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ABSTRACT 

 

DEVELOPMENT OF MAGNETIC AND IMAGE BASED CELL 

CYTOMETRY TECHNIQUES 

  

Flow cytometry allows for the measurement of cells or single-cell properties using 

various parameters. In this thesis, a novel image-based cytometry approach was 

developed for measuring the density of microparticles under flow conditions within a 

microfluidic chip utilizing magnetic levitation and deep learning analysis. This method 

facilitates the differentiation of microparticles according to their densities without the 

necessity of labeling. Utilizing the You Only Look Once (YOLO) algorithm, a method 

was established to automatically and accurately analyze particle radius and levitation 

heights. Furthermore, microparticles with two different densities were successfully 

separated based on their densities. Subsequently, live and dead human monocyte cells (U-

937) were analyzed. Thus, the developed image-based cytometry method facilitates the 

automatic analysis of microparticles, and cells based on their densities and radii. This 

approach will enable the real-time, label-free identification of various microparticle 

populations for different applications. Additionally, studies were conducted on 

microvalves to enable the use of this system for sorting purposes under flow conditions. 

In this context, the fabrication of micropneumatic valves was explored. Pneumatic valves 

created with polydimethylsiloxane (PDMS) membrane structures provide robust 

operation and fast fluidic manipulation. Pneumatic valve structures were fabricated 

quickly and simply using a 3D printed mold. Moreover, these valves could be closed at 

very low pressures and were shown to be usable in the magnetic levitation setup. Hence, 

new magnetic levitation-based cytometry applications can be conducted in future studies 

with the presented technique. 
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ÖZET 

 

MANYETİK VE GÖRÜNTÜ TABANLI HÜCRE SİTOMETRİ 

TEKNİKLERİNİN GELİŞTİRİLMESİ 

 

Akış sitometrisi çeşitli parametreler kullanılarak hücrelerin veya tek hücre 

özelliklerinin ölçülmesine olanak tanır. Bu tezde etiketlemeye gerek kalmadan hücrelerin 

veya mikropartiküllerin farklı yoğunluklarına göre ayrıştırılmasına olanak tanıyan 

manyetik levitasyon yöntemi kullanılmıştır. Ayrıca mikroakışkan çip içindeki 

mikropartiküllerin ve hücrelerin akış koşulları altında yoğunluğunu ölçen derin öğrenme 

tabanlı yeni bir görüntü sitometri tekniği üstünde çalışılmıştır. Bu bağlamda You Only 

Look Once (YOLO) algoritmasını kullanılarak parçacık yarıçapının ve levitayon 

yüksekliklerinin otomatik ve doğru analizini sağlayan bir yöntem geliştirilmiştir. Bununla 

birlikte farklı iki yoğunluğa sahip mikroparçacıklar birbirinden başarılı şekilde 

yoğunluklarına göre ayrıştırılmıştır. Devamında aynı şekilde insan monosit hücresinin 

(U-937) ölü ve canlı analizi yapılmıştır. Böylece, geliştirilen görüntü tabanlı sitometri 

yöntemi, mikropartiküllerin ve hücrelerin yoğunluklarına ve yarıçaplarına göre otomatik 

analizini kolaylaştırmıştır. Bu yaklaşım farklı uygulamalar için mikropartikül/hücre 

popülasyonlarının gerçek zamanlı, etiketsiz tanımlanmasına imkan tanıyabilecektir. 

Ayrıca bu sistemin akış altında ayrıştırma amacı ile kullanılabilmesi için mikrovalfler 

üzerinde çalışmalar gerçekleştirilmiştir. Bu kapsamda mikro pnömatik valf üretimi 

üzerinde çalışılmıştır. Polidimetilsiloksan (PDMS) membran yapıları ile oluşturulan 

pnömatik valfler, sağlam işleyişleri sayesinde hızlı akış manipülasyonuna olanak 

tanımaktadır. 3B baskı yöntemi ile üretilen kalıplar kullanılarak pnömatik valf yapıları 

hızlı ve basit bir şekilde üretilmiştir. Ayrıca, bu valfler çok düşük basınçlarda kapatılabilir 

ve manyetik levitasyon kurulumunda kullanılabilir olduğu gösterilmiştir. Bu nedenle, 

sunulan teknikle gelecekteki çalışmalarda yeni manyetik levitasyon tabanlı sitometri 

uygulamaları yürütülebilir. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

In this chapter, cell separation methods are discussed. The image-based magnetic 

levitation method is explained, and its application in cell separation is illustrated with 

examples. Subsequently, the contributions of cytometry techniques combined with 

microfluidic-based systems are described. Finally, the aim of the thesis is explained. 

 

 

1.1. Conventional Flow Cytometry Methods 

 

 

The technique known as flow cytometry allows for the measurement of cells and 

their characteristics using a variety of parameters.1 Unlike many other techniques, flow 

cytometry quantitatively examines the characteristics of individual cells within a diverse 

population.2 

 

 

1.1.1. Optic Flow Cytometry 

 

 

The fluidic system, computer, electronics, illumination source, and optical bench 

are the essential parts of an optic flow cytometer (Figure 1.1). Stained cells are probed by 

light sources as they move through the fluidic system in a single file. The optical system 

directs the light signals to photodetectors, which convert these signals into electronic 

signals that are stored and analyzed. The fluidic system ensures a stable, centrally focused 

single-file flow of cells using isotonic sheath fluid. Consequently, the emission signals 

generated from the cells reflect biological differences among them.3 



 

 

2 

Light scattering and fluorescence emission from a source of excitation, usually a 

laser beam striking in-motion particles is the fundamental idea behind flow cytometry. 

The information gathered from this process can be very helpful in understanding the 

molecular, biochemical, and physical characteristics of the particles. Light scattering has 

a direct correlation with the cell's morphological and structural characteristics. The 

number of fluorescent probes that are in place on the cell or cellular component 

determines the amount of fluorescence emission.4 

The most crucial and time-consuming part of the manual analysis is finding 

homogenous cell populations within the data, when numerous populations are found 

within individual samples and sample comparisons take a long time. In addition, 

computational tools frequently must analyze large data sets.5 

 

 

 

 

Figure 1.1. Illustration of optical flow cytometry.3 

 

 

It is dependent upon particular magnetic or fluorescent indicators on the targeted 

cell's surface. Even though labeling is frequently a costly, time-consuming, and complex 

process, it can harm the sample being examined. Despite the content-rich, high-

throughput screening that label-dependent strategies offer, this could impede their 
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widespread adoption in clinical settings.6 On the other hand, using multiple fluorophores 

to label distinct cell structures at the same time may cause emission spectra to overlap 

and necessitate the use of a compensation procedure. When examining rare cells like 

circulating tumor cells, this step is essential.7 These drawbacks highlight the necessity of 

label-free, non-intrusive physical feature-based classification techniques.  

 

 

1.1.2. Impedance-Based Flow Cytometry 

 

 

An essential component of flow cytometry analysis is particle counting. The 

Coulter chamber was used for particle counting, one of the first applications of electrical 

analysis.8 The foundation of the Coulter principle is the idea that a particle's electrical 

impedance differs from the flow gap in the flow channel. A 'sensing zone' is formed when 

a gap is positioned between the electrodes, altering the electrical current as it passes 

through the particle (Figure 1.2). The analysis of cell size about particle size and volume 

is based on this change in impedance. Additionally, many physical characteristics of the 

particle, including its size, shape, and orientation, affect the impedance change at the 

aperture.9,10 

Beyond Coulter measurement, impedance-based cell characterization is possible. 

To characterize cells, impedance systems have been developed. It seems that impedance 

analysis holds the most potential for smaller devices and a wider variety of uses, however, 

there is always potential for improvement.11 

The dielectric properties of cells allow for characterization without the need for 

immunological markers, which are costly, brittle, and have a limited shelf life.12 

Membrane morphology and function are reflected in dielectric properties like capacitance 

and conductance; these attributes are linked to physiological variations amongst cells or 

pathological alterations that develop in cells over time.13 
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Figure 1.2. Illustration of Coulter Principle. 

 

 

1.1.3. Image-Based Flow Cytometry 

 

 

Imaging flow cytometry systems, which combine the advantages of microscope 

imaging with the statistical power of traditional flow cytometry to provide bright-field 

and fluorescence images,14 can be complemented by magnetic levitation—a label-free, 

sensitive, and precise image-based detection technique that measures the density of 

particles exposed to a magnetic field while suspended in a paramagnetic environment.15 

Two opposing forces act on a diamagnetic object suspended in a paramagnetic medium 

and exposed to a magnetic field.16 Due to the microparticles' relative density, it has two 

forces: a magnetic force from its sensitivity to the surroundings and suspension medium, 

and a buoyant force from the object itself. The object will stay suspended in the air at a 

height proportionate to its density in the equilibrium between these two forces.17 The 

paramagnetic medium facilitates the levitation of objects by exerting a magnetic force 

that is proportionate to the variation in the medium's and the microparticle's magnetic 

susceptibility, in addition to applying a buoyant force on the particles in proportion to the 

disparity in density between the microparticle and the medium. Lower-density particles 

levitate at higher altitudes than higher-density ones.18 Particle size, shape, chemical 

makeup, and mechanical characteristics like viscosity, elasticity, and hardness have no 

bearing on levitation height. Imaging equipment should be used to measure the levitation 
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height of objects once they are suspended. Among the imaging methods frequently 

employed for this purpose are optical, fluorescent, and inverted microscopy techniques.  

The next steps are to acquire images and interpret the levitating items. It can take a lot of 

time to classify, analyze, and quantify the massive volumes of data that are obtained (from 

high-throughput microscopes). Magnetic Levitation (MagLev) setups can automatically 

adjust to new trials thanks to machine learning (ML) techniques, which eliminate the need 

for explicit programming for each use case.19  

A straightforward yet effective levitational image cytometry tool is described that 

works for both inverted and upright fluorescence microscopes and provides high-

resolution cell population monitoring as well as real-time, label-free separation. A 

microcapillary tube with identical poles facing each other is positioned between two 

permanent magnets as part of the experimental setup. Two gold-coated mirrors are 

positioned at a 45-degree angle for imaging using traditional microscopy. Within a 1 mm 

capillary, this apparatus was able to separate cells.20 

Traditional flow cytometry techniques no longer require manual preprocessing 

and labeling processes thanks to a new technology called CellLEVITAS. In a microfluidic 

system, live and non-viable cells were separated using the magnetic levitation approach. 

Under a magnetic field, viable and nonviable breast cancer cells were first separated using 

levitation conditions. It was then shown that using a range of cell concentrations and input 

purities, cells could be effectively separated from diverse input purities (10–50%) to 

constant high-purity output (>80%).21  

i-LEV, a different smartphone-based MagLev imaging device, provides a 

magnetic levitation-based diagnostic solution that separates cells according to their 

distinct densities by levitating them in a magnetic gradient. It has been demonstrated that 

this technique can count cell numbers and distinguish between white and red blood cells 

without the need for labels. It is made up of several magnets, mirrors, capillary tubes, and 

imaging components (the sample is illuminated by LEDs, the smartphone camera lens 

focuses, and the filters improve the captured photos).22 

Typically, an intelligent imaging flow cytometer (IIFC) integrates artificial 

intelligence, imaging technology (such as laser/image sensors), and flow cytometry 

(Figure 1.3). The system can identify features of a single cell between hundreds and 

millions of cells every second, while also supporting multi-parameter analysis and high-

capacity identification. Additional potential uses for biosensing, including clinical 

diagnosis make extensive use of IIFC. Accurate cell characterization in cytometry data 
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analysis requires the detection of specific features. Conventional methods for ML and 

computer vision (CV) have been employed. New algorithms have been created recently 

to detect and divide rare cells nuclearly.23 High accuracy automatic cytometry data 

analysis is provided by these algorithms. These days, software for processing cytometry 

data uses these conventional ML and CV techniques extensively. Open-source programs 

like ImageJ and CellProfiler are also utilized. The pipeline works by first loading 

cytometer-taken images into software, processing them, and then sending them to 

machine learning systems.14 

 

 

 

 

Figure 1.3. Illustration of intelligent image-based cytometry.24 

 

 

Several studies have recently demonstrated how the combination of traditional 

and deep ML techniques improves the effectiveness of complex systems that provide cell 

classification. To resolve the issue of locating and sorting the correct cells in real time,25 

developed a method that combines these approaches. Using this method, the main 

characteristics of bright field images are extracted after binary masks are created, thereby 

taking advantage of the high accuracy of neural networks. Morphological features and 

fluorescence intensity data are included, in addition to standard computer vision 

algorithms for tasks like noise reduction and edge detection. Convolutional neural 

networks receive the acquired data, which allows for the achievement of high accuracy 

and speed.26 
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Deep learning algorithms for enhancing microscopy performance have been 

developed extensively during the previous few years. Deep learning has made it possible 

to reconstruct three-dimensional images, paint virtually, achieve super-resolution, and 

achieve single shot autofocus, among other things. Techniques for deep learning-based 

microscopy enable overcoming optical constraints like the diffraction limit. IFC can 

benefit from a variety of deep learning applications in cell biology.27 

Microfluidic systems have several benefits over cell-based analyses, such as 

smaller instrument footprints, lower sample/reagent consumption, less expensive units, 

and simpler implementation in remote locations. The advancement of flow cytometers 

that are microfabricated has drawn a lot of interest recently because they combine 

inexpensive optical components with the ability to swiftly compute cells and analyze 

cellular populations at the level of individual cells.28 

New high-throughput platforms that combine the spatial resolution of optical 

combining the considerable efficiency of traditional flow cytometry with microscopy 

methods can be developed thanks to the creation of microfluidic flow cytometers based 

on images. As mentioned, there are a lot of benefits to integrating an imaging technique 

with a flow cytometer. Analysis of cellular morphology is crucial for identifying and 

assessing different disease states.29 

A microfluidic chip paired with a pair of ring magnets makes up the pump-free 

microfluidic MagLev platform, which is described in one study as allowing for quick and 

accurate density determination of individual cells with small sample quantities. Within 

16 seconds, the platform permits tiny volumes of liquid (about 4 μL) to naturally 

distribute in the microchannel. By recognizing levitation profiles and differentiating 

diverse cell populations, it efficiently characterizes cell densities. It was also utilized to 

compare A549 lung cancer cells treated with various gefitinib concentrations, providing 

an automated, portable, and affordable in vitro tool for customized treatment. This 

method is suggested as a substitute for the upcoming microfluidic device for cell density 

analysis, manipulation, and characterization.30 

 

 

 

 



 

 

8 

1.2. Aim of The Thesis 

 

 

This thesis aims to develop a novel image-based cytometry approach that uses 

deep learning for analysis to measure the density of microparticles under flow conditions 

within a microfluidic chip positioned on a magnetic levitation platform. Additionally, to 

enable the use of this system for sorting purposes, studies were conducted on simple, fast-

to-fabricate, and inexpensive microvalves. In this context, Chapter 2 explains the deep 

learning-based cytometry technique, demonstrating the automatic levitation results for 

beads of different densities and dead/live human monocytic cells (U937) using the deep 

learning method. Chapter 3 focuses on the fabrication and optimization of 

micropneumatic valves, showing leakage tests conducted at different pressures and 

speeds. 
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CHAPTER 2 

 

 

MAGNETIC LEVITATION-BASED CYTOMETRY IN A 

MICROFLUIDIC CHIP VIA DEEP LEARNING 

TECHNOLOGY 

 

 

This chapter presents a unique image-based cytometry method that uses deep 

learning analysis to quantify the density of microparticles under flow conditions within a 

microfluidic chip placed on the MagLev platform. Deep learning was described in full in 

this context. After that, the designed platform and the magnetic levitation principle were 

described. Following an explanation of the deep learning technique and its performance 

indicators, the results from the experiments using the bead and cell were discussed. 

 

 

2.1. State of the Art 

 

 

2.1.1. Deep Learning Based Cytometry Technologies 

 

 

The ability of machines and programs to replicate human cognitive experiences 

and practical patterns is referred to as artificial intelligence (AI).31 ML a branch of AI, 

can enhance its analysis using computational algorithms.32 ML examines learning 

through behavior, definitions, examples, and narration. Techniques within ML algorithms 

include categorization analysis, predictive modeling, reinforcement learning, and data 

clustering.33,34 DL a branch of ML, imitates the architecture of the brain's neural networks. 

Computers can learn from hierarchical data representations thanks to DL, which identifies 

and modifies features using many layers of nonlinear processing units.35,36 DL has 

fabricated significant advancements in the field of CV and medical image processing.37 

In CV, DL has addressed issues such as action recognition, motion tracking, object 
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detection, human pose estimation, and semantic segmentation. In medical image 

processing, The three main categories of DL are segmentation, detection, and 

classification.38,39 Convolutional neural network (CNN) stands out as a representative 

algorithm of DL and is frequently used in the analysis of high-dimensional data covering 

tasks such as object detection.40 One of the primary reasons for the preference for CNN 

is its strong capability to extract local features from images.41 CNN extracts features 

directly from a raw series of image data, where the relevant features are not pre-trained. 

This automatic feature extraction method constitutes the most accurate learning model 

for visual computing tasks like object detection, classification, and recognition.42 

Contrary to CNN, which converts two-dimensional image data into one-dimensional data 

during training, resulting in the loss of spatial information, CNNs maintain spatial 

structure, facilitating the learning of spatial features among pixels. Moreover, CNNs 

decrease training duration by minimizing the parameter count.43 

 

 

 

 

Figure 2.1. CNN Architecture. 

 

 

 CNNs consist of three key layers: convolutional layer, pooling layer, and fully 

connected layer (Figure 2.1). The convolutional layer creates feature maps by applying a 

nonlinear activation function after learningable filters to conduct convolution operations 

across the input volume.44 Pooling layer cuts down the spatial dimensions of feature maps 
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to reduce computational complexity and capture key features. Common methods are max 

pooling, which selects the largest element, and average pooling, which considers all 

elements in the region.45–47 Fully connected layer functions as the classifier by connecting 

all neurons from the previous layer, producing the final output of the CNN.48 

One-stage detectors and two-stage detectors are the two types of deep CNN-based 

object detection algorithms. Creating candidate boxes and basing predictions on them 

constitute the two stages of the detection process in two-stage detectors.49 Although the 

speed and accuracy of detection have improved with the development of two-stage 

detectors, many real-time scenarios still cannot be met by them. The development of two-

stage detectors has progressively combined separate modules, like feature extraction, 

bounding box regression, and candidate box generation, into a single end-to-end learning 

framework in object detection systems.50 On the other hand, one-stage detectors, 

including the 2016-proposed You Only Look Once (YOLO), do not require the creation 

of candidate boxes at the beginning of the process. Rather, they consider location 

information as indicative of potential objects and proceed to classify each region as either 

a background or a target object (Figure 2.2).51 YOLO typically uses the full image to 

make predictions. In contrast to other methods, YOLO takes the whole image into account 

both in the training and testing stages. This enables it to implicitly encode contextual 

information about the images' appearances in addition to their classes.52 Moreover, 

YOLO makes object detection predictions in a single stage, which accelerates the YOLO 

architecture significantly.53,54 These arguments suggest that YOLO will inevitably be 

used in cytometry techniques. 

DL is applied in various diagnostic techniques, including positron emission 

tomography, MRI, x-ray, computed tomography, and mammography. Consequently, 

radiological research has leveraged decades of human expertise, particularly through 

medical image processing, which aids in identifying and extracting features that are 

imperceptible to the unaided eye.55 A novel approach utilizing DL for the detection of red 

blood cells (RBCs) with nuclei has been proposed due to its remarkable performance in 

visual recognition. This label-free detection method integrates visual object recognition 

with Raman spectroscopy on a single cell to rapidly identify nuclear erythrocyte derived 

cells within complex cell mixtures in real-time.56 
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Figure 2.2.   YOLO algorithm's working principle. First, an input image is split up into S 

× S grids. Subsequently, a class probability map (where cells containing 

objects in the bead class are highlighted in blue) and several bounding boxes 

are predicted to produce the final bounding boxes and object class. 

 

 

A platform has been developed for intelligent cell sorting activated by images, 

integrating DL-based microfluidics in another study. On this platform, cell separation is 

conducted by utilizing protein localization and image classification.57 The automatic 

detection of distinct cell types in microscopy images has achieved heightened success 

through novel methods employing deep learning architectures. Consequently, a variety 

of computer-aided cell detection techniques are advocated.58 These studies underscore 

the accessibility of deep learning as a tool that aids biologists in comprehending imaging 

data. 

A rapid image processing pipeline system based on deep learning has been 

developed for label-free IFC on a microfluidic chip using high-throughput microscopy. 
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By employing just a microscope and a high-speed camera, individual images of cells in 

flow were captured to perform single-cell analysis in real-time. Particles of various sizes, 

RBCs, and K562 human leukemic cells were successfully analyzed in the experiments 

with a dependable accuracy (93.3% mAP). They said that a potent tool for clinical and 

biomedical applications is anticipated to be the system created following this study.59 

In one study, flow cytometry waveforms were directly processed using a deep 

CNN with quick inference. With the deep CNN model, white blood cell and epithelial 

cancer cell classification was completed in just a few seconds or less. It opened a new 

avenue for label-free real-time use when it was shown label-free within the microfluidic 

channel with over 95% accuracy.60
 

 

 

2.2. Materials and Methods 

 

 

2.2.1. Fabrication of the MagLev Platform and Microfluidic Chip 

 

 

The platform was designed to accommodate two magnets and a microfluidic chip. 

Arms were added to secure the platform to the microscope stage with M3 screws at the 

four corners, ensuring it remains stable and upright on an inverted microscope (Figure 

2.3 a). The technical drawing was created using AutoCAD (2023) software. The platform 

was fabricated using a 3D printer (Formlabs Form 3) with Clear resin at a resolution of 

0.025 mm. To get rid of any untreated resin, the printed object was submerged in 

isopropyl alcohol for thirty minutes. The holder was printed to prevent the channel from 

moving, and the holder was cleaned with the same method (Figure 2.3 b). Neodymium, 

iron, and boron (NdFeB) magnets of grade N5 5 mm height x 2 mm width x 25 mm length 

were glued onto the platform facing one another with the same poles in each case.  The 

distance between the magnets glued to the platform was measured as 1.8 mm (Figure 2.4). 
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Figure 2.3. 3D images of the molds of (a) platform, and (b) holder. The unit of 

measurement is in mm. 

 

 

The fluidic channel consists of an inlet channel and two separate outlet branches 

at a 45-degree angle. The inlet channel has a width of 1.00 mm, a length of 30 mm, and 

a height of 0.150 mm. The two output arms have a width of 0.8 mm, a length of 5 mm, 

and a height of 0.150 mm (Figure 2.5). 

 

 

 

 

Figure 2.4.  Microscope image showing the distance between two magnets. Scale bar: 

200 μm. 

 

 

The mold has the same width and height as the cover glass (0.17 mm height × 24 

mm width × 60 mm length) to ensure that the polydimethylsiloxane (PDMS) channel 

removed from the mold adheres to the cover glass. The technical drawing of the mold 



 

 

15 

was created using AutoCAD (2023) software. A 3D printer (Formlabs Form 3) was used 

to print the mold (Figure 2.6) using High-Temperature V2 resin at a resolution of 0.025 

mm. They were washed in isopropyl alcohol for 10 minutes, followed by a post-cure 

process at 80ºC for 120 minutes. 

 

 

 

 

Figure 2.5. The drawing of fluidic channel. The units of measurement are in mm. 

 

 

To eliminate air bubbles, PDMS was made with an elastomer/curing agent ratio 

of 10:1, and it was vacuum sealed for two hours. The PDMS-cast mold was then cured at 

100°C for 1 hour. Subsequently, the fluid channel was removed from the mold using 

tweezers, and the inlets were punctured with a 15-gauge needle (inner diameter = 1.372 

mm, outer diameter = 1.829 mm). To bond the cover glass and fluid channels, air plasma 

(ZEPTO, Diener) was applied to the relevant surfaces at 100 W and 0.5 Torr for 1 minute. 

As a result, a microfluidic chip was obtained (Figure 2.7). 
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Figure 2.6. 3D image of the mold of the fluidic channel. The unit of measurement is in 

mm. 

 

 

 

 

 

Figure 2.7.    The photograph of the microfluidic chip. The microfluidic channel was filled 

with blue colored food dye solution. 

 

 

 

 

 

Figure 2.8.   Magnetic levitation-based platform. (a) Top and (b) cross-sectional views 

of the microfluidic chip placed on the two opposing magnets.  
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The microfluidic chip was placed on the platform, directly above the magnets, and 

the fluidic channel was in the middle of the two magnets and fixed with a holder (Figure 

2.8). It was then placed on the inverted microscope with the help of screws (Figure 2.9). 

 

 

 

Figure 2.9.  A photograph of the platform on an inverted microscope. 

 

 

2.2.2. Magnetic Levitation Principle 

 

 

Samples of cells or beads were made to levitate inside the microfluidic channel 

on the magnetic levitation platform by using an ionic paramagnetic solution (Gadavist) 

sandwiched between two opposing magnets.61,62 With this technique, differing densities 

of cells or beads can be separated without the requirement for labeling.63 The weakest 

magnetic field, situated midway between two magnets, attracts cells or beads on a 

magnetic levitation platform. The cells become motionless at this moment when the 

buoyancy and magnetic forces are equal,64 as the following equation illustrates: 

 

𝐹𝑚𝑎𝑔 =  
𝑉(𝜒𝑐−𝜒𝑚)

𝜇0
 (𝐵. ∇)𝐵 + 𝑉(𝜌𝑐 − 𝜌𝑚)𝑔 = 0                       (2,1) 
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Here, 𝜒𝑚 and𝜒𝑐 represent the magnetic susceptibilities of the paramagnetic medium and 

cells, respectively. 𝜇0 is the permittivity of free space (vacuum) and its value is 

1.2566×10-6 kg⋅m⋅A-2 ·s-2. B denotes magnetic induction (T). 𝜌𝑚 and𝜌𝑐are the densities 

of the medium and cells or beads, and g represents the gravitational acceleration (9.8 m·s-

2). V represents the cell's volume. Furthermore, in comparison to the paramagnetic 

solution, the cells' magnetic susceptibility (𝜒𝑐) is minimal.  

 

 

 

 

Figure 2.10. Principles of magnetic levitation. Under magnetic (Fmag) and buoyant (Fb) 

pressures, beads were levitated to a stable height (h1, h1) dependent on their 

densities (ρ), then they were dragged (Fd) under a flow (Q). B and g 

represent the magnetic induction and the gravitational acceleration, 

respectively.  

 

Stated differently, the density of the cells is what causes them to exhibit different 

levitation heights within the same environment. Denser cells on the platform hover 

toward the bottom magnet. The bottom magnet is used as a reference, and the distance 

between the bottom magnet and the cell is measured to establish the levitation height of 

the cell (Figure 2.10).65,66 
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2.2.3. Objet Detection Performace Metrices  

 

 

As shown in Figure 2.11, the intersection is the area where the anticipated 

bounding box and the overlap with ground truth, and the union is the total area between 

the two.67 The intersection of the actual and predicted bounding boxes of objects in the 

dataset is measured by the Intersection over Union (IoU) technique. The area of 

intersection between the predicted and ground truth bounding boxes, as well as the total 

area of both boxes, are divided to determine the IoU. It accepts values in the range of 0 

to 1, where a value nearer 1 denotes a more precise object detection. It's a measurement 

method for locating errors in object detection models' localization.68 

 

 

 

 

Figure 2.11. Definitions of intersection and union are illustrated. 

 

 

In this study, the number of beads that were correctly identified as beads was 

represented by True Positive (TP), which was a measure of the dataset used to detect 

beads. The quantity of beads that were misidentified as beads was known as False 

Negatives (FN), False Positives (FP) on the other hand were the number of non-bead 

cases that were incorrectly identified as beads.69 
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Precision is the accuracy of the model's positive predictions. Equation 2.2 displays 

the formula used to calculate the precision. The percentage of actual good examples that 

the model properly detected is known as recall, and Equation 2.3 provides the procedure 

for doing so. The accuracy of the model in detecting objects at various degrees of 

precision is gauged by the commonly used parameter known as average precision (AP). 

For various thresholds, it computes the region beneath the accuracy-recall curve.70,71 The 

mean AP score over several classes is provided by mAP. In general, mAP is regarded as 

a crucial performance indicator for object detection. The mAP at an intersection above 

the IoU threshold of 0.5 is specifically measured by mAP@0.5.72 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                           (2.2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                            (2.3) 

 

Equation 2.4 defines the F1 score, which was chosen as an equilibrium between 

recall and precision to better illustrate the model's overall performance. A value ranging 

from 0 to 1 represents the F1 score, where 1 represents the best possible performance.73 

 

𝐹1 =  
2 ×𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                           (2.4) 

 

 

2.2.4. Calculation of Levitation Height with YOLO 

 

 

The bounding boxes of the anticipated beads from the YOLO model were used to 

compute the levitation height and radius of the beads. The bounding box provides the 

width, height, and coordinate values of the upper-left corner. The height and the y-

coordinate value were used to determine the middle of the bounding box. Additionally, 

the coordinate values for the bottom magnet's upper border were established. The 

levitation height was found by calculating the difference between the two. Additionally, 

half of the height of the bounding box was taken as the bead radius (Figure 2.12). 

mailto:mAP@0.5
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The object detection was performed using Python (3.10) in PyCharm software 

(2022.2.4) with the OpenCV, ultralytics, matplotlib, and collections libraries. The below 

Python code tracks particles in a video file using the YOLOv8 model, calculates their 

levitation heights and particle radii, stores them, and visualizes the results. The code that 

automatically calculates the levitation height is given in Appendix A. 

 

 

 

Figure 2.12. YOLO was used to determine the bounding box of the detected bead. The 

levitation height (i.e., the distance between the bottom magnet and the 

bounding box midpoint) and radius (i.e., half of h) of the bead were 

determined using the bounding box's width (w), height (h), and upper left 

corner (x, y) coordinates.  

 

 

Initially, necessary libraries are imported, and a pre-trained model (best.pt) 

along with a video capture object from the video file path is loaded. A video writer object 

is set up with specified parameters, and a defaultdict named track_history is created 

to store tracking history. The magnet location is determined, and video frames are 

processed in a loop. In each frame, the YOLOv8 model performs tracking, and the 
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detected boxes and tracking IDs are obtained. The levitation height and radii of the 

particles are calculated and added to the track_history dictionary. The marked frame 

is saved to the video writer and shown on the screen. The loop terminates when either the 

video concludes, or the q key is pressed. Tracking data, including average levitation 

heights and particle radii, is written to a text file and graphs are plotted and saved. Finally, 

resources are released, and all open windows are closed.  

In the code, images were collected on a platform mounted on an inverted 

microscope (Olympus CKX53) with a 4x lens and a camera (FLIR Blackfly S) to obtain 

the "best.pt" file. 40 microfluidic channel images containing beads of different densities 

(1.09 g/mL, 1.05 g/mL, and 1.02 g/mL) were used, with 70% for training, 20% for 

validation, and 10% for testing. The beads in the micrographs were annotated with 

bounding boxes in the form of bead classes using Roboflow (Roboflow Inc., USA). The 

file from Roboflow was then trained using a Google Colab Notebook (interactive code 

editor). The training parameters were selected as a batch size of 16 and 250 epochs, 

respectively. YOLOv8 models were chosen to achieve the best training result and the 

highest mAP@0.5. The parameters and methods used for bead training were also applied 

to cell training. A total of 175 microscope images of MDA-MB-231 cells were annotated 

using Roboflow, with 70% for training, 20% for validation, and 10% for testing. 

In the code that automatically calculates the levitation height, the coordinate 

information of the upper limit of the lower magnet is needed. For this purpose, the 

magnet-focused microscope image was obtained with a code that gives the position of the 

point where the computer mouse was clicked. This code uses OpenCV to allow users to 

draw and manage circles on an image through mouse clicks. First, an image is loaded 

from the specified file path, and if loading fails, the program terminates. An image copy 

of the original is made for the drawing operations. A window is created to capture mouse 

clicks, and the mouse_drawing function is assigned to handle these events. This function 

draws red circles at the clicked coordinates and adds these coordinates to the circle's 

list when the mouse's left button is depressed. The draw_circles_on_image function 

draws circles based on the coordinates in the circles list and displays the updated image. 

An infinite loop waits for keyboard input; pressing the q key terminates the program while 

pressing the w key clears all drawn circles and resets the screen. This setup provides a 

basic application for image processing and user interaction. The code is given in 

Appendix B. 

mailto:mAP@0.5
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2.2.5. Sample Preparation 

 

 

Polystyrene beads of various densities (1.00 g/mL for 10-20 μm size, 1.02 g/mL 

for 10-20 μm size, 1.05 g/mL for 45-53 μm size, and 1.09 g/mL for 20-27 μm size, from 

Cospheric, LLC) were suspended in phosphate-buffered saline (PBS, Gibco) with 0.1% 

(w/v) Pluronic. A 20 μL solution containing 50 mM Gd3+, a paramagnetic substance, was 

then pipetted into the channel. Beads with densities of 1.02 g/mL and 1.09 g/mL were 

also introduced into the channel using 20 μL pipette solutions containing Gd3+ 

concentrations of 25, 50, and 75 mM. 

U937 human monocytic cells were cultured in RPMI-1640 medium (Euroclone) 

supplemented with 1% Penicillin-Streptomycin (Euroclone) and 10% fetal bovine serum 

(ECS0180, Euroclone) at 37°C with 5% CO2. Mature U937 cells were centrifuged at 1000 

rpm for 5 minutes, the resulting cell pellet was resuspended in fresh medium, and adjusted 

to a quantity of 105 cells per milliliter. 

U937 cells were prepared by centrifuging at 1000 rpm for 5 minutes, then 

resuspended to a density of 105 cells per mL in RPMI medium. Dead U937 cells were 

obtained by adding 1:1 (v/v) dimethyl sulfoxide (DMSO, Sigma Aldrich) to the cell 

medium, followed by a 15-minute incubation. Prior to experiments, the cell medium was 

replaced with PBS containing 0.1% (w/v) Pluronic. MagLev experiments were conducted 

on both live and dead cells by adding Gd3+ at concentrations of 100 mM, 150 mM, and 

200 mM. 

MDA-MB-231 human breast cancer cells were cultured in Dulbecco's Modified 

Eagle's Medium (DMEM, Gibco) supplied at 37°C with 5% CO2 in addition to 10% FBS 

and 1% Penicillin-Streptomycin. Upon achieving sufficient growth, the culture 

supernatant was removed, and cells were detached using Trypsin-EDTA (Euroclone) and 

incubated at 37°C for 10 minutes. Detached cells were centrifuged at 1000 rpm for 5 

minutes, and the resulting cell pellet was transferred to a new flask with a fresh medium. 

To ready MDA-MB-231 cells for the experiment, they were centrifuged at 1000 

rpm for 5 minutes. Next, the resultant cell pellet was adjusted to a concentration of 103 

cells per mL in RPMI culture medium. MagLev experiments were conducted on these 

cells by introducing Gd3+ at concentrations of 50 mM, and YOLO training was carried 

out using the captured images. 
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2.2.6. Statistical Analysis 

 

 

All experiments were conducted a minimum of three times. Results are expressed 

as mean ± standard deviation (SD). The coefficient of variation (CV%) was calculated as 

the standard deviation divided by the mean, representing variability across and between 

experiments. Statistical significance was assessed using two-way analysis of variance 

(ANOVA) with Sidak post hoc correction, conducted using GraphPad Prism version 9.2.0 

(GraphPad Software). The OriginLab workspace's 2D Confidence Ellipse application was 

utilized for confidence ellipses. For every treatment, scatter plots were enabled, and each 

scatter plot had a 95% confidence level specified. 

 

 

2.3.  Results 

 

 

2.3.1. Magnetic Levitation of Beads and Cells 

 

 

To calculate the heights of the beads, images were taken every 5 minutes for the 

first 15 minutes and then every 15 minutes thereafter. Statistical analysis of the 15-minute 

intervals did not show a significant difference, similarly, no significant difference was 

observed with the 5-minute intervals (Figure 2.13). Additionally, it was demonstrated that 

beads of different densities exhibited different levitation heights (Figure 2.14). In 

subsequent experiments, 1.02 and 1.09 g/mL densities of beads were used for analysis 

with YOLO. Microscope images at 0 and 5 minutes in 50 mM Gd3+, demonstrating their 

equilibrium, are shown in Figure 2.15. Considering the channel and magnet lengths, a 

flow rate of 0.05 mL/h was optimally selected to allow the beads to reach constant lift 

heights, and then the determined flow was delivered through the inlet via a syringe pump 

(NewEra Pump Systems, NE-1000). 
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Figure 2.13. Levitation heights of different beads at 50 mM Gd3+ concentration at 

different time intervals. Analysis results were shown at 5-minute intervals 

for the first 15 minutes and then at 15-minute intervals Comparison results 

of others do not show any significant difference. 

 

 

 

 

 

Figure 2.14.  Levitation heights of beads with density of 1.09 g/mL, 1.05 g/mL, 1.02 

g/mL, and 1.00 g/mL at 50 mM Gd3+ concentration in the 5th minute. Scale 

bar: 100 μm. 
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Figure 2.15.  Levitation heights of beads with density of (a) 1.09 g/mL, and (b) 1.02 g/mL 

at 50 mM Gd3+ concentration in the 5th minute. Scale bar: 100 μm. 

 

 

2.3.2. Deep Learning Based Analysis of Beads 

 

 

TP, FP, TN, and FN were all broken down in detail in the confusion matrix (Figure 

2.16). mAP value was found to be 0.99 in the selected YOLOv8s model. Precision and 

recall values were shown as 0.973 and 0.957, respectively. High precision and recall 

values showed that the model was well-balanced and worked well at accurately detecting 

objects while reducing FP and FN. In addition to this, the F1 score is 0.964, which means 

that the model was highly efficient in detecting objects with a good balance of precision 

and recall. 

When tested on the microscope image, all 25 beads were successfully detected, 

and the dust particles were not recognized by the model (Figure 2.17). It showed that 

performance metrics were consistent with real-time results. 
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Figure 2.16. Model confusion matrix for both true and predicted classes after training. 

 

 

 

 

 

Figure 2.17. Detection of beads. (a) A Micrograph of a microfluidic channel containing 

25 beads. Scale bar: 100 μm. (b) Detection of beads shown in (a) with 

YOLO. Dust particle indicated by an arrow was not detected with YOLO.  
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2.3.3. Performance of Deep Learning Based Analysis 

 

 

It was observed that the flow rate is a very important criterion during the detection 

phase. Bead detection was assessed at flow rates of 0.05 mL/h, 0.1 mL/h, 0.5 mL/h, and 

1 mL/h to determine the limits of detectable flow rates. At flow rates of 0.05 mL/h and 

0.1 mL/h, all beads were successfully detected (Figure 2.18 and 2.19). However, at a flow 

rate of 0.5 mL/h, 23.24% of the beads were detected throughout the flow, 27.68% were 

undetected, and the detection status of the remaining 49.10% fluctuated (Figure 2.20 and 

2.21). At a flow rate of 1 mL/h, almost no beads were captured in the frame. While 

performing bead detection in Python on the video recording, the video was slowed down 

for processing, and the output was subsequently recorded for a longer duration. The 

importance of the computer processor was also noted in this process. 

 

 

 

 

Figure 2.18.  A video segment of bead detection with a density of 1.09 g/mL using YOLO 

at a flow rate of 0.05 mL/h.  

 

 

 

 

 

Figure 2.19.  A video segment of bead detection with a density of 1.09 g/mL using YOLO 

at a flow rate of 0.1 mL/h.  
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Figure 2.20.  A video segment of bead detection with a density of 1.09 g/mL using YOLO 

at a flow rate of 0.5 mL/h. The bead enclosed in the blue box is not detected 

throughout the flow, while the bead indicated by the blue arrow is detected 

after a certain period. 

 

 

 

 

 

Figure 2.21. The graph of the detection status of beads under 0.5 mL/h flow. It is the 

percentage representation of the number of beads with densities of 1.09 and 

1.02 that are detected under 0.5 mL/h flow, are not detected, and the 

detection status is constantly changing.  

 

 

The accuracy of the calculated levitation height and radius values was evaluated 

at the selected flow rate of 0.05 mL/hour, which was considered optimal for the levitation 

height. For this purpose, the levitation height and radius of 174 beads were calculated 

manually using ImageJ software. The obtained values were compared with the levitation 
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height and radius values of beads calculated from the bounding boxes of YOLO. As a 

result, the coefficient of determination (R²) between manual calculations for levitation 

height and YOLO results was found to be 0.9987 (Figure 2.22 a), indicating a very high 

correlation between the results. It shows that levitation height calculation has been 

successfully implemented with YOLO. The coefficient of determination (R²) between 

manual calculations of bead radius and YOLO results was calculated as 0.9066 (Figure 

2.22 b). As a result, a strong correlation was observed. However, small differences at the 

micron level (0.1-0.7 µm) caused a slight decrease in the R² value. 

 

 

 

 

Figure 2.22. Comparison of bead data analysis performed manually and automatically 

using YOLO. The comparison graphs of (a) the levitation heights and (b) 

the radius of beads. The figures displayed the coefficient of determination 

(R2) values obtained from the linear regression model. 

 

 

The analysis of beads with densities of 1.02 g/mL and 1.09 g/mL using YOLO 

showed that both were collected at different levitation heights (Figure 2.23). Also, the 

beads adhered to the channel wall or surface at the experiments. It prevented the accurate 

calculation of the levitation height for some beads. These beads were easily 

distinguishable on the graph as they were outside the main aggregation areas. Aside from 

these instances, there were no problems in calculating the levitation height accurately. 
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Figure 2.23.  Automated analysis of beads with densities of 1.09 and 1.02 g/mL under a  

aaaaaaaaaaaaflow rate of 0.05 mL/h at 50 mM Gd3+ concentration.  The 95% confidence 

aaaaaaaaaaaaellipse shown in the graph indicates that 95% of the data points will fall 

aaaaaaaaaaaawithin this ellipse. 

 

 

2.3.4. Deep Learning Based Analysis of Cells 

 

 

TP, FP, TN, and FN were all detailed in the confusion matrix for detecting MDA-

MB-231 (Figure 2.24). In the selected YOLOv8s model, the mAP value was found to be 

0.958. Precision and recall values were reported as 0.860 and 0.947, respectively. The 

precision value indicates that the model exhibits significant reliability in its positive 

predictions, while the recall value shows that the model correctly identifies most of the 

TP examples. Additionally, the F1 score is 0.90, indicating that the model generally 

demonstrates reliable and effective performance.  

When tested with a microscope image of U937 cells, 8 out of 10 cells were 

successfully detected (Figure 2.25). In the whole image, 58 of 85 cells were detected. The 

reason for the undetected cells may be that the inside of the cells is transparent and not 

filled like beads. By enriching the dataset, the model's precision and recall values can be 

increased. 
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Figure 2.24. Model confusion matrix for both true and predicted classes after training. 

 

 

 

 

 

Figure 2.25.Detection of U937 cells. (a) A Micrograph of a microfluidic channel 

containing cells. Scale bar: 100 μm. (b) Detection of cells shown in (a) with 

YOLO.  

 

 

Dead and live U937 cells were sorted at different levitation heights in 100 mM 

Gd3+ (Figure 2.26). When the radius and levitation height analysis was performed using 

YOLO, the graph showed that dead and live cells clustered at different levitation heights. 

In addition, dead and live cells are indicated in the graph using GMM clustering, from 

dark to light, depending on the density of the region in which they are located (Figure 

2.27). As a result, dead and live U937 cells could be successfully detected in a label-free 

manner. 
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Figure 2.26.  Microscopic images of U937 cells at a concentration of 100 mM Gd3+ after 

5 minutes, showing a) dead and b) live states. Scale Bar: 100 μm. 

 

 

 

 

 

Figure 2.27. Automated analysis of dead and live U937 cells under a flow rate of 0.05 

mL/h at 100 mM Gd3+ concentration. The 95% confidence ellipse shown in 

the graph indicates that 95% of the data points will fall within this ellipse. 
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2.4. Conclusion 

 

 

As a result, the magnetic levitation platform and microfluidic chip were 

successfully fabricated. MagLev experiments were conducted with micro-particles of 

different densities (1.09 g/mL, 1.05 g/mL, 1.02 g/mL, and 1.00 g/mL). It was observed 

that a duration of 5 minutes was sufficient for the beads to reach equilibrium. 

Consequently, considering this duration and the dimensions of the microfluidic chip, the 

flow rate was determined to be 0.05 mL/h. The microscopic images obtained during the 

experiments were used as a dataset, and training was performed using the YOLOv8s 

model. The results showed that the precision and recall levels were 0.973 and 0.957, 

respectively, demonstrating the success of the model. Subsequently, Python code was 

written for the automatic analysis of the levitation height and radius of the detected beads. 

When the manual and YOLO results were compared, the determination coefficients (R2) 

for levitation height and radius were found to be 0.9987 and 0.9066, respectively. A high 

correlation was demonstrated between the manual and automatic analyses, indicating that 

levitation height and radius were successfully calculated. The performance of the 

automatic detection and analysis method was tested. Beads were successfully detected at 

flow rates of 0.05 and 0.1 mL/h. On the other hand, at a flow rate of 0.5 mL/h, some beads 

were not detected at all, and the detection of some varied continuously. At a flow rate of 

1 mL/h, no beads were detected. In this context, it was realized that flow rate is an 

important criterion. Subsequently, MagLev experiments were conducted with beads of 

densities 1.09 g/mL and 1.02 g/mL. The analysis performed with YOLO revealed that the 

beads accumulated in two distinct regions, and appropriate cytometry data was obtained. 

After all necessary optimizations for the micro-particles, cell experiments were 

conducted. The YOLOv8s model was trained with MDA-MB-231 cells. The model's 

performance was evaluated, yielding sensitivity and recall values of 0.860 and 0.947, 

respectively. Subsequently, live-dead MagLev experiments were conducted using the 

U937 cell line. In the analysis results with YOLO, live and dead cells clustered in different 

regions. In conclusion, the deep learning method enabled successful bead and radius 

calculations in a magnetic levitation platform under flow without labels. This approach 

offers the potential for real-time, label-free, easy, and simple detection of micro-particles 

and cells in the future.  
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CHAPTER 3 

 

 

3D PRINTING-ASSISTED FABRICATION OF 

MICROFLUIDIC PNEUMATIC VALVES 

 

 

This chapter describes microfluidics and microvalves. The working mechanism 

of the pneumatic valve is explained. Various optimization tests have been demonstrated 

for the design of a pneumatic valve with appropriate dimensions. Afterward, leakage tests 

were performed on the complex chip design under different flow rates and pressures. 

 

 

3.1. State of the Art  

 

 

Microfluidics makes use of structures at the micron scale to precisely control and 

manipulate small volumes of fluids.74 The use of minimal sample and reagent volumes, 

the ability to perform multiple reactions simultaneously for high-throughput analysis, the 

potential for cost reduction, and the combination of various procedures on a single chip 

for miniaturization and automation are just a few of the significant advantages that 

microfluidics offers over traditional analysis techniques. Many microfluidic platforms 

have been developed as a result of these characteristics for use in clinical and academic 

settings.75,76  

Since silicone and glass were first introduced, the main material for creating 

microfluidic chips has been silicone-based elastomers, specifically PDMS. The ideal 

material for creating integrated valves is PDMS because of its high gas permeability. Its 

important importance in cell-related microfluidics has been demonstrated by numerous 

landmark experiments. Due to its flexibility, and superior optical, and mechanical 

properties, PDMS remains the most used material.77 
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As technology significantly reduces the time required to transition from concept 

to chip, a growing number of microfluidic chip manufacturers are using 3D printing. 

Instead of traditional manufacturing methods such as SU-8 molding in recent years.78 The 

ability to easily perform adjustments related to production, testing, and design, and to 

quickly iterate within a single day through 3D printing, can significantly reduce key 

operational costs in a clean room environment.79 Stereolithography, one of the 3D 

printing methods, allows the production of molds that can produce a wide variety of 

extremely complex 3D structures with great precision and at affordable costs. A 

concentrated LED or laser light source is utilized in the well-established process of 

stereolithography (SL) to create three-dimensional polymer structures from liquid 

photopolymer resin (Figure 3.1). In SL, photopolymerization occurs layer by layer to 

create the desired object.80 

 

 

 

 

Figure 3.1. Illustration of SL.81 

 

 

One essential component of lab-on-a-chip systems is the manipulation of 

microfluidics, and numerous techniques have been developed for liquid manipulation.82 

Flow-directing microvalves are among the most important parts of microfluidic devices.83 

Large microfluidic systems with many microvalves have been created for high efficiency 

and broad functionality because of their robust functioning and ease of fabrication. For 

applications including microflows, cell analysis, drug development, and 
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physical/chemical detection, microvalves' performance is essential.84,85 Pneumatic forces, 

whose applicability for liquid control and actuation has been proven in other microfluidic 

platforms in the past, have provided a solution for manipulating liquids using air.86 The 

use of pneumatic microvalves allows for the instant regulation of flow within 

microchannels.87–89 The cross-channel architecture made of PDMS, developed by the 

Quake group, is a type of micropneumatic valve.90 This type of valve provides a fast 

response time and ease of manufacturing. Sample loading and transportation channels are 

found in the "fluidic layer".  Pneumatically actuated valves are formed and controlled via 

channels that make up the "control layer." There is a small membrane separating these 

two layers. When the fluidic and control channels intersect with appropriate dimensions 

and configurations, a valve is formed. By exerting pressure on the upper channel of this 

design, a thin PDMS membrane is deflected downward, closing the elliptic fluidic 

channel and halting the liquid flow. (Figure 3.2).91 

 

 

 

 

Figure 3.2. Illustration of valve formation with fluidic and control channels. 

 

 

In a recent study, a method was reported for the creation of an array with just one 

cell by integrating pneumatic valves with single cell capture zones in a single microfluidic 

device. These single cells capture zones contain micro barriers in the fluidic channels to 

trap different cells, allowing for precise control over cell interactions. These findings also 

demonstrate promise and utility for conducting drug testing efficiently at the level of 

individual cells. Furthermore, it has been suggested that this approach could act as a 
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potent instrument for various single-cell-based analyses, such as multipurpose immune 

sensors, cancer research, and clinical diagnostics.92 

It has been shown that a device with an on-chip pneumatic microstructure that 

enables microfluidic control can identify blood types (A, B, and O). With just a fingertip 

touch, a vacuum activation chamber in this system turns on and off the pressure release 

section. Point-of-care diagnostic kits for use at home, multiplex assays in biological 

laboratories, and point-of-care clinical diagnostics in settings with limited resources are 

all possible applications for this technology.93 

A microfluidic chip with two valves for sorting and printing cells according to 

size is described in the technique. Less than d1 cells are eliminated, between d1 and d2 

cells are sent to a well plate for printing, and more than d2 cells are destroyed. The method 

offers a wide range of possibilities for single-cell investigations by dynamically selecting 

and printing single cells using pressures that may be adjusted. This work indicates that it 

has numerous potential uses in the realm of single-cell research.94 

 

 

3.2. Materials and Methods 

 

 

3.2.1. Design of the Pneumatic Valves 

 

 

First, pneumatic valves of different sizes were fabricated on a two-layer PDMS 

chip consisting of fluidic and control channels to determine the optimum thickness of the 

valves. The control channels are located on the top layer, while the fluidic channels are 

on the bottom layer. Pressure is added to the channel of control.  When liquid-filled 

control channel air pressure is added, the flexible thin PDMS membrane of the control 

channel, which overlaps at the fluidic channel's top, breaks down and obstructs the flow 

in the fluidic channel (Figure 3.3).  
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Figure 3.3. The operating principle of the pneumatic microfluidic valve structure. (a) 

When no pressure is applied to the control channel, the fluidic channel 

remains open, allowing fluid passage. (b) When pressurized air is applied to 

the control channel, pressure is exerted on the PDMS membrane between 

the control channel and the fluidic channel, causing the fluidic channel to 

close and preventing flow. 

 

 

The molds designed to produce PDMS layers containing the control and fluidic 

channels were printed using a 3D printing method capable of printing with 25 μm 

resolution (Formlabs Form 3, High TempV2). Channels with widths of 200, 400, and 800 

μm and a height of 150 μm were printed on separate molds for both control and fluidic 

channels. The molds obtained after printing were cured at 80°C for 120 minutes. Then, 

PDMS was prepared at a 1:10 mixing ratio and degassed using a desiccator. For the molds 

where the control channels were fabricated, PDMS was poured to a height of 2 mm. For 

the fluidic channels, to obtain a 215 μm thick PDMS layer, PDMS was poured onto the 

mold and spin-coated at 500 rpm for 30 seconds. The molds coated with PDMS were then 

cured at 100°C for 1 hour. The cured PDMS layers were removed from the molds, and 

15-gauge needles (inner diameter = 1.372 mm, outer diameter = 1.829 mm) were used to 

create inlet/outlet holes. To bond and attach the layers containing the control and fluidic 

channels, air plasma (ZEPTO, Diener) was applied to the relevant surfaces at 100 W and 

0.5 Torr for 1 minute, and the two surfaces were bonded together. Thus, a thin PDMS 

membrane with a thickness of 65 μm was formed between the intersecting control and 

fluidic channels. Inlet and outlet holes were created using 15-gauge needles at the points 

corresponding to the fluidic channels on the bonded layers. The obtained two-layer 

PDMS chip was treated with air plasma under the same parameters to be bonded and 
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attached to a glass slide. As a result, a PDMS chip with control and fluidic channels 

bonded to a glass slide was fabricated (Figure 3.4). In this way, the PDMS chip operates 

in a manner where fluids can be controlled with an on/off valve principle by supplying 

the relevant fluids to the fluidic channel and applying distilled water with nitrogen gas to 

the control channels at a certain pressure. 

 

 

 

 

Figure 3.4.   View of the chip with pneumatic valve designs. Control and fluidic channels, 

designed with widths of 200, 400, and 800 μm respectively, are filled with 

water and a blue-colored solution. 

 

 

Corresponding to the designed channel molds with widths of 200, 400, and 800 

μm, the dimensions obtained after PDMS solidification were measured as 346.031 μm, 

489.083 μm, and 887.311 μm for the fluidic channels, and 310 ± 47 μm, 468 ± 60 μm, 

and 868 ± 64 μm for the control channels (Figure 3.5). This indicates that the resulting 

molds are slightly wider than the designed molds. The flow has been successfully stopped 

despite the channel not being perfectly elliptical. The reason for this is the printing 

accuracy of the 3D printer. 
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Figure 3.5.    The fluidic and control channels' cross-sectional areas from the PDMS layers 

that were taken out of the molds are displayed in micrographs. Scale Bar: 

100 μm. 

 

 

3.2.2. Design of the Complex Chip  

 

 

To demonstrate the work on complex microfluidic chip designs, a chip design 

comprising different chambers was created. In the designed chip, the red channels 

represent the control channels, while the gray channels denote the fluidic channels (Figure 

3.6). 

A 3D printer (Formlabs Form 3) was used to build the molds for the fluidic and 

control channels (Figure 3.7) at a resolution of 0.025 mm using High-Temperature V2 

resin. They underwent a post-cure procedure at 80ºC for 120 minutes after being cleaned 

in isopropyl alcohol for 10 minutes. The microfluidic chip is fabricated in the same way 

as the chips described in the preceding section. In the fabricated chip, the channels filled 

with red food dye indicate the control channels, while the channels filled with blue food 

dye represent the fluidic channels (Figure 3.8). 
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Figure 3.6.   Design of a valve microfluidic chip. Red channels represent control channels, 

grey channels represent fluidic channels, and the circles indicate the inlets 

and outlets of the channels. Length dimensions are in millimeters. Scale Bar: 

3 mm.  

 

 

 

 

 

Figure 3.7. 3D images of the molds of (a) the control channel, and (b) the fluidic 

channel. 

 

 

 



 

 

43 

 

 

Figure 3.8. Photograph of the microfluidic chip. Blue colored channels indicate fluidic 

channels and red colored channels indicate control channels. 

 

 

3.2.3. The Valve Control Setup 

 

 

The solenoid valves used for valve control are managed by an electronic circuit 

connected to a microcontroller. The schematic diagram of the electronic circuit capable 

of controlling five valves is shown in Figure 3.9. In this context, the solenoid valves 

(MHP1-M4H-3/2G-M3-HC, Festo, Germany) are controlled by commands sent from an 

Arduino Mega (Arduino Mega 2560 Rev3, Arduino, Italy) microcontroller via MOSFET 

components (IRF520, International Rectifier, USA). 

A circuit capable of controlling five solenoid valves has been fabricated according 

to the designed circuit schematic (Figure 3.10). The solenoid valves are supplied with gas 

using pneumatic hoses with an inner diameter of 0.75 mm for gas supply and exhaust. 

Transfer hoses with an inner diameter of 0.51 mm, connected to the pneumatic hoses, 

allow nitrogen gas to be delivered at desired pressures to the valve control channels on 

the microfluidic chip. 
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Figure 3.9. Electronic control circuit design for control of solenoid valves. 

 

 

 

 

 

Figure 3.10. Photographs of the designed circuit diagram from different angles. 
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3.3. Results 

 

 

3.3.1. Optimization of Valves 

 

 

Leak tightness and pressure resistance were tested in various width combinations 

for the channels intended to serve as valves. Channel width combinations of 200, 400, 

and 800 μm for the control and fluidic channels were investigated to test the leakage and 

valve functionality. This was accomplished using distilled water in the control channels 

that were pressurized to 1.5 bar using nitrogen gas, without the use of flow, and by adding 

food coloring to the fluidic channel (Figure 3.11). It was observed that there was no flow 

transfer from one area of the fluidic channel to another in the combinations where the 

fluidic channel was 800 μm wide and the control channels were 400 μm and 800 μm wide. 

Instead, the control channel worked as a valve, effectively closing the fluidic channel. 

For the pressure tests to determine the capability of the control channels to act as 

valves, blue food dye was introduced at a flow rate of 0.5 mL/h through the 800 μm wide 

fluidic channel, and the ability of the 400 and 800 μm wide control channels to function 

as valves was observed under pressures of 0.5, 1, 1.5, and 2 bar (Figure 3.12). These 

pressure values were chosen to be below the PDMS bonding strength of 4 bar to prevent 

damage to the PDMS structure. The experiments showed that the 800 μm wide control 

channels could close the fluidic channel at 1.5 bar, while the 400 μm wide control 

channels could close it at 2 bar. The stated pressure levels are less than the 4 bar PDMS 

bonding strength that has been reported in the literature.95 

Additionally, with an open/close time of 0.02 seconds under a pressure of 2 bar 

for valve control, the channels can be opened and closed instantaneously (Figure 3.13). 

This demonstrates that the valve components designed on the microfluidic chip can be 

used to controllably prevent the passage of fluids from one region of the channel to 

another. 
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Figure 3.11. Valve characteristics testing of different control and fluidic channels. Red, 

blue, and green channels indicate 200 µm, 400 µm, and 800 µm fluidic 

channels respectively. (a) 200 µm, (b) 400 µm and (c) 800 µm transparent 

channels indicate control channels at 1.5 bar of pressure. Food dye was 

diluted and put in the fluidic channels, while distilled water was used in the 

control channels. Scale Bar: 200 μm. 

 

 

 

 

 

Figure 3.12. Valve properties testing of different control channels underflow. The valve 

characteristics of the control channels were tested by applying pressures of 

0.5, 1, 1.5, and 2 bar to the control channels with widths of (a) 400 μm and 

(b) 800 μm, while blue food dye was introduced into the fluidic channels at 

a rate of 0.5 mL/h. Scale Bar: 200 μm. 
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Figure 3.13. The opening and closing times of control channels were tested under 2 bar 

pressure. According to the measurements, it was observed that valve 

structures could be opened in 0.02 seconds. 

 

 

3.3.2.  Leakage Tests 

 

 

On the generated microfluidic chip, flow and pressure-dependent leakage tests of 

the valves were carried out at various flow and pressure levels. The distilled water was 

diluted 3:17 times to yield Hoechst 33342 fluorescent dye (Hoechst 33342 

Trihydrochloride, Trihydrate - 10 mg/mL Solution in Water, Thermo Fisher Scientific, 

USA) was introduced into the channels at various flow rates, and its flow-dependent 

leakage to other chambers was examined. To achieve this, it was investigated whether the 

fluorescent dye was added at flow rates of 0.1, 0.2, 0.5, and 1 mL/h into the side chambers 

via valves that were shut under a pressure of 1 bar. No leakage into other chambers was 

seen through the chamber's left and right valves at any flow rate (Figure 3.14). 

Flow-dependent leakage tests were conducted with pressure-dependent sealing 

agents at 0.25, 0.5, 1, and 1.5 bars applied to the valves at the maximum flow rate of 1 

mL/h. Under pressures of 1 and 1.5 bars, it was found that the fluorescent dye did not 

leak between the chambers (Figure 3.15). Conversely, in pressure-dependent sealing tests, 

paint transfer was noted between the chambers under 1 mL/h flow and 0.25 and 0.5 bar 

pressures. It was noted that the valves failed to effectively close the channels at these 

pressures, resulting in leakage (Figure 3.16). These analyses have demonstrated that the 
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valves effectively shut off the channels at pressures of one bar and higher, allowing for 

the release of fluid at various flow rates 

 

 

 

 

Figure 3.14. The leakage results at different flow rates. Fluorescence microscope images 

were obtained at 0.1, 0.2, 0.5, and 1 mL/h flow rates from the left and right 

valves under pressure of 1 bar. It was observed that there was no leakage 

from underneath the valves, and the fluorescent dye was entirely contained 

within the chamber. Scale Bar: 200 μm. 

 

 

. 

 

 

Figure 3.15. The leakage results at 1 and 1.5 bar. Images captured with a brightfield and 

fluorescence microscope showing the chamber's left and right valves 

operating at 1 and 1.5 bar of pressure and 1 mL/h of flow. At either pressure 

value, there was no evidence of chamber leakage. Scale Bar: 200 μm. 
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Figure 3.16. The leakage results at 0.25 and 0.5 bar. Images from a brightfield and 

fluorescence microscope showing the left and right valves of a chamber with 

a flow rate of 1 mL/h and pressures of 0.25 and 0.5 bar. There was evidence 

of leakage between the chambers at both pressure levels. Scale Bar: 200 μm. 

 

 

3.4. Conclusion 

 

 

The fabrication of micropneumatic valves with molds using 3D printing was 

observed with different configurations of fluidic and control channels of 200, 400, and 

800 μm widths. Under static conditions, it was observed that channels with widths of 400 

and 800 μm functioned, and valve closure was observed as the channel width increased. 

In experiments conducted under flow conditions, valve closure was observed at 1.5 bar 

and 2 bar in the 800 μm wide fluidic and control channels. Moreover, valve closure 

occurred at 2 bar in the setup of fluidic and control channels, where the widths were 400 

μm and 800 μm, respectively. Upon pressure release, the valve opened in approximately 

0.02 seconds, demonstrating the capability for rapid flow control in microfluidics. The 

configuration of 800 μm wide fluidic and control channels was shown to work in complex 

microfluidic chip designs. Leakage tests conducted at different flows and pressures were 

successfully completed. As a result, a rapid, easy, and cost-effective valve design was 

achieved using the 3D printing method eliminating the requirement for costly, intricate, 



 

 

50 

and labor-intensive production methods. With these advantages, its more widespread use 

in microfluidic chips is anticipated. 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

The purpose of this thesis is to create a novel image-based cytometry method that 

measures the density of microparticles under flow conditions inside a microfluidic chip 

that is placed on a magnetic levitation platform by using deep learning for analysis. In 

this context, the magnetic levitation platform and microfluidic chip were successfully 

fabricated. Experiments with beads of varying densities demonstrated that a 5-minute 

duration with a determined flow rate of 0.05 mL/h was sufficient for the beads to reach 

equilibrium. Training the YOLOv8 model resulted in high precision and recall values 

(0.973 and 0.957, respectively). The automatic analysis of levitation height and radius 

using Python code showed a high correlation with manual results (R² values of 0.9987 

and 0.9066). It was demonstrated that flow rate is a significant criterion for the successful 

detection of beads. Detection was achievable at flow rates of 0.05 and 0.1 mL/h, but not 

at higher rates (0.5 and 1 mL/h). As a result, the flow rate has been a limiting factor during 

the detection phase. The model trained with the MDA-MB-231 dataset exhibited high 

precision and recall values. Experiments with U937 cell lines showed the model's 

effectiveness in distinguishing live and dead cells. This approach enables real-time, label-

free detection of micro-particles and cells. To enhance precision and recall values and 

improve the model's performance, the dataset can be augmented. The dataset initially 

contained only live cell images. By adding dead cell images, the detection of dead cells 

can be increased. Additionally, detected microparticles and cells were assigned unique 

IDs. As a result of repeated detection, the ID of microparticles and cells sometimes 

increased. This problem has been a limiting factor in the analysis phase.  

Moreover, microvalves were studied to sort beads/cells after detection. For this 

purpose, PDMS-based pneumatic valve production using 3D printing molds was 

investigated. Valve closure was observed at 1.5 and 2 bar in 800 μm wide channels, and 

2 bar in 400 μm and 800 μm control channels. The valve took about 0.02 seconds to open 

when the pressure was released, allowing for rapid manipulation in microfluidic chips. 
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Furthermore, successful integration into complex chip designs and successful sealing 

tests at different flows and pressures demonstrated the effective functioning of pneumatic 

valves. As a result, a rapid, easy, and cost-effective valve design was achieved using 3D 

printing without the need for expensive and complex production techniques like 

photolithography.  

By combining pneumatic valve flow control with image and magnetic-based flow 

cytometry, real-time, label-free, and easy micro-particle and cell sorting can be achieved. 

The successful integration of magnetic levitation and microfluidics with high-precision 

machine learning models paves the way for innovative applications in biomedical 

diagnostics and cell separation. Future work could focus on scaling this technology for 

high-throughput applications and exploring its potential to detect a broader range of 

biological entities.  
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APPENDIX A 

 

 

from collections import defaultdict 

import matplotlib.pyplot as plt 

from ultralytics import YOLO 

import cv2 

model = YOLO("best.pt") 

video_path = "example.mov" 

cap = cv2.VideoCapture(video_path) 

fourcc = cv2.VideoWriter_fourcc(*'mp4v') 

fps = 30 

frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 

frame_size = (frame_width, int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) 

out = cv2.VideoWriter('output.mp4', fourcc, fps, frame_size) 

# Store the track history 

track_history = defaultdict(lambda: {'levitation_heights': [], 'detected_particles': []}) 

magnet_location = 1030  

# Loop through the video frames 

while cap.isOpened(): 

    # Read a frame from the video 

    success, frame = cap.read() 

    if success: 

        # Run YOLOv8 tracking on the frame, persisting tracks between frames 

        results = model.track(frame, persist=True) 
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        # Get the boxes and track IDs 

        boxes = results[0].boxes.xywh.cpu() 

        # track_ids = results[0].boxes.id.int().cpu().tolist() 

        id_value = results[0].boxes.id 

        if id_value is not None: 

            track_ids = id_value.cpu().tolist() 

            for box, track_id in zip(boxes, track_ids): 

                x, y, w, h = box 

                lev_height = magnet_location - (float(y)+(float(h)/2)) 

                particle_radius = w / 2 

                particle_radius2 = h / 2 

                track_history[track_id]['levitation_heights'].append(lev_height) 

                track_history[track_id]['detected_particles'].append((particle_radius, 

particle_radius2))  # Store both radii 

        # Visualize the results on the frame 

        annotated_frame = results[0].plot() 

        avg_levitation_height_per_track = {} 

        avg_particle_radius_per_track = {} 

        avg_particle_radius2_per_track = {}  # New dictionary for second radius 

        for track_id, track_data in track_history.items(): 

            levitation_heights = track_data['levitation_heights'] 

            detected_particles = track_data['detected_particles'] 

            avg_levitation_height_per_track[track_id] = sum(levitation_heights) / 

len(levitation_heights) 
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            avg_particle_radius_per_track[track_id] = sum(p[0] for p in detected_particles) / 

len(detected_particles)  # Use first radius (width) for calculation 

            avg_particle_radius2_per_track[track_id] = sum(p[1] for p in detected_particles) 

/ len(detected_particles)  # Use second radius (height) for calculation 

        print("Average Levitation Height per track:", avg_levitation_height_per_track) 

        print("Average Particle Radius per track:", avg_particle_radius_per_track) 

        print("Average Particle Radius2 per track:", avg_particle_radius2_per_track) 

        # Display the annotated frame 

        out.write(annotated_frame) 

        cv2.imshow("YOLOv8 Tracking", annotated_frame) 

        # Break the loop if 'q' is pressed 

        if cv2.waitKey(1) & 0xFF == ord("q"): 

            break 

    else: 

        # Break the loop if the end of the video is reached 

        break 

# Write average levitation and radius values per track to a text file 

with open('track_data.txt', 'w') as file: 

    file.write("Track ID\tAverage Levitation Height (um)\tAverage Particle Radius 

(um)\tAverage Particle Radius2 (um)\n") 

    for track_id in avg_levitation_height_per_track:      

file.write(f"{track_id}\t{avg_levitation_height_per_track[track_id]:.2f}\t{avg_particle_

radius_per_track[track_id]:.2f}\t{avg_particle_radius2_per_track[track_id]:.2f}\n") 

# Write all levitation and radius values for each track to the text file 

for track_id, track_data in track_history.items(): 

    levitation_heights = track_data['levitation_heights'] 
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    detected_particles = track_data['detected_particles'] 

    with open('track_data.txt', 'a') as file: 

        file.write(f"\nTrack ID: {track_id}\n") 

        file.write("Frame\tLevitation Height (um)\tParticle Radius (um)\tParticle Radius2 

(um)\n") 

        for i in range(len(levitation_heights)): 

            file.write(f"{i + 

1}\t{levitation_heights[i]:.2f}\t{detected_particles[i][0]:.2f}\t{detected_particles[i][1]:.

2f}\n")  # Write both radii 

# Write the average levitation and radius values for all tracks to the text file 

with open('track_data.txt', 'a') as file: 

    file.write("\nAverage Levitation Height and Particle Radius per Track:\n") 

    for track_id in track_history.keys(): 

        file.write(f"Track ID: {track_id}\n") 

        file.write(f"Average Levitation Height: 

{avg_levitation_height_per_track[track_id]:.2f} um\n") 

        file.write(f"Average Particle Radius: {avg_particle_radius_per_track[track_id]:.2f} 

um\n") 

        file.write(f"Average Particle Radius2: 

{avg_particle_radius2_per_track[track_id]:.2f} um\n\n") 

# Plot average levitation height vs. average particle radius for each track 

plt.scatter(avg_particle_radius_per_track.values(), 

avg_levitation_height_per_track.values(), marker='*') 

plt.xlabel('Average Particle Radius (um)') 

plt.ylabel('Average Levitation Height (um)') 

plt.ylim(100, 1000) 
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plt.xlim(0,20) 

plt.title('Average Levitation Height vs. Average Particle Radius per Track (Radius1)') 

plt.grid(True) 

plt.savefig('average_levitation_vs_radius1_per_track.png') 

plt.show() 

# Plot average levitation height vs. average particle radius2 for each track 

plt.scatter(avg_particle_radius2_per_track.values(), 

avg_levitation_height_per_track.values(), marker='*') 

plt.xlabel('Average Particle Radius2 (um)') 

plt.ylabel('Average Levitation Height (um)') 

plt.ylim(100, 1000) 

plt.xlim(0,20) 

plt.title('Average Levitation Height vs. Average Particle Radius2 per Track (Radius2)') 

plt.grid(True) 

plt.savefig('average_levitation_vs_radius2_per_track.png') 

plt.show() 

# Release the video capture object and close the display window 

cap.release() 

cv2.destroyAllWindows() 
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APPENDIX B 

 

 

import cv2 

def mouse_drawing(event, x, y, flags, params):  

if event == cv2.EVENT_LBUTTONDOWN: print('(', x, ',', y, ')') 

circles.append((x, y)) 

cv2.circle(image_copy, (x, y), 5, (0, 0, 255), -1) cv2.imshow("Image", image_copy)  

def draw_circles_on_image(image): for center_position in circles:  

cv2.circle(image, center_position, 5, (0, 0, 255), -1) cv2.imshow("Image", image)  

# Load the image 

image_path = "mık.tiff" 

image = cv2.imread(image_path) 

# Check if the image is loaded successfully if image is None:  

print("Error: Unable to load the image.")  

exit() 

cv2.setMouseCallback("Image", mouse_drawing) circles = [] 

# Draw circles on the image draw_circles_on_image(image) 

while True:  

key = cv2.waitKey(1) if key == ord("q"):  

break 

elif key == ord("w"):  

circles = [] 

image_copy = image.copy() draw_circles_on_image(image_copy) 

cv2.destroyAllWindows()  
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