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İZMİR



We approve the thesis of Aykut ALKIN

Examining Committee Members:

Assoc. Prof. Dr. Ahmet BATAL
Department of Mathematics, İzmir Institute of Technology
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ABSTRACT

INITIAL-BOUNDARY VALUE PROBLEM FOR THE
HIGHER-ORDER NONLINEAR SCHRÖDINGER EQUATION ON

THE HALF-LINE

We establish local well-posedness in the sense of Hadamard for the higher-order

nonlinear Schrödinger equation with a general power nonlinearity formulated on the half-

line {x > 0}. We consider separately the two different scenarios of associated coefficients

such that only one boundary condition is required, or exactly two boundary conditions

are required. We assume a general nonhomogeneous boundary datum of Dirichlet type at

x = 0 for the former case, and we add the Neumann type for the latter case. Our functional

framework centers around fractional Sobolev spaces H s
x(R+) with respect to the spatial

variable. We treat both high regularity (s > 1
2 ) and low regularity (s < 1

2 ) solutions: in the

former setting, the relevant nonlinearity can be handled via the Banach algebra property;

in the latter setting, however, this is no longer the case and, instead, delicate Strichartz

estimates must be established. This task is especially challenging in the framework of

nonhomogeneous initial-boundary value problems, as it involves proving boundary-type

Strichartz estimates that are not common in the study of Cauchy (initial value) problems.

The linear analysis, which forms the core of this work, crucially relies on a weak

solution formulation defined through the novel solution formulae obtained via the Fokas

method (also known as the unified transform) for the associated forced linear problem.

In this connection, we note that the higher-order Schrödinger equation comes with an

increased level of difficulty due to the presence of more than one spatial derivatives in

the linear part of the equation. This feature manifests itself via several complications

throughout the analysis, including (i) analyticity issues related to complex square roots,

which require careful treatment of branch cuts and deformations of integration contours;

(ii) singularities that emerge upon changes of variables in the Fourier analysis arguments;

(iii) complicated oscillatory kernels in the weak solution formula for the linear initial-

boundary value problem, which require a subtle analysis of the dispersion in terms of the

regularity of the boundary data.
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ÖZET

YÜKSEK MERTEBEDEN DOĞRUSAL OLMAYAN SCHRÖDİNGER
DENKLEMİ İÇİN YARI DOĞRUDA BAŞLANGIÇ-SINIR DEĞER

PROBLEMİ

Yüksek mertebeden doğrusal olmayan Schrödinger denklemi için yarı doğru

{x > 0} üzerinde genel kuvvet tipinde doğrusal olmayan terim ile birlikte Hadamard an-

lamında lokal iyi konulmuşluğu sağlamaktayız. İlgili katsayıların iki farklı senaryosuna

göre bir sınır koşulu yeterli olan veya tam olarak iki sınır koşulu gerektiren durumları

ayrı ayrı ele alıyoruz. İlk durum için x = 0 durumunda homojen olmayan genel Dirichlet

tipinde sınır verisini, sonraki için ise ilaveten Neumann tipini kabul etmekteyiz. Fonksiy-

onel çerçevemiz, uzaysal değişken açısından H s
x(R+) kesirli Sobolev uzayları etrafında

dönmektedir. Hem yüksek düzenlilikli (s > 1/2) hem de düşük düzenlilikli (s < 1/2)

çözümleri ele alıyoruz: ilk durumda ilgili doğrusal olmayan terim Banach cebiri özel-

liği aracılığıyla ele alınabilmektedir; ancak ikinci durumda bu durum geçerli değildir ve

bunun yerine hassas Strichartz kestirimleri elde edilmelidir. Bu görev, başlangıç-sınır

değer problemleri çerçevesinde özellikle zordur, çünkü başlangıç değerli (Cauchy) prob-

lemlerinin çalışılmasında yaygın olmayan sınır tipi Strichartz tahminlerini ispatlamayı

içermektedir.

Bu çalışmanın temelini oluşturan doğrusal analiz, ilişkili zorlanmış doğrusal prob-

lem için Fokas yöntemi (aynı zamanda birleşik dönüşüm olarak da bilinir) aracılığıyla

elde edilen yenilikçi çözüm formülleri ile tanımlanan zayıf bir çözüm formülasyonuna

kritik bir şekilde dayanmaktadır. Bu bağlamda, yüksek mertebeden Schrödinger denklem-

inin, denklemin doğrusal kısmında birden fazla uzaysal türev bulunduğu için artan bir zor-

luk seviyesi ile geldiğini belirtmek gerekir. Bu özellik, analiz boyunca birkaç karmaşıklık

olarak kendini göstermektedir, bunlar: (i) Karmaşık kareköklerle ilgili analitiklik sorun-

ları, bu da dal kesimleri ve integral konturlarının deformasyonlarının dikkatli bir şek-

ilde ele alınmasını gerektirir; (ii) Fourier analizi argümanlarındaki değişken değiştirmeler

sırasında ortaya çıkan tekillikler; (iii) Doğrusal başlangıç-sınır değer problemi için zayıf

çözüm formülündeki karmaşık titreşimli çekirdekler, bu da sınır verilerinin düzenliliği

açısından dağılmanın ince bir analizini gerektirir.
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CHAPTER 1

INTRODUCTION

The higher-order nonlinear Schrödinger equation (HNLS) on the half-line {x > 0}

is modeled by the partial differential equation

iut + iβuxxx + αuxx + iδux = κ|u|pu, (x, t) ∈ R+ × (0,T ), (1.1)

where α, β, δ ∈ R, β , 0, p > 0, T > 0 and κ ∈ C. The dependent variable u = u(x, t) is a

complex-valued function with a domain where the spatial variable x belongs to the right

half-line and the temporal variable t belongs to an interval, i.e u : R+ × (0,T )→ C.

The initial condition is imposed as

u(x, 0) = u0(x), x ∈ R+. (1.2)

Determination of the boundary conditions is ruled by the sign of β, which is the

coefficient of the highest order spatial derivative of the main equation (1.1), as follows: If

β > 0, then the (Dirichlet) boundary condition is imposed as

u(0, t) = g(t), t ∈ (0,T ), (1.3)

while if β < 0, then the (Dirichlet and Neumann) boundary conditions are imposed as

u(0, t) = h0(t), ux(0, t) = h1(t), t ∈ (0,T ). (1.4)

The change in the number of the boundary conditions depending on the sign of β

occurs naturally in the analysis. Therefore, there are two different initial-boundary value

problems for the higher-order Schrödinger equation, one of which is the single-boundary
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condition case (1.1)-(1.2)-(1.3) that is posed when β > 0, and the other one is the double-

boundary condition case (1.1)-(1.2)-(1.4) that is posed when β < 0. This difference is

first realized in our study Alkın et al. (2024), and also guaranteed by the study Deconinck

et al. (2014), which explains the determination of the number of the boundary conditions

for the general case of the evolution equations, namely

∂tu + P(−i∂x)u = 0, (1.5)

where P denotes any polynomial with order m and with a leading coefficient a. It says

that if m is an odd number (note that m = 3 in the case of HNLS), then the number of the

boundary conditions is given by


m−1

2 , a > 0,
m+1

2 , a < 0.
(1.6)

The case that m is even is also studied therein, but this is out of our context for the higher-

order Schrödinger equation.

To improve the idea behind the number of the boundary conditions, we first take

the Korteweg-de Vries (KdV) equation, which satisfies (1.5) with m = 3 and a = 1, into

consideration as an example of such argument. The initial-boundary value problem for

KdV equation is posed with only one boundary condition Himonas and Yan (2022). As

another example, the heat equation is much more convincing about the importance of the

sign of the leading coefficient for the spatial derivatives of an evolution equation. It is

known that the heat equation, i.e ut − uxx = 0, is well-posed, while its reversed version, i.e

ut + uxx = 0, is ill-posed. Many other examples of such partial differential equations can

be observed in the sense of the relation between the number of the boundary conditions

and the polynomial-behavior of the spatial derivatives.

We take the Dirichlet boundary condition for the case of β > 0, and the couple of

the Dirichlet and the Neumnann boundary conditions for the case β < 0. In fact, this is

not a strict choice for the initial-boundary value problem for the higher-order nonlinear

Schrödinger equation. We analyze the aforementioned cases in Chapters 4 and 5, respec-
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tively, and the arguments therein can be analogously modified for some different type of

boundary conditions.

The effect of the sign of β is observed only on the boundary conditions. When

considering the corresponding whole-line problem, as we proceed in Chapter 3, there

is no need to separate the cases for β to be positive or negative. Therefore, the initial

value problem for the higher-order nonlinear Schrödinger equation can be studied at once

for any β , 0. This matches up with the previous studies Carvajal and Linares (2003);

Carvajal (2004, 2006); Laurey (1997); Staffilani (1997), where the whole-line problems

for the higher-order nonlinear Schrödinger equation are studied under no restriction on β.

After the explanation of the mathematical model for the higher-order nonlinear

Schrödinger equation, we give the physical motivation behind this model. For the choices

β = δ = 0, α = 1 and p = 2 on the main equation (1.1), the problem reduces to the cu-

bic nonlinear Schrödinger equation (NLS), which is a ubiquitous model in mathematical

physics with a broad spectrum of applications. However, NLS is not precise enough for

pulses in the femtosecond regime. In this case, a higher-order dispersive term is neces-

sary for a correction. This need let the higher-order nonlinear Schrödinger equation arise

originally in the form

iut +
1
2

uxx + |u|2u + iϵ
(
β1uxxx + β2(|u|2u)x + β3u|u|2x

)
= 0, (1.7)

for modeling the femtosecond pulse propagation in nonlinear fiber optics Kodama (1985);

Kodama and Hasegawa (1987). Note that the nonlinear terms of the original model (1.7)

and the one we describe in (1.1) has two differences. Firstly, we take the nonlinear terms

involving derivatives as an absence (i.e β2 = β3 = 0), which causes to read the higher-

order nonlinear Schrödinger equation also as "truncated" HNLS in the literature. Sec-

ondly, we consider a more general power type nonlinear term |u|pu with p > 0, and treat

the cubic problem as a special case.

The higher-order nonlinear Schrödinger equation is studied in the well-posedness

point of view here. So, after the physical motivation, it would be appropriate to give also

the previous results about the well-posedness of the problem. We use a chronological

order for this purpose. In Laurey (1997), the local well-posedness of the initial value

problem (1.7)-(1.2) is obtained in H s(R) for s > 3
4 . Then, an improvement for the lower

3



bound for s has been published in Staffilani (1997) for s ≥ 1
4 . Later, it is proved in Carvajal

(2004) that the initial value problem (1.7)-(1.2) is locally well-posed in H s(R) for s > −1
4 ,

and this result is supported with a global well-posedness for s > 1
4 in Carvajal (2006). All

these results belong to a whole-line problem for the higher-order nonlinear Schrödinger

equation with a cubic nonlinear term.

The treatment for a more general power type nonlinearity is considered recently

in Faminskii (2023) for the initial value problem on the whole-line, namely

iut + auxx + ibux + iuxxx + λ|u|pu + iβ(|u|pu)x + iγu|u|px = 0, (1.8)

with the initial condition (1.2), and the well-posedness is studied for the case of p = 1,

therein.

When it comes to introduce the studies on the well-posedness of the initial-boundary

value problem for HNLS, we remark that a certain third-order model with cubic nonlin-

earity, which is renamed as the Hirota equation, is studied for only the single-boundary

condition case, see Huang (2020); Guo and Wu (2021); Wu and Guo (2023). However,

it is important to emphasize that in the present work we treat the case of a general power

nonlinearity, and obtain some regularity results for a larger class of Sobolev space. Re-

cently, for the initial-boundary value problem for the higher-order nonlinear Schrödinger

equation with a single boundary condition and a power nonlinearity, the global solutions

are considered in an independent area in Faminskii (2024) for the case of either p = 1 or

the boundary condition to be homogeneous.

After this quick survey in the literature, we introduce now our destination to-

gether with some details about the methods and the techniques that we utilize in the way.

Even though the higher-order nonlinear Schrödinger equation is considered as an initial-

boundary value problem on the half-line, we first obtain some regularity results for the

whole-line problems (also known as Cauchy problems) in Chapter 3. This chapter might

be considered as an ingredient for the main purpose. However, there are some results

important in itself. The multi-term nature of the spatial differential operator creates chal-

lenging difficulties in the proofs of the temporal estimates, due to the changes of variables

performed in order to extract the desired Sobolev norms. These difficulties are overcome

by introducing a proper cut-off function that depends on the polynomial structure of the

4



spatial differential operator.

In Chapter 4, we focus on the initial-boundary value problem for the higher-order

nonlinear Schrödinger equation on the half-line with a single boundary condition (the case

of β > 0), namely

iut + iβuxxx + αuxx + iδux = f (u), (x, t) ∈ R+ × (0,T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = g(t), t ∈ (0,T ),

(1.9)

where α, δ ∈ R, β > 0, f (z) = κ|z|pz with z ∈ C, κ ∈ C, p > 0, and T > 0. We prove

the local well-posedness of this problem in the sense of Hadamard, namely, we prove

existence of a unique local-in-time solution that depends continuously on the initial and

boundary data in the Sobolev space H s(R) for s ≥ 0. All of the results in this chapter are

presented in Alkın et al. (2024).

Then, we turn our interest to the double-boundary case (β < 0) in Chapter 5 and

analyze the initial-boundary value problem

iut + iβuxxx + αuxx + iδux = f (u), (x, t) ∈ R+ × (0,T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = h0(t), ux(0, t) = h1(t) t ∈ (0,T ),

(1.10)

where α, δ ∈ R, β < 0, f (z) = κ|z|pz with z ∈ C, κ ∈ C, p > 0, and T > 0.

The goal of Chapters 4 and 5 is to establish the local well-posedness theory for

the nonlinear initial-boundary value problems (1.9) and (1.10), respectively, at the level of

H s
x(R+) spatial regularity for the initial data. We are interested in both the high regularity

(s > 1
2 ) and the low regularity (s < 1

2 ) settings. The main distinction between the two is

that, in the low regularity setting, the well-known Banach algebra property of H s
x(R+) is

no longer available. Instead, handling the nonlinearity |u|pu when s < 1
2 requires use of

more advanced tools that revolve around the celebrated Strichartz estimates. Estimates of

this type measure the size and temporal decay of solutions in space-time Lebesgue norms

and have played a crucial role in the treatment of the Cauchy problem of nonlinear disper-
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sive equations since their introduction in 1977 Strichartz (1977). On the other hand, the

use of Strichartz estimates in the analysis of initial-boundary value problems is a more re-

cent advancement. For the Cauchy problem, Strichartz estimates involve certain norms of

initial and/or interior data, while for initial-boundary value problems these estimates ad-

ditionally depend on information related to boundary data, for which temporal regularity

also plays a key role.

Our treatment of the nonlinear problem is crucially based on a contraction map-

ping argument applied to a weak solution formula for the associated forced linear initial-

boundary value problem. Therefore, the first contribution of the present paper is the

development of a sharp linear theory through the analysis of the solutions of the rele-

vant forced linear initial-boundary value problem. This is accomplished by decomposing

this linear problem into three simpler component problems: (i) a homogeneous Cauchy

problem associated with (an appropriate extension of) the initial datum; (ii) a nonhomo-

geneous Cauchy problem associated with (an appropriate extension of) the forcing; (iii)

a reduced initial-boundary value problem involving the original boundary datum and the

spatial traces of the two aforementioned Cauchy problems.

A major emphasis in this work is placed on the regularity analysis of the solu-

tion to the reduced initial-boundary value problem of item (iii) above. This is done in

Sections 4.1 and 5.1, respectively for each cases of β. Weak solutions of this reduced

initial-boundary value problem are defined via a boundary integral operator whose ex-

plicit form is obtained through the Fokas method (also known as the unified transform

method Fokas (1997, 2008)), which provides a rigorous treatment for the initial-boundary

value problems.

While the Cauchy problem for nonlinear dispersive equations has been broadly

explored through a variety of techniques, progress towards the rigorous study of initial-

boundary value problems for these equations is more limited. In fact, problems of this

latter kind can present significant challenges even at the linear level. For example, while

on the whole line linear evolution equations can be easily solved via Fourier transform

in the space variable, on domains with a boundary like the half-line no classical spatial

transform exists for linear equations of spatial order three or higher. Another important

obstacle arises in the case of boundary conditions that are non-separable. Moreover, even

when a linear initial-boundary value problem can be solved via classical techniques, the
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resulting solution formula is not always useful, especially in regard to setting up an effec-

tive iteration scheme for proving the well-posedness of associated nonlinear problems.

At the linear level, the Fokas method bridges the gap between the Cauchy prob-

lem and initial-boundary value problems by providing the direct analogue of the Fourier

transform in domains with a boundary. Indeed, the method provides a fundamentally

novel, algorithmic way of solving any linear evolution equation formulated on a variety

of domains in one or higher dimensions and supplemented with any kind of admissible

boundary conditions. An alternative perspective that further establishes the Fokas method

as the natural counterpart of the Fourier transform in the context of linear initial-boundary

value problems stems from the nonlinear component of the method, which was developed

for completely integrable nonlinear equations and corresponds to the analogue of the in-

verse scattering transform in domains with a boundary. Then, noting that the linear limit

of the inverse scattering transform is nothing but the Fourier transform, it is only reason-

able that the linear limit of the nonlinear component of the Fokas method, namely the

linear Fokas method, should provide the equivalent of the Fourier transform for linear

initial-boundary value problems.

The analogy between the Fokas method and the Fourier transform has been solid-

ified by a new approach introduced in recent years by Himonas and Mantzavinos for the

well-posedness of nonlinear initial-boundary value problems. This approach is based on

treating the nonlinear problem as a perturbation of its forced linear counterpart, which is

of course a classical idea coming from the Cauchy problem. However, the linear formulae

produced via the Fourier transform in the case of the Cauchy problem are now replaced

by the Fokas method solution formulae (recall that Fourier transform is no longer avail-

able). As these novel formulae involve complex contours of integration, new tools and

techniques are required in order to obtain the various linear estimates needed for the con-

traction mapping argument. It should be noted that several of these estimates are specific

to initial-boundary value problems and do not typically arise in the study of the Cauchy

problem; they are results of particular importance, as they capture the effect of the bound-

ary conditions on the regularity of the solution of both linear and nonlinear problems. The

Fokas method based approach for the rigorous study of initial-boundary value problems

has already been implemented in several works in the literature: NLS on the half-line and

the half-plane Fokas et al. (2017); Himonas and Mantzavinos (2021, 2020), KdV on the
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half-line and the finite interval Himonas et al. (2019); Himonas and Yan (2022), bihar-

monic NLS on the half-line Özsarı and Yolcu (2019), fourth order Schrödinger equation

on the half-line Özsarı et al. (2022).

Specifically for the higher-order Schrödinger equation, some certain analyticity

issues arise in the application of the Fokas method. This is because the method relies

on the construction of analytic maps that respect certain spectral invariance properties

of the linear dispersion relation. However, for multi-term spatial differential operators,

such a construction requires use of complex square root functions which, in many cases,

cause the invariance maps to be non-analytic on some parts of the complex spectral plane.

We handle this complication via suitable contour deformations around the branch cuts

associated with these maps.

The solutions of the fully nonlinear problems will be constructed as fixed points of

the solution operator formed by reunifying the respective solution formulae for the three

linear problems of items (i)-(iii) above. In the high regularity setting of s > 1
2 , the spa-

tiotemporal estimates established in the linear theory lead to a contraction mapping argu-

ment in the Hadamard-type space C([0,T ]; H s
x(R+)). The uniqueness in this space utilizes

the Sobolev embedding H s
x(R+) ↪→ L∞x (R+) (which is valid for s > 1

2 ). In the low regular-

ity setting of s < 1
2 , the algebra property in H s

x(R+) and the embedding H s
x(R+) ↪→ L∞x (R+)

are no longer valid and Strichartz estimates assume the key role instead. In that case, the

solution space is refined to C([0,T ]; H s
x(R+))∩Lµt ((0,T ); H s,r

x (R+)) with (µ, r) obeying the

admissibility criterion (3.29) associated with the underlying evolution operator. However,

this only leads to a conditional uniqueness result in the aforementioned space.
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CHAPTER 2

PRELIMINARIES

The study on the analysis of partial differential equations requires a remarkable

background about the fundamental tools from the functional, real and complex analysis

in addition to the theory pf partial differential equations itself. This chapter provides a

sufficient and brief collection of such arguments to be used where necessary in the whole

of this thesis.

We start with some different notions of the Fourier transform of a multi-variable

function f (x, t) for the spatial variable x and the temporal variable t both belonging to

R. All the arguments below about Fourier transforms can be found in many fundamental

books and sources such as Strichartz (2003). We take the spatial Fourier transform of

f (x, t) as

f̂ (k, t) =
∫
R

e−ikx f (x, t)dx, (2.1)

and the temporal Fourier transform as

f̂ (x, τ) =
∫
R

e−iτt f (x, t)dt, (2.2)

by assigning the burden of understanding which transformation (spatial or temporal) is

made to the letters k and τ used as spectral variables. The inversions of the aforementioned

Fourier transforms are understood, respectively, as

f (x, t) =
1

2π

∫
R

eixk f̂ (k, t)dk, (2.3)

and

f (x, t) =
1

2π

∫
R

eitτ f̂ (x, τ)dτ. (2.4)

Considering the Fourier transform for a single-variable function g(x), which can

be defined by ignoring the temporal variable t in (2.1), the well-known Plancherel theorem
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says that ∫
R

|g(x)|2dx =
∫
R

|ĝ(k)|2dk. (2.5)

We should also recall the rule for the Fourier transform of the derivative of a

function, since we use this transform on a partial differential equation. For this purpose,

let P be any polynomial and h(x) = P
(

d
dx

)
f (x). Then,

ĥ(k) = P(−ik) f̂ (k). (2.6)

Fourier transform provides an important definition for the fractional Sobolev spaces,

which are one of the most suitable settings to analyze a partial differential equation, since

it is not usually possible to make good enough analytic estimates on the solutions con-

structed for the partial differential equation. They provide a balance when comprising the

functions which have some, but not too great, smoothness properties. Following defini-

tions on the fractional Sobolev spaces can be found in Di Nezza et al. (2012) and many

other partial differential equations sources.

The fractional Sobolev space on the real line for s ≥ 0 is defined by

H s(R) =
{
u ∈ L2(R)

∣∣∣ (
1 + k2

) s
2 û ∈ L2(R)

}
(2.7)

and, in general for any s ∈ R, it is defined by

H s(R) =
{
u ∈ S′(R)

∣∣∣ (
1 + k2

) s
2 û ∈ L2(R)

}
, (2.8)

where S′(R) is the set of tempered distribution, which is known as the dual space of S(R),

which consists of the infinitely differentiable functions that decrease rapidly together with

all their derivatives.

The fractional Sobolev norm is defined for all s ∈ R by

∥u∥Hs(R) =

(∫
R

(
1 + k2

)s
|û(k)|2dk.

) 1
2

(2.9)
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The space H s(Ω) for an open interval Ω in R is considered as the set of the restric-

tions to Ω of the elements belonging to the space H s(R) with the norm

∥u∥Hs(Ω) = inf
v∈Hs(R)

∥v∥Hs(R), where v
∣∣∣
Ω
= u. (2.10)

The linear extension operator E : H s(Ω) → H s(Rn) for Ω ⊂ Rn is defined to

satisfy the following statements:

(i) Eu = u in Ω,

(ii) if Ω is bounded, then Eu is compactly supported,

(iii) E is continuous, i.e.

∥Eu∥Hs(Rn) ≤ C∥u∥Hs(Ω), (2.11)

where C is the constant depending on n, s and Ω.

Trace theory plays also a crucial role in the analysis for the local well-posedness

of partial differential equations, therefore we recall the following theorem:

Theorem 2.1 Tartar (2007) Let s > 1
2 . Then, any function u ∈ H s(Rn) has a trace, say

Tu, on the hyperplane {xn = 0} such that Tu ∈ H s− 1
2 (Rn−1). Also, the trace operator T is

surjective from H s(Rn) onto H s− 1
2 (Rn−1).

The critical value s = 1
2 for the trace theory appears also in the Banach algebra

property of Sobolev spaces. The Sobolev space H s(R) is a Banach algebra if and only if

s > 1
2 , in other words, for u, v ∈ H s(R), the identity ∥uv∥Hs(R) ≤ ∥u∥Hs(R)∥v∥Hs(R) holds only

when s > 1
2 .

Sobolev embedding theory is also important in the regularity analysis of the so-

lutions to a partial differential equation. Here are the statements for some embedding

rules.

Theorem 2.2 (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 ≤ p < n. There exists

a constant C, depending only on p and n, such that

∥u∥
L

np
n−p (Rn)

≤ C∥Du∥Lp(Rn), (2.12)
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for all u ∈ C1
c (Rn).

Theorem 2.3 (General Sobolev inequalities in R) Let Ω be a bounded open subset of R,

with a C1 boundary. Assume u ∈ H s(Ω).

(i) If s < 1
2 , then u ∈ Lq(Ω), where 1

q =
1
2 − s. We have in addition the estimate

∥u∥Lq(Ω) ≤ C∥u∥Hs(Ω), (2.13)

where the constant C depends only on s and Ω.

(ii) If s > 1
2 , then u ∈ L∞(R) with the bound

∥u∥L∞(R) ≤ C∥u∥Hs(R). (2.14)

where the constant C depends only on s.

After this important overview on Sobolev and Fourier theory, we continue with

some complex analytical tools. We utilize Fokas’ unified transform method in some dif-

ferent parts of this study, and this method requires two basic results from complex analy-

sis, which are Cauchy’s theorem and Jordan’s lemma. These two important requirements

can be found in any fundamental complex analysis book such as Brown and Churchill

(2009).

Theorem 2.4 (Cauchy’s) Let U be an open simply connected domain in C and γ be a

closed curve in U. If a function f : U → C is analytic, then

∫
γ

f (z)dz = 0. (2.15)

Lemma 2.1 (Jordan’s) Let V be open set in C. ∀R > 0, V ∩B(0,R) is the union of finitely

many simply connected regions. Let C±R := CR ∩ V ∩ C± and if f : V → C is continuous

with

lim
R→∞

(
max{ f (z) : z ∈ C±R}

)
= 0. (2.16)
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Then, ∀a > 0,

lim
R→∞

∫
C±R

e±iaz f (z)dz = 0. (2.17)

We now state some well-known theorems that are widely recognized from real

and functional analysis. These can be found in Jones (2001) and/or Kreyszig (1991).

Theorem 2.5 (Dominated Convergence Theorem) Assume the functions { f j}
∞
j=1 are summable

and f j → f a.e. Suppose also | f j| ≤ g a.e. for some summable function g. Then,

∫
Rn

f j dx→
∫
Rn

f dx. (2.18)

Theorem 2.6 (Inverse Function Theorem) Assume f ∈ C1(Ω;R) and f ′(x0) , 0. Then,

there exists an open set V ⊂ Ω, with x0 ∈ V, and an open set U ⊂ R, with f (x0) ∈ U, such

that

(i) the mapping f : V → U is one-to-one and onto, and

(ii) the inverse function f −1 : U → V is C1.

(iii) if f ∈ C j, then f −1 ∈ C j for j ∈ Z.

Theorem 2.7 (Fubini’s) Assume that f ∈ L1(Rn). Let n = m + l, then for a.e. y ∈ Rm the

function fy ∈ L1(Rl), and thus there exists

F(y) =
∫
Rl

fy(x) dx. (2.19)

Furthermore, F ∈ L1(Rm), and

∫
Rm

F(y) dy =
∫
Rn

f (z) dz. (2.20)

Theorem 2.8 (Riesz-Thorin interpolation) Let (U1, µ1) and (U2, µ2) be two measurable

spaces. Assume that p1 , p2, q1 , q2, and that

T : Lp1(U1)→ Lq1(U2) (2.21)
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is bounded with norm M1, and that

T : Lp2(U1)→ Lq1(U2) (2.22)

is also bounded with norm M2. Then,

T : Lp(U1)→ Lq(U2) (2.23)

is bounded with norm M ≤ M1−θ
1 Mθ2 provided that 0 < θ < 1 and 1

p =
1−θ
p1
+ θp2

, 1
q =

1−θ
q1
+ θq2

.

It is vital to use some elementary inequalities, which can be found in Evans (2022),

in the estimations of the solutions to partial differential equations. Here we list these

inequalities:

(i) Cauchy’s inequality with ϵ: Let a, b ∈ R and ϵ > 0.

ab ≤ ϵa2 +
b2

4ϵ
(2.24)

(ii) Young’s inequality with ϵ: Let a, b, ϵ > 0 and p, q ∈ (1,∞) such that 1
p +

1
q = 1.

Then,

ab ≤ ϵap +
bq

C(ϵ)
, (2.25)

where C(ϵ) = q(ϵp)
q
p .

(iii) Cauchy-Schwarz inequality: If u, v ∈ L2(Ω), then

∥uv∥L1(Ω) ≤ ∥u∥L2(Ω)∥v∥L2(Ω). (2.26)

(iv) Hölder’s inequality: Assume p, q ∈ [1,∞] such that 1
p +

1
q = 1. Then, if u ∈ Lp(Ω)

and v ∈ Lq(Ω), we have

∥uv∥L1(Ω) ≤ ∥u∥Lp(Ω)∥v∥Lq(Ω). (2.27)
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(v) Minkowski’s integral inequality: Let F be a integrable function on Rm × Rn and

1 ≤ p < ∞. Then,

(∫
Rn

(∫
Rm

F(x, y) dx
)p

dy
) 1

p

≤

∫
Rm

(∫
Rn
|F(x, y)|p dy

) 1
p

dx. (2.28)

(vi) Interpolation inequality for Lp-norms: Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and 1
r =

θ
s +

1−θ
s . Suppose also u ∈ Ls(Ω) ∩ Lt(Ω). Then u ∈ Lr(Ω), and

∥u∥Lr(Ω) ≤ ∥u∥θLs(Ω)∥u∥
1−θ
Lt(Ω). (2.29)

We lastly introduce some notations that we use for simplicity throughout the the-

sis. The first one is a ≲ b, which is used for the inequality a ≤ Cb, where the constant C

is independent of a and b. We also use the notation a ≃ b to indicate that a = b or a is

sufficiently close to b. We finish the basic requirements for this thesis with the following

notations:

Definition 2.1 (Big-oh notation) We write

f = O(g) as x→ x0, (2.30)

provided there exists a constant C such that | f (x)| ≤ C|g(x)| for all x sufficiently close to

x0.

Definition 2.2 The set-theoretic support of a function f : X → R, written supp( f ), is the

set of points in X where f is nonzero:

supp( f ) = {x ∈ X : f (x) , 0}. (2.31)
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CHAPTER 3

CAUCHY PROBLEMS

In this chapter, the homogeneous and the nonhomogeneous Cauchy problems for

the higher-order Schrödinger equation have been separately analyzed to determine the

regularity level in Sobolev spaces. The Fourier transform theory provides quite suitable

advantages for this purpose. Firstly, we study the homogeneous problem in Section 3.1,

and then we continue with the nonhomogeneous problem in Section 3.2 by taking the

advantage of Duhamel’s principle, which intuitively acts the nonhomogeneous problem

as a set of homogeneous problems each starting afresh at a different time slice.

3.1. Homogeneous Cauchy Problem

We start with the initial value problem

iyt + iβyxxx + αyxx + iδyx = 0, (x, t) ∈ R × R,

y(x, 0) = y0(x), x ∈ R,
(3.1)

where α, β, δ ∈ R, β , 0, and y0 ∈ H s(R).

We have the first result to control the L∞t ((0,T ); H s
x(R)) norm of the solution y(x, t)

to the homogeneous linear Cauchy problem (3.1) by the H s(R) norm of the initial datum

y0(x) as follows:

Theorem 3.1 Let s ∈ R. The unique solution of the Cauchy problem (3.1), denoted by

y = S [y0; 0], belongs to C(Rt; H s
x(R)) and satisfies the conservation law

∥y(·, t)∥Hs
x(R) = ∥y0∥Hs

x(R) , t ∈ R. (3.2)

Moreover, if α2 + 3βδ ≥ 0, then y ∈ C(Rx; H
s+1
3

t (−T,T )) for T > 0 and there exists a
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constant c = c(s, α, β, δ) ≥ 0 such that

sup
x∈R
∥y(x, ·)∥

H
s+1
3

t (−T,T )
≤ c(1 + T

1
2 ) ∥y0∥Hs

x(R) , (3.3)

while if α2 + 3βδ < 0, then y ∈ C(Rx; H
s+1
3

t (R)) and there is a constant c = c(s, α, β, δ) ≥ 0

such that

sup
x∈R
∥y(x, ·)∥

H
s+1
3

t (R)
≤ c ∥y0∥Hs

x(R) . (3.4)

Proof Applying the Fourier transform (with respect to the spatial variable x) to (3.1),

and then integrating in the temporal variable t, we find ŷ(k, t) = e−ω(k)t ŷ0(k), where

ω(k) := −iβk3 + iαk2 + iδk, (3.5)

which is purely imaginary for k ∈ R. Thus |ŷ(k, t)| = |ŷ0(k)|, and we have

∥y(·, t)∥2Hs
x(R) =

∫
R

(1 + k2)s|ŷ(k, t)|2dk =
∫
R

(1 + k2)s|ŷ0(k)|2dk = ∥y0∥
2
Hs

x(R), (3.6)

which amounts to the conservation law (3.2). The continuity of the map t 7→ y(t) from Rt

into H s
x(R) follows from the dominated convergence theorem and the fact that y0 ∈ H s

x(R).

To this end, let t, tn ∈ R such that tn → t as n→ ∞, we have

∥y(·, tn) − y(·, t)∥2Hs
x(R) =

∫
R

(
1 + k2

)s ∣∣∣e−w(k)tn − e−w(k)t
∣∣∣2 |ŷ0(k)|2 dk, (3.7)

which tends to zero as n→ ∞, and we also have

∫
R

(
1 + k2

)s ∣∣∣e−w(k)tn − e−w(k)t
∣∣∣2 |ŷ0(k)|2dk ≤

∫
R

4
(
1 + k2

)s
|ŷ0(k)|2dk = 4∥y0∥

2
Hs

x(R) < ∞.

(3.8)

In order to prove the temporal estimates (3.3) and (3.4), we start from the Fourier
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transform solution representation

y(x, t) = S [y0; 0](x, t) =
1

2π

∫
R

eikx−ω(k)t ŷ0(k)dk. (3.9)

Consider the real-valued map τ = iω(k) = βk3 − αk2 − δk, together with its derivative

dτ
dk
= iω′(k) = 3βk2 − 2αk − δ = 3β

(k − α3β
)2

−
α2 + 3βδ

9β2

 . (3.10)

Notice that if α2 + 3βδ ≤ 0, then τ is monotone and so k = (iω)−1(τ) is well-defined. In

the case of strict inequality α2 + 3βδ < 0, we observe that iω′(k) , 0 for any real k, and so

by the inverse function theorem we can change variable from k to τ and rewrite (3.9) as

y(x, t) =
1

2π

∫
R

ei(iω)−1(τ)x+iτt ŷ0((iω)−1(τ))
dτ

iω′((iω)−1(τ))
, (3.11)

which represents the inverse (temporal) Fourier transform of the function

ŷ(x, τ) =
ei(iω)−1(τ)x ŷ0((iω)−1(τ))

iω′((iω)−1(τ))
. (3.12)

So, we have

∥y(x, ·)∥2
H

s+1
3

t (R)
=

∫
R

(1 + τ2)
s+1
3

∣∣∣∣∣∣ ŷ0((iω)−1(τ))
iω′((iω)−1(τ))

∣∣∣∣∣∣2 dτ (3.13)

In addition, notice that τ = iω(k) = O(k3) and 1
iω′(k) = O(k−2) as |k| → ∞. Therefore, by

the change of variable k = (iw)−1(τ), we have

∥y(x, ·)∥2
H

s+1
3

t (R)
≲

∫
R

(
1 + k2

)s
|ŷ0(k)|2dk = ∥y0∥

2
Hs

x(R) (3.14)

which amounts to estimate (3.4).

Next, consider the case α2 + 3βδ ≥ 0. Let θ ∈ C∞c (R) be a function with a range

[0, 1] whose additional properties will be specified below. Then, we can write y = y1 + y2,
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where
y1(x, t) :=

1
2π

∫
R

eikx−ω(k)tθ(k)ŷ0(k)dk,

y2(x, t) :=
1

2π

∫
R

eikx−ω(k)t(1 − θ(k))ŷ0(k)dk.
(3.15)

Taking j-th order time derivative of y1, and using the range of θ together with Cauchy-

Schwarz inequality, we deduce

∣∣∣∂ j
t y1(x, t)

∣∣∣ ≤ 1
2π

∫
supp(θ)

|ω(k)| j|θ(k)∥ŷ0(k)|dk

=
1

2π

∫
supp(θ)

(
1 + k2

) −s
2
|ω(k)| j|θ(k)|

(
1 + k2

) s
2
|ŷ0(k)|dk

≲
( ∫

supp(θ)

(
1 + k2

)−s
|ω(k)|2 jdk

) 1
2

∥y0∥Hs
x(R) = c(s, j, θ) ∥y0∥Hs

x(R) .

(3.16)

We note that this inequality holds for any s ∈ R. Thus, by the physical space characteri-

zation of the Sobolev norm, namely

∥ f ∥Hµt (−T,T ) =

µ∑
j=0

∥∥∥∂ j
t f

∥∥∥
L2

t (−T,T )
, µ ∈ N0, (3.17)

we obtain

∥y1(x, ·)∥Hµt (−T,T ) ≤ c(s, µ, θ)T
1
2 ∥y0∥Hs

x(R) (3.18)

for any µ ∈ N0 and any x, s ∈ R. Note that the term T
1
2 appears due to the interval (−T,T )

of the integral hidden in the L2-norm definition. Then, since given any m ∈ R we can

always find µ ∈ N ∪ {0} such that m ≤ µ, estimate (3.18) readily implies

∥y1(x, ·)∥Hm
t (−T,T ) ≤ c(s,m, θ)T

1
2 ∥y0∥Hs

x(R) , m, s, x ∈ R. (3.19)

In order to handle y2, we note that given α, β, δ ∈ R such that β , 0 satisfying

α2 + 3βδ ≥ 0 one can find k j = k j(α, δ, β) ∈ R, j = 1, 2, such that (i) the roots α±
√
α2+3βδ
3β

of ω′(k) = 0 lie in (k1, k2) and (ii) the mapping τ = iω(k) is monotone (increasing when

β > 0, and decreasing when β < 0) on R \ (k1, k2). Now, let k3 < k1 and k4 > k2 be any
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two numbers and fix θ so that it further satisfies the condition

θ(k) =

 1, k ∈ [k1, k2],

0, k < (k3, k4),
(3.20)

as well as the condition 0 ≤ |θ(k)| ≤ 1, k ∈ R. Now, to apply the similar arguments that

we used to estimate y1,we can rewrite y2 as

y2(x, t) =
1

2π

∫
R\[k1,k2]

eikx−ω(k)t (1 − θ(k)) ŷ0(k) dk

=
1

2π

∫
(iω)(R\[k1,k2])

ei(iω)−1(τ)x+iτt 1 − θ((iω)−1(τ))
iω′((iω)−1(τ))

ŷ0((iω)−1(τ)) dτ.
(3.21)

Using the definition of the Sobolev norm, for each x ∈ R we have

∥y2(x, ·)∥2
H

s+1
3

t (R)
=

∫
R

(1 + τ2)
s+1
3 |ŷ2(x, τ)|2dτ

=

∫
(iω)(R\[k1,k2])

(1 + τ2)
s+1
3
|1 − θ((iω)−1(τ))|2|ŷ0((iω)−1(τ))|2

|iω′((iω)−1(τ))|2
dτ

≲

∫
R\[k1,k2]

(1 + (iω(k))2)
s+1
3

|iω′(k)|
|ŷ0(k)|2dk

≲

∫
R

(
1 + k2

)s
|ŷ0(k)|2dk = ∥y0∥

2
Hs

x(R) , (3.22)

where the last inequality follows from the fact that iω(k) = O(k3) and 1
iω′(k) = O(k−2) as

|k| → ∞. Hence, (3.3) follows from (3.19) and (3.22). Continuity in x once again follows

from the dominated convergence theorem. □

In addition to the estimates above, we need some information about the spatial

derivative of the solution yx of the homogeneous Cauchy problem (3.1) due to the exis-

tence of the Neumann boundary condition in the statement of the original problem for the

case β < 0.

Theorem 3.2 Let s ∈ R. The unique solution of the Cauchy problem (3.1), denoted

y = S [y0; 0], satisfies if α2 + 3βδ ≥ 0 that, yx ∈ C(Rx; H
s
3
t (−T,T )) for T > 0 and there
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exists a constant c = c(s, α, β, δ) ≥ 0 such that

sup
x∈R
||∂xy(x, ·)||

H
s
3

t (−T,T )
≤ c(1 + T

1
2 )||y0||Hs

x(R); (3.23)

while if α2+3βδ < 0, then yx ∈ C(Rx; H
s
3
t (R)) and there exists a constant c = c(s, α, β, δ) ≥

0 such that

sup
x∈R
||∂xy(x, ·)||

H
s
3

t (R)
≤ c||y0||Hs

x(R). (3.24)

Proof Differentiating the Cauchy problem (3.1) with respect to the spatial variable x,

we get

iYt + iβYxxx + αYxx + iδYx = 0, (x, t) ∈ R × R,

Y(x, 0) = Y0(x), x ∈ R,
(3.25)

where Y = yx and Y0 = (y0)x. Note that y0 ∈ H s
x(R) implies Y0 ∈ H s−1

x (R). Using Theorem

3.1 for any s′ ∈ R, we know by (3.3) that

sup
x∈R
||Y(x, ·)||

H
s′+1

3
t (−T,T )

≤ c(1 + T
1
2 )||Y0||Hs′

x (R). (3.26)

Choosing s′ = s − 1 gives for any s ∈ R that

sup
x∈R
||Y(x, ·)||

H
s
3

t (−T,T )
≤ c(1 + T

1
2 )||Y0||Hs−1

x (R) ≤ c(1 + T
1
2 )||y0||Hs

x(R), (3.27)

which gives (3.23). Similarly, we can also obtain (3.24) by using (3.4), and the continuity

of the maps follows, one more time, from the dominated convergence theorem and the

regularity of the initial datum y0. □

Such estimates on the second or higher-order spatial derivative of y can be easily

derived by following the same steps above, but this is out of context for our original

initial-boundary value problem. Therefore, we confine ourselves with these two results to

correspond them later with the Dirichlet and the Neumann traces of the solution y of the

initial value problem (3.1).

We also control the mixed Lebesgue norms Lµt ((0,T ); H s,r
x (R)) of the solution y to

the homogeneous Cauchy problem (3.1), where H s,r(R) is the usual Bessel potential space
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defined with norm

∥ f ∥Hs,r(R) :=
∥∥∥∥∥F −1

{(
1 + k2

) s
2
F { f }(k)

}∥∥∥∥∥
Lr(R)

(3.28)

and (µ, r) is any higher-order Schrödinger admissible pair, i.e. any pair (µ, r) satisfying

µ, r ≥ 2,
3
µ
+

1
r
=

1
2
. (3.29)

More precisely, we have the following Strichartz estimate:

Theorem 3.3 Let s ∈ R and suppose (µ, r) is higher-order Schrödinger admissible in

the sense of (3.29). Then, the solution of the homogeneous linear Cauchy problem (3.1)

satisfies the Strichartz estimate

∥y∥Lµt ((0,T );Hs,r
x (R)) ≲ ∥y0∥Hs

x(R) . (3.30)

Proof By the definition (3.28) of the H s,r-norm, we have

∥y∥Lµt (R;Hs,r
x (R)) =

∥∥∥∥∥F −1
{(

1 + k2
) s

2 ŷ(k, ·)
}∥∥∥∥∥

Lµt ((0,T );Lr
x(R))
. (3.31)

Recalling that ŷ(k, t) = e−ω(k)t ŷ0(k), we have

F −1
{(

1 + k2
) s

2 ŷ(k, t)
}
=

1
2π

∫ ∞

−∞

eikx−ω(k)t
(
1 + k2

) s
2 ŷ0(k)dk = S [φ; 0](x, t), (3.32)

where φ(x) = F −1
{(

1 + k2
) s

2 ŷ0(k)
}

(x). So, it suffices to prove that

∥S [φ; 0]∥Lµt ((0,T );Lr
x(R)) ≲ ∥φ∥L2

x(R) . (3.33)
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For this, we note that by the definition of the Fourier transform we can write

S [φ; 0](x, t) =
1

2π

∫
R

I(x, x′, t)φ(x′)dx′, (3.34)

where

I(x, x′, t) :=
∫
R

eik(x−x′−tδ)+i(tβk3−tαk2)dk. (3.35)

Then, it is proved (in Lemma 4.2) in Carvajal and Linares (2003) that

|I(x, x′, t)| ≲ |βt|−
1
3 , t , 0, (3.36)

where the inequality constant is independent of x, x′, t. Then, the desired estimate (3.33)

is inferred (in Theorem 4.1) in Carvajal and Linares (2003). □

3.2. Nonhomogeneous Cauchy Problem

We turn our interest now to the forced initial value problem

izt + iβzxxx + αzxx + iδzx = F, (x, t) ∈ R × (0,T ),

z(x, 0) = 0, x ∈ R,
(3.37)

where F ∈ L2
t ((0,T ); H s

x(R)).

Thanks to Duhamel’s principle, the solution of the nonhomogeneous problem

(3.37), denoted by S [0; F], can be expressed as

z(x, t) = S [0; F](x, t) = −i
∫ t

0
S [F(·, t′); 0](x, t − t′)dt′

= −
i

2π

∫ t

0

∫
R

eikx−ω(k)(t−t′)F̂(k, t′)dkdt′,
(3.38)

where, for each t′ ∈ [0, t], S [F(·, t′); 0] denotes the solution to the homogeneous Cauchy
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problem with initial data F(x, t′), namely,

iyt′
t + iβyt′

xxx + αyt′
xx + iδyt′

x = 0, (x, t) ∈ R × (0,T ),

yt′(x, 0) = F(x, t′), x ∈ R.
(3.39)

We then have the following result, whose proof is based on the approach that was used

for the Korteweg-de Vries equation in Himonas et al. (2019).

Theorem 3.4 The unique solution of (3.37) satisfies the space estimate

sup
t∈[0,T ]

∥z(·, t)∥Hs
x(R) ≤ ∥F∥L1

t ((0,T );Hs
x(R)) , s ∈ R. (3.40)

Moreover, if −1 ≤ s ≤ 2 with s , 1
2 then the following time estimate holds

sup
x∈R
∥z(x, ·)∥

H
s+1
3

t (0,T )
≲ max{T

1
2 (1 + T

1
2 ),Tσ}∥F∥L2

t ((0,T );Hs
x(R)), (3.41)

where

σ =



1−2s
6 , −1 ≤ s < 1

2 ,

2−s
3 ,

1
2 < s < 2,

1
2 , s = 2.

(3.42)

Remark 3.1 For 2 < s < 7
2 , due to the fractional norm ∥∂tz(x, ·)∥m−1 (see definition (3.44)

below) the analogue of the time estimate (3.41) turns out to be

sup
x∈R
∥z(x, ·)∥

H
s+1
3

t (0,T )
≲ max{T

1
2 (1 + T

1
2 ),Tσ}∥F∥L2

t ((0,T );Hs
x(R)) + sup

x∈R
∥F(x, ·)∥

H
s+1
3 −1

t (0,T )
.

The appearance of the space C(Rx; H
s+1
3 −1(0,T )) via the relevant norm on the right-hand

side has a direct impact on the analysis of the nonlinear problem, as it eventually requires

one to establish an appropriate multilinear estimate for the term ∥|u|pu(x, ·)∥
H

s+1
3 −1

t (0,T )

(note that the underlying range of s implies 0 < s+1
3 − 1 < 1

2 and so the algebra property
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is not available). For this reason, a different approach might be preferable for showing

well-posedness in this higher range of s. In any case, this task lies outside the scope of the

present work, which instead focuses on solutions of lower smoothness and, in particular,

towards the low regularity setting 0 ≤ s < 1
2 .

Proof In view of the Duhamel representation (3.38), the space estimate (3.40) readily

follows from the homogeneous conservation law (3.2).

We proceed to the time estimate (3.41). Restricting s ≥ −1 allows us to employ the

physical space characterization of the Sobolev norm since then the exponent s+1
3 is non-

negative. In particular, for −1 ≤ s < 2, setting m := s+1
3 and observing that 0 ≤ m < 1, we

have

∥z(x, ·)∥Hm
t (0,T ) = ∥z(x, ·)∥L2

t (0,T ) + ∥z(x, ·)∥m , (3.43)

where the fractional part of the Sobolev norm is zero for m = 0 and for 0 < m < 1 is given

by

∥z(x, ·)∥2m = 2
∫ T

0

∫ T−t

0

|z(x, t + l) − z(x, t)|2

l1+2m dldt. (3.44)

For each x ∈ R, employing Minkowski’s integral inequality and subsequently using the

homogeneous time estimates (3.3) and (3.4) for α2+3βδ ≥ 0 and α2+3βδ < 0 respectively,

along with the Cauchy-Schwarz inequality, we obtain

∥z(x, ·)∥L2
t (0,T ) ≤

∫ T

0
∥S [F(·, t′); 0](x, · − t′)∥L2

t (0,T ) dt′

≲ (1 + T
1
2 )

∫ T

0
∥F(·, t′)∥H−1

x (R) dt′

≲ T
1
2 (1 + T

1
2 ) ∥F∥L2

t ((0,T );Hs
x(R)).

(3.45)

For the fractional norm, noting that

|z(x, t + l) − z(x, t)|2 ≤
∣∣∣∣∣ ∫ t

0
S [F(·, t′); 0](x, t + l − t′) − S [F(·, t′); 0](x, t − t′)dt′

∣∣∣∣∣2
+

∣∣∣∣∣ ∫ t+l

t
S [F(·, t′); 0](x, t + l − t′)dt′

∣∣∣∣∣2
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we have ∥z(x, ·)∥2m ≲ I + J, where

I :=
∫ T

0

∫ T−t

0

1
l1+2m

( ∫ T

0

∣∣∣∣S [F(·, t′); 0](x, t + l − t′) − S [F(·, t′); 0](x, t − t′)
∣∣∣∣dt′

)2

dldt,

(3.46)

J :=
∫ T

0

∫ T−t

0

1
l1+2m

∣∣∣∣∣ ∫ t+l

t
S [F(·, t′); 0](x, t + l − t′)dt′

∣∣∣∣∣2dldt. (3.47)

For I, we proceed as follows. First, we multiply the integrand by the characteristic

function χ[0,T−t](l) so that χ[0,T−t](l) = 1 for 0 ≤ l ≤ T − t and χ[0,T−t](l) = 0 otherwise. This

allows us to replace T − t by T in the upper limit of the integral with respect to l. Then,

we use Minkowski’s inequality for the triple integral and, finally, we use the definition of

χ[0,T−t](l) once again to switch T by T − t in the limit of the integral taken with respect to

l. Performing these steps and employing the homogeneous time estimates (3.3) and (3.4),

we find

I ≤
( ∫ T

0

( ∫ T

0

∫ T−t

0

1
l1+2m

∣∣∣∣S [F(·, t′); 0](x, t + l − t′) − S [F(·, t′); 0](x, t − t′)
∣∣∣∣2dldt

) 1
2

dt′
)2

(3.48)

≃

( ∫ T

0
∥S [F(·, t′); 0](x, · − t′)∥m dt′

)2

≲
( ∫ T

0
∥F(·, t′)∥Hs

x(R) dt′
)2

≲ T
∫ T

0
∥F(·, t)∥2Hs

x(R)dt.

In order to estimate J, we consider the cases 0 < m < 1
2 and 1

2 < m < 1 separately.

The range 1
2 < m < 1 corresponds to 1

2 < s < 2 and hence we can employ the Sobolev em-

bedding theorem in x. In particular, substituting for S [F(·, t′); 0](x, t + l− t′) via (3.9) and

then using the Sobolev embedding, the Fourier transform characterization of the Sobolev

norm, and the fact that ω(k) is imaginary for k ∈ R, we have

J ≤
∫ T

0

∫ T−t

0

1
l1+2m

∥∥∥∥∥∥ 1
2π

∫
R

eikx−ω(k)(t+l)
∫ t+l

t
eω(k)t′ F̂(k, t′)dt′dk

∥∥∥∥∥∥2

L∞x (R)

dldt

≲

∫ T

0

∫ T−t

0

1
l1+2m

∥∥∥∥∥∥ 1
2π

∫
R

eikx−ω(k)(t+l)
∫ t+l

t
eω(k)t′ F̂(k, t′)dt′dk

∥∥∥∥∥∥2

Hs
x(R)

dldt

=

∫ T

0

∫ T−t

0

1
l1+2m

∫
R

(
1 + k2

)s
∣∣∣∣∣ ∫ t+l

t
eω(k)t′ F̂(k, t′)dt′

∣∣∣∣∣2dkdldt.
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Thus, by Minkowski’s integral inequality between the integrals with respect to t′ and k,

Cauchy-Schwarz inequality in the t′-integral, and Fubini’s theorem between the integrals

with respect to t and t′,

J ≲
∫ T

0

∫ T−t

0

1
l1+2m

( ∫ t+l

t
∥F(·, t′)∥Hs

x(R) dt′
)2

dldt

≤

∫ T

0

∫ T−t

0

∫ t+l

t
∥F(·, t′)∥2Hs

x(R) l−2m dt′dldt

=

∫ T

0
∥F(·, t′)∥2Hs

x(R)

∫ T

0
l−2m

∫ t′

t′−l
dtdldt′

≃
T 2−2m

2 − 2m

∫ T

0
∥F(·, t′)∥2Hs

x(R) dt′.

(3.49)

The range 0 < m < 1
2 corresponds to −1 < s < 1

2 , hence Sobolev embedding is no

longer available. However, the fact that m < 1
2 allows to proceed via the Cauchy-Schwarz

inequality in t′ as follows:

J ≲
∫ T

0

1
l2m

∫ T−l

0

∫ t+l

t
|S [F(·, t′); 0](x, t + l − t′)|2dt′dtdl

=

∫ T

0

1
l2m

∫ T

l

∫ t

t−l
|S [F(·, t′); 0](x, t − t′)|2dt′dtdl

≲
( ∫ T

0

1
l2m dl

) ∫ T

0
∥S [F(·, t′); 0](x, · − t′)∥2L2

t (t′,T ) dt′

≲
T 1−2m

1 − 2m

∫ T

0
∥F(·, t′)∥2H−1

x (R) dt′.

(3.50)

Note that the equality above is due to the change of variable t 7→ t − l, and the inequality

succeeding it follows by extending the range of the integrals with respect to t′ and t and

then interchanging the resulting integrals. The last inequality follows by Theorem 3.1.

Estimates (3.45), (3.48), (3.49), (3.50) combined with the Sobolev norm definition

(3.43) imply the desired time estimate (3.41) in the range −1 ≤ s < 2 with s , 1
2 .

Finally, we consider 2 ≤ s < 7
2 . As this range corresponds to 1 ≤ m < 3

2 , the

Sobolev norm (3.43) must be modified to

∥z(x, ·)∥2Hm
t (0,T ) = ∥z(x, ·)∥2H1

t (0,T ) + ∥∂tz(x, ·)∥2m−1 . (3.51)
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Differentiating (3.38) in t, we have

∂tz(x, t) = −iS [F(·, t); 0](x, 0) − i
∫ t

0
∂t
[
S [F(·, t′); 0](x, t − t′)

]
dt′. (3.52)

We begin by observing that

S [F(·, t); 0](x, 0) =
1

2π

∫
R

eikxF̂(k, t)dk = F(x, t). (3.53)

Moreover, by using the Fourier transform property for derivatives, which is given in (2.6),

we note that

∂t
[
S [F(·, t′); 0](x, t − t′)

]
= ∂t

[
1

2π

∫
R

eikx−ω(k)(t−t′)F̂(k, t′)dk
]

=
1

2π

∫
R

[−ω(k)]eikx−ω(k)(t−t′)F̂(k, t′)dk

= S
[
(−β∂3

x + iα∂2
x − δ∂x)F(·, t′); 0

]
(x, t − t′).

(3.54)

Therefore, (3.52) can be rewritten as

∂tz(x, t) = −iF(x, t) − i
∫ t

0
S
[
(−β∂3

x + iα∂2
x − δ∂x)F(·, t′); 0

]
(x, t − t′)dt′ (3.55)

and so

∥∂tz(x, ·)∥L2
t (0,T ) ≤ ∥F(x, ·)∥L2

t (0,T )+

∥∥∥∥∥∥
∫ t

0
S
[
(−β∂3

x + iα∂2
x − δ∂x)F(·, t′); 0

]
(x, t − t′)dt′

∥∥∥∥∥∥
L2

t (0,T )

.

The first term on the right-hand side can be handled as follows:

∥F(x, ·)∥L2
t (0,T ) ≤ sup

x∈R
∥F(x, ·)∥L2

t (0,T ) ≤ ∥F∥
L2

t ((0,T );H
1
2 +
x (R))

. (3.56)

For the second term, extending the range of integration in t′ and then applying Minkowski’s
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integral inequality in combination with Theorem 3.1, we have

∥∥∥∥∥∥
∫ t

0
S
[
(−β∂3

x + iα∂2
x − δ∂x)F(·, t′); 0

]
(x, t − t′)dt′

∥∥∥∥∥∥
L2

t (0,T )

≲ (1 + T
1
2 )

∫ T

0

∥∥∥(−β∂3
x + iα∂2

x − δ∂x)F(·, t′)
∥∥∥

H−1
x (R)

dt′

≲ (1 + T
1
2 )

[
β

∫ T

0

∥∥∥∂3
xF(·, t′)

∥∥∥
H−1

x (R)
dt′ + |α|

∫ T

0

∥∥∥∂2
xF(·, t′)

∥∥∥
H−1

x (R)
dt′ + |δ|

∫ T

0
∥∂xF(·, t′)∥H−1

x (R) dt′
]

≲ (1 + T
1
2 )

[
β

∫ T

0
∥F(·, t′)∥H2

x (R) dt′ + |α|
∫ T

0
∥F(·, t′)∥H1

x (R) dt′ + |δ|
∫ T

0
∥F(·, t′)∥L2

x(R) dt′
]

≲ (1 + T
1
2 )

∫ T

0
∥F(·, t′)∥H2

x (R) dt′. (3.57)

Together, estimates (3.56) and (3.57) imply the bound

∥∂tz(x, ·)∥L2
t (0,T ) ≲ T

1
2 (1 + T

1
2 ) ∥F∥L2

t ((0,T );H2
x (R)) (3.58)

which corresponds to the desired estimate (3.41) in the case s = 2. □

As for the homogeneous Cauchy problem, we need some information also about

the spatial derivative of the solution, namely zx, of the nonhomogeneous Cauchy problem

(3.37) due to the existence of the Neumann boundary condition in the boundary data of

the original problem.

Theorem 3.5 The unique solution of the Cauchy problem (3.37) satisfies if 0 ≤ s ≤ 2

with s , 3
2 that

sup
x∈R
||∂xz(x, ·)||

H
s
3

t (0,T )
≲ max{T

1
2 (1 + T

1
2 ),Tσ1}||F||L2

t (0,T ;Hs
x(R)), (3.59)

where

σ1 =


3−2s

6 , 0 ≤ s < 3
2 ;

3−s
3 ,

3
2 < s ≤ 2.

(3.60)
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Proof We apply the similar arguments that we used to prove Theorem 3.1. Indeed, we

differentiate (3.37) with respect to the spatial variable x, and get

iZt + iβZxxx + αZxx + iδZx = G, (x, t) ∈ R × (0,T ),

Z(x, 0) = 0, x ∈ R,
(3.61)

where Z = zx and G = Fx. Note that F ∈ L2
t ((0,T ); H s

x(R)) implies G ∈ L2
t ((0,T ); H s−1

x (R)).

Using Theorem 3.4 for any −1 ≤ s′ ≤ 2 with s′ , 1
2 , and then taking s′ = s − 1 yields the

desired estimate. □

The higher-order Schrödinger equation is studied in this paper with the Dirichlet

and the Neumann boundary conditions. So, all these estimates on the solutions of Cauchy

problems (3.1) and (3.37), together with their first derivatives are sufficient. However,

by applying same procedures, these estimates can be treated for any other boundary data

couple involving second order derivative by restricting the interval for s to a smaller one.

Regarding Lµt Lr
x Strichartz-type estimates for the nonhomogeneous linear Cauchy

problem (3.37), we have the following result which is a consequence of the homogeneous

Strichartz estimates given in Theorem 3.3.

Theorem 3.6 Let s ∈ R and suppose (µ, r) is higher-order Schrödinger admissible in the

sense of (3.29). Then, the solution of the nonhomogeneous linear Cauchy problem (3.37)

satisfies the Strichartz estimate

∥z∥Lµt ((0,T );Hs,r
x (R)) ≲ ∥F∥L1

t ((0,T );Hs
x(R)). (3.62)

Proof Letting H(x, t, t′) := χ{t′≤t}(t′)S [F(·, t′); 0](x, t − t′), we rewrite ∥z∥Lµt ((0,T );Hs,r
x (R)) as

∥z∥Lµt ((0,T );Hs,r
x (R)) =

∥∥∥∥ ∫ T

0
H(·, ·, t′)dt′

∥∥∥∥
Lµt ((0,T );Hs,r

x (R))
. (3.63)
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Therefore, in view of the homogeneous Strichartz estimate (3.30), we readily infer

∥z∥Lµt ((0,T );Hs,r
x (R)) ≤

∫ T

0
∥H(·, ·, t′)∥Lµt ((0,T );Hs,r

x (R)) dt′

≤

∫ T

0
∥S [F(·, t′); 0](·, · − t′)∥Lµt ((0,T );Hs,r

x (R)) dt′ ≲
∫ T

0
∥F(·, t′)∥Hs

x(R) dt′.

□
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CHAPTER 4

SINGLE-BOUNDARY CONDITION CASE

In this chapter, we analyze the initial-boundary value problem for the higher-order

nonlinear Schrödinger on the half-line for the case which the problem is needed to be

stated with only one boundary condition. So, we focus on the nonlinear initial-boundary

value problem

iut + iβuxxx + αuxx + iδux = f (u), (x, t) ∈ R+ × (0,T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = g(t), t ∈ (0,T ),

(4.1)

where α, δ ∈ R, β > 0, f (z) = κ|z|pz with z ∈ C, κ ∈ C, p > 0, and T > 0.

Analysis of this nonlinear partial differential equation is proceed here by com-

bining a remarkable work on the linear theory and the fixed point argument to relate the

results from the linear theory to the nonlinear problem. Therefore, we first consider the

linear forced initial-boundary value problem

iut + iβuxxx + αuxx + iδux = f , (x, t) ∈ R+ × (0,T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = g(t), t ∈ (0,T ),

(4.2)

where α, δ ∈ R, β > 0 and T > 0.

We emphasize that this linear problem is stated with three given data, namely

the source f , the initial condition u0, and the boundary condition g. Each of these data

effects naturally the solution u of the problem (4.2), and this situation makes the analysis

very hard to be handled in one hand. Instead, we use a decompose-reunify technique,

which is also used analogously in Özsarı and Yolcu (2019) for the biharmonic Schrödinger

equation, to observe the effects of these three data separately. Firstly, we decompose the
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linear forced initial-boundary value problem (4.2) into three rather simpler models to be

reunified after a brief analysis.

The first decomposed model is the homogeneous Cauchy problem

iyt + iβyxxx + αyxx + iδyx = 0, (x, t) ∈ R × R,

y(x, 0) = y0(x), x ∈ R,
(4.3)

where α, δ ∈ R, β > 0, and y0 = E0u0 denotes an extension of u0 with respect to a fixed

bounded extension operator E0 : H s
x(R+)→ H s

x(R), namely, we have

||y0||Hs
x(R) ≲ ||u0||Hs

x(R+). (4.4)

This problem is studied in Section 3.1 for any initial data y0 ∈ H s(R) and any β , 0.

As the second decomposed model, we consider the nonhomogeneous Cauchy

problem

izt + iβzxxx + αzxx + iδzx = F, (x, t) ∈ R × (0,T ),

z(x, 0) = 0, x ∈ R,
(4.5)

where α, δ ∈ R, β > 0, and F = E0 f ∈ L2
t ((0,T ); H s

x(R)) is a spatial extension of

f ∈ L2
t ((0,T ); H s

x(R+)). This problem is also studied in Section 3.2 for any source

F ∈ L2
t ((0,T ); H s

x(R)) and any β , 0. Therefore, we can utilize directly from the re-

sults that we obtained in Chapter 3 for Cauchy problems.

As the last decomposed model, we consider a reduced initial-boundary value prob-

lem
iqt + iβqxxx + αqxx + iδqx = 0, (x, t) ∈ R+ × (0,T ′),

q(x, 0) = 0, x ∈ R+,

q(0, t) = g0(t) := Eb[g − y(0, ·) − z(0, ·)](t), t ∈ (0,T ′),

(4.6)

where α, δ ∈ R, β > 0, T ′ > T , y(0, t) and z(0, t) are the solutions to the homoge-

neous and nonhomogeneous Cauchy problems (4.3) and (4.5) evaluated at x = 0, and

Eb : H(s+1)/3
t (0,T ) → H(s+1)/3

t (R) is a fixed bounded extension operator satisfying the ad-

ditional property that supp g0 ⊂ [0,T ′). It is provided that the traces y(0, t) and z(0, t)

are well-defined and belong to H
s+1
3

t (0,T ) in view of Theorems 3.1 and 3.40. The con-

struction of such an extension is analogous to the one provided in detail in Section 3 of

33



Himonas and Mantzavinos (2020) in the context of the linear Schrödinger equation. In

particular, we note that, for continuous Sobolev data, a compactly supported extension

can be constructed thanks to the compatibility between the initial and boundary data at

(x, t) = (0, 0).

On the contrary to the Cauchy problems, the reduced initial-boundary value prob-

lem (4.6) is not studied here yet. Therefore, we need to pause before the meticulous

declaration on the reunification of these models, and work on the analysis the problem

(4.6) in an independent zone. And then we will continue to explain how to bring these

models together.

4.1. Reduced initial-boundary value problem

We consider the reduced initial-boundary value problem

iqt + iβqxxx + αqxx + iδqx = 0, (x, t) ∈ R+ × (0,T ′),

q(x, 0) = 0, x ∈ R+,

q(0, t) = g0(t), t ∈ (0,T ′),

(4.7)

where α, δ ∈ R, β > 0, T ′ > T and g0 ∈ H
s+1
3 (0,T ′).

Firstly, we apply Fokas’ unified transform method to obtain a formula representing

the weak solution q, and then using this formula, we analyze the regularity level of these

solutions, as we did for the ones of the homogeneous and the nonhomogeneous Cauchy

problems in Chapter 3.

4.1.1. Solution formula

We first assume that q is sufficiently smooth up to the boundary of R+ × (0,T ′)

and decays sufficiently fast as x→ ∞, uniformly in [0,T ′]. The definition of the standard
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Fourier transform on R applied on the piecewise-defined function

F(x) =

 f (x), x > 0,

0, x < 0,
f ∈ L2(0,∞), (4.8)

gives rise to the half-line Fourier transform pair

f̂ (k) =
∫ ∞

0
e−ikx f (x)dx, Im(k) ≤ 0,

f (x) =
1

2π

∫
R

eikx f̂ (k)dk, x > 0.
(4.9)

Note that the above half-line Fourier transform makes sense for all Im(k) ≤ 0 and not just

for k ∈ R as its whole-line counterpart. Taking the half-line Fourier transform (4.9) of

(4.7) and integrating over (0, t), we obtain the following spectral identity known as the

global relation:

eω(k)t q̂(k, t) = (−βk2 +αk+ δ) g̃0(ω(k), t)+ (iβk− iα) g̃1(ω(k), t)+ β g̃2(ω(k), t), Imk ≤ 0,

(4.10)

where ω is given by (3.5) and the temporal transforms g̃ j(ω(k), t) are defined by

g̃ j(k, t) =
∫ t

0
ekt′∂ j

xq(0, t′)dt′, k ∈ C, j = 0, 1, 2. (4.11)

Then, by the inversion formula in (4.9),

q(x, t) =
1

2π

∫ ∞

−∞

eikx−ω(k)t
[
(−βk2 + αk + δ) g̃0(ω(k), t) + (iβk − iα) g̃1(ω(k), t) + β g̃2(ω(k), t)

]
dk.

(4.12)

The transforms g̃1 and g̃2 involve the unknown boundary values qx(0, t) and qxx(0, t).

In order to eliminate them from (4.12), we proceed as follows. For D := {k ∈ C :
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Re(ω(k)) < 0}, consider the region

D+ := D ∩ {Im(k) > 0} =
{
Im(k) > 0 : 3

(
Re(k) −

α

3β

)2
− Im(k)2 −

α2 + 3βδ
3β2 < 0

}
, (4.13)

which is depicted in Figures 4.1, 4.2 and 4.3 for the various signs of the quantity α2+3βδ.

Then, thanks to analyticity (Cauchy’s theorem) and exponential decay, it follows that

q(x, t) =
1

2π

∫
∂D+

eikx−ω(k)t
[
(−βk2 + αk + δ) g̃0(ω(k), t) + (iβk − iα) g̃1(ω(k), t) + β g̃2(ω(k), t)

]
dk,

(4.14)

where the contour ∂D+ is positively oriented, i.e. it is traversed in the direction such that

D+ stays to the left of the contour, as shown in Figures 4.1, 4.2 and 4.3.

1

Figure 4.1. The region D+ for α2 + 3βδ > 0.

In this case, c± =
α±
√

3β2λ2+α2+3βδ
3β and the square root branch cut B = (−∞, b−] ∪ [b+,∞)

with branch points b± = 1
3β

(
α ± 2

√
α2 + 3βδ

)
(shown in red) stays outside the region D+.

1

Figure 4.2. The region D+ for α2 + 3βδ = 0.
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In this second case there is no branching.

1

Figure 4.3. The region D+ for α2 + 3βδ < 0.

In the third case the branch cut B̃ (shown in red) is taken along the vertical line segment

connecting b+ to b− and so part of it lies in D+, thus a local deformation around B̃ is

performed as shown in Figure 4.5 below.

This deformation from the real line to the boundary of D+ is a direct consequence

of Fokas’ unified transform method. In Fokas (2008), every details of such deformation

can be found for some rather simpler initial-boundary value problems such as the heat

equation. In particular, it is also very well explained how such deformation can be handled

for Schrödinger equation in Himonas and Mantzavinos (2020). However, for the readers

that are not expert about the method, we prefer to explain the details of this deformation

for higher-order Schrödinger equation itself without expecting no background about the

method. We just kindly demand to be trusted to show these details only for some part

of the contours, namely the one occurs on the first quarter plane for the simplest case

α2 + 3βδ = 0 as in Figure 4.2. It can be then understood well how to obtain (4.14) from

(4.12). To this end, we construct a closed contour C := C1 ∪ C2 ∪ C3, where C1 is the

line segment(or may be considered as a ray) [c+,R) for R→ ∞ on the real axis, and C3 is

the slanted line, with the reverse direction, that occurs on the boundary of D+ in the first

quadrant, and C2 is the circular arc moving counter-clockwise to connect R with C3.

Observe that the integrand, say Gx,t(k), of (4.12) is analytic in C, therefore

∫
C

Gx,t(k) dk = 0, (4.15)
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by Cauchy’s theorem. On the other hand, Jordan’s lemma implies that

∫
C2

Gx,t(k) dk = 0, (4.16)

as well. Combining (4.15) and (4.16), we obtain

∫
C1

Gx,t(k) dk = −
∫

C3

Gx,t(k) dk. (4.17)

So we can deform C1 to (−C3), where the minus sign is understood in the directional

sense.

Applying this idea to any related part of the deformation, we obtain (4.14) from

(4.12). The fact that the integral (4.14) is taken along the deformed contour ∂D+ will

allow us to eliminate the unknown transforms g̃1 and g̃2 from (4.14) by employing two

additional spectral identities emanating from the global relation (4.10) through suitable

transformations that keep the spectral function ω(k) invariant. In particular, both of these

identities are valid along ∂D+ and so we will be able to use them simultaneously. It is

important to emphasize that the two additional identities are not valid along R, which is

the reason why the deformation from R to ∂D+ that leads to (4.14) is necessary.

In order to determine the symmetry transformations, we solve the equation ω(ν) =

ω(k) for ν = ν(k).

(i) If α2 + 3βδ > 0, then the two nontrivial symmetries are

ν±(k) = −
1
2

(
k −
α

β

)
±

√
3 i
2

(k − α3β
)2

−
4
(
α2 + 3βδ

)
9β2


1
2

. (4.18)

The square root term in (4.18) is defined as follows. Denoting the two branch points

by b± := 1
3β

(
α ± 2

√
α2 + 3βδ

)
, we write k − b± = |k − b±| eiθ± with −π < θ− ≤ π and

0 ≤ θ+ < 2π, which correspond to branch cuts along [b+,∞) for (k − b+)
1
2 and along

(−∞, b−] for (k−b−)
1
2 . Then, we associate the square root in (4.18) with the single-valued
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function (k − α3β
)2

−
4
(
α2 + 3βδ

)
9β2


1
2

=
√
|k − b+| |k − b−| ei(θ++θ−)/2, (4.19)

which is analytic for all k < B := (−∞, b−] ∪ [b+,∞). In turn, this definition ensures that

ν± are analytic for all k ∈ C \ B. Importantly, as shown in Figure 4.1, B ∩ D+ = ∅.

(ii) α2 + 3βδ = 0. In this case, the symmetries are the two entire functions

ν±(k) = −
1
2

(
k −
α

β

)
±

√
3 i
2

(
k −
α

3β

)
, (4.20)

as shown in Figure 4.2.

(iii) α2 + 3βδ < 0. In that case, the symmetries are again given by (4.18); however, as

the branch points b± are now complex conjugates along the line Re(k) = α
3β , we write

k − b± = |k − b±| ei(θ±−π/2) with 0 ≤ θ± < 2π and corresponding branch cuts along the

vertical half-lines from b± to α
3β − i∞, so that

(k − α3β
)2

−
4
(
α2 + 3βδ

)
9β2


1
2

=
√
|k − b+| |k − b−| ei(θ++θ−−π)/2 (4.21)

is single-valued and analytic for all k ∈ C \ B̃, where B̃ is the finite vertical segment con-

necting b+ and b−, as shown in Figure 4.3. Note that B̃ ∩ D+ , ∅ as part of the branch cut

B̃ lies inside the region D+. For this reason, before employing the symmetries ν± for the

elimination of the unknown transforms g̃2 and g̃1 from (4.14), we use Cauchy’s theorem to

deform the contour ∂D+ in (4.14) to the modified contour ∂D̃+, which corresponds to the

positively oriented boundary of the region D̃+ shown in Figure 4.5. This way, the branch

cut B̃ is avoided prior to the use of the symmetries ν±, allowing us to take advantage of

analyticity inside the region D̃+ later.

39



1

Figure 4.4. Deformation of ∂D+ to ∂D̃+ for α2 + 3βδ = 0.

This deformation is carried out in order to stay away from the point α3β , which is a zero of

the quantity ν−(k) − ν+(k).

1

Figure 4.5. Deformation of ∂D+ to ∂D̃+ for α2 + 3βδ < 0.

This second deformation is done in order to avoid crossing the branch cut B̃ (shown in

red).

In view of the above discussion, we rewrite (4.14) as

q(x, t) =
1

2π

∫
Γ

eikx−ω(k)t
[(
−βk2 + αk + δ

)
g̃0(ω(k), t) + i (βk − α) g̃1(ω(k), t) + β g̃2(ω(k), t)

]
dk,

(4.22)
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where the integration contour Γ is given by

Γ =

 ∂D
+, α2 + 3βδ > 0,

∂D̃+, α2 + 3βδ ≤ 0.
(4.23)

Replacing k by ν±(k) in the global relation (4.10) and using the fact thatω(ν±(k)) =

ω(k), we get the spectral identities

eω(k)t q̂(ν±(k), t) =
(
−βν2

±(k) + αν±(k) + δ
)

g̃0(ω(k), t) + i (βν±(k) − α) g̃1(ω(k), t)

+ β g̃2(ω(k), t), Im(ν±(k)) ≤ 0.
(4.24)

We emphasize that the above identities are valid only for k such that Im(ν±(k)) ≤ 0. Thus,

in order to employ them for the elimination of the unknown boundary values from (4.22),

we need to ensure that Γ ⊆ {Im(ν±(k)) ≤ 0}. This is proved in the following lemma.

Lemma 4.1 Let ν± = ν±(k) be the nontrivial (i.e. ν± . k) solutions of the equation

ω(ν) = ω(k) as given by (4.18) or (4.20), depending on the value of α2 + 3βδ. If k ∈ D+,

then Im(ν±) ≤ 0.

Proof For all k = kR + ikI ∈ D+ such that ν(k) , k satisfies ω(ν) = ω(k), we must have

β(ν2 + kν + k2) − α(ν + k) − δ = 0. Writing ν = νR + iνI and taking real and imaginary

parts, this equation is equivalent to the system

ν̃Rν̃I = ckI , ν̃
2
R − ν̃

2
I = d, (4.25)

where ν̃R = νR+
kR
2 −

α
2β , ν̃I = νI+

kI
2 , c = α

4β−
3kR
4 and d = −3

4k2
R+

3
4k2

I+
α
2βkR+

α2

4β2+
δ
β
. If ν̃I = 0,

then νI = −
kI
2 ≤ 0 as k ∈ D+ and we are done. So let us assume ν̃I , 0. Then, combining

the two equations in (4.25) we obtain ν̃4
I+dν̃2

I−c2k2
I = 0, which can be solved for ν̃2

I to yield

ν̃2
I =

−d±
√

d2+4c2k2
I

2 = −d
2 ±

√
d2

4 + c2k2
I . Note that only the positive sign is acceptable since

ν̃I ∈ R ⇒ ν̃
2
I ≥ 0. That is, ν̃2

I = −
d
2 +

√
d2

4 + c2k2
I implying ν̃I = ±

√
−d

2 +

√
d2

4 + c2k2
I . In
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turn, from the first of equations (4.25) we get ν̃R = ±
ckI√

− d
2+

√
d2
4 +c2k2

I

and so

νR = ±
ckI√

−d
2 +

√
d2

4 + c2k2
I

−
kR

2
+
α

2β
, νI = −

kI

2
±

√
−

d
2
+

√
d2

4
+ c2k2

I . (4.26)

Observe that the radicand of the outer square root involved in the above expressions is

a non-negative number and hence that square root is a real (non-negative) number. In

addition, note that expressions (4.26) are consistent with equations (4.18) and (4.20);

however, their dependence on kR and kI (as opposed to k) is not suitable for discussing the

analyticity of the associated expressions for ν, which is why (4.18) and (4.20) were used

earlier for that purpose. On the other hand, (4.26) are the forms convenient for proving

Lemma 4.1.

The case of the negative square root sign in (4.26) is straightforward as then νI ≤ 0

for all kI ≥ 0 and, in particular, for k ∈ D+ as desired. On the other hand, the case of

positive square root sign in(4.26) requires more work. More specifically, by definition

(4.13), for k ∈ D+ we have

3
(
kR −

α

3β

)2

− k2
I −
α2 + 3βδ

3β2 ≤ 0, (4.27)

which can be rearranged to −3
4k2

R +
1
4k2

I +
α
2βkR +

δ
4β ≥ 0. For kI , 0 (note that kI = 0

implies νI = 0 and we are done), this is equivalent to k4
I

16 + k2
I

d
4 ≥ c2k2

I or, after completing

the square,
(

k2
I

4 +
d
2

)2
≥ d2

4 + c2k2
I . Hence, k2

I
4 ≥ −

d
2 +

√
d2

4 + c2k2
I or k2

I
4 ≤ −

d
2 −

√
d2

4 + c2k2
I

and, as the second inequality is not possible because it would imply that k2
I ≤ 0, taking

the square root of the first inequality and using the fact that kI ≥ 0 for k ∈ D+, we obtain

0 ≥ − kI
2 +

√
−d

2 +

√
d2

4 + c2k2
I = νI as desired.

The proof so far has been under the assumption that ν(k) , k; however, although

ν . k by hypothesis, there could still be points in D+ where ν(k) = k and hence this

scenario must also be considered. In that case, recalling that ν± satisfy β(ν2
± + kν± + k2) −

α(ν± + k) − δ = 0, we infer that if k ∈ C is such that ν±(k) = k then 3βk2 − 2αk − δ = 0.

If α2 + 3βδ ≥ 0, then k = k± = α
3β ±

√
α2+3βδ
3β ∈ R i.e. kI = Im(ν±) = 0 and we
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are done. If α2 + 3βδ < 0, then k = k± = α
3β ± i

√
−(α2+3βδ)

3β . Note that k− < D+ since

Im(k−) < 0. Also, k+ < D+ because if α2 + 3βδ < 0 and k ∈ D+ then by (4.27) we must

have kI ≥

√
−
α2+3βδ

3β2 =

√
−(α2+3βδ)
√

3β
>

√
−(α2+3βδ)

3β = Im(k+). This completes the proof of

Lemma 4.1. □

Thanks to Lemma 4.1, both of the identities (4.24) are valid for k ∈ D+ and hence

can be solved simultaneously as a system for the unknown transforms g̃1(ω(k), t) and

g̃2(ω(k), t) to yield

g̃1(ω(k), t) =
eω(k)t

iβ [ν+(k) − ν−(k)]
[̂q(ν+(k), t) − q̂(ν−(k), t)] + ikg̃0(ω(k), t), (4.28)

g̃2(ω(k), t) =
eω(k)t

β2 [ν−(k) − ν+(k)]
[
(βν−(k) − α) q̂(ν+(k), t) − (βν+(k) − α) q̂(ν−(k), t)

]
(4.29)

− k2g̃0(ω(k), t).

Substituting these expressions in the integral representation (4.22), we obtain

q(x, t) =
1

2π

∫
Γ

eikx−ω(k)t
(
−3βk2 + 2αk + δ

)
g̃0(ω(k), t)dk

+
1

2π

∫
Γ

eikx

[
ν−(k) − k
ν−(k) − ν+(k)

q̂(ν+(k), t) −
ν+(k) − k
ν−(k) − ν+(k)

q̂(ν−(k), t)
]

dk.
(4.30)

Note that the definition (4.23) of Γ in conjunction with the choices of the contour

∂D̃+ shown in Figure ensure that ν−(k)−ν+(k) stays away from zero. Indeed, for α2+3βδ >

0 the solutions of ν−(k) − ν+(k) = 0 occur at the branch points b±, which lie on the real

axis and outside segment
[ 1

3β (α −
√
α2 + 3βδ), 1

3β (α +
√
α2 + 3βδ)

]
forming the base of

Γ = ∂D+ (see Figure 4.1). Moreover, for α2 + 3βδ = 0 the quantity ν−(k) − ν+(k) vanishes

at α3β , which is bypassed by Γ = ∂D+ as shown in Figure 4.4. Finally, for α2 + 3βδ < 0

the roots of ν−(k) − ν+(k) = 0 are again at the branch points b± and so they stay below the

contour Γ = ∂D+ depicted on Figure 4.5.

Therefore, using analyticity (Cauchy’s theorem) along with exponential decay as

|k| → ∞ inside D+ or D̃+, as appropriate, we conclude that the second k-integral on

the right-hand side of (4.30) is equal to zero. (To see the decay, note that |eikx−iν±y| =
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e−Im(k)x+Im(ν±)y and use Lemma 4.1 together with the fact that x, y > 0.) Consequently, we

deduce the solution formula

q(x, t) = −
i

2π

∫
Γ

eikx−ω(k)tω′(k) g̃0(ω(k), t)dk. (4.31)

In fact, noting that
∣∣∣e−ω(k)(t−t′)

∣∣∣ = eRe(ω(k))(t′−t) and recalling that, by definition (4.13),

Re(ω(k)) < 0 inside D+, we see that the exponential eikx−ω(k)(t−t′) decays as |k| → ∞ inside

D+ for all x > 0, t′ > t. Thus, combining this decay with analyticity, in the second

argument of the time transform g̃0 we can replace t by any fixed T ′ > t and thereby obtain

the following equivalent version of the solution formula (4.31), which is more convenient

for the purpose of linear estimates as we will see below:

q(x, t) = −
i

2π

∫
Γ

eikx−ω(k)tω′(k) g̃0(ω(k),T ′)dk. (4.32)

4.1.2. Compatibility between the data

Recall that the initial and boundary data of the initial-boundary value problem

(4.2) belong in the L2-based Sobolev spaces H s
x(R+) and H(s+1)/3

t (0,T ), respectively. More-

over, in view of the range of validity of Theorem 3.4 for the nonhomogeneous Cauchy

problem established earlier, as well as of Theorem 4.1 for the reduced initial-boundary

value problem proved below, we will restrict our attention to the range 0 ≤ s ≤ 2 with

s , 1
2 .

For 1
2 < s ≤ 2, continuity becomes relevant to our analysis and it turns out that we

need to impose a compatibility condition between the initial and the boundary data. More

specifically, note that if 1
2 < s ≤ 2 then 1

2 <
s+1
3 ≤ 1. Therefore, both of the traces u0(0)

and g(0) are well-defined. Furthermore, since y(0, ·) and z(0, ·) belong to H(s+1)/3
t (0,T ) by

Theorems 3.1 and 3.4, the traces y(0, 0) and z(0, 0) are well-defined and equal to u0(0) and

0, respectively, due to continuity and the initial conditions in problems (3.1) and (3.37).
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Thus, using continuity at zero for the function g0 ∈ H(s+1)/3
t (R) defined in (4.7), we have

g0(0) = lim
t→0+

g0(t) = lim
t→0+

[
g(t) − y(0, t) − z(0, t)

]
= g(0) − y(0, 0) − z(0, 0) = g(0) − u0(0)

which, upon imposing the (natural) compatibility condition

u0(0) = g(0),
1
2
< s ≤ 2, (4.33)

implies that the boundary datum of the reduced problem (4.7) vanishes at t = 0, i.e.

g0(0) = g(0) − y(0, 0) − z(0, 0) = u0(0) − u0(0) − 0 = 0,
1
2
< s ≤ 2. (4.34)

This feature will turn out to be convenient in the proof of Theorem 4.1 which follows

next.

4.1.3. Sobolev-type estimates

We now establish the basic space estimate in the initial-boundary value problem

setting. More precisely, we prove the following theorem

Theorem 4.1 Let s ≥ 0. Then, the unique solution of the reduced initial-boundary value

problem (4.7) satisfies

∥q(·, t)∥Hs
x(R+) ≤ c

(
1 +
√

T ′ecT ′)∥g0∥
H

s+1
3

t (0,T ′)
(4.35)

uniformly for t ∈ [0,T ′], where c > 0 is a constant that only depends on α, β, δ and s.

Proof We employ the Fokas method solution formula (4.32). First, recalling the def-

inition (4.13) of D+ and the various scenarios depending on the sign of α2 + 3βδ, we
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parametrize the integration contour in (4.32) as Γ = (−γ1) ∪ γ2 ∪ γ3 with

γ1(m) =
α −

√
3β2m2 + α2 + 3βδ

3β
+ im, λ ≤ m < ∞,

γ2(m) = m + iλ, c− < m < c+, (4.36)

γ3(m) =
α +

√
3β2m2 + α2 + 3βδ

3β
+ im, λ ≤ m < ∞,

where, c± =
α±
√

3β2λ2+α2+3βδ
3β and λ > 0 is a fixed non-negative real number, behaving like

a cursor, such that


λ = 0, α2 + 3βδ > 0, (first panel in Figure )

λ >
2
√
−(α2+3βδ)

3β , α2 + 3βδ ≤ 0. (Figure)
(4.37)

In view of the above parametrization, for any j ∈ N0 we have

∂ j
xq(x, t) = −

1
2π

∫ λ

∞

(iγ1(m)) jeiγ1(m)x−(ω(γ1(m))t g̃0(ω(γ1(m)),T ′)
d[iω(γ1(m))]

dm
dm (4.38)

−
1

2π

∫ c+

c−
(iγ2(m)) jeiγ2(m)x−(ω(γ2(m))t g̃0(ω(γ2(m)),T ′)

d[iω(γ2(m))]
dm

dm (4.39)

−
1

2π

∫ ∞

λ

(iγ3(m)) jeiγ3(m)x−(ω(γ3(m))t g̃0(ω(γ3(m)),T ′)
d[iω(γ3(m))]

dm
dm (4.40)

=: q1(x, t) + q2(x, t) + q3(x, t).

As the terms q1 and q3 are analogous, they can be handled in a similar fashion and

hence we only provide the details for the estimation of q1 given by (4.38). To this end, we

need to recall an important lemma known as the boundedness of the Laplace transform in

L2(R+).

Lemma 4.2 [Lemma 3.2, Fokas et al. (2017)] Suppose that Q(k) ∈ L2
k(R+). Then, the

map

Q(k)→
∫ ∞

0
e−kxQ(k) dk (4.41)
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is bounded from L2
k(R+) into L2

x(R+) with

∥∥∥∥∥∫ ∞

0
e−kxQ(k) dk

∥∥∥∥∥
L2

x(R+)
≤
√
π∥Q∥L2

k (R+). (4.42)

After recalling this important lemma, we continue to our current proof. Since,

∥q1(·, t)∥2L2
x(R+) =

1
4π2

∫ ∞

0

∣∣∣∣∣ ∫ ∞

λ

(iγ1(m)) jeiγ1(m)x−(ω(γ1(m))t g̃0(ω(γ1(m)),T ′)
d[iω(γ1(m))]

dm
dm

∣∣∣∣∣2 dx

≲

∫ ∞

0

(∫ ∞

0
e−mx|γ1(m)| j |̃g0(ω(γ1(m)),T ′)|

∣∣∣∣∣d[iω(γ1(m))]
dm

∣∣∣∣∣ χ(λ,∞)(m)dm
)2

dx,

by the boundedness of the Laplace transform in L2(R+), we have

∥q1(·, t)∥2L2
x(R+) ≲

∫ ∞

λ

|γ1(m)|2 j |̃g0(ω(γ1(m)),T ′)|2
∣∣∣∣∣d[iω(γ1(m))]

dm

∣∣∣∣∣2 dm. (4.43)

Let τ(m) = iω(γ1(m)), m ∈ [λ,∞). Note that τ(m) ∈ R since γ1(m) ∈ ∂D+ and

Re(ω(k)) = 0 for k ∈ ∂D+ and, more precisely, Range(τ) = [iω(c−),∞). Furthermore,

since τ′(m) , 0 on (λ,∞) and τ → ∞ as m → ∞, it follows that τ : [λ,∞) → [iω(c−),∞)

is monotone increasing and so τ′(m) > 0. Then, (4.43) becomes

∥q1(·, t)∥2L2
x(R+) ≲

∫ ∞

λ

|γ1(m)|2 j |̃g0(−iτ(m),T ′)|2
[
τ′(m)

]2 dm

=

∫ ∞

λ

|γ1(m)|2 j |̂g0(τ(m))|2
[
τ′(m)

]2 dm
(4.44)

after observing that the time transform (4.11) of g0 at T ′ is in fact the Fourier transform

of g0 thanks to the fact that g0 has compact support inside (0,T ′), namely

g̃0(−iτ(m),T ′) = ĝ0(τ(m)). (4.45)

Next, we have the following auxiliary result.
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Lemma 4.3 There is a constant c > 0 depending only on α, β, δ such that

sup
m∈[λ,∞)

|γ1(m)|2 jτ′(m)

[1 + τ2(m)]
j+1
3

≤ c < ∞.

We prove Lemma 4.3 after the end of the current proof. Employing it in combina-

tion with (4.44), we obtain

∥q1(·, t)∥2L2
x(R+) ≲

∫ ∞

λ

[1 + τ2(m)]
j+1
3 |̂g0(τ(m))|2τ′(m)dm

=

∫ ∞

iω(c−)
(1 + τ2)

j+1
3 |̂g0(τ)|2dτ = ∥g0∥

2

H
j+1
3

t (R)

(4.46)

uniformly for t ∈ [0,T ′], completing the estimation of q1.

We proceed to the estimation of q2 given by (4.39).

Case 1: α2 + 3βδ > 0. Then, λ = 0 and by the definition of γ2 we can rewrite q2 as

q2(x, t) = −
i

2π

∫ c+

c−
(im) jeimx−ω(m)t g̃0(ω(m),T ′)ω′(m)dm. (4.47)

so that q2(·, t) can be regarded as the inverse (spatial) Fourier transform of the function

Q2(m, t) =


0, m < (c−, c+),

−i(im) je−ω(m)t g̃0(ω(m),T ′)ω′(m), m ∈ (c−, c+).

(4.48)

Note that |eω(m)ρ| = 1 for m ∈ (c−, c+), ρ ∈ R. Hence, using the definition of the t-transform

(4.11) and the Cauchy-Schwarz inequality, we have

|̃g0(ω(m),T ′)| ≤
√

T ′ ∥g0∥L2
t (0,T ′). (4.49)
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implying via Plancherel’s theorem that

∥q2(·, t)∥2L2
x(R+) =

∫ ∞

−∞

|Q2(m, t)|2dm ≤ T ′∥g0∥
2
L2

t (0,T ′)

∫ c+

c−
|m|2 j|ω′(m)|2dm

= cT ′∥g0∥
2
L2

t (0,T ′) ≲ T ′∥g0∥
2

H
j+1
3

t (0,T ′)

(4.50)

with the various constants depending on α, β, δ, and j.

Case 2: α2 + 3βδ ≤ 0. Then, λ > 2
√
−(α2+3βδ)

3β > 0 and, by the definition of γ2,

|q2(x, t)| ≤
1

2π
e−λx

∫ c+

c−
|m2 + λ2|

j
2
∣∣∣e−(ω(m+iλ)t g̃0(ω(m + iλ),T ′)ω′(m + iλ)

∣∣∣ dm. (4.51)

Recall that for k ∈ D+, we have Re(ω(k)) < 0, which implies |eω(m+iλ)ρ| ≤ 1 for m ∈

(c−, c+), ρ ∈ [0,T ′]. Therefore, similarly to (4.49),

|̃g0(ω(m + iλ),T ′)| ≤
√

T ′ ∥g0∥L2
t (0,T ′). (4.52)

Combining (4.51) and (4.52), we deduce

|q2(x, t)| ≤ c
√

T ′ecT ′∥g0∥L2
t (0,T ′)e

−λx.

Taking the square of the above inequality, integrating with respect to x ∈ (0,∞) (for this

step, recall that λ > 0), and then taking square roots, we obtain

∥q2(·, t)∥L2
x(R+) ≤

c
√

2λ

√
T ′ecT ′∥g0∥L2

t (0,T ′) ≲
√

T ′ecT ′∥g0∥
H

j+1
3

t (0,T ′)
,

where the constant of the last inequality depends only on α, β, δ and j.

The desired estimate (4.35) has been established for s ∈ N0. The proof for s ≥ 0

follows by interpolation, which is given by the following theorem:

Theorem 4.2 Lions and Magenes (1972) Let π be a continuous linear operator of X into
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HX and of Y into HY for each defining Hilbert spaces. Then, π is also a continuous

linear operator from the intermediate space [X,Y]θ into [HX,HY]θ for 0 < θ < 1, where

[X,Y]θ is the domain of the operator Π1−θ for a self-adjoint positive operator Π satisfying

(u, v)X = (Πu,Πv)Y for all u, v ∈ X.

□

Now, we prove the auxiliary lemma that we used just before.

Proof [Proof of Lemma 4.3] First, we make a few observations. From the definition

(3.5) of ω and the triangle inequality,

|ω(k)| ≥ β|k|3 − |αk2 + δk| ≥ β|k|3 −
(
|α||k|2 + |δ||k|

)
.

In addition, for |k| ≥ |α|+
√
α2+2β|δ|
β

we have |α||k|2 + |δ||k| ≤ 1
2β|k|

3 and so, noting also that

Re(ω(k)) = 0 along ∂D+,

|iω(k)| ≥
β

2
|k|3 ⇒

1
1 + [iω(k)]2 ≤

1

1 + β
2

4 |k|
6
≃

1
1 + |k|6

. (4.53)

Observe further that |γ1(m)| ≥ m thus |γ1(m)| can be made as large as we wish by taking

m ∈ [λ,∞) large enough. Therefore, using (4.53), for large enough m we have

1
1 + τ2(m)

=
1

1 + [iω(γ1(m)]2 ≲
1

1 + |γ1(m)|6
.

On the other hand, for |k| ≥ 1 we have |k|2 ≥ |k| and so by the triangle inequality

|ω′(k)| ≤ 3β|k|2 + 2|α∥k| + |δ| ≤ (3β + 2|α| + |δ|)(1 + |k|2).

From the definition of γ1, there exist non-negative constants c1, c2 depending on α, β, δ

such that

|γ1(m)| ≤ c1m and |γ′1(m)| ≤ c2, m ∈ [λ,∞).
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Hence, there are some constants c3 > 0, M ≥ λ depending on α, β, δ such that

|γ1(m)|2 j|
∣∣∣ω′(γ1(m))γ′1(m)

∣∣∣
[1 + τ2(m)]

j+1
3

≤ c3
(|γ1(m)|2) j(1 + |γ1(m)|2)

(1 + |γ1(m)|2) j+1 ≤ c3, m > M.

However, by continuity of the function on the left-hand side on the compact interval

[λ,M], there is also some constant c4 > 0 depending on α, β, δ such that

|γ1(m)|2 j|
∣∣∣ω′(γ1(m))γ′1(m)

∣∣∣
[1 + τ2(m)]

j+1
3

≤ c4, m ∈ [λ,M].

Combining the last two inequalities yields the desired estimate with c = max{c3, c4} < ∞.

□

4.1.4. Strichartz-type estimates

It turns out convenient to reparametrize the contour of integration in the solution

formula (4.32) of the reduced initial-boundary value problem (4.7) as Γ = Γ1 ∪ Γ2 ∪ Γ3

with

Γ1(m) = m + i

√
3
(
m −

α

3β

)2
−
α2 + 3βδ

3β2 , −∞ < m ≤ c−,

Γ2(m) = m + iλ, c− < m < c+, (4.54)

Γ3(m) = m + i

√
3
(
m −

α

3β

)2
−
α2 + 3βδ

3β2 , c+ ≤ m < ∞,

where, as before, c± =
α±
√

3β2λ2+α2+3βδ
3β and λ > 0 satisfies (4.37). With this parametriza-

tion, formula (4.32) can be expressed as the sum

q(x, t) = −
i

2π

3∑
j=1

∫
Γ j

eikx−ω(k)t g̃0(ω(k),T ′)ω′(k)dk =:
3∑

j=1

q j(x, t).
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We first consider q1, which after recalling also (4.45) takes the form

q1(x, t) = −
i

2π

∫ c−

−∞

eiΓ1(m)x−ω(Γ1(m))t ĝ0(iω(Γ1(m)))ω′(Γ1(m))Γ′1(m)dm

=
1

2π

∫ c−

−∞

eiΓ1(m)x−ω(Γ1(m))t
( ∫ ∞

−∞

e−imyΨ1(y)dy
)
dm

(4.55)

where Ψ1 is the inverse Fourier transform of

Ψ̂1(m) :=

 −îg0(iω(Γ1(m)))ω′(Γ1(m))Γ′1(m), m ≤ c−,

0, m > c−.

Then, introducing the kernel

K(y; x, t) =
∫ c−

−∞

eiϕ(m;x,y,t) p(m; x)dm (4.56)

with amplitude

p(m; x) = e
−x

√
3
(

m− α3β
)2
−
α2+3βδ

3β2 (4.57)

and phase

ϕ(m; x, y, t) = m(x − y) + iω(Γ1(m))t

= m(x − y) + t
[
−8βm3 + 8αm2 + 2

(
δ −
α2

β

)
m −
αδ

β

]
,

(4.58)

we can rearrange (4.55) in the form

q1(x, t) = [K1(t)Ψ1](x) :=
1

2π

∫ ∞

−∞

K(y; x, t)Ψ1(y)dy. (4.59)

This writing provides the starting point for proving the following central estimate of

Strichartz type.

Theorem 4.3 Let s ≥ 0 and (µ, r) be higher-order Schrödinger admissible in the sense of
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(3.29). Then,

∥q∥Lµt ((0,T ′);Hs,r
x (R+)) ≲

(
1 + (T ′)

1
µ+

1
2
)
∥g0∥

H
s+1
3

t (0,T ′)
(4.60)

where H s,r
x (R+) is the restriction on R+ of the Bessel potential space H s,r

x (R) defined by

(3.28) and the inequality constant depends only r, s.

Proof We will use a standard duality argument. Let η ∈ Cc([0,T ′];D(R+)) be an

arbitrary function. Then,

2π
∣∣∣∣∣ ∫ T ′

0
⟨K1(t)Ψ1, η(·, t)⟩L2

x(R+) dt
∣∣∣∣∣ =

∣∣∣∣∣∣
∫ T ′

0

∫ ∞

0

(∫ ∞

−∞

K(y; x, t)Ψ1(y)dy
)
η(x, t)dxdt

∣∣∣∣∣∣
=

∫ ∞

−∞

Ψ1(y)
∫ T ′

0

∫ ∞

0
K(y; x, t) η(x, t)dxdt dy

≤ ∥Ψ1∥L2(R)

∥∥∥∥∥∥
∫ T ′

0

∫ ∞

0
K(y; x, t) η(x, t)dxdt

∥∥∥∥∥∥
L2

y (R)

.

(4.61)

Set K2(y) :=
∫ T ′

0

∫ ∞

0
K(y; x, t)η(x, t)dxdt. By the definition of the L2-norm, we have

∥K2∥
2
L2(R) =

∫ ∞

−∞

( ∫ T ′

0

∫ T ′

0

∫ ∞

0

∫ ∞

0
K(y; x, t)η(x, t)K(y; x′, t′)η(x′, t′)dxdx′dtdt′

)
dy

=

∫ T ′

0

∫ T ′

0

∫ ∞

0

∫ ∞

0
η(x, t)η(x′, t′)K3(x, x′; t, t′)dxdx′dtdt′

=

∫ T ′

0

∫ ∞

0
η(x, t)

( ∫ T ′

0

∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′dt′

)
dxdt

where K3(x, x′; t, t′) :=
∫ ∞

−∞

K(y; x, t)K(y; x′, t′)dy. Then, by Hölder’s inequality in (x, t)

and then Minkowski’s integral inequality between x and t′ we deduce

∥K2∥
2
L2(R) ≤ ∥η∥Lµ′t ((0,T ′);Lr′

x (R+))

∥∥∥∥∥∥
∫ T ′

0

∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′dt′

∥∥∥∥∥∥
Lµt ((0,T ′);Lr

x(R+))

≤ ∥η∥Lµ′t ((0,T ′);Lr′
x (R+))

∥∥∥∥∥∥
∫ T ′

0

∥∥∥∥∥∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∥∥∥∥∥
Lr

x(R+)
dt′

∥∥∥∥∥∥
Lµt (0,T ′)

.

(4.62)

We begin with the estimation of the interior Lr
x(R+)-norm. Using the definition
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(4.56) of K , we rewrite K3 in the form of an oscillatory integral:

K3(x, x′; t, t′) =
∫ ∞

−∞

( ∫ c−

−∞

e−iϕ(m;x,y,t) p(m; x)dm
)( ∫ c−

−∞

eiϕ(m′;x′,y,t′) p(m′; x′)dm′
)
dy

=

∫ c−

−∞

p(m; x)
∫ ∞

−∞

e−iϕ(m;x,y,t)
(∫ c−

−∞

eiϕ(m′;x′,y,t′) p(m′; x′)dm′
)

dydm.

Recalling the definition (4.58) of the phase function ϕ and introducing the function

Q(m′; x′, t′) :=

 eim′x′−ω(Γ1(m′))t′ p(m′; x′), m′ ∈ (−∞, c−],

0, m′ ∈ (c−,∞),

we have via the Fourier inversion theorem

∫ ∞

−∞

e−iϕ(m;x,y,t)
(∫ c−

−∞

eiϕ(m′;x′,y,t′) p(m′; x′)dm′
)

dy

= 2πe−imx+ω(Γ1(m))t ·
1

2π

∫ ∞

−∞

eimy

(∫ ∞

−∞

e−im′yQ(m′; x′, t′)dm′
)

dy

= 2πe−imx+ω(Γ1(m))t Q(m; x′, t′).

Thus, for m ∈ (−∞, c−] we deduce

∫ ∞

−∞

e−iϕ(m;x,y,t)
(∫ c−

−∞

eiϕ(m′;x′,y,t′) p(m′; x′)dm′
)

dy = 2πe−iϕ(m;x,x′,t−t′) p(m; x′)

and, consequently,

K3(x, x′; t, t′) = 2π
∫ c−

−∞

e−iϕ(m;x,x′,t−t′) p(m; x + x′)dm.

Next, we employ the following fundamental result.

Lemma 4.4 Let K(x, y, z, t) =
∫ c−

−∞

eiϕ(m;x,y,t) p(m; z)dm, where x, z ∈ R+ and y, t ∈ R.

Then,

|K(x, y, z, t)| ≲ |t|−
1
3 , t , 0, (4.63)
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where the constant of the inequality is independent of x, y, z, t.

The proof of Lemma 4.4 relies on the classical van der Corput lemma and is provided after

the end of the current proof. Observe that Lemma 4.4 with y, z, t replaced respectively by

x′, x + x′, t − t′ yields

|K3(x, x′, t, t′)| ≲ |t − t′|−
1
3 , t , t′,

with inequality constant independent of x, x′, t and t′. This dispersive estimate implies

∥∥∥∥∥∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∥∥∥∥∥
L∞x (R+)

≲ |t − t′|−
1
3 ∥η(t′)∥L1

x(R+). (4.64)

On the other hand, we also have

∥∥∥∥∥∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∥∥∥∥∥
L2

x(R+)
≲ ∥η(t′)∥L2

x(R+). (4.65)

Indeed, we have

∥∥∥∥∥∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∥∥∥∥∥2

L2
x(R+)
=

∫ ∞

0

∣∣∣∣∣ ∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∣∣∣∣∣2 dx

= (2π)2
∫ ∞

0

∣∣∣∣∣ ∫ ∞

0
η(x′, t′)

(∫ c−

−∞

e−iϕ(m;x,x′,t−t′) p(m; x + x′)dm
)

dx′
∣∣∣∣∣2dx

≤ (2π)2
∫ ∞

0

(∫ c−

−∞

e−xs(m)
(∫ ∞

0
e−x′s(m)|η(x′, t′)|dx′

)
dm

)2

dx,

where s(m) =
√

3
(
m − α

3β

)2
−
α2+3βδ

3β2 . The claimed estimate (4.65) then directly fol-

lows by invoking the following lemma, which provides a generalization of the L2(R+)-

boundedness of the Laplace transform, and is established after the end of the current

proof.

Lemma 4.5 The estimates in (i) and (ii) below hold true for f ∈ L2
m(−∞, c−) and f ∈
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L2
x(R+), respectively.

(i)
∥∥∥∥∥∫ c−

−∞

e−xs(m) f (m)dm
∥∥∥∥∥

L2
x(R+)
≲ ∥ f ∥L2

m(−∞,c−),

(ii)
∥∥∥∥∥∫ ∞

0
e−xs(m) f (x)dx

∥∥∥∥∥
L2

m(−∞,c−)
≲ ∥ f ∥L2

x(R+).

Now, (4.64) and (4.65) together with Riesz-Thorin interpolation theorem yield for

any r ≥ 2 that

∥∥∥∥∥∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∥∥∥∥∥
Lr

x(R+)
≲ |t − t′|−

2
µ ∥η(t′)∥Lr′

x (R+), (4.66)

where 1
r′ = 1 − 1

r and we have also used (3.29). Hence, for any η ∈ Lµ
′

t ((0,T ′); Lr′
x (R+))

we obtain

∫ T ′

0

∥∥∥∥∥∫ ∞

0
η(x′, t′)K3(x, x′; t, t′)dx′

∥∥∥∥∥
Lr

x(R)
dt′ ≲

∫ T ′

0
|t − t′|−

2
µ ∥η(t′)∥Lr′

x (R)dt′.

We handle the right-hand side via Hardy-Littlewood-Sobolev fractional integra-

tion, which is given by the following:

Theorem 4.4 (Theorem 1, Stein (1970)) Let 0 < γ < 1, 1 ⩽ r < q < ∞, 1
q =

1
r − γ. If

f ∈ Lr(R), then the integral

(
Iγ f

)
(t) =

∫
t′∈R
|t − t′|−1+γ f (t′)dt′ (4.67)

converges absolutely for almost every t. If, in addition, 1 < r, then

∥∥∥Iγ f
∥∥∥

Lq(Rt)
⩽ cr,q,γ ∥ f ∥Lr(Rt) . (4.68)
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We combine the resulting inequality with (4.62), we infer

∥K2∥L2(R) ≲ ∥η∥Lµ′t ((0,T ′);Lr′
x (R+))

which can be combined with (4.61) to yield

∥q1∥Lµt ((0,T ′);Lr
x(R+)) ≲ ∥Ψ1∥L2(R). (4.69)

Differentiating the expression (4.55) j times in x and repeating the above argu-

ments, for any j ∈ N0 we conclude that

∥∂ j
xq1∥Lµt ((0,T ′);Lr

x(R+)) ≲ ∥∂
j
xΨ1∥L2(R) ≲ ∥g0∥

H
j+1
3

t (R)
. (4.70)

Observe that the left-hand side of estimate (4.70) is simply the Lµt ((0,T ′); W j,r(R+))-norm

of q1. In this connection, note that, according to a classical result by Calderón Calderón

(1961), for any j ∈ N0, 1 < r < ∞ the Sobolev space W j,r(R) and the Bessel potential

space H j,r(R) coincide (i.e. they are equal as sets). Thus, for any j ∈ N0, 1 < r < ∞ we

have ∥·∥H j,r(R) ≃ ∥·∥W j,r(R) and so

∥q1∥W j,r(R+) := inf
q̃1∈W j,r(R)
q̃1 |R+=q1

∥q̃1∥W j,r(R) ≃ inf
q̃1∈H j,r(R)
q̃1 |R+=q1

∥q̃1∥H j,r(R) =: ∥q1∥Hs,r(R+) . (4.71)

Observing that the left-hand side of estimate (4.70) is simply the W j,r(R+)-norm of q1, in

view of (4.71) we see that (4.70) is in fact equivalent to

∥q1∥Lµt ((0,T ′);H j,r
x (R+)) ≲ ∥g0∥

H
j+1
3

t (R)
. (4.72)

Finally, by interpolation we deduce

∥q1∥Lµt ((0,T ′);Hs,r
x (R+)) ≲ ∥g0∥

H
s+1
3

t (R)
, s ≥ 0, (4.73)
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completing the estimation of q1.

In order to estimate ∥q2∥Lµt ((0,T ′);Hs,r
x (R+)), we use (4.47)-(4.49) (note the difference in

notation, as q2 in those expressions now corresponds to ∂ j
xq2) as the portions γ2 and Γ2 of

the two parametrizations (4.36) and (4.54) coincide. In particular,

∥∂ j
xq2(·, t)∥Lr

x(R+) =

(∫ ∞

−∞

|Q2(m, t)|rdm
) 1

r

≤

(
(T ′)

r
2 ∥g0∥

r
L2

t (0,T ′)

∫ c+

c−
m jr|ω′(m)|rdm

) 1
r

= c j,r

√
T ′∥g0∥L2

t (0,T ′).

Therefore, for any j ∈ N0 we find

∥∂ j
xq2∥Lµt ((0,T ′);Lr

x(R+)) = c j,r(T ′)
1
µ+

1
2 ∥g0∥L2

t (0,T ′) ≤ c j,r(T ′)
1
µ+

1
2 ∥g0∥

H
j+1
3

t (0,T ′)
,

and, using again the equivalence of the Bessel potential and Sobolev norms (4.71) along

with interpolation, we conclude that

∥q2∥Lµt ((0,T ′);Hs,r
x (R+)) ≲ (T ′)

1
µ+

1
2 ∥g0∥

H
s+1
3

t (0,T ′)
, s ≥ 0. (4.74)

As the estimation of q3 is similar to that of q1, the proof of Theorem 4.3 is com-

plete. □

We first recall the important Van der Corput lemma to continue with the proofs of

the auxiliary lemmas that we used on the way.

Lemma 4.6 (Van der Corput, Stein (1970)) Suppose that a real-valued functionΦ(x) is

smooth in an open interval (a, b), and that |Φ(k)(x)| > 1 for all x ∈ (a, b). Assume that

either k ≥ 2, or that k = 1 and Φ′(x) is monotone for x ∈ R. Then there is a constant ck,

which does not depend on Φ, such that

∣∣∣∣∣∣
∫ b

a
eiλΦ(x) dx

∣∣∣∣∣∣ ≤ ckλ
− 1

k (4.75)

for any λ ∈ R.
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Proof [Proof of Lemma 4.4] By the Fundamental Theorem of Calculus, K can be rewrit-

ten as

K(x, y, z, t) = −
∫ c−

−∞

dI
dm

(m; x, y, t) p(m; z)dm,

where I(m; x, y, t) :=
∫ c−

m
eiϕ(ξ;x,y,t)dξ. Integrating by parts using the fact that I(c−; x, y, t) =

0 and p(m; z)→ 0 as m→ −∞, and noting also that
dp
dm

(m; z) > 0, we get

|K(x, y, z, t)| ≤
∫ c−

−∞

|I(m; x, y, t)|
dp
dm

(m; z) dm.

Noting that |ϕ(3)(ξ; x, y, t)| = 48β|t|, we can employ Van der Corput lemma for I with

η(ξ) = ϕ(ξ; x, y, t) to infer that |I(m; x, y, t)| ≲ |t|−
1
3 , t , 0, where the constant of inequality

is independent of m, x, y, t. In turn, for any t , 0 and z > 0 we obtain

|K(x, y, z, t)| ≲ |t|−
1
3

∫ c−

−∞

dp
dm

(m; z)dm = |t|−
1
3 e−λz ≤ |t|−

1
3 ,

which is the desired estimate. □

Proof [Proof of Lemma 4.5] First, we prove part (i). By definition of s(m), we have

ds(m)
dm

=
3(m − α

β
)

s(m)
= −
√

3

√
s2(m) + cα,β,δ

s(m)

with cα,β,δ =
α2+3βδ

3β2 . Therefore, upon change of variable s = s(m), we get

∫ c−

−∞

e−xs(m) f (m)dm =
1
√

3

∫ ∞

λ

e−xs f (m(s))
s√

s2 + cα,β,δ
ds =

∫ ∞

0
e−xs fλ(s)ds,

where

fλ(s) :=


1
√

3
f (m(s)) s√

s2+cα,β,δ
s ∈ (λ,∞),

0, s < (λ,∞).
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Using the L2-boundedness of the Laplace transform, we get

∥∥∥∥∥∫ ∞

0
e−xs fλ(s)ds

∥∥∥∥∥
L2

x(R+)
≲ ∥ fλ∥L2

s (R+).

Finally, note that

∥ fλ∥2L2
s (R+) =

1
3

∫ ∞

λ

| f (m(s))|2
s2

s2 + cα,β,δ
ds

=
1
√

3

∫ c−

−∞

| f (m)|2
s(m)√

s2(m) + cα,β,δ
dm ≲

∫ c−

−∞

| f (m)|2 dm.

Next, we establish part (ii). Setting F(m) :=
∫ ∞

0
e−xs(m) f (x)dx and using the

Cauchy-Schwarz inequality, we have

|F(m)|2 =
∣∣∣∣∣∫ ∞

0
e−xs(m) f (x)dx

∣∣∣∣∣2 = ∣∣∣∣∣∫ ∞

0
e−

xs(m)
2 f (x)x

1
4 · x−

1
4 e−

xs(m)
2 dx

∣∣∣∣∣2
≤

(∫ ∞

0
e−xs(m)| f (x)|2x

1
2 dx

) (∫ ∞

0
e−xs(m)x−

1
2 dx

)
.

Then, since the second integral on the right-hand side is equal to
1
√

s(m)

∫ ∞

0
e−uu−

1
2 du =

√
π

√
s(m)

, ∫ c−

−∞

|F(m)|2dm =
√
π

∫ c−

−∞

(∫ ∞

0

1
√

s(m)
e−xs(m)| f (x)|2x

1
2 dx

)
dm.

Finally, noting that

∫ c−

−∞

1
√

s(m)
x

1
2 e−xs(m)dm =

1
√

3

∫ ∞

λ

e−xss−
1
2 x

1
2

s√
s2 + cα,β,δ

ds ≲
∫ ∞

λ

e−xss−
1
2 x

1
2 ds ≤ c

√
π,

we arrive at the desired estimate

∫ c−

−∞

|F(m)|2dm ≲
∫ ∞

0
| f (x)|2dx
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completing the proof of the lemma. □

4.2. Linear reunification

The nonlinear analysis will be performed by using a solution operator u 7→ Φu

associated with the original forced linear initial-boundary value problem (4.2). To this

end, thanks to the superposition principle we reunify the solution representation formulae

corresponding to (i) the homogeneous Cauchy problem (4.3), (ii) the nonhomogeneous

Cauchy problem (4.5), and (iii) the reduced initial-boundary value problem (4.6). More

precisely, given u, we formally define the map

Φu := y|QT + zu|QT + qu|(0,T )

≡ S [E0u0; 0]
∣∣∣
QT
+ S [0; f (Eu)]

∣∣∣
QT
−

i
2π

∫
Γ

eikx−ω(k)tω′(k) g̃u
0(ω(k),T ′)dk

∣∣∣∣
(0,T )
,

(4.76)

where QT = R+ × (0,T ) for some T > 0 to be determined and

gu
0(t) := Eb

{
g(·) − S [E0u0; 0](0, ·) − S [0; f (Eu)](0, ·)

}
(t) (4.77)

with the temporal transform g̃u
0(ω(k),T ′) defined according to (4.11). The extension op-

erators E0 and Eb were defined below problems (3.1) and (4.7) respectively; importantly,

E0 satisfies inequality and Eb induces compact support on g0, namely suppg0 ⊂ [0,T ′),

T ′ > T . Moreover, the operator E is a similar bounded fixed extension operator. In par-

ticular, for s > 1
2 we take E = E0 while for 0 ≤ s < 1

2 we take E from H s
x(R+) ∩ H s,r

x (R+)

into H s
x(R) ∩ H s,r

x (R) for a certain r > 2 to be specified later.

In view of (4.76), we define the solutions of the nonlinear problem (4.78) as the

fixed points of the operator Φ. Thus, our goal will be to prove the existence of a unique

such fixed point in a suitable function space. Throughout our analysis, we assume u0 ∈

H s
x(R+) and g ∈ H

s+1
3

t,loc(R+) with s ∈ [0, 2] \ { 12 } and the compatibility conditions (4.33) in

place as necessary. We first treat the high regularity case 1
2 < s ≤ 2 in which we are able

to employ the algebra property of H s
x(R+), and then move on to the low regularity case

0 ≤ s < 1
2 in which we address the lack of the algebra property by refining our solution
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space motivated by the linear Strichartz estimates.

4.3. High regularity local well-posedness

We consider the nonhomogeneous initial-boundary value problem for the higher-

order nonlinear Schrödinger (HNLS) equation on the half line

iut + iβuxxx + αuxx + iδux = f (u), (x, t) ∈ R+ × (0,T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = g(t), t ∈ (0,T ),

(4.78)

where α, δ ∈ R, β > 0, f (z) = κ|z|pz with z ∈ C, κ ∈ C, p > 0, and T > 0.

We prove the following result in this section.

Theorem 4.5 (High regularity well-posedness) Let 1
2 < s ≤ 2 and p > 0. In addition, if

p < 2Z, suppose that

if s ∈ Z+, then p ≥ s if p ∈ Z+ and odd; ⌊p⌋ ≥ s − 1 if p < Z+,

if s < Z+, then p > s if p ∈ Z+ and odd; ⌊p⌋ ≥ ⌊s⌋ if p < Z+.
(4.79)

Then, for initial data u0 ∈ H s
x(R+) and boundary data g ∈ H

s+1
3

t,loc(R+) satisfying the com-

patibility condition (4.33), there is T = T (u0, g) > 0 such that the initial-boundary value

problem (4.78) for the higher-order nonlinear Schrödinger equation on the half-line has

a unique solution u ∈ C([0,T ]; H s
x(R+)). Furthermore, this solution depends continuously

on the initial and boundary data.

Our goal is to establish local well-posedness in the space XT := C([0,T ]; H s
x(R+))

for some T > 0 to be determined. We consider XT as a metric space with the metric

dXT (u1, u2) := ∥u1 − u2∥XT , u1, u2 ∈ XT .
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Note that any closed ball in XT is a complete subspace.

Showing that Φ is into. The conservation law (3.2) in Theorem 3.1 and the boundedness

of the spatial extension operator E0 imply

∥y|QT ∥XT ≤ ∥S [E0u0; 0]∥C([0,T ];Hs
x(R)) = ∥E0u0∥Hs

x(R) ≲ ∥u0∥Hs
x(R+), (4.80)

which takes care of the first term in (4.76). For the second term in (4.76), let u ∈ XT and

combine the nonhomogeneous estimate (3.40) in Theorem 3.4 with the algebra property

in H s
x(R) to yield

∥zu|QT ∥XT ≤
∥∥∥S [0; f (E0u)]

∥∥∥
C([0,T ];Hs

x(R))
≲

∫ T

0
∥ f (E0u(·, t))∥Hs

x(R)dt

≲

∫ T

0
∥E0u(·, t)∥p+1

Hs
x(R)dt ≲

∫ T

0
∥u(·, t)∥p+1

Hs
x(R+)dt ≲ T∥u∥p+1

XT
.

(4.81)

Regarding the third term in (4.76), using estimate (4.35) in Theorem 4.1 and the bound-

edness of the temporal extension operator Eb, we get (say with T ′ = 2T )

∥qu|(0,T )∥XT ≤ ∥q∥XT ′ ≲
(
1 +
√

T ′ecT ′)∥gu
0∥

H
s+1
3

t (0,T ′)

≲
(
1 +
√

T ′ecT ′)∥gu
0∥

H
s+1
3

t (0,T )
≲

(
1 +
√

TecT )∥gu
0∥

H
s+1
3

t (0,T )
.

(4.82)

By using the definition of g0 in (4.7) and temporal trace estimates (3.3), (3.4) and (3.41),

we obtain
∥gu

0∥
H

s+1
3

t (0,T )
≲ ∥g∥

H
s+1
3

t (0,T )
+ (1 + T

1
2 )∥u0∥Hs

x(R+)

+max{T
1
2 (1 + T

1
2 ),Tσ} ∥ f (E0u)∥L2

t ((0,T );Hs
x(R)),

(4.83)

with σ given by (3.42). By using the definition of the solution space XT and the bounded-

ness of the spatial extension operator E0, we have

∥ f (E0u)∥L2
t ((0,T );Hs

x(R)) ≲ T
1
2 ∥u∥p+1

XT
. (4.84)
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Using the definition (4.76) of Φ and combining estimates (4.80)-(4.84), we deduce

∥Φ(u)∥XT ≤ c0

(
c1(T )∥u0∥Hs

x(R+) + c2(T )∥g∥
H

s+1
3

t (0,T )
+ c3(T )∥u∥p+1

XT

)
, (4.85)

where the positive constants c1, c2, c3 are given by c1(T ) = (1 +
√

TecT )(1 + T
1
2 ), c2(T ) =

(1 +
√

TecT ), c3(T ) = T + (1 +
√

TecT )T
1
2 max{T

1
2 (1 + T

1
2 ),Tσ} and c0 is a non-negative

constant independent of T and only depending on fixed parameters such as α, β, δ and s.

In view of estimate (4.85), we set R(T ) := 2A(T ) with

A(T ) := c0

(
c1(T )∥u0∥Hs

x(R+) + c2(T )∥g∥
H

s+1
3

t (0,T )

)

and choose T small enough so that A(T ) + c0c3(T )R(T )p+1 ≤ R(T ) or, equivalently,

c0c3(T )Rp(T ) ≤ 1
2 . We note that such a choice is possible because c3(T ) → 0+ and

R(T ) remains bounded as T → 0+. Then, for that choice of T , the map Φ takes the closed

ball BR(T )(0) ⊂ XT into itself. It remains to show that Φ is a contraction on BR(T )(0).

Showing that Φ is a contraction. Let u1, u2 ∈ BR(T )(0). Then,

∥Φ(u1) − Φ(u2)∥XT =
∥∥∥zu1 |QT − zu2 |QT

∥∥∥
XT
+

∥∥∥qu1 |(0,T ) − qu2 |(0,T )

∥∥∥
XT

≲
∥∥∥S [0; f (E0u1) − f (E0u2)]

∥∥∥
C([0,T ];Hs

x(R))

+
(
1 +
√

TecT ) ∥∥∥gu1
0 − gu2

0

∥∥∥
H

s+1
3

t (0,T )
.

(4.86)

We then recall the following difference estimate (e.g. see Batal and Özsarı (2016)).

Lemma 4.7 Let s > 1
2 , p > 0 satisfy (4.79) and φ, φ1, φ2 ∈ H s(R). Then,

∥|φ1|
pφ1 − |φ2|

pφ2∥Hs(R) ≲
(
∥φ1∥

p
Hs(R) + ∥φ2∥

p
Hs(R)

)
∥φ1 − φ2∥Hs(R).

Employing Lemma 4.7 and the arguments used earlier in (4.81), we deduce

∥∥∥S [0; f (E0u1) − f (E0u2)]
∥∥∥

C([0,T ];Hs
x(R))
≲ T

(
∥u1∥

p
XT
+ ∥u2∥

p
XT

)
∥u1 − u2∥XT . (4.87)
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Moreover, for the difference of boundary data we have, similarly to (4.83),

∥gu1
0 − gu2

0 ∥H
s+1
3

t (0,T )
≲ max{T

1
2 (1 + T

1
2 ),Tσ} ∥ f (E0u1) − f (E0u2)∥L2

t ((0,T );Hs
x(R))

≲ max{T
1
2 (1 + T

1
2 ),Tσ}T

1
2
(
∥u1∥

p
XT
+ ∥u2∥

p
XT

)
∥u1 − u2∥XT ,

(4.88)

where σ is given by (3.42). Combining (4.87) and (4.88) with (4.86), we obtain

∥Φ(u1) −Φ(u2)∥XT ≲ c3(T )
(
∥u1∥

p
XT
+ ∥u2∥

p
XT

)
∥u1 − u2∥XT ≲ c3(T )Rp(T )∥u1 − u2∥XT . (4.89)

Note that c3(T ) → 0+ and R(T ) remains bounded as T → 0+. Therefore, for sufficiently

small T > 0 the map Φ is a contraction on BR(T )(0), and hence Φ has a unique fixed

point in BR(T )(0) which, as noted earlier, amounts to local existence of a unique solution

to the initial-boundary value problem (4.78) for the higher-order nonlinear Schrödinger

equation on BR(T )(0).

Extending uniqueness to XT . To prove uniqueness over the entire space XT and not just

the closed ball BR(T )(0), we suppose that u1, u2 ∈ XT are two solutions associated with the

same pair of initial and boundary data (u0, g). At first, we consider the case of u1, u2 being

sufficiently smooth and, along with their derivatives, decaying sufficiently fast as x→ ∞.

This allows us to proceed via energy estimates. In particular, we note that the difference

w := u1 − u2 solves the following problem:

iwt + iβwxxx + αwxx + iδwx = f (u1) − f (u2), (x, t) ∈ R+ × (0,T ),

w(x, 0) = 0, x ∈ R+,

w(0, t) = 0, t ∈ (0,T ).

(4.90)

Multiplying the main equation by w, integrating in x, taking imaginary parts, and using
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Lemma 4.7 and the embedding H s
x(R+) ↪→ L∞x (R+), which is valid for s > 1

2 , we find

1
2

d
dt
∥w(t)∥2L2

x(R+) = −
β

2
|wx(0, t)|2 + Im

∫ ∞

0

[
f (u1(x, t)) − f (u2(x, t))

]
w̄(x, t)dx

≲

∫ ∞

0

(
|u1(x, t)|p + |u2(x, t)|p

)
|w(x, t)|2dx

≲
(
∥u1(t)∥pHs

x(R+) + ∥u2(t)∥pHs
x(R+)

)
∥w(t)∥2L2

x(R+)

≲
(
∥u1∥

p
XT
+ ∥u2(t)∥pXT

)
∥w(t)∥2L2

x(R+).

Setting y(t) := ∥w(t)∥L2
x(R+), the above energy estimate is satisfied provided that y′(t) −

cy(t) ≤ 0, t ∈ (0,T ) for some non-negative constant c. Solving this differential inequality

alongside the condition y(0) = ∥w(0)∥L2
x(R+) = 0 (note that w(x, 0) ≡ 0), we obtain y ≡ 0

i.e. w = u1 − u2 ≡ 0. The case of rough u1, u2 can be treated via mollification.

Continuous dependence on the data. For (u0, g) ∈ H s
x(R+) × H

s+1
3

t,loc(R+), let

Tmax := sup {T > 0 | there is a solution associated to the data (u0, g) on [0,T ]}.

Then, either Tmax = ∞ or else Tmax < ∞ and there is no solution u ∈ XTmax since otherwise

the lifespan of u could be extended beyond Tmax by starting with initial datum equal

to u(Tmax). Therefore, we may let u ∈ C([0,Tmax); H s
x(R+)) be the maximal solution

associated to the data (u0, g); then, for T < Tmax, in particular, u|[0,T ] is the unique solution

in XT established above.

Let T < Tmax be small enough that Φ is a contraction on BR(T )(0) for any solution

associated with data (v0, h) ∈ H s
x(R+) × H

s+1
3

t,loc(R+) and satisfying

∥v0∥Hs
x(R+) + ∥h∥

H
s+1
3

t (0,T )
≤ 2

(
∥u0∥Hs

x(R+) + ∥g∥
H

s+1
3

t (0,T )

)
.

If follows that if δ > 0 is small enough, for (v0, h) satisfying

∥v0 − u0∥Hs
x(R+) + ∥g − h∥

H
s+1
3

t (0,T )
< δ
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the associated solution v belongs to BR(T )(0). Therefore, u and v are both fixed points of

Φ on BR(T )(0) associated with the pairs of data (u0, g) and (v0, h), respectively. Then, the

corresponding nonlinear estimates from the contraction argument imply

∥u − v∥XT = ∥Φu − Φv∥XT ≲ c(T )
(
∥u0 − v0∥Hs

x(R+) + ∥g − h∥
H

s+1
3

t (0,T )

)
≲ δc(T ).

which amounts to continuity of the data-to-solution map. The proof of Theorem 4.5 for

well-posedness in the high regularity setting is complete.

4.4. Low regularity local well-posedness

In this section, we prove the following theorem:

Theorem 4.6 (Low regularity well-posedness) Suppose

0 ≤ s <
1
2
, 1 ≤ p ≤

6
1 − 2s

, µ =
6(p + 1)
p(1 − 2s)

, r =
2(p + 1)
1 + 2sp

. (4.91)

Then, for initial data u0 ∈ H s
x(R+) and boundary data g ∈ H

s+1
3

t,loc(R+), with the addi-

tional assumption that if p = 6
1−2s (critical case) then ∥u0∥Hs

x(R+) is sufficiently small,

there is T = T (u0, g) > 0 such that the initial-boundary value problem (4.78) for the

higher-order nonlinear Schrödinger equation on the half-line has a unique solution u ∈

C([0,T ]; H s
x(R+))∩ Lµt ((0,T ); H s,r

x (R+)). Furthermore, this solution depends continuously

on the initial and boundary data.

The various linear estimates established in here will now be combined with a

contraction mapping argument in order to establish local well-posedness in the sense of

Hadamard for the nonlinear initial-boundary value problem (4.78). In view of these linear

results, the solution space will change as we transition from the setting of high regularity

(1
2 < s ≤ 2) to the one of low regularity (0 ≤ s < 1

2 ). More specifically, in the former

case well-posedness will be established in the space C([0,T ]; H s
x(R+)) for a appropriate

choice of T > 0 (see Theorem 4.5), while in the latter case that space will be refined

by intersecting it with the Strichartz-inspired space Lµt ((0,T ); H s,r
x (R+)) for an admissible
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choice of exponents (µ, r) in terms of the nonlinearity order p and the Sobolev exponent

s according to (3.29) (see Theorem 4.6).

In this setting, we work under the assumptions (4.91). The lack of the algebra

property brings in the need for the various Strichartz estimates established previously and

hence motivates the solution space

YT := C([0,T ]; H s
x(R+)) ∩ Lµt ((0,T ); H s,r

x (R+)).

It is convenient to also consider the associated space on the whole spatial line, namely

ỸT := C([0,T ]; H s
x(R)) ∩ Lµt ((0,T ); H s,r

x (R)).

The following lemma will serve as the low regularity analogue of the algebra property

and Lemma 4.7.

Lemma 4.8 Let (s, p), (µ, r) satisfy (4.91) and suppose φ, φ1, φ2 ∈ Lµt ((0,T ); H s,r
x (R)).

Then,

∥∥∥|φ|pφ∥∥∥
L1

t ((0,T );Hs
x(R))
≲ T

µ−p−1
µ ∥φ∥

p+1
Lµt ((0,T );Hs,r

x (R))
, (4.92)∥∥∥|φ1|

pφ1 − |φ2|
pφ2

∥∥∥
L1

t ((0,T );Hs
x(R))
≲ T

µ−p−1
µ

(
∥φ1∥

p
Lµt ((0,T );Hs,r

x (R))
+ ∥φ2∥

p
Lµt ((0,T );Hs,r

x (R))

)
· ∥φ1 − φ2∥Lµt ((0,T );Hs,r

x (R)).

(4.93)

Lemma 4.8 corresponds to the one-dimensional analogue of inequality (6.17) for

the two-dimensional nonlinear Schrödinger equation proved in Himonas and Mantzavinos

(2020). Note, importantly, that the admissibility conditions (4.91) are different than those

in Himonas and Mantzavinos (2020) due to the third-order dispersion of the higher-order

nonlinear Schrödinger equation. Thus, the proof of Lemma 4.8 does not follow from

Himonas and Mantzavinos (2020).

We need the following two results about the fractional derivatives to prove Lemma

4.8.
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Proposition 4.1 (Fractional chain rule, Proposition 3.1, Christ and Weinstein (1991))

Suppose that F ∈ C1(C), α ∈ (0, 1), 1 < p, q, r < ∞, and r−1 = p−1 + q−1. If u ∈ L∞(R),

Dαu ∈ Lq(R), and F′(u) ∈ Lp(R). Then DαF(u) ∈ Lr(R) and

∥DαF(u)∥Lr(R) ≤ C∥F′(u)∥Lp(R)∥Dαu∥Lq(R). (4.94)

Proposition 4.2 (Fractional product rule, Proposition 3.3, Christ and Weinstein (1991))

Let α ∈ (0, 1), 1 < p1, p2, q1, q2, r < ∞, and r−1 = p−1
i + q−1

i for i = 1, 2. Suppose that

f ∈ Lp1(R), Dα f ∈ Lp2(R), g ∈ Lq2(R), Dαg ∈ Lq1(R). Then Dα( f g) ∈ Lr(R) and

∥Dα( f g)∥Lr(R) ≤ C∥ f ∥Lp1 (R)∥Dαg∥Lq1 (R) +C∥g∥Lq2 (R)∥Dα f ∥Lp2 (R). (4.95)

Proof [Proof of Lemma 4.8] By Hölder’s inequality,

∥∥∥|φ|pφ∥∥∥
L1

t ((0,T );Hs(R))
≤ T

µ−p−1
µ

( ∫ T

0

∥∥∥|φ(t)|pφ(t)
∥∥∥ µ

p+1

Hs
x(R)

dt
) p+1
µ

.

On the other hand, ∥φ∥p+1
Lµt (0,T0;Hs,r

x (R))
=

( ∫ T

0
∥φ(t)∥µHs,r

x (R)dt
) p+1
µ

. Hence, in order to establish

(4.92), it suffices to prove that

∥Dθ
(
|φ(t)|pφ(t)

)
∥L2

x(R) ≲ ∥φ(t)∥p+1
Hθ,rx (R)

, t ∈ (0,T ), (4.96)

for θ = 0 and θ = s. To this end, we set F(z) := |z|pz, z ∈ C. If s , 0, by using the chain

rule for fractional derivatives, we have

∥DsF(φ(t))∥L2
x(R) ≲ ∥F

′(φ(t))∥
L
µ
3
x (R)
∥Dsφ(t)∥Lr

x(R) (4.97)

with 1
2 =

3
µ
+ 1

r . Noting that |F′(φ(t))| ≤ (p + 1)|φ(t)|p, we further find

∥F′(φ(t))∥
L
µ
3
x (R)
≲ ∥φ(t)∥p

L
pµ
3

x (R)
, (4.98)
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while for 3
pµ =

1
r − s we also have the embedding

∥φ(t)∥
L

pµ
3

x (R)
≲ ∥φ(t)∥Hs,r

x (R). (4.99)

Combining (4.98) and (4.99) with (4.97), we obtain (4.96) for θ = s , 0. Notice that

r = 2(p + 1) for s = 0. Therefore,

∥|φ(t)|pφ(t)∥L2
x(R) = ∥φ(t)∥p+1

L2(p+1)
x (R)

= ∥φ(t)∥p+1
Lr

x(R),

which corresponds to (4.96) for θ = 0.

Regarding inequality (4.93) for the differences, we first consider the case s = 0

which implies r = 2(p + 1). Using the standard pointwise difference estimate for the

power-type nonlinearity and then applying Hölder’s inequality in x, we get

∥∥∥|φ1|
pφ1 − |φ2|

pφ2

∥∥∥
L1

t ((0,T );L2
x(R))
≲

∫ T

0

(∫ ∞

−∞

(|φ1(x, t)|p + |φ2(x, t)|p)2|φ1(x, t) − φ2(x, t)|2dx
) 1

2

dt

≲

∫ T

0

(
∥φ1(t)∥pLr

x(R) + ∥φ2(t)∥pLr
x(R)

)
∥φ1(t) − φ2(t)∥Lr

x(R)dt

and the desired estimate (4.93) for s = 0 follows via Hölder’s inequality in t.

Next, let us consider the case s , 0, in which r = 2(p+1)
1+2sp . First, observe that for

z1, z2 ∈ C and ξ(ρ) = (1−ρ)z2+ρz1, ρ ∈ [0, 1], we have ξ(0) = z1, ξ(1) = z2, ξ′(ρ) = z1−z2,.

Moreover,

|z2|
pz2 − |z1|

pz1 =

∫ 1

0

d
dρ

(|ξ(ρ)|pξ(ρ)) dρ

=
(p + 2)

2
(z1 − z2)

∫ 1

0
|ξ(ρ)|pdρ +

p
2

(z̄1 − z̄2)
∫ 1

0
|ξ(ρ)|p−2ξ2(ρ)dρ.
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Combining this writing with the fractional product rule, we find

∥DsF(φ1(t)) − DsF(φ2(t))∥L2
x(R) ≲ ∥D

s(φ1(t) − φ2(t))∥Lr
x(R) sup

ρ∈[0,1]
∥|w(t)|p∥

L
2r

r−2
x (R)

+ ∥φ1(t) − φ2(t)∥
L

pµ
3

x (R)

(
sup
ρ∈[0,1]

{
∥Ds (G(w(t)))∥Lr1

x (R)

} )

where 1
r1
= 1

2 −
3
pµ , w(t) = (1 − ρ)φ2(t) + ρφ1(t) and G(z) = F′(z) = p+2

2 |z|
p +

p
2 |z|

p−2z2,

z ∈ C.

Observing that |G′(w(t))| ≤ p(p+ 1)|w(t)|p−1 for p > 1, we use the fractional chain

rule to infer that, for p > 1,

∥Ds (G(w(t)))∥Lr1
x (R) ≲ ∥|w(t)|p−1∥Lr2

x (R)∥D
sw(t)∥Lr

x(R)

≲ ∥w(t)∥p−1

L
µp
3

x (R)
∥Dsw(t)∥Lr

x(R) ≲ ∥w(t)∥pHs,r
x (R),

where 1
r2
= 1

r1
− 1

r . In the above, the second inequality is due to the fact that, in view

of (4.91), r2 =
2(p+1)

(p−1)(1−2s) =
µp

3(p−1) , and the third inequality follows from the embedding

(4.99). Furthermore, notice that 2r
r−2 =

µ

3 and so, using once again the embedding (4.99),

∥|w(t)|p∥
L

2r
r−2
x (R)

= ∥w(t)∥p
L
µp
3

x (R)
≲ ∥w(t)∥pHs,r

x (R).

Combining the last three estimates, we deduce

∥DsF(φ1(t)) − DsF(φ2(t))∥L2
x(R) ≲

(
∥φ1(t)∥pHs,r

x (R) + ∥φ2(t)∥pHs,r
x (R)

)
∥φ1(t) − φ2(t)∥Hs,r

x (R).

Then, integrating over (0,T ), applying Hölder’s inequality in t, and combining the result-

ing estimate with the case of s = 0, we obtain (4.93) for s , 0 and p > 1.
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Finally, for p = 1 we note that 1
2 =

1+2s
4 +

1−2s
4 =

1
r +

1−2s
4 =

1
r +

3
µ
. Therefore,

∥DsF(φ1(t)) − DsF(φ2(t))∥L2
x(R) ≲ ∥D

s(φ1(t) − φ2(t))∥Lr
x(R) sup

ρ∈[0,1]
∥w(t)∥

L
µ
3
x (R)

+ ∥φ1(t) − φ2(t)∥
L
µ
3
x (R)

(
sup
ρ∈[0,1]

{
∥Ds (G(w(t)))∥Lr

x(R)

} )
≲

(
∥φ1(t)∥pHs,r

x (R) + ∥φ2(t)∥pHs,r
x (R)

)
∥φ1(t) − φ2(t)∥Hs,r

x (R)

with the last step thanks to the embedding (4.99). □

Now, we are ready to prove Theorem 4.6 for low regularity solutions.

Existence. First, we consider the subcritical case p , 6
1−2s so that µ−p−1

µ
> 0. We work

again with the solution operator (4.76), which was obtained via linear reunification. The-

orems 3.1 and 3.3 imply

∥y|QT ∥YT ≤ ∥y∥ỸT
≲ ∥E0u0∥Hs

x(R) ≲ ∥u0∥Hs
x(R+), (4.100)

while Theorems 3.4 and 3.6 along with inequality (4.92) and the same argument that was

used in (4.81) yield

∥zu|QT ∥YT ≤ ∥z
u∥ỸT
≲

(
T + T

µ−p−1
µ

)
∥u∥p+1

YT
. (4.101)

Now, we estimate the last term in (5.61), we separate gu
0(t) defined in (5.62) as

follows:

gu
0(t) = Eb{g(·)− S [E0u0; 0](0, ·)}(t)− Eb{S [0; f (Eu)](0, ·)}(t) := gu,1

0 (t)− gu,2
0 (t), (4.102)

which yields to rewrite

qu|(0,T ) := qu,1|(0,T ) − qu,2|(0,T ). (4.103)

By using the arguments in (4.82) and (4.83), we have

∥∥∥qu,1|(0,T )

∥∥∥
YT
≲

(
1 +
√

TecT
) (

(1 + T
1
2 )∥u0∥Hs

x(R+) + ∥g∥
H

s+1
3 (0,T )

t

)
. (4.104)
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To estimate qu,2|(0,T ), we use a rearrangement argument which is analogously used

for the Schrödinger equation on the half-plane in Section 6 of Ref. Himonas and Mantza-

vinos (2020). Indeed, we observe that

qu,2(x, t) =
1

2π

∫
Γ

eikx−w(k)tiω′(k)g̃u,2
0 [w(k),T ′]dk

=
1

2π

∫
Γ

eikx−w(k)tiω′(k)
(∫ T ′

0
ew(k)τS [0; f (Eu)](0, τ)dτ

)
dk

=
−i
2π

∫
Γ

eikx−w(k)tiω′(k)
(∫ T ′

0
ew(k)τ

(∫ t′

0
S [ f (Eu); 0](0, τ − t′)dt′

)
dτ

)
dk

= −i
∫ T ′

0
q∗(x, t − τ)dτ,

by Fubini’s theorem and the continuous (since s < 1
2 ) extension by zero of S [ f (Eu); 0]

outside [0, t′], where q∗ denotes the solution of the reduced initial-boundary value problem

(5.2) with the boundary data S [ f (Eu); 0]. Hence, Theorems 4.3, 3.1, and 3.4 implies that

∥∥∥qu,2|(0,T )

∥∥∥
YT
≲

(
1 + ecT T

1
µ+

1
2
)

(1 + T
1
2 )∥ f (Eu)∥L1

t ((0,T );Hs
x(R+)). (4.105)

Using (4.92) and combining the above estimates, we obtain

∥Φ(u)∥YT ≤ c0

(
c1(T )∥u0∥Hs

x(R+) + c2(T )∥g∥
H

s+1
3

t (0,T )
+ c3(T )∥u∥p+1

YT

)
, (4.106)

where the positive constants c1, c2, c3 are given by c1(T ) = (1 +
√

TecT + T
1
µ+

1
2 )(1 + T

1
2 ),

c2(T ) = (1 +
√

TecT + T
1
µ+

1
2 ), c3(T ) = (T + T

µ−p−1
µ ) + (1 +

√
TecT + T

1
µ+

1
2 )T

1
2 max{T

1
2 (1 +

T
1
2 ),Tσ} and c0 is a non-negative constant independent of T and only depending on fixed

parameters such as α, β, δ and s.

For the contraction, given u1, u2 ∈ YT we employ inequality 4.93 together with the

same arguments that led to (4.89) to infer

∥Φ(u1) − Φ(u2)∥YT ≲ c3(T )
(
∥u1∥

p
YT
+ ∥u2∥

p
YT

)
∥u1 − u2∥YT . (4.107)
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This estimate implies the existence of a fixed point in YT for sufficiently small T > 0 via

the same arguments that were used in the proof of Theorem 4.5.

Next, we consider the critical case p = 6
1−2s . The difference here compared to the

subcritical case is that the limit c3(T ) → 0+ as T → 0+ is no longer true; however, Φ is

still a contraction provided that the data (and, correspondingly, the radius of the closed

ball that depends on the size of the data) are chosen sufficiently small.

Uniqueness. We adapt the method used for the Cauchy problem in the proof of Propo-

sition 4.2 of Cazenave and Weissler (1990) to the framework of initial-boundary value

problems.

First, consider the subcritical case p , 6
1−2s . Let u1 = Φ(u1), u2 = Φ(u2) ∈ YT be

two solutions associated with the same pair of initial and boundary data. Suppose to the

contrary that there is t ∈ [0,T ] for which u1(t) , u2(t), and let

tinf := inf {t ∈ [0,T ] | u1(t) , u2(t)} .

Taking tn < tinf such that tn → t−inf as n → ∞, we see that u1(tn) = u2(tn) by definition

of tinf. Thus, in view of the fact that u1, u2 are both continuous from [0,T ] into H s
x(R+),

taking the limit n → ∞ we deduce that u1(tinf) = u2(tinf) =: φ ∈ H s
x(R+) makes sense. Set

U1(t) = u1(t + tinf) and U2(t) = u2(t + tinf). Then, U1 and U2 are both solutions on the

temporal interval [0,T − tinf] that satisfy the same initial and boundary conditions, namely

U1(0) = U2(0) = φ, U1|x=0 = U2|x=0 = g(· + tinf) =: ginf.

Since U1 and U2 are continuous in t, by the definition of tinf there is a δ > 0 such that

U1 , U2 for t ∈ (0, δ). Let t = tinf + ϵ with ϵ ∈ (0, δ) fixed and to be specified below. We

have

∥U1 − U2∥Lµt ((0,ϵ);Hs,r
x (R+)) ≲ cinf(ϵ)

(
∥U1∥

p
Lµt ((0,ϵ);Hs,r

x (R+))
+ ∥U2∥

p
Lµt ((0,ϵ);Hs,r

x (R+))

)
· ∥U1 − U2∥Lµt ((0,ϵ);Hs,r

x (R+)),
(4.108)
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where cinf(ϵ) := ϵ
µ−p−1
µ + ϵ

1
µ+

1
2 ϵ

1
2 max{ϵ

1
2 (1+ ϵ

1
2 ), ϵσ}. Let ϵ ∈ (0, δ) be small enough so that

cinf(ϵ)
(
∥U1∥

p
Lµt ((0,ϵ);Hs,r

x (R+))
+ ∥U2∥

p
Lµt ((0,ϵ);Hs,r

x (R+))

)
< 1, (4.109)

which is possible because cinf(ϵ)→ 0+ as ϵ → 0+. Then, (4.108) implies that U1 = U2 on

(0, ϵ) ⊂ (0, δ), leading to a contradiction. Hence, uniqueness follows.

In the critical case p = 6
1−2s , although the limit cinf(ϵ)→ 0+ as ϵ → 0+ is no longer

true, the uniqueness argument remains valid as (4.109) still holds due to the fact that, due

to the dominated convergence theorem, the norms ∥U1∥Lµt ((0,ϵ);Hs,r
x (R+)) and ∥U2∥Lµt ((0,ϵ);Hs,r

x (R+))

can be made arbitrarily small by taking ϵ small enough.

Finally, the continuous dependence of the unique solution in YT on the initial and

boundary data can be proved as in the high regularity setting, thereby completing the

proof of Theorem 4.6.
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CHAPTER 5

DOUBLE-BOUNDARY CONDITION CASE

In this chapter, we study the initial-boundary value problem for the higher-order

nonlinear Schrödinger equation with double boundary conditions needed. We state the

model first.
iut + iβuxxx + αuxx + iδux = f (u), (x, t) ∈ R+ × (0,T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = h0(t), ux(0, t) = h1(t) t ∈ (0,T ),

(5.1)

where α, δ ∈ R, β < 0, f (z) = κ|z|pz with z ∈ C, κ ∈ C, p > 0, and T > 0.

The change in the sign of β from plus to minus causes an increment for the number

of boundary conditions for the higher-order Schrödinger equation. We feel obligated to

explain that this change entails some significant differences when studying the problem

separately from the case that β > 0. Before the higher-order Schrödinger equation, let

us consider a much more simpler problem, namely the heat equation. When the sign of

the term with the greatest order in the spatial derivative is plus, the initial-boundary value

problem for the heat equation is well-posed. On the contrary, when this aforementioned

sign is minus, it is well known that the problem is ill-posed. So this gives us the first

hint on the importance of the change for the sign in the spatial leading coefficient. As a

second motivation, it is clearly explained in Deconinck et al. (2014) that for the evolution

problems with an odd order in the spatial derivatives, such as the higher-order Schrödinger

equation, the sign of the leading coefficient decides the number of boundary conditions

needed for this problem.

Taking all of these into consideration, we approach the problem (5.1) as an entirely

new problem in itself. Once we get into the details of its analysis about the well-posedness

point of view, we encounter two possible scenarios, one of which is the similarities with

the problem for the case β > 0, which is studied in Chapter 4, and the second is the

differences in details. Therefore, while working on this problem, we will avoid repeating

ourselves on one hand, and on the other hand, we will try to maintain the integrity of the

problem itself.
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We apply the same method that we used in Chapter 4 for the problem (4.1) stated

for the case β > 0. Indeed, we first consider the linear version of the problem, and

then use a decompose-reunify argument to observe the effect of each data separately, then

finally pass from the linear theory to the nonlinear analysis to obtain the results on the

well-posedness of the problem. Since the decomposed Cauchy problems are studied in

Chapter 3 for any β , 0, we directly start with the reduced initial-boundary value problem.

5.1. Reduced initial-boundary value problem

We consider the initial-boundary value problem

iqt + iβqxxx + αqxx + iδqx = 0, (x, t) ∈ R+ × (0,T ′),

q(x, 0) = 0, x ∈ R+,

q(0, t) = g0(t) := E1
b(h0 − y(0, ·) − z(0, ·))(t), t ∈ (0,T ′),

qx(0, t) = g1(t) := E0
b(h1 − yx(0, ·) − zx(0, ·))(t), t ∈ (0,T ′),

(5.2)

where α, δ ∈ R, β < 0, T ′ > T , y(0, t) and z(0, t) are the traces of the solutions of Cauchy

problems (3.1) and (3.37), respectively, at x = 0, and E j
b : H

s+ j
3

t (0,T ) → H
s+ j
3

t (R) are

two fixed bounded extension operators for j ∈ {0, 1}, satisfying the additional property

supp g j ⊂ [0,T ′). It is provided that the traces ∂ j
xy(0, t) and ∂ j

xz(0, t) are well-defined and

belong to H
s+1− j

3
t (0,T ) for each j ∈ {0, 1} in view of Theorems 3.1, 3.2, 3.40 and 3.5.

We first obtain a representation formula for the weak solution q(x, t) of (5.2) by

using Fokas method. To this end, we assume q is smooth and decays sufficiently fast as

x→ ∞, uniformly in t ∈ [0,T ′].

Applying the half-line Fourier transform (4.9) to the main equation in (5.2) and

integrating in the temporal variable t, we obtain an identity, which is known as global

relation:

ew(k)tq̂(k, t) = (−βk2 + αk + δ)g̃0[w(k), t] + (iβk − iα)g̃1[w(k), t] + βg̃2[w(k), t], Imk ≤ 0,

(5.3)
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by denoting

g̃ j(k, t) =
∫ t

0
ekτ∂ j

xq(0, τ) dτ, k ∈ C, j = 0, 1, 2. (5.4)

and

w(k) = −iβk3 + iαk2 + iδk. (5.5)

Multiplying both sides in (5.3) by e−w(k)t, and then taking the inverse Fourier transform

(4.9), we obtain for (x, t) ∈ R+ × (0,T ′) that

q(x, t) =
1

2π

∫ ∞

−∞

eikx−w(k)tg̃(k, t)dk, (5.6)

where g̃(k, t) = (−βk2 + αk + δ)g̃0[w(k), t] + (iβk − iα)g̃1[w(k), t] + βg̃2[w(k), t].

Note that the equation (5.6) involves the unknown boundary condition qxx(0, t),

which is hidden in the boundary t-transform g̃2. We eliminate this term by first deforming

the real axis to a suitable contour in the complex plane, and then utilizing the invariant

properties of the polynomial w(k) in the global relation (5.3).

We introduce the region D+ := D ∩ C+, where D ≡ {k ∈ C : Re w(k) < 0} and

C+ := {k ∈ C : Im k > 0}. Observe that D+ can be defined explicitly as follows:

D+ ≡

k ∈ C+ : 3
(
kR −

α

3β

)2

− k2
I −
α2 + 3βδ

3β2 > 0

 , (5.7)

where the real and imaginary parts of k are denoted by kR and kI , respectively. See Figures

5.1, 5.2 and 5.3.

k1 k2
α
3β k3 k4

1

Figure 5.1. The region D+ for α2 + 3βδ > 0.
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α
3β

1

Figure 5.2. The region D+ for α2 + 3βδ = 0.

α
3β

k4

k5

k1

1

Figure 5.3. The region D+ for α2 + 3βδ < 0.

Note that in each figures, we define k1 =
α+2
√
α2+3βδ

3β , k2 =
α+
√
α2+3βδ
3β , k3 =

α−
√
α2+3βδ
3β , k4 =

α−2
√
α2+3βδ

3β , and k5 =
i
√
−3(α2+3βδ)
−3β .

Using the analytic behavior and exponential decay of the integral in (5.6), we can

deform the real axis to the boundary of ∂D+ and obtain

q(x, t) =
1

2π

∫
∂D+

eikx−w(k)tg̃(k) dk, (5.8)

where ∂D+ is oriented, as depicted in Figures 5.1, 5.2 and 5.3, in such a way that D+ stays

on the left to its boundary ∂D+.

Note that the global relation (5.3) is not valid in ∂D+, since Im k ≥ 0 for k ∈ D+.

On the other hand, the right hand side of (5.3) involves the terms depending on w(k). So,

we try to rewrite this relation by changing k with some v(k), which makes the equation
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valid for any values of k ∈ D+ and also keeps w(k) stable. In order to determine these

invariant maps, we solve the equation w(v) = w(k) for v = v(k). But, this argument should

be handled carefully. Since w is a third order polynomial defined on C, the fundamental

theorem of algebra ensures that we can find three roots, counting multiplicity, for v in

terms of k. The first root is trivially v(k) = k. We have two more roots and these roots

satisfy

v2 +

(
k −
α

β

)
v +

(
k2 −

α

β
k −
δ

β

)
= 0 (5.9)

Clearly the solution of the equation (5.9) has two solutions, say v1(k), v2(k) ∈ C, counting

multiplicity. But, we need to find distinct and nontrivial maps, i.e. v1(k) , k, v2(k) , k

and also v1 , v2. This can be possible if only if

∆ :=
3
4

(
k −
α

3β

)2

−
α2 + 3βδ

3β2 = 0

Therefore, we need to stay away from the following values of k, depending on α2 + 3βδ:

k =



α±2
√
α2+3βδ

3β , α2 + 3βδ > 0,

α
3β , α2 + 3βδ = 0,

α±2i
√
−α2−3βδ
3β , α2 + 3βδ < 0.

(5.10)

For the case α2+3βδ < 0, the given values of k in (5.10) is outside of D+. However,

when α2+3βδ ≥ 0, the aforementioned values of k is involved in D+. Thanks to Cauchy’s

theorem, we can deform the contour D+ to the modified D̃+ to keep these values of k

defined in (5.10) away from the domain of the integral in (5.8). See Figures 5.4 and 5.5.

k1 k2
α
3β k3 k4

c1 c2

iλ

1
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Figure 5.4. Deformation of ∂D+ to ∂D̃+ for α2 + 3βδ > 0.

α
3β

c1 c2

iλ

1

Figure 5.5. Deformation of ∂D+ to ∂D̃+ for α2 + 3βδ = 0.

We define k j’s are defined for j = 1, 4 as before, and c1 =
α+
√

3β2λ2+α2+3βδ
3β , c2 =

α−
√

3β2λ2+α2+3βδ
3β with λ as defined in (5.30).

The above discussion guarantees that the maps v1 and v2 are distinct and not iden-

tical for the values of k ∈ Γ, where

Γ =

 ∂D̃
+, α2 + 3βδ ≥ 0,

∂D+, α2 + 3βδ < 0.
(5.11)

Therefore we can rewrite (5.8), to use the invariant properties of the maps v1 and

v2, as follows:

q(x, t) =
1

2π

∫
Γ

eikx−w(k)tg̃(k) dk. (5.12)

Let us define these maps explicitly. Solving (5.9), we obtain

v1,2(k) = −
k
2
+
α

β
±

(
−

3
4
(
k −
α

3β
)2
+
α2 + 3βδ

3β2

) 1
2

, (5.13)

where,

z
1
2 :=

√
|z| e

iθ
2 , θ ∈ [0, 2π), (5.14)

for any z ∈ C with the principal argument θ.
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We should emphasize that v1 and v2, as defined in (5.13), are analytic for the

values of k ∈ D+ when α2 + 3βδ < 0, and of k ∈ D̃+ when α2 + 3βδ ≥ 0. Observe

that the intersection of the branch cuts and the corresponding region D+, or D̃+, is empty

set. Indeed, the values of k defined in (5.10) also correspond to the branch points of the

term with complex square root in (5.13). So, the extra deformation D̃+ also preserves the

analyticity of these maps.

Remark 5.1 Note that v1 and v2 can also be defined as single-valued functions depending

on k. Even though this has no pros on our process, we refer to the corresponding part in

Chapter 4.

As we mentioned before, we use the invariant properties of these maps on the

global relation (5.3), since this relation is not valid for k ∈ Γ(Note that Im k ≥ 0 on Γ).

The idea, which is changing k with the maps v1 and/or v2, makes sense if and only if Im

v1(k) ≤ 0 and/or Im v2(k) ≤ 0 for k ∈ Γ. To this end, we prove the following lemma.

Lemma 5.1 If k ∈ D+, then Im v1(k) ≤ 0, and Im v2(k) ≥ 0, where

v1(k) := −
k
2
+
α

β
−

(
−

3
4
(
k −
α

3β
)2
+
α2 + 3βδ

3β2

) 1
2

, (5.15)

and

v2(k) := −
k
2
+
α

β
+

(
−

3
4
(
k −
α

3β
)2
+
α2 + 3βδ

3β2

) 1
2

. (5.16)

Proof We have a system of equations from the real and the imaginary parts of the

equation (5.9), where v stands for v1 and v2. Namely, we have

(
vR +

kR

2
−
α

2β

) (
vI +

kI

2

)
=

(
α

4β
−

3kR

4

)
kI (5.17)(

vR +
kR

2
−
α

2β

)2

−

(
vI +

kI

2

)2

= −
3
4

k2
R +

3
4

k2
I +
α

2β
kR +

α2

4β2 +
δ

β
. (5.18)

Define ṽR := vR +
kR
2 −

α
2β , ṽI := vI +

kI
2 , c := α

4β −
3kR
4 and d := −3

4k2
R +

3
4k2

I +
α
2βkR +

α2

4β2 +
δ
β

and then substitute (5.17) into (5.18). We obtain

ṽ4
I + dṽ2

I − c2k2
I = 0. (5.19)
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Solving (5.19) for ṽ2
I , we get

vI = −
kI

2
−

√
−d
2
+

√
d2

4
+ c2k2

I ,

which is clearly less than or equal to zero, or

vI = −
kI

2
+

√
−d
2
+

√
d2

4
+ c2k2

I ,

which is greater than or equal to zero by the definition of the domain D+.

Indeed, by definition (5.7), for k ∈ D+ we have

3(kR −
α

3β
)2 − k2

I −
α2 + 3βδ

3β2 ≥ 0,

which can be arranged to

3
4

k2
R −

1
4

k2
I −
α

2β
kR −

δ

4β
≤ 0.

For kI , 0(note that if kI = 0, then we are done) this is equivalent to

c2k2
I ≥

k4
I

16
+ d

k2
I

4
.

After completing the square, and then taking square root we have

−kI

2
+

√
−d
2
+

√
d2

4
+ c2k2

I ≥ 0.
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On the other hand, v1 corresponds to the one with the negative imaginary part, since

Im v1(k) = −
kI

2
−

√
|k∗| sin

(
Arg(k∗)

2

)
≤ 0,

for k∗ := −3
4

(
k − α

3β

)2
+
α2+3βδ

3β2 , since Arg(k∗)
2 ∈ [0, π) and kI ≥ 0. Hence, Im v2(k) ≥ 0

follows directly. □

Remark 5.2 Lemma 5.1 has a significant importance on the discussion about the number

of the boundary conditions for the higher-order Schrödinger equation for the case β < 0.

Indeed, the only valid identity, i.e. (5.20) below, for k ∈ Γ, has three unknowns g̃0, g̃1

and g̃2. So, we have one equation with three unknowns. This means one variable can

be written in terms of the other two, which have to independent. In conclusion, this

explains why the problem (5.1) need to be studied with two boundary conditions when

β < 0. In general for evolution equations ∂tu + P(−i∂x)u = 0, where P denotes any

polynomial, Fokas method gives an opportunity to determine the exact number of the

boundary condition needed. This idea is explained briefly in Deconinck et al. (2014).

By Lemma 5.1, we have an identity as

ew(k)tq̂(v1, t) = (−βv2
1 + αv1 + δ)g̃0[w(k), t] + (iβv1 − iα)g̃1[w(k), t] + βg̃2[w(k), t], (5.20)

which is valid for k ∈ D+, since Im v1(k) ≤ 0. Solving (5.20) in terms of g̃2[w(k), t] gives

βg̃2[w(k), t] = (βv2
1 − αv1 − δ)g̃0[w(k), t] − (iβv1 − iα)g̃1[w(k), t] + ew(k)tq̂(v1, t).

Hence, we rewrite

g̃(k, t) = (k − v1)(α − βk − βv1)g̃0[w(k), t] + iβ(k − v1)g̃1[w(k), t] + ew(k)tq̂(v1, t),
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and obtain

q(x, t) =
1

2π

∫
Γ

eikx−w(k)t ((k − v1)(α − βk − βv1)g̃0[w(k), t] + iβ(k − v1)g̃1[w(k), t]) dk

+
1

2π

∫
Γ

eikxq̂(v1, t)dk.

The second integral and the contribution of the first integral from t to T ′ above are

equal to zero by Cauchy’s theorem, and we obtain

q(x, t) =
1

2π

∫
Γ

eikx−w(k)t ((k − v1)(α − βk − βv1)g̃0[w(k),T ′] + iβ(k − v1)g̃1[w(k),T ′]
)

dk,

(5.21)

or equivalently, by rewriting v1 explicitly, we have the representation formula as follows:

q(x, t) =
1

2π

∫
Γ

eikx−w(k)t (ϕ0(k)g̃0[w(k),T ′] + ϕ1(k)g̃1[w(k),T ′]
)

dk (5.22)

where

ϕ0(k) = −
3β
2

k2 + αk +
α2

4β
+ δ + (βk − δ)

−3
4

(
k −
α

3β

)2

+
α2 + 3βδ

3β2

 1
2

(5.23)

and

ϕ1(k) =
3iβ
2

k − iα + iβ
−3

4

(
k −
α

3β

)2

+
α2 + 3βδ

3β2

 1
2

, (5.24)

where z
1
2 is defined as in (5.14) for any complex z.

Compatibility conditions. Under the regularity results of each decomposed model,

we restrict the range for s to [0, 2] − { 12 ,
3
2 }. We need to impose the first condition

u0(0) = h0(0) (and naturally g0(0) = 0),
1
2
< s ≤ 2, s ,

3
2

(5.25)

as in Chapter 4. In addition, if 3
2 < s ≤ 2 then 1

2 <
s
3 ≤

2
3 . Therefore, both of the

traces u0(0) and h1(0) are well-defined. Furthermore, since yx(0, ·) and zx(0, ·) belong to
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H
s
3
t (0,T ) by Theorems 3.2 and 3.5, the traces yx(0, 0) and zx(0, 0) are well-defined and

equal to u′0(0) and 0, respectively. So, we need to impose also the second condition

u′0(0) = h1(0) (and naturally g1(0) = 0),
3
2
< s ≤ 2. (5.26)

Sobolev-type estimates. We have the following space estimate.

Theorem 5.1 Let s ≥ 0. Then, the unique solution q of the reduced initial-boundary

value problem (5.2) satisfies

||q(·, t)||Hs
x(R+) ≤ c

(
1 +
√

T ′ecT ′
) 1∑

b=0

||gb||
H

s+1−b
3

x (0,T ′)
(5.27)

uniformly for t ∈ [0,T ′], where c depends only on s, α, β, δ.

Proof We utilize the representation formula given in (5.22) obtained by Fokas method

for the solution q. Parameterize Γ depending on the different scenarios on the value of

α2 + 3βδ as follows:

Γ :=

 γ1 ∪ γ2 ∪ γ3 ∪ (−γ4) ∪ (−γ5) ∪ γ6, if α2 + 3βδ ≥ 0,

γ1 ∪ γ3 ∪ (−γ4) ∪ γ6, if α2 + 3βδ < 0.
(5.28)

where
γ1(m) = m, −∞ < m ≤ c1,

γ2(m) = c1 + im, 0 < m < λ,

γ3(m) =
α +

√
3β2m2 + α2 + 3βδ

3β
+ im, λ ≤ m < ∞,

γ4(m) =
α −

√
3β2m2 + α2 + 3βδ

3β
+ im, λ ≤ m < ∞,

γ5(m) = c2 + im, 0 < m < λ,

γ6(m) = m, c2 ≤ m < ∞,

(5.29)

such that c1 =
α+
√

3β2λ2+α2+3βδ
3β , c2 =

α−
√

3β2λ2+α2+3βδ
3β , and the real number λ, that behaves
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like a cursor depending on the constants α, β, δ, is defined to satisfy the following:

 λ =
√
−3(α2+3βδ)
−3β if α2 + 3βδ < 0,

√
α2+3βδ
−β

< λ < ∞ if α2 + 3βδ ≥ 0.
(5.30)

Notice that c1 = c2 =
α
3β when α2 + 3βδ < 0.

Using the above parameterization, we can rewrite (5.22) as follows:

q(x, t) :=
6∑

n=1

1∑
b=0

qn,b(x, t), (5.31)

where

qn,b(x, t) =
1

2π

∫
In

eiγn(m)x−w(γn(m))tϕb(γn(m))g̃b(w(γn(m)),T ′)γ′n(m)dm (5.32)

together with a special definition

q2,0 = q2,1 = q5,0 = q5,1 ≡ 0, if α2 + 3βδ < 0, (5.33)

for covering the absence of γ2 and γ5 in this case. The intervals In of the integral (5.32) is

defined as
I1 = (−∞, c−],

I2 = (−I5) = (0, λ),

I3 = (−I4) = [λ,∞),

I6 = [c+,∞).

(5.34)

The minus sign in front of I4 and I5 in (5.34) is used in the directional sense. In addition,

in (5.32), ϕr is given in (5.23) and (5.24), respectively for r = 0 and r = 1.

We analyze each of twelve elements qn,r, defined in (5.32)-(5.33), of the solution
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q, separately. Let us start with q1,b(x, t), which can be rewritten explicitly as

q1,b(x, t) =
1

2π

∫ c1

−∞

eimx−w(m)tϕb(m)g̃b(w(m),T ′)dm. (5.35)

This integral represents the inverse (spatial) Fourier transform of the function

Q̂1,b(m; t) =

 e−w(m)tϕb(m)g̃b(w(m),T ′), if m ≤ c1;

0, if m > c1.
(5.36)

On the other hand, using the compact support condition on the boundary data gb, we have

g̃b(w(m),T ′) = ĝb(iw(m)), (5.37)

for b ∈ {0, 1}. Therefore, we get

||q1,b(·, t)||2Hs
x(R+) ≤ ||q1,b(·, t)||2Hs

x(R) =

∫ ∞

−∞

(1 + m2)s|Q̂1,b(m, t)|2dm

≲

∫ c1

−∞

(1 + m2)s|ϕb(m)|2|g̃b(iw(m))|2dm.

Let us define τ(m) := iw(m) = βm3 − αm2 − δm. The map τ is real-valued and monotoni-

cally decreasing if α2 + 3βδ ≤ 0. When α2 + 3βδ > 0, τ is still monotonically decreasing

on (−∞, c1]. Therefore, there is no harm to change variable from m to τ. So, at first we

have

||q1,b(·, t)||2Hs
x(R+) ≲

∫ c1

−∞

(1 + m2)s|ϕb(m)|2|ĝb(τ(m))|2dm.

And then, note that there exists a constant c depending on α, β, δ such that

sup
m≤c1

(1 + m2)s|ϕb(m)|2

(1 + τ2(m))
s+1−b

3 τ′(m)
≤ c < ∞. (5.38)

88



See Lemma 4.3 for an analogous argument in details. So, we get

||q1,b(·, t)||2Hs
x(R+) ≲

∫ c1

−∞

(1 + τ2(m))
s+1−b

3 |ĝb(τ(m))|2τ′(m)dm

=

∫ iw(c1)

∞

(1 + τ2)
s+1−b

3 |ĝb(τ)|2dτ ≤ ||gb||
2

H
s+1−b

3
t (R)

= ||gb||
2

H
s+1−b

3
t (0,T ′)

.

Note that iw(c1) ∈ R. Hence, we obtain for r = 0, 1 that

||q1,b(·, t)||Hs
x(R+) ≲ ||gb||

H
s+1−b

3
t (0,T ′)

. (5.39)

Using the same steps, it is straightforward to obtain for b = 0, 1 that

||q6,b(·, t)||Hs
x(R+) ≲ ||gb||

H
s+1−b

3
t (0,T ′)

. (5.40)

Consider q2,b, now. Recall that it is defined in (5.33) specially as q2,b = 0, when

α2+3βδ < 0. So, we assume α2+3βδ ≥ 0 for this case. We use the interpolation technique

here. For any j ∈ N0, we have

∂ j
xq2,b(x, t) =

i
2π

∫ λ

0
(iγ2(m)) jeiγ2(m)x−w(γ2(m))tϕb(γ2(m))g̃b(w(γ2(m)),T ′) dm, (5.41)

and so,

||∂ j
xq2,b(·, t)||2L2

x(R+) =
1

4π2

∫ ∞

0

∣∣∣∣∣∣
∫ λ

0
(iγ2(m)) jeiγ2(m)x−w(γ2(m))tϕb(γ2(m))g̃b(w(γ2(m)),T ′) dm

∣∣∣∣∣∣2 dx

(5.42)

Observe that
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∣∣∣∣∣∣
∫ λ

0
(iγ2(m)) jeiγ2(m)x−w(γ2(m))tϕb(γ2(m))g̃b(w(γ2(m)),T ′) dm

∣∣∣∣∣∣
≤

∫ λ

0
e−mx−βtm(λ2−m2)|γ2(m)| j|ϕb(γ2(m))| |g̃b(w(γ2(m)),T ′)| dm

≤ e
−2βλ3T ′

3
√

3

∫ λ

0
e−mx|γ2(m)| j|ϕb(γ2(m))| |g̃b(w(γ2(m)),T ′)| dm,

since Re(−w(γ2(m))t) = −βtm(λ2 − m2) ≤ −2βλ3T ′

3
√

3
for 0 ≤ m ≤ λ and 0 ≤ t ≤ T ′. So, we

have

||∂ j
xq2,b(·, t)||2L2

x(R+) ≤
ecT ′

4π2

∫ ∞

0

(∫ ∞

0
e−mx|γ2(m))| j|ϕb(γ2(m))| |g̃b(w(γ2(m)),T ′)|χ(0, λ) dm

)2

dx,

(5.43)

where c = −2βλ3

3
√

3
. Then, by the boundedness of Laplace transform, we have

||∂ j
xq2,b(·, t)||2L2

x(R+) ≲ ecT ′
∫ λ

0
|γ2(m))|2 j|ϕb(γ2(m))|2 |g̃b(w(γ2(m)),T ′)|2dm. (5.44)

Using the definition (5.4) of g̃b together with Cauchy-Schwarz inequality, we get

||∂ j
xq2,b(·, t)||2L2

x(R+) ≲ ecT ′T ′∥gb∥
2
L2

t (0,T ′)

∫ λ

0
|γ2(m))|2 j|ϕb(γ2(m))|2dm ≲ ecT ′T ′∥gb∥

2
L2

t (0,T ′).

(5.45)

Therefore, we obtain for b = 0, 1 that

∥q2,b(·, t)∥Hs
x(R+) ≲ ecT ′

√
T ′∥gb∥L2

t (0,T ′) ≤ ecT ′
√

T ′∥gb∥
H

s+1−b
3

t (0,T ′)
. (5.46)

Using the same steps, it is straightforward to obtain for b = 0, 1 that

∥q5,b(·, t)∥Hs
x(R+) ≲ ecT ′

√
T ′∥gb∥

H
s+1−b

3
t (0,T ′)

. (5.47)

For the other estimates on qn,b for n = 3, 4 and b = 0, we use the corresponding
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part in the case of β > 0. Although the change of the sign of β sometimes creates differ-

ences about the analysis of the higher-order Schrödinger equations, such as the number of

the boundary condition, we can also observe similarities in the details. Indeed, the bound-

aries γ3 and γ4, defined in (5.29), coincides with the ones defined for the single boundary

condition case. It is also straightforward to apply the arguments therein for b = 1, and

hence we have

||qn,b(·, t)||Hs
x(R+) ≲ ||gb||

H
s+1−b

3
t (0,T ′)

. (5.48)

for n = 3, 4 and b = 0, 1. Combining all estimations above (5.39)-(5.48) in the view of

(5.31), we complete the proof. □

Strichartz estimates. We have the theorem.

Theorem 5.2 Let s ≥ 0 and (µ, r) be higher-order Schrödinger admissible in the sense of

(3.29). Then,

∥q∥Lµt ((0,T ′);Hs,r
x (R+)) ≲

(
1 + ecT ′(T ′)

1
µ+

1
2
) 1∑

b=0

∥gb∥
H

s+1−b
3

t (0,T ′)
(5.49)

where H s,r
x (R+) is the restriction on R+ of the Bessel potential space H s,r

x (R) defined by

(3.28) and the inequality constant depends only r, s, while c depends on α, β, δ and r.

Proof We use the same definitions (5.28) and (5.34) of q and Γ, respectively. For the

estimation of q1,b(x, t), we switch the initial-boundary value problem to a Cauchy problem.

Combining (5.35) and (5.36), we rewrite

q1,b(x, t) =
1

2π

∫ ∞

−∞

eimx−w(m)tQ̂1,b(m)dm, (5.50)

which is defined only for x > 0, but it makes also sense for the negative values of x. There-

fore, we extend this equation for all x ∈ R, and then we observe that (5.50) represents the

solution of the Cauchy problem

i(q1,b)t + iβ(q1,b)xxx + α(q1,b)xx + iδ(q1,b)x = 0, x, t ∈ R,

q1,b(x, 0) = Q1,b(x), x ∈ R.
(5.51)
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Then, by Theorem 3.3 and the inequality (5.39), we have

∥∥∥q1,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R+))
≤

∥∥∥q1,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R))
≲

∥∥∥Q1,b

∥∥∥
Hs

x(R)
≲ ∥gb∥

H
s+1−b

3
t (0,T ′)

. (5.52)

The same idea yields directly the estimate on q6,b(x, t), i.e.

∥∥∥q6,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R+))
≲ ∥gb∥

H
s+1−b

3
t (0,T ′)

. (5.53)

Consider q2,b, now. Recall that if α2 + 3βδ < 0, then q2,b ≡ 0. So, we assume

α2 + 3βδ ≥ 0 in this case. We first have

∥∥∥q2,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R+))
≤ (T ′)

1
µ

∥∥∥q2,b(·, t)
∥∥∥

Hs,r
x (R+))

. (5.54)

Using the interpolation inequality for Lp-norm(see Preliminaries), we have for

each j ∈ N0 that

∥∥∥∂ j
xq2,b(·, t)

∥∥∥
Lr

x(R+))
≤

∥∥∥∂ j
xq2,b(·, t)

∥∥∥ 2
r

L2
x(R+))

∥∥∥∂ j
xq2,b(·, t)

∥∥∥1− 2
r

L∞x (R+))
. (5.55)

By (5.45), we already have

∥∥∥∂ j
xq2,b(·, t)

∥∥∥ 2
r

L2
x(R+))

≲ ecT ′(T ′)
1
r ∥gb∥

2
r

L2
t (0,T ′)
. (5.56)

On the other hand, we have directly by the definition of g̃b and (5.41) that

∥∥∥∂ j
xq2,b(·, t)

∥∥∥1− 2
r

L∞x (R+))
≲ ecT ′(T ′)

1
2−

1
r ∥gb∥

1− 2
r

L2
t (0,T ′)
. (5.57)

Combining all above (5.54)-(5.57), using the equivalence of Bessel and the Sobolev
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norm (4.71), and then interpolating for the non-integer values of s, we obtain that

∥∥∥q2,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R+))
≲ ecT ′ (T ′) 1

µ+
1
2 ∥gb∥L2

t (0,T ′) ≤ ecT ′ (T ′) 1
µ+

1
2 ∥gb∥

H
s+1−b

3
t (0,T ′)

. (5.58)

Similarly, one can obtain

∥∥∥q5,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R+))
≲ ecT ′ (T ′) 1

µ+
1
2 ∥gb∥

H
s+1−b

3
t (0,T ′)

. (5.59)

As we did for the Sobolev-type of estimates, we use our previous results for the

terms qn,b for n = 3, 4, that is proved as follows:

∥∥∥qn,b

∥∥∥
Lµt ((0,T ′);Hs,r

x (R+))
≲ ∥gb∥

H
s+1−b

3
t (0,T ′)

. (5.60)

for n = 3, 4 and b = 0, 1. Combining (5.52)-(5.60), we complete the proof. □

5.2. Solution map

It is classical to use a fixed point argument for nonlinear analysis of a partial

differential equation. To this end, we define a solution operator u → Φu associated with

the forced linear initial-boundary value problem (4.2) as follows:

Φu := y|QT + zu|QT + qu|(0,T )

≡ S [E0u0; 0]
∣∣∣
QT
+ S [0; f (Eu)]

∣∣∣
QT
+

1
2π

1∑
j=0

∫
Γ

eikx−w(k)t
(
ϕ j(k)g̃u

j[w(k),T ′]
)

dk
∣∣∣∣
(0,T )
,

(5.61)

for some T > 0 to be determined, QT := R+ × (0,T ), and

gu
j(t) := Eb{h j(·) − ∂ j

xS [E0u0; 0](0, ·) − ∂ j
xS [0; f (Eu)](0, ·)}(t). (5.62)
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Note that all the notations and the letters are defined, explicitly before, as in their

corresponding decomposed model.

We use the linear theory as a tool to study the well-posedness of the main nonlinear

problem (5.1). To this end, in view of (5.61), we define the solutions of the nonlinear

problem (5.1) as the fixed points of the operatorΦ. Throughout our work, we assume u0 ∈

H s
x(R+), g0 ∈ H

s+1
3

t,loc(R+) and g1 ∈ H
s
3
t,loc(R+) with s ∈ [0, 2] − { 12 ,

3
2 } and the compatibility

conditions (5.25) and (5.26) in place as necessary.

5.3. Local well-posedness

In this section, we prove the two main results for both high and low regularity

setting for the local well-posedness of the problem (5.1).

Theorem 5.3 (High regularity well-posedness) Let s ∈ ( 1
2 , 2] − { 32 } and p > 0. In addi-

tion, if p < 2Z, suppose that

if s ∈ Z+, then p ≥ s if p ∈ Z+ and odd; ⌊p⌋ ≥ s − 1 if p < Z+,

if s < Z+, then p > s if p ∈ Z+ and odd; ⌊p⌋ ≥ ⌊s⌋ if p < Z+.
(5.63)

Then, for initial data u0 ∈ H s
x(R+) and boundary data h j ∈ H

s+1− j
3

t,loc (R+) for j = 0, 1,

satisfying the compatibility conditions (5.25) and (5.26), there is T = T (u0, h0, h1) > 0

such that the initial-boundary value problem (4.1) for the HNLS equation on the half-

line has a unique solution u ∈ C([0,T ]; H s
x(R+)). Furthermore, this solution depends

continuously on the initial and boundary data.

Proof We claim to establish local well-posedness in the metric space XT := C([0,T ]; H s
x(R+))

for some T > 0, with the metric

dXT (u1, u2) := ∥u1 − u2∥XT , u1, u2 ∈ XT . (5.64)

Note that any closed ball in XT is a complete subspace.

For local existence, we need to show that the map Φ is onto and is a contraction.
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Using the similar arguments as we used before

∥∥∥y|QT

∥∥∥
XT
≲ ||u0||Hs

x(R+), (5.65)

and ∥∥∥zu|QT

∥∥∥
XT
≲ T ||u||p+1

XT
. (5.66)

Considering the last term in (5.61), we get (for say T ′ = 2T )

∥∥∥qu|(0,T )

∥∥∥
XT
≤ ||q||XT ′ ≲

(
1 +
√

T ′ecT ′
) 1∑

j=0

∥gu
j∥

H
s+1− j

3
t (0,T ′)

≲
(
1 +
√

TecT
) 1∑

j=0

∥gu
j∥

H
s+1− j

3
t (0,T )

.

(5.67)

By definition of g j, for j = 0, 1, and the temporal estimates of the corresponding

Cauchy problems, we obtain that

∥g j∥
H

s+1− j
3

t (0,T )
≲ ∥h j∥

H
s+1− j

3
t (0,T )

+ (1 + T
1
2 )∥u0∥Hs

x(R+) + c(T )∥ f (E0u)∥L2
t ((0,T );Hs

x(R)), (5.68)

where c(T ) := max{T
1
2 (1 + T

1
2 ),Tσ j} together with σ j defined for j = 0 and j = 1,

separately as in (3.42) and (3.60).

By definition of XT and the boundedness of E0, we also have

∥ f (E0u)∥L2
t ((0,T );Hs

x(R)) ≲ T
1
2 ∥u∥p+1

XT
. (5.69)

Combining all the estimations above, we deduce that

∥Φ(u)∥XT ≲ (1+T
1
2 )

(
1 +
√

TecT
)
∥u0∥Hs

x(R+) + c(T )∥u∥p+1
XT
+

(
1 +
√

TecT
) 1∑

j=0

∥hu
j∥

H
s+1− j

3
t (0,T )

.

(5.70)

In view of (5.70), we set R(T ) = 2A(T ) with

A(T ) := (1 + T
1
2 )

(
1 +
√

TecT
)
∥u0∥Hs

x(R+) +
(
1 +
√

TecT
) 1∑

j=0

∥hu
j∥

H
s+1− j

3
t (0,T )

,
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and choose T > 0 small enough so that A(T ) + c(T )Rp+1(T ) ≤ R(T ), or equivalently,

c(T )Rp(T ) ≤ 1
2 . Therefore, the map Φ takes the closed ball BR(T )(0) ⊂ XT into itself.

We show that Φ is a contraction, now. Let u1, u2 ∈ BR(T )(0). Then,

||Φ(u1) − Φ(u2)||XT =
∣∣∣∣∣∣zu1 |QT − |z

u2 |QT

∣∣∣∣∣∣
XT
+

∣∣∣∣∣∣qu1 |(0,T ) − |qu2 |(0,T )

∣∣∣∣∣∣
XT

≲ ||S [0; f (E0u1) − f (E0u2)]||C([0,T ];Hs
x(R))

+
(
1 +
√

T ′ecT ′
) 1∑

j=0

||gu1
j − gu2

j ||
H

s+1− j
3

t (0,T )
.

Using Lemma 4.7, we have

∥S [0; f (E0u1) − f (E0u2)]∥C([0,T ];Hs
x(R)) ≲ T (∥u1∥

p
XT
+ ∥u2∥

p
XT

)∥u1 − u2∥XT . (5.71)

We also have for j = 0, 1 that

∥gu1
j − gu2

j ∥
H

s+1− j
3

t (0,T )
≲ c(T )∥ f (E0u1) − f (E0u2)∥L2

T ((0,T );Hs
x(R))

≲ c(T )T
1
2 (∥u1∥

p
XT
+ ∥u2∥

p
XT

)∥u1 − u2∥XT .

Combining all above, we obtain

∥Φ(u1)−Φ(u2)∥XT ≲ c(T )T
1
2 (∥u1∥

p
XT
+∥u2∥

p
XT

)∥u1−u2∥XT ≲ c(T )T
1
2 Rp(T )∥u1−u2∥XT . (5.72)

So,Φ is a contraction for small T > 0, since R(T ) remains bounded and c(T )T
1
2 →

0 as T → 0+, and therefore Φ has a unique fixed point in BR(T )(0), which amounts to local

existence of a unique solution to (4.1) on BR(T )(0).

For the extension of this result to XT , and also for the continuous dependence on

the data, we refer to our previous work in Chapter 4 with a tiny change in the boundary

data. This is straightforward, therefore the proof for Theorem 5.3 is completed. □
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Theorem 5.4 (Low regularity well-posedness) Suppose

0 ≤ s <
1
2
, 1 ≤ p ≤

6
1 − 2s

, µ =
6(p + 1)
p(1 − 2s)

, r =
2(p + 1)
1 + 2sp

. (5.73)

Then, for initial data u0 ∈ H s
x(R+) and boundary data g j ∈ H

s+1− j
3

t,loc (R+), j = 0, 1, with

the additional assumption that if p = 6
1−2s (critical case) then ∥u0∥Hs

x(R+) is sufficiently

small, there is T = T (u0, g) > 0 such that the initial-boundary value problem (5.1)

for the HNLS equation on the half-line has a unique solution u ∈ C([0,T ]; H s
x(R+)) ∩

Lµt ((0,T ); H s,r
x (R+)). Furthermore, this solution depends continuously on the initial and

boundary data.

Proof We define the space

YT := C([0,T ]; H s
x(R+)) ∩ Lµt ((0,T ); H s,r

x (R+)),

together with

ỸT := C([0,T ]; H s
x(R)) ∩ Lµt ((0,T ); H s,r

x (R)).

First, we consider the sub-critical case 1 ≤ p < 6
1−2s so that µ−p−1

µ
> 0. Taking the solution

operator, defined via linear unification in (5.61), into consideration, we have the following

estimations.

By Theorems 3.1 and 3.3, we obtain

∥∥∥y|QT

∥∥∥
YT
≲ ||u0||Hs

x(R+), (5.74)

and by Theorems 3.4 and 3.6, together with (4.92), we also obtain

∥∥∥zu|QT

∥∥∥
YT
≲

(
T + T

µ−p−1
µ

)
∥u∥p+1

XT
. (5.75)
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To estimate the last term in (5.61), we separate gu
j(t) defined in (5.62) as follows:

gu
j(t) = Eb{h j(·) − ∂ j

xS [E0u0; 0](0, ·)}(t) − Eb{∂
j
xS [0; f (Eu)](0, ·)}(t) := gu,1

j (t) − gu,2
j (t),

(5.76)

which yields to rewrite

qu|(0,T ) := qu,1|(0,T ) − qu,2|(0,T ). (5.77)

By using the arguments in (5.67) and (5.68), we have

∥∥∥qu,1|(0,T )

∥∥∥
YT
≲

(
1 +
√

TecT
) (1 + T

1
2 )∥u0∥Hs

x(R+) +

1∑
j=0

∥h j∥
H

s+1− j
3 (0,T )

t

 . (5.78)

To estimate qu,2|(0,T ), we use a rearrangement argument which is analogously used

for the Schrödinger equation on the half-plane in Section 6 of Ref. Himonas and Mantza-

vinos (2020). Indeed, we observe that

qu,2(x, t) =
1

2π

1∑
j=0

∫
Γ

eikx−w(k)tϕ j(k)g̃u,2
j [w(k),T ′]dk

=
1

2π

1∑
j=0

∫
Γ

eikx−w(k)tϕ j(k)
(∫ T ′

0
ew(k)τ∂ j

xS [0; f (Eu)](0, τ)dτ
)

dk

=
−i
2π

1∑
j=0

∫
Γ

eikx−w(k)tϕ j(k)
(∫ T ′

0
ew(k)τ∂ j

x

(∫ t′

0
S [ f (Eu); 0](0, τ − t′)dt′

)
dτ

)
dk

= −i
∫ T ′

0
q∗(x, t − τ)dτ,

by Fubini’s theorem and the continuous (since s < 1
2 ) extension by zero of S [ f (Eu); 0]

outside [0, t′], where q∗ denotes the solution of the reduced initial-boundary value problem

(5.2) with the boundary data ∂ j
xS [ f (Eu); 0]. Hence, Theorems 4.3, 3.2, and 3.5 implies

that ∥∥∥qu,2|(0,T )

∥∥∥
YT
≲

(
1 + ecT T

1
µ+

1
2
)

(1 + T
1
2 )∥ f (Eu)∥L1

t ((0,T );Hs
x(R+)). (5.79)
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Using (4.92) and combining the above estimates, we obtain

∥Φ(u)∥YT ≲ c1(T )∥u0∥Hs
x(R+) + c2(T )∥u∥p+1

YT
+ c3(T )

1∑
j=0

∥hu
j∥

H
s+1− j

3
t (0,T )

. (5.80)

Rest of the proof directly follows by the arguments that we use in Chapter 4. The

proof is completed. □
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CHAPTER 6

CONCLUSION

The main target of this thesis was to prove that the initial-boundary value problem

for the higher-order nonlinear Schrödinger equation on the half-line is locally well-posed

in the Hadamard sense, in other words, we proved the existence of a unique local-in-time

solution that depends continuously on the initial and boundary data in the Sobolev space

H s(R) for s ≥ 0. We figured out in the details of our analysis that the initial-boundary

value problem for the higher-order nonlinear Schrödinger equation must be considered

in two separate scenario depending on the sign of the coefficient of the term involving

highest order spatial derivative. This observation arose naturally thanks to Fokas unified

transform method, which plays a crucial role to define a formula that represents the weak

solution of the corresponding reduced linear initial-boundary problem. Together with the

reduced model, we also analyzed the homogeneous and the nonhomogeneous Cauchy

problems for the higher-order nonlinear Schrödinger equation in order to use their restric-

tion on the half-line and then define a solution map for the linear forced initial-boundary

value problem.

Linear theory for the higher-order Schrödinger equation created some analytical

challenges due to the presence of more than one spatial derivatives in the construction of

the model. By handling these challenges, this thesis provided a first, complete treatment

via the Fokas method of a nonhomogeneous initial-boundary value problem for a partial

differential equation associated with a multi-term linear differential operator. In this point

of view, these details can enlighten the analyses of some other evolution equations that

have similar multi-spatiodifferential structure.

Nonlinear analysis was treated via a contraction argument for both high (s > 1
2 )

and low (0 ≤ s < 1
2 ) setting. In the former setting, we handled the nonlinearity via

the Banach algebra property; while in the latter setting, since this is no longer the case

and, instead, we used Strichartz type of estimates. This is especially challenging in the

framework of nonhomogeneous initial-boundary value problems, as it involves proving

boundary-type Strichartz estimates that are not common in the study of Cauchy problems.
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