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İzmir Institute of Technology Ḃilkent University
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ABSTRACT

INVESTIGATION OF THE ANOMALOUS QUANTUM
TRANSPORT IN MULTICHANNEL SYSTEMS

In this study, the anomalous quantum transport behavior without Levy-type

disorder is investigated in multichannel systems. The transmission properties of the

systems are calculated by using tight-binding Hamiltonians and Landauer formalism.

The mode-matching method is used to investigate the transmission properties of the

channels individually. The calculations, at first, are performed for a two-channel toy

model in a correlated fashion. This method aims to recognize the general behav-

ior of anomalous diffusion regardless of the system’s structure. Then, we focus on

realistic systems. Quasi-one-dimensional ribbons of graphene and those of a quar-

tic dispersion material,i.e., nitrogen, are studied in the presence of disorder. It is

observed that since defects are introduced only at the edges, the scatterings are

more pronounced at the modes where the edge contributions are more dominant.

As a result, the average transmission with an increasing length shows heavy tail

distribution. This behavior is a characteristic property of anomalous diffusion. The

transport characteristics of these systems are investigated in detail by performing a

mode-resolved analysis. Moreover, quantum shot noise and Fano factor are calcu-

lated for the investigated systems. It is suggested that the Fano factor can be used

as an indicator for anomalous diffusion in these systems. We conclude that anoma-

lous diffusion can be realized in multichannel systems without Levy-type disorder

and in the presence of correlated disorder, which can drive channels into different

transport regimes.

Lastly, by increasing the length of the system, transport behavior is investi-

gated for the localization regime. In this regime, the relation between the geometric

average of the transmission and the system length showed linear dependency, in-

dicating normal localization. Since the multichannel mechanism was suppressed,

anomalous behavior disappeared at large scales. This result is consistent with the

diffusion part. Because, in our models, anomalies resulted from the multichannel

structure.
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ÖZET

ÇOK KANALLI SİSTEMLERDE ANORMAL KUANTUM
TAŞINIMININ İNCELENMESİ

Bu çalışmada, çok kanallı sistemlerde Levy düzensizliklerinin olmadığı du-

rumlarda kuantum davranışları incelendi. Sistemlerin taşınım özellikleri sıkı-bağ

Hamiltonyeni ve Landauer formalizmi kullanılarak hesaplandı. Kanalların taşınım

özelliklerini ayrı olarak inceleyebilmek için ise mod-eşleştirme yöntemi kullanıldı.

Hesaplamalar ilk olarak iki-kanallı oyuncak modelde Anderson düzensizliği uygu-

lanarak gerçekleştirildi. Bu model sistemin yapısından bağımsız olarak anormal

difüzyonun genel davranışını anlamayı amaçlar. Daha sonra gerçekçi sistemlere

odaklanıldı. Yarı-tek boyutlu grafen ve kuartik dağılım gösteren, nitrojen gibi,

malzemelerin şeritlerinde düzensizlikler çalışıldı. Düzensizlikler sadece kenarlara

uygulandığı için saçılımların kenar katkılarının baskın olduğu modlarda daha be-

lirgin olduğu gözlemlendi. Sonuç olarak, ortalama taşınım artan uzunluğa bağlı

olarak anormal difüzyonun karakteristik özelliği olan ağır kuyruklu dağılım gösterdi.

Bu sistemlerin taşınım karakteristikleri mod-çözümleme analizi uygulanarak detaylı

olarak incelendi. Ayrıca, incelenen sistemler için kuantum saçma gürültüsü ve

Fano faktörü hesaplandı. Fano faktörünün bu sistemlerde belirleyici olarak kul-

lanılabileceği öne sürüldü. Kanalları farklı difüzyon rejimlerine sokan birbiriyle

bağlantılı düzensizliklerin varlığında, Levy tarzı dağılım olmadan da çok kanallı

sistemlerde anormal difüzyon meydana gelebileceği sonucuna varıldı.

Son olarak, sistemin uzunluğu arttırılarak taşınım davranışı lokalizasyon reji-

minde incelendi. Bu rejimde, taşınımın geometrik ortalaması ve sistem uzunluğu bir-

biriyle lineer olarak ilişkilidir ve normal lokalizasyonu işaret eder. Sistemin uzunluğu

arttırıldığında çok kanallılıkla ortaya çıkan mekanizma baskılandığından, anormal

davranış kaybolur. Bu durum difüzyon kısmındaki sonuçlarla tutarlıdır çünkü mod-

ellerimizde anormallikler çoklu kanal yapısından kaynaklanmaktadır.
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CHAPTER 1

INTRODUCTION

Transport theory investigates the motion of particles or waves. Each type

of transport process has characteristic behaviors and can be analyzed by consulting

suitable physical principles. In this study, when we mention transport, we refer

to the electronic transport mostly encountered in nanodevices where the quantum

mechanical effects become crucial.

The transport mechanism is closely associated with the random walk motion.

This process is observed in various phenomena in nature. The origin of this process

is based on the fact that particles and waves travel with random trajectories. The

random walk was first discovered by botanist Robert Brown in 1827 at the motion of

pollen grains in a fluid (Brown, 1828). The mathematical description of this motion

was first explained by Thorvald N. Thiele in 1880 (Lauritzen, 2002). Over time,

including Albert Einstein in 1905, many scientists have contributed to understanding

the unrevealed mechanism of this concept (Einstein, 1956).

The mathematics behind the Brownian motion can be used to explain the

diffusion of light and heat. Various experimental studies have been conducted on

the Brownian motion, or in other words, normal diffusion. However, in addition

to normal diffusion, the Levy transport is another observed phenomenon in nature.

The Levy transport generally includes the Levy walk, a particular type of random

walk based on the power law distribution (Uchaikin and Zolotarev, 2011). This

type of diffusion is generally observed in photonic crystals (Koenderink and Vos,

2005; Le Thomas et al., 2009; Rousseau and Felbacq, 2017), lasers (Lepri et al.,

2007; Rocha et al., 2020), fluid dynamics (Pasmanter, 1988; Osborne and Caponio,

1990) , economics (Mantegna and Stanley, 1995; Miranda and Riera, 2001) , human

behavior (Baronchelli and Radicchi, 2013), travel patterns (Brockmann et al., 2006),

and, most generally, in chaotic systems (Iomin and Zaslavsky, 2002; Klafter et al.,

1995; Solomon et al., 1994).

The Levy transport has been the subject of several studies because it is easily

encountered in nature. The study of Davis and Marshak (Davis and Marshak, 1997)

belongs to this type of diffusion, which investigates photon transport in a cloudy

atmosphere and can be considered the most well-known. According to this study,

1



the optical densities of the clouds vary depending on the cloud types, so it is an

excellent example of a natural scattering medium. The trajectories of the solar

photons in these areas show random walks, and the diversity of the properties of

these clouds has a crucial effect on this process. Based on the optical density of

clouds, photons can transmit slower or may even trapped in some areas. When the

inhomogeneity of the region increases, reflectivity decreases, and the model becomes

much more transmissive. Because of all these properties, analyzing the system with

the power law statistics is much more suitable for this model. Another study that

motivates this research has the theoretical and experimental background about the

Levy transport of light (Barthelemy et al., 2008). This study was performed with

glass microspheres. The critical point related to Levy transport is the diameter of

the microspheres. These diameters were arranged according to the Levy distribution.

Then, they were introduced to the solution, which included titanium dioxide inside

the liquid sodium silicate. In this study, the size of the microsphere diameters has an

essential effect on the scattering and the light path. According to their observations,

after using the He-Ne laser, they observed fluctuations in transmission since the light

paths are not constant during the scatterings. This outcome is crucial because it

provides experimental evidence of the characteristics of Levy transport.

On the other hand, some examples are based on numerical quantum mechan-

ical calculations. In 1998, a study was published investigating the Levy transport in

the square lattice by using Anderson disorder (Leadbeater et al., 1998). However,

unlike our models, this study considers the magnetic field and investigates its effects

on the deflection of Levy flights. Recently, a new study was published, which is

more related to our research area based on the building Levy glass structure (Fon-

seca et al., 2023). This study uses graphene nanoribbons as a material consisting

of a multichannel structure similar to our models. However, the physics behind this

research is different than ours. Here, on the surface of the nanoribbons, the tunable

spin-orbit regions are generated as the shape of circular regions. The diameter of

these areas is arranged according to the power law distribution. Their results show

that the spin polarizations in these clusters were observed for the superdiffusive

regime. These results are significant, especially in spintronic applications like spin

filters.

This thesis investigated the electronic quantum transport in the zigzag graphene

and quartic nanoribbons under edge disorder. As different from the literature, we

did not introduce Levy distribution or magnetic field to our systems, or we did not
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consider the spin-orbit effects. Instead, we focus on the multichannel structures of

our systems. While performing our calculations, we randomly introduced the disor-

ders to the edge atoms. To model the systems, we used a tight-binding Hamiltonian.

After constructing the structures, we calculated transmission using the Green’s func-

tion method. Then, we obtained our results by taking the ensemble averages over

different disorder configurations. According to our results, under the edge disor-

der, graphene and quartic nanoribbons show anomalous diffusion. We also used the

mode-matching method to understand the reason behind this behavior. Since we

focused on the multichannel mechanism, the mode-matching method gave us a new

perspective by analyzing the transport of the channels as individuals. After that,

we increased the system length and performed our calculations in the localization

regime. According to our results, the multichannel mechanism was suppressed at

these scales, and we observed normal localization.

This thesis’s first chapter includes a short review of the basic concepts of

electronic quantum transport. Chapter 2 discusses the methods we used during our

calculations, including the Greens function method, the mode matching method,

and some numerical techniques to gain from the speed and memory. Chapter 3

explains the steps we used while constructing our models and includes the trans-

port calculations with their interpretations. The final chapter is a conclusion that

includes a summary of our research.

1.1. Characteristic Length Scales

There are some fundamental length scales mainly used during the transport

process, including the Fermi wavelength λF , the phase coherence length λϕ, the

mean free path λmfp and the localization length ξloc.

The Fermi wavelength has a crucial role in understanding the behaviors of the elec-

trons in the material and is related to the inverse of the wave vector kF as

λF = 2π/kF . (1.1)

The phase coherence length, λϕ, gives a clue to understanding the quantum

mechanical effects on transport. This characteristic length can be defined as the
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average distance of electrons during the travel before scattering and losing their

quantum mechanical phase. The phase coherence length can be calculated from

λϕ = vF τϕ (1.2)

where τϕ is the phase coherence time and vF is the Fermi velocity.

The mean free path λmfp, on the other hand, can be defined as the average

distance before the particle scatters and changes its direction. We mainly used this

length scale as a characteristic parameter during our calculations since we mostly

worked on the diffusion regime. Regarding a type of collision, the mean free path

can be elastic or inelastic. The critical difference between the inelastic and elastic

collision is the energy exchange. In the elastic collisions, there are no energy ex-

changes. They generally formed due to the defects in the lattice, as in our models.

The elastic mean free path can be calculated from

λmfp = vF τel (1.3)

where τel is time taking between the elastic scatterings.

The last scale is the localization length ξloc. The localization length of the

system is related to the mean free path and indicates the length where diffusion

decreases or even vanishes. If the λϕ < ξloc, the electrons loose phase coherence. As

a result, interference effects disappear, and the system behaves classically. However,

for large λϕ, electrons coherently move in closed paths resulting in bound states

(Torres et al., 2014).

1.2. Quantum Transport Regimes

This section includes the roles of the characteristic length scales while de-

termining the transport regimes. These are Ballistic, Diffusion, and Localization

regimes.
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1.2.1. Ballistic and Diffusion Regimes

The main difference between the ballistic regime and the diffusive regime

is the relation between the length of the system L and the mean free path λmfp.

By using the characteristic length scales, the transport regimes can be determined.

Figure 1.1 is an illustration of the ballistic and diffusion regime.

In the ballistic regime, the system size is smaller than the mean free path.

Electrons travel through a conductor without scattering. In the diffusion regime, on

the other hand, the mean free path is smaller than the system size in this regime.

As a result, the electrons travel through a conductor by doing random walks while

experiencing scattering. In addition to these two regimes, there is a quasi-ballistic

regime, which has properties similar to these two regimes. The system size and the

mean free path can be comparable in the quasi-ballistic regime.

Figure 1.1. An illustration of (a) ballistic regime (b) diffusion regime

We used the transmission formula to investigate the relation between the

transmission and the system length. This formula can be derived considering a

system that includes two scattering centers. These scattering centers can represent

defects in the material.

Figure 1.2 illustrates a system with two scattering centers where the electron

comes from the left side. The electron moves through the scattering centers with a

reflection and transmission probability R1, R2 and T1, T2.
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Figure 1.2. The illustration of a system consists of two scattering centers. The

electron comes from the left side and moves through the scattering

centers with a transmission probabilities T1, T2, and reflection proba-

bilities R1, R2.

For this system, the possible outcomes can be written as

T12 = T1T2 + T1R1R2T2 + T1R
2
1R

2
2T2 + ... (1.4)

where T12 is the probability of an electron transmitting through both scattering

centers. The possible outcomes have two transmission probabilities: T1 for the first

center and T2 for the second center. In addition, these outcomes consist of an even

number of reflection probabilities R1 and R2.

By using the expansion

1 + x+ x2 + ... =
1

1− x
, (1.5)

the result can be simplify as

T12 =
T1T2

1−R1R2

. (1.6)

Since R1 = 1− T1 and R2 = 1− T2, Equation 1.6 becomes

T1T2
1−R1R2

=
T1T2

(T1 + T2)− T1T2
. (1.7)

Therefore,
1

T12
=
T1 + T2
T1T2

− 1 =
1

T1
+

1

T2
− 1. (1.8)
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From the Equation 1.8, R12/T12 can be obtained as

R12

T12
=

1

T12
− 1 =

1

T1
− 1 +

1

T2
− 1 =

1− T1
T1

+
1− T2
T2

. (1.9)

For N identical scattering centers, each having transmission probability T , Equation

1.9 can be written as
1− TN
TN

=
N(1− T )

T
(1.10)

where TN indicates the transmission probability of N identical scattering center and

can be calculated from

TN =
T

ρL(1− T ) + T
. (1.11)

Here, L is the length of the system, and ρ is the linear density of scattering center. If

the term T/ρ(1−T ) in the equation is defined as λmfp, the transmission probability

in terms of the system length can be written as

T =
λmfp

L+ λmfp

. (1.12)

Here, λmfp indicates a constant called mean free path. When the length of

the system equals the mean free path,the transmission probability becomes 1/2. In

the case of M number of modes, the equation becomes

T =
M

1 + (L/λmfp)
(1.13)

According to this equation, transmission is inversely proportional to the system

length and obeys Ohm’s Law (Datta, 1997, 2005). This behavior can be confirmed by

using the definition of resistance. According to Ohm’s law, the relation between the

potential difference and the current shows linear behavior. The potential difference

can be calculated from

V = IR (1.14)

where V is the potential difference, I is the current and R is the resistance of the

system. After applying the potential difference to a two-dimensional system, for
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example, to a wire, the current can be obtained from

I =
σAV

L
. (1.15)

Here, L/σA indicates resistance where A is the cross-sectional area, and σ is the

conductivity. This definition shows that resistance and the system length are linearly

dependent (R ∝ L). Since the conductance and resistance are inversely proportional,

the conductance decreases depending on the system length (G ∝ 1/L). At zero

temperature, the relation obtained for conductance can also be used for transmission

(T ∝ 1/L). However, this classical behavior is only observed for normal diffusion

where α = 2.

In this case, the system shows normal diffusion and includes Gaussian ran-

dom walk. However, Gaussian random walk is just a particular type of random

walk. Therefore, in our calculations, we need a more general transmission formula.

By using some statistical concepts, such as the characteristic function and the prob-

ability density function (PDF), it is possible to understand the link between random

walk motion and transmission.

The general form of the symmetric distributions can be represented as

ρ̂chα (c, k) = e−c|k|α . (1.16)

This term is also called characteristic function in statistics. Here, α is a crucial

parameter to determine the type of the distribution. On the other hand, c in the

equation specifies the tail of the distribution.

The Fourier transform of the characteristic function gives the probability

density functions (PDF). Both PDF and characteristic functions have essential roles

in transport. Using the characteristic function is generally preferred when analyzing

the distributions, such as considering its mean and variance; the PDF, on the other

hand, gives a visual solution; for example, it is better to see where data is concen-

trated. The probability density functions take their name according to the α values

inside their equation. If α = 2 the Fourier transform of this characteristic function

gives Gaussian PDF. For another case, if α = 1 PDF takes the name Lorenztian

function. However, in other cases, these distributions do not have analytical solu-
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tions (Uchaikin and Zolotarev, 2011). At these ranges, asymptotic limits must be

considered.

For large x expansion

Pα(c, x) ≈
c

| x |1+α
(1.17)

which shows heavy tail distribution (Buldyrev et al., 2001; Barthelemy et al., 2008).

The situation we encountered in the transmission calculation is analogically

similar to this concept. There are various cases where the transmission is linearly

dependent on length. However, it does not always have to be like that. By taking

into account these other possibilities, the literature uses a more general α dependent

transmission equation for diffusion, which is (Barthelemy et al., 2008). The role of

the α in the equation is similar to the version used in statistics.

T =
M

1 + (L/λsp)
α
2

. (1.18)

Figure 1.3. Comparison of the superdiffusion and normal diffusion depending on

α values. During calculations, the spread length, λsp, is 50, and the

number of modes, M, is 1 for both cases.
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Figure 1.3 shows the transmission length dependence for different α. Trans-

mission values obtained from Equation 1.16. where the spread length, λsp, and the

number of modes are chosen as 50 and 1, respectively. According to this figure, In

the case of α = 2, the system shows normal diffusion, including Gaussian statistics.

On the other hand, α < 2 shows superdiffusion and decays faster than the normal

diffusion case.

1.2.2. Localization Regime

According to Einstein, if the system exhibits a random walk, the diffusion

equation is enough to explain the process. However, in 1958, Anderson proved that

this statement is only valid for some cases (Anderson, 2010). Anderson suggests

that random walks have a memory when dealing with quantum particles, and the

interference effects should be considered. As a result of that, for an infinitely long

time with a strong disorder, this process may result in localization.

In the case of the random disordered potential V the Schrödinger equation

can be written as

− ℏ
2m

∇2Ψ(r) + V (r)Ψ(r) = EΨ(r). (1.19)

Depending on the relation between the energy and the potential, two different sce-

narios can be mentioned.

If E > V , the solution of the equation gives unbound states. These states represent

extended states such as free particle solutions.

|Ψ(r)|2 ∝ L−d (1.20)

where d is the dimension of the system, and L is the size of the system.

If V > E, on the other hand, the solution of the equation gives bound states with

discrete energy spectra. Bound states represent localized states.

|Ψ(r)|2 ∝ e−r/ξloc (1.21)

ξloc is the localization length (Abrahams, 2010). The transmission function, in the
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logarithmic form, can be represented in the localization regime as (Fernández-Maŕın

et al., 2012)

⟨−lnT ⟩ ∝

1 ≤ γ < 2, L(Linear)

0 < γ < 1, Lγ(Power Law)

In the literature, in addition to the standard localization, there are several

studies related to anomalous localization (Méndez-Bermúdez et al., 2016; Amana-

tidis et al., 2017; Fernández-Maŕın et al., 2012; Zakeri et al., 2015).

1.3. Landauer Formalism

The Landauer formalism is a convenient way to describe quantum trans-

port, including scattering effects. Landauer introduced this theory first in 1957 for

metallic conductors (Landauer, 1957). Then, in 1970, this theory extended to one-

dimensional lattices (Landauer, 1970). After that, in 1986, Büttiker generalized the

formula for multi-lead systems (Büttiker, 1986).

Figure 1.4. The illustration of the tripartite system consists of the central region

connected with semi-infinite leads with both ends. The differences

between the chemical potentials of the left lead µL and the right lead

µR give rise to current.

This formalism considers a system connected to two semi-infinite periodic reservoirs

with both ends, as represented in Figure 1.4. Each reservoir has its chemical po-

tential µ, temperature, and Fermi function f . Electrons are injected from the leads
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and move through the system. They can also be scattered back to the reservoirs.

The difference between the chemical potentials µL and µR of the reservoirs indicated

with ∆ gives rise to the current in the system.

The total current can be calculated from the integration of the difference

between Fermi levels of the reservoirs multiplied by the transmission amplitude

T (E) and can be written as

I =
2e

h

∫
dE[fL(E, µL)− fR(E, µR)]T (E) (1.23)

where fL(E, µL) and f
R(E, µR) are Fermi distribution functions of the left and right

lead, respectively. This equation is the most general form of the Landauer formalism

and is called the two-terminal formula (Torres et al., 2014).

For the finite temperature case, the conductance becomes

G =
2e2

h

∫
dET (E)

(
− ∂f

∂E

)
. (1.24)

At zero temperature, (
− ∂f

∂E

)
= δ(E − EF ) (1.25)

where EF stands for the Fermi energy. Then, conductance can be calculated from

G =
2e2

h
T (EF ). (1.26)

If the system consists of M number of modes, the equation becomes

G =
2e2

h
MT (EF ). (1.27)

By using the definition of the transmission probability in terms of the mean free

path equation can also be written as

G =
e2

h
M

λ

λ+ L
. (1.28)
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Therefore, the two probe resistance becomes

R =
h

e2M
+

h

e2M

L

λ
(1.29)

where the h/e2 is the contact resistance for perfect wire. In Equation 1.29, resistance

consists of two terms. The first term indicates interface resistance, while the second

one is device resistance, or in other words, the four-probe resistance. Therefore, R4

which is called the devices resistance becomes

R4 =
1

M

L

λ
. (1.30)

Figure 1.5. Illustration of the (a) measurement points on the total system (b) a

four-probe resistance (c) a two-probe resistance

The main difference between the two-probe and the four probe equations

is that the point where the voltage is applied. In the case of four-probe system,
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measurements are taken from inside the leads, while for two-probe case, inside the

electrodes. In a system like that, the leads take a role as waveguides of electrons by

connecting them with the central region (Ryndyk et al., 2016).

Figure 1.5 is the illustration of this process. In the four-probe resistance,

the current is applied to the system from the points L1 and L2. In the two-probe

resistance on the hand, both current and voltage are applied from the same points,

which are E1 and E2.

1.4. Scattering Matrix

The characteristic properties of the scattering process are determined by the

scattering matrix (S matrix). There is a strong relation between the S matrix and

the transport process. S matrix provides a direct way to calculate the transmission

eigenvalues, which is crucial for transport calculations.

We can first consider a sample with one scattering center to understand the

scattering mechanism, represented in Figure 1.6. According to this figure, if a wave

is coming from the left, it can be either transmitted to the left with a transmis-

sion amplitude t or reflected to the right with a reflection amplitude r. A similar

process can be applied to the right-coming wave whose transmission and reflection

amplitudes become t′ and r′, respectively. These outcomes can be represented as

the elements of the S matrix.

Figure 1.6. Illustration of the system with one scattering center and a single chan-

nel where waves come from (a) the left and (b) the right. t,t′ and r,r′

represent transmission and reflection amplitudes, respectively.
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The scattering matrix for this system can be represented generally as

S =

(
sLL sLR

sRL sRR

)
=

(
r t′

t r′

)
(1.31)

S matrix provides a relation between the incoming and outgoing states of the system.

In a single-channel case, outcomes are directly related to amplitudes. Since the S

matrix is unitary, the total probability is always conserved.

SS† = S†S = 1. (1.32)

Their absolute squares give the transmission and reflection probabilities.

T =| t |2 T ′ =| t′ |2

R =| r |2 R′ =| r′ |2
(1.33)

In the multichannel case, which is illustrated in Figure 1.7, similar steps can be

followed. However, the possible outcomes will be increased depending on the number

of channels. Therefore, determining and working on one specific channel will be

much easier. Figure 1.6 shows the possible outcomes of an electron coming from the

left in the mth transport channel.

Figure 1.7. Illustration of the scattering mechanism in a multi-channel system.

Transmission and reflection amplitudes indicated for the electron com-

ing from the left in the mth channel. The total number of channels is

represented with NL and NR for the left and right sides, respectively.
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In that case, the elements of the S matrix consist of the reflection (r̂, r̂′) and the

transmission matrices (t̂, t̂′), instead of the amplitudes. In general form, it can be

represented as

S =

(
r̂ t̂′

t̂ r̂′

)
(1.34)

The dimension of the S matrix is determined in terms of the total number of channels,

which is equal to (NL +NR)× (NL +NR) in this case.

From the unitary property

SS† = S†S = 1. (1.35)

Therefore,

SS†
mm =

∑
m′

| r̂m′m |2 +
∑
l

| t̂lm |2= 1. (1.36)

Here, tlm is the transmission amplitude of the electron coming from the left channel

to the right. On the other hand, rm′m indicates the reflection amplitude of the

electron coming from the left channel m to the left channel m′. The electron coming

from the left in channel m can be transmitted to the right or reflected. However,

the total probability is always conserved (Nazarov and Blanter, 2009).

1.5. Transmission Eigenvalues

Transmission eigenvalues give information about the transport process. They

can obtained from the eigenvalues of the transmission product matrix t̂t̂†. Therefore,

they are also directly related to the scattering matrix mentioned in the previous

section. Since the scattering matrix is unitary, the eigenvalues are real numbers.

Depending on the disorder configuration of the system, the transmission eigenvalues

can take different values. For sufficiently large ensembles, these possibilities indicate

a distribution.

The magnitudes of these eigenvalues can be used to determine the open

channels in the system. Their magnitudes can change between 0 and 1. They

indicate the closed and open channels, respectively.

In general form, the transmission distribution mathematically can be repre-

sented as

P (T ) = ⟨
∑
N

δ(T − TN(E))⟩. (1.37)
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Here, TN indicates transmission eigenvalues whose magnitude changes depending on

the disorder configuration.

In the eigenchannel basis, there is no interaction between the transport chan-

nels. As a result of that, the transmission and the reflection matrices are diagonal,

including t̂t̂† matrix. Because of the diagonality, the transmission eigenvalues and

the transmission coefficients of the channels refer to the same parameter. Therefore,

in this case, it is possible to think of the system as a parallel circuit with independent

transmission channels (Nazarov and Blanter, 2009).

The Landauer Formula can also be written in terms of the transmission

eigenvalues at zero temperature as

G = G0

N∑
n=1

TN (1.38)

where G0 = 2e2/h and indicates the conductance quantum with a spin factor 2

(Fisher and Lee, 1981). Another definition of the conductance is the ratio of the

average current Ī to the voltage difference V, in the case of a small voltage limit.

The average current, on the other hand, is time-dependent and can be written as

I(t) = Ī + δI(t). (1.39)

The fluctuations can be described as moving away from the actual value and having

a particular name: shot noise (Beenakker, 1997).

1.5.1. Quantum Shot Noise

The quantum shot noise appears as a time-dependent fluctuation in the cur-

rent via temporal correlations. Their origin is based on the discrete nature of the

electron charge. These fluctuations provide information on transport that can not

obtained from conductance. The averaged current term, from the Landauer formula,

can be written as

Ī =
2e2

ℏ
V

N∑
n=1

TN (1.40)
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where V is the applied voltage, TN is the transmission eigenvalues, e2/ℏ is the

conductance quantum and 2 comes from the spin factor (Büttiker, 1990).

Schottky realized the first observations of shot noise on vacuum tubes (Schot-

tky, 2018). In a vacuum tube, electrons are emitted by the cathode randomly.

Schottky discovered that during this process, in addition to thermal noise, there is

another noise resulting from the discreteness of the electrical charge called shot noise.

The shot noise, at zero temperature, can be written in terms of the transmission

eigenvalues as

S =
N∑

n=1

TN(1− TN) (1.41)

Here, the terms TN and 1 − TN indicates the transmission and the reflection prob-

abilities respectively (Büttiker, 1990). From equation 1.41, it can be seen that the

Shot noise can not be obtained directly from the transmission probabilities. First,

the transmission and reflection probabilities must be multiplied for each eigenchan-

nel; then, their sum should be taken. Since this is the basis-dependent definition,

the possibility of the interference of the channels should considered.

During the shot noise calculations, the Pauli principle also becomes essential.

The term, 1−TN , in the equation, is responsible for noise reduction and comes from

the result of the exclusion principle. This term represents the correlations between

the electrons (Blanter and Büttiker, 2000).

If we examined this equation considering the case of the channels open or

closed, if the channels completely open TN = 1 or closed TN = 0 do not contribute

to the shot noise. To obtain the maximum contribution, TN must be 0.5. In the

limit of TN ≪ 1 case, the shot noise becomes Poisson noise, which is discussed by

Schottky before.

SP =
N∑
1

TN = 2e⟨Ī⟩ (1.42)

1.5.2. Fano Factor

The most general definition of the Fano factor is the ratio of the variance

to the mean. This definition is mainly used in statistics. While mentioning the

transport calculations, on the other hand, the definition becomes more specific and

determined as this ratio of the shot noise to the average current. This definition is
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the particular type of general one that focuses on current fluctuations. Since it is a

universal parameter, the magnitude of the Fano factor is independent of the sample

size or band structure. This property makes the Fano factor a crucial indicator for

understanding a material’s transport properties. The Fano factor can be calculated

in terms of the transmission eigenvalues as (Blanter and Büttiker, 2000)

F =

∑N
n=1 TN(1− TN)∑N

n=1 TN

(1.43)

In the Poisson limit, the transmission eigenvalues are much smaller than one, which

indicates pure tunneling. Since TN ≪ 1, the term will be (1−TN) ≈ 1. As a result,

the Fano factor also becomes 1. This limit is called an uncorrelated stochastic

process. In that case, without taking the limit, the magnitude of the Fano factor

can be guessed. Since the distribution is Poissonian, the variance and the means of

the distribution give the same value. Therefore, from the general definition of the

Fano factor, indicated in equation 1.43, this ratio becomes 1.

For the ballistic conductors, since TN ≈ 1 and (1− TN) ≈ 0, the Fano factor

becomes 0. For the other cases, eigenvalue distributions must be used to calculate

the Fano factor. For instance, the eigenvalue distributions are bimodal for diffusive

wire with a density and can be written as

ρ(T ) ≈ 1

T
√
(1− T )

. (1.44)

Moreover, according to the linear statistics (in a small voltage limit) eigenvalues can

be calculated in the Fermi surface and discrete sum can be converted to integral as

〈
N∑

n=1

TN(1− TN)

〉
=

∫
ρ(T )T (1− T )dT (1.45)

When the integral solved by using integration by parts, the Fano factor obtained as

1/3 for diffusive wire. The Fano factor has other universal values, including dirty

interface F = 1/2 and F = 1/4 for the symmetric ballistic chaotic cavity (Blanter

and Büttiker, 2000).
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CHAPTER 2

METHODOLOGY

2.1. Green’s Function Method

Green’s functions provide a way to calculate transport quantities related to

the system, like the density of states and transmission function, without solving the

eigenvalue equation for the whole system. In other words, it is a practical way to

solve the Schrödinger equation.

The Green’s function can be defined in general form as

((E + iη)−H)G(E) = 1. (2.1)

where η is an infinitesimal positive small number. In the case of the constant per-

turbation added to system as |ψ′⟩ the response becomes

|ψ⟩ = −G(E) |ψ′⟩ . (2.2)

From this equation, it is interpreted that the role of Green’s function is describing

the response of the system to a constant perturbation (Datta, 1997).

2.1.1. The Tripartite System

In our calculations, we used a tripartite system where the central region is

connected to two semi-infinite periodic leads with both ends. Figure 2.1 shows the

representation of this system. The total Hamiltonian can be expressed by a block
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tridiagonal matrix as

Htot =


HL HLC HLR

HCL HC HCR

HRL HRC HR

 (2.3)

where HLL, HRR, HCC are Hamiltonians of the left lead, right lead, and center,

respectively. HLC and HCL are the interaction Hamiltonians between the system

and leads. If there is no direct interaction between leads, HLR and HRL are taken

as zero.

Figure 2.1. Representation of the tripartite system where ΣL and ΣR represent

the self-energies of the left and right lead, respectively.

For the tripartite system, Equation 2.1 can be written as


E −HL −HLC 0

−HCL E −HC −HCR

0 −HRC E −HR



GL GLC GLR

GCL GC GCR

GRL GRC GR

 =


1 0 0

0 1 0

0 0 1

 (2.4)

By solving this equation for the second column of the Green’s function of the central

region is obtained as

GC = ((E + iη+)I −HC − ΣL − ΣR))
−1. (2.5)
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Here, Σ defines the self-energies for the left lead
∑

L = HCLgLHLC and the right

lead
∑

R = HCRgLHRC . Self-energy represents the contribution of the lead effects

on the system. gR and gL, on the other hand, are surface green functions. Thanks

to the periodic structure of the reservoirs gR and gL can be calculated by using some

decimation techniques.

Since the system is tripartite, the total wave function consists of three subspaces,

which are |ψL⟩ , |ψR⟩ are the wavefunctions for the left and right lead, and |ψC⟩ for
the central system. Considering the first lead as isolated from the central region and

the second lead, the wavefunction on the total system resulting from the incoming

wave in the left lead can be calculated. In this case, the coupling between the device

and leads can be thinking as a perturbation. The wavefunction |ψL⟩ consists of two
terms.

∣∣ψ0
L,n

〉
represents the eigenstates of the HL, |ψrsp

L ⟩ on the other hand, is the

response of the total system.

From the solution of the Schrödinger equation for the wavefunction (
∣∣ψ0

L,n

〉
+ |ψrsp

L ⟩).

E
∣∣ψ0

L,n

〉
+HCL

∣∣ψ0
L,n

〉
+H |ψrsp

L ⟩ = E
∣∣ψ0

L,n

〉
+ E |ψrsp

L ⟩ (2.6)

Therefore,

(E −H) |ψrsp
L ⟩ = HCL

∣∣ψ0
L,n

〉
(2.7)

and the response of the total system when the perturbation is (−HCL |ψ1,n⟩) obtained
as

|ψrsp
L ⟩ = GHCL

∣∣ψ0
L,n

〉
(2.8)

The wavefunction for the left lead becomes

|ψL⟩ =
∣∣ψ0

L,n

〉
+GLCHCL

∣∣ψ0
L,n

〉
(2.9)

By using GLC = gLHLCGC , equation can be written as

|ψL⟩ = (1 + gLHLCGCHCL)
∣∣ψ0

L,n

〉
(2.10)
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The wavefunction for the right lead and the central region can also be obtained in

a similar way as

|ψR⟩ = gRHRCGCHCL

∣∣ψ0
L,n

〉
and |ψC⟩ = GCHCL

∣∣ψ0
L,n

〉
(2.11)

Since the wave functions written in term of the same eigenstate
∣∣ψ0

L,n

〉
, the partial

current can be calculated from

j = jL = −jR =
−ie
ℏ

(⟨ψR|HRC |ψC⟩ − ⟨ψC |HCR |ψR⟩) (2.12)

By using equations in 2.11, the partial current becomes

j =
−ie
ℏ
〈
ψ0
L,n

∣∣HLCG
†
CHCR(g

†
R − gR)HRCGCHCL

∣∣ψ0
L,n

〉
(2.13)

Using the self-energy terms and broadening matrices can simplify this equation. The

physical meaning of self-energy is that it represents the contribution of the leads to

the system Hamiltonian. They can be written as ΣR = HCRgRHRC and ΣL =

HCLgLHLC for right and the left lead respectively. Γ, also called the broadening

matrix, on the other hand, is defined as i(Σ−Σ†). These terms are related to each

other. The imaginary part of the self-energies is responsible for the level broadening.

As a result, the total current can be rewritten as

I =
∑

j =
−ie
ℏ

(
〈
ψ0
L,n

∣∣HLCG
†
CΓRGCHCL

∣∣ψ0
L,n

〉
)fL(E

′) (2.14)

where fL(E) indicates the distribution function of the left lead.

From the Landauer equation we also know that

I =
e

ℏ

∫ ∞

−∞
dET (E)fL(E) (2.15)
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Therefore, by comparing these two equations, transmission functions can be obtained

in terms of the broadening matrices and the central region as (Datta, 1997)

T (E) = 2π
∑

(HLCG
†
CΓRGCHCL)δ(E − E ′) (2.16)

T (E) = tr(ΓLG
†
CΓRGC) (2.17)

This equation is also called the Caroli formula. In our calculations, we used the

Caroli expression to calculate the transmission of the central region.

2.2. Mode-Matching Method

The mode-matching method provides a way to calculate the transmission

for individual modes. Because of that, it is essential, especially when working on

multi-channel systems.

Figure 2.2. The representation of the mode-matching method. Figure is adapted

from (Ong and Zhang, 2015)

.

According to this method, the system consists of three parts, as shown in Figure

2.2. Here, since leads are identical and periodic, it is possible to think of them as

repeating slices and using the Bloch symmetry. The terms H01
L and H01

R represent
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the matrices that provide a coupling between each slice and its neighbor slice on

its right side. The indexes L and R indicate the left and right leads, respectively.

Bloch matrices are represented with PL(−) and PR(+). The + and − signs show

left-going and right-going modes. By using the coupling matrices and the surface

Green functions (gL and gR), the Bloch matrices can be calculated as

PR(+) = gRH
10
R (2.18)

PL(−)−1 = [H10
L gL]

†. (2.19)

After calculating the Bloch matrices, by using the eigenvalue equation, the eigen-

modes can be obtained as

PR(+)UR(+) = λR(+)UR(+) (2.20)

PL(−)−1UL(−) = λL(−)−1UL(−). (2.21)

where UR(+) and UL(−) are normalized eigenstates, λR(+) and λL(−) eigenvalues

of Bloch matrices. If the number of modes represented with m and n in the right

and left lead, respectively, from the equation

[λL]nn = eikna (2.22)

[λR]mm = eikma (2.23)

wave vectors can be calculated in terms of the eigenvalues as

kn = arccos( Re(λL)) (2.24)

km = arccos( Re(λR)). (2.25)
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The k range in the equation is determined as âπ < k < π. Then, by using eigenvec-

tors of the Bloch matrices, group velocities calculated from

V gR(+) = UR(+)†ΓRUR(+) (2.26)

V gL(+) = UL(−)†ΓLUL(−). (2.27)

Finally, the transmission matrix from the left to the right lead obtained as (Khomyakov

et al., 2005; Ong and Zhang, 2015)

tn,m = tL,R = i
√
V gL(+)U−1

L (+)GLRU
−1
R (−)†

√
V gR(+) (2.28)

where GLR = gLHLCGCHCRgR. Since GLR includes the information about the

central region, it is possible to see the effects of the defects on the transmission

in the system. The transmission matrix product (tnmt
†
nm), which is equivalent to

|tn,m|2, represents the transmission probability from n th mode in the left lead to

the m th mode in the right lead. Therefore, the transmission of the nth left lead

mode can be calculated from the nth dioganal element of tt† and can be written as

TL
n = [tt†]nn (2.29)

The transmission of the mth right lead mode, on the other hand, can be calculated

from

TR
m = [t†t]mm (2.30)

Therefore, the total transmissions for the left and the right lead becomes

TL =

NL∑
n=1

TL
n = tr(tt†) (2.31)

TR =

NR∑
m=1

TR
m = tr(t†t) (2.32)
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Here, NL and NR indicates the total number of modes for each channels for left and

right lead respectively. The transmission of the left and right leads is equal to each

other and also equal to the total transmission obtained in Equation 2.17 (Ong and

Zhang, 2015; Khomyakov et al., 2005).

TL = TR = T (2.33)

2.3. Decimation Techniques

Decimation techniques are mainly used to gain speed and memory during

calculation. The origin of this technique is based on thinking of matrices as a

number of slices. Doing that provides a way of working on large systems efficiently.

In our calculations, we used this technique to calculate the surface Green’s functions

and study the localization regime at a large scale.

The common point of these two calculations is based on the fundamental

equation of decimation. The fundamental equation provides a way to write the

matrix elements in terms of each other and reduce the dimension of the matrix. At

the end of that, we can reach the effective Hamiltonian.

The decimation equation in general form can be obtained by multiplying any

matrix with its inverse. For example, if M is any invertible matrix and N is its

inverse matrix, their product must be one. In the matrix form, this equation can be

written as (
M11 M12

M21 M22

)(
N11 N12

N21 N22

)
=

(
1 0

0 1

)
(2.34)

From the matrix equation, we can obtain that

M21N11 +M22N21 = 0. (2.35)

Therefore,

N21 = −M−1
22 M21N11. (2.36)
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Substituting this equation into

M11N11 +M12N21 = 1 (2.37)

gives the fundamental equation of decimation

N11 = (M11 −M12M
−1
22 M21)

−1. (2.38)

This equation also can be used for Green functions. The Hamiltonian matrix for

the bipartite system can be written as

H =

(
H11 H12

H21 H22

)
(2.39)

Then, calculating the inversion of this matrix the Green’s function obtained as

((E + iη)1−H)−1 = G =

(
G11 G12

G21 G22

)
(2.40)

From the fundamental equation of decimation

G11 = ((E + iη)1−H11)− (−H12)((E + iη)1−H22)
−1(−H21))

−1 (2.41)

where ((E + iη)1 − H22)
−1 = G0

22. Therefore, the effective Hamiltonian for H11

becomes

Heff
11 = H11 +H12G

0
22H21 (2.42)

The second term H12G
0
22H21 on the right side of the Equation 2.42 indicates the

self-energy of System 2 (Nemec, 2007).

At large systems, we performed calculations using an iterative method. This

method provides an efficient solution to gain speed and memory during the calcula-

tions, especially in the localization regime. The logic behind this method is similar
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to the decimation techniques mentioned above for the bipartite systems. The it-

erative method can be examined in two parts. First, we determined the length of

the system and constructed a random defect array at that range for the localization

regime. Then, we constructed the 3M × 3M Hamiltonian, where M indicates the

number of modes for the system. After that, we decimated the elements of the

second layer from the Hamiltonian matrix.

Figure 2.3. An illustration of the change in the dimensions of the Hamiltonian

matrix before and after the first decimation.

Figure 2.3 illustrates this step. In this way, the information of the second

layer is transferred to the other elements of the matrix. A new matrix, the effective

Hamiltonian matrix, was obtained with a dimension of 2M × 2M (Nemec, 2007).

This part is nearly the same as the bipartite system mentioned above; the only

difference is that the system is tripartite in this case.

After obtaining the effective Hamiltonian once, we determined the iteration

amount, which indicates the number of layers added at each iteration. By doing

that, we calculated the transmission properties of the system without constructing

a complete Hamiltonian. Figure 2.4 is an example of the iteration amount chosen as

2 layers indicated with green blocks. In our calculations for the localization regime,

we took the adding number of layer as 100 for each iteration.

Figure 2.5 shows the average transmission energy plot for zigzag graphene

nanoribbons. Here, we used one disorder configuration to see the consistency. From

the figure, we can see that the same results can be obtained in a short time by using

the decimation method.
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Figure 2.4. An illustration of the iteration process where the number of adding

layers is chosen as two for each iteration

Figure 2.5. The average transmission energy plot for 12-zGNR in the presence of

edge disorder
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2.3.1. Calculation of the Surface Green’s Functions

The surface Green functions play an essential role in calculating self ener-

gies, in other words, to calculate the contribution of the leads to the system. In

our systems, the leads are semi-infinite. Working with semi-infinite matrices is a

problem when taking the matrix inversion. Therefore, to avoid that, we used the

renormalization decimation algorithm during the calculations of the surface Green

functions.

Figure 2.6. The representation of the renormalization decimation method where

Hlayer and HC indicate the Hamiltonian of each layer and the central

region. The term Hint is the interaction Hamiltonian of each layer

and its neighbor layer. The self energies of the system are represented

with Σ.

As a first step, we defined the Hamiltonian of the leads. They are block

tridiagonal and can be written in general form as

Hright =


H00 H01 0 . . .

H10 H11 H12 0

0 H21
. . . H23

...

 or Hleft =


...

H23
. . . H21 0

0 H12 H11 H10

. . . 0 H01 H00


(2.43)

Then, to perform the decimation method, we consider a system as a series of periodic

layers. Since each layer is identical, two Hamiltonian is enough to construct the
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whole system. We defined these Hamiltonians as Hlayer and Hint briefly. According

to this definition, Hlayer represents the Hamiltonian of each layer while Hint is the

interaction Hamiltonian for each layer and its neighbor layer. Therefore,

H00 = H11 = H22 = · · · = Hlayer

H01 = H12 = H23 = · · · = Hint

(2.44)

First, we can think that there are N identical layers, and the last one belongs

to the central region, as shown in Figure 2.6. In that case, the rest of the N−1 layers

belong to the leads. Their contribution to the central region, their self-energies, in

other words, can be calculated as

ΣL = H†
intg

L
N−1Hint,

ΣR = Hintg
R
N−1H

†
int.

(2.45)

where gLN−1 and g
R
N−1 indicate the surface Green functions consisting of N−1 slices.

Therefore, for N slices case, the surface Green functions for the left lead becomes

gLN = (E + iη −Hlayer − ΣL)
−1

gLN = (E + iη −Hlayer −H†
intgN−1Hint)

−1
(2.46)

and for the right lead in a similar way

gRN = (E + iη −Hlayer − ΣR)
−1

gRN = (E + iη −Hlayer −HintgN−1H
†
int)

−1
(2.47)

This equation shows a relation between the case of the N and N−1 layers, indicating

recursion (Sancho et al., 1985). Since the layers are periodic, the equation can easily

be applied to our systems. After a specific iteration, gN and gN−1 converged to the

same value, and we can reach the surface green function for our calculations.
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CHAPTER 3

MULTI-CHANNEL SYSTEMS

3.1. Two-Channel Model

The two-channel model is a crucial toy model for understanding the link

between multichannel systems and anomalous transport behavior. It provides a way

to obtain different diffusion mechanisms with the same model by changing system

parameters. Because of that, we first studied this model before investigating the

transport properties of nanoribbons.

Figure 3.1. The two-channel model with an Anderson disorder strengths W1 = t∥

and W2 = t∥/10. t⊥ and t∥ indicate the hopping strength between the

channels and through the channels respectively.

Figure 3.1 represents the illustration of our two-channel toy model. This model

comprises two channels connected with a hopping strength t⊥. The ratio between the

t⊥ and the hopping strength through the channels,t∥, is a crucial parameter affecting

the diffusion type of the system. After constructing a structure, we introduced

the Anderson disorder to Channel 1 and Channel 2, whose disorder strengths are

represented with W1 and W2, respectively. Depending on these values, disorders are

generated as random numbers between −W1,2/2 and +W1,2/2, whose sum equals

zero. Since the differences in these disorder strengths affect the group velocities of
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channels, by doing that, we aim to work on two channels with different transport

properties simultaneously. Finally, we connected this region with two perfect semi-

infinite chains from the left and right and calculated the transmission using Green’s

function method.

Figure 3.2. The average transmission-length relation over 1000 different disorder

configurations for (a) the two-channel model with W1 = t∥,W2 =

t∥/10, t⊥/t∥ = 1/20, (b) the two-channel model with W1 = t∥,W2 =

t∥/10, t⊥/t∥ = 1 and (c) the single-channel model with W = t∥, at the

0 eV.

Figure 3.2 shows the relation between the average transmission and the sys-

tem length calculated from the Green’s function method over 1000 different disorder

configurations. The results in Figure 3.2.a and 3.2.b belong to the two-channel model

with Anderson disorder strengths W1 = t∥ and W2 = t∥/10. The main difference

between these two structures is the t⊥/t∥ ratio. In Figure 3.2.a t⊥/t∥ ratio is taken

as 1/20 and in Figure 3.2.b as 1. Figure 3.2.c, on the other hand, shows the results

for a single-channel model with an Anderson disorder W = t∥. According to the

results, the average transmission decreases with system length in the presence of

disorder.
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The curves in the figures, represented by blue, red, and green colors, are

obtained using a generalized diffusion equation indicated in Equation 1.16. α and

λsp were chosen as free parameters during the fitting process. The black curves, on

the other hand, are obtained from the transmission formula indicated in Equation

1.13. This equation is the particular type of the generalized transmission formula,

where α equals two. According to our results, these curves coincide in Figures

3.2.b (single-channel model) and 3.2.c (two-channel model with t⊥/t∥ = 1). This

behavior confirms that α values are 2 for these systems and shows normal diffusion.

However, in Figure 3.2.a, α was obtained as 1.32, and the system shows anomalous

diffusion. Furthermore, from the fitting, we obtained the spread length, λsp, for

these systems which are 207.43a0, 74.18a0 and 49.62a0 for the two-channel model

with t⊥/t∥ = 1/20, t⊥/t∥ = 1 and the single-channel model. The spread lengths are

indicated with a dashed line. At these lengths, the black curves and the colored

fitting curves coincide.

Then, we investigated the change in the resistance with an increasing system

length. From the four probe equation,in the normal diffusion regime, we know that

resistance is proportional to L/λsp ratio and can be calculated from

R4 =
1

M

L

λsp
. (3.1)

Accordingly, for the generalized case, one can write

R4 =
1

T
− 1

M
. (3.2)

where M is the number of modes, and T is the transmission.

In our calculations, we used Equation 3.2 for both t⊥/t∥ = 1 (normal diffu-

sion) and t⊥/t∥ = 1/20 (anomalous diffusion) case to calculate the resistance. From

Figure 3.3.a, we can see that, in the normal diffusion case, the resistance increases

linearly with system length. However, in the anomalous diffusion case, this behavior

becomes sub-linear. In Figure 3.3.b, we multiplied the four-probe resistance with

the number of modes M for both cases and investigated the mode-independent case.

According to this figure, two curves coincide where the system length becomes equal

to the spread length. The differences between the changes in the resistance behavior
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can be seen more clearly up to that point. Lastly, in Figure 3.3.c, we investigated

the logarithmic scale and focused on the slopes. From the generalized transmission

equation in the diffusion regime, we know that the slope of the lines in Figure 3.3.c

have slopes α/2.

Figure 3.3. The resistance-system length relations of the two-channel model for

(a)the mode-dependent version (b)the mode-independent version (c)

the logarithmic version.

After determining the characteristic differences between normal and anoma-

lous diffusion, we focused on the possible reasons behind this anomaly. In the lit-

erature, anomalous diffusion is mainly observed due to Levy disorder. However, we

used Anderson disorder in our calculations, which has a mechanism different from

the literature. To understand the reason behind this, we utilized the mode-matching

method and investigated the transmissions of the channels individually.

As a reference point, first, we constructed a single channel with the hopping

strength t∥ = 1 and the Anderson disorder W =t∥. By doing that, we aim to see the

possible shapes and the average values of the transmission distributions. According

to our results in Figure 3.4, three characteristic distribution types exist: nearly

ballistic (L = 23a0), diffusion (L = 43a0), and nearly localization (L = 103a0) where

the average transmissions are 0.70, 0.55 and 0.30, respectively. The magnitudes of

the transmission probabilities can take values between 0 and 1. Therefore, in these

figures, the maximum value of the x-axis gives information about the number of open

36



channels in the system. For the pristine case, the transmission probability takes its

maximum value of 1. After a disorder is introduced to the system, the transmission

decreases. For large ensemble sizes, the possible transmission probabilities give

distributions. While studying with the single channel, it is easier to observe these

regimes since the system has one mode. However, the mode analysis becomes more

complicated for the two-channel model than for the single-channel case.

Figure 3.4. The transmission probability distributions for single-channel over 1000

different disorder configurations for L = 23a0 , L = 43a0 and L =

103a0.

The transmission distributions obtained for the two-channel model are a com-

bination of the results for the single channel case. Based on the single channel results,

there are typically six possible mathematical configurations for two-channel case:

ballistic+ballistic, ballistic+diffusion, diffusion+diffusion, diffusion+localization, bal-

listic+localization, and localization+localization. However, we observed five combi-

nations in the anomalous case, as shown in Figure 3.5. The main reason behind that

is that Channel 1 has a stronger disorder than Channel 2 and enters localization

faster, which makes the diffusion+diffusion case impossible for systems that show

anomalous diffusion.

Figure 3.5 shows the transmission probability distributions for the two-channel

model over 1000 different disorder configurations using the mode-matching method

and Green’s function method. First, we calculated the transmission probabilities of

the channels individually, which are indicated as t1 and t2 for the Channel 1 and

the Channel 2, respectively.
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Figure 3.5. The transmission probability distributions at different lengths for

(a)L = 13a0 (b)L = 43a0 (c)L = 123a0 (d)L = 1303a0 (e) L = 4003a0

obtained from the mode-matching method for Channel 1 P (t1) and

Channel 2 P (t2), from the Green’s function method for the total sys-

tem.
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In Figure 3.5.a, the system length is taken as 13a0. At that length, the

average transmission probabilities obtained from the mode-matching method, as

t1avg = 0.81 and t2avg = 0.99, closer to 1. Furthermore, the transmission probability

distribution of both channels has similar shapes in Figure 3.4.a, which indicates the

ballistic regime. At L = 43a0, shown in Figure 3.5.b, the transmission probability

of Channel 1 decreases, and its average becomes 0.52, whose shape and the average

are closer to the distribution in Figure 3.4.b, indicating the diffusion regime. At

that length, Channel 2 is still in the ballistic regime with an average transmission

probability of 0.97. When the system length is 123a0, the average transmission

probability of Channel 1 becomes 0.23, and the shape of the distribution becomes

similar to Figure 3.4.c, which indicates a localization regime. This decrease in the

transmission probability of Channel 1 resulted from the strong disorder. In the

normal diffusion case, since channels are strongly coupled, instead of this ballistic

+ localization regime, we can observe diffusion+ diffusion regime. In Figure 3.5.d,

the system length is taken as 1303a0, and the average probability of Channel 2

becomes 0.51, indicating a diffusion regime. Channel 1, on the other hand, is still

found in the localization regime. Lastly, at 4003a0, both Channels are found in the

localization regime with an average transmission probability as t1avg = 1.0e−03 and

t2avg = 1.7e− 07.

After that, we compared these distributions with total transmission distribu-

tions T obtained from Green’s function method, as indicated in Equation 2.18. This

time, since the total number of modes is two, the x-axis range changes between 0

and 2. In this figure, we can see that the summation of the t1 and t2 is nearly equal

to T , confirming that our calculations using different methods are consistent.

The mode matching method also provides a way to visually see the magni-

tudes of the transmission probabilities on the bands by using color codes. Since

the transmission probability changes between zero and one, we set the color bar by

choosing its limits according to these values. Figure 3.6 shows the band resolved

probabilities for two-channel model at different system lengths. According to the

color codes, red tones indicate high transmission while blue tones indicate low trans-

mission. The black color, indicates the transmission probability closer to zero and

shows localization. From the figures, we can see that, when the length increases the

colors of the bands changes from red to black. Furthermore, it can be observed that

Channel 1 enters localization faster than Channel 2.
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Figure 3.6. The band resolved probabilities for the two-channel model at different

system lengths. The color bars show the magnitudes of the transmis-

sion probabilities obtained from the mode-matching method.

As a final step, we calculated the Fano factor to understand the effects of the

anomaly in physical concepts. To do that, after calculating the transmission matrix

t from the mode-matching method, we multiplied it with its Hermitian conjugate t†

and obtained the transmission matrix product. Using the eigenvalues of this matrix

in equation 1.40, we obtained the Fano factor for different lengths.

Figure 3.7 belongs to a two-channel system where t⊥/t∥ = 1/20 and shows

anomalous diffusion. Here, the Fano factor increases with length first, then decreases

to nearly 207.43a0. This value indicates the spread length of this system. After

passing the spread length, it again increases sub-linearly. Our results showed that

the Fano factor has turning points in the anomalous diffusion case. On the other
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hand, in Figures 3.7.b and 3.7.c, there is no turning point, and the Fano factor

increases monotonically with the system length.

Figure 3.7. The average Fano factor- system length relation for (a) two-channel

system with t⊥/t∥ = 1/20 (anomalous diffusion) (b) two-channel sys-

tem with t⊥/t∥ = 1 (normal diffusion) (c) single-channel (normal dif-

fusion) at 0eV . The dashed line indicates the spread length of the

systems.

Figure 3.8.a investigates the change in the transmission eigenvalues T1 and T2

with system length. This figure shows two different paths. The red path belongs to

the normal diffusion case, while the blue one indicates anomalous diffusion. The data

points on the lines belong to different system lengths. As a common point, both

paths start where the eigenvalues equal nearly one since the systems are initially

in a Ballistic regime. After some point, because of the defects in the system, their

eigenvalues decrease with length. In the normal diffusion case, since the speed of this

change is the same for both channels, we obtained a linear red path. On the other

hand, for the anomalous diffusion case, indicated with the blue path, decreasing

shows non-linear behavior. T1 decreases much faster because of the strong disorder
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and enters localization while T2 is nearly equal to 0.7 (quasi-ballistic regime). In

other words, two channels can be found in different transport regimes simultaneously.

Figure 3.8. (a) The change in the transmission eigenvalues T1 and T2 with system

length (b) The path of the transmission eigenvalues on the Fano vector

space.

In Figure 3.8.b, we determined a surface that shows all possible Fano factor

values changing from 0(yellow) to 1(blue). This change depends on the transmission

eigenvalues represented with red and blue paths for normal and anomalous diffusion.

In the normal diffusion, the change in the Fano factor through the path shows

monotonic behavior with an increasing length. The colors change from yellow to

blue with an increasing length. In the anomalous diffusion, until T1 becomes nearly

zero and enters localization, the Fano factor is found in the yellow region. After

that point, the Fano factor increases faster and reaches the blue area. In other

words, if the system has anomalous diffusion, the change in the Fano factor becomes

non-monotonic.
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3.2. Nanoribbons with a Hexagonal Lattice

In this section, we investigated the transport properties in hexagonal lattices,

including graphene and quartic nanoribbons.

Graphene nanoribbons are quasi-one-dimensional honeycomb lattices consist-

ing of carbon atoms. Because of their electronic (Barone et al., 2006), optical (Prezzi

et al., 2008), magnetic (Enciu et al., 2014), and thermal properties (Campos-Delgado

et al., 2009), they have a wide range of application areas, including nanoelectronic

devices.

Quartic materials also have hexagonal structures like graphene nanoribbons,

separated by different hopping strength ratios from them. They consist of III (Ga,

In)-VI (S, Se), IV (C, Si, Pb, Ge, Sn)- V (N, P, Sb, Bi, As) or group V elements.

Their characteristic property is a quartic dispersion at their valance band, which

leads to strong scatterings (Sevinçli, 2017; Özdamar et al., 2018; Çınar et al., 2021).

Furthermore, they have sharp singularities, van Hove singularities (Van Hove, 1953)

in their density of states. Because of their unique properties, including thermoelec-

tric efficiency and magnetic instability, quartic materials are promising candidates

for investigation of transmission in nanoscales.

3.2.1. Electronic Structure

In our calculations, we used tight binding Hamiltonian, which includes first

and second nearest neighbor interactions and can be written as

H = −t1
∑
⟨i,j⟩

(a†iaj + hc)− t2
∑
⟨⟨i,j⟩⟩

(a†iaj + hc). (3.3)

Here, a†i creates an electron at the ith site while aj annihilates at the jth site. The

terms t1 and t2 indicate the first nearest neighbor and the second nearest neighbor

interaction terms, respectively. They have a crucial role in shaping the electronic

band structure of the materials. In order to see that, the band energies can be

calculated from

E+
−
(k) =+

− t1
√

3 + f(k)− t2f(k) (3.4)
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where f(k) indicates

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3kya/2

)
. cos(3kxa/2) (3.5)

Here, k represents a vector in reciprocal space, and a is the lattice constant. The

main difference between the graphene and quartic nanoribbon band structures orig-

inates from the t2/t1 ratio. If E+/t1 ratio is expanded around a Γ point on the

reciprocal space, by using Taylor’s expansion, it becomes

E+/t1 ≃ (3− 6(t2/t1))− (ka)2(3− 18(t2/t1)/4 + (ka)4(3− 54(t2/t1)/64). (3.6)

This equation has a critical point at Γ when t2/t1 = 1/6. Because, in the

case of t2/t1 = 1/6, the quadratic term vanishes, and the quartic term becomes

dominant. For the cases where t2/t1 > 1/6, strong singularities occur in the density

of states. As a result, Mexican hat-like dispersion is observed in band structures

(Sevinçli, 2017). In our models, we took this ratio as 0 for graphene, while 1/5 for

quartic nanoribbons.

Figure 3.9. The electronic band structure of the (a) graphene (t2/t1 = 0) (b)

quartic materials (t2/t1 = 1/5), in 3D space.
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Figure 3.9 shows the electronic band structure of graphene and quartic ma-

terials. Nanoribbons can be obtained by cutting quasi-one-dimensional strips from

these sheets. They are suitable candidates to investigate the edge effects of the

materials. According to the cutting direction, nanoribbons can have edges whose

shapes are zigzag, armchair, or a combination of both (Das and Rahaman, 2017).

3.2.2. The Contribution of Edge and Bulk States

Before studying transmission calculations, we first investigated the edge-bulk

state contributions in the energy band diagram. Because, in our models, defects are

introduced only to edge atoms, the transmission probabilities will be different at the

modes where the effects of the edge atoms are dominant. As a result, the modes of

the nanoribbons behaved like channels with different physical properties, similar to

the two-channel toy model.

Figure 3.10. The contribution of the edge and bulk states on the energy band dia-

gram is represented with color codes for (a) zGNR (b) zQNR
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To analyze the contributions, we constructed a model where the probability

density of the eigenvectors is indicated by different colors, considering the position

of the atoms. In Figure 3.10, the edge states are indicated by blue and red, while

bulk states are indicated by green. This representation shows magenta[101] regions

formed on the band diagram, especially for 8zGNR and 8zQNR. These regions re-

sulted from combining blue [001] and red [100] states. In these regions, the effects

of the edge atoms are more dominant than bulk atoms. Furthermore, some bands

formed as tones of green. Since dark green indicates more red and blue tones than

brighter green, these regions still show properties of edge states.

3.2.3. Description of Edge Defects

In our models, we introduced defects only for edge atoms. Figure 3.11 is

one of the example configurations of the central region where the edge atoms are

represented with blue and red colors. According to the figure, the defect depth is

taken as one atom, also indicated in the grey region.

Figure 3.11. The example of the central region consists of the hexagonal structure

after introducing the edge disorder where t1 and t2 indicate first and

second nearest neighbor interaction terms.

After that, we determined a specific defect density. Defect density is the ratio

of removed atoms to the total number of atoms at the edges for the pristine case.
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During our calculations, we took the defect density as 20 percent, which means that

two atoms were removed for every ten edge atoms. The number of removed atoms is

distributed equally for both edges. After that, 1500 random disorder configurations

of graphene and quartic nanoribbons were obtained for transport calculations.

3.2.4. Transport Properties of Graphene Nanoribbons

In this part, we followed the same steps as in the previous section while

studying our toy model. First, we calculated the average transmission over 1500

different disorder configurations using Green’s function method. Then, we used the

generalized transmission equation for diffusion to determine α values and investi-

gated the diffusion types. We performed our calculations at four different energy

levels, each consisting of a different number of modes.

Figure 3.12 shows the relation between the average transmission and the

system length under %20 defect density. The maximum values of the y-axis for each

figure indicate the total number of modes for pristine structures at that energy.

For each case, the transmission decreased with length after introducing the edge

defects to the systems. The black lines are obtained from the transmission formula

in Equation 1.11, where α is a fixed parameter and equals 2. This equation indicates

normal diffusion and is not suitable for these data sets. Colored lines, on the other

hand, indicate a fit where α and spread length λsp are taken as free parameters. At

the Figures 3.12.b.,3.12.c., and 3.12.d., α values are obtained as 1.15, 0.76 and 0.85

respectively. Since they are less than 2, each of them indicates anomalous diffusion.

In addition to these three energy, we investigated one more energy at 1.09eV , where

α is 1.81 and close to 2. At this energy, α is still in the range of anomalous diffusion;

however, it is very close to normal diffusion behavior. Working with this energy

provides a way to compare the effects of the magnitude of α on transport for the

same material. Figures also show that in the graphene nanoribbons, the spread

lengths λsp increase with the number of modes. Because of that, higher energies

have more data points, and working with these energies is much easier.

Furthermore, we also added error bars on data points to consider the spread

in the numerical data by using standard deviation. The results in Figure 3.12 belong

to the average of 1500 disorder configurations. We also repeated our calculations

with larger ensemble sizes. However, results still show deviations in the same range.
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Therefore, we conclude that the ensemble size is large enough. Deviations have a

physical origin, which will be explained in the next section using the mode-matching

method.

Figure 3.12. The average transmission-length relation for 12-zGNR under %20 de-

fect density over 1500 different disorder configurations at (a)E =

0.28eV (b)E = 0.69eV (c)E = 0.84eV (d)E = 1.09eV . The spread in

the numerical data is calculated by using standard deviation.

Then, we investigated the relation between the resistance and the system

length for these energy levels. We obtained the resistance values from the transmis-

sion data using the four-probe equation, which is

R4 =
1

T
− 1

M
. (3.7)
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Here, M indicates the number of modes in the pristine system for a specific energy.

Figure 3.13. The resistance-length relation for 12-zQNR under %20 defect density

over 1500 different disorder configurations for (a) the mode-dependent

version (b) the mode-independent version (c) the logarithmic version.

Figure 3.13 shows the change in resistance depending on α values. In Fig-

ure 3.13.a., the resistance increases with length non-linearly while the system shows

anomalous diffusion. These results are similar to the two-channel model results in

the previous section. In the toy model calculations, we only observed the linear de-

pendency between the resistance and the system length for normal diffusion. Since,

this time, all α values are less than 2, we observed non-linearity for all cases. Except

at the energy 0.28eV , since α is closer to 2, the sub-linearity is not stronger like

other cases but still does not indicate a straight line. In Figure 3.13.b, we multiplied

the y-axis with M, and resistances become independent from the number of modes.

It allows us to study four different energies at the same scale. Furthermore, we took

the x-axis in terms of the L/λsp. By doing that, we aim to make clear the critical

point where L = λsp. At that point, without showing dependency on the magnitude

of α, all resistances become 1. Figure 3.13.c indicates the logarithmic version of the

values in 3.13.b. Here, we focused on the slope of the data set. From the four-probe

resistance equation, we know that the ratio of two axes in the logarithmic form

gives α/2, which indicates the slope of the figures. These results show that the slope

decreases with α while the anomaly increases. After observing the anomalies, we

focus on the reason behind this behavior.
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In the examples from the literature, these anomalous diffusion behaviors were

observed thanks to the Levy distribution. Although we did not introduce any Levy

distribution in our models, we still observed anomalous behavior. To understand the

reason behind that, we utilized the mode-matching method. This method provides

the calculation of transmission probabilities for each mode individually.

Figure 3.14. (a) The distribution of the transmission probabilities for each mode at

1.09eV and L = 80a0 (b) The band-resolved probabilities of 12-zGNR

where L = 80a0 c)The total transmission probability distribution a

1.09eV for 12-zGNR

Figure 3.14. a shows the transmission distributions of each mode at 1.09eV

over 1500 different disorder configurations. These calculations were performed at

L = 80a0, nearly equal to the spread length at that energy. According to our results,

the average transmission probability changes for these modes between 0.07-0.99,

indicating a wide range. This range indicates that modes can be found in different

regimes simultaneously, which is the origin of the anomalous diffusion in our systems.

The results in 3.14.b are also obtained from the mode-matching method and provide

a visual perspective. Here, the magnitudes of the transmission probabilities of each

mode can be seen for all energy levels. The color codes are defined from blue to red

with an increasing transmission probability. The energy band corresponds to 1.09eV ,
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indicated with a dashed line. At 1.09eV , there are 11 modes including 3 red, 1 yellow,

1 green and 6 blue colors. The red modes are closer to the ballistic regime, while

the blue modes have already entered the localization regime. Figure 3.14.c, on the

other hand, shows the results obtained from Green’s function method and indicates

the distribution of the total transmission. This time, the x-axis changes from zero

to eleven since the total number of modes at that energy is eleven. Furthermore, the

mean of the distribution is equal to 5.39, which indicates the average transmission

at 1.09eV . This result also equals the sum of the average of the eleven modes in

Figure 3.14.a, obtained from the Green’s function method.

These results also show that the deviations in the average transmission data

shown in Figure 3.12 are inevitable. Because in these models, modes of the same

energy can be simultaneously found in different transport regimes. The transmission

is linearly dependent on length in the diffusion regime, while in the localization

regime, this relation becomes exponential.

Figure 3.15. The average Fano factor- length relation at different α values for 12-

zGNR.

Lastly, we investigate the Fano factor relation with an increasing length for

each α value. Since it is a physically measurable term, it can be used as an indicator

and gives a clue as to how the signs of the anomalies are observed experimentally.
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First, we calculated the transmission matrix product (tt†) to determine the Fano

factor. The t matrix indicates the transmission obtained from the mode matching

method, and t† is the Hermitian conjugate of this matrix. After calculating the

eigenvalues of the product matrix, by using equation 1.40, we determined the Fano

factors for each energy level. Figure 3.15 shows that the Fano factor increases faster

with an increasing α. For the results where α = 1.81 and α = 1.15, this increases

saturated near 0.2.

Studying more than two modes makes an analysis much more complex. All

eigenvalues can change differently with length. From the previous mode calculations,

we know that, at that energy, there are 3 red modes closer to the ballistic regime

while 6 blue modes already enter the localization regime. Because of this diversity,

the change in the Fano factor can not be seen easily, as in the two-channel model.

3.2.5. Transport Properties of Quartic Nanoribbons

The quartic nanoribbons have a similar hexagonal structure to graphene

nanoribbons with different hopping strength ratios t2/t1. This ratio changes the

band structure, resulting in the material gaining specific electronic properties. While

constructing the tight-binding Hamiltonian, taking t2/t1 > 1/6, the quartic materi-

als can be modeled. In our calculations, we took this ratio as 1/5.

In this part, we choose several energy levels with different numbers of modes

and investigate the diffusion types at these energies. Figure 3.16 shows the average

transmission system length relation under %20 defect density.The maximum values

of the y-axis for each figure indicate the total number of modes for pristine structures

at that energy. According to the results, the average transmission decreases with the

length after introducing the edge defects. After calculating the average transmission

values by using the generalized transmission equation for diffusion, we obtained α

and spread length λsp at these energies. During the fitting we took them as free

parameters.

Figure 3.16 shows the colored fitting curves. According to these results, α

values were determined as 1.14,1.03, and 0.90 at the energies -0.63eV, -0.59 eV,

and -0.51 eV, respectively. Since, in the figure, all α values are less than 2, we

determined that the quartic nanoribbon shows anomalous diffusion at these energies.
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Furthermore, the characteristic heavy tail behavior of the anomalous diffusion can

also be observed from the fits. On the other hand, the black curves in the figures

indicate the normal diffusion curves where α is taken as 2. When we compare the

black curve, indicating normal diffusion, and the colored fitted curves belonging to

anomalous diffusion, we can observe that data points are more suitable for anomalous

diffusion. These results show that using the generalized transmission equation for

diffusion is a more convenient way for our models.

Figure 3.16. The average transmission-length relation for 12-zQNR under %20 de-

fect density over 1500 different disorder configurations at (a)E = -0.63

eV (b)E = -0.59 eV (c)E = -0.51 eV. The spread in the numerical data

is calculated by using standard deviation.

Moreover, for quartic nanoribbons, the chosen energy values and the α values

at these energies are much closer when comparing the graphene nanoribbons. Since

they enter localization faster, they have short spread lengths. Therefore, it is difficult

to obtain enough data points, especially at lower energies.

The error bars on data points show the spread in the numerical data and

are calculated using standard deviation by following the same steps in the graphene

nanoribbon calculations. The origin of this behavior is based on the multichannel

structure of the nanoribbons and is revealed by using the mode-matching method.

After that, we obtained resistance values from the four-probe equation in

terms of the transmission. Figure 3.17. a shows the relation between the resistance

and the system length at three different energy levels. Since α values in the figures
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are less than 2, we can easily observe the non-linearity for these energy levels. From

the two-channel model calculations, we know that this sublinear behavior resulted

from the anomalies in the diffusion regime. Figure 3.17.b shows mode-independent

results for resistance. The dashed line in the figure determines the critical point

where the system length equals the spread length of each energy. At that point, all

resistance values coincide near 1. Figure 4.17.c, on the other hand, is the logarithmic

version of the results in 3.17.b. In this part, we calculated the slopes of the figures,

which gives α/2. The results show that the slopes increase with α.

Figure 3.17. The resistance-length relation for 12-zQNR under %20 defect density

over 1500 different disorder configurations for (a) the mode-dependent

version (b) the mode-independent version (c) the logarithmic version.

After observing the anomalous diffusion in quartic nanoribbons, we utilized

the mode-matching method for detailed analysis. In this part, we choose the energy

−0.51eV , where L = 50a0 to analyze the individual transmission properties. At

that energy, 9 modes are obtained, which is less than the example in the graphene

calculations. However, it is still larger when compared to the toy model. At this

energy, the average transmission of the modes changes from 0.15 to 0.99, including

a broad range similar to graphene nanoribbon results. Because for both systems,

the origin of the anomalies comes from the multichannel mechanism where channels

can enter different regimes simultaneously. Figure 3.18.b gives a visual perspective

for transmission probabilities obtained using color codes. This method provides

a way to simultaneously see the transmission probabilities for all energy values.
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The results are in Figure 3.18.c comes from the Green’s function calculation and

shows the distribution of the total transmission at −0.51eV . The maximum value

of the x-axis shows that the total number of modes equals nine at that energy.

Furthermore, the mean of the distribution is equal to 4.34, which indicates the

average transmission at -0.51 eV. This result also equals the sum of the average of

the nine modes in Figure 3.18.a, obtained from the Green’s function method.

textcolorblueThese results can be used to explain the spread in the trans-

mission data in Figure 3.16. Since the modes at a specific energy can be found

simultaneously in different regimes, the transmission length dependence will change

depending on the transport regime. It will be linear in the diffusion regime, while

in the localization regime, it becomes exponential.

Figure 3.18. (a) The distribution of the transmission probabilities for each mode

at −0.51eV and L = 50a0 (b) The band-resolved probabilities of 12-

zQNR where L = 50a0 c)The total transmission probability distribu-

tion a −0.51eV for 12-zQNR.

As a final step, using the transmission matrix t, obtained from the mode match-

ing method, we calculated the transmission matrix product tt† and its eigenvalues.

These eigenvalues are also called the transmission eigenvalues, and the Fano factor

can be calculated using them. Because of that, they have an essential role in under-

standing the transport properties of the system. Figure 3.19 shows the average Fano
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factor results with an increasing length for the energy levels at −0.63eV,−0.59eV ,

and −0.51eV . The number of the channels is 5, 7 and 9, and the α values for these

channels are 1.14, 1.03, 0.90, respectively. Since the system shows anomalous dif-

fusion at these energies, we observed non-monotonic increases at the average Fano

factor depending on length.

Figure 3.19. The average Fano factor- length relation at different α values for 12-

zQNR.

3.3. Localization Regime

In this section, we investigated whether there is a link between the localiza-

tion and diffusion regime. We introduced edge disorder with %20 defect density and

performed our calculations at larger nanoribbons. In order to speed up our calcu-

lations, we used the decimation method by applying the iteration. This method is

convenient for studying larger systems without constructing a total Hamiltonian.

In the literature, there are several studies related to anomalous localization

(Méndez-Bermúdez et al., 2016; Amanatidis et al., 2017; Fernández-Maŕın et al.,

2012). Their origin is based on the Levy-type disorder, similar to the studies on
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anomalous diffusion. The type of localization can be determined from the relation

between the geometric average of the transmission and the system length. According

to the results of these studies, the geometric average of the transmission and the

system length show power law dependency, which indicates anomalous localization.

According to Figure 3.20, as a common point for graphene and quartic

nanoribbon, the relation between the geometric average of the transmission de-

creases with length linearly, which indicates normal localization. This behavior is

consistent with our previous results in the diffusion regime because the effects of the

multichannel mechanism are suppressed in large systems. Since anomalies resulted

from the multichannel structure in our models, we did not observe this anomaly in

the localization regime.

Figure 3.20. The geometric average of the transmission with respect to system

length for (a)12-zGNR (b)12-zQNR.
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CHAPTER 4

CONCLUSION

In this study, we investigate the anomalous quantum transport behavior

in multichannel systems. While doing that, we utilized the graphene and quartic

nanoribbons under edge disorder.

During our calculation, we used two main methods. From Green’s function

method, we calculated the electronic transmission probabilities of the systems. After

obtaining the average transmission values over large ensemble sizes, we determined

the α values and diffusion types using the generalized transmission equation for the

diffusion regime. In addition to that, we utilized the mode matching method. This

method gave us a new perspective by providing information on the transmission

probabilities for each mode individually, which is essential, especially when working

on multichannel systems.

Before studying nanoribbons, we constructed a basic two-channel system

as a toy model to understand the characteristic properties of anomalous diffusion.

Here, we followed two critical steps. The first step is introducing different Anderson

disorder strengths for channels to obtain different physical properties. The other one

is decreasing the ratio between the hopping strengths through the channels t∥ and

between the channels t⊥. In this part, we studied two different scenarios depending

on this ratio. One resulted in normal diffusion, while the other was anomalous

diffusion. This model is crucial to understanding the relation between multichannel

systems and anomalous transport. We can easily change the diffusion type in the

same model by choosing suitable ratios. Furthermore, since we are dealing with only

two channels, which is less than the modes of the nanoribbons, it is easy to follow

the characteristic properties of the anomalous diffusion.

In the nanoribbon transmissions, we randomly introduced the edge defects

to the systems. Both graphene and quartic nanoribbons are hexagonal structures

and include more than two modes at their energy levels. The main difference is the

ratio between the hopping terms, t2/t1 = 0, for graphene and t2/t1 > 1/6 for quartic

nanoribbons. During our calculations, we took t2/t1 = 1/5 for quartic nanoribbons.

However, the differences in this term give them characteristic behaviors during the
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transport. At first sight, the mechanism underlying the anomalous behavior of

nanoribbons may look different from that of the two-channel model. However, they

are similar. Since defects are introduced only at edges, scattering increases only in

those regions. As a result, diffusion becomes slower in the modes where the effects

of the edge atoms are more dominant than the bulk atoms. In order to see these

contributions on the energy band diagram, we also introduced color codes by using

the probability density of the eigenvectors according to the position of the atoms in

the structure. We obtained α values less than two from Green’s function method,

indicating anomalous diffusion for graphene and quartic nanoribbons.

After that, we investigated the behavior of the resistance with an increasing

system length. From the two-channel model, we know that when the system shows

normal diffusion, the relation between the four-probe resistance and system length

is linear and obeys Ohm’s law. On the other hand, this behavior becomes sublinear

in the anomalous diffusion. In our results, we observed this sublinearity for both

graphene and quartic nanoribbons.

In order to investigate the role of the correlated disorder on anomalous diffu-

sion behavior, we utilized the mode-matching method. We obtained band-resolved

probabilities and transmission distributions of each mode from this method. Ac-

cording to our results, the maximum and the minimum values of the average trans-

mission probability for modes changing between .0.07 − 0.99 at the energy 1.09eV

for graphene and between 0.15−0.99 at −0.51eV for the quartic nanoribbon. These

values give information about the transport regime of the modes. They can change

between 1 and 0 while indicating ballistic and localization regimes, respectively.

Since the average transmission probabilities vary in a broad range in our results, it

indicates the modes are in different regimes simultaneously.

After investigating anomalous diffusion behavior theoretically, we calculated

the Fano factors for our systems. Since the Fano factor is a physical and measurable

parameter, it is a crucial concept for our calculations. This concept provides a way

to determine whether the system has an anomaly from experimental results. In order

to calculate the Fano factor, we used the eigenvalues of the transmission product

matrix tt†. According to our results, the Fano factor increases with length for the

single-channel and two-channel systems in the case of normal diffusion. However, in

the anomalous diffusion case, this behavior became nonmonotonic. While working

on the two-channel model, it is much easier to see the effects of the anomalies on the

Fano factor since there are only two eigenvalues. For the nanoribbons, on the other
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hand, the transmission analysis becomes more complex. Because these systems

have more than two eigenvalues, and their magnitudes change in a broad range.

However, we can still observe the nonmonotonic increase for quartic nanoribbons

and the decrease in the increment for the graphene nanoribbons.

As a final step, we investigated whether there is a link between the diffusion

and localization regimes in the anomalous transport. In this part, we used the dec-

imation method to gain speed and memory during calculations. After we obtained

the geometric average of the transmission, we plotted data points with an increasing

system length. According to our results, there is always a linear relation between

the geometric average of the transmission and system length in all our cases. The

literature shows that this linearity is a sign of standard localization.

In the literature, there are a variety of studies related to anomalous diffusion

and localization (Méndez-Bermúdez et al., 2016; Amanatidis et al., 2017; Fernández-

Maŕın et al., 2012; Zakeri et al., 2015).However, the anomalies in these systems are

generally resulting from Levy distributions. Some studies introduced Levy distri-

butions to the systems via disorders, and others used magnetic field or spin-orbit

effects. On the other hand, we did not introduce any Levy distribution or applied

physical concepts similar to the literature during this study. However, we still ob-

served anomalous behavior in the diffusion regime. The literature also mentions the

anomalies in the localization regime. However, in our models, we did not observe

anomalous behavior at large scales. Because, at large scales, the effects of the mul-

tichannel mechanism are suppressed. This result also confirms that the origin of the

anomaly in our systems resulted from the multichannel structure.
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