09993 

SOTN2 0.999878 0.946824 0.985565 79.0751 -0.988886 

SOTN3 0.999892 0.988765 0.999933 71.286 -0.0127627 

SOTN4 0.999985 0.979677 0.999379 75.9441 4.32376 

SOTN5 0.999881 0.84386 0.99841 71.9273 0.508661 

SOTNR1 0.458857 -12.8106 -11.6458 8.12399x 107 -5.09671 x 107 

SOTNR2 0.372791 -9.04555 -21.0832 399621 -5.2744 x 1012 

SOTNR3 0.599091 -10.5251 -5.67089 1.35105 x 106 -3.4348 x 1013 

SOTNR4 0.257363 -12.6865 -12.1428 6.97267 x 1012 -1.41959 x 106 

SOTNR5 0.541811 -21.6127 -12.2732 292144 -252737 

FOLN1 0.998618 0.88536 0.861618 50.1565 22.1698 

FOLN2 0.998206 0.974149 0.884906 50.121 21.7683 

FOLN3 0.997984 0.970407 0.935697 50.2424 21.3245 

FOLN4 0.998257 0.963582 0.959767 50.0832 21.2556 

FOLN5 0.998066 0.975132 0.970573 49.8732 21.8725 

(cont. on next page) 
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Table 5.7. (cont.) 
 

FOLNR1 0.999648 0.986341 0.987663 50.286 22.0668 

FOLNR2 0.999605 0.996455 0.965956 50.2909 22.2598 

FOLNR3 0.999716 0.975281 0.998123 50.4644 22.1223 

FOLNR4 0.999743 0.985427 0.995217 49.5562 22.4833 

FOLNR5 0.999634 0.993944 0.994978 50.4909 22.2014 

SOLN1 0.999875 0.993351 0.996628 48.8076 21.916 

SOLN2 0.999871 0.996188 0.984921 49.7479 21.7399 

SOLN3 0.999884 0.989244 0.999872 50.8473 21.7229 

SOLN4 0.999979 0.987535 0.999248 49.7293 22.0352 

SOLN5 0.999873 0.994175 0.998306 51.9714 21.8016 

SOLNR1 0.999842 0.986945 0.994771 49.4431 22.6943 

SOLNR2 0.99984 0.994611 0.995554 48.5876 22.7393 

SOLNR3 0.999813 0.987163 0.998419 49.4558 22.3296 

SOLNR4 0.9999 0.988489 0.998882 49.5541 22.6402 

SOLNR5 0.999843 0.977038 0.988928 48.9121 22.4958 

 

Table 5.8. K-folds cross validation results of the Neuro-regression model for Shrinkage 

Models R2 training R2 testing R2 validation Maximum Minimum 

L1 0.994287 0.9465 0.972329 6.52953 2.48942 

L2 0.996026 0.890347 0.908814 6.33944 2.70892 

L3 0.995597 0.901156 0.588459 6.61099 2.46753 

L4 0.995748 0.802034 0.819835 6.47921 2.58088 

L5 0.995708 0.529528 0.867713 6.63747 2.34224 

 

Shrinkage = 4.4907 − 0.0036 x CT − 0.00068 x IP − 0.0016 x IS +

                         0.01090 x MOT + 0.0125 x MT − 0.0028 x PP − 0.3098 x PT          (5.2)         

 

While choosing the model for the cycle time and shrinkage parameters, values 

within the reliable range could not be obtained for the warpage parameter with the 12 

models used as detailed in the table 5.6. Therefore, in addition to these models, a hybrid 

model that is a combination of fourth-order multiple nonlinear and third-order logarithmic 

non-linear model was proposed as shown in the equation 5.3. Table 5.9. shows the chosen 

model for this output. As shown in the table, the second group and model (Hybrid 2) were 

selected at random for the optimization analysis of warpage (Eq.5.4). The R² values for 

training, testing, and validation, along with the maximum-minimum values for this 

model, are 0.90201, 0.85898, 0.94362, 16.3952, 0.94176, respectively. 
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𝑌 = ∑ ∑ ∑ ∑ (𝛼𝑟𝑥𝑟𝑥𝑠𝑥𝑡𝑥𝑣)
8
𝑣=1

8
𝑡=1

8
𝑠=1

8
𝑟=1 + ∑ ∑ ∑ (𝛽𝑙𝑥𝑙𝑥𝑚𝑥𝑝)

8
𝑝=1

8
𝑚=1

8
𝑙=1 +

∑ ∑ (𝛼𝑗𝑥𝑗𝑥𝑘)
8
𝑗=1

8
𝑘=1 + ∑ (𝛼𝑖𝑥𝑖)

8
𝑖=1 +

∑ ∑ ∑ (𝛼𝑡 Log[𝑥𝑟𝑥𝑠𝑥𝑡])+
8
𝑡=1 ∑ ∑ (𝑎𝑗 Log[𝑥𝑗𝑥𝑘]+∑ (𝛼𝑖 Log[𝑥𝑖])+𝑑

8
𝑖=1

8
𝑗=1

8
𝑘=1

8
𝑠=1

8
𝑟=1

∑ ∑ ∑ (𝛼𝑐 Log[𝑥𝑎𝑥𝑏𝑥𝑐])+
8
𝑐=1 ∑ ∑ (𝑎𝑑 Log[𝑥𝑒𝑥𝑑]+∑ (𝛼𝑓 Log[𝑥𝑓])+𝑑

8
𝑓=1

8
𝑑=1

8
𝑒=1

8
𝑏=1

8
𝑎=1

              (5.3) 

                                                          

Table 5.9. K-folds cross validation results of the Neuro-regression model for Warpage 

Models R2 training R2 testing R2 validation Maximum Minimum 

Hybrid 2 0.90201 0.85898 0.94362 16.3952 0.94176 

 

𝑾𝒂𝒓𝒑𝒂𝒈𝒆 = 24.3694 − 0.105𝑥IS − 0.042𝑥IP + 0.0005𝑥IS IP + 2.118𝑥CT + 0.0035𝑥IS CT

− 0.00002𝑥IP CT − 0.0910𝑥PP − 0.0001𝑥IS  PP + 0.0001𝑥IP PP

− 0.0018𝑥CT PP + 7.16𝑥10−9𝑥IS IP CT PP − 0.691𝑥MOT+ 0.0031𝑥IS MOT

+ 0.0007𝑥IP MOT + 0.004𝑥CT MOT− 1.03𝑥10−7xIS IP CT MOT

− 0.0001𝑥PP MOT + 5.22𝑥10−9 𝑥IS IP PP MOT

− 1.754𝑥10−8 𝑥 IP CT PP MOT + 5.708𝑥PT − 0.038𝑥IS PT − 0.0013𝑥IP PT

− 0.114𝑥CT PT + 2.016𝑥10−8𝑥IS IP CT PT − 0.0065𝑥PP PT

+ 1.122𝑥10−8𝑥IS IP PP PT − 1.066𝑥10−7𝑥IP CT PP PT + 0.0057𝑥MOT PT

− 1.157𝑥10−7𝑥IS IP MOT PT + 1.519𝑥10−6𝑥CT  PP MOT  PT + 0.0863𝑥MT

− 0.0001𝑥IS MT + 0.0002𝑥IP MT − 0.0001𝑥CT MT− 0.00001𝑥IS CT MT

− 9.47𝑥10−7𝑥IP CT MT − 1.079𝑥10−8𝑥IS IP CT MT− 0.0001𝑥CT2 MT

− 0.0005𝑥PP MT + 2.353𝑥10−6𝑥IS PP MT − 6.269𝑥10−7𝑥IP PP MT

− 4.074𝑥10−9𝑥IS IP PP MT + 5.952𝑥10−6𝑥CT PP MT

+ 7.99𝑥10−9𝑥IP CT PP MT + 1.029𝑥10−6𝑥PP2 MT + 0.0012𝑥MOT MT

+ 3.99𝑥10−6𝑥IS MOT MT − 1.723𝑥10−6𝑥IP MOT MT

− 2.744𝑥10−8𝑥IS  IP MOT MT + 5.923𝑥10−6𝑥CT MOT MT

+ 2.778𝑥10−6𝑥PP MOT MT− 6.118𝑥10−8𝑥CT PP MOT MT

− 0.0237𝑥PT MT+ 0.0001𝑥IS PT MT − 4.584𝑥10−8𝑥IS IP PT MT

+ 0.0005𝑥CT PT MT+ 0.00001𝑥PP PT MT + 2.456𝑥10−8𝑥IP PP PT MT

− 1.483𝑥10−7𝑥PP MOT PT MT − 17.22𝑥Log[IS IP CT]

+ 12.79𝑥Log[IS IP PP] + 4.433𝑥Log[IP CT PP] + 2.513𝑥Log[IS IP MOT]

− 3.536𝑥Log[IP CT MOT] + 4.917𝑥Log[CT PP MOT] − 0.622𝑥Log[IS IP PT]

− 3.502𝑥Log[IP CT PT] + 3.547𝑥Log[CT PP PT] − 2.056𝑥Log[IS IP MT] 

−5.345𝑥Log[IP CT MT] − 0.154𝑥Log[CT PP MT];                                    (5.4) 
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5.3. Optimization Results 

 

Regression analysis is used to predict future values, while optimization is used to 

find the optimal solution. Both make significant contributions to data analysis and 

decision-making processes using statistical and mathematical techniques. In this context, 

while performing the optimization study, models that most reliably expressed the physical 

problem for the three outputs were selected as a result of the regression analysis. 

In this context, an optimization study was carried out to determine the optimal 

values of the process parameters in order to minimize the cycle time of the injection 

molding process. In order to minimize the cycle time of the injection molding process, 

which is the objective function, an optimization study was carried out by determining six 

scenarios, as presented in detail in Table 5.10. In addition, warpage and shrinkage 

parameters, which are very critical for injection molding, were determined as a limitation 

for the scenarios. In addition, the optimization studies were carried out with stochastic 

optimization methods using the "Simulated Annealing", "Random Search", "Nelder-

Mead" and "Differential Evolution" algorithms in the "Wolfram MATHEMATICA 10" 

program with the help of the "NMinimize" tool. 

 

Table 5.10. Optimization scenarios for cycle time 

Scenario Optimization Problem (Cycle Time) 

1 
15 ≤ IS ≤ 60, 450 ≤ IP≤ 800, 10 ≤ CT ≤30, 100≤ PP ≤ 400, 

15 ≤ MOT ≤ 45, 3≤ PT ≤9, 200 ≤ MT ≤ 250 

2 
6.8 ≤ Warpage ≤16, 15 ≤ IS ≤ 60, 450 ≤ IP≤ 800, 10 ≤ CT ≤30,  

100≤  PP  ≤ 400, 15 ≤ MOT ≤ 45, 3≤ PT ≤9, 200 ≤ MT ≤ 250 

3 
2.9 ≤ Warpage ≤6.8, 15 ≤  IS ≤ 60, 450 ≤ IP≤ 800, 10 ≤ CT  ≤30, 

100≤  PP  ≤ 400, 15 ≤ MOT ≤ 45, 3≤ PT ≤9, 200 ≤ MT ≤ 250 

4 
Shrinkage ≤4.52, 15 ≤ IS ≤ 60, 450 ≤ IP≤ 800, 10 ≤ CT ≤30,  

100≤  PP  ≤ 400, 15 ≤ MOT ≤ 45, 3≤ PT ≤9, 200 ≤ MT ≤ 250 

5 
4.52 ≤ shrinkage ≤6.49, 15 ≤  IS ≤ 60, 450 ≤ IP≤ 800, 10 ≤ CT  ≤30, 

100≤  PP  ≤ 400, 15 ≤ MOT ≤ 45, 3≤ PT ≤9, 200 ≤ MT ≤ 250 

6 

4.52 ≤ shrinkage ≤6.49 

6.8 ≤ warpage ≤16 

15 ≤ IS ≤ 60, 450 ≤ IP≤ 800, 10 ≤ CT ≤30, 100≤ PP ≤ 400,  
15 ≤ MOT ≤ 45, 3≤ PT ≤9, 200 ≤ MT ≤ 250 
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Scenario 1 was created by determining the theoretical boundaries of the 

phenomenon discussed. In this context, the optimization study was carried out without 

any additional constraints by determining the upper and lower limits of each input value 

within the physical limits. The purpose of this scenario is to investigate cycle time values 

only in the input parameter ranges, without warpage and shrinkage constraints. In addition 

to scenario 1, in the second scenario, the warpage parameter is limited to the range of 2.6 

and 15 according to the limits of the physical phenomenon, while in third scenario, the 

shrinkage value is limited to 1.97 and 6.49.  

In the fourth scenario, the hybrid effects of warpage and shrinkage parameters, 

which are a combination of scenarios 2 and 3, on the objective function were investigated. 

The purpose of creating this scenario is to see how much the optimum result will be 

affected when the variables are constrained. 

In the first scenario, the cycle time which is objective function, is calculated to be 

21.2557 seconds for all optimization algorithms and also the suggested design parameters 

were found as shown in the last column. Additionally, shrinkage and warpage values (that 

is other corresponding outputs) were calculated as 5.37425 mm3 and 10.7621 mm, 

respectively for all algorithms. That is, the minimum cycle time value is 21.2557 seconds 

within the given physical constraints.  

According to the results in Scenario 1, the next scenarios were created by 

restricting output values other than cycle time. For the second scenario, an average value 

was found for the warpage output in the data set, and then it was limited to maximum and 

minimum ranges of the warpage value. It was decided that the warpage parameter in this 

range was inactive for second scenario in the range of 6.8 ≤ Warpage ≤16. For this reason, 

scenario 3 was proposed.  

In the third scenario, the warpage value is kept between the minimum and average 

value (2.9 ≤ Warpage ≤6.8) as a constraint. Although this interval is an active constraint 

for the optimization problem, it did not give better results than the previous two scenarios 

for cycle time minimization. 

After the scenarios in which the warpage output value was considered a constraint, 

the fourth scenario was created by determining the ranges of the shrinkage value, which 

is another output. For this scenario, after calculating the average of the shrinkage 

parameter from the data set to determine the range in which the shrinkage value is active, 

shrinkage values that were smaller than the average were taken as constraints. As seen in 
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the 4th scenario in Table 5.11, all algorithms gave values of 22.0984, 4.52, 9.35984 for 

cycle time, shrinkage and warpage parameters, respectively. On the other hand, the MOT 

value is calculated as 24.0095 as a design parameter. Since this value does not comply 

with the operating principle of the device, the fourth scenario does not give physically 

meaningful results. 

Since no meaningful design parameter could be obtained in the fourth scenario, a 

second physically meaningful range was determined for the shrinkage value in the fifth 

scenario, and a new constraint was created in the range of 4.52 ≤ Shrinkage ≤6.49. 

Considering the cycle time values calculated by all algorithms in this scenario, although 

the shrinkage constraint added to the first scenario and within the range specified in the 

table is inactive, the result and design parameters are within a significant range. 

The sixth scenario includes the combination of the second and fifth scenarios 

described previously. But this hybrid effect did not produce better results than previous 

scenarios. In conclusion, it can be said that simultaneously constraining both shrinkage 

and warpage values within the determined limits does not provide any benefit for the 

optimization study. In such cases, instead of investigating hybrid effects, the priority is to 

decide which constraint is more important for a different optimization scenario. It is found 

that the best results can be achieved by allowing some flexibility with the constraints. 

As a result, unlike the referenced article, the optimization method applied using 

reliable equations as a result of the regression analysis was suggested, resulting in a lower 

cycle time (21.2557 seconds) than the time presented in the reference study (21.56 

seconds). 

 

Table 5.11. Results of the optimization problem for cycle time model 

Scenario 

No 

Optimization 

Algorithms 

Cycle 

time 
Shrinkage Warpage Suggested Design 

1 

MNM 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

MDE 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

MSA 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

MRS 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

(cont. on next page) 
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Table 5.11 (cont.) 

2 

MNM 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

MDE 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

MSA 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

MRS 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400,MOT=45, PT= 3, 

MT=250 

3 

MNM 22.1382 5.22518 6.80 

IS=52.82, IP=624.52, 

CT=10, PP=374.52, 

MOT=45, PT= 3, 

MT=248.023 

MDE 22.1382 5.22518 6.80 

IS=52.82, IP=624.52, 

CT=10, PP=374.52, 

MOT=45, PT= 3, 

MT=248.023 

MSA 22.1382 5.22518 6.80 

IS=52.82, IP=624.52, 

CT=10, PP=374.52, 

MOT=45, PT= 3, 

MT=248.023 

MRS 22.1382 5.22518 6.80 

IS=52.82, IP=624.52, 

CT=10, PP=374.52, 

MOT=45, PT= 3, 

MT=248.023 

4 

MNM 22.0984 4.52 9.35984 

IS=60, IP=800, CT=10, 

PP=400,MOT=24.0095, 

PT= 3, MT=200 

MDE 22.0984 4.52 9.35984 

IS=60, IP=800, CT=10, 

PP=400,MOT=24.0095, 

PT= 3, MT=200 

MSA 22.0984 4.52 9.35984 

IS=60, IP=800, CT=10, 

PP=400,MOT=24.0095, 

PT= 3, MT=200 

MRS 22.0984 4.52 9.35984 

IS=60, IP=800, CT=10, 

PP=400,MOT=24.0095, 

PT= 3, MT=200 

5 

MNM 21.2557 5.37425 10.7621 

IS=60, IP=799.9, CT=10, 

PP=399.9, MOT=44.9, PT= 

3, MT=250 

MDE 21.2557 5.37425 10.7621 

IS=60, IP=799.9, CT=10, 

PP=399.9, MOT=44.9, PT= 

3, MT=250 

MSA 21.2557 5.37425 10.7621 

IS=60, IP=799.9, CT=10, 

PP=399.9, MOT=44.9, PT= 

3, MT=250 

MRS 21.2557 5.37425 10.7621 

IS=60, IP=799.9, CT=10, 

PP=399.9, MOT=44.9, PT= 

3, MT=250 

6 

MNM 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400, MOT=45,  

PT= 3, MT=250 

MDE 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400, MOT=45,  

PT= 3, MT=250 

MSA 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400, MOT=45,  

PT= 3, MT=250 

MRS 21.2557 5.37425 10.7621 

IS=60, IP=800, CT=10, 

PP=400, MOT=45,  

PT= 3, MT=250 
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Figures 5.1 shows convergence graphs of the minimization results obtained with 

four different search algorithms for cycle time as objective function. The number of 

iterations indicates when to stop the algorithms and also it gives different values for each 

design. It can be seen that when MDE optimization algorithms gives stable value after 30 

iterations, MNM gives stable results after about 70 iterations. The reason why there are 

fluctuations in MSA and MRS optimization algorithms is that there is no improvement in 

successive iterations. 

 
Figure 5.1. Convergence graphic representations of the stochastic algorithms for Cycle time 

                   (a) MDE, (b) MNM, (c) MSA, and (d) MRS 

 

 

The results obtained for the cycle time model developed in this thesis( Equation 

5.1) using the optimum design parameters of the reference study is shown in Table 5.12 

for comparison with the results of reference study11. It is seen from the table that there 

are small differences between the model results and the results obtained in the reference 

study in the vast majority of the groups. It can be said that the model is  appropriate for 

such a problem interms of optimization. 
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Table 5.12. Comparison of cycle time optimization results  

Reference 

Study 11 

Thesis 

Study 
Difference (%) 

Reference 

Study 11 

Thesis 

Study 
Difference (%) 

47.63 46.73 1.90 43.23 44.18 -2.19 

47.12 46.25 1.85 27.77 27.49 1.02 

47.12 46.25 1.85 25.71 26.08 -1.42 

47.12 46.25 1.85 23.99 24.44 -1.86 

47.12 46.25 1.85 22.50 22.37 0.57 

47.12 46.25 1.85 21.97 21.77 0.92 

47.12 46.25 1.85 21.83 21.83 0.00 

47.12 46.25 1.85 21.83 21.83 0.00 

47.12 46.25 1.85 21.83 21.83 0.00 

47.12 46.25 1.85 21.83 21.83 0.00 

43.23 44.18 -2.19 43.23 44.18 -2.19 

29.06 28.19 3.01 27.77 27.49 1.02 

29.06 28.19 3.01 25.71 26.08 -1.42 

29.06 28.19 3.01 23.99 24.44 -1.86 

29.06 28.19 3.01 22.50 22.37 0.57 

29.06 28.19 3.01 21.97 21.77 0.92 

29.06 28.19 3.01 21.62 21.60 0.11 

29.06 28.19 3.01 21.62 21.63 -0.07 

29.06 28.19 3.01 21.62 21.63 -0.07 

29.06 28.19 3.01 21.62 21.63 -0.07 

43.23 44.18 -2.19 43.23 44.18 -2.19 

27.77 27.49 1.02 27.77 27.49 1.02 

26.45 26.63 -0.67 25.71 26.08 -1.42 

26.45 26.63 -0.67 23.99 24.44 -1.86 

26.45 26.63 -0.67 22.50 22.37 0.57 

26.45 26.63 -0.67 21.97 21.77 0.92 

26.45 26.63 -0.67 21.59 21.54 0.21 

26.45 26.63 -0.67 21.56 21.64 -0.37 

26.45 26.63 -0.67 21.56 21.64 -0.37 

26.45 26.63 -0.67 21.56 21.64 -0.37 

43.23 44.18 -2.19 43.23 44.18 -2.19 

27.77 27.49 1.02 27.77 27.49 1.02 

25.71 26.08 -1.42 25.71 26.08 -1.42 

24.33 24.80 -1.94 23.99 24.44 -1.86 

24.33 24.80 -1.94 22.50 22.37 0.57 

24.33 24.80 -1.94 21.97 21.77 0.92 

(cont. on next page) 
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Table 5.12 (cont.) 

24.33 24.80 -1.94 21.59 21.54 0.21 

24.33 24.80 -1.94 21.56 21.64 -0.37 

24.33 24.80 -1.94 21.56 21.64 -0.37 

24.33 24.80 -1.94 21.56 21.64 -0.37 

43.23 44.18 -2.19 43.23 44.18 -2.19 

27.77 27.49 1.02 27.77 27.49 1.02 

25.71 26.08 -1.42 25.71 26.08 -1.42 

23.99 24.44 -1.86 23.99 24.44 -1.86 

22.55 22.44 0.47 22.50 22.37 0.57 

22.55 22.44 0.47 21.97 21.77 0.92 

22.55 22.44 0.47 21.59 21.54 0.21 

22.55 22.44 0.47 21.56 21.64 -0.37 

22.55 22.44 0.47 21.56 21.64 -0.37 

22.55 22.44 0.47 21.56 21.64 -0.37 
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CHAPTER 6  

 

CONCLUSION 

 

In this thesis, optimization studies were carried out to obtain a short cycle time of 

the injection molding method, taking into account the shrinkage and warpage effects of 

the process parameters. First of all, using the experimental data given in the literature, the 

Neuro-Regression approach and k-fold cross-validation techniques, which combines the 

strengths of artificial neural network and traditional regression, were used to obtain the 

mathematical model of the process. Among the models proposed and analyzed for seven 

input parameters (mold temperature, melt temperature, packing pressure, packing time, 

cooling time, injection speed, and injection pressure) and three output parameters (cycle 

time, warpage and shrinkage), training, according to the determination coefficient of test 

and validation, model selection for each output was made with the Wolfram Mathematica 

program. When the values given by the optimization algorithms used are compared, it is 

seen that the optimization algorithms used give approximately the same results for the 

objective function. Additionally, optimization studies show that plastic injection molding 

cycle time can be reduced with appropriate process parameters and constraints. 

Briefly, this study reveals that the cycle time of the plastic injection molding 

method can be improved by considering the effects of process parameters. In addition, 

shrinkage and warpage parameters have a significant impact on the process. Therefore, 

in addition to the process parameters, the ranges of shrinkage and warpage parameters 

must be precisely determined to obtain the desired cycle times. This thesis study includes 

determining the expected cycle time and plastic injection mold process parameters using 

regression models and optimization scenarios. In the Saad Mukras’ study, the current 

problem has been addressed with different optimization methods. The difference of this 

thesis study from previous studies is the use of different regression models and 

optimization scenarios to shorten the plastic injection cycle time. 
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APPENDIX A 

 

REGRESSION AND CROSS VALIDATION GROUPS 

 

Table A.1. Testing Data Of Cross Validation Group 1 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

8 15 800 30 400 15 3 200 6 4.49 43.8 

14 60 800 30 100 15 3 200 9.1 5.21 41.9 

21 15 800 10 100 45 9 200 4 4.1 30.9 

25 60 450 10 100 45 9 200 4.5 4.19 29.8 

33 15 450 10 100 15 3 250 8.4 5.92 24.4 

36 15 450 30 400 15 3 250 8 5.35 43.7 

45 60 800 10 100 15 3 250 16 6.16 22.6 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

61 37.5 625 20 250 30 6 200 6.2 4.2 35.4 

62 37.5 625 20 250 30 6 250 8 4.84 35.3 

65 15 625 20 250 30 6 225 7.3 4.31 35.9 

66 60 625 20 250 30 6 225 7.6 4.51 35.0 

68 37.5 800 20 250 30 6 225 7.6 4.45 35.3 

70 37.5 625 20 400 30 6 225 7.5 4.27 35.4 

72 37.5 625 30 250 30 6 225 5.7 4.5 45.4 

 

 

Table A.2. Traning Data Of Cross Validation Group 1 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

3 15 450 10 400 15 3 200 6 4.59 24.7 

4 15 450 30 400 15 9 200 2.9 2.45 49.8 

5 15 800 10 100 15 3 200 4.5 5.26 24.5 

6 15 800 30 100 15 9 200 3.4 3.95 49.8 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

10 60 450 30 100 15 9 200 3.7 4 48.9 

11 60 450 10 400 15 9 200 3.5 2.63 30.3 

12 60 450 30 400 15 3 200 7.7 4.62 42.7 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

15 60 800 10 400 15 3 200 7 4.1 22.9 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

17 15 450 10 100 45 3 200 4.7 5.33 25.6 

18 15 450 30 100 45 9 200 9 4.05 49.9 

(Cont. on next page) 
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Table A.2. (cont.) 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

20 15 450 30 400 45 3 200 6.8 5.09 43.8 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

24 15 800 30 400 45 9 200 4 3.15 49.8 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

27 60 450 10 400 45 3 200 8.6 5.31 23.3 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

29 60 800 10 100 45 3 200 11 5.53 22.4 

30 60 800 30 100 45 9 200 3.8 4.14 47.9 

31 60 800 10 400 45 9 200 6 2.28 29.4 

32 60 800 30 400 45 3 200 7.9 4.27 41.9 

34 15 450 30 100 15 9 250 5.2 3.85 49.7 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

37 15 800 10 100 15 9 250 5 3.95 31.2 

38 15 800 30 100 15 3 250 7.6 5.85 43.7 

39 15 800 10 400 15 3 250 6.7 5.48 24.6 

40 15 800 30 400 15 9 250 6.4 3.02 49.7 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

42 60 450 30 100 15 3 250 6 6.06 42.1 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

44 60 450 30 400 15 9 250 5.2 3.2 48.1 

46 60 800 30 100 15 9 250 7.1 4.07 47.8 

47 60 800 10 400 15 9 250 6 3.29 29.5 

48 60 800 30 400 15 3 250 9.1 5.48 41.9 

49 15 450 10 100 45 9 250 5.8 4.54 30.8 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

51 15 450 10 400 45 3 250 9.9 5.95 24.3 

52 15 450 30 400 45 9 250 8.4 3.84 49.8 

54 15 800 30 100 45 9 250 8.8 4.43 49.7 

55 15 800 10 400 45 9 250 7 3.94 31.0 

56 15 800 30 400 45 3 250 8.6 5.87 43.9 

57 60 450 10 100 45 3 250 8.1 6.49 22.6 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

59 60 450 10 400 45 9 250 9.3 4.13 29.4 

60 60 450 30 400 45 3 250 8.3 6.11 42.2 

63 37.5 625 20 250 15 6 225 9 4.26 35.3 

64 37.5 625 20 250 45 6 225 3.6 4.87 35.4 

67 37.5 450 20 250 30 6 225 6.5 4.44 35.6 

69 37.5 625 20 100 30 6 225 4.8 4.97 35.4 

71 37.5 625 10 250 30 6 225 6.3 4.61 26.1 

73 37.5 625 20 250 30 3 225 7.4 5.61 32.4 

74 37.5 625 20 250 30 9 225 5.6 3.63 38.3 

75 37.5 625 20 250 30 6 225 7.2 4.54 35.3 

76 60 800 10 100 45 9 250 7.65 4.31 28.2 

77 60 800 30 100 45 3 250 8.01 5.66 42.2 

78 60 800 10 400 45 3 250 11.2 4.53 21.9 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 
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Table A.3. Validation Data Of Cross Validation Group 1 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

63 37.5 625 20 250 15 6 225 9 4.26 35.3 

67 37.5 450 20 250 30 6 225 6.5 4.44 35.6 

 

 

Table A.4. Testing Data Of Cross Validation Group 2 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

4 15 450 30 400 15 9 200 2.9 2.45 49.8 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

29 60 800 10 100 45 3 200 11 5.53 22.4 

40 15 800 30 400 15 9 250 6.4 3.02 49.7 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

48 60 800 30 400 15 3 250 9.1 5.48 41.9 

51 15 450 10 400 45 3 250 9.9 5.95 24.3 

57 60 450 10 100 45 3 250 8.1 6.49 22.6 

64 37.5 625 20 250 45 6 225 3.6 4.87 35.4 

69 37.5 625 20 100 30 6 225 4.8 4.97 35.4 

75 37.5 625 20 250 30 6 225 7.2 4.54 35.3 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 

 

 

Table A.5. Training Data Of Cross Validation Group 2 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

3 15 450 10 400 15 3 200 6 4.59 24.7 

5 15 800 10 100 15 3 200 4.5 5.26 24.5 

6 15 800 30 100 15 9 200 3.4 3.95 49.8 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

8 15 800 30 400 15 3 200 6 4.49 43.8 

10 60 450 30 100 15 9 200 3.7 4 48.9 

(cont. on next page) 
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Table A.5. (cont.) 

11 60 450 10 400 15 9 200 3.5 2.63 30.3 

12 60 450 30 400 15 3 200 7.7 4.62 42.7 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

14 60 800 30 100 15 3 200 9.1 5.21 41.9 

15 60 800 10 400 15 3 200 7 4.1 22.9 

17 15 450 10 100 45 3 200 4.7 5.33 25.6 

18 15 450 30 100 45 9 200 9 4.05 49.9 

20 15 450 30 400 45 3 200 6.8 5.09 43.8 

21 15 800 10 100 45 9 200 4 4.1 30.9 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

24 15 800 30 400 45 9 200 4 3.15 49.8 

25 60 450 10 100 45 9 200 4.5 4.19 29.8 

27 60 450 10 400 45 3 200 8.6 5.31 23.3 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

30 60 800 30 100 45 9 200 3.8 4.14 47.9 

31 60 800 10 400 45 9 200 6 2.28 29.4 

32 60 800 30 400 45 3 200 7.9 4.27 41.9 

33 15 450 10 100 15 3 250 8.4 5.92 24.4 

34 15 450 30 100 15 9 250 5.2 3.85 49.7 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

36 15 450 30 400 15 3 250 8 5.35 43.7 

37 15 800 10 100 15 9 250 5 3.95 31.2 

38 15 800 30 100 15 3 250 7.6 5.85 43.7 

39 15 800 10 400 15 3 250 6.7 5.48 24.6 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

42 60 450 30 100 15 3 250 6 6.06 42.1 

44 60 450 30 400 15 9 250 5.2 3.2 48.1 

45 60 800 10 100 15 3 250 16 6.16 22.6 

46 60 800 30 100 15 9 250 7.1 4.07 47.8 

47 60 800 10 400 15 9 250 6 3.29 29.5 

49 15 450 10 100 45 9 250 5.8 4.54 30.8 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

52 15 450 30 400 45 9 250 8.4 3.84 49.8 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

54 15 800 30 100 45 9 250 8.8 4.43 49.7 

55 15 800 10 400 45 9 250 7 3.94 31.0 

56 15 800 30 400 45 3 250 8.6 5.87 43.9 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

59 60 450 10 400 45 9 250 9.3 4.13 29.4 

60 60 450 30 400 45 3 250 8.3 6.11 42.2 

61 37.5 625 20 250 30 6 200 6.2 4.2 35.4 

62 37.5 625 20 250 30 6 250 8 4.84 35.3 

63 37.5 625 20 250 15 6 225 9 4.26 35.3 

65 15 625 20 250 30 6 225 7.3 4.31 35.9 

66 60 625 20 250 30 6 225 7.6 4.51 35.0 

67 37.5 450 20 250 30 6 225 6.5 4.44 35.6 

68 37.5 800 20 250 30 6 225 7.6 4.45 35.3 

(cont. on next page) 
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Table A.5. (cont.) 

70 37.5 625 20 400 30 6 225 7.5 4.27 35.4 

71 37.5 625 10 250 30 6 225 6.3 4.61 26.1 

72 37.5 625 30 250 30 6 225 5.7 4.5 45.4 

73 37.5 625 20 250 30 3 225 7.4 5.61 32.4 

74 37.5 625 20 250 30 9 225 5.6 3.63 38.3 

76 60 800 10 100 45 9 250 7.65 4.31 28.2 

77 60 800 30 100 45 3 250 8.01 5.66 42.2 

78 60 800 10 400 45 3 250 11.2 4.53 21.9 

 

 

Table A.6. Validation Data Of Cross Validation Group 2 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

10 60 450 30 100 15 9 200 3.7 4 48.9 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

61 37.5 625 20 250 30 6 200 6.2 4.2 35.4 

 

 

Table A.7. Testing Data Of Cross Validation Group 3 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

6 15 800 30 100 15 9 200 3.4 3.95 49.8 

11 60 450 10 400 15 9 200 3.5 2.63 30.3 

17 15 450 10 100 45 3 200 4.7 5.33 25.6 

20 15 450 30 400 45 3 200 6.8 5.09 43.8 

27 60 450 10 400 45 3 200 8.6 5.31 23.3 

31 60 800 10 400 45 9 200 6 2.28 29.4 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

38 15 800 30 100 15 3 250 7.6 5.85 43.7 

42 60 450 30 100 15 3 250 6 6.06 42.1 

46 60 800 30 100 15 9 250 7.1 4.07 47.8 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

55 15 800 10 400 45 9 250 7 3.94 31.0 

59 60 450 10 400 45 9 250 9.3 4.13 29.4 

73 37.5 625 20 250 30 3 225 7.4 5.61 32.4 

77 60 800 30 100 45 3 250 8.01 5.66 42.2 
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Table A.8. Training Data Of Cross Validation Group 3 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

3 15 450 10 400 15 3 200 6 4.59 24.7 

4 15 450 30 400 15 9 200 2.9 2.45 49.8 

5 15 800 10 100 15 3 200 4.5 5.26 24.5 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

8 15 800 30 400 15 3 200 6 4.49 43.8 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

10 60 450 30 100 15 9 200 3.7 4 48.9 

12 60 450 30 400 15 3 200 7.7 4.62 42.7 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

14 60 800 30 100 15 3 200 9.1 5.21 41.9 

15 60 800 10 400 15 3 200 7 4.1 22.9 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

18 15 450 30 100 45 9 200 9 4.05 49.9 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

21 15 800 10 100 45 9 200 4 4.1 30.9 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

24 15 800 30 400 45 9 200 4 3.15 49.8 

25 60 450 10 100 45 9 200 4.5 4.19 29.8 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

29 60 800 10 100 45 3 200 11 5.53 22.4 

30 60 800 30 100 45 9 200 3.8 4.14 47.9 

32 60 800 30 400 45 3 200 7.9 4.27 41.9 

33 15 450 10 100 15 3 250 8.4 5.92 24.4 

34 15 450 30 100 15 9 250 5.2 3.85 49.7 

36 15 450 30 400 15 3 250 8 5.35 43.7 

37 15 800 10 100 15 9 250 5 3.95 31.2 

39 15 800 10 400 15 3 250 6.7 5.48 24.6 

40 15 800 30 400 15 9 250 6.4 3.02 49.7 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

44 60 450 30 400 15 9 250 5.2 3.2 48.1 

45 60 800 10 100 15 3 250 16 6.16 22.6 

47 60 800 10 400 15 9 250 6 3.29 29.5 

48 60 800 30 400 15 3 250 9.1 5.48 41.9 

49 15 450 10 100 45 9 250 5.8 4.54 30.8 

51 15 450 10 400 45 3 250 9.9 5.95 24.3 

52 15 450 30 400 45 9 250 8.4 3.84 49.8 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

54 15 800 30 100 45 9 250 8.8 4.43 49.7 

56 15 800 30 400 45 3 250 8.6 5.87 43.9 

57 60 450 10 100 45 3 250 8.1 6.49 22.6 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

60 60 450 30 400 45 3 250 8.3 6.11 42.2 

(cont. on next page) 
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Table A.8. (cont.) 

61 37.5 625 20 250 30 6 200 6.2 4.2 35.4 

62 37.5 625 20 250 30 6 250 8 4.84 35.3 

63 37.5 625 20 250 15 6 225 9 4.26 35.3 

64 37.5 625 20 250 45 6 225 3.6 4.87 35.4 

65 15 625 20 250 30 6 225 7.3 4.31 35.9 

66 60 625 20 250 30 6 225 7.6 4.51 35.0 

67 37.5 450 20 250 30 6 225 6.5 4.44 35.6 

68 37.5 800 20 250 30 6 225 7.6 4.45 35.3 

69 37.5 625 20 100 30 6 225 4.8 4.97 35.4 

70 37.5 625 20 400 30 6 225 7.5 4.27 35.4 

71 37.5 625 10 250 30 6 225 6.3 4.61 26.1 

72 37.5 625 30 250 30 6 225 5.7 4.5 45.4 

74 37.5 625 20 250 30 9 225 5.6 3.63 38.3 

75 37.5 625 20 250 30 6 225 7.2 4.54 35.3 

76 60 800 10 100 45 9 250 7.65 4.31 28.2 

78 60 800 10 400 45 3 250 11.2 4.53 21.9 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 

 

 

Table A.9. Validation Data Of Cross Validation Group 3 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

64 37.5 625 20 250 45 6 225 3.6 4.87 35.4 

68 37.5 800 20 250 30 6 225 7.6 4.45 35.3 

 

 

Table A.10. Testing Data Of Cross Validation Group 4 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

5 15 800 10 100 15 3 200 4.5 5.26 24.5 

12 60 450 30 400 15 3 200 7.7 4.62 42.7 

15 60 800 10 400 15 3 200 7 4.1 22.9 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

32 60 800 30 400 45 3 200 7.9 4.27 41.9 

34 15 450 30 100 15 9 250 5.2 3.85 49.7 

39 15 800 10 400 15 3 250 6.7 5.48 24.6 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

44 60 450 30 400 15 9 250 5.2 3.2 48.1 

47 60 800 10 400 15 9 250 6 3.29 29.5 

52 15 450 30 400 45 9 250 8.4 3.84 49.8 

56 15 800 30 400 45 3 250 8.6 5.87 43.9 

(cont. on next page) 
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Table A.10. (cont.) 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

60 60 450 30 400 45 3 250 8.3 6.11 42.2 

74 37.5 625 20 250 30 9 225 5.6 3.63 38.3 

78 60 800 10 400 45 3 250 11.2 4.53 21.9 
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Table A.11. Training Data Of Cross Validation Group 4 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

3 15 450 10 400 15 3 200 6 4.59 24.7 

4 15 450 30 400 15 9 200 2.9 2.45 49.8 

6 15 800 30 100 15 9 200 3.4 3.95 49.8 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

8 15 800 30 400 15 3 200 6 4.49 43.8 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

10 60 450 30 100 15 9 200 3.7 4 48.9 

11 60 450 10 400 15 9 200 3.5 2.63 30.3 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

14 60 800 30 100 15 3 200 9.1 5.21 41.9 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

17 15 450 10 100 45 3 200 4.7 5.33 25.6 

18 15 450 30 100 45 9 200 9 4.05 49.9 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

20 15 450 30 400 45 3 200 6.8 5.09 43.8 

21 15 800 10 100 45 9 200 4 4.1 30.9 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

24 15 800 30 400 45 9 200 4 3.15 49.8 

25 60 450 10 100 45 9 200 4.5 4.19 29.8 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

27 60 450 10 400 45 3 200 8.6 5.31 23.3 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

29 60 800 10 100 45 3 200 11 5.53 22.4 

30 60 800 30 100 45 9 200 3.8 4.14 47.9 

31 60 800 10 400 45 9 200 6 2.28 29.4 

33 15 450 10 100 15 3 250 8.4 5.92 24.4 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

36 15 450 30 400 15 3 250 8 5.35 43.7 

37 15 800 10 100 15 9 250 5 3.95 31.2 

38 15 800 30 100 15 3 250 7.6 5.85 43.7 

40 15 800 30 400 15 9 250 6.4 3.02 49.7 

42 60 450 30 100 15 3 250 6 6.06 42.1 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

45 60 800 10 100 15 3 250 16 6.16 22.6 

46 60 800 30 100 15 9 250 7.1 4.07 47.8 

48 60 800 30 400 15 3 250 9.1 5.48 41.9 

49 15 450 10 100 45 9 250 5.8 4.54 30.8 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

51 15 450 10 400 45 3 250 9.9 5.95 24.3 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

54 15 800 30 100 45 9 250 8.8 4.43 49.7 

55 15 800 10 400 45 9 250 7 3.94 31.0 

57 60 450 10 100 45 3 250 8.1 6.49 22.6 

59 60 450 10 400 45 9 250 9.3 4.13 29.4 

(cont. on next page) 
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Table A.11. (cont.) 

61 37.5 625 20 250 30 6 200 6.2 4.2 35.4 

62 37.5 625 20 250 30 6 250 8 4.84 35.3 

63 37.5 625 20 250 15 6 225 9 4.26 35.3 

64 37.5 625 20 250 45 6 225 3.6 4.87 35.4 

65 15 625 20 250 30 6 225 7.3 4.31 35.9 

66 60 625 20 250 30 6 225 7.6 4.51 35.0 

67 37.5 450 20 250 30 6 225 6.5 4.44 35.6 

68 37.5 800 20 250 30 6 225 7.6 4.45 35.3 

69 37.5 625 20 100 30 6 225 4.8 4.97 35.4 

70 37.5 625 20 400 30 6 225 7.5 4.27 35.4 

71 37.5 625 10 250 30 6 225 6.3 4.61 26.1 

72 37.5 625 30 250 30 6 225 5.7 4.5 45.4 

73 37.5 625 20 250 30 3 225 7.4 5.61 32.4 

75 37.5 625 20 250 30 6 225 7.2 4.54 35.3 

76 60 800 10 100 45 9 250 7.65 4.31 28.2 

77 60 800 30 100 45 3 250 8.01 5.66 42.2 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 

 

 

Table A.12. Validation Data Of Cross Validation Group 4 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

31 60 800 10 400 45 9 200 6 2.28 29.4 

37 15 800 10 100 15 9 250 5 3.95 31.2 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

62 37.5 625 20 250 30 6 250 8 4.84 35.3 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 

 

 

Table A.13. Testing Data Of Cross Validation Group 5 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

3 15 450 10 400 15 3 200 6 4.59 24.7 

7 15 800 10 400 15 9 200 3.9 2.55 31.4 

10 60 450 30 100 15 9 200 3.7 4 48.9 

13 60 800 10 100 15 9 200 5.8 4.34 29.0 

18 15 450 30 100 45 9 200 9 4.05 49.9 

24 15 800 30 400 45 9 200 4 3.15 49.8 

28 60 450 30 400 45 9 200 4.5 3.25 48.7 

30 60 800 30 100 45 9 200 3.8 4.14 47.9 

37 15 800 10 100 15 9 250 5 3.95 31.2 

49 15 450 10 100 45 9 250 5.8 4.54 30.8 

54 15 800 30 100 45 9 250 8.8 4.43 49.7 

63 37.5 625 20 250 15 6 225 9 4.26 35.3 

67 37.5 450 20 250 30 6 225 6.5 4.44 35.6 

71 37.5 625 10 250 30 6 225 6.3 4.61 26.1 

76 60 800 10 100 45 9 250 7.65 4.31 28.2 
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Table A.14. Training Data Of Cross Validation Group 5 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

1 15 450 10 100 15 9 200 5.8 3.97 31.1 

2 15 450 30 100 15 3 200 6.8 5.17 43.9 

4 15 450 30 400 15 9 200 2.9 2.45 49.8 

5 15 800 10 100 15 3 200 4.5 5.26 24.5 

6 15 800 30 100 15 9 200 3.4 3.95 49.8 

8 15 800 30 400 15 3 200 6 4.49 43.8 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

11 60 450 10 400 15 9 200 3.5 2.63 30.3 

12 60 450 30 400 15 3 200 7.7 4.62 42.7 

14 60 800 30 100 15 3 200 9.1 5.21 41.9 

15 60 800 10 400 15 3 200 7 4.1 22.9 

16 60 800 30 400 15 9 200 2.9 1.97 47.9 

17 15 450 10 100 45 3 200 4.7 5.33 25.6 

19 15 450 10 400 45 9 200 5.1 3.24 31.2 

20 15 450 30 400 45 3 200 6.8 5.09 43.8 

21 15 800 10 100 45 9 200 4 4.1 30.9 

22 15 800 30 100 45 3 200 7.9 5.55 48.8 

23 15 800 10 400 45 3 200 9.6 5.17 24.8 

25 60 450 10 100 45 9 200 4.5 4.19 29.8 

26 60 450 30 100 45 3 200 7.2 5.68 42.7 

27 60 450 10 400 45 3 200 8.6 5.31 23.3 

29 60 800 10 100 45 3 200 11 5.53 22.4 

31 60 800 10 400 45 9 200 6 2.28 29.4 

32 60 800 30 400 45 3 200 7.9 4.27 41.9 

33 15 450 10 100 15 3 250 8.4 5.92 24.4 

34 15 450 30 100 15 9 250 5.2 3.85 49.7 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

36 15 450 30 400 15 3 250 8 5.35 43.7 

38 15 800 30 100 15 3 250 7.6 5.85 43.7 

39 15 800 10 400 15 3 250 6.7 5.48 24.6 

40 15 800 30 400 15 9 250 6.4 3.02 49.7 

41 60 450 10 100 15 9 250 4.8 4.15 29.5 

42 60 450 30 100 15 3 250 6 6.06 42.1 

43 60 450 10 400 15 3 250 7.7 5.83 22.9 

44 60 450 30 400 15 9 250 5.2 3.2 48.1 

45 60 800 10 100 15 3 250 16 6.16 22.6 

46 60 800 30 100 15 9 250 7.1 4.07 47.8 

47 60 800 10 400 15 9 250 6 3.29 29.5 

48 60 800 30 400 15 3 250 9.1 5.48 41.9 

50 15 450 30 100 45 3 250 7.9 6.21 43.8 

51 15 450 10 400 45 3 250 9.9 5.95 24.3 

52 15 450 30 400 45 9 250 8.4 3.84 49.8 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

55 15 800 10 400 45 9 250 7 3.94 31.0 

56 15 800 30 400 45 3 250 8.6 5.87 43.9 

57 60 450 10 100 45 3 250 8.1 6.49 22.6 

58 60 450 30 100 45 9 250 7.6 4.63 48.2 

(cont. on next page) 
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Table A.14. (cont.) 

59 60 450 10 400 45 9 250 9.3 4.13 29.4 

60 60 450 30 400 45 3 250 8.3 6.11 42.2 

61 37.5 625 20 250 30 6 200 6.2 4.2 35.4 

62 37.5 625 20 250 30 6 250 8 4.84 35.3 

64 37.5 625 20 250 45 6 225 3.6 4.87 35.4 

65 15 625 20 250 30 6 225 7.3 4.31 35.9 

66 60 625 20 250 30 6 225 7.6 4.51 35.0 

68 37.5 800 20 250 30 6 225 7.6 4.45 35.3 

69 37.5 625 20 100 30 6 225 4.8 4.97 35.4 

70 37.5 625 20 400 30 6 225 7.5 4.27 35.4 

72 37.5 625 30 250 30 6 225 5.7 4.5 45.4 

73 37.5 625 20 250 30 3 225 7.4 5.61 32.4 

74 37.5 625 20 250 30 9 225 5.6 3.63 38.3 

75 37.5 625 20 250 30 6 225 7.2 4.54 35.3 

77 60 800 30 100 45 3 250 8.01 5.66 42.2 

79 60 800 30 400 45 9 250 4.88 2.51 47.4 

 

 

Table A.15. Validation Data Of Cross Validation Group 5 

No IS  IP CT PP MOT PT MT  WP SK CYCT 

9 60 450 10 100 15 3 200 4.4 5.38 23.6 

35 15 450 10 400 15 9 250 4.5 3.12 31.4 

45 60 800 10 100 15 3 250 16 6.16 22.6 

53 15 800 10 100 45 3 250 13.6 6.25 24.3 

74 37.5 625 20 250 30 9 225 5.6 3.63 38.3 

78 60 800 10 400 45 3 250 11.2 4.53 21.9 
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APPENDIX B 

 

K-FOLD CROSS VALIDATION RESULTS OF THE 

NEURO-REGRESSION MODEL FOR CYCLE TIME 

 

Table B.1. K-Fold Cross Validation Results Of The Neuro-Regressıon Model 

                           For Cycle Time 

Models R2 training 
R2 training 

Adjusted 
R2 testing 

R2 

validation 
Maximum Minimum 

L1 0,999568 0,999422 0,989042 0,987301 50,3377 22,5436 

L2 0,999533 0,999374 0,99705 0,927734 50,393 22,3843 

L3 0,999543 0,999388 0,991708 0,993982 50,3594 22,2136 

L4 0,999804 0,999737 0,980056 0,99602 50,1389 22,3399 

L5 0,99952 0,99936 0,996868 0,987905 50,332 22,4008 

LR1 0,999741 0,999652 0,99476 0,997102 50,5389 21,8247 

LR2 0,999717 0,99962 0,998953 0,95494 50,5024 21,9626 

LR3 0,999755 0,999672 0,991632 0,99787 50,7963 22,1029 

LR4 0,972732 0,963449 0,115168 0,413481 ∞ ∞ 

LR5 0,999759 0,999679 0,994537 0,998007 51,1599 0,999759 

SON1 0,999875 1,00088 0,993801 0,996669 48,8516 21,8279 

SON2 0,999872 1,00089 0,99588 0,985072 50,9829 21,7642 

SON3 0,999885 1,00081 0,989309 0,999925 50,8447 21,7175 

SON4 0,99998 1,00014 0,987566 0,999306 50,0223 22,0589 

SON5 0,999874 1,00101 0,993887 0,998478 52,0226 21,7601 

SONR1 0,996219 1,02647 0,77602 0,942262 58,3891 21,2811 

SONR2 0,995881 1,02884 0,393605 0,882625 76,9801 23,706 

SONR3 0,995599 1,0308 -0,34415 0,954694 77,7397 22,7213 

SONR4 0,995991 1,02806 0,72239 0,915258 57,554 23,6485 

SONR5 0,75662 2,94704 -3,29838 -1,73009 72,9159 11,6262 

FOTN1 0,999677 0,999384 0,996216 0,998336 77,8571 -47,1218 

FOTN2 0,999605 0,99947 0,996455 0,965956 50,2909 22,2598 

FOTN3 0,999693 0,999413 0,99417 0,999545 98,9265 -5,3652 

FOTN4 0,999937 0,99988 0,982755 0,998163 89,9144 -5,81346 

FOTN5 0,999676 0,999391 0,997797 0,993351 103,127 -5,86926 

FOTNR1 0,999757 0,999535 -0,582858 0,996865 1,06844 x 109 -1,4530 x 109 

FOTNR2 0,999752 0,999527 0,998484 0,96197 826600 -1,9867 x 106 

FOTNR3 0,972815 0,9481 0,0725967 0,790992 1,73847 x 106 -2,299 x 1013 

FOTNR4 0,999957 0,999917 0,982521 0,998432 983320 -48604,3 

FOTNR5 0,980183 0,962698 -0,16534 0,125922 3,53352 x 108 -1,1845 x 107 

SOTN1 0,999875 1,00004 0,353848 0,996708 70,1185 -6,09993 

SOTN2 0,999878 1,00004 0,946824 0,985565 79,0751 -0,988886 

(cont. on next page) 
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Table B.1. (cont.) 

SOTN3 0,999892 1,00004 0,988765 0,999933 71,286 -0,0127627 

SOTN4 0,999985 1,00001 0,979677 0,999379 75,9441 4,32376 

SOTN5 0,999881 1,00004 0,84386 0,99841 71,9273 0,508661 

SOTNR1 0,458857 1,19261 -12,8106 -11,6458 8,12399x 107 -5,0967 x 107 

SOTNR2 0,372791 1,22324 -9,04555 -21,0832 399621 -5,274 x 1012 

SOTNR3 0,599091 1,1427 -10,5251 -5,67089 1,35105 x 106 -3,434 x 1013 

SOTNR4 0,257363 1,26433 -12,6865 -12,1428 6,97267 x 1012 -1,4195 x 106 

SOTNR5 0,541811 1,16661 -21,6127 -12,2732 292144 -252737 

FOLN1 0,998618 0,998148 0,88536 0,861618 50,1565 22,1698 

FOLN2 0,998206 0,997596 0,974149 0,884906 50,121 21,7683 

FOLN3 0,997984 0,997298 0,970407 0,935697 50,2424 21,3245 

FOLN4 0,998257 0,997663 0,963582 0,959767 50,0832 21,2556 

FOLN5 0,998066 0,997421 0,975132 0,970573 49,8732 21,8725 

FOLNR1 0,999648 0,999528 0,986341 0,987663 50,286 22,0668 

FOLNR2 0,999605 0,99947 0,996455 0,965956 50,2909 22,2598 

FOLNR3 0,999716 0,99962 0,975281 0,998123 50,4644 22,1223 

FOLNR4 0,999743 0,999656 0,985427 0,995217 49,5562 22,4833 

FOLNR5 0,999634 0,999511 0,993944 0,994978 50,4909 22,2014 

SOLN1 0,999875 1,00088 0,993351 0,996628 48,8076 21,916 

SOLN2 0,999871 1,00091 0,996188 0,984921 49,7479 21,7399 

SOLN3 0,999884 1,00081 0,989244 0,999872 50,8473 21,7229 

SOLN4 0,999979 1,00015 0,987535 0,999248 49,7293 22,0352 

SOLN5 0,999873 1,00102 0,994175 0,998306 51,9714 21,8016 

SOLNR1 0,999842 1,00111 0,986945 0,994771 49,4431 22,6943 

SOLNR2 0,99984 1,00112 0,994611 0,995554 48,5876 22,7393 

SOLNR3 0,999813 1,00131 0,987163 0,998419 49,4558 22,3296 

SOLNR4 0,9999 1,0007 0,988489 0,998882 49,5541 22,6402 

SOLNR5 0,999843 1,00125 0,977038 0,988928 48,9121 22,4958 
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APPENDIX C 

 

K-FOLD CROSS VALIDATION RESULTS OF THE 

NEURO-REGRESSION MODEL FOR SHRINKAGE 

 

Table C.1. K-Fold Cross Validation Results Of The Neuro-Regressıon Model 

                           For Shrinkage 

Models R2 training 
R2 training 

Adjusted 
R2 testing 

R2 

validation 
Maximum Minimum 

L1 0,994287 0,992342 0,9465 0,972329 652,953 248,942 

L2 0,996026 0,994673 0,890347 0,908814 633,944 270,892 

L3 0,995597 0,994098 0,901156 0,588459 661,099 246,753 

L4 0,995748 0,994301 0,802034 0,819835 647,921 258,088 

L5 0,995708 0,994278 0,529528 0,867713 663,747 234,224 

LR1 0,996461 0,995256 0,836693 0,997256 615,063 198,203 

LR2 0,996955 0,995918 0,930663 0,928382 61,409 247,541 

LR3 0,996982 0,995955 0,90055 0,732434 649,453 217,876 

LR4 0,998034 0,997365 0,565501 0,939326 642,849 194,014 

LR5 0,997067 0,996089 0,570768 0,807517 628,463 178,961 

SON1 0,998871 100,791 0,701653 0,994193 625,846 207,847 

SON2 0,998964 100,725 0,925439 0,957904 640,257 23,315 

SON3 0,998828 10,082 0,870433 0,880853 664,069 226,269 

SON4 0,999005 100,697 0,818809 0,963464 647,038 205,729 

SON5 0,998757 100,994 0,665092 0,943016 652,651 189,541 

SONR1 0,997518 101,737 0,584673 0,985843 581,958 191,361 

SONR2 0,997876 101,487 0,894011 0,935967 687,608 247,256 

SONR3 0,997555 101,712 0,925348 0,842284 639,557 1,199,108 

SONR4 0,997842 10,151 0,690422 0,867589 614,004 191,262 

SONR5 0,997266 102,187 0,754911 0,860553 640,714 198,618 

FOTN1 0,994344 0,989201 0,933182 0,974586 133,605 -914,125 

FOTN2 0,996099 0,992553 0,888147 0,907871 141,511 -48,214 

FOTN3 0,995648 0,991692 0,900731 0,588634 144,307 -637,199 

FOTN4 0,995814 0,992008 0,800913 0,818802 131,092 -988,863 

FOTN5 0,995822 0,992136 0,472305 0,873529 132,055 -206,878 

FOTNR1 0,996606 0,993521 -210,208 0,99845 6,53127 x 107 -2,385 x 1014 

FOTNR2 0,996943 0,994163 0,909116 0,904534 2,20756 x 1014 -4,7765 x 107 

FOTNR3 0,980367 0,962519 -109,537 0,472236 8,54025 x 1013 -3,3920 x 107 

FOTNR4 0,998214 0,996591 0,251933 0,941985 16153,2 -998416 

FOTNR5 0,99723 0,994787 0,272634 0,810426 1,81033 x 1013 -2,9654 x 106 

SOTN1 0,998904 100,039 0,0607194 0,995041 140,398 -128,439 

SOTN2 0,998964 100,725 0,925439 0,957904 640,257 23,315 

(cont. on next page) 
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Table C.1. (cont.) 

SOTN3 0,998932 100,038 0,754669 0,896517 195,847 -117,606 

SOTN4 0,99907 100,033 0,640653 0,965788 184,166 -886,682 

SOTN5 0,998809 100,043 0,0673541 0,944804 128,838 -970,888 

SOTNR1 0,964208 101,274 -0,316913 0,443116 4,02844 x 107 -4,6580 x 107 

SOTNR2 0,997876 101,487 0,894011 0,935967 687,608 247,256 

SOTNR3 0,817874 106,482 -196,549 -871,468 1,1969 x 107 -8,4812 x 107 

SOTNR4 -0,858195 105,047 -426,478 -260,807 4,30968 x 1014 -1,4716 x 106 

SOTNR5 0,59817 114,612 -465,172 -630,228 2,10699 x 106 -937642 

FOLN1 0,993715 0,991576 0,880337 0,963267 654,349 25,432 

FOLN2 0,995605 0,994108 0,869835 0,889426 635,436 279,252 

FOLN3 0,994805 0,993037 0,89294 0,544334 66,296 258,703 

FOLN4 0,994982 0,993274 0,787308 0,759085 654,009 266,387 

FOLN5 0,994722 0,992962 0,616001 0,851619 662,188 247,463 

FOLNR1 0,995847 0,994433 0,790382 0,992535 614,752 198,122 

FOLNR2 0,99645 0,995241 0,913018 0,910732 618,037 252,624 

FOLNR3 0,996134 0,994818 0,90811 0,707937 651,188 227,814 

FOLNR4 0,997927 0,997222 0,472941 0,954831 641,284 195,859 

FOLNR5 0,996521 0,995361 0,483257 0,785375 628,406 190,348 

SOLN1 0,998865 100,794 0,629624 0,993577 667,842 19,741 

SOLN2 0,998917 100,758 0,923298 0,958237 640,009 256,309 

SOLN3 0,9987 10,091 0,883934 0,869095 669,944 2,254 

SOLN4 0,998933 100,747 0,809045 0,958057 650,836 207,273 

SOLN5 0,998715 101,028 0,633231 0,943016 66,812 21,364 

SOLNR1 0,997568 101,703 0,828948 0,984944 59,847 199,864 

SOLNR2 0,998642 10,095 0,785586 0,933226 60,885 246,129 

SOLNR3 0,99818 101,274 0,826796 0,872497 629,664 20,897 

SOLNR4 0,997939 101,443 0,763983 0,888807 637,197 19,538 

SOLNR5 0,998211 101,431 0,0314994 0,913186 657,769 149,456 
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APPENDIX D 

 

K-FOLD CROSS VALIDATION RESULTS OF THE 

NEURO-REGRESSION MODEL FOR WARPAGE 

 

Table D.1. K-Fold Cross Validation Results Of The Neuro-Regressıon Model 

                           For Warpage 

Models R2 training 
R2 training 

Adjusted 
R2 testing 

R2 

validation 
Maximum Minimum 

L1 0,958926 0,944944 0,235182 0,529389 963,885 342,254 

L2 0,9513774 0,93482 0,467102 0,68513 107,721 308,567 

L3 0,948534 0,931014 -0,118204 0,0352003 108,634 298,486 

L4 0,945285 0,926659 0,0999092 0,0915001 109,098 274,845 

L5 0,952694 0,936925 0,0809636 0,551954 107,676 26,919 

LR1 0,964903 0,952955 0,261134 0,544286 197,854 370,765 

LR2 0,972346 0,962932 -0,205378 0,513128 ∞ ∞ 

LR3 0,968557 0,957854 -225,576 -0,00142651 195,953 113,435 

LR4 0,966058 0,954503 -304,714 0,255312 203,296 35,106 

LR5 0,973238 0,964318 -0,425343 0,976478 161,514 -0,0639384 

SON1 0,979028 11,468 -0,485974 0,536851 122,662 -186,034 

SON2 0,976583 116,392 -0,115598 0,515703 137,703 369,547 

SON3 0,972803 119,038 -240,022 0,251666 128,223 244,426 

SON4 0,976088 116,739 -279,845 0,361544 136,472 206,615 

SON5 0,976357 118,915 -110,946 0,879726 14,81 -0,694468 

SONR1 0,977239 115,933 -0,233745 0,429327 112,313 346,141 

SONR2 0,98248 112,264 -0,219801 0,568396 305,558 374,155 

SONR3 0,979049 114,666 -304,141 0,198805 5,65567 x 106 329,265 

SONR4 0,97543 117,199 -201,943 0,347455 395,883 336,704 

SONR5 0,98344 113,248 -10,966 0,984069 34975,3 -320133 

FOTN1 0,960071 0,923772 -0,0470769 0,473211 270,338 -259,159 

FOTN2 0,954543 0,913218 0,145279 0,706416 223,577 -798,344 

FOTN3 0,949843 0,904246 -0,165507 0,234208 108,849 -105,558 

FOTN4 0,946678 0,898203 0,0645017 0,0599025 150,452 -923,527 

FOTN5 0,957204 0,919442 -0,54116 0,552896 239,585 -798,499 

FOTNR1 0,973303 0,949032 -265,44 0,952712 6,80593 x 106 -1,639 x 1013 

FOTNR2 0,976085 0,954344 -0,264565 0,514429 1,19275 x 106 -1,7734 x 106 

FOTNR3 -0,977206 0,956485 -0,538231 0,487786 1,56526 x 106 -4,6926 x 106 

FOTNR4 0,940882 0,887138 -0,743046 0,570448 7,59114 x 107 -2,7493 x 108 

FOTNR5 0,93954 0,886193 -124,688 0,41942 2,59067 x 108 -6,9618 x 107 

SOTN1 0,987677 100,439 -0,353635 0,962897 353,186 -412,456 

SOTN2 0,976752 100,827 0,359297 0,516841 493,917 -345,314 

(cont. on next page) 
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Table D.1. (cont.) 

SOTN3 0,98181 100,647 -281,536 0,695345 412,616 -446,159 

SOTN4 0,983304 100,594 -26,503 0,442634 363,242 -195,889 

SOTN5 0,978297 100,789 -0,78679 0,886771 204,313 -402,138 

SOTNR1 0,932588 102,399 -0,260311 -0,889261 676380 -9,8609 x 106 

SOTNR2 0,83888 105,735 0,0252322 -22,759 1,63988 x 108 -1,0031 x 107 

SOTNR3 0,689166 111,064 -628,768 0,556463 1,36491 x 1012 -277526 

SOTNR4 0,750534 108,879 -488,014 -391,384 4,59624 x 1012 -2,6072 x 106 

SOTNR5 0,810224 106,901 -720,538 0,627188 2,22612 x 107 -1,689 x 1013 

FOLN1 0,958855 0,944848 0,236239 0,500062 961,407 343,263 

FOLN2 0,950672 0,933879 0,478239 0,676976 107,163 315,374 

FOLN3 0,948645 0,931162 -0,157262 0,156097 109,043 306,556 

FOLN4 0,945018 0,926301 0,112366 0,0142752 109,374 28,382 

FOLN5 0,952843 0,937124 0,057237 0,554257 107,834 271,416 

FOLNR1 0,964968 0,953042 0,258171 0,527377 110,364 371,657 

FOLNR2 0,972445 0,963064 -0,145237 0,50538 941,668 286,749 

FOLNR3 0,968374 0,957608 -208,373 0,0200497 187,592 319,728 

FOLNR4 0,96558 0,953862 -268,929 0,201171 196,228 354,807 

FOLNR5 0,973398 0,964531 -0,484978 0,976369 162,153 -0,290539 

SOLN1 0,980044 113,969 -0,728693 0,597001 141,605 -250,013 

SOLN2 0,976484 116,461 -0,12512 0,514183 139,802 317,716 

SOLN3 0,973489 118,558 -257,195 0,328712 149,335 237,645 

SOLN4 0,975699 117,011 -264,534 0,364935 134,209 203,496 

SOLN5 0,97652 118,784 -11,549 0,883115 149,578 207,556 

SOLNR1 0,977239 115,933 -0,233745 0,429327 112,313 346,141 

SOLNR2 0,98248 112,264 -0,219801 0,568396 305,558 374,155 

SOLNR3 0,979049 114,666 -304,141 0,198805 5,65567 x 106 329,265 

SOLNR4 0,97543 117,199 -201,943 0,347455 395,883 336,704 

SOLNR5 0,98344 113,248 -10,966 0,984069 34975,3 -320133 

 


