PREDICTING SOFTWARE SIZE FROM
REQUIREMENTS WRITTEN IN NATURAL
LANGUAGE: A GENERATIVE AI APPROACH

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements of the Degree of

MASTER OF SCIENCE

In Computer Engineering

by
Dhia Eddine KENNOUCHE

July 2024
IZMiR

We approve the thesis of Dhia Eddine KENNOUCHE

Examining Committee Members:

Prof. Dr. Onur DEMIRORS
Department of Computer Engineering, izmir Institute of Technology

Prof. Dr. Oguz DIKENELLI
Department of Computer Engineering, Ege University

Asst. Prof. Dr. Emrah INAN
Department of Computer Engineering, izmir Institute of Technology

1 July 2024
Prof. Dr. Onur DEMIRORS
Supervisor Department of Computer
Engineering, [zmir Institute of Technology
Prof. Dr. Onur DEMIRORS Prof. Dr. Mehtap EANES
Head of Department of Computer Dean of the Graduate School

Engineering, [zmir Institute of Technology

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Prof. Dr. Onur Demirérs, for
his insightful guidance, and invaluable expertise throughout my research journey. His
mentorship has been instrumental in shaping my academic development.

I am also deeply thankful to Hiiseyin and Samet, whose assistance and advice
have been a constant source of encouragement. Their contributions have been

invaluable to the completion of this thesis.

To my wife, Aysel, your love, patience, and understanding have been my pillar
of strength. Your unwavering support has made this journey possible, and for that, [am
eternally grateful.

I extend my heartfelt thanks to my family members: my mother, my father,
Takai, Chihab, Somia, and Esma. Your constant encouragement, belief in me, and
emotional support have been vital to my success. Each of you has played a unique and
significant role in my life, and I am deeply appreciative of your love and care.

Finally, I want to thank all the friends and colleagues I have met throughout my
career. Your support, trust, and companionship have been a source of motivation and
strength. Each of you has contributed to my growth in ways that words cannot fully
capture.

Thank you all for being part of this journey with me.

This thesis is supported by The Scientific and Technological Research Council
of Turkey (TUBITAK) ARDEB 1001 [Project number: 121E389] program.

ABSTRACT

PREDICTING SOFTWARE SIZE FROM REQUIREMENTS WRITTEN
IN NATURAL LANGUAGE: A GENERATIVE AI APPROACH

In project management, software size measurement represents a critical process
aimed at visualizing a project. This quantification is pursued independently of the specific
technologies or technical decisions adopted during the project's development phase.
Among the various methodologies employed for this purpose, the COSMIC Functional
Size Measurement (FSM) and Event Points are used to facilitate such assessments. These
methodologies are instrumental in offering a standardized approach for measuring
software size, yet they inherently demand a considerable amount of manual effort.
Furthermore, these methods require the manual extraction of Objects of Interest and

Event Names, adding to the labor-intensive nature of the process.

In response to these challenges, this thesis implements a suite of Artificial
Intelligence (AI)-based methods that have dramatically transformed the measurement
process. These innovative approaches encompass the creation of a Regression Model that
predicts software sizes with remarkable accuracy, a Summarization Model that automates
the extraction of Event Names, and a finely tuned Large Language Model (LLM) that
generates Objects of Interest with a significant precision. The adoption of these Al-driven
techniques has proven to be highly successful, substantially minimizing the manual effort
traditionally required in software size measurement and thereby greatly enhancing both

efficiency and reliability of estimation practices.

Together, these Al-based methodologies represent a significant advancement in
software size measurements, offering a more streamlined and efficient approach. By
reducing the reliance on manual processes, these methods not only enhance the accuracy
and reliability of measurements but also contribute to a more agile project management

environment.

v

OZET

DOGAL DILDE YAZILMIS GEREKSINIMLERDEN YAZILIM
BOYUTUNU TAHMIN ETME: URETKEN YAPAY ZEKA TABANLI
BIR YAKLASIM

Proje yonetiminde, yazilim boyutunun 6lgiilmesi, bir projenin g¢esitli yonlerini
gorsellestirmeyi amaclayan kritik bir siireci temsil eder. Bu nicelendirme, projenin
gelistirme asamasinda benimsenebilecek spesifik teknolojilerden veya teknik kararlardan
bagimsiz olarak gergeklestirilir. Bu amacla kullanilan ¢esitli metodolojiler arasinda,
COSMIC Fonksiyonel Boyut Olgiimii (FSM) yontemi ve Olay Noktalar, bu tiir
degerlendirmeleri kolaylastirmak icin kullanilir. Bu metodolojiler, yazilim boyutunu
Olemek i¢in standart bir yaklagim sunmakla birlikte, dnemli miktarda manuel ¢aba
gerektirir. Ozellikle, her bir kullanim senaryosunun bireysel dzelliklerine bagl olarak
detayli hesaplamalar yapilmasini gerektirirler. Ayrica, bu yontemler, manuel olarak Ilgi
Nesneleri ve Olay Isimlerinin ¢ikarilmasini gerektirir, bu da siirecin emek yogun dogasini
artirir.

Bu zorluklara yanit olarak, bu tez, 6l¢iim siirecini dramatik bir sekilde doniistiiren
bir dizi Yapay Zeka (Al) tabanli metodolojiyi uygulamaktadir. Bu yenilik¢i yaklasimlar,
yazilim boyutlarin1 remarkable dogrulukla tahmin eden bir Dizi Regresyon Modeli, Olay
Isimlerinin ¢gikariimasini otomatiklestiren bir Ozetleme Modeli ve Ilgi Nesnelerini biiyiik
bir dogrulukla iireten ince ayarl bir Biiyiik Dil Modeli (LLM) yaratilmasini kapsar. Bu
Al odakli tekniklerin benimsenmesi, geleneksel olarak yazilim boyutunu 6lgmede gerekli
olan manuel c¢abay1 6nemli Ol¢iide azaltmis ve bdylece tahmin uygulamalarinin hem
verimliligini hem de giivenilirligini biiyiik 6l¢iide artirmigtir.

Bu AI tabanli metodolojiler, proje yonetiminde dnemli bir ilerlemeyi temsil eder,
yazilim boyutunu 6lgmek i¢in daha diizenli ve verimli bir yaklagim sunar. Manuel
stireclere olan bagimlilig1 azaltarak, bu yontemler Olclimlerin dogrulugunu ve
giivenilirligini artirmakla kalmaz, ayn1 zamanda daha cevik ve duyarli bir proje yonetim

ortamina da katkida bulunur.

To Aysel, and Maya.

vi

TABLE OF CONTENTS

ABSTRACT .. . v
OZET ... v
DEDICATION. . .ttt vi
TABLE OF CONTENTS ..o e, vii
LIST OF FIGURES. oot e e ix
LIST OF TABLES ... ottt e X
CHAPTER 1. INtroductioncoueuiiniitiiii i, 1
CHAPTER 2. Literature ReVIEWoviuiitiitiii i, 5

2.1. Background On Software Measurement, COSMIC FSM 5

2.2. Background On Event Pointsccc.ooiiiiiiiiiiiiinieccienieeeeee .. 9

2.3. Summarization Model, And LLMoooiiiiiiiiiii i, 11
2.4. Application Of Al In SSM AND COSMICcccoceiiiiiiiiinnnn... 12
CHAPTER 3. Methodologyouviniiiiii e 22
3.1. Data Collection and Preprocessingceevviriviienninniannnnn. 23

3.2. COSMIC & Event Points Measurementcccceveeneneenees 25
3.3. Model SeleCtionoiuiuiieii i 26
3.4. BERT for Word Embeddingccooiiiiiiiiiiiniiiiiiienn 27
3.5. Regression Model for Size Predictionccooiiiiiiiiiin.. 30
3.6. Fine-tuned Summarization Model for Event Name Prediction 31

3.7. Fine-tuned Large Language Model for Object of Interest (OOI)

| 5 i v 101510} | BT 33

3.8. Rationale for Model Selectionuuueueeeeeeeeeeeeaeann, 35

vii

CHAPTER 4. Results And DiSCUSSION ...ttt e e e

4.1. Results of Regression Modelsccoccvvevieiiieniieniieieeieeee e 37
4.2. Results of Summarization Model ..., 43
4.3. Results of LLM Modelooiiiiiiiiiiiiceee 44
CHAPTER 5. Conclusions And Future Workcoooiiiiiiiiiiiiiii, 45
5.1. Answers for the Proposed Research Questions 45

5.2. Efficiency and Significancy of usage of proposed estimation method 46

5.3 FULUIE WOTK ..ot e

REFERENCES ... e

viii

LIST OF FIGURES

Figure Page

Figure 3.1. Methodology used in COSMIC and Event Points measurements to create the

used Dataset. Data Preprocessing and Adaptation.ccceeeveeiveneeeeneennen. 22
Figure 3.2. Histogram of wordcount in the dataset.............coceeverieniiiiniiniiniiieceee 24
Figure 3.3. Statistics about dataset of Event POINts.........ccccooeeviriiiniiiiiiiiiicciecee 24
Figure 3.4. Statistics about dataset of COSMIC SiZe........ccceveeririeniiniiriineiieeiesieenees 25

Figure 3.5. Differences in pre-training model architectures. BERT uses a bidirectional
Transformer. OpenAl GPT uses a left-to-right Transformer. BERT
representations are jointly conditioned on both left and right context in all
JAYEIS.2 .ot 27

Figure 3.6. An illustration of main components of the transformer model.*................. 28

Figure 3.7. Steps taken for creation of a Regression Model for COSMIC & Event Points
ESHMAtION ..ovitiiiiiiieiiciicceesceee ettt 30

Figure 3.8. Steps taken for fining tuning T5 model for Event Names extraction........... 31

Figure 3.9. Original formula of ROUGE-N as an n-gram recall between a candidate
summary and set of reference sSUMmMAries.™.............ccocoeveveveeeereeeereeereeeenne, 33

Figure 3.10. Steps taken for creation of fine-tuned LLM model used for COSMIC

Object of interest EXtraCtiONcccvveevieriieeieeriie et eiee et eee et e e e aeeeeae e 33
Figure 3.11. Reparameterization. LORA only train A and B>*ccoooviiiererinnne, 34
Figure 3.12. Benchmarks of performance of Mistral 7b and different Llama models.> 35
Figure 4.1. Results of COSMIC prediCtions.coueveeriieienienienieniceieeie e 37
Figure 4.2. Results of Event Points predictions.ccceeverienerienienieeieneeieee e 37
Figure 4.3. Event Point Prediction ACCUTACIESevueeruirieniieiiiienieeie e 38
Figure 4.4. Event Point Training Model MSE and MAE Average results. 39
Figure 4.5. COSMIC Point Prediction ACCUTACIESccueeverieereirieniieiieienieeieeee e 40
Figure 4.6. COSMIC Points Training Model MSE and MAE Average results. 40
Figure 4.7. Comparison between Regression vs Aggregation for totals. 41
Figure 4.8. COSMIC Point Prediction Accuracies using BERT SE.cccccceviiennnn, 42
Figure 4.9. Prediction Accuracies for Event Points using BERT SE...............ccc....... 42
Figure 4.10. T5 model fine tuning MetriCsccceevuerieriieienienieiiesieeee et 43

X

LIST OF TABLES

Table Page

Table 2.1. Summary of Literature Review and the different existing approaches for
using Al in Software Size EStimationccccceeviieiiieniieniiieniecie e 17

Table 2.2. Comparison of usage of Al in COSMIC, Event Points, or Size Estimation in
ZONETAL 1.ttt ettt ettt e e b e ae e e taeetaesateenneeeneas 21

Table 4.1. Comparison between original Use Case Line, original event name related to

it, and the Predicted Event Name using summarization model. 43

CHAPTER 1

INTRODUCTION

In the domain of software development, achieving the dual objectives of
delivering a functional product within specified timeframes and budgetary allocations is
paramount.! Central to realizing these objectives is the precise measurement of software

size at the outset and during the progress of a project.”

Software size measurement is a crucial step in the planning phase of software
development, helping teams to forecast the effort, resources, and time required for a
project.® Size measurement methods fall into two broad categories: formal and expert

judgments, each with its own approach and set of techniques.*

Formal software size measurement methods are grounded in quantifiable data and
structured techniques. These methods aim to provide a repeatable and unbiased measure
by relying on measurable attributes of software development. For instance, Lines of Code
(LOC) measures the number of lines of code, while Function Points (FP) measure the
functionality delivered to the user, factoring in the complexity of various inputs, outputs,
and interactions.’ Use Case Points (UCP) consider the use cases of a project, assessing
the complexity and the technical and environmental elements involved. Event Points
focuses on event-driven architectures, and the different types of events needed for
building such a system®, these events can be split into three categories: Communication,
Processing, and Interaction. These objective methods strive for accuracy and precision,
utilizing historical data, mathematical models, or predefined metrics to measure software
size.

On the other hand, subjective software size estimation methods depend on the
judgment, experience, and intuition of individuals or groups.” Unlike objective methods
that focus on measurable aspects, subjective techniques are based on perceptions and
expectations. Expert judgment is one such method, where one or more experts use their
knowledge of similar projects to estimate the size of the current project. The Delphi
Technique involves a panel of experts who, through structured communication and

multiple rounds of questionnaires, refine their estimates to converge on an accurate

prediction.® Planning Poker, often used in Agile development, is a consensus-based
technique that employs a gamified approach to estimating effort or relative size, aiming
to avoid bias by having team members make estimates anonymously.’

The key difference between these approaches lies in their basis of measurement—
objective methods are data-driven and repeatable, less influenced by individual biases,
while subjective methods are flexible, relying on personal insights but susceptible to
variability based on the estimators' experience and biases. Objective methods require
historical data or a well-defined model, which might not be available for novel projects,
whereas subjective methods can be applied even with limited information, capturing the

nuances of complex or innovative projects through expert insight.*

In this dissertation, the focus will be placed upon two distinct objective
methodologies: COSMIC Functional Size Measurement (COSMIC FSM) and Event
Points. The COSMIC FSM methodology enjoys international recognition and is
employed by a diverse array of organizations and projects globally for a multitude of
purposes, including but not limited to cost measurement, project planning, and
productivity analysis.!? It represents one of several available functional size measurement
methods, alongside others such as the International Function Point Users Group (IFPUG)
Function Point Analysis (FPA) and the Mk II FPA. Each method is governed by its own
specific set of rules and applications, yet collectively, they share the common objective

of providing a standardized approach to measuring the functional size of software.!!

On the other hand, Event Points emerges as a novel FSM methodology
specifically designed to address the unique requirements of event driven architectures.®
This method seeks to offer more precise measurements by focusing on the events that
transpire within such projects. Through the lens of Event Points, the aim is to capture and
quantify the dynamic interactions, communication, processing, and decision
functionalities inherent in event driven project, thereby facilitating more accurate and

reflective software measurement and analysis.'?

A principal issue associated with both COSMIC Functional Size Measurement
(COSMIC FSM) and Event Points methodologies is their reliance on manual
measurement processes.'> Such processes are heavily dependent on the expertise and
discernment of the estimator, thereby introducing a considerable level of variability and
the potential for inaccuracies.'* This variability and susceptibility to error have

contributed to a diminished interest in the adoption of these methods, leading

organizations to prefer Subjective Software Size Measurement methods.!> The labor-
intensive characteristic of manual measurements highlights the imperative for the
development and implementation of more objective and automated strategies for software

size estimation.

Despite various efforts to automate software size measurement we will discuss in
detail in the following chapter, a notable research gap persists: the application of Machine
Learning (ML) models for the automation of COSMIC FSM process has yet to be
explored comprehensively, and Event Points measurement has not been explored yet at
all. Moreover, the automation of critical tasks, including the identification of Objects of
Interest and the generation of Event Names, remains largely unaddressed. These tasks,
crucial for the accurate and efficient measurement of software size, continue to be

performed subjectively and manually.

This thesis endeavors to address these shortcomings by investigating the potential
of ML models to automate the measurement of Event Points and COSMIC FSM, facilitate
the identification and naming of Objects of Interest, and generation of Event names in
software size estimation. By proposing a shift from subjective, manual estimation
methods to an objective, ML-driven approach, this research aims to significantly improve
the accuracy, efficiency, and reliability of software size estimation. Such advancements
are expected to improve resource allocation and project planning, thereby contributing to

the successful execution of software development projects.

Employing a Sequence Regression model to predict COSMIC Functional Size
Measurement (FSM) utilizing our proprietary dataset, we attained an average accuracy
level denoted as 94%. A similar Sequence Regression model applied to Event Points
yielded an average accuracy of 92%. To aggregate predicted COSMIC points, the
summation approach resulted in an outcome of 83%, whereas the application of the same
Sequence Regression model facilitated an achievement of 88%. A parallel procedure was
conducted for Event Points, where the summation yielded 92, and the Sequence

Regression model application resulted in 81%.

For extracting Event Names, a Summarization Model was utilized, and the
outcomes were evaluated using Rouge Metrics, yielding scores of Rougel: 73%, Rouge2:
49%, and Rougel: 70%, respectively. In the task of extracting the Object of Interest, the

mistral-7b model was employed, achieving an exact match accuracy of 79%.

This dissertation is organized into several chapters, each designed to explore
different facets of “A Method for Predicting Software Size from Requirements” in depth.
Following this introduction, the structure of the dissertation is as follows:

Chapter 2: Literature Review - This chapter provides a comprehensive review of
the existing literature relevant to Al usage in SSM. It critically examines previous studies,
and methodologies that have shaped the current understanding of the subject. The aim is
to identify gaps in the existing knowledge base and to position the current research within

the broader academic discourse.

Chapter 3: Methodology - In this chapter, the research methodology employed in
this study is detailed. It outlines data collection methods, and analytical techniques used
to address the research questions. The rationale behind the choice of methodology and its
alignment with the research objectives are also discussed, ensuring transparency and

reproducibility of the research process.

Chapter 4: Results and discussion - This chapter synthesizes the findings of this
thesis, discussing the different metrics used in the different models and details the result

of each model.

Chapter 5: Conclusion and Recommendations - The concluding chapter
summarizes the key findings of the research, reflecting on the research objectives and
questions. It also outlines the limitations of the study and provides recommendations for

future research in the area.

CHAPTER 2

LITERATURE REVIEW

Chapter 2 is about diving into the research that's been done on SSM, COSMIC
FSM, and usage of Al within SSM context. We'll start by looking at the basics of software
measurement and why COSMIC FSM is important. Then, we'll talk about Event Points,
another important method of software measurement. After that, we'll explore how
summarization models and Language Models (LM) work and why they matter in software
measurement. Finally, we'll see how Artificial Intelligence (Al) is being used in software
measurement and COSMIC, looking at different studies and trends. This chapter lays the

groundwork for understanding the rest of the research in this thesis.

2.1. Background on Software Measurement, COSMIC FSM

In the nascent stages of software size assessment, the primary metric utilized was
Lines of Code (LOC), serving as a barometer for productivity and quality within the
software development milieu. Nonetheless, the efficacy of LOC encountered notable
impediments due to its reliance on specific programming languages and its incapacity to
comprehensively encapsulate the intricacies of software functionalities. Consequently,
the emergence of Function Points as an alternative metric ensued, aimed at quantifying
the business functionality intrinsic to software delivery. While Function Points marked a
progression by mitigating certain limitations of the LOC metric, they encountered
challenges of their own, including subjective interpretation and a lack of automated
mechanisms. Simultaneously, explorations into alternative size measurement
methodologies, such as Object-Oriented (OO) metrics and Use Case Points, were pursued
but faced hurdles in achieving widespread acceptance within the software development

community.'®

The introduction of Agile methodologies ushered in novel metrics for gauging

software size, notably Story Points, which accentuate the business value engendered

through iterative development cycles. This paradigm shift reflects the ongoing endeavor
within the software realm to pinpoint the most efficacious means of measuring software
size. This endeavor is informed by multiple factors, including the aspiration to augment
productivity, ensure quality, and optimize business value. Presently, there is a discernible
inclination towards embracing service-oriented architectures, promising refined practices
for sizing software.!® This inclination underscores the dynamic nature of software
measurement practices and the perpetual endeavor to reconcile the imperatives of

technological advancement with the exigencies of precise and meaningful measurement.

Functional size measurement (FSM) entails the quantification of the functionality
furnished by a software system through the evaluation of its cohesive sequences of
execution. Alan Albrecht pioneered this concept in 1979 through the methodology of
function point analysis (FPA), galvanizing the development and evolution of diverse

functional size metrics and methodologies over subsequent years.!’

Functional Size Measurement methods are delineated into two distinct
generations, each embodying a disparate approach and underlying philosophy towards
quantifying software functionality.'8

The first generation of FSM methods is characterized by its empirical
underpinning, predominantly drawing from observed effort or tangible software
components. This category encompasses methodologies such as IFPUG Function Point
Analysis (FPA)", and Nesma FPA.?’ An inherent limitation of these first-generation
methods lies in their dependence on subjective assessment criteria rather than a
universally accepted measurement unit, employing a rule-based approach to evaluate
segments of the Functional User Requirements.'® While this approach assigns
measurement units based on specific criteria, it lacks a standardized unit of measurement,

potentially engendering variability, and inconsistency in results.

Conversely, the second generation of FSM methods emerged in response to the
deficiencies of their precursors, with a concerted effort to ground the measurement
process in fundamental software engineering principles. These principle-based methods
strive for a well-defined measurement unit, departing from the subjective assessment
rules of the first generation. The focus shifts towards identifying instances of a predefined
measurement unit, aspiring towards a more objective and scientifically rigorous

framework for measuring software size. This transition towards second-generation FSM

methods signifies a notable advancement in the field, underscoring a collective shift
towards more rigorous, principle-based approaches in assessing software functionality.'®

This distinction between the two generations of FSM methods elucidates the
evolution and refinement in methodologies aimed at measuring software size,
spotlighting an industry-wide inclination towards adopting more principled and

scientifically grounded approaches.

Numerous fundamental concepts underlie the COSMIC methodology!'®,
particularly within the context of Agile software development projects. These concepts
play a crucial role in refining the accuracy and dependability of planning and
measurement processes within such projects. The following delineates these key

concepts?!:

Functional Size Measurement: At the heart of COSMIC's application lies its
functionally sizing of software systems. This holds relevance at the micro-level within
Agile projects, where it is employed to gauge elements such as User Stories. This
approach facilitates a detailed and precise assessment of software functionality, crucial

for Agile methodologies that prioritize flexibility and incremental development.

COSMIC Function Point (CFP): The methodology utilizes COSMIC Function
Points as a metric for measuring the size of software functions. Serving as a tangible
quantifier, this metric aids in the measurement and planning phases of Agile software
projects. By furnishing a standardized measure of software functionality, CFPs enable

more accurate forecasting and resource allocation.

Parametric Approach: COSMIC advocates for a parametric approach to
project planning and measurement, supplementing subjective insights derived from
developer experience with a structured model. Drawing inspiration from Boehm's
Constructive Cost Model (COCOMO), this approach suggests that incorporating such
models can significantly enhance the accuracy of project measurements in Agile

environments.

Documentation Quality: The methodology underscores the significance of
documentation quality in determining the functional size of each User Story. High-
quality, comprehensive, and precise documentation is pivotal as it directly influences
the efficacy of Agile planning and measurement processes. Emphasizing documentation
quality ensures that all stakeholders possess a clear and shared understanding of project

requirements and scope.

Continuous Refinement of Estimates: COSMIC encourages the ongoing
refinement of project estimates, leveraging a Project Historical Database that
encompasses qualitative and quantitative data. This iterative measurement approach
permits developers to adjust forecasts based on empirical data and accumulated project
experience, thereby enhancing the reliability and accuracy of project timelines and

resource requirements.

In summary, the integration of the COSMIC methodology into Agile software
development projects aims to enhance the effectiveness of planning, measurement, and
decision-making processes. By emphasizing documentation quality and the strategic use
of historical data alongside a parametric approach, COSMIC offers a comprehensive

framework for addressing the unique challenges of Agile project environments.

The progression and refinement of the COSMIC method for functional size
measurement can be comprehensively understood through its evolving principles and
features. Initially, COSMIC focused on quantifying software systems' functional size by
identifying and measuring Base Functional Components (BFCs) outlined within

functional user requirements.?!

Central to COSMIC's methodology were several key principles, including process
initiation through inputs, execution of data processing tasks, and delineation of data
groups as subsets of Objects of Interest (OOI). A significant innovation introduced by
COSMIC was the concept of data movements—categorized into Entry, Exit, Read, and
Write types—aimed at quantifying software functionality in a nuanced manner.'!
Additionally, COSMIC implemented a layering strategy to systematically partition
software into distinct layers, facilitating consistent functional processes across the

software architecture.

Over time, COSMIC has undergone methodological enhancements to effectively
measure functional size, adapt to diverse software architectures, and address challenges
posed by emerging technology platforms. By adhering to foundational principles while
embracing adaptability, COSMIC has evolved into a comprehensive and robust
methodology for estimating and measuring functional size in software systems.

In addition to its primary functions, the COSMIC FSM method serves a critical
role in benchmarking activities, allowing organizations to compare project unit costs
against analogous endeavors within the industry, facilitating standardization and internal

benchmarking. Its versatility in measuring functional size at any software life cycle stage

empowers stakeholders to support various decision-making processes, including project
measurement, budgeting, iteration planning, project re-measurement, and process
improvement monitoring, significantly enhancing software development and project

management practices.??

In essence, the COSMIC Functional Size Measurement method not only provides
a robust mechanism for accurately estimating and managing software projects but also
enhances organizational capabilities in benchmarking and strategic decision-making,
reinforcing its status as a critical component of contemporary software project

management and development strategies.

2.2. Background on Event Points

Event-driven architecture (EDA) represents a design paradigm wherein diverse
software components and services engage in communication through the exchange of
events. Within an event-driven architecture, events serve as triggers and controllers for
the flow of processes and interactions across various segments of a system. This
methodology facilitates decoupled and asynchronous communication among components,
thereby affording greater flexibility and scalability in the design and implementation of

applications and systems.?

The Event-Driven Architecture (EDA) was introduced as a method to facilitate
the transmission of events between decoupled software components and services, aimed
at achieving several objectives.”> These include complementing Service-Oriented
Architecture (SOA) by introducing capabilities for long-running asynchronous processes,
enabling asynchronous events transmission distinct from the request/response exchanges
typical of SOA. Moreover, EDA fosters decoupled interactions by allowing event
publishers to operate without awareness of event subscribers, thereby establishing a
decoupled interaction model. It also facilitates many-to-many communications through
publish/subscribe messaging, enabling one event to influence multiple subscribers and
thereby facilitating flexible communication patterns. Furthermore, EDA enables event-
based triggers, where the recipient determines the flow of control based on the posted

event, allowing for dynamic activation of components. Finally, EDA supports

asynchronous operations through event messaging, thereby offering flexibility and
scalability in managing events and processing tasks asynchronously.

Understanding the usability of Event-Driven Architecture (EDA) necessitates a
consideration of its components and implementation aspects. EDA implementation
components encompass various elements such as Event Metadata, Event Processing
Engine, Event Transport, Enterprise Information Caching, Service Invocation, Enterprise
Integration Backbone, Event Data, Event Development Tools, Event Management Tools,
Enterprise Applications, Management Portals, and Integrated Resources.?* The ease of
use of EDA is contingent upon factors including the organization's existing infrastructure,
expertise, and the availability of tools and components to support event-driven processes.
Organizations equipped with well-established event metadata architecture, clear event
specifications, and efficient event processing rules may find it more straightforward to
implement EDA. Additionally, the availability of adequate event development and
management tools can streamline the adoption and utilization of EDA within an
organization, with usability varying based on readiness, resources, and commitment to

aligning architecture with event-driven principles.?*

The historical origins of event points can be traced to advancements in software
engineering and size measurement methodologies.!? Studies on business process
modeling, state machines, and Event-Driven Architecture have been conducted since the
1970s, underscoring the longstanding interest in event-driven software models.
Furthermore, the integration of events into functional size measurement methods, such as
COSMIC FSM, highlights the incorporation of events for decomposing functional
processes. This historical context lays the groundwork for the exploration and emergence

of event points as a concept for software size measurement.*

The purpose of Event Points is to furnish a method for software size measurement
focusing on events rather than data.® It facilitates the measurement of software size based
on events occurring within the system, offering an alternative approach to size
measurement across various software architectures, particularly in agile environments.
Event Points can be deployed for size measurement at different stages of the software
development lifecycle and prove particularly valuable in scenarios where traditional size
measurements based on lines of code (LOC) are impractical, such as during early

measurement phases.

10

2.3. Summarization Model, and LLM

Large Language Models (LLMs) have been a very hot subject in the last years.

LLMs are described as large pre-trained Al systems that showcase expressive and

interactive capabilities, allowing them to be repurposed across different domains and

tasks with minimal effort.?

Large language models (LLMs) are built using various pretraining methods such

as Left-to-Right Language Models?®, Masked Language Models?’, and Encoder-Decoder

Models.?82°

Language models are built using different methodologies and architectures, with

advancements in the field continually shaping their design. Several key aspects of

language model development are discussed by Tianyu W et al.*°

I.

Pre-Trained Language Models (PLM): These models utilize self-supervised
learning over large-scale texts and have gained significant attention since
2018. The PLM learns general language models based on self-learning tasks
such as masked word prediction, sequence recognition of sentences, text
filling in the blank, and text generation. Notable PLMs include ELMo,
BERT, and GPT-3, which have each made significant contributions to
natural language processing.

Model Compression: The size of modern large language models poses
practical challenges due to the vast number of parameters they contain. To
address this issue, researchers have focused on model compression and
optimization techniques to reduce the size of language models while
maintaining their performance on various tasks. Approaches include
distillation-based methods, pruning-based techniques, and quantization-
based methods.

In-Context Learning (ICL): ICL is a meta-learning method introduced by
models like GPT-3, enabling the model to learn and complete tasks by
imitation based on the context provided. This method allows the model to
model more context information to solve specific tasks effectively,
improving the performance of various tasks and enhancing zero-shot and

few-shot learning capabilities.

11

4. Instruction Fine-Tuning (IFT): IFT involves describing all NLP tasks using
natural language instructions and fine-tuning large language models
accordingly. This approach enables models like FLAN to achieve better
performance on specific NLP tasks and improve the generalization ability
for new tasks by adjusting model parameters based on natural language
instructions.

5. Reinforcement Learning From Human Feedback: Reinforcement learning
focuses on learning the optimal policy to maximize rewards or reach specific
targets through interactions between the agent and the environment. This
approach has shown strong capabilities in various fields with large action
spaces, such as gaming, robotics control, and molecular optimization.

These aspects provide a glimpse into the diverse methodologies and techniques

used to build and enhance large language models like ChatGPT, showcasing the evolution

and complexity of modern language model development.

In the other hand, summarization is a crucial natural language processing task that
involves condensing large volumes of information from a source document into a shorter
and concise form while preserving the key information and meaning.’! It helps in
extracting the most important points, ideas, and concepts from the original content,
allowing for a quick understanding of the main content without the need to read the entire
document. There are two primary types of summarization algorithms: extractive and
abstractive summarization.®! Extractive summarization involves selecting and combining
existing phrases and sentences from the source document, while abstractive
summarization involves generating new phrases and sentences that may not exist in the
original text but represent the same meaning. Summarization is widely used in various
applications such as news summarization, search engines, research paper abstracts, and
more, to provide users with concise and informative content summaries.

Summarization involves condensing a longer piece of text into a shorter version
while retaining the essential information and main points. The process typically includes
the following steps?? :

e Understanding the Text: The summarization system comprehends the input text
to identify important concepts and themes.
e Identifying Key Information: It selects significant sentences, phrases, or

paragraphs that encapsulate the main ideas.

12

e Paraphrasing and Condensing: The system rephrases the selected content and
condenses it to form a concise summary.

e Ensuring Coherence: The summarization tool ensures that the summary flows
logically and retains the coherence of the original text.

e Evaluation: The quality of the summary is evaluated based on criteria such as

factual accuracy, relevance, and fluency.

2.4. Application of AI in SSM and COSMIC

In this section we will be exploring the different research work that exists related
to using Al tools for SSM and COSMIC Points. Each paragraph will have an overview
about a research paper, and at the end you can see FIGURE that summarizes all papers,

used methods, and their outcome.

This research paper titled "Exploring Machine Learning Techniques for Software

Size Estimation"??

explores the application of machine learning techniques, specifically
Genetic Programming (GP) and Neural Networks (NN), for estimating software size
metrics such as lines of code (LOC) in the early stages of software development. The
study compares the effectiveness of these techniques in estimating LOC using two
different data sets based on function points and number of components. Experimental
results and analysis regarding the accuracy and comparison of the machine learning
techniques are presented. The paper discusses the principles of Genetic Programming and
Neural Networks, describes the experiment setup, data sets used, evaluation
measurements, and the configuration of the GP tool and neural network tool. Furthermore,
it analyzes the obtained results, accuracy evaluations, and provides conclusions on the
potential of GP and NN for software size estimation. The outcome of the paper showcased
positive and negative aspects of applying Genetic Programming (GP) and Neural
Networks (NN) for software size estimation. The models obtained using GP and NN
showed varying levels of accuracy based on different metrics. The models using the
function points (FP) metric had better accuracy using GP compared to NN, but neither
model was deemed acceptable according to the set criteria. On the other hand, the models
using the number of components (NOC) metric were acceptable for both techniques and

presented similar accuracy.

13

In the paper titled “Enhancing Software Effort Estimation with Ant Colony
Optimization Algorithm and Fuzzy-Neural Networks™*, the authors endeavored to
enhance the accuracy of software effort estimation by integrating an Adaptive Neuro-
Fuzzy Inference System with the Ant Colony Optimization algorithm, juxtaposed with
other evolutionary algorithms like Differential Evolution, Genetic Algorithm, Artificial
Neural Network, and Particle Swarm Optimization. Through the application of this
innovative model to various widely-used software effort estimation datasets such as
Albrecht, Desharnais, and Kemerer, they demonstrated the superiority of their model over
the aforementioned algorithms. The enhanced estimation provided by their model could
potentially aid software project managers in more accurate project cost estimation,
thereby exhibiting significant potential for augmenting precision and reliability in

software effort estimation methodologies.

The authors of “Software Cost Estimation using Adaptive Neuro Fuzzy Inference

System™3?

endeavored to refine the accuracy of cost and effort estimation in software
development through the utilization of the Adaptive Neuro-Fuzzy Inference System
(ANFIS) model. Employing the NASA63 data collection and ANFIS models, they
achieved an MMRE error of 0.0984 and an estimate accuracy of 0.889. Their objective
was to mitigate errors and enhance precision in estimating software project costs and
efforts. The proposed method exhibited an accuracy of 96% for training data and 89% for

testing data.

The paper titled "Deep Learning Model for Function Point Based Software Cost
Estimation - An Industry Case Study"*¢ delves into the criticality of precise software cost
estimation for both developers and customers. It provides an overview of existing
software cost estimation methodologies and introduces a Deep Neural Network (DNN)
model designed to augment function point estimation. The investigation illustrates that
function point-based estimation can facilitate early software budget evaluation, while
deep neural networks can enhance labor productivity and estimation accuracy. The
manuscript proposes a method that amalgamates Conditional Random Field (CRF) and
Recurrent Neural Network (RNN) techniques to tackle challenges in function point
analysis and attain robust outcomes. It expounds on the problem statement, relevant
literature, proposed methodology, experimental findings, and a case study conducted at
the State Grid Energy Research Institute in China. The approach endeavors to refine

function point analysis in software development through the BILSTM-CRF framework,

14

as delineated within the document's contents. The outcome of this paper entails the
proposition of a method employing a fusion of Conditional Random Field (CRF) and
Recurrent Neural Network (RNN) techniques to confront challenges in function point
analysis. This methodological approach aims to ameliorate function point analysis by
devising a framework leveraging the BiLSTM-CRF model to recognize and categorize
function points in software development. Furthermore, the manuscript highlights the
successful deployment of this framework across 52 projects, showcasing its efficacy in
enhancing function point recognition and analysis in the industry. The findings indicate
that despite encountering certain challenges, the proposed method achieved
enhancements in accuracy and efficiency, particularly in classifying various function
point types. Detailed accounts of the experimentation outcomes, including accuracy
percentages for different function point categories and the utilization of BiLSTM and

CRF layers, are elucidated within the industry case study section.

The article titled "Software Effort Estimation Accuracy Prediction of Machine
Learning Techniques: A Systematic Performance Evaluation"*’ investigates the accuracy
of software effort estimation utilizing machine learning techniques. The primary
objective of the study is to aid researchers in identifying which machine learning
technique yields promising accuracy in effort estimation within software development.
The researchers assess the performance of ensemble and individual machine learning
techniques utilizing two commonly employed accuracy evaluation metrics. Ultimately,
the study concludes that ensemble effort estimation techniques generally yield more
promising accuracy in estimation compared to individual techniques.

The research paper titled "Software Effort Estimation Using Machine Learning
Methods"*® focuses on scrutinizing software effort estimation to mitigate issues
concerning budget and schedule extensions in software projects by proposing a model
integrating machine learning methods. The investigation evaluates various machine
learning models utilizing both public datasets and data sourced from software
organizations in Turkey. The research discerns that the optimal method for a dataset may
vary, indicating that a singular model may not consistently yield optimal outcomes. The
outcome of the research underscores that the developed hybrid effort estimation model,
integrating model-related data with machine learning methods, performs commendably
compared to other machine learning techniques. Experimental findings manifest that

machine learning methods such as back-propagation neural networks, regression trees,

15

radial basis functions, and support vector regression methods outperform traditional
parametric models like COCOMO.* Significantly, the research accentuates that an
evolving learning system leveraging current project data can enhance software effort
estimation accuracy vis-a-vis static parametric models. Additionally, the paper
underscores the significance of integrating machine learning methods in software effort
estimation to adapt to the evolving landscape of software development practices and
technologies. The study advocates for a continual learning system capable of updating
estimations with new project data to bolster accuracy and adaptability in software effort

estimation.

The journal article titled "Deep learning model for end-to-end approximation of
COSMIC functional size based on use-case names"*’ discusses the utilization of deep
learning techniques to automatically approximate the COSMIC functional size of
software applications based solely on their use-case names. This approach aims to offer
a more efficient and automated method for functional size estimation, particularly
beneficial for agile projects with evolving requirements. The study explores various
neural network architectures and pretrained word embeddings to enhance the accuracy of
the prediction model. By leveraging deep learning, the research presents a novel approach
to functional size approximation without the need for extensive manual intervention in

requirements engineering.

The research paper “Development of a Deep Learning Model for Story Points

Estimation”*!

introduces a deep learning model, termed Deep-SE, tailored for estimating
story points in software development projects. Deep-SE comprises four sequential
components: Word Embedding, Long Short-Term Memory (LSTM)-based Document
Representation, Recurrent Highway Net (RHWN)-based Deep Representation, and
Differentiable Regression. By processing title and description information from issue
reports, the model converts them into vector representations, obviating the need for
manual feature engineering. The authors utilized pre-trained word embedding matrices
derived from issue report corpora. Results demonstrated significant improvements in
predictive performance compared to traditional methods, attributed to the model's ability
to automatically learn features from raw textual data and discern semantic relations
between words. The study underscored the model's efficacy in enhancing predictability

and consistency in project planning and management within agile software development

contexts.

16

This research “A model for software effort estimation using pre-trained

embedding models

9942

presents a software effort estimation model leveraging pre-trained

embedding models, focusing on textual requirements such as user stories. The model

employs deep learning techniques to generate vector representations of text, emphasizing

the significance of contextual understanding and domain-specific data for model training.

Fine-tuning pre-trained models like BERT facilitated enhanced estimation accuracy, with

contextualized models exhibiting superior performance. The study underscores the

adaptability of the proposed model to diverse project contexts and its capacity to estimate

effort for both new and existing requirements. Continuous training and evaluation are

highlighted as crucial for model refinement and adaptation to evolving project dynamics,

particularly in agile environments.

Table 2.1. Summary of Literature Review and the different existing approaches
for using Al in Software Size Estimation

Paper Title
Exploring Machine
Learning
Techniques for
Software Size
Estimation

Enhancing Software
Effort Estimation
with Ant Colony

Optimization
Algorithm and
Fuzzy-Neural
Networks

Software Cost
Estimation using
Adaptive Neuro
Fuzzy Inference
System

Model/Technique Used

Genetic Programming (GP),
Neural Networks (NN)

Adaptive Neuro-Fuzzy
Inference System (ANFIS)
with Ant Colony
Optimization, compared
with other evolutionary
algorithms

Adaptive Neuro-Fuzzy
Inference System (ANFIS)

Purpose

Investigate
application of
GP and NN for
software size
estimation,
compare
effectiveness
with traditional
methods

Improve
accuracy of
software effort
estimation,
compare with
other
algorithms

Refine
accuracy of
cost and effort
estimation in
software
development
using ANFIS

Results

Models using
function points
(FP) had better
accuracy with
GP compared to
NN; models
using number of
components
(NOC) metric
showed similar
accuracy for
both techniques
Demonstrated
superiority of
ANFIS with Ant

Colony
Optimization
over other

algorithms in
various datasets
Achieved
MMRE error of

0.0984 and
estimate

accuracy of
0.889, with 96%
accuracy for

training data and

(cont. on the next page)

17

Table 2.1 (cont.)

Deep Learning
Model for Function
Point Based
Software Cost
Estimation - An
Industry Case Study

Software Effort
Estimation
Accuracy
Prediction of
Machine Learning
Techniques: A
Systematic
Performance
Evaluation

Software Effort
Estimation Using

Machine Learning
Methods

Deep learning
model for end-to-
end approximation
of COSMIC
functional size
based on use-case
names

Development of a
Deep Learning
Model for Story
Points Estimation

Deep Neural Network
(DNN) incorporating
Conditional Random Field
(CRF) and Recurrent
Neural Network (RNN)

individual
learning

Ensemble and
machine
techniques

Various machine learning
models (e.g., back-
propagation neural
networks, regression trees,
radial basis functions,
support vector regression)

Deep learning techniques,
various neural network
architectures, pretrained
word embeddings

Deep-SE model
Embedding,
RHWN,

Regression)

(Word
LSTM,
Differentiable

Improve
function point
estimation
accuracy,
propose
method
combining
CRF and RNN

Investigate
accuracy of
machine
learning
techniques for
effort
estimation,
compare
ensemble vs.
individual
techniques
Scrutinize
software effort
estimation,
propose hybrid
model
integrating
machine
learning
methods

Automate

approximation
of COSMIC
functional size
based on use-

case names,
improve
accuracy of
prediction
model

Develop deep
learning model
for story points
estimation,

compare with

89% for testing
data

Method using
CRF and RNN
showed
enhancements in
accuracy and
efficiency,
particularly in
classifying
various function
point types
Ensemble effort
estimation
techniques
generally
yielded more
promising
accuracy
compared to
individual
techniques
Hybrid effort
estimation
model
performed well
compared to
other machine
learning
techniques,
emphasized
importance of
continual
learning system
Achieved
superior
prediction
accuracy using
deep learning
techniques,
particularly with
convolutional

neural network
model
Significantly
improved
predictive
performance
compared to

(cont. on next page)

18

Table 2.1 (cont.)

traditional traditional
methods methods,
emphasized
model's efficacy
in
enhancing
predictability
and consistency
A model for Pre-trained embedding Develop Achieved
software effort models (e.g., BERT) software effort enhanced
estimation using estimation estimation
pre-trained model accuracy
embedding models leveraging pre- through fine-
trained tuning pre-
embedding trained models
models, like BERT,
emphasize highlighted
contextual adaptability of
understanding proposed model
to diverse

project contexts

2.5. Challenges and Limitations

Applying artificial intelligence (AI) to COSMIC FSM encounters several
challenges that need careful consideration and resolution. One of the foremost challenges
is ensuring data quality. As highlighted in the research papers exploring machine learning
techniques for software size estimation?, the effectiveness of Al models heavily relies on
the quality and representativeness of the data used for training. However, obtaining high-
quality data for COSMIC FSM, which involves quantifying software functionality, can
be challenging due to subjective interpretation and documentation quality issues inherent
in software development. Ensuring comprehensive and accurate data that captures the

nuances of software functionality is crucial for training reliable AI models.

Model complexity is another significant challenge. Many Al models employed
for COSMIC FSM estimation, such as deep learning architectures, can be highly complex
and difficult to interpret, as seen in papers like "Deep Learning Model for Function Point
Based Software Cost Estimation - An Industry Case Study".?® Complex models may risk
overfitting to training data, leading to poor generalization performance on unseen data,

and require significant computational resources for training and inference. Simplifying

19

and optimizing Al models while maintaining their predictive power is essential for
practical application in COSMIC FSM estimation.

Interpretability of Al models is another pressing challenge. Despite their high
accuracy, many Al models used for COSMIC FSM estimation lack interpretability,
making it challenging for stakeholders to understand and trust the model's predictions.
This lack of interpretability can hinder the adoption of Al-based COSMIC FSM
estimation approaches, particularly in contexts where decision-making relies on
transparent and understandable models. Developing Al models with built-in
interpretability features or post-hoc interpretability techniques are crucial for gaining trust
and acceptance from stakeholders.

Reviewing the limitations of current research in this domain, several key issues
emerge. Firstly, limited datasets pose a significant challenge for training AI models, as
highlighted in various research papers.?32°-26:27-29:30 Many AT models for COSMIC FSM
rely on small or proprietary datasets, leading to biased models that may not generalize
well to new or unseen data. Addressing this limitation requires efforts to collect, annotate,
and share comprehensive and diverse datasets representative of real-world software
projects.

Bias in Al models is another critical limitation. Biases present in the training data
or inherent in the modeling approach can lead to biased predictions, as seen in various
research papers.?823-26.2739 Addressing bias in Al models requires careful consideration of
data collection, preprocessing, and algorithm design to mitigate potential biases and
ensure fairness and equity in the estimation process.

Scalability is also a limitation in current research. While AI models may
demonstrate promising results on small-scale datasets, scaling these models to larger
software projects or organizations with diverse requirements and constraints can be
challenging. Scalability issues may arise due to computational limitations, data
availability, or algorithmic constraints, as evidenced by the lack of scalability in certain
research papers. Overcoming scalability issues requires developing efficient algorithms
and architectures capable of handling large volumes of data and computational resources.

Despite the advancements in Al-based software size estimation methods
discussed in the literature, a notable gap exists in addressing the extraction of Objects of
Interest (OOIs) from software requirements. OOIs play a crucial role in COSMIC FSM,

as they represent the functional components of a software system and are essential for

20

accurately quantifying software functionality. However, none of the research papers
reviewed in this analysis explicitly tackle the task of OOIs extraction. Extracting OOIs
from textual requirements poses several challenges, including ambiguity, variability, and
context-dependency. Addressing these challenges requires innovative natural language
processing (NLP) techniques capable of automatically identifying and categorizing OOIs
based on their semantic and syntactic properties, or a much more innovative method
which we will explore in this thesis. By incorporating OOIs extraction into Al-based
COSMIC FSM estimation approaches, researchers can enhance the granularity and
accuracy of software size measurements, ultimately improving decision-making
processes in software development projects. Closing this gap represents an important
avenue for future research in the field of Al-based software size estimation.

In conclusion, addressing the challenges and limitations of applying Al to
COSMIC FSM requires interdisciplinary collaboration and innovative solutions.
Improving data quality, simplifying model complexity, enhancing interpretability,
increasing datasets quality, reducing bias, and addressing scalability issues are critical
steps towards developing robust and reliable Al-based COSMIC FSM estimation
approaches. By addressing these challenges, Al has the potential to revolutionize software

size estimation and enhance decision-making processes in software development projects.

Table 2.2. Comparison of usage of Al in COSMIC, Event Points, or Size
Estimation in general

COSMIC Object of Event Event Size
POINTS interest Points Names Estimation
Existing - - - - X
Work
Proposed X X X X X
Technique in
this Thesis
(Figure 2)

21

Chapter 3

Methodology

This chapter explains how we conducted the study step by step. It's divided into
three main parts: Data Collection and Preprocessing, COSMIC & Event Points
Measurement, and Model Selection. We'll start by talking about how we gathered and
prepared the data we needed. Then, we'll explain how we did the COSMIC Functional
Size and Event Points measurements and ensured both: data quality, and correctness of
measurements. Finally, we'll discuss how we chose the models we used to analyze the
data. By breaking down each part of our methodology, we aim to provide a clear

understanding of how we carried out the study and why.

{ Data Collection]

v I

COSMIC & Event Points
Measurement lterative Data Processing

)

2
Expert Review J

h 4

[Final Dataset J

Figure 3.1. Methodology used in COSMIC and Event Points measurements to create the
used Dataset. Data Preprocessing and Adaptation.

22

3.1. Data Collection and Preprocessing

In this section, we detail the process undertaken to assemble a comprehensive
dataset of use cases spanning diverse projects, essential for the subsequent phases of
analysis and modeling. The dataset, constituting the foundational part of our research,
was meticulously curated to ensure representativeness and relevance to our study

objectives.

Project Variety and Selection: To encapsulate the multifaceted nature of
software systems, a deliberate effort was made to source use cases from a heterogeneous
array of projects. These projects spanned a spectrum of domains, including healthcare,
education, and e-commerce. This deliberate diversification ensured a broad
representation of real-world scenarios, enriching the dataset with varying complexities

and intricacies inherent to different application domains.

Data Collection Process: Domain experts from the projects mentioned
meticulously crafted use cases, distilling essential functionalities and scenarios. Their
intimate understanding ensured the authenticity and relevance of each use case to our
study objectives.

Statistical Overview: The collected dataset comprises a total of 2041 unique use
cases, sourced from 26 distinct projects. The shortest sentence within the dataset contains
3 words, while the longest extends to 156 words. On average, each use case consists of
13 words, with a standard deviation of 10.83, reflecting the variability in use case

complexity across different projects.

23

800

600
400
200
0 P -
O N M % © M~ 0 O O N M ¥ © M © 0 O - N Mo <
o - [a] [ap] e Y] [{e] M~ co o - (o] o < Yp] w I~ co o - (o] o ﬁ'
O M & ¢ 0 B N O © ¥ - 0 B N O @6 o o 0 W N o ©
- NN S F T OO NN O OO0 @ N T T D
Figure 3.2. Histogram of wordcount in the dataset.
Statistic Word size Event driven size
Min 13.0 0.0
Max 1000.0 2.0
Average 83.76 0.83
Median 65.0 1.0
Variance 4714.67 0.14
Standard Deviation 68.66 0.38
Total 170711.0 1694.0

Figure 3.3. Statistics about dataset of Event Points

24

Statistic Word size COSMIC func size

Min 13.0 0.0

Max 1000.0 4.0

Average 83.8 1.23

Median 65.0 1.0

Variance 4714.2 0.6

Standard Deviation 68.66 0.77

Total 170709.0 2511.0

Figure 3.4. Statistics about dataset of COSMIC size

Data Preprocessing: Prior to measurement, the collected use cases underwent
rigorous preprocessing to standardize formatting, correct errors, and eliminate
redundancies. This preprocessing phase aimed to enhance the quality and consistency of
the dataset, ensuring robustness and reliability in subsequent measurements and analyses.
Additionally, the use cases were further refined by splitting them into granular use case
lines. This approach allowed for more detailed estimations and analysis, enriching the

dataset with finer granularity and depth.

3.2. COSMIC & Event Points Measurement

This chapter delves into the intricacies of measuring COSMIC Points and Event
Points as integral components of our methodology. The meticulous process of
measurement involved manual extraction, analysis, and validation, culminating in a
comprehensive understanding of the functional complexities inherent in the software
systems under study. This phase of our study involved extensive work and review
spanning approximately three months, with an average commitment of around 10 hours
per week. Through this meticulous methodology, we endeavor to provide a transparent

account of our research process and its underlying rationale.

° Manual COSMIC Points Estimation:
The measurement of COSMIC Points commenced with a meticulous manual

extraction process, wherein the object of interest within each use case was identified. This

process involved dissecting the use cases into constituent components, discerning the

25

functional boundaries, and assigning COSMIC weights based on the established criteria.
Each use case underwent meticulous scrutiny to ensure accuracy and consistency in the

estimation process.

o Event Points Measurement and Event Names Extraction:
In tandem with COSMIC Points measurement, Event Points were rigorously

evaluated to capture the dynamic aspects of software behavior. Event Points measurement
involved discerning event triggers, actions, and outcomes within the use cases, facilitating
a granular understanding of system interactions. Concurrently, Event Names were

extracted to catalog and categorize the diverse range of events observed across the dataset.

o Iterative Dataset Processing:
The dataset underwent iterative processing to refine and validate the COSMIC

and Event Points estimations. Each iteration involved meticulous review and adjustment,
ensuring alignment with the underlying principles and objectives of the study. The
iterative nature of the processing facilitated continuous improvement and optimization of

the estimation methodologies, enhancing the robustness and reliability of the dataset.

. Expert Review:
The culmination of the estimation process was marked by a comprehensive review

conducted by domain expert Hiiseyin UNLU. His invaluable insights and expertise
provided a critical perspective on the accuracy and validity of the estimations, further
bolstering the credibility of the findings. Hiiseyin's rigorous review underscored the
collaborative nature of our methodology, highlighting the importance of domain expertise

in ensuring the fidelity and relevance of the analysis.

3.4. Model Selection

This chapter elucidates the rationale behind the selection of Sequence Regression
models for size prediction and fine-tuned summarization and language models for Event
Name prediction and Object of Interest (OOI) extraction, respectively. Each model was
meticulously chosen to address specific challenges inherent in the prediction tasks,

leveraging their unique capabilities to enhance the accuracy and efficacy of our analyses.

26

BERT (Ours) OpenAl GPT

Figure 3.5. Differences in pre-training model architectures. BERT uses a bidirectional
Transformer. OpenAl GPT uses a left-to-right Transformer. BERT representations are
jointly conditioned on both left and right context in all layers.3!

3.5. BERT for Word Embedding

Bidirectional Encoder Representations (see Figure 3.5) from Transformers
(BERT) has emerged as a revolutionary model in the field of natural language processing
(NLP)*, renowned for its ability to capture contextual nuances and semantic relationships
within textual data. Developed by Google Al's research team, BERT utilizes the
Transformer architecture (see Figure 3.6) a self-attention mechanism that enables

efficient processing of sequential data while preserving contextual information.**

27

Dhutpat
Prohabilities

Add e o
Feed
Foraand
Al & Mo It
Aol e Moy

Feed
Forward Multi-Head

Amtention

A gddf Norm

Mullis-Heasd
Anention
Masked
Positional Mluli-Head
Ariemtion
Encoding ?
Input \

—
Embedding Positional
E Encosding

Inpaut Dhaitpiat

Embedding

Dhaiput
ishifted right)

Figure 3.6. An illustration of main components of the transformer model.*

J Understanding BERT:
At its core, BERT employs a bidirectional approach to language modeling,

allowing it to leverage both left and right context during training. Unlike traditional
language models that process text in a unidirectional manner, BERT comprehensively
captures contextual dependencies, resulting in more robust and nuanced representations
of language.
. Pre-training and Fine-tuning:

BERT is pre-trained on large corpora of text using unsupervised learning
objectives, such as masked language modeling and next sentence prediction. This pre-
training phase enables BERT to learn rich, context-aware representations of words and

phrases, encoding semantic information within its hidden layers.

Moreover, BERT's architecture lends itself well to fine-tuning on downstream
tasks, such as word embedding. By fine-tuning BERT on task-specific datasets, it can
adapt its learned representations to the specific nuances and characteristics of the target

domain, enhancing performance on a wide range of NLP tasks.

o Advantages of BERT for Word Embedding:
Contextual Embeddings: BERT generates contextualized word embeddings that

capture the nuanced meanings of words based on their surrounding context. This
contextual understanding leads to more accurate representations of word semantics

compared to traditional static word embeddings.

28

Domain Adaptability: BERT's pre-trained representations can be fine-tuned on
task-specific data, making it highly adaptable to different domains and applications. This
flexibility allows BERT to effectively capture domain-specific semantics and nuances,
enhancing its performance on word embedding tasks within specialized domains such as

software engineering.

. What is BERT SE?
BERT SE is a contextualized pre-trained language representation model

specifically designed for software engineering (SE) domain tasks. BERT SE aims to
improve the classification of software requirements by recognizing specific and relevant
terms in the context of SE, resulting in enhanced performance for various NLP tasks in

the SE area.®
o State-of-the-Art Performance

BERT has consistently demonstrated state-of-the-art performance across a wide
range of NLP tasks, including word embedding, sentiment analysis, and named entity
recognition. Its robust architecture and effective utilization of contextual information

contribute to its superior performance and generalization capabilities.

29

3.6. Regression Model for Size Prediction

Dataset Tokenization Hﬁainﬂ' est Datasets

BERT Embeddings

h

Training and Fine
Tuning Regression
Maodel

e

Final Model

Figure 3.7. Steps taken for creation of a Regression Model for COSMIC & Event Points
Estimation

The prediction of software sizes necessitated a robust and interpretable model
capable of capturing the intricate relationships between input features and output sizes.
To address this challenge, sequence regression models emerged as one of preferred
choices due to their versatility and well-established framework for continuous value

prediction. 4647

The utilization of BERT for Sequence Regression*® models offered several
advantages for this task. By training these models on a diverse dataset, they were able to
discern and extrapolate intricate patterns present within the data. This facilitated accurate

size estimations for the use cases under consideration.

For the implementation of the sequence regression models, we adopted a rigorous
approach. Specifically, each fold within the dataset was subjected to model training and
evaluation, employing techniques such as K-fold cross-validation to ensure robustness
and reliability of the results. Within each fold, the model was initialized and trained using

an AdamW# optimizer with a carefully chosen learning rate. Additionally, the use of a

30

Mean Absolute Error (MAE) and Mean Squared Error (MSE) loss function allowed for

effective measurement of the model's performance

MAE = %Z?’:l lactual_ef f — predicted_ef f; | (1)

MSE = \/%Zﬁl(lactual_eff — predicted_ef f; |)? (2)

Throughout the experimentation process, meticulous attention was paid to
training scope, number of splits, and shuffle parameters, ensuring consistency and
reproducibility of the results. The integration of sequence regression models underscored
the effectiveness of our approach in addressing the complexities inherent in software size

prediction tasks

The utilization of sequence regression models exemplifies a principled approach
to model selection, leveraging the strengths of this model type to achieve accurate and

reliable predictions in the domain of software engineering.

3.7. Fine-tuned Summarization Model for Event Name Prediction

Dataset Tokenization Hﬁalnﬂ' est Datasels

Fine tuning TS

Final Model

Figure 3.8. Steps taken for fining tuning T5 model for Event Names extraction.

31

Predicting event names presented a unique challenge due to the nuanced and
context-dependent nature of event descriptors within the use cases. To address this
challenge effectively, a fine-tuned summarization model was employed, specifically
leveraging the T5 (Text-To-Text Transfer Transformer) model®® fine-tuned on our
dataset. This selection was driven by the model's remarkable ability to distill salient event
names from textual descriptions with exceptional precision and context awareness.

The T5 model, developed by Google Al, represents a cutting-edge pre-trained
language model renowned for its text-to-text framework.’® This model has garnered
significant attention in the field of natural language processing (NLP) owing to its

remarkable versatility and efficacy across diverse domains.

The fine-tuning process of the T5 model®! on our dataset entailed training it on an
90% of our use case descriptions. Through this meticulous process, the model honed its
comprehension of textual data, adapting seamlessly to the nuances and specific demands

inherent in event name prediction tasks.

Moreover, the fine-tuned TS5 model demonstrated proficiency in capturing
semantic nuances and contextual cues embedded within the text. This enabled the model
to generate event name predictions with precision and contextual relevance. Leveraging
its robust architecture and comprehensive pre-training, the TS model excelled in distilling
key information from input texts, a capability that proved particularly advantageous for

event name prediction tasks.

One notable aspect of the TS5 model is its text-to-text framework, which facilitates
the generation of textual output from input. This feature played a pivotal role in producing
concise and meaningful event name predictions, leveraging the rich contextual

information encapsulated within the use case descriptions.

The choice of the fine-tuned T5 model for event name prediction offered several
advantages. Its robust architecture, extensive pre-training, and capacity to generate high-
quality summaries positioned it as a suitable solution for addressing the inherent
complexities of event name prediction tasks. Furthermore, the training process
incorporated metrics such as ROUGE?? to evaluate the quality of generated summaries,

ensuring rigorous assessment and refinement of the model's performance.

32

ROUGE-N

Countmamh (gramu)
_ S€{ReferemceSummaries} gram, €S

Count(gram))

SE{ReferenceSummaries} gram, €S

Figure 3.9. Original formula of ROUGE-N as an n-gram recall between a
candidate summary and set of reference summaries.>?

3.8. Fine-tuned Large Language Model for Object of Interest (OOI)
Extraction

Train/Test Datasets LLM Model

Y
o

Rephrase prompt Fine Tuning of LLM Add LoRA weights for
used Model fine-tuning

S —

¥
A

Results

—

Y
o

Final Model

—

Figure 3.10. Steps taken for creation of fine-tuned LLM model used for COSMIC
Object of interest extraction

Extracting the Object of Interest (OOI) from use cases necessitated a model
capable of understanding and synthesizing complex textual information while preserving
syntactic and semantic coherence. To address this requirement, we employed the state-
of-the-art Mistral-7B language model®* as the base model for fine-tuning. Mistral-7B,
renowned for its exceptional performance on a wide range of natural language

understanding tasks, provided a strong foundation for our OOI extraction task.

33

. Low-Rank Adapter (LoRA) Fine-Tuning:
To tailor Mistral-7B to the specific task of OOI extraction, we employed the

innovative Low-Rank Adapter (LoRA) fine-tuning technique. LoRA, a recent
advancement in transfer learning, enables efficient fine-tuning of large language models
while preserving their pre-trained knowledge (see Figure 4) By leveraging low-rank
projections, LoRA facilitates task-specific adaptation without compromising the

robustness or generalization capabilities of the base model.>*

h | |
A 7R
Pretrained
Weights

W € Ré4xd

X | |

Figure 3.11. Reparameterization. LoRA only train A and B.>*
. Advantages of Mistral-7B and LoRA:

The choice of Mistral-7B as the base model offered several advantages, including
its extensive pre-training on diverse textual data, enabling it to capture intricate linguistic
patterns and semantics inherent in software use cases. Additionally, the integration of
LoRA for fine-tuning provided a principled approach to task-specific adaptation,
optimizing the model for OOI extraction while minimizing the risk of overfitting or

catastrophic forgetting.

34

m Mistral 78 [LLaMA 2 13B 50 W Mistral 78 B LLaMA 2 13B
B laMA27B 0 LLaMA134B B LLaMA27B 0 LLaMA134B

~
o
4

40

f=2
o

u

o
w
o

Accuracy (%)
Accuracy (%)

IS

S
N
o

10

30

MMLU Knowledge Reasoning Comprehension AGI Eval Math BBH Code

Figure 3.12. Benchmarks of performance of Mistral 7b and different Llama models.>

3.9. Rationale for Model Selection

The selection of sequence regression models for size prediction and fine-tuned
summarization and language models for Event Name prediction and OOI extraction was
driven by consideration of the inherent complexities and requirements of each prediction
task. By leveraging the unique strengths of each model type, we aimed to maximize

predictive accuracy and fidelity while mitigating the impact of inherent uncertainties and

variability within the dataset.

35

CHAPTER 4

Results and Discussion

This research endeavors to introduce a novel Software Estimation Methodology,
designed to automate the process of generating COSMIC Points and extracting Objects
of Interest from User Case Line requirements through the implementation of a Machine
Learning (ML) architecture. Furthermore, a parallel ambition is set forth for the Event
Points and the extraction of associated Event Names. To appraise the efficacy of our

methodology, the following inquiries were formulated:

2.1 Can a Machine Learning model achieve a high predictive accuracy in
discerning the granular categories of COSMIC Points (i.e., write, read, exit,
entry) and Event Point types (i.e., Interaction, Communication, Processing) and
the cumulative points COSMIC Points Total and Event Points Total?

2.2 Can a Summarization Model adeptly generate syntactically correct event
names?

2.3 Is it viable for a Language Model to accurately generate Objects of Interest

based on provided Use Case?

In this chapter, the findings of various models are delineated. Initially, an
exposition is made concerning the outcomes derived from three distinct categories of
Event Points: Event Processing, Event Communication, and Event Interactions.
Subsequently, the results of total Event Points are elucidated, both through the application
of a sequence regression model and via aggregation of predictions across the categories.
Analogously, a similar treatment is extended to COSMIC points, wherein an account of
the Write, Read, Entry, and Exit outcomes is provided prior to presenting the aggregate

results.

36

Statistic cosmic_read cosmic_write cosmic_exit cosmic_entry cosmic_total
Min -0.09 -0.12 -0.13 -0.11 0.35
Max 1.21 1.2 1.23 1.11 2.35
Average 0.2 0.19 0.36 0.5 1.23
Median 0.02 0.01 0.03 0.35 1.01
Variance 0.13 0.14 0.22 0.21 0.18
Standard Deviation | 0.36 0.37 0.47 0.46 0.43

Figure 4.1. Results of COSMIC predictions.

Statistic event_communication event_process event_interaction event_total
Min -0.12 -0.14 -0.1 0.76
Max 1.2 1.14 1.2 2.83
Average 0.09 0.85 0.4 1.27
Median 0.02 0.96 0.09 1.02
Variance 0.05 0.1 0.19 0.22
Standard Deviation 0.22 0.31 0.44 0.47

Figure 4.2. Results of Event Points predictions.

4.1. Results of Regression Models

1. Event Points
In terms of Event Processing, the model demonstrated consistent performance

across folds, with an average Mean Squared Error (MSE) of 0.0502 and an average Mean
Absolute Error (MAE) of 0.0847. Specifically, the training process unfolded over six
epochs per fold, revealing a progressive reduction in both training and testing losses.
Moving to Event Communication, similar evaluation metrics were observed, with an
average MSE of 0.0914 and an average MAE of 0.1359. The model exhibited
convergence over six epochs per fold, with a diminishing trend in both training and testing

losses. Lastly, Event Interaction evaluations displayed an average MSE of 0.0700 and an

37

average MAE of 0.1173, illustrating a consistent training trajectory across folds, marked
by a decline in losses over the course of six epochs per fold. These findings collectively
underscore the model's efficacy in capturing and predicting nuanced aspects of event-
related processes, paving the way for informed decision-making in event management
contexts.

In addition to evaluating the performance of the models through traditional
metrics like Mean Squared Error (MSE) and Mean Absolute Error (MAE), it's essential
to consider the accuracy of the predicted results. The reported accuracies for Event
Communication, Event Processing, and Event Interaction, standing at 0.9, 0.94, and 0.92
respectively, indicate a high degree of alignment between the predicted values and the

actual observations. (see Figure 4.3)

1.00
0.75
=
Q
& 050
3
Q
Q
<
0.25
0.00
event_communication event_process event_interaction event_total
Event Point Type

Figure 4.3. Event Point Prediction Accuracies

38

B MSE W MAE

0.15
0.10
0.05
0.00
event_communication event_process event_interaction event_total
Event Point Type

Figure 4.4. Event Point Training Model MSE and MAE Average results.

2. COSMIC Points
The COSMIC model demonstrates impressive accuracy across various movement

types, with COSMIC Entry leading at 0.95, closely followed by COSMIC Write and
COSMIC Exit at 0.94 each, and COSMIC Read at 0.92. When examining mean squared
error (MSE) and mean absolute error (MAE) for individual movement types, COSMIC

Entry stands out with the lowest MSE of 0.048 and a correspondingly low MAE of 0.0858.

For COSMIC Read, the MSE is 0.0601 with an MAE of 0.0999, while COSMIC Write
achieves an MSE of 0.0507 and an MAE of 0.082. Similarly, COSMIC Exit displays an
MSE of 0.0574 and an MAE of 0.0949. These results underscore the model's efficacy in
accurately predicting COSMIC movement types, showcasing its reliability and

performance across different scenarios. (see Figure 4.5)

39

0.75
o)
& 050
3
3
<

0.25

0.00

cosmic_read cosmic_write cosmic_exit cosmic_entry cosmic_total
COSMIC Event Type
Figure 4.5. COSMIC Point Prediction Accuracies
B MSE [MAE

0.25
0.20
0.15
0.10
0.05
0.00

cosmic_read cosmic_write cosmic_exit cosmic_entry cosmic_total

COSMIC Event Type

Figure 4.6. COSMIC Points Training Model MSE and MAE Average results.

3. Event Points Total and COSMIC Point Totals
In comparing the results, for Event Total prediction, the regression model

achieved an accuracy of 0.81, while the aggregation approach performed notably better

with an accuracy of 0.92, indicating the superiority of aggregation in this context.
Conversely, for COSMIC Total prediction, the regression model outperformed the
aggregation method with an accuracy of 0.86 compared to 0.83, suggesting that the

regression model is more suitable for predicting COSMIC Total function points.

B Regression Model [l Aggregation
1.00

0.75

0.50

0.25

0.00

event_total cosmic_total

Accuracy

Figure 4.7. Comparison between Regression vs Aggregation for totals.

4. Results of BERT_SE
The BERT SE model achieved strong accuracies across various COSMIC

movement types, with COSMIC Read at 0.93, COSMIC Write at 0.94, COSMIC Exit at
0.94, and COSMIC Entry at 0.95. For event-specific accuracy, Event Process scored the
highest at 0.94, Event Interaction also performed well at 0.92. However, Event
Communication had a slightly lower accuracy of 0.89. In terms of overall performance,

Event Total lagged at 0.82.

41

Accuracy

Accuracy

1.00

0.75

0.50

0.25

0.00
cosmic_read cosmic_write cosmic_exit cosmic_entry cosmic_total

COSMIC Event Type

Figure 4.8. COSMIC Point Prediction Accuracies using BERT SE.

1.00
0.75
0.50
0.25
0.00
event_communication event_process event_interaction event_total
Event Point Type

Figure 4.9. Prediction Accuracies for Event Points using BERT SE

42

4.2. Results of Summarization Model

Across the five epochs, a discernible pattern emerges in the training loss, which
progressively diminishes from an initial 1.045 to a final 0.968738. Conversely, the
validation loss appears to stabilize, fluctuating moderately within the range of 0.7047 to

0.7314.

Epoch Training Loss Validation Loss Rougel Rouge2 Rougel Rougelsum Gen Len
1 No log 1.045254 0.704700 0.439300 0.674100 0.673600 5.803900
2 No log 0.998770 0.716900 0.475400 0.684500 0.684200 6.225500
3 No log 0.979030 0.730600 0.485300 0.692700 0.693600 6.078400
4 No log 0.968738 0.731400 0.488000 0.699100 0.698500 6.039200
5 0.997200 0.964659 0.730600 0.493300 0.701600 0.701000 6.000000

Figure 4.10. T5 model fine tuning metrics

Notably, manual inspection of the results reveals an excellent performance. The
Rouge scores exhibit incremental enhancements over successive epochs, with Rougel
values ascending from 0.4393 to 0.7306, Rouge2 from 0.6741 to 0.4933, and RougeL
from 0.6736 to 0.7016. Similarly, RougeLsum displays a slight amelioration from 5.8039

to 6.0392. Impressively, the generated length remains consistent at approximately 6.

Table 4.1. Comparison between original Use Case Line, original event name
related to it, and the Predicted Event Name using summarization model.

No Use Case Line Original Predicted
Event Name Event Name

1 Website redirects the Website Website
applicant to a relevant renders the redirected applicant
success page. Website assessment form to success page
renders the assessment form.

2 Open display albums Album Album
page. Click on specific clicked clicked
album.

3 Display all Al Delete Delete house
Fakhoora house visits. Click house visits = visits confirmed

delete button for specific Al
Fakhoora house visits.

confirmed Delete
house visits
confirmed

Delete house visits
confirmed

(cont. on the next page)

43

Table 4.1 (cont.)

Confirm message is shown.

Click Ok button.

4 The web app Web app Web app
retrieves user data from the displayed selected displayed — waiter
Database. waiter data

The web app
displays the data of the
selected waiter
5 The Editor selects a Editor Editor
reviewer for the article. selected an author selected review

4.3 Results Of LLM Model

The assessment of the Object of Interests (OOIs) generation using Mistral
revealed an exact match accuracy of 0.79. Exact match accuracy, in this context, denotes
the percentage of generated OOIs that precisely match the ground truth labels. It
quantifies the fidelity of the model's outputs by measuring the frequency with which the
generated labels align exactly with the expected ones, without any disparities. For
instance, if an image is annotated with the label "dog," an exact match occurs when the
model's prediction also identifies the object as "dog." Thus, the attained exact match
accuracy of 0.79 signifies that approximately 79% of the model's generated OOIs

correspond precisely to the expected annotations.

It's notable that the accuracy discussed earlier could be improved through post-
processing of the outcomes. For instance, we observed instances where the initial Object
of Interest was labeled as "Schedule,” but our model identified it simply as
"WeeklySchedule." While both designations may be considered valid, our emphasis on

exact matches led to a reduction in overall accuracy due to such discrepancies.

44

CHAPTER 5

Conclusions and Future work

In this conclusion, we will first address the core research questions identified at
the outset of this study. By revisiting these questions, we aim to summarize how our
findings provide answers and contribute to the broader understanding of the topic.
Following this, we will discuss the efficiency and significance of the methods employed
and the results obtained. This evaluation will highlight the practical implications and the
impact of our research on the field. Finally, we will outline potential directions for
future work, suggesting areas where further investigation could enhance or build upon

our findings.

5.1. Answers for the Proposed Research Questions

1. Can a Machine Learning model achieve a high predictive accuracy in
discerning the granular categories of COSMIC Points (i.e., write, read, exit, entry) and
Event Point types (i.e., Interaction, Communication, Processing) and the cumulative

points COSMIC Points Total and Event Points Total?

As outlined in the preceding chapter, the regression models developed in this
study demonstrated remarkable accuracy, notwithstanding the dataset's size limitations.
With an average accuracy rate of 92%, this research provides substantial validation for
the initial research inquiry posited.

2. Can a Summarization Model adeptly generate syntactically correct event
names?

The initial model exhibited proficiency in summarizing provided text; however,
its output primarily comprised summaries rather than appropriately crafted event names.
Conversely, in certain instances, the model faltered, failing to generate a summarized

form (event name) altogether. For instance, when tasked with summarizing the phrase

45

"Delete house visits confirmed" the resulting output mirrored the input verbatim, differing
only in the presence of an additional period at the conclusion.

Upon scrutiny of Table 3, our refined model yielded exemplary outcomes when
subjected to test data, notwithstanding its retraining on a comparably modest dataset,
denoted herein as 2041 instances. Notably, the predictions predominantly mirrored the
original text, attesting to the model's proficiency. Moreover, in select cases, the model
demonstrated competence in generating cohesive and linguistically accurate event names,

characterized by appropriate grammatical structure, notably favoring the passive voice.

The discerned performance of our refined model not only underscores its efficacy
but also serves to validate the core research question posited. This affirmative validation
accentuates the model's capacity to fulfill the intended function of generating apt event

names, thereby lending credence to the overarching objectives of our study.

3. Is it viable for a Language Model to accurately generate Objects of Interest
based on provided Use Cases?

The obtained exact match accuracy in this thesis marks a promising beginning for
utilizing Language Models (LLMs) in Object of Interest extraction. Although the
achieved result in this aspect may appear lower compared to other facets of this study, it
does not diminish its significance or impact. This is primarily due to the inherent
differences between the tasks of categorization and token generation, rendering them
incomparable. Furthermore, as discussed in the preceding chapter, the accuracy can be
further improved through straightforward post-processing techniques. Hence, the
affirmative answer to the research question emerges: Yes, LLMs are capable of accurately

generating Objects of Interest.

5.2. Efficiency and Significancy of usage of proposed estimation method

The reluctance of companies to engage in SSM processes is primarily attributable
to the substantial manual effort and specialized expertise required, which not all
organizations can afford. As highlighted in the introduction, and in literature review, this
presents a significant barrier to entry for many companies, hindering their ability to

leverage SSM tools effectively.

46

Moreover, the temporal demands of manual SSM approaches, as evidenced in the
preparation of the dataset of this thesis, often entail protracted durations spanning several
weeks or even months. Such prolonged timelines are antithetical to the dynamic pace of
modern software development endeavors, impeding agility and responsiveness in project
planning and execution. The utilization of artificial intelligence (AI) in SSM, as proposed
in this thesis, offers a transformative solution to mitigate these challenges.

By leveraging Al-driven models, the time required for size measurement is
dramatically reduced from weeks or months to mere seconds, streamlining the estimation
process and enhancing operational efficiency. Furthermore, the inherent automation
facilitated by Al eliminates the necessity for specialized expertise in SSM, democratizing

access to size estimation capabilities across diverse organizational contexts.

Consequently, the integration of Al into SSM practices not only circumvents the
barriers posed by manual effort and expertise but also catalyzes broader adoption and

utilization of SSM tools within the software development landscape.

5.3. Future work

In delineating avenues for future research and development, several key areas
emerge for further exploration and refinement based on the findings and implications of

this thesis.

First and foremost, there exists a considerable opportunity to advance the
automation capabilities of the models proposed herein, particularly regarding tailoring
them to the unique requirements and contexts of individual organizations. By integrating
customizable datasets into the model architectures, organizations can effectively adapt
and configure the models to align with their specific software management frameworks
and objectives.

Moreover, efforts to enhance the accessibility and usability of these models within
existing software management tools, such as JIRA, hold significant promise for
facilitating seamless integration and adoption within organizational workflows.

Furthermore, while this thesis primarily focused on the utilization of Large
Language Model (LLM) and regression models for specific tasks within software size

estimation, there remains ample scope for investigating the broader applicability of LLM

47

across diverse tasks. Notably, future research endeavors could explore the efficacy of
LLM models in other tasks size estimation, other than just Object of Interest extraction.
Given the demonstrated versatility and efficacy of LLM models in natural language
processing tasks, it is conceivable that LLM-based approaches may obviate the need for
distinct regression or summarization models, potentially streamlining the estimation
process and enhancing predictive accuracy even more.

Additionally, future work should consider the possibility of repeating all tasks
done in this thesis using LLM and compare the results with current findings. This
comparative analysis could provide valuable insights into the strengths and limitations
of LLM models in software size measurement, further informing best practices and

guiding future research in this area.

Additionally, the dataset employed in this thesis, while qualitatively robust, was
relatively small in scale. Future research endeavors could entail the expansion and
enrichment of this dataset with a more extensive corpus of software projects,
maintaining the same rigorous standards of quality and relevance. By augmenting the
dataset with a broader diversity of projects, spanning various domains, sizes, and
complexities, researchers can garner deeper insights into the generalizability and

robustness of the proposed models across diverse software development contexts.

Lastly, extending the application of the proposed methodology to encompass
other languages represents a promising avenue for future exploration. While this thesis
primarily focused on software requirements written in English, the scalability and
adaptability of the proposed models to accommodate multiple languages warrant further
investigation. By extending the methodology to encompass a broader linguistic repertoire,
researchers can broaden the applicability and utility of the proposed models, enhancing

their relevance and impact within the broader software engineering community.

48

REFERENCES

. Clancy, T. The Standish Group Report. Chaos report 1995.

. Jadhav, A.; Kaur, M.; Akter, F. Evolution of Software Development Effort and Cost
Estimation Techniques: Five Decades Study Using Automated Text Mining
Approach. Math Probl Eng 2022, 2022, 1-17.

. Wilkie, F. G.; McChesney, I. R.; Morrow, P.; Tuxworth, C.; Lester, N. G. The Value
of Software Sizing. Inf Softw Technol 2011, 53 (11), 1236—1249.

. Jorgensen, M.; Boehm, B.; Rifkin, S. Software Development Effort Estimation:
Formal Models or Expert Judgment? /IEEE Softw 2009, 26 (2), 14-19.

. Albrecht, A. J.; Gaffney, J. E. Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation. /[EEE

transactions on software engineering 1983, No. 6, 639—648.

. Unlii, H.; Hacaloglu, T.; Biiber, F.; Berrak, K.; Leblebici, O.; Demirérs, O.

Utilization of Three Software Size Measures for Effort Estimation in Agile

World: A Case Study. In 2022 48th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA); IEEE, 2022; pp 239-246.

. Miranda, E. Improving Subjective Estimates Using Paired Comparisons. /EEE Sofiw

2001, /8 (1), 87-91. https://doi.org/10.1109/52.903173.

. Thangaratinam, S.; Redman, C. W. E. The Delphi Technique. The obstetrician &

gynaecologist 2005, 7 (2), 120-125.

. Mahni¢, V.; Hovelja, T. On Using Planning Poker for Estimating User Stories.

Journal of Systems and Software 2012, 85 (9), 2086—-2095.

10. Zaw, T.; Hlaing, S. Z.; Lwin, M. M.; Ochimizu, K. The Measurement of Software

Size Based on Generation Model Using COSMIC FSM. In 2019 23rd

International Computer Science and Engineering Conference (ICSEC); 2019; pp

373-378. https://doi.org/10.1109/ICSEC47112.2019.8974688.

11. Commeyne, C.; Abran, A.; Djouab, R. Effort Estimation with Story Points and

Cosmic Function Points-an Industry Case Study. Software Measurement News

2016, 21 (1), 25-36.

12. Hacaloglu, T. Event Points: A Software Size Measurement Model. 2021.

49

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Lavazza, L. On the Effort Required by Function Point Measurement Phases.
International Journal on Advances in Software 2017, 10 (1).

Lavazza, L. A.; Liu, G. An Empirical Evaluation of Simplified Function Point
Measurement Processes. International Journal on Advances in Software 2013, 6
(1-2), 1-13.

Hacaloglu, T.; Unlii, H.; Yildiz, A.; Demirdrs, O. Software Size Measurement:
Bridging Research and Practice. IEEE Softw 2024, 41 (3), 49-58.
https://doi.org/10.1109/MS.2024.3358079.

Minkiewicz, A. F. The Evolution of Software Size: A Search for Value. Software
Engineering Technology 2009, 23-26.

Demirors, O.; Gencel, C. Conceptual Association of Functional Size Measurement
Methods. IEEE Sofiw 2009, 26 (3), 71-78.

Second Generation - Cosmic Sizing. https://cosmic-sizing.org/cosmic-
sizing/functional-size-measurement/second-generation/ (accessed 2024-04-09).
Bundschuh, M.; Dekkers, C. The IFPUG Function Point Counting Method. The IT
Measurement Compendium: Estimating and Benchmarking Success with

Functional Size Measurement 2008, 323-363.

Engelhart, J.; Langbroek, P. Function Point Analysis (FPA) for Software
Enhancement; Nesma, 2009.

Desharnais, J.; Buglione, L.; Kocaturk, B. Improving Agile Software Projects
Planning Using the Cosmic Method. In workshop on Managing Client Value
Creation Process in Agile Projects (Torre Cane, Italy; 2011.

Buglione, L.; Trudel, S. Guideline for Sizing Agile Projects with COSMIC.
Proceedings of the IWSM/MetriKon/Mensura 2010.

Laigner, R.; Kalinowski, M.; Diniz, P.; Barros, L.; Cassino, C.; Lemos, M.; Arruda,

D.; Lifschitz, S.; Zhou, Y. From a Monolithic Big Data System to a Microservices

Event-Driven Architecture. In 2020 46th Euromicro conference on software

engineering and advanced applications (SEAA); IEEE, 2020; pp 213-220.

Michelson, B. M. Event-Driven Architecture Overview. Patricia Seybold Group
2006, 2 (12), 10-1571.

50

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S. S.; Wei, J.; Chung, H. W.; Scales, N.;
Tanwani, A.; Cole-Lewis, H.; Pfohl, S. Large Language Models Encode Clinical
Knowledge. Nature 2023, 620 (7972), 172—180.

Shen, T.; Quach, V.; Barzilay, R.; Jaakkola, T. Blank Language Models. arXiv
preprint arXiv:2002.03079 2020.

Salazar, J.; Liang, D.; Nguyen, T. Q.; Kirchhoff, K. Masked Language Model
Scoring. arXiv preprint arXiv:1910.14659 2019.

Cho, K.; Van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk,
H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv preprint arXiv:1406.1078 2014.

Xu, F. F.; Alon, U.; Neubig, G.; Hellendoorn, V. J. A Systematic Evaluation of
Large Language Models of Code. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming; 2022; pp 1-10.

Wu, T.; He, S.; Liu, J.; Sun, S.; Liu, K.; Han, Q.-L.; Tang, Y. A Brief Overview of
ChatGPT: The History, Status Quo and Potential Future Development. /[EEE/CAA
Journal of Automatica Sinica 2023, 10 (5), 1122—-1136.

Paulus, R.; Xiong, C.; Socher, R. A Deep Reinforced Model for Abstractive
Summarization. arXiv preprint arXiv:1705.04304 2017.

Fabbri, A. R.; Kryscinski, W.; McCann, B.; Xiong, C.; Socher, R.; Radev, D.
Summeval: Re-Evaluating Summarization Evaluation. Trans Assoc Comput
Linguist 2021, 9, 391-409.

Regolin, E. N.; Souza, G. A. de; Pozo, A. R. T.; Vergilio, S. R. Exploring Machine
Learning Techniques for Software Size Estimation. In 23rd International
Conference of the Chilean Computer Science Society, 2003. SCCC 2003.
Proceedings.; 2003; pp 130—136. https://doi.org/10.1109/SCCC.2003.1245453.

Afshari, M.; Gandomani, T. J. Enhancing Software Effort Estimation with Ant
Colony Optimization Algorithm and Fuzzy-Neural Networks. In 2024 Third
International Conference on Distributed Computing and High Performance
Computing (DCHPC); 2024; pp 1-6.
https://doi.org/10.1109/DCHPC60845.2024.10454085.

Mokri, F. D.; Molani, M. Software Cost Estimation Using Adaptive Neuro Fuzzy
Inference System. Int. J. Acad. Res. Comput. Eng 2016, I (1), 34-39.

51

36

37.

38.

39.

40.

41.

42

43.

44.

45.

46.

. Qin, M.; Shen, L.; Zhang, D.; Zhao, L. Deep Learning Model for Function Point
Based Software Cost Estimation-an Industry Case Study. In 2019 International
Conference on Intelligent Computing, Automation and Systems (ICICAS); IEEE,
2019; pp 768-772.

Mahmood, Y.; Kama, N.; Azmi, A.; Khan, A. S.; Ali, M. Software Effort
Estimation Accuracy Prediction of Machine Learning Techniques: A Systematic
Performance Evaluation. Softw Pract Exp 2022, 52 (1), 39-65.

Baskeles, B.; Turhan, B.; Bener, A. Software Effort Estimation Using Machine
Learning Methods. In 2007 22nd international symposium on computer and
information sciences; IEEE, 2007; pp 1-6.

Boehm, B.; Clark, B.; Horowitz, E.; Westland, C.; Madachy, R.; Selby, R. Cost
Models for Future Software Life Cycle Processes: COCOMO 2.0. Annals of
software engineering 1995, 1, 57-94.

Ochodek, M.; Kopczynska, S.; Staron, M. Deep Learning Model for End-to-End
Approximation of COSMIC Functional Size Based on Use-Case Names. Inf Sofitw
Technol 2020, 123, 106310.

Choetkiertikul, M.; Dam, H. K.; Tran, T.; Pham, T.; Ghose, A.; Menzies, T. A Deep
Learning Model for Estimating Story Points. /[EEE Transactions on Software
Engineering 2018, 45 (7), 637-656.

. Favero, E. M. D. B.; Casanova, D.; Pimentel, A. R. SE3M: A Model for Software
Effort Estimation Using Pre-Trained Embedding Models. Inf Softw Technol 2022,
147, 106886.

Devlin, J.; Chang, M.-W_; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805 2018.

Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y ;
Wang, L.; Liu, T. On Layer Normalization in the Transformer Architecture. In
International Conference on Machine Learning; PMLR, 2020; pp 10524—10533.

Favero, E. M. D. B.; Casanova, D. Bert se: A Pre-Trained Language Representation
Model for Software Engineering. arXiv preprint arXiv:2112.00699 2021.

Sikka, G.; Kaur, A.; Uddin, M. Estimating Function Points: Using Machine
Learning and Regression Models. In 2010 2nd International Conference on

Education Technology and Computer; IEEE, 2010; Vol. 3, pp V3-52.

52

47.

48.

49.

50.

51.

52.

53.

54.

55.

Bilal, M.; Almazroi, A. A. Effectiveness of Fine-Tuned BERT Model in
Classification of Helpful and Unhelpful Online Customer Reviews. Electronic
Commerce Research 2023, 23 (4), 2737-2757. https://doi.org/10.1007/s10660-
022-09560-w.

BertForSequenceClassification.
https://huggingface.co/docs/transformers/v4.40.0/en/model doc/bert#transformers
.BertForSequenceClassification (accessed 2024-04-21).

Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101 2017.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li,
W.; Liu, P. J. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. Journal of machine learning research 2020, 21 (140), 1-67.

T5. https://huggingface.co/docs/transformers/en/model doc/t5 (accessed 2024-04-
21).

Lin, C.-Y. Rouge: A Package for Automatic Evaluation of Summaries. In Tex?
summarization branches out; 2004; pp 74-81.

Jiang, A. Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D. S.; Casas, D.
de las; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier, L. Mistral 7B. arXiv
preprint arXiv:2310.06825 2023.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W.
Lora: Low-Rank Adaptation of Large Language Models. arXiv preprint
arXiv:2106.09685 2021.

Mistral 7b Announcement. https://mistral.ai/news/announcing-mistral-7b/ (accessed

2024-04-24).

53

