

ANALYSIS OF TEST SMELL IMPACT ON TEST
CODE QUALITY

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
İsmail CEBECİ

June 2024
İZMİR

We approve the thesis of İsmail CEBECİ

Examining Committee Members:

Prof. Dr. Tuğkan TUĞLULAR

Department of Computer Engineering, İzmir Institute of Technology

Asst. Prof. Dr. Emrah İNAN

Department of Computer Engineering, İzmir Institute of Technology

Asst. Prof. Dr. Kaan KURTEL

Department of Software Engineering, İzmir University of Economics

 12 June 2024

Prof. Dr. Tuğkan TUĞLULAR

Supervisor, Department of Computer Engineering

İzmir Institute of Technology

________________________ ________________________

Prof. Dr. Onur DEMİRÖRS Prof. Dr. Mehtap EANES

Head of the Department of Dean of the Graduate School

Computer Engineering

ACKNOWLEDGEMENTS

 I would like to thank my thesis advisors Prof. Dr. Tuğkan TUĞLULAR of the

Computer Engineering Department at Izmir Institute of Technology. He was always

available to help me whenever I needed, and he was always helpful no matter what the

issue was.

 Also, I would like to thank my wife and my family for supporting me spiritually

while researching similar studies, implementing this project, and writing this thesis.

Without her support, this study would not have been completed.

iii

ABSTRACT

ANALYSIS OF TEST SMELL IMPACT ON TEST CODE QUALITY

 Software testing is a crucial component of the software development lifecycle,

playing a key role in ensuring the quality and robustness of software products. However,

test code, like production code, is susceptible to poor design choices or "test smells,"

which can compromise its effectiveness and maintainability. This thesis investigates the

prevalence and impact of various test smells across open-source software projects, using

advanced detection tools such as JNose and TestSmellDetector. The study reveals insights

into the nature of test smells, their occurrence, and the efficacy of these detection tools.

The research highlights that certain test smells, such as "Assertion Roulette,"

"Magic Number Test," and "Lazy Test," are notably prevalent. The study also examines

the co-occurrence of different test smells, providing understanding of how these issues

interrelate. Highest co-occurrence rates are observed between 'Conditional Test Logic'

and 'Eager Test' and between ‘Exception Catching Throwing' and 'Unknown Test' using

the JNose tool. On the other hand, Highest co-occurrence rates are observed between

'Unknown Test' and 'Eager Test' and 'Source Optimism' and 'Mystery Guest' using

TestSmellDetector Tool.

Additionally, the thesis compares the effectiveness of JNose and

TestSmellDetector in detecting test smells, providing insights into their strengths and

limitations. The analysis of these tools demonstrates their utility in identifying

problematic patterns in test code, thereby contributing to better testing practices.

The thesis concludes with mentioning future work, including the development of

more advanced detection algorithms and the exploration of refactoring techniques to

mitigate the impact of test smells.

iv

ÖZET

TEST KOKUSUNUN TEST KODU KALİTESI ÜZERİNDEKİ

ETKİSİNİN ANALİZİ

Test Kokuları, test kodundaki kalıplardır ve mutlaka yanlış olmasa da, test

kodunun sürdürülebilirliğini ve etkililiğini engelleyebilecek kötü tasarım seçimlerini

önerir. Yazılım geliştirmede, programlamada daha derin sorunlara işaret eden kod

kokuları kavramından kaynaklanan test kokuları, benzer şekilde otomatik test komut

dosyalarındaki, yazılım test sürecinin güvenilirliğini ve netliğini tehlikeye atabilecek

sorunlara işaret eder. Bu tez içinde en çok bilinen 2 araç kullanarak (JNose and

TestSmellDetector), GitHub üzerinden erişilen 500 proje incelenmiştir. Belirtilen 500

adet projelerde Java dili kullanılmasına dikkat edildi. İncelenen projelerde bulunan bütün

test dosyaları, kullanılan 2 araç için input olarak kullanılmıştır. Araçların çıktıları

karşılaştırılarak, toplam kaç adet test kokusu bulunduğu, hangi aracın hangi test

kokularını daha iyi tespit ettiğini, en çok hangi test kokularının test dosyalarına etki

ettiğini, test kokularının birbiriyle olan ilişkileri ve meydana gelme şıklıkları

araştırılmıştır. Sonuç olarak "Assertion Roulette," "Magic Number Test," ve "Lazy Test,”

iki araç içinde en yaygın test kokuları olarak elde edilmiştir. Ek olarak, JNose aracı

kullanılarak en yüksek birlikte gerçekleşme oranları 'Koşullu Test Mantığı' ile 'Hevesli

Test' ve 'İstisna Yakalama Fırlatma' ile 'Bilinmeyen Test' arasında gözlemlenmiştir. Öte

yandan, TestSmellDetector Aracı kullanıldığında en yüksek birliktelik oranları

'Bilinmeyen Test' ile 'Hevesli Test' ile 'Kaynak İyimserliği' ve 'Gizemli Misafir' arasında

gözlenmiştir. Bu sonuçlar kullanılarak, test dosyaları üzerinde yeniden düzenleme

işlemleri için ne tür çalışmalar yapılması gerektiği kolaylıkla belirlenebilir.

v

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... vii

CHAPTER 1. INTRODUCTION ... 1

1.1 Motivation ... 2

1.2 Major Contributions of the Thesis ... 3

1.3 Goals and Research Questions ... 3

1.4 Outline of Thesis ... 4

CHAPTER 2. RELATED WORK .. 5

CHAPTER 3. METHODOLOGY .. 9

 3.1 Tool Infrastructure ... 9

3.1.1 JNose Tool ... 9

3.1.2 TestSmellDetector Tool ... 12

 3.2 Test Smells .. 14

CHAPTER 4. CASE STUDY ... 18

 4.1. Project Selection ... 19

 4.2. Implementation of Automated Scripts .. 20

 4.3 Results and Discussion .. 28

CHAPTER 5. CONCLUSION AND FUTURE WORK ... 46

REFERENCES ... 49

vi

APPENDICES

APPENDIX A. Project Database List ... 56

APPENDIX B. Usage of JNose and TestSmellDetector Tools 79

 B.1. JNose Tool ... 79

 B.2. TestSmellDetector Tool ... 83

APPENDIX C. Outputs of JNose and TestSmellDetector Tools 86

vii

LIST OF FIGURES

Figure Page

Figure 3.1. Schematic overview of the JNose Test tool and its main future (Source:

 Virgínio et al., 2020) .. 10

Figure 3.2. High-level architecture of TestSmellDetector tool (Source: Peruma et al.,

 2020) .. 14

Figure 4.1. High-level architecture of our study .. 18

Figure 4.2. Output csv file of write_lists_to_csv function ... 22

Figure 4.3. Elements of columns_to_read list ... 23

Figure 4.4. Part of contents of Output_of_TestSmellDetector_Tool.txt 23

Figure 4.5. Output of JNose Tool after analysis ... 24

Figure 4.6. Output of read_csv_for_Jnose_tool_function ... 25

Figure 4.7. Part of contents of XS2A-Sandbox_Jnose_Tool_Output.txt file 25

Figure 4.8. Result_output_txt file .. 26

Figure 4.9. Ratio_of_Total_Test_Smell_for_Each_Tool ... 29

Figure 4.10. Number of Affected and not Affected Files ... 29

Figure 4.11. Total Number of Test Smells with using JNose and TestSmellDetector

 Tools in all files .. 31

Figure 4.12. Finding for RQ1 .. 34

Figure 4.13. Ratios of Test Smells by Using Each Tools in All Files 35

Figure 4.14. Numbers of Affected Files by Each Test Smells 37

Figure 4.15. Finding for RQ2 .. 37

Figure 4.16. Ratios of Affected Files by Each Test Smells ... 39

Figure 4.17. Co-occurrence Matrix for JNose Tool ... 41

Figure 4.18. Co-occurrence Matrix for TestSmellDetector Tool 43

Figure 4.19. Finding for RQ3 .. 45

Figure B.1. Main view of JNose Test (Source: Virgínio et al., 2020) 80

Figure B.2. Project view of the JNose Test (Source: Virgínio et al., 2020) 80

Figure B.3. View of the execution by TestClass (Source: Virgínio et al., 2020) 81

Figure B.4. Output TestClass analysis (Source: Virgínio et al., 2020) 81

Figure B.5. View of the execution by TestSmell (Source: Virgínio et al., 2020) 82

viii

Figure Page

Figure B.6. Output of TestSmell Analysis (Source: Virgínio et al., 2020) 82

Figure B.7. View of the execution by Evolution (Source: Virgínio et al., 2020) 83

Figure B.8. Output of Evolution Analysis (Source: Virgínio et al., 2020) 83

Figure B.9. Input .csv file format of TestSmellDetector Tool 84

Figure B.10. Output .csv file of TestSmellDetector Tool .. 85

ix

LIST OF TABLES

Table Page

Table 3.1. Description of test smells as detected by JNose and TestSmellDetector

 Tools .. 15

Table 3.2. Test smells were used and taken from similar studies ……………………. 17

Table A.1. List of GitHub projects …………………………………………………… 56

Table C.1. Total number of test smells with using JNose and TestSmellDetector tools

 in all files ………………………………………………………………… 86

Table C.2. Ratios of test smells by using each tool in all files …….…...…….……….. 87

Table C.3. Number of affected files by each test smells ………………….…………... 88

Table C.4. Ratios of affected files by each test smells ……………………………….. 90

1

CHAPTER 1

INTRODUCTION

Software testing is a fundamental part of the software development process and

has significant importance in ensuring the quality of software (Source: Aberdour, 2007)

Test cases exhibit a crucial role in the early detection of software bugs during the software

development process. They are to consistently test the quality of software and identify

any regressions that may occur (Source: Harrold, 2000; Rothermel et al., 2001).

Nevertheless, like the production code, the test code may likewise have quality concerns.

Previous research has indicated that certain test cases may yield unreliable results, such

as flaky tests, because of bugs present in the test code (Source: Vahabzadeh et al., 2015).

Numerous methodologies have been mentioned in the literature (Source: van

Deursen et al., 2001) to evaluate the quality of test suites. The code coverage assessment

is one of the materials that has been used extensively as the way of assessing the

effectiveness of the automated testing. The quality of the test suite is measured with test

coverage analysis where the number of different structural components (functions,

instructions, branches, and lines of code) included in the test suite is considered (Source:

Gopinath et al., 2014). Nevertheless, despite having a large amount of code coverage, the

test code may still contain design choices that are not well-executed, known as test smells.

The inclusion of smells in test code has the potential to affect the overall quality of test

suites, hence impacting the quality of the production code (Source: Peruma et al., 2020).

In addition, tests that are poorly written might be challenging to understand, making it

burdensome for testers to maintain the code and identify errors (Source: Bavota et al.,

2015; Grano et al., 2019).

In recent years, academics and professionals have started to observe design bugs

within the test code (Source: Bavota et al., 2015; Palomba et al., 2017; Spadini et al.,

2018; van Deursen et al., 2001). According to Bavota et al. (Source: Bavota et al., 2015),

test smells are common in software systems and can impede the understanding and

maintenance of programs. According to Palomba et al. (Source: Palomba et al., 2019),

certain test smells can lead to the creation of flaky tests, which can have a negative impact

2

on the quality of the test code. Despite a recent survey indicating that developers possess

knowledge about test smells and their potential effects (Source: Garousi et al., 2018), it

remains uncertain whether developers actively take care of test smells throughout the

development of software and whether fixing these smells would impact the quality of the

production code.

When test smells are present in a test suite, empirical research (Source: Bavota et

al., 2012) indicates that this might lead to bugs, unreadability, poor maintainability, and

poor comprehensibility. Hence, refactoring procedures have been suggested to eliminate

these smells (Source: van Deursen et al., 2001). Despite that, a level of imprecision as to

developers' understanding of smells and the level of their awareness about them has not

already been overcome. In addition, it is not clear where test smells are introduced

initially. They might come either during test suite creation or system development and

get "smelly" as software evolves. Additionally, it is unknown whether developers

undertake any refactoring operations to eliminate test smells. The inclusion of such

information is crucial in the development of smell detection rules and the creation of

automated detection tools. This is particularly significant in the context of continuous

integration processes (Source: Duvall et al., 2007). Automated tools have the capability

to identify test smells, resulting in the failure of the build and the subsequent notification

of developers regarding the presence of these test smells. The inclusion of test smells in

situations where developers have no desire or necessity to maintain them, such as when

there is no superior alternative, will enhance the usability of automated smell detection

tools. This approach would help prevent recommendation overload (Source: Murphy,

2007) and mitigate the risk of build failures.

1.1. Motivation

 The motivation behind this research stems from the observation that despite the

critical role of testing in software development, test smells are often overlooked.

Developers and testers may inadvertently introduce these smells into the test code, not

through a lack of skill, but due to pressures of deadlines, lack of awareness, or inadequate

tool support. Therefore, this study not only identifies the most prevalent test smells using

3

sophisticated detection tools like JNose and TestSmellDetector but also analyzes the

impact of these smells on the software testing process and test code quality.

1.2. Major Contributions of the Thesis

This study contributes to the field by providing empirical data on the detection

and impact of test smells across a broad spectrum of open-source software projects. It

leverages modern test smell detection tools-JNose and TestSmellDetector tools-to gather

insights into the prevalence and co-occurrence of different smells, thereby offering a

granular understanding of how these smells interrelate and the potential for cascading

effects within the test code. Moreover, for these two tools, a comparison was made on

issues such as the differences between them, which test smells are detected better, which

device detects more test smells.

1.3. Goal and Research Questions

Purpose of our study is to answer the following research questions (RQs):

● RQ1: What are the most and least frequently detected test smells in test codes?

We aim to analyze which test smells are detected mostly and rarely in test

code files using JNose and TestSmellDetector tools.

● RQ2: What is the total number of test smells detected by each tool and their

distribution in the test code files? By answering this question, we can say

which tool works more consistently and effectively.

● RQ3: Is there a considerable co-occurrence between the test smells detected

by JNose and TestSmellDetector tools? We aim to identify which test smells

co-occurrence in test code files.

4

1.4. Outline of Thesis

The structure of this thesis is organized as follows: Following this introduction,

Chapter 2 reviews related works in the field, laying a theoretical foundation for

understanding test smells. Chapter 3 describes the tool infrastructure used in the study,

including a detailed examination of the JNose and TestSmellDetector tools. Chapter 4

presents a case study analysis, where these tools are applied to a dataset of software

projects to identify and analyze test smells. Finally, Chapter 5 concludes the thesis with

a discussion of the findings, implications for software testing practice, and directions for

future research.

5

CHAPTER 2

RELATED WORK

The study of test smells, which are problematic patterns in test code that

compromise its maintainability and effectiveness, has attracted significant attention in the

software testing community. Here the topic of research becomes a central one because

the test smells can lead to added technical debt and less test suite efficiency. Modern

studies are going in the direction of discovering, defining, and eliminating various

categories of code smells, and explaining their origins and influence on the overall

program quality. Such studies utilize several approaches, including empirical analysis of

open-source software projects and constructing and testing elaborate security tools.

In most of the previous studies, Cutting-edge test smell detection tools (Source:

van Deursen et al., 2001; Meszaros et al., 2003; Peruma, 2018) are used to identify issues

in test code that can affect its quality and effectiveness. These tools are adaptable to

different programming languages and are built on research that confirms their

effectiveness. These tools often use complex algorithms to spot problems that simpler

tools might miss. They can be integrated directly into software development

environments, offering real-time feedback as developers work. Examples include tools

like TSDETECT, which are regularly updated to improve their ability to detect

problematic patterns in test code.

 A study by Silva Junior et al. (Source: Junior et al., 2020), the researchers

examined the awareness of test practitioners and the unknowingly incorporation of smells

to test code development. A survey is conducted with 60 chosen professionals from

different organizations to investigate the frequency and situations in which they encounter

smells, particularly 14 types of test smells, which are frequently used in cutting-edge test

smell detection tools. The results indicated that a common pattern is that even though the

programmers followed the organizations' standardized practices, it is also very easy for

experienced professionals to introduce test smells into their daily programming tasks. In

this study, "Conditional Test Logic" and "General Fixture" are detected as the most

frequent test smells.

6

In another study (Source: Campos et al., 2021) related to the severity of test smells

by Campos et al., a set of tests that cause problematic consequences are targeted and the

developers' point of view on the issue of test smells is mentioned. By working with its

developer participants from six open-source software projects on GitHub, the study aims

at characterizing to which extent developers perceive test smells to affect the test code

they implement. In most cases, test smells are rated low by developers as they are

considered inconsequential. Eight test smells (Assertion Roulette (AR), Empty Test

(EpT), Unknown Test (UT), Eager Test (ET), Lazy Test (LT), Constructor Initialization

(CI), Sensitive Equality (SE), and Redundant Assertion (RA)) are examined and as a

result, LT, SE, EpT, RA are considered as low severity and the AR, ET and UT are

considered as high severity.

In a similar study by Davide Spadini et al. (Source: Spadini et al., 2020), severity

thresholds for test smells are investigated. Using 1489 java projects from Apache and

Eclipse ecosystems and TestSmellDetector tool (Source: Peruma et al., 2020), they

considered 4 test smells-Assertion Roulette (AR), Eager Test (ET), Verbose Test (VT),

and Conditional Test Logic (CTL)-are higher thresholds than others. Also, they

considered developers' points to define a new severity threshold for test smells using their

own tool which is provided by TestSmellDetector tool. According to 31 developers'

points, “Empty Test (EpT)”, “Sleepy Test (ST)”, and “Mystery Guest (MG)” have the

highest priority for code maintainability.

In our study, with extending the total number of test smell types, 21 types of test

smells are used, and with using 500 open-source GitHub projects, "Magic Number Test"

and "Assertion Roulette" are detected as most frequent test smells. “Empty Test”, “Sleepy

Test”, and “Mystery Guest” are 3 of the 5 lowest test smells detected using JNose tool

(Source: Virgínio et al., 2020) and Test Smell Detector tool (Source: Peruma et al., 2020).

Another study (Source: Tufano et al., 2016) by Michele Tufano et al. presented

(i) a survey among 19 developers is carried out to find out how they rated test smells as

design issues, and (ii) a huge empirical study based on commit history of 152 open source

projects and focused on identifying aspects of both software systems such as when test

smells are introduced, how long they last and their relationship with code smells affecting

the classes tested. To sum up these lessons show major gaps in present day addressing of

test smells in software development. Therefore, better tools, awareness, and practices are

needed to be developed to identify and resolve them at every stage of the development

7

process. In our study, to detect test smells, we used two different automated test smell

detection tool "JNose Tool” (Source: Virgínio et al., 2020) and Test Smell Detector Tool"

(Source: Peruma et al., 2020) and the results show that all test files have at least one type

of test smell, and to have better test code quality, all test smells should be resolved by

developers.

 In another study (Source: Soares et al., 2020) by Soares et al., an innovative way

to raise the quality of test code using the JUnit 5 features is described. As part of this

research, a mixed-method survey is executed, covering 485 of the most widely used Java

open-source projects, finding out that JUnit 5 is used by only a tiny share (15,9%). To

tackle this, the authors provide new strategies of refactoring featuring JUnit 5

functionalities which facilitate maneuvering against the current test issues namely

Assertion Roulette, Test Code Duplication and Conditional Test Logic. The acceptance

of developers for the refactored versions of test code could be confirmed by a survey of

212 developers, which shows a strong preference.

In the paper (Source: Panichella et al., 2020) by Annibale Panichella et al., authors

scrutinize test smells in the context of automatic test generation. They critically examine

whether such smell detection tools work well on sets of tests generated by tool

EVOSUITE that test 100 classes of Java programs, in which there are 2340 test cases.

Two tools are used in the study. Static detection rules are the first one among the tools

suggested by Bavota et al. (Source: Bavota et al., 2015). It has been successfully applied

in many of the previous work (Source: Bavota et al., 2015; Spadini et al., 2018; Tufano

et al., 2016) (Source: Bavota et al., 2015; Spadini et al., 2018; Tufano et al., 2016) to

analyze the distribution of test smells by analyzing (manually written tests of) open-

source projects. Grano et al. (Source: Grano et al., 2019) also use this same tool to detect

test smells in test codes. The next tool is TestSmellDetector tool (Source: Peruma et al.,

2020), which is available on GitHub and can be used publicly. Spadini et al. (Source:

Spadini et al., 2020) recently calibrated detection rules in TestSmellDetector tool based

on developers’ perception and classification of test smell level of severity, thus the

thresholds that are more harmonious with developers’ actual bad test design choices are

obtained. The findings indicate that the presence of test smells is frequently observed in

a minor yet significant proportion of test suites that are prepared automatically.

Nevertheless, the frequency of detection of test smells in Static Detection rules is

significantly lower if we compare the findings between Static Detection rules and

8

TestSmellDetector tool. The TestSmellDetector tool demonstrates slightly superior

outcomes. Martins et al. (Source: Martins et al., 2024) also use TestSmellDetector tool to

detect test smells and investigate co-occurrence values between different test smells.

9

CHAPTER 3

METHODOLOGY

Chapter 3 of this thesis, titled "Methodology," delves into the technical foundation

and procedural steps involved in the study. This chapter mainly explains the tool

infrastructure used to detect test smells, in which a detailed analysis about JNose and

TestSmellDetector tools are presented. It introduces the working principles of these tools

by detailing how they analyze and recognize test smells in test code. Also, methods for

project selection, data input, analysis modes and the interpretation of results are explained

thus preparing the necessary groundwork for subsequent chapter case study analysis.

3.1. Tool Infrastructure

3.1.1. JNose Tool

The JNose Test tool1 (Source: Virgínio et al., 2020) enables testers to review the

past versions of the software projects and find the test coverage and the test smells that

often bother the code quality. This fact enables us to compare various quality metrics of

the project over the course of its development process. Three crucial procedures in the

JNose Test operation are given in Figure 3.1.

● (i) Data Input: This part receives the input set of command parameters for the tool

execution, such as test smell types of lists, analysis mode (code coverage, test

smells detection and evolution), and the project for analysis.

● (ii) Project Analysis: This component presents the analysis of the program by

choosing the analysis mode.

10

● (iii) Data Output: By this component, the status of the execution is being rendered

and the .csv file containing the results of the analysis is generated.

The JNose Tool offers the capability to detect and analyze smells in various ways.

Firstly, it can detect smells in a specific test class using the TestClass method, which

provides information about the quantity of each type of smell detected in the test class.

Secondly, it can detect smells across multiple project versions using the Evolution

method, which provides information about the authors and timestamps of the test smell's

insertion in the test code. Lastly, the detection can be used to identify the precise location

of a test smell using the TestSmell method, which returns the method location of the smell

for the purpose of analyzing the quality of the test code.

Figure 3.1. Schematic overview of the JNose Test tool and its main features

 In accordance with the GNU General Public License, the JNose Test tool (Source:

Virgínio et al., 2020) is licensed. The software tool is developed as a Java project and

consists of four packages: (i) core, which is responsible for detecting test smells and

coverage metrics; (ii) page, which is responsible for displaying web pages and their

content; (iii) dto, which includes the classes used in data transfer (Data Transfer Object);

and (iv) util, which is responsible for identifying tests and production classes and saving

11

results into.csv files. The Project Analysis is implemented by the core package, which is

divided into three additional packages, as outlined below:

● Coverage. The use of business rules is essential in the computation of late code

coverage. The process involves the identification of test classes associated with a

production class, followed by the execution of the JaCoCo library2. JaCoCo is a

Java-based open-source package designed for the purpose of calculating code

coverage. The JaCoCo software conducts a comprehensive analysis of the

production code branching (BC), instructions (IC), lines (LC), complexity (CC),

and methods (MC) to identify any instances where these components are either

overlooked or addressed by the test code (Source: Virgínio et al., 2019).

● TestSmellDetector. The test code undergoes a static analysis using an Abstract

Syntax Tree (AST) built by JavaParser3. Subsequently, the system pulls pertinent

details regarding the code structure to implement the criteria for detecting test

smells. Furthermore, it gathers supplementary information pertaining to the

position and quantity of test smells. The detection criteria are derived from the

TestSmellDetector tool, which encompasses a set of twenty-one rules for the

detection of test smells. These rules encompass a range of smells, as documented

in references (Source: Virgínio et al., 2019) and (Source: Peruma et al., 2020).

Assertion Roulette (AR), Conditional Test Logic (CTL), Constructor Initialization

(CI), Default Test (DT), Dependent Test (DpT), Duplicate Assert (DA), Eager

Test (ET), Empty Test (EmT), Exception Catching Throwing (ECT), General

Fixture (GF), Ignored Test(IgT), Lazy Test(LT),Magic Number Test(MNT),

Mystery Guest, Redundant Print, Redundant Assertion (RA), Resource Optimism

(RO), Sensitive Equality (SE), Sleepy Test (ST), verbose Test (VT), and

Unknown Test (UT).

JNose Test interface is executed within the page package, which is built upon the

Apache Wicket4 framework, which is a Java-based platform designed for the creation of

web applications. In addition, HTML5 and CSS3 are employed in the development of the

web pages. The Data Input is implemented by this package, as shown in Figure 3.1.

 The util package incorporates two utility classes that are responsible for locating

the test and production classes, as well as documenting the outcomes in.csv files. A

12

unique report is provided for each analysis option. The Data Output as shown in Figure

3.1 is implemented by this package.

 The dto package encompasses the classes that facilitate the transmission of data

between the various layers within the projects. The framework presented in Figure 3.1

encompasses the implementation of Data Input, Project Analysis, and Data Output.

The Apache Maven5 framework is employed in this project to effectively manage the

dependencies, construct, and execute the JNose Test tool. In addition, the JNose Test

execution employs parallel processes, wherein a new thread is created for each uploaded

project, another thread is created for each test class, and so on. The utilization of parallel

processing enables the JNose Test tool to efficiently examine a large volume of projects

within a limited time (Source: Virgínio et al., 2019).

3.1.2. TestSmellsDetector Tool

The objective of including TestSmellDetector tool (Source: Peruma et al., 2020)

is to offer developers an automated methodology for enhancing the quality of their test

suites. The TestSmellDetector tool can identify 19 smells present in Junit-based unit test

files, some of which have been identified as troublesome in previous research (Source:

Spadini et al., 2018; Tufano et al., 2016; Greiler et al., 2013; Meszaros, 2010). The

TestSmellDetector tool software provides a comprehensive list of detected smells,

accompanied by their respective definitions and detection algorithms. In brief, the

TestSmellDetector tool algorithm examines the test suite to identify specific breaches of

the xUnit testing rules (Source: van Deursen et al., 2001; Meszaros, 2010). The algorithm

receives software project source code as input and initially distinguishes between unit test

files and production source files. It then generates Abstract Syntax Trees (ASTs) for these

files, which are then used to syntactically search for preset patterns of inadequate test

programming methods using detection criteria. While the tool detects test smells that are

applicable to all Java-based systems, there is one smell, known as Default Test, that is

unique to Android applications. To adhere to spatial constraints, we present the essential

contextual details about the olfactory stimuli substantiated by the TestSmellDetector tool

13

in previous investigation (Source: Peruma et al., 2020). Furthermore, the website of this

project6 includes real world code snippets that demonstrate each of the possible smell

categories. TestSmellDetector tool is designed to be highly extensible, allowing

developers to effortlessly adjust the provided criteria and incorporate their own tailored

rules as required. Furthermore, while the TestSmellDetector tool presently identifies 19

test smells, it is specifically engineered to seamlessly include novel smell categories.

 TestSmellDetector tool is a Java jar file that is open-source and may be used as a

command line program. The implementation of TestSmellDetector tool (Source: Peruma

et al., 2020) as a self-contained executable file, as opposed to a plugin, eliminates the

need for users to own a dedicated Integrated Development Environment (IDE) on their

system for the purpose of identifying smells in their test code. Like PMD and Find Bugs,

TestSmellDetector tool is provided as an executable via the command line, enabling its

seamless integration with contemporary continuous integration frameworks. This feature

also facilitates its utilization in mining software repositories and empirical investigations

within the field of software engineering. Furthermore, we incorporate other modules to

automate the complete detection operation, in addition to the TestSmellDetector tool

detection technique. The detection process is facilitated by these modules, which analyze

the input source files to identify unit test files (as well as their corresponding production

files) inside the project hierarchy. Figure 3.2 illustrates a comprehensive overview of the

architectural design of the TestSmellDetector tool. The project structure is used in and

 to identify the test and production files. TestSmellDetector tool determines whether

test smells are present in the test files in and . The test smell detection process

findings are saved in .

14

Figure 3.2. High-level architecture of TestSmellDetector tool

3.2. Test Smells

Test smells are indicators of potential problems in test code that might reduce the

quality and maintainability of tests. Just like code smells in production code, test smells

do not necessarily indicate bugs, but they do suggest that the test code might be poorly

structured or difficult to understand and maintain.

Table 3.1 provides a detailed description of various test smells detected by the

JNose and TestSmellDetector tools. Each test smell is listed with an acronym, a name,

and a brief description. For example, "Assertion Roulette" (AR) refers to tests with

multiple assertions where it’s unclear which one caused a failure, while "Constructor

Initialization" (CI) refers to test setup logic being placed in the constructor instead of a

dedicated setup method. Other smells include "Conditional Test Logic" (CTL), which

involves tests containing conditional statements like if-else to handle different scenarios,

and "Duplicate Assert" (DA), which denotes multiple assertions in a test checking the

same condition redundantly. This table serves as a reference for understanding the

specific issues each test smell represents and highlights the breadth of test smells that the

tools can detect, which is crucial for maintaining high-quality test code.

15

Table 3.1. Description of test smells as detected by JNose and TestSmellDetector tools

Acronym Test Smell Description

1 AR Assertion Roulette Tests with multiple assertions where it's unclear which one caused a
failure.

2 CI Constructor
Initialization

Test setup logic is placed in the constructor instead of a dedicated
setup method.

3 CTL Conditional Test
Logic

Tests containing conditional statements (e.g., if-else) to handle
different scenarios.

4 DA Duplicate Assert Multiple assertions in a test checking the same condition redundantly.

5 ECT Exception
Catching Throwing

Tests that catch and rethrow exceptions, potentially obscuring the
source of failures.

6 EpT Empty Test Tests that do not contain any assertions or logic to verify behavior.

7 ET Eager Test Tests attempting to verify multiple behaviors or functionalities at
once.

8 GF General Fixture A shared setup used by many tests, often containing more data or state
than necessary for individual tests.

9 IgT Ignored Test Tests that are marked to be ignored and do not run during the test suite
execution.

10 LT Lazy Test Tests that rely heavily on shared fixtures or minimal setup, leading to
potential interdependencies.

11 MG Mystery Guest Tests that rely on external resources or hidden dependencies not
explicitly stated in the test.

12 MNT Magic Number
Test

Tests containing hard-coded values without explanation or context,
making them difficult to understand.

13 PS Print Statement Tests using print statements for debugging instead of proper
assertions.

14 RA Redundant
Assertion

Assertions that are unnecessary because their conditions are already
tested elsewhere.

15 RO Resource
Optimism

Tests if external resources (e.g., files, databases) will always be
available and in a specific state.

16 SE Sensitive Equality Tests that fail due to overly strict equality checks that do not allow for
minor variations.

17 ST Sleepy Test Tests using sleep statements to wait for conditions instead of proper
synchronization methods.

18 UT Unknown Test Poorly named or structured tests that do not clearly indicate what
functionality they are verifying.

 Cont. on next page

16

Table 3.1 (cont.)

19 VT Verbose Test Tests with excessive setup or overly detailed steps, making them hard
to read and maintain.

20 DT Default Test Auto-generated tests that have not been customized or fully
implemented.

21 DepT Dependent Test Tests that rely on the results or state of other tests to pass.

In this study, various methods have been used to compare the test smell detection

capabilities of the JNose Tool and TestSmellDetector Tool and to uncover the

relationships between different test smells. The JNose Tool employs static analysis

techniques to examine test code and detect test smells based on specific rules. This tool

analyzes the structural characteristics of the code and identifies code segments that match

the predefined rules, highlighting potential issues in the tests. Similarly, the

TestSmellDetector Tool operates using static analysis methods but offers a more

comprehensive analysis by utilizing advanced algorithms and a broader database of test

smells. Both tools not only detect test smells but also provide metrics to analyze the

impact of these smells on software testing and the tendency of different test smells to

occur together. This approach yields detailed information on the prevalence of test smells

and their interrelationships, providing valuable insights for improving software testing

processes.

Table 3.2 presents a comprehensive comparison of various test smells detected in

the study, alongside their occurrence in previous related research. The table includes a list

of test smells such as Assertion Roulette, Constructor Initialization, Conditional Test

Logic, and others, marking their presence in multiple studies. Each test smell is evaluated

across several research works, indicating whether it was identified in those studies with a

checkmark (). The projects and corresponding test smells are drawn from studies such

as "A survey on test practitioners’ awareness of test smells," "Developers’ perception on

the severity of test smells: an empirical study," "Investigating Severity Thresholds for

Test Smells," and others. This comparative analysis highlights the consistency and

prevalence of various test smells across different research efforts, showing how common

these issues are in test code and emphasizing the importance of addressing them to

improve software quality.

17

Table 3.2. Test smells were used and taken from similar studies

 Projects

Test Smells

A
 su

rv
ey

 o
n

te
st

pr

ac
tit

io
ne

rs
’

 a
w

ar
en

es
s

of
 te

st
 sm

el
ls

7

D
ev

el
op

er
s’

 p
er

ce
pt

io
n

on
 th

e
se

ve
rit

y
of

 te
st

sm

el
ls

: a
n

em
pi

ric
al

st

ud
y8

In
ve

st
ig

at
in

g
Se

ve
rit

y
Th

re
sh

ol
ds

 fo
r T

es
t

Sm
el

ls
9

A
n

em
pi

ric
al

in

ve
st

ig
at

io
n

in
to

 th
e

na
tu

re
 o

f t
es

t s
m

el
ls

10

R
ef

ac
to

rin
g

Te
st

 S
m

el
ls

:
A

 P
er

sp
ec

tiv
e

fr
om

 O
pe

n-
So

ur
ce

 D
ev

el
op

er
s11

R
ev

is
iti

ng
 T

es
t S

m
el

ls
 in

A

ut
om

at
ic

al
ly

 G
en

er
at

ed

Te
st

s:
 L

im
ita

tio
ns

,
Pi

tfa
lls

, a
nd

O

pp
or

tu
ni

tie
s12

O
n

th
e

di
ff

us
io

n
of

 te
st

sm

el
ls

 a
nd

 th
ei

r
re

la
tio

ns
hi

p
w

ith
 te

st

co
de

 q
ua

lit
y

of
 Ja

va

pr
oj

ec
ts

13

In
 o

ur
 st

ud
y

Assertion
Roulette

Constructor
Initialization

Conditional Test
Logic

Duplicate Assert
Exception
Catching
Throwing

Empty Test
Eager Test

General Fixture
Ignored Test

Lazy Test
Mystery Guest
Magic Number

Test

Print Statement
Redundant
Assertion

Resource
Optimism

Sensitive
Equality

Sleepy Test
Unknown Test
Verbose Test
Default Test

Dependent Test

18

CHAPTER 4

CASE STUDY

To understand test smell impaction of test code quality, we used two different test

smell detector tools JNose Tool14 and Test Smell Detector Tool15 then we analyzed the

result of output files of both tools using projects that they used from TSSM dataset16.

Figure 4.1 shows an overview of our study. Mainly in this study, there are four

parts to get results to compare and to answer our research questions.

Figure 4.1. High-level architecture of our study

19

(1) Project Selection and Preparations: to select projects and preparations to use JNose

and TestSmellDetector tools.

(2) Using TestSmellDetector tool: to follow a way to get results after using

TestSmellDetector tool.

(3) Using JNose tool: to follow a way to get results after using JNose tool

(4) Analyzing results: to obtain results to answer research questions

4.1. Project Selection

Table A.1 in APPENDIX A displays the projects that we used in our study. The

TSSM Dataset utilizes existing data generated by its own process. This process involves

the following steps, resulting in the creation of a project.csv file:

● Compilation of Java Projects: Amongst over 8 million available projects,

analyzing the huge database GitHub is a long-term job as its size makes the task

long. This project focuses on top-5-stars Java projects representing 147,991 items

extracted from works of Loriot et al. (Source: Loriot et al., 2022) and Durieux et

al. (Source: Durieux et al., 2021) to shorten the process of data gathering.

Project_list.txt is the name of the file created and stored in the working

environment. The file contains the list of the proposed projects.

● Filtering GitHub Projects: The system utilizes filters to single out the projects

from GitHub that are to be used within the project. The process involves sweeping

out clones which might result in biased results due to code snippet similarities and

settling for open-source projects with licenses that fall under OSI or FSF criteria.

Moreover, the representative purpose of the initiative ensures that Java is the first

language of choice for the projects that are made. This phase verifies this fact,

which in turn provides a confirmation that Java is the prime language, which

consequently means the dataset remains intact.

These procedures led to the collection of data from 13,703 open-source Java

projects that make up the TSSM dataset. These chosen projects are listed in

20

selected_project_list.txt, and projects.csv contains the metadata for these projects.

Additionally, the TSSM has files that include metrics and test smell data.

500 distinct projects are randomly chosen from this collection of open-source Java

projects. These projects work with the Test Smell Detector Tool as well as the JNose

Tool. Every project is tested separately at first, and if it works successfully with both

tools, it is included in the list.

Following three attributes for each project in APPENDIX A's Table A.1 that was

used as an input for both tools in the study:

● Full_name_modified

● clone_url

4.2. Implementation of Automated Scripts

In this study, four fundamental Python files were implemented. We will do the

explanation of these files’ roles and functions in detail. Each file has the sole aim of

automating and facilitating a different aspect of testing smell analysis process which in

turn makes the identification, comparison, and understanding of test smells in many

projects more efficient and accurate. All functions’ explanations are present on the

GitHub project “Master_Thesis_Project” (Source: Cebeci, 2024)

 preparation_for_using_tools.py

Regarding improving the usefulness and accessibility of software tools aiming at

this project, the preparation_for_using_tools.py script plays a crucial role as well.

def read_csv_and_extract_info(file_path) function: The main purpose of the

read_csv_and_extract_info function is to pick out necessary components such as

“git_url”, “Full_name”, and “Full_name_modified” which are needed to conduct the

subsequent functional phases of the script. Upon successful parsing, the function

meticulously extracts and organizes pertinent data into three distinct lists:

21

def create_folders(base_path, folder_names) function: The create_folders

function is presented with the ability to operate using the "git_project_modified_name"

list that is derived from the output of the "read_csv_and_extract_info function." Its

purpose is to create smartly utilizing the local filesystem for the GitHub repositories in

an organized manner through dedicated folders.

clone_git_projects(base_path, git_clone_url, git_project_modified_name)

function: The clone_git_projects function is a cloning process created to manage

GITHUB repositories effectively from the project perspectives. Utilizing the

"git_clone_url" list that is parsing from read_csv_and_extract_info, it is then initiation of

the process of cloning GitHub projects into the directories that was created previously.

find_files_for_test_and_source_codes_by_partial_name(folder_path,

partial_name) function: In creating software tools for analyzing projects, we, in

particular for this project, find the function,

find_files_for_test_and_source_codes_by_partial_name, to be a simple yet important

function. This operation is created to simplify discovering test files and their associated

source files within several GitHub project folders, which is the main task.

remove_java_test_and_source_files_from_list(test_file_paths,source_file_pa

ths) function: The remove_java_test_and_source_files_from_list routine has an

important function related to the data cleansing process in TestSmellDetector tool that is

part of the project while focusing on Java test and source files. This is a function that

intelligently removes the files, where the lines’ sole content are comments.

write_lists_to_csv(constant_name,list1, list2, output_folder, file_name)

function: The write_lists_to_csv function represents a part of the data pre-processing

with a purpose to run the TestSmellDetector tool application during the project. The main

role of this method is the creation of a structured csv file as shown Figure 4.2, which is

originally named with output.csv and it is specifically designed to meet the given inputs

of the TestSmellDetector application.

22

Figure 4.2. Output csv file of write_lists_to_csv function

 using_test_smell_tools.py

execute_tool(tool_path, file_name) function: The execute_tool function has

been considered an instrument in bolstering software testing quality by utilizing the

TestSmellDetector tool within the project, which deals with the issue of test smells. This

function can achieve its goal by utilizing a command structure based on the command

'java -jar {tool_path} {file_name}', to perform the TestSmellDetector tool execution with

'output.csv' as a file input. After the tool gets executed, it checks a given set of test codes,

among which the smells are searched; it produces a detailed output file, named

“output_TestSmellDetection_*.csv”, by default.

delete_files_by_pattern(folder_path, filename_pattern) function: The

function delete_files_by_pattern is important for keeping the software's file system as

clean and orderly as can be while doing file analysis. It is designed to implement the

procedure for deleting files left over from past executions.

read_csv_files_by_pattern(folder_path,filename_pattern) function: The

read_csv_files_by_pattern() method is the one that correctly extracting and processes the

test smell data from .csv files that have "Output_TestSmellDetection_*.csv" at the end,

which are from the TestSmellDetector app. The role of the function has been clearly

established for systematically going through the csv file and detecting paths of files under

analysis as well as providing the numerical results of selected test smells from a given list

of columns as shown in Figure 4.3. After reading, Output_of_TestSmellDetector_Tool.txt

file is saved as Figure 4.4.

23

Figure 4.3. Elements of columns_to_read list

Figure 4.4. Part of contents of Output_of_TestSmellDetector_Tool.txt

read_csv_for_Jnose_tool(input_folder_path, output_folder_path) function:

The read_csv_for_Jnose_tool function is intended to parse csv files output by JNose Tool

(filenames follows a pattern "{project_name}_result_byclasstest_testsmells.csv") as

shown in Figure 4.5. A particular list, which is named columns_to_read, will define the

data parsing procedure's focus. The list will be called 'name' and 'testSmellName',

marking the specific parts of the JNose Tool output that will be carried out the process of

parsing and analysis.

24

Accessing each csv file, the function parses the data related to the quantity of each

type of test smell present in the files. This extraction process is implemented dynamically

because of accommodating changing structures and contents of the csv files

corresponding to different projects. Once the relevant data is gathered, the function

proceeds to compile these findings into a text document, and saved as

“{project_name}_Output.txt” as shown in Figure 4.6 within a designated output folder.

Figure 4.5. Output of JNose Tool after analysis

This document is generated as a process of extensive gathering of the test smell

analysis results. They are presented in a format that is both accessible and useful for

further review as shown in Figure 4.7.

25

Figure 4.6. Output of read_csv_for_Jnose_tool function

Figure 4.7. Part of contents of XS2A-Sandbox_Jnose_Tool_Output.txt file

merge_txt_files(file_paths, output_file) function: The merge_txt_files is the

function to bring software testing analysis of these two tools, JNoseTool and

TestSmellDetector, together and merge. The purpose of this role is to combine the facts

acquired from the dual output text files, which are corresponding to the generated results

by two different tools, into one conclusive file titled “Merged_output_txt_file.txt”.

updated_merge_txt_files(input_file_path, output_file_path) function:

“Merged_output_txt_file.txt.” file may yield a database organization of data that is not

chronological regarding files. Therefore, the JNoseTool and TestSmellDetector findings

26

might not be next to each other, as a result, the analytical clarity might decline. The

updated_merge_txt_files_function reorganizes its output so that the results of the test files

from both tools will be presented in order and saved as

"Merged_output_txt_file_updated.txt".

remove_empty_lines(input_file_path, output_file_path) function: This

function covers a slight nuisance and at the same time a rather important problem that

emerges due to the process of merging and applying the outputs of JNoseTool and

TestSmellDetector tools — empty lines that produce disturbance and disarrangement of

the document. This function removes the space lines no longer used after merging files

and saved as “Result_output.txt” as shown Figure 4.8.

Figure 4.8. Result_output.txt file

 comparing_results_of_each_tool.py

The python script, comparing_results_of_each_tool.py, is an analytical tool which

is created for the purpose of comparing the results of different testing methods which are

used in the detection of smells in software development. The following elucidates the

constituent elements and operational capabilities of the script:

27

Data Preparation: The script starts with the definition of the lists with the counts of total

occurrences of various test smells by two tools—"JNose Tool'' and "TestSmellDetector

Tool"— from test files. The co-occurrence relationship of the test smells within their test

files. As a first phase, this step is a prerequisite to the following analysis, encouraging a

comprehensive distinction of the utilities of the tools in detecting test smells.

Co-occurrence Analysis: The script contains the calculation of co-occurrence matrices

for each tool as separate and the calculation of their combination. The comparison of test

smells frequencies allows us to identify test smells where often they are found together

in test files. The script includes a function that plots these co-occurrence matrices as

heatmaps, thus conveying these associations and correlations in a visual and interpretable

form for the test smells.

Ratio Calculation and Comparison: The script puts into operation the ratios that

represent the frequency of each smell of each of the tools that are used both individually

and together. The sensitivity values are displayed correspondingly to the bars of the chart

thus assisting in the direct comparison of the tool's sensitivity to different test smells.

Visualization: The script works with matplotlib which is a Python plotting library to

create visual representations of the analysis. These visualizations show us results of the

co-occurrence analysis and the results of ratio analysis in a clear and accessible way.

File Management and Output: Finally, the script is implemented for managing output

directories and saving the generated visualizations as file.

In summary, the Python script is an implementation of a methodological way of

finding out which tools are better at locating test code smells inside software test files.

Through the implementation of co-occurrence analysis, ratio calculation and comparison,

data visualization, and file management, this script can provide important information

regarding the efficiency of using the tools and the future development of software testing

and quality assurance.

28

 jnose_website.py

This script accesses the webpage which is related to JNose Tool. It automatically

inputs GitHub project links into the local server address "http://127.0.0.1:8080", using the

tool's capability to analyze each project for the presence of test smells. Then, when the

analysis is done, the results are downloaded in the .csv format, which is a formatted and

structured documentation of test smell data per project.

4.3. Results and Discussion

In this analysis, we compare the effectiveness of two software testing tools,

JNose Tool and TestSmellDetector Tool, in identifying several types of test smells

within software projects. Test smells play a critical role in ensuring the reliability and

efficacy of software testing procedures by identifying any flaws in the test code that

could undermine their quality or effectiveness.

The JNose Tool detected 81773 test smells in total using all files. The

TestSmellDetector tool detected 89497 test smells in total using all files. As you can

see, they detected a similar number of total test smells. Figure 4.9 shows Ratio of Total

Test Smell for Each Tool.

Figure 4.10 shows a comparative analysis of file affectation by test smells, the

total number of files examined alongside those unaffected by test smells as identified by

two separate tools: JNose and TestSmellDetector. It is evident that a comprehensive set

of 5478 files were subjected to the analysis.

29

Figure 4.9. Ratio_of_Total_Test_Smells_for_Each_Tool

Figure 4.10 shows that the Jnose Tool identified 1550 files that exhibited no test

smells, representing a significant portion of the total, yet still suggesting that many files

could contain at least one form of test smell. In contrast, the TestSmellDetector Tool

demonstrated a higher identification rate, with 1075 files reported as unaffected.

Intriguingly, the bar labeled 'No Affected (Both)' is shown at a value of zero, indicating

that there were no files which both tools concurrently identified as free of test smells.

Figure 4.10. Number of Affected and not Affected Files

30

4.1.3.1. Total Number of Test Smells

The data serves as a more encompassing and detailed view of the detection

capabilities of both tools as they work across a range of test smells. The fact that different

detection rates for various test smells are shown by the two tools indicates a noticeable

difference as shown in Figure 4.11. The TestSmellDetector Tool, for instance, is very

effective in identifying 'Magic Number Test' smell with 28,443 instances detected entirely

outperforming the 11,264 instances detected by the JNose Tool. The pattern of higher

detection rates by the TestSmellDetector Tool is also observed in the other types of test

smells like 'Exception Catching Throwing' and 'Lazy Test' which the tool detected 13,612

and 16,570 occurrences, respectively and thus demonstrating its sensitivity towards these

smells.

On the other hand, JNose Tool proved to be more effective than

TestSmellDetector Tool in discovering the 'Assertion Roulette' instances which were

41,876 compared to TestSmellDetector Tool which discovered 10,488 instances of the

same. This revelation of the JNose Tool's effectiveness in this case indicates that it can

be particularly useful for scenarios where the tests contain multiple non-documented

assertions, resulting in unclear test outcomes. In addition, the JNose Tool exhibits greater

detection rates for various sorts of test smells, such as the 'Magic Number Test' and 'Lazy

Test', with detection rates of 11,264 and 3984 occurrences, respectively. This

demonstrates the tool's sensitivity towards these specific smells.

31

Figure 4.11. Total Number of Test Smells with using JNose and TestSmellDetector

Tools in all files

For the other test smells as following, JNose tool performed high detection rates:

‘Eager Test’ with detection rate of 3692, ‘Conditional Test Logic’ with detection rate of

3679, ‘Exceptional Catching Throwing’ with detection rate of 3236, ‘Unknown Test’

with detection rate of 3202, ‘Duplicate Assert’ with detection rate of 2416, ‘Verbose Test’

with detection rate of 1947, and ‘Sensitive Equality’ with detection rate of 1490.

Similarly, TestSmellDetector Tool was more effective for following test smells

and detected them frequently: ‘Assertion Roulette’ with 10488 occurrence, ‘General

Fixture’ with 4274 occurrence, ‘Eager Test’ with 3780 occurrence, ‘Unknown Test’ with

3651 occurrence, ‘Duplicate Assert’ with 2262 occurrence, ‘Conditional Test Logic’ with

1948 occurrence and ‘Ignored Test’ with 1152 occurrence.

As you can see in the results, both tools detected almost the same test smells with

different occurrences. In addition, there are differences for detection of ‘Verbose Test’,

‘Sensitive Equality’, ‘General Fixture’ and ‘Ignored Test’. The JNose tool detected

‘Verbose Test’ and ‘Sensitive Equality’ (1847 and 1490 respectively) more than the

TestSmellDetector (0 and 906 respectively). Similarly, ‘General Fixture’ and ‘Ignored

Test’ are detected more by TestSmellDetector (4274 and 1152 respectively) than by

JNose Tool (995 and 916 respectively). Detection of these smells varies depending on the

32

tool used. We can say that used GitHub projects have the smells that we mentioned above

mostly and have bad code quality. The possible common problems in test code may be:

● For ‘Assertion Roulette’, there are added several assertions to a single test to

check multiple conditions, often neglecting to add explanatory messages.

● For ‘Magic Number Test’, there are usages of hardcoded, unexplained numeric

values, which can easily slip into code as developers hard-code expected results

or parameters.

● For ‘Lazy Test’, there are not fully coverages for the expected functionalities,

often because tests are not updated to reflect changes in the application's

requirements or functionality.

● For ‘Eager Test’, there are trials to check too many functionalities at once, which

is a typical result of trying to reduce the number of test methods without

considering the isolation of functionalities.

● For ‘Conditional Test Logic’ there are complex conditional logics within tests.

Particularly in scenarios where different outcomes need to be validated under

varied conditions.

● For ‘Exception Catching Throwing’, there are improper handlings or testing of

exceptions. The test may fail to adequately assert the throwing of exceptions or

might overly generalize exception handling, catching more than it should.

● For ‘Unknown Test’, there are tests where documentation and descriptive naming

conventions are overlooked. So, it leads to tests that others find difficult to

understand or relate to specific requirements.

● For ‘Duplicate Assert’ there are multiple times usage of same assertions within a

single test or across several tests. It could be due to copy-paste errors or a

misunderstanding of what needs to be tested.

The possible problems in the test code for other commonly detected test smells

depending on the tools used:

● For ‘Verbose Test’, there is unnecessary information or complexity, often making

it hard to understand what the test aims to verify. This could result from overly

complex setup code or multiple responsibilities within a single test.

● For Sensitive Equality, there are usages of overly strict equality checks for their

assertions that can lead to brittle tests that fail whenever there are minor, irrelevant

33

changes in the output. This smell is common in tests that do not focus on the actual

requirements but rather on matching exact outputs.

● For ‘General Fixture’, there are extensive setup procedures that are intended to

cover multiple test scenarios. Over time, as tests evolve, not all tests need all parts

of the setup, leading to inefficiencies and unnecessary complexity in test

execution.

● For ‘Ignored Test’, there are tests that are often ignored or skipped during

execution due to failures that developers plan to address later, or when the test no

longer aligns with current project requirements. This practice can lead to a buildup

of unused or outdated tests, particularly in fast-paced development environments.

 With considering both tools’ results, following 5 test smells are detected

frequently: ‘Assertion Roulette’ with detection rate of 52364, ‘Magic Number Test’ with

detection rate of 39707, ‘Lazy Test’ with detection rate of 20554, ‘Exception Catching

Throwing’ with detection rate of 16848, ‘Eager Test’ with detection rate of 7472.

Moreover, drawbacks in identifying specific types of test smells were

demonstrated by both tools. Significantly, 'Dependent Test' was not identified by both

tools, and this was a finding that demands a more in-depth study to determine the extent

to which these tools are able to detect such an instrument. Similarly, with using JNose

Tool, following test smells were detected rarely: ‘Default Test’ with detection rate of 0,

‘Redundant Assertion’ with detection rate of 143, 'Constructor Initialization' with

detection rate of 178, ‘Sleepy Test’ with detection rate of 186 and ‘Empty Test’ with

detection rate of 215.

With using TestSmellDetector results are very close to results of JNose Tool.

Almost the same test smells were detected rarely except ‘Verbose Test’. ‘Constructor

Initialization’, and ‘Verbose Test’ were not detected, and ‘Default Test’ is detected only

once by the Test Smell Detector Tool. Similarly, ‘Empty Test’ was detected 116 times,

and ‘Sleepy Test’ was detected 175 times. were the test smells that were the least detected,

with very few instances identified, possibly attributed to their lower prevalence among

software projects or the specific difficulty in their detection.

These were the test smells that were the least detected, with very few instances

identified, possibly attributed to their lower prevalence among software projects or the

specific difficulty in their detection.

34

Figure 4.12. Finding for RQ1

4.1.3.2. Ratios of Test Smells by Using Each Tools in All Files

The comparison of the test smells observed in the JNose Tool and the

TestSmellDetector Tool in the projects of different software shows us some fascinating

aspects about the distribution of frequent testing antipatterns. This analysis is based on

the ratio of the total number of test smells detected by each tool across to the number of

each test smells type detected by each tool across in all examined files. The percentages

show the frequency of each test smell as in Figure 4.13, as a number that reflects the

occurrence of these elements within software testing environments.

For the JNose Tool, the 'Assertion Roulette' is found to be the most common with

a percentage being 51.21% of the overall test smells. Such a trend implies that most of

the tests for the project are composed of multiple assertions of the tests which could create

confusion on which assertion was responsible for the test failure. Like 'Assertion

Roulette', the following test smells are detected as common in all files: 'Magic Number

Test', 'Lazy Test', 'Eager Test', ‘Conditional Test Logic’, 'Exception Catching Throwing',

and 'Unknown Test', with a percentage of 13.77, 4.87, 4.51, 4.5, 3.96, and 3.92,

respectively.

On the other hand, 'Default Test' and ‘Dependent Test’ are not observed at all in

all files. In addition, ‘Redundant Assertion’, 'Constructor Initialization', ‘Sleepy Test’,

Finding for RQ1: For JNose tool, ‘Magic Number Test’ and ‘Assertion Roulette’

test smells are detected mostly as 11264 and 41876 respectively. For

TestSmellDetector tool, ‘Magic Number Test’ and ‘Lazy Test’ test smells are

detected frequently as 28443 and 16570 respectively. Moreover, TestSmellDetector

tool detected “89497” more test smells than JNose tool “81773”.

35

and ‘Empty Test’ are the other least observed test smells with a percentage being 0.17%,

0.22%, 0.23% and 0.26%.

Conversely, the TestSmellDetector Tool identified 'Lazy Test' and 'Magic

Number Test' as the most common test smell, constituting 31.78% and 18.51% of all

detected test smells. In addition, the following test smells are detected as common in all

files: 'Exception Catching Throwing', 'Assertion Roulette', ‘General Fixture’ and 'Eager

Test' with a percentage of 15.21, 11.72, 4.78, and 4.22, respectively.

Figure 4.13. Ratios of Test Smells by Using Each Tools in All Files

The least prevalent test smells for the TestSmellDetector Tool are 'Constructor

Initialization', 'Default Test', ‘Dependent Test’, ‘Verbose Test’ and ‘Empty Test’. They

are not detected at all and the result for 'Default Test' and ‘Dependent Test’ are observed

like the same with using JNose Tool. ‘Verbose Test’ and ‘Constructor Initialization’ test

smells are also not detected by the TestSmellDetector tool, and ‘Empty Test’ is observed

with a percentage of 0.17%.

The large difference between the most frequently detected test smell from each

tool 'Assertion Roulette' for JNose and 'Lazy Test' for TestSmellDetector implies the tools

are focusing on different parts or have different detection competencies, with each tool

possibly to better at identify certain kind of test smells. Moreover, a 13.77% detection

36

rate for tests 'Magic Number Test' test smell with JNose tool, while TestSmellDetector

showed a notably higher 31.78%. Also, a 11.72% detection rate for tests smells like

'Assertion Roulette' with TestSmellDetector, as compared to a notably higher 51.21%

with the JNose tool.

4.1.3.3. Number of Affected Files by Each Test Smells

Figure 4.14 shows the JNose Tool and TestSmellDetector Tool in software

projects, as it relates to the Number of Affected Files by Each Test Smell in software

projects. This analysis provides the absolute number of files affected by each test smell

and allows an assessment of the extent of testing and detection of smell testing for both

tools across various categories of test smell as shown in Figure 4.14.

By using the TestSmellDetector tool, highest numbers of affected files by 'Magic

Number Test', 'Assertion Roulette', 'Exception Catching Throwing', 'Eager Test', 'Lazy

Test', and 'Unknown Test' are detected as 4222, 2503, 2463, 1126, 1070, and 1030. On

the other hand, by using the JNose tool, highest numbers of affected files by 'Assertion

Roulette', 'Lazy Test', 'Magic Number Test', 'Exception Catching Throwing', 'Unknown

Test', and 'Eager Test' are detected as 3056, 1396, 1364, 969, and 905.

37

Figure 4.14. Number of Affected Files by Each Test Smells

The analysis also highlights test smells that are most and least prevalent in the

datasets. 'Magic Number Test', 'Assertion Roulette', 'Exception Catching Throwing',

'Eager Test', 'Lazy Test', and 'Unknown Test' are among the most affecting test smells,

with both tools identifying a considerable number of affected files. In contrast,

'Constructor Initialization', 'Default Test', and 'Dependent Test' show minimal to no

detection across both tools.

Figure 4.15. Finding for RQ2

Finding for RQ2: For JNose tool, test code files are affected by Magic Number

Test and Lazy Test test smells mostly as 3056 and 1396 respectively. For

TestSmellDetector tool, test code files are affected by Magic Number Test and

Assertion Roulette test smells frequently as 4222 and 2503 respectively.

38

4.1.3.4. Ratios of Affected Files by Each Test Smells

Figure 4.16 represents the Ratios of Affected Files by Test Smells using two tools:

JNose Tool and TestSmellDetector Tool. Each bar in Figure 4.16 represents a specific

type of test smell, with the ratio of files affected by that smell in percentage as shown in

Figure 4.16. These ratios were calculated using a formula that considers the total number

of files in which a specific test smell was detected, divided by the total number of files

analyzed, and then multiplied by 100.

The large difference between the most affected files by 'Assertion Roulette' with

a detection rate of %55.79 for the JNose tool (for TestSmellDetector tool, detection rate

is %45.69) and by 'Magic Number Test' with a detection rate of %77.07 for the

TestSmellDetector tool (for JNose tool, detection rate is %24.9) implies the tools are

focusing on different parts or have different detection competencies, with each tool

possibly being better at identifying certain kinds of test smells. Moreover, 17.69%,

16.52%, and 13.2% detection rates for 'Unknown Test', 'Eager Test', and ''Exception

Catching Throwing’ test smells with the JNose tool, respectively, while

TestSmellDetector showed higher detection rates of 18.8%, 20.55%, and 44.96%. Also,

there is a 19.53% detection rate for 'Lazy' with TestSmellDetector, as compared to a

higher 25.48% with the JNose tool.

39

Figure 4.16. Ratios of Affected Files by Each Test Smells

In the prevalence of test smells, 'Assertion Roulette', 'Eager Test', 'Lazy Test', and

'Unknown Test' appear as some of the most frequently detected across both tools, with

ratios exceeding 15% in many instances.

4.1.3.5. Co-occurrence of Test Smells based on JNose and TestSmellDetector Tools

The utilization of co-occurrence matrices serves as an analytical cornerstone for

uncovering the underlying patterns of test smell interactions within software testing

environments. The matrices of The JNose Tool and TestSmellDetector Tool explain these

patterns, illustrating both pronounced and negligible relationships among various test

smells. In the interest of refining testing strategies, it becomes necessary to research into

the specifics of these relationships.

Results for the JNose Tool as shown Figure 4.17, the one which stands out the

most is a correlation established between 'Conditional Test Logic' and 'Eager Test' with a

co-occurrence value of [1.00], indicating a strong likelihood of these issues to arise

40

simultaneously. The dependency is tight since both smell varieties spring from a higher-

level approach of violating an isolated, atomic, and single-purpose rule pattern for tests.

When Conditional Test Logic is involved in the testing process, it is just by nature that

test cases will cover multiple possible results, which will differ depending on the

changing conditions of the requirements. The fact that a test like this often tries to

establish so many things at once sets it up to be identified as an 'Eager Test.' It is likely

that as soon as a test starts to incorporate 'Conditional Test Logic', it begins to take on

multiple responsibilities, hence becoming an 'Eager Test.'

 'Conditional Test Logic' may lead to an 'Eager Test' because the test writer, after

imposing multiple scenarios within a single test, will continue to extend his test to manage

other behaviors, thus the correlation between these two test smells will be increasing.

Similarly, the pairing of 'Exception Catching Throwing' with 'Unknown Test' and

a high co-occurrence rate of [0.99] of using JNose Tool shows a strong correlation. This

correlation could arise because both smells stem from a lack of specificity and

intentionality in test design. An exception is not asserted in the detector of 'Exception

Catching Throwing'. A generic catch-all style with no specific exceptions is used, and this

is not good enough to verify the actual behavior of the code under emergency

circumstances. On the other hand, 'Unknown Test' in most cases is used for phenomena

where the reason for the test was not clear or a purpose of the test is not written explicitly,

so the test does not communicate its intent, nor explains on what grounds it is verifying

the conditions. When both smells are present, it is likely that the tests are not only poorly

documented and unclear but also that they are not effectively validating the error handling

paths of the code. The high co-occurrence rate of 'Exception Catching Throwing' with

'Unknown Test' can be explained by the overlap in their root causes: poor test design,

inadequate documentation, and the tendency to apply quick fixes under pressure.

Addressing these issues involves improving test practices, ensuring clear test purposes,

and avoiding unnecessary exception handling in test code. This dual shortage makes the

design of test cases more difficult and calls for a revised test design approach that focuses

on the optimization of test cases with strict intentions and explicit assertions, especially

concerning exception handling and verification, resulting in more enhancements in the

test clarity and maintainability.

41

Figure 4.17. Co-occurrence Matrix for JNose Tool

Next strong correlations are the one observed between 'Sleepy Test' and

'Constructor Initialization', with a co-occurrence value of [0.96] for the JNose Tool. The

common denominator for the correlation between 'Sleepy Test' and 'Constructor

Initialization' is a combination of inadequate handling of test setup and a lack of

understanding or utilization of more robust synchronization and initialization

mechanisms.

Conversely, a pair exposes relationships that are markedly tenuous, as is the case

between 'Magic Number Test' and 'Redundant Assertion', with a negligible co-occurrence

rate of [0.01]. The reasons for the low correlation between these two smells could be:

● Different Origins: 'Magic Number Test' and 'Redundant Assertion' originate from

various kinds of coding lapses. Magic numbers often result from a lack of

documentation or understanding of the code under test, while redundant assertions

tend to stem from an overly cautious approach to ensuring a certain condition is

met or from copy-pasting test code without proper refinement.

● No Direct Interaction: The presence of magic numbers does not require or

logically lead to redundant assertions. A test can have magic numbers without any

need to assert a condition more than once.

42

● Independent Nature: Both smells can independently exist without affecting each

other. A test can be poorly documented with magic numbers yet have a perfectly

concise and non-redundant set of assertions.

Another pair exhibiting minimal interdependence comprises 'Mystery Guest' and

'Assertion Roulette' and, 'Empty Test' and 'Assertion Roulette' where the co-occurrence

rate stands at [0.01] for both pairs. The reasons for the low correlations between 'Mystery

Guest' and 'Assertion Roulette', and 'Empty Test' and 'Assertion Roulette' might include:

● Differing Problems: The issues these smells represent do not relate to one another.

'Mystery Guest' deals with unclear test dependencies, while 'Assertion Roulette'

concerns the clarity of the assertions within the test.

● Absence of Assertions: Both 'Empty Test' and 'Assertion Roulette' cannot co-

occur simply because an 'Empty Test' has no assertions, and therefore cannot

create a situation where it's unclear which assertion might fail.

● Independent Correction Pathways: To fix a 'Mystery Guest' failure, a developer

could refactor the test so that it is provided enough context or should be less

dependent on the external dependencies. To face the issue of an 'Assertion

Roulette', the developer will need to showcase clear messages for each of

assertions or break down the whole test into several tests with fewer assertions if

any. 'Empty Test' requires it to be filled out or extracted. The solutions of the first

global warming problem do not stir the same solutions of the other one, and

therefore, don't influence the concurrent nature of the smells. These solutions do

not intersect and so do not affect the co-occurrence of these smells.

Results for the TestSmellDetector Tool as shown in Figure 4.18, the notable

correlation observed in this case is between 'Unknown Test' and 'Eager Test' and their co-

occurrence value of [0.97]. The common facet between these two smells is that their

correlation is strong because pursuing broad objectives 'Unknown Test' naturally serves

the purpose of tests that are overextended in the scope 'Eager Test'. When the purpose of

a test is not clearly defined, it becomes much easier for the test to accumulate assertions

related to various functionalities or scenarios, effectively becoming an 'Eager Test.' As a

result, the test turns out as an 'Eager Test' that has no focus or clarity. In such a situation,

a developer may mistake thoroughness or efficiency for the scope of the test.

Consequently, they may unwittingly start bundling more checks into the test. On top of

that, the lack of a specific aim is a weak point, which makes it impossible to distinguish

43

the ones which are essential for the assessment, from those which belong to the array of

other functionalities. The fact that the test is sprawled in a fashion that is not just a result

of an attempt at thoroughness but also indicative of the underlying uncertainty

questioning what it is that needs to be evaluated gives further acreage to the 'Eager Test'

characteristic.

Figure 4.18. Co-occurrence Matrix for TestSmellDetector Tool

The pairing of 'Source Optimism' with 'Mystery Guest' has a strong co-occurrence

rate of [0.95] with using TestSmellDetector Tool. Because of the several reasons, strong

correlation is observed between 'Source Optimism' and 'Mystery Guest':

● Mutual dependence on External Dependencies: Test files which contain both test

smells depend on external resources, such as files or databases, leads to a natural

overlap in tests that cause both smells.

● Assumptions about Resource State: 'Source Optimism' is characterized by

optimistic assumptions about the availability and state of external resources.

'Source Optimism' is inherently risky and often not explicitly addressed or

44

documented. So, it is aligning with the uncertain nature of 'Mystery Guest'. The

strong correlation is observed because both smells come from a problematic

handling of external resources in test cases. It is marked by optimistic assumptions

and a lack of clear documentation, which leads to tests that are difficult to

maintain.

Conversely, the matrix unveils relationships that are markedly tenuous, as is the

case between 'Magic Number Test' and 'Redundant Assertion', 'Magic Number Test' and

'Sleepy Test', 'Assertion Roulette' and 'Empty Test', 'Empty Test' and 'Exception Catching

Throwing', 'Empty Test' and 'Lazy Test', so on with a negligible co-occurrence rate of

[0.01] with using TestSmellDetector Tool. Following reasons that why these test smells

do not commonly affect each other:

● 'Magic Number Test' and 'Redundant Assertion': Magic numbers concern unclear

literal values in tests, while redundant assertions involve repeating the same

check. The use of unclear literals doesn't necessarily lead to repeating assertions,

and vice versa.

● 'Magic Number Test' and 'Sleepy Test': The presence of arbitrary literal values

('Magic Number Test') in a test is unrelated to the use of unnecessary wait times

('Sleepy Test'), as these issues stem from fundamentally different testing practices

and concerns.

● 'Assertion Roulette' and 'Empty Test': 'Assertion Roulette' involves tests with

multiple unclear assertions, whereas an 'Empty Test' contains no executable

statements or assertions at all, making their co-occurrence unlikely.

● 'Empty Test' and 'Exception Catching Throwing': Since 'Empty Test' lacks

implementation, it cannot concurrently exhibit specific behaviors such as

improperly managing exceptions ('Exception Catching Throwing').

● 'Empty Test' and 'Lazy Test': 'Lazy Test' implies a test that inadequately verifies

the functionality it's intended to test, often through overly simplistic or incomplete

assertions. In contrast, an 'Empty Test' doesn't perform any action or assertion,

precluding any form of testing behavior, inadequate or otherwise.

In summary, the co-occurrence matrix not only functions as a diagnostic tool to

show detected test smell combinations but also as a strategic asset in identifying which

test smells can be separated in practice. In addition, it is beneficial for advancing the

45

efficacy of testing suites, contributing to the development of more robust and reliable

software systems.

Figure 4.19. Finding for RQ3

Finding for RQ3: There is a considerable relationship between different types of

test smells, especially when considering their co-occurrence. Test smells often do

not exist in isolation; instead, the presence of one can be a predictor or indicator of

others within the same test suite. Between 'Conditional Test Logic' and 'Eager Test'

has most strong relationship with a co-occurrence value of [1.00] with using JNose

tool. Also, the pairing of 'Exception Catching Throwing' with 'Unknown Test' and

a high co-occurrence rate of [0.99] of using JNose Tool shows a strong correlation.

On the other hand, the notable correlation observed in this case is between

'Unknown Test' and 'Eager Test' and their co-occurrence value of [0.97] with using

TestSmellDetector tool. Additionally, the pairing of 'Source Optimism' with

'Mystery Guest' has a strong co-occurrence rate of [0.95] with using

TestSmellDetector Tool.

46

CHAPTER 5

CONCLUSION AND FUTURE WORK

Testing is currently considered to be an essential process for improving the quality

of software. Unfortunately, past literature has shown that test code can often be of low

quality and may contain design flaws, also known as test smells. This paper presented a

comparison of the results of the most well-known test smell detector tools (JNose and

TestSmellDetector) using 500 distinct open-source GitHub projects. These results give

us (I) the rate of detection of test smells by each tool, (II) the number of affected test code

files by test smells, and (III) the co-occurrence rate of detected test smells with the

mentioned tools.

I. The 'Assertion Roulette' is the most prevalent smell in the JNose Tool with 41,876

detections, accounting for 51.21% of all test smells detected by the JNose tool.

Like 'Assertion Roulette', other common the test smells 'Magic Number Test' with

11264 detections, 'Lazy Test' with 3984 detections, 'Eager Test' with 3692

detections, ‘Conditional Test Logic’ with 3679 detections, ‘Exception Catching

Throwing' with 3236 detections, and 'Unknown Test' with 3202 detections. They

are observed in all files, with respective percentages of 13.77, 4.87, 4.51, 4.50,

3.96, and 3.92. On the other hand, the TestSmellDetector tool has found that the

test smells 'Magic Number Test' with 28443 detections and 'Lazy Test' with 16570

detections are the most frequently observed, accounting for 31.78% and 18.51%

of all detected test smells, respectively. Furthermore, the test smells 'Exception

Catching Throwing' with 13612 detections, 'Assertion Roulette' with 10488

detections, 'General Fixture' with 4274 detections, and 'Eager Test' with 3780

detections are observed in all files, with respective percentages of 15.21, 11.72,

4.78, and 4.22.

II. The TestSmellDetector tool detected several files affected by the test smells

('Magic Number Test', 'Assertion Roulette', 'Exception Catching Throwing',

'Eager Test', 'Lazy Test', and 'Unknown Test'), with respective counts of 4222,

47

2503, 2463, 1126, 1070, and 1030. On the other hand, the JNose tool detected

several affected files by 'Assertion Roulette', 'Lazy Test', 'Magic Number Test',

'Exception Catching Throwing', 'Unknown Test', and 'Eager Test' are detected as

3056, 1396, 1364, 969, and 905.

III. The JNose tool showed that there is a strong correlation between the test smells

'Conditional Test Logic' and 'Eager Test', as indicated by a co-occurrence value

of [1.00]. Furthermore, the JNose tool reveals a strong relationship between the

pairs 'Exception Catching Throwing' and 'Unknown Test', as evidenced by a high

co-occurrence rate of [0.99]. In contrast, a high-rated correlation was noticed in

this significant relationship between the test smells 'Unknown Test' and 'Eager

Test', with a co-occurrence value of [0.97] when using the TestSmellDetector tool.

Furthermore, the TestSmellDetector Tool exhibited a combination of 'Source

Optimism' and 'Mystery Guest', with a significant co-occurrence rate of [0.95].

As future work, we plan to replicate this study with larger projects, including a more

extensive set of test smells. We also plan to implement a new tool to detect test smells

and refactor them further. Then, we plan to compare these three tools with larger projects

and to show decreased number of detected test smells after refactoring.

48

ENDNOTES

1 Available at: https://github.com/tassiovirginio/jnose.git
2 Available at: https://www.eclemma.org/jacoco/
3 Available at: https://javaparser.org/
4 Available at: https://wicket.apache.org/
5 Available at: https://maven.apache.org/
6 Available at: https://testsmells.org/
7 Available at: https://doi.org/10.48550/arXiv.2003.05613
8 Available at: https://arxiv.org/abs/2107.13902
9 Available at: https://doi.org/10.1145/3379597.3387453
10 Available at: https://ieeexplore.ieee.org/document/7582740?arnumber=7582740

11 Available at: https://doi.org/10.1145/3425174.3425212

12 Available at: https://doi.org/10.1109/ICSME46990.2020.00056

13 Available at: https://doi.org/10.1109/MSR52588.2021.00071

14 Available at: https://github.com/arieslab/jnose.
15 Available at: https://github.com/TestSmells/TestSmellDetector/tree/master
16 Available at: https://github.com/arieslab/TSSM

49

REFERENCES

Aberdour, M. 2007. “Achieving Quality in Open-Source Software.” IEEE Software,

 Software, IEEE, IEEE Softw 24 (1): 58–64.

 DOI: https://doi.org/10.1109/MS.2007.2

Bavota, Gabriele, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David

 Binkley. 2012. “An Empirical Analysis of the Distribution of Unit Test

 Smells and Their Impact on Software Maintenance.” 2012 28th IEEE

 International Conference on Software Maintenance (ICSM), Software

 Maintenance (ICSM), 2012 28th IEEE International Conference On,

 September, 56–65.

 DOI: https://doi.org/10.1109/ICSM.2012.6405253

Bavota, Gabriele, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave Binkley.

 2015. “Are Test Smells Really Harmful? An Empirical Study.” Empirical

 Software Engineering: An International Journal 20 (4): 1052–94.

 DOI: https://doi.org/10.1007/s10664-014-9313-0

Campos, Denivan, Larissa Rocha, and Ivan Machado. 2021. “Developers Perception on

 the Severity of Test Smells: An Empirical Study,” July.

 Available: https://research.ebsco.com/linkprocessor/plink?id=3b01ec23-85fb-

 33b6-a84f-6b9b82b578ad.

Cebeci, Ismail. 2024. “Automated Python Scripts to Use JNose and TestSmellDetector

 Tools.”.

 Available: https://github.com/ismailcebeci/Master_Thesis_Project

50

Durieux, Thomas, Cesar Soto-Valero, and Benoit Baudry. 2021. “Duets: A Dataset of

 Reproducible Pairs of Java Library-Clients.” 2021 IEEE/ACM 18th International

 Conference on Mining Software Repositories (MSR), Mining Software

 Repositories (MSR), 2021 IEEE/ACM 18th International Conference on, MSR,

 May, 545–49.

 DOI: https://doi.org/10.1109/MSR52588.2021.00071

Duvall, P. M., S. Matyas, P. Duvall, and A. Glover. Continuous Integration: Improving

 Software Quality and Reducing Risk. A Martin Fowler Signature Book. Addison-

 Wesley, 2007.

 Available: https://books.google.com.tr/books?id=MA8QmAEACAAJ.

Garousi, V., and B. Küçük. 2018. “Smells in Software Test Code: A Survey of

 Knowledge in Industry and Academia.” Journal of Systems and Software

 138 (April): 52–81.

 DOI: https://doi.org/10.1016/j.jss.2017.12.013

Gopinath, Rahul, Carlos Jensen, and Alex Groce. 2014. “Code Coverage for Suite

 Evaluation by Developers.” Proceedings of the 36th International Conference

 on Software Engineering, May, 72–82.

 DOI: https://doi.org/10.1145/2568225.2568278

Grano, G., F. Palomba, H.C. Gall, D. Di Nucci, and A. De Lucia. 2019. “Scented since

 the Beginning: On the Diffuseness of Test Smells in Automatically Generated

 Test Code.” Journal of Systems and Software 156 (October): 312–27.

 DOI: https://doi.org/10.1016/j.jss.2019.07.016

Greiler, Michaela, Arie van Deursen, and Margaret-Anne Storey. 2013. “Automated

 Detection of Test Fixture Strategies and Smells.” 2013 IEEE Sixth

 International Conference on Software Testing, Verification and Validation,

 Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth

 International Conference On, March, 322–31

 DOI: https://doi.org/10.1109/ICST.2013.45

51

Harrold, Mary Jean. ‘Testing: A Roadmap’. In Proceedings of the Conference on The

 Future of Software Engineering, 61–72. ICSE ’00. New York, NY, USA:

 Association for Computing Machinery, 2000.

 DOI: https://doi.org/10.1145/336512.336532

Junior, Nildo Silva, Larissa Rocha, Luana Almeida Martins, and Ivan Machado. 2020.

 “A Survey on Test Practitioners’ Awareness of Test Smells,” March.

 Available: https://research.ebsco.com/linkprocessor/plink?id=dc10ffb1 -9d27-

 3e54-a6b4- f27eabc597fc.

Loriot, Benjamin, Fernanda Madeiral, and Martin Monperrus. 2022. “Styler: Learning

 Formatting Conventions to Repair Checkstyle Violations.” Empirical Software

 Engineering: An International Journal 27 (6).

 DOI: https://doi.org/10.1007/s10664-021-10107-0

Martins, L., I. Machado, and H. Costa. 2024. “On the Diffusion of Test Smells and

 Their Relationship with Test Code Quality of Java Projects.” Journal of

 Software: Evolution and Process 36 (4).

 DOI: https://doi.org/10.1002/smr.2532

Meszaros, Gerard, Shaun M. Smith, and Jennitta Andrea. ‘The Test Automation

 Manifesto’. In Extreme Programming and Agile Methods – XP/Agile

 Universe 2003, edited by Frank Maurer and Don Wells, 73–81. Berlin,

 Heidelberg: Springer Berlin Heidelberg, 2003.

 DOI: https://doi.org/10.1007/978-3-540-45122-8_9

Meszaros, Gerard G. 2010. “XUnit Test Patterns and Smells : Improving the ROI of

 Test Code.” Proceedings of the ACM International Conference Companion on

 Object Oriented Programming Systems Languages and Applications

 Companion, October, 299–300.

 DOI: https://doi.org/10.1145/1869542.1869622

52

Murphy, Gail C. 2007. “Houston: We Are in Overload.” 2007 IEEE International

 Conference on Software Maintenance, Software Maintenance, 2007. ICSM

 2007. IEEE International Conference On, October, 1.

 DOI: https://doi.org/10.1109/ICSM.2007.4362611

Palomba, Fabio, and Andy Zaidman. 2017. “Notice of Retraction: Does Refactoring of

 Test Smells Induce Fixing Flaky Tests?” 2017 IEEE International Conference on

 Software Maintenance and Evolution (ICSME), Software Maintenance and

 Evolution (ICSME), 2017 IEEE International Conference on, ICSME,

 September, 1–12.

 DOI: https://doi.org/10.1109/ICSME.2017.12

Palomba, Fabio, and Andy Zaidman. 2019. “RETRACTED ARTICLE: The Smell of

 Fear: On the Relation between Test Smells and Flaky Tests.” Empirical

 Software Engineering: An International Journal 24 (5): 2907–46.

 DOI: https://doi.org/10.1007/s10664-019-09683-z

Panichella, Annibale, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant, and

 Vincent J. Hellendoorn. 2020. “Revisiting Test Smells in Automatically Generated

 Tests: Limitations, Pitfalls, and Opportunities.” 2020 IEEE International

 Conference on Software Maintenance and Evolution (ICSME), Software

 Maintenance and Evolution (ICSME), 2020 IEEE International Conference on,

 ICSME, September, 523–33.

 DOI: https://doi.org/10.1109/ICSME46990.2020.00056

Peruma, A., M.W. Mkaouer, K. Almalki, C.D. Newman, A. Ouni, and F. Palomba.

 2020. “On the Distribution of Test Smells in Open Source Android Applications:

 An Exploratory Study.” CASCON 2019 Proceedings - Conference of the Centre

 for Advanced Studies on Collaborative Research - Proceedings of the 29th

 Annual International Conference on Computer Science and Software

 Engineering, January, 193–202.

 Available: https://research.ebsco.com/linkprocessor/plink?id=bdc5aa42-a340- 3590-

 9fe6-cbd28094b85e.

53

Peruma, Anthony, Khalid Almalki, Christian D. Newman, Mohamed Wiem Mkaouer,

 Ali Ouni, and Fabio Palomba. 2020. “TsDetect: An Open Source Test Smells

 Detection Tool.” Proceedings of the 28th ACM Joint Meeting on European

 Software Engineering Conference and Symposium on the Foundations of

 Software Engineering, November, 1650–54.

 DOI: https://doi.org/10.1145/3368089.3417921

Peruma, Anthony Shehan Ayam. "What the Smell? An Empirical Investigation on the

 Distribution and Severity of Test Smells in Open Source Android Applications"

 (2018). Thesis. Rochester Institute of Technology.

 Available: https://repository.rit.edu/theses/9774

Rothermel, G., R.H. Untch, Chengyun Chu, and M.J. Harrold. 2001. “Prioritizing Test

 Cases for Regression Testing.” IEEE Transactions on Software Engineering,

 Software Engineering, IEEE Transactions on, IIEEE Trans. Software Eng 27

 (10): 929–48.

 DOI: https://doi.org/10.1109/32.962562

Soares, Elvys, Márcio Ribeiro, Guilherme Amaral, Rohit Gheyi, Leo Fernandes,

 Alessandro Garcia, Baldoino Fonseca, and André Santos. 2020.

 “Refactoring Test Smells : A Perspective from Open-Source Developers.”

 Proceedings of the 5th Brazilian Symposium on Systematic and

 Automated Software Testing, October, 50–59.

 DOI: https://doi.org/10.1145/3425174.3425212

Spadini, Davide, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto

 Bacchelli. 2018. “On the Relation of Test Smells to Software Code

 Quality.” 2018 IEEE International Conference on Software Maintenance

 and Evolution (ICSME), Software Maintenance and Evolution (ICSME),

 2018 IEEE International Conference on, ICSME, September, 1–12.

 DOI: https://doi.org/10.1109/ICSME.2018.00010

54

Spadini, Davide, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel Bruntink, and

 Alberto Bacchelli. 2020. “Investigating Severity Thresholds for Test Smells.”

 2020 IEEE/ACM 17th International Conference on Mining Software

 Repositories (MSR), Mining Software Repositories (MSR), 2020 IEEE/ACM

 17th International Conference on, MSR, May, 311–21.

 DOI: https://doi.org/10.1145/3379597.3387453

Tufano, Michele, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

 Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. “An Empirical

 Investigation into the Nature of Test Smells.” 2016 31st IEEE/ACM

 International Conference on Automated Software Engineering (ASE),

 Automated Software Engineering (ASE), 2016 31st IEEE/ACM International

 Conference On, September, 4–15.

 Available: https://research.ebsco.com/linkprocessor/plink?id=828fc978-05ac-

 3151-b198-b434a6343283.

Vahabzadeh, Arash, Amin Milani Fard, and Ali Mesbah. 2015. “An Empirical Study of

 Bugs in Test Code.” 2015 IEEE International Conference on Software

 Maintenance and Evolution (ICSME), Software Maintenance and Evolution

 (ICSME), 2015 IEEE International Conference On, September, 101–10.

 DOI: https://doi.org/10.1109/ICSM.2015.7332456

van Deursen, Arie, Leon Moonen, Alex van den Bergh, and Gerard Kok. Refactoring

 Test Code. Software Engineering [SEN]. CWI, 2001.

 Available: https://ir.cwi.nl/pub/4324

Virgínio, Tássio, Railana Santana, Luana Almeida Martins, Larissa Rocha Soares,

 Heitor Costa, and Ivan Machado. 2019. “On the Influence of Test Smells on

 Test Coverage.” Proceedings of the XXXIII Brazilian Symposium on

 Software Engineering, September, 467–71.

 DOI: https://doi.org/10.1145/3350768.3350775

55

Virgínio, Tássio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz, Heitor

 Costa, and Ivan Machado. 2020. “JNose : Java Test Smell Detector.” Proceedings

 of the 34th Brazilian Symposium on Software Engineering, October, 564–69.

 DOI: https://doi.org/10.1145/3422392.3422499

56

APPENDICES

APPENDIX A

A.1. Project Database List

Table A.1. List of GitHub projects

Full_name_modified clone_url

00-matt_moneropool https://github.com/00-matt/moneropool.git

0428402001_hbase-oss https://github.com/0428402001/hbase-oss.git

0rtis_mochimo-farm-manager https://github.com/0rtis/mochimo-farm-manager.git

0xCopy_RelaxFactory https://github.com/0xCopy/RelaxFactory.git

0xERR0R_jmstool https://github.com/0xERR0R/jmstool.git

0xl2oot_harbor-java-client https://github.com/0xl2oot/harbor-java-client.git

0xnm_BTC-e-client-for-Android https://github.com/0xnm/BTC-e-client-for-Android.git

0xpr03_VocableTrainer-Android https://github.com/0xpr03/VocableTrainer-Android.git

0xZhangKe_ShiZhong https://github.com/0xZhangKe/ShiZhong.git

1000Memories_photon-core https://github.com/1000Memories/photon-core.git

100rabhkr_DownZLibrary https://github.com/100rabhkr/DownZLibrary.git

 Cont. on next page

57

Table A.1 (cont.)

1024-lab_smart-admin https://github.com/1024-lab/smart-admin.git

10clouds_InifiniteRecyclerView https://github.com/10clouds/InifiniteRecyclerView.git

1123_johnson https://github.com/1123/johnson.git

12315jack_j1st-mqtt https://github.com/12315jack/j1st-mqtt.git

1336037686_software-demo https://github.com/1336037686/software-demo.git

151376liujie_wechat-core https://github.com/151376liujie/wechat-core.git

15knots_cmake4eclipse https://github.com/15knots/cmake4eclipse.git

15knots_cmakeed https://github.com/15knots/cmakeed.git

1902-feb04-java_training-code https://github.com/1902-feb04-java/training-code.git

1and1_cosmo https://github.com/1and1/cosmo.git

1and1_dim https://github.com/1and1/dim.git

1and1_foss-parent https://github.com/1and1/foss-parent.git

1and1_go-maven-poller https://github.com/1and1/go-maven-poller.git

1and1_Troilus https://github.com/1and1/Troilus.git

1C-Company_dt-example-plugins https://github.com/1C-Company/dt-example-plugins.git

1c-syntax_sonar-bsl-plugin-community https://github.com/1c-syntax/sonar-bsl-plugin-community.git

1fish2_BBQTimer https://github.com/1fish2/BBQTimer.git

1hakr_ALauncher https://github.com/1hakr/ALauncher.git

 Cont. on next page

58

Table A.1 (cont.)

1m5_1m5-core https://github.com/1m5/1m5-core.git

1Ridav_PengueeBot https://github.com/1Ridav/PengueeBot.git

1tontech_intellij-spring-assistant https://github.com/1tontech/intellij-spring-assistant.git

200Puls_darksky-forecast-api https://github.com/200Puls/darksky-forecast-api.git

2020NCOV_MiniProgram-server-JAVA https://github.com/2020NCOV/MiniProgram-server-JAVA.git

20n_act https://github.com/20n/act.git

294678380_cloudDemo https://github.com/294678380/cloudDemo.git

2Checkout_2checkout-java https://github.com/2Checkout/2checkout-java.git

33cn_chain33-sdk-java https://github.com/33cn/chain33-sdk-java.git

360jinrong_chronus https://github.com/360jinrong/chronus.git

3breadt_dd-plist https://github.com/3breadt/dd-plist.git

3cky_bkemu-android https://github.com/3cky/bkemu-android.git

3pillarlabs_spring-data-simpledb https://github.com/3pillarlabs/spring-data-simpledb.git

3pillarlabs_spring-integration-aws https://github.com/3pillarlabs/spring-integration-aws.git

3redronin_mu-server https://github.com/3redronin/mu-server.git

3scale-labs_3scale_ws_api_for_java https://github.com/3scale-labs/3scale_ws_api_for_java.git

3sidedcube_Android-GeoGson https://github.com/3sidedcube/Android-GeoGson.git

435242634_Spring-Boot-Demo https://github.com/435242634/Spring-Boot-Demo.git

 Cont. on next page

59

Table A.1 (cont.)

4ncov_service-4ncov https://github.com/4ncov/service-4ncov.git

4PERTURE_despacito_launcher https://github.com/4PERTURE/despacito_launcher.git

50onRed_mock-jedis https://github.com/50onRed/mock-jedis.git

512433465_JacocoPlus https://github.com/512433465/JacocoPlus.git

51Degrees_Java-Device-Detection https://github.com/51Degrees/Java-Device-Detection.git

51nb_marble https://github.com/51nb/marble.git

527088995_dian https://github.com/527088995/dian.git

52inc_Scoops https://github.com/52inc/Scoops.git

52North_ArcGIS-Server-SOS-Extension https://github.com/52North/ArcGIS-Server-SOS-Extension.git

52North_arctic-sea https://github.com/52North/arctic-sea.git

52North_ecmwf-dataset-crawl https://github.com/52North/ecmwf-dataset-crawl.git

52North_javaPS https://github.com/52North/javaPS.git

52North_matlab-control https://github.com/52North/matlab-control.git

52North_ows-11-instagram https://github.com/52North/ows-11-instagram.git

52North_SensorPlanningService https://github.com/52North/SensorPlanningService.git

52North_sensorweb-server-helgoland https://github.com/52North/sensorweb-server-helgoland.git

52North_SensorWebClient https://github.com/52North/SensorWebClient.git

52North_SES https://github.com/52North/SES.git

 Cont. on next page

60

Table A.1 (cont.)

52North_SOS https://github.com/52North/SOS.git

52North_sos-importer https://github.com/52North/sos-importer.git

52North_Supervisor https://github.com/52North/Supervisor.git

52North_WeatherDataCollector https://github.com/52North/WeatherDataCollector.git

52North_WPS https://github.com/52North/WPS.git

52North_wps-gitalgorithm-repository https://github.com/52North/wps-gitalgorithm-repository.git

52North_wpsclient4arcgis https://github.com/52North/wpsclient4arcgis.git

52North_youngs https://github.com/52North/youngs.git

58code_Gaea https://github.com/58code/Gaea.git

5calls_android https://github.com/5calls/android.git

5waynewang_diamond https://github.com/5waynewang/diamond.git

616slayer616_gradle-minify-plugin https://github.com/616slayer616/gradle-minify-plugin.git

632team_EasyHousing https://github.com/632team/EasyHousing.git

6tail_lunar-java https://github.com/6tail/lunar-java.git

724_irbill https://github.com/724/irbill.git

734839030_seezoon-framework-all https://github.com/734839030/seezoon-framework-all.git

75py_DisableManager https://github.com/75py/DisableManager.git

7ep_demo https://github.com/7ep/demo.git

 Cont. on next page

61

Table A.1 (cont.)

7upcat_agile-wroking-backend https://github.com/7upcat/agile-wroking-backend.git

84n4n4_FloatSight https://github.com/84n4n4/FloatSight.git

850759383_ZhihuDailyNews https://github.com/850759383/ZhihuDailyNews.git

864381832_xJavaFxTool https://github.com/864381832/xJavaFxTool.git

8BitPlus_BitPlus https://github.com/8BitPlus/BitPlus.git

8enet_apkeditor https://github.com/8enet/apkeditor.git

8kdata_phoebe https://github.com/8kdata/phoebe.git

918xj_spring-boot-seed https://github.com/918xj/spring-boot-seed.git

9231058_AP101 https://github.com/9231058/AP101.git

94fzb_zrlog https://github.com/94fzb/zrlog.git

99soft_autobind https://github.com/99soft/autobind.git

a-pavlov_jed2k https://github.com/a-pavlov/jed2k.git

a-r-d_Bellman-Form-BTCe-Arbitrager https://github.com/a-r-d/Bellman-Form-BTCe-Arbitrager.git

a-r-d_java-1-class-demos https://github.com/a-r-d/java-1-class-demos.git

a-schild_jave2 https://github.com/a-schild/jave2.git

a-schild_nextcloud-java-api https://github.com/a-schild/nextcloud-java-api.git

A-Zaiats_android-mvvm https://github.com/A-Zaiats/android-mvvm.git

a11n_CustomLintRules https://github.com/a11n/CustomLintRules.git

 Cont. on next page

62

Table A.1 (cont.)

a11n_devfest-2016-realm https://github.com/a11n/devfest-2016-realm.git

a11n_lint-junit-rule https://github.com/a11n/lint-junit-rule.git

a2ndrade_q-intellij-plugin https://github.com/a2ndrade/q-intellij-plugin.git

a970066364_spring-cloud-alibaba-seata https://github.com/a970066364/spring-cloud-alibaba-seata.git

AAA-AA_basic-tools https://github.com/AAA-AA/basic-tools.git

aaberg_sql2o https://github.com/aaberg/sql2o.git

aadnk_ProtocolLib https://github.com/aadnk/ProtocolLib.git

AAkira_ExpandableLayout https://github.com/AAkira/ExpandableLayout.git

aankur_spring-authentication-session-oauth2 https://github.com/aankur/spring-authentication-session-
oauth2.git

Aaron1011_WhoWas https://github.com/Aaron1011/WhoWas.git

aaronshan_hive-third-functions https://github.com/aaronshan/hive-third-functions.git

aaronweihe_ThreeTen-Backport-Gson-
Adapter

https://github.com/aaronweihe/ThreeTen-Backport-Gson-
Adapter.git

aaryn101_lol4j https://github.com/aaryn101/lol4j.git

aasaru_drools-training https://github.com/aasaru/drools-training.git

aaschmid_taskwarrior-java-client https://github.com/aaschmid/taskwarrior-java-client.git

aashrai_GET-TO-WORK https://github.com/aashrai/GET-TO-WORK.git

aatarasoff_spring-cloud-marathon https://github.com/aatarasoff/spring-cloud-marathon.git

 Cont. on next page

63

Table A.1 (cont.)

aatarasoff_spring-one-nio https://github.com/aatarasoff/spring-one-nio.git

aatarasoff_spring-thrift-api-gateway https://github.com/aatarasoff/spring-thrift-api-gateway.git

aatarasoff_spring-thrift-starter https://github.com/aatarasoff/spring-thrift-starter.git

ab-book_code_yunfei https://github.com/ab-book/code_yunfei.git

abahgat_suffixtree https://github.com/abahgat/suffixtree.git

abashev_spring-workflow https://github.com/abashev/spring-workflow.git

abdullahalrifat_FoodOrderingSystem https://github.com/abdullahalrifat/FoodOrderingSystem.git

abego_treelayout https://github.com/abego/treelayout.git

abel533_ECharts https://github.com/abel533/ECharts.git

abel533_guns https://github.com/abel533/guns.git

abelidze_planner-server https://github.com/abelidze/planner-server.git

AbFab3D_AbFab3D https://github.com/AbFab3D/AbFab3D.git

abh1nav_styx https://github.com/abh1nav/styx.git

abhijitparida_bunk https://github.com/abhijitparida/bunk.git

abhijitvalluri_fitnotifications https://github.com/abhijitvalluri/fitnotifications.git

abhishek-ch_Awesome_Algorithm https://github.com/abhishek-ch/Awesome_Algorithm.git

abid-khan_spring-security-rest https://github.com/abid-khan/spring-security-rest.git

ably_ably-java https://github.com/ably/ably-java.git

 Cont. on next page

64

Table A.1 (cont.)

abohomol_cookietray https://github.com/abohomol/cookietray.git

aboutsip_pkts https://github.com/aboutsip/pkts.git

aboutsip_sipstack https://github.com/aboutsip/sipstack.git

abranhe_allalgorithms-java https://github.com/abranhe/allalgorithms-java.git

abrensch_brouter https://github.com/abrensch/brouter.git

abstools_abstools https://github.com/abstools/abstools.git

abstractj_kalium https://github.com/abstractj/kalium.git

abuchanan920_historybook https://github.com/abuchanan920/historybook.git

abused_World-Border https://github.com/abused/World-Border.git

ac2cz_FoxTelem https://github.com/ac2cz/FoxTelem.git

acadet_springbok https://github.com/acadet/springbok.git

AcadiaSoft_simm-lib https://github.com/AcadiaSoft/simm-lib.git

acanda_eclipse-pmd https://github.com/acanda/eclipse-pmd.git

acanda_spring-banner-plugin https://github.com/acanda/spring-banner-plugin.git

AccelerationNet_access2csv https://github.com/AccelerationNet/access2csv.git

acciente_oacc-core https://github.com/acciente/oacc-core.git

Accordance_microservice-dojo https://github.com/Accordance/microservice-dojo.git

 Cont. on next page

65

Table A.1 (cont.)

accountingSoftwareCSE343Group4_accounti
ng_Soft

https://github.com/accountingSoftwareCSE343Group4/accounti
ng_Soft.git

acebaggins_guava-collectors https://github.com/acebaggins/guava-collectors.git

acegi_xml-format-maven-plugin https://github.com/acegi/xml-format-maven-plugin.git

acelera-dev_acelera-dev-brasil-2019-01 https://github.com/acelera-dev/acelera-dev-brasil-2019-01.git

acgray_jplow https://github.com/acgray/jplow.git

acharapko_retroscope-lib https://github.com/acharapko/retroscope-lib.git

achaussende_tp-2D-cutting-stock-problem https://github.com/achaussende/tp-2D-cutting-stock-problem.git

achuzhmarov_test-tutorial https://github.com/achuzhmarov/test-tutorial.git

aclement_spring-boot-graal-feature https://github.com/aclement/spring-boot-graal-feature.git

aclemons_hibernate-hdb-demo https://github.com/aclemons/hibernate-hdb-demo.git

acmerobotics_relic-recovery https://github.com/acmerobotics/relic-recovery.git

acmi_L2io https://github.com/acmi/L2io.git

Acosix_alfresco-simple-content-stores https://github.com/Acosix/alfresco-simple-content-stores.git

acquia_http-hmac-java https://github.com/acquia/http-hmac-java.git

acr31_features-javac https://github.com/acr31/features-javac.git

actions-on-google_dialogflow-conversation-
components-java

https://github.com/actions-on-google/dialogflow-conversation-
components-java.git

actions-on-google_dialogflow-webhook-
boilerplate-java

https://github.com/actions-on-google/dialogflow-webhook-
boilerplate-java.git

 Cont. on next page

66

Table A.1 (cont.)

activelylazy_coverage-example https://github.com/activelylazy/coverage-example.git

activeviam_autopivot https://github.com/activeviam/autopivot.git

activeviam_pivot-spring-boot https://github.com/activeviam/pivot-spring-boot.git

activey_licket https://github.com/activey/licket.git

activityworkshop_GpsPrune https://github.com/activityworkshop/GpsPrune.git

actorapp_actor-curve25519 https://github.com/actorapp/actor-curve25519.git

actorapp_actor-platform https://github.com/actorapp/actor-platform.git

ACWI-SSWD_nldi-services https://github.com/ACWI-SSWD/nldi-services.git

ad-freiburg_pdfact https://github.com/ad-freiburg/pdfact.git

ad-tech-group_openssp https://github.com/ad-tech-group/openssp.git

adaa-polsl_RuleKit https://github.com/adaa-polsl/RuleKit.git

Adamant-im_adamant-android https://github.com/Adamant-im/adamant-android.git

adamantoise_robocrosswords https://github.com/adamantoise/robocrosswords.git

AdamBien_airfield https://github.com/AdamBien/airfield.git

AdamBien_breakr https://github.com/AdamBien/breakr.git

AdamBien_cors https://github.com/AdamBien/cors.git

AdamBien_enhydrator https://github.com/AdamBien/enhydrator.git

AdamBien_firehose https://github.com/AdamBien/firehose.git

 Cont. on next page

67

Table A.1 (cont.)

AdamBien_javaee-bce-archetype https://github.com/AdamBien/javaee-bce-archetype.git

AdamBien_javaee-bce-pom https://github.com/AdamBien/javaee-bce-pom.git

AdamBien_javaee-calculator https://github.com/AdamBien/javaee-calculator.git

AdamBien_jc2 https://github.com/AdamBien/jc2.git

AdamBien_loadr https://github.com/AdamBien/loadr.git

AdamBien_nano https://github.com/AdamBien/nano.git

AdamBien_perceptor https://github.com/AdamBien/perceptor.git

AdamBien_porcupine https://github.com/AdamBien/porcupine.git

AdamBien_rulz https://github.com/AdamBien/rulz.git

AdamBien_wad https://github.com/AdamBien/wad.git

adamcin_httpsig-java https://github.com/adamcin/httpsig-java.git

adamcin_oakpal https://github.com/adamcin/oakpal.git

adamfisk_DNSSEC4J https://github.com/adamfisk/DNSSEC4J.git

adamheinrich_native-utils https://github.com/adamheinrich/native-utils.git

adamldavis_hellojava8 https://github.com/adamldavis/hellojava8.git

adamldavis_reactive-streams-in-java https://github.com/adamldavis/reactive-streams-in-java.git

adamldavis_z https://github.com/adamldavis/z.git

adamyork_wiremock-velocity-transformer https://github.com/adamyork/wiremock-velocity-transformer.git

 Cont. on next page

68

Table A.1 (cont.)

adaptris_interlok https://github.com/adaptris/interlok.git

adavis_sample-android-testing https://github.com/adavis/sample-android-testing.git

adchilds_JythonScript https://github.com/adchilds/JythonScript.git

addhen_serializer https://github.com/addhen/serializer.git

addo47_AbilityBots https://github.com/addo47/AbilityBots.git

addo47_ExampleBots https://github.com/addo47/ExampleBots.git

AddstarMC_Prism-Bukkit https://github.com/AddstarMC/Prism-Bukkit.git

addthis_aho-corasick https://github.com/addthis/aho-corasick.git

addthis_basis https://github.com/addthis/basis.git

addthis_cronus https://github.com/addthis/cronus.git

addthis_hydra https://github.com/addthis/hydra.git

addthis_meshy https://github.com/addthis/meshy.git

addthis_MetricCatcher https://github.com/addthis/MetricCatcher.git

addthis_stream-lib https://github.com/addthis/stream-lib.git

adelbs_ISO8583 https://github.com/adelbs/ISO8583.git

adempiere_adempiere https://github.com/adempiere/adempiere.git

AdeptJ_adeptj-modules https://github.com/AdeptJ/adeptj-modules.git

adessoAG_BrainySnake https://github.com/adessoAG/BrainySnake.git

 Cont. on next page

69

Table A.1 (cont.)

adessoAG_JenkinsHue https://github.com/adessoAG/JenkinsHue.git

adessoAG_project-board https://github.com/adessoAG/project-board.git

adessoAG_wicked-forms https://github.com/adessoAG/wicked-forms.git

adijo_programming-pearls https://github.com/adijo/programming-pearls.git

adilcan_simple-erp-springboot https://github.com/adilcan/simple-erp-springboot.git

Adipa-G_joquery https://github.com/Adipa-G/joquery.git

aditya-chaturvedi_spark-on-spring-boot https://github.com/aditya-chaturvedi/spark-on-spring-boot.git

aditya-sridhar_simple-rest-apis https://github.com/aditya-sridhar/simple-rest-apis.git

aditzel_spring-security-csrf-filter https://github.com/aditzel/spring-security-csrf-filter.git

adjust_android_sdk https://github.com/adjust/android_sdk.git

adlered_Picuang https://github.com/adlered/Picuang.git

adlered_Voter https://github.com/adlered/Voter.git

adlnet_jxapi https://github.com/adlnet/jxapi.git

adnovum_sonar-build-breaker https://github.com/adnovum/sonar-build-breaker.git

Adobe-Consulting-Services_curly https://github.com/Adobe-Consulting-Services/curly.git

Adobe-Marketing-Cloud_aem-dialog-
conversion

https://github.com/Adobe-Marketing-Cloud/aem-dialog-
conversion.git

Adobe-Marketing-Cloud_aem-forms https://github.com/Adobe-Marketing-Cloud/aem-forms.git

 Cont. on next page

70

Table A.1 (cont.)

Adobe-Marketing-Cloud_analytics-live-
stream-api-samples

https://github.com/Adobe-Marketing-Cloud/analytics-live-
stream-api-samples.git

Adobe-Marketing-Cloud_audiencemanager-
api-sample-app

https://github.com/Adobe-Marketing-Cloud/audiencemanager-
api-sample-app.git

adobe-sign_AdobeSignJavaSdk https://github.com/adobe-sign/AdobeSignJavaSdk.git

adobe_adobe-dx https://github.com/adobe/adobe-dx.git

adobe_aem-cloud-migration https://github.com/adobe/aem-cloud-migration.git

adobe_aem-eclipse-developer-tools https://github.com/adobe/aem-eclipse-developer-tools.git

adobe_aem-modernize-tools https://github.com/adobe/aem-modernize-tools.git

adobe_aem-testing-clients https://github.com/adobe/aem-testing-clients.git

adobe_commerce-cif-connector https://github.com/adobe/commerce-cif-connector.git

adobe_commerce-cif-graphql-client https://github.com/adobe/commerce-cif-graphql-client.git

AdoptOpenJDK_jdk9-jigsaw https://github.com/AdoptOpenJDK/jdk9-jigsaw.git

AdoptOpenJDK_jitwatch https://github.com/AdoptOpenJDK/jitwatch.git

adorsys_datasafe https://github.com/adorsys/datasafe.git

adorsys_keycloak-config-cli https://github.com/adorsys/keycloak-config-cli.git

adorsys_keystore-management https://github.com/adorsys/keystore-management.git

adorsys_ledgers https://github.com/adorsys/ledgers.git

adorsys_oauth https://github.com/adorsys/oauth.git

 Cont. on next page

71

Table A.1 (cont.)

adorsys_psd2-accelerator https://github.com/adorsys/psd2-accelerator.git

adorsys_secure-token-service https://github.com/adorsys/secure-token-service.git

adorsys_xs2a-connector-examples https://github.com/adorsys/xs2a-connector-examples.git

adorsys_XS2A-Sandbox https://github.com/adorsys/XS2A-Sandbox.git

adr_e-adr https://github.com/adr/e-adr.git

adragomir_hbase-indexing-library https://github.com/adragomir/hbase-indexing-library.git

AdrianBZG_N_Queens_Puzzle https://github.com/AdrianBZG/N_Queens_Puzzle.git

AdrianCitu_GenericCSRFFilter https://github.com/AdrianCitu/GenericCSRFFilter.git

adriancretu_beacons-android https://github.com/adriancretu/beacons-android.git

adrianeboyd_BrillMooreSpellChecker https://github.com/adrianeboyd/BrillMooreSpellChecker.git

adrianmo_jmeter-backend-azure https://github.com/adrianmo/jmeter-backend-azure.git

adrianobrito_errare-humanum-est https://github.com/adrianobrito/errare-humanum-est.git

adrianulbona_hmm https://github.com/adrianulbona/hmm.git

adrianulbona_jts-discretizer https://github.com/adrianulbona/jts-discretizer.git

adridadou_eth-contract-api https://github.com/adridadou/eth-contract-api.git

adrobisch_brainslug https://github.com/adrobisch/brainslug.git

adrobisch_raml-converter https://github.com/adrobisch/raml-converter.git

Adrodoc_MPL https://github.com/Adrodoc/MPL.git

 Cont. on next page

72

Table A.1 (cont.)

AdRoll_cantor https://github.com/AdRoll/cantor.git

ADSC-Resa_resa https://github.com/ADSC-Resa/resa.git

advantageous_boon https://github.com/advantageous/boon.git

advantageous_ddp-client-java https://github.com/advantageous/ddp-client-java.git

advantageous_konf https://github.com/advantageous/konf.git

advantageous_qbit https://github.com/advantageous/qbit.git

advantageous_reakt https://github.com/advantageous/reakt.git

adyliu_jafka https://github.com/adyliu/jafka.git

adyliu_zkclient https://github.com/adyliu/zkclient.git

Aegeaner_kafka-connector-redis https://github.com/Aegeaner/kafka-connector-redis.git

aionnetwork_aion_api https://github.com/aionnetwork/aion_api.git

airbnb_AirMapView https://github.com/airbnb/AirMapView.git

airbnb_airpal https://github.com/airbnb/airpal.git

airbnb_dynein https://github.com/airbnb/dynein.git

airbnb_epoxy https://github.com/airbnb/epoxy.git

airbnb_kafka-statsd-metrics2 https://github.com/airbnb/kafka-statsd-metrics2.git

airbnb_lottie-android https://github.com/airbnb/lottie-android.git

airbnb_plog https://github.com/airbnb/plog.git

 Cont. on next page

73

Table A.1 (cont.)

airbnb_reair https://github.com/airbnb/reair.git

airbnb_RxGroups https://github.com/airbnb/RxGroups.git

airbnb_SpinalTap https://github.com/airbnb/SpinalTap.git

airbrake_airbrake-java https://github.com/airbrake/airbrake-java.git

airbrake_javabrake https://github.com/airbrake/javabrake.git

airbus-cyber_graylog-plugin-aggregation-
count

https://github.com/airbus-cyber/graylog-plugin-aggregation-
count.git

airbus-cyber_graylog-plugin-correlation-count https://github.com/airbus-cyber/graylog-plugin-correlation-
count.git

airbus-cyber_graylog-plugin-logging-alert https://github.com/airbus-cyber/graylog-plugin-logging-alert.git

airfey_spring-drools-demo https://github.com/airfey/spring-drools-demo.git

airicyu_Fortel https://github.com/airicyu/Fortel.git

airlift_airlift https://github.com/airlift/airlift.git

airlift_drift https://github.com/airlift/drift.git

airlift_slice https://github.com/airlift/slice.git

airminer_jnlua https://github.com/airminer/jnlua.git

Airsaid_AndroidLocalizePlugin https://github.com/Airsaid/AndroidLocalizePlugin.git

Airsaid_ChordView https://github.com/Airsaid/ChordView.git

airufei_xmfcn-spring-cloud https://github.com/airufei/xmfcn-spring-cloud.git

 Cont. on next page

74

Table A.1 (cont.)

aisrael_jcombinatorics https://github.com/aisrael/jcombinatorics.git

aisrael_junit-rules https://github.com/aisrael/junit-rules.git

aistomin_jenkins-sdk https://github.com/aistomin/jenkins-sdk.git

AITestingOrg_banking-microservices-tutorial https://github.com/AITestingOrg/banking-microservices-
tutorial.git

aitusoftware_recall https://github.com/aitusoftware/recall.git

aivanov-ua_Paytomat-Crypto https://github.com/aivanov-ua/Paytomat-Crypto.git

ajalt_reprint https://github.com/ajalt/reprint.git

ajanata_PretendYoureXyzzy https://github.com/ajanata/PretendYoureXyzzy.git

ajantis_java-crdt https://github.com/ajantis/java-crdt.git

ajbrown_name-machine https://github.com/ajbrown/name-machine.git

ajermakovics_backflow https://github.com/ajermakovics/backflow.git

ajermakovics_crdts https://github.com/ajermakovics/crdts.git

ajermakovics_eclipse-instasearch https://github.com/ajermakovics/eclipse-instasearch.git

ajermakovics_json https://github.com/ajermakovics/json.git

ajiang-open_jpaquery https://github.com/ajiang-open/jpaquery.git

ajitsing_ExpenseManager https://github.com/ajitsing/ExpenseManager.git

akoskm_bouncy-castle-sha3 https://github.com/akoskm/bouncy-castle-sha3.git

akperkins_Game-of-thrones-trivia https://github.com/akperkins/Game-of-thrones-trivia.git

 Cont. on next page

75

Table A.1 (cont.)

akquinet_androlog https://github.com/akquinet/androlog.git

akquinet_needle https://github.com/akquinet/needle.git

akquinet_vaadinator https://github.com/akquinet/vaadinator.git

akquinet_vaangular https://github.com/akquinet/vaangular.git

akranga_kube-workshop https://github.com/akranga/kube-workshop.git

akraskovski_product-management-system https://github.com/akraskovski/product-management-system.git

akraxx_gitlab-jira-integration https://github.com/akraxx/gitlab-jira-integration.git

aksakalli_EsperIoT https://github.com/aksakalli/EsperIoT.git

aksalj_africastalking-android https://github.com/aksalj/africastalking-android.git

aksalj_africastalking-java https://github.com/aksalj/africastalking-java.git

AKSW_KBox https://github.com/AKSW/KBox.git

AKSW_LODVader https://github.com/AKSW/LODVader.git

AKSW_Mandolin https://github.com/AKSW/Mandolin.git

AKSW_RDFUnit https://github.com/AKSW/RDFUnit.git

AKSW_rocker https://github.com/AKSW/rocker.git

akubach_phyloviewer https://github.com/akubach/phyloviewer.git

akullpp_algodat https://github.com/akullpp/algodat.git

AKuznetsov_russianmorphology https://github.com/AKuznetsov/russianmorphology.git

 Cont. on next page

76

Table A.1 (cont.)

akvo_akvo-flow https://github.com/akvo/akvo-flow.git

akvo_akvo-flow-mobile https://github.com/akvo/akvo-flow-mobile.git

al-broco_bare-bones-digest https://github.com/al-broco/bare-bones-digest.git

al-liu_OCat-MobilePlatform https://github.com/al-liu/OCat-MobilePlatform.git

alaabenfatma_Diaballik https://github.com/alaabenfatma/Diaballik.git

alabeduarte_mypodcasts-android https://github.com/alabeduarte/mypodcasts-android.git

alaisi_nalloc https://github.com/alaisi/nalloc.git

alaisi_postgres-async-driver https://github.com/alaisi/postgres-async-driver.git

alalwww_SpawnChecker https://github.com/alalwww/SpawnChecker.git

Alan-Gomes_mcspring-boot https://github.com/Alan-Gomes/mcspring-boot.git

AlanDelip_SpringBoot-Template https://github.com/AlanDelip/SpringBoot-Template.git

alanhay_html-exporter https://github.com/alanhay/html-exporter.git

AlanHohn_java-intro-course https://github.com/AlanHohn/java-intro-course.git

alansun2_happyframework-pay https://github.com/alansun2/happyframework-pay.git

alb-i986_selenium-tinafw https://github.com/alb-i986/selenium-tinafw.git

albertattard_gson-typeadapter-example https://github.com/albertattard/gson-typeadapter-example.git

albertlatacz_java-repl https://github.com/albertlatacz/java-repl.git

albertodelazzari_flink-neo4j https://github.com/albertodelazzari/flink-neo4j.git

 Cont. on next page

77

Table A.1 (cont.)

albertogoffi_toradocu https://github.com/albertogoffi/toradocu.git

Albertoimpl_k8s-for-the-busy https://github.com/Albertoimpl/k8s-for-the-busy.git

albertopastormr_greengo https://github.com/albertopastormr/greengo.git

albertoruibal_carballo https://github.com/albertoruibal/carballo.git

albertus82_router-logger https://github.com/albertus82/router-logger.git

albfernandez_itext2 https://github.com/albfernandez/itext2.git

albfernandez_javadbf https://github.com/albfernandez/javadbf.git

albfernandez_juniversalchardet https://github.com/albfernandez/juniversalchardet.git

alblue_com.packtpub.e4 https://github.com/alblue/com.packtpub.e4.git

albogdano_elasticsearch-river-amazonsqs https://github.com/albogdano/elasticsearch-river-amazonsqs.git

albrechtf_mcf2pdf https://github.com/albrechtf/mcf2pdf.git

alcampos_graylog-plugin-function-csv https://github.com/alcampos/graylog-plugin-function-csv.git

NileshJarad_TDD_Demo https://github.com/NileshJarad/TDD_Demo.git

Nilhcem_bblfr-android https://github.com/Nilhcem/bblfr-android.git

Nilhcem_devfestnantes-2016 https://github.com/Nilhcem/devfestnantes-2016.git

Nilhcem_devoxxfr-2016 https://github.com/Nilhcem/devoxxfr-2016.git

Nilhcem_droidconat-2016 https://github.com/Nilhcem/droidconat-2016.git

Nilhcem_droidconde-2016 https://github.com/Nilhcem/droidconde-2016.git

 Cont. on next page

78

Table A.1 (cont.)

nimble-platform_identity-service https://github.com/nimble-platform/identity-service.git

NimbleDroid_FriendlyDemo https://github.com/NimbleDroid/FriendlyDemo.git

ninjaframework_ninja-rythm https://github.com/ninjaframework/ninja-rythm.git

ninjanetworks_contacts https://github.com/ninjanetworks/contacts.git

nipafx_demo-java-9-migration https://github.com/nipafx/demo-java-9-migration.git

nipafx_demo-junit-5 https://github.com/nipafx/demo-junit-5.git

nipafx_java-after-eight https://github.com/nipafx/java-after-eight.git

nipafx_JDeps-Maven-Plugin https://github.com/nipafx/JDeps-Maven-Plugin.git

nipafx_LibFX https://github.com/nipafx/LibFX.git

nisrulz_sensey https://github.com/nisrulz/sensey.git

NitorCreations_DomainReverseMapper https://github.com/NitorCreations/DomainReverseMapper.git

NitorCreations_java8-utils https://github.com/NitorCreations/java8-utils.git

NitorCreations_javaxdelta https://github.com/NitorCreations/javaxdelta.git

zhanggh_mtools https://github.com/zhanggh/mtools.git

79

APPENDIX B

B.1. Usage of JNose and TestSmellDetector Tools

B.1.1. JNose Tool

Before installing Jnose (Source: Virgínio et al., 2020), follow the step-by-step instructions

below.

● git clone https://github.com/arieslab/jnose-core

● cd jnose-core

● mvn install

Installation requirements for the Jnose Test are Java Development Kit (JDK) 1.8

and Maven 3 (or above). Installing it gives users access to Jetty (which is part of Maven),

which they may use to create and run the Jnose Test. Figure B.1 displays the Jnose Test’s

main interface.

To run the Jnose Test, the way to follow is described:

● git clone https://github.com/arieslab/jnose

● cd jnose

● mvn jetty:run

● acessar: http://127.0.0.1:8080

Users are prompted to configure Data Input at initialization (see Figure B.2). First,

as indicated in Figure B.1, Step 1, they choose the analysis mode: ClassTest, TestSmells,

or Evolution. There is a field in each mode where users can enter the project path for

analysis. Users have the option to change the tool’s default identification of twenty-one

test smell kinds (see Figure B.1, Step 2).

80

The tool launches Project Analysis after the execution setting is finished (Figure

3.1). It considers the analysis mode that the user has chosen, which is described as

follows:

Figure B.1. Main View of the Jnose Test

 (1) Project. Users can enter GitHub repository link and clone it in the project

folder (see Figure B.2, Step 2 and 3).

Figure B.2. Project View of the Jnose Test

(2) By ClassTest: The next step in the ProcedureAnalysis method runs the

TestSmellDetection module followed by CodeCoverage module to do a project analysis

at test class level. Therefore, since the calculation is performed in the local project, details

related to other team members or project versions are not considered. The Data Output

81

procedure shows a comparative graph which demonstrates the finished analysis process

according to the status of execution of the project taken from the entered GITHUB

repository link (see it in Figure B.3, Step 2). The data analytic outputs of the trial class

will eventually be developed into a .csv file (see Figure B.3, Step 3). A test class is

represented by each row in the.csv file, which also includes five columns containing

coverage data, twenty-one types of test smells, the number of test class lines, the number

of test methods, and the project name and location of the test class and production class

(see Figure B.4).

Figure B.3. View of the Execution by TestClass

Figure B.4. Output Test Class Analysis

(3) By TestSmell: The Project Analysis procedure only uses the Test Smell

Detection module when analyzing the project using test smell. As in the case of the

ClassTest analysis, users must designate the projects’ local routes in the Data Input stage

(Figure B.2). The Data Output provides a progress view and aids in tracking progress

after analyzing GITHUB repositories (Figure B.5, Step 2). The outcomes of the data

analysis by test smells are then created into a.csv file (Figure B.5, Step 3). This method

offers the precise location of the test smell, unlike the prior study. A test smell is

represented by each row in the.csv file, which has six columns that show the type of

parameter that is collected, the project name, the location of the test class and production

82

class, the name of the test smell, the line number of the test smell location, and the method

name (see Figure B.6)

Figure B.5. View of the Execution by TestSmell

Figure B.6. Output of TestSmell Analysis

 (4) Evolution: The Project Analysis method uses the Git Mining module to

evaluate the project across its iterations. A cloned version of the project is used for the

analysis since this module requires information about project versions. As a result, total

test smells can be obtained by commits during the Data Input phase after analyzing (see

Figure B.7, Step 2). When the procedure is finished, a.csv file (see Figure B.7, Step 3)

with the findings of the test smells data analysis is produced (see Figure B.8).

83

Figure B.7. View of the Execution by Evolution

Figure B.8. Output of Evolution Analysis

 In this study, the TestSmell analysis mode is used. After adding all selected

GITHUB projects, output .csv files will be saved, and results can be obtained and

investigated in output .csv files.

B.1.2. TestSmellsDetector Tool

A strategy design pattern is used in the creation of the test smell detection

mechanism (UML class diagrams are accessible on the project website). Every smell is

applied and operated separately from the others. Each sort of smell has a unique detection

method that is stored within a separate module. In the future, new smell detectors can be

seamlessly added thanks to this design pattern. The TestSmellDetector tool internally

84

calls the JavaParser library to parse the source code files. The unit test file that JavaParser

is analyzing is used to create an AST. Each of the available smell detection modules then

examines the AST using the established detection rules. To detect a smell, the appropriate

visit() method is overridden, depending on the type of smell. To identify all test methods

in the class, for instance, a MethodDeclaration visitor must first be built to detect the

Redundant Print smell.

Regarding a MethodCallExpr visitor and the tracking of the methods being called

inside each test method, a MethodCallExpr visitor is accordingly generated for each

detected test method. The next step is to determine whether the file is smelly by

comparing the name of each called method to a Java print method.

At the end of the submissions, the outcomes are saved in a Comma-Separated

Values (csv) file. The preprocessed TestSmellDetector tool outputs single Boolean values

for each class of smells to indicate whether the smell exists in the file or not. Because csv

is technology-independent and users can easily import this format into any system, for

example, SQL, to conduct data analysis, csv is considered the best option for output.

Figure B.9. Input .csv file format of TestSmellDetector Tool

Test File Detection: The JUnit naming convention advises developers to prefix

or attach the word "Test" to the production file name that must be tested (e.g., Test*.java

and *Test.java) as shown in Figure B.9. First, our tool finds all ".java" files whose

filename contains the term "test'' at the beginning or end. The AST of each recognised

Java source file is then processed using JavaParser. This strategy accomplishes two goals:

First, it lets us remove Java files that have syntax issues. Secondly, it lets us determine

with precision whether the file has JUnit-based unit test methods. A method that contains

a unit test must have a public access modifier, be named with 'test' (JUnit 3) or be

annotated with @Test (JUnit 4).

85

Production File Detection: Certain test smells, like the Lazy and Eager tests,

require that the production file associated with the unit test file be identified. The project

structure searches for files with the same name as the test file but without the term "test"

to find the production file. The program creates an AST for every production file it finds

to confirm that the file is syntactically accurate.

Use of TestSmellDetector tool: The following command can be used to run

TestSmellDetector tool as a command line tool:

java -jar <path_to_test_files>.\TestSmellDetector.jar

The TestSmellDetector tool doesn't need the user to interact again once it's started.

A csv file containing the detection process's results will be generated and sent back as

output once the process has finished as shown in Figure B.10.

Figure B.10. Output .csv file of TestSmellDetector Tool

86

APPENDIX C

C.1. Outputs of JNose and TestSmellDetector Tools

Table C.1. Total number of test smells with using JNose and TestSmellDetector tools in

all files

Test Smells Jnose Tool TestSmellDetector Tool Both Tool

Magic Number Test 11264 28443 39707

Assertion Roulette 41876 10488 52364

Conditional Test Logic 3679 1948 5627

Constructor Initialization 178 0 178

Default Test 0 1 1

Empty Test 215 116 331

Exception Catching Throwing 3236 13612 16848

General Fixture 995 4274 5269

Mystery Guest 621 730 1351

Print Statement 1051 534 1585

Redundant Assertion 143 160 303

Sensitive Equality 1490 906 2396

Verbose Test 1947 0 1947

Sleepy Test 186 175 361

Eager Test 3692 3780 7472

 Cont. on next page

87

Table A.1 (cont.)

Lazy Test 3984 16570 20554

Duplicate Assert 2416 2262 4678

Unknown Test 3202 3651 6853

Ignored Test 916 1152 2068

Resource Optimism 682 695 1377

Dependent Test 0 0 0

Total 81773 89497 171270

Table C.2. Ratios of test smells by using each tool in all files

Test Smells Jnose Tool TestSmellDetector Tool Both Tool

Magic Number Test %13.77 %31.78 %23.18

Assertion Roulette %51.21 %11.72 %30.57

Conditional Test

Logic

%4.5 %2.18 %3.29

Constructor

Initialization

%0.22 %0 %0.10

Default Test %0 %0 %0

Empty Test %0.26 %0.13 %0.19

Exception Catching

Throwing

%3.96 %15.21 %9.84

General Fixture %1.22 %4.78 %3.08

Mystery Guest %0.76 %0.82 %0.79

 Cont. on next page

88

Table C.2 (cont.)

Print Statement %1.29 %0.60 %0.93

Redundant Assertion %0.17 %0.18 %0.18

Sensitive Equality %1.82 %1.01 %1.40

Verbose Test %2.38 %0 %1.14

Sleepy Test %0.23 %0.20 %0.21

Eager Test %4.51 %4.22 %4.36

Lazy Test %4.87 %18.51 %12.00

Duplicate Assert %2.95 %2.53 %2.73

Unknown Test %3.92 %4.08 %4.0

Ignored Test %1.12 %1.29 %1.21

Resource Optimism %0.83 %0.78 %0.80

Dependent Test %0 %0 %0

Table C.3. Number of affected files by each test smells

Test Smells Jnose Tool TestSmellDetector Tool

Magic Number Test 1364 4222

Assertion Roulette 3056 2503

Conditional Test

Logic

697 724

Constructor

Initialization

169 0

 Cont. on next page

89

Table C.3 (cont.)

Default Test 0 0

Empty Test 132 48

Exception Catching

Throwing

723 2463

General Fixture 419 505

Mystery Guest 196 238

Print Statement 213 222

Redundant Assertion 57 85

Sensitive Equality 318 370

Verbose Test 773 0

Sleepy Test 70 80

Eager Test 905 1126

Lazy Test 1396 1070

Duplicate Assert 612 868

Unknown Test 969 1030

Ignored Test 233 322

Resource Optimism 241 265

Dependent Test 0 0

Total 12543 16141

90

Table C.4. Ratios of affected files by each test smells

Test Smells Jnose Tool TestSmellDetector Tool

Magic Number Test %24.90 %77.07

Assertion Roulette %55.79 %45.69

Conditional Test

Logic

%12.72 %13.22

Constructor

Initialization

%3.09 %0

Default Test %0 %0.02

Empty Test %2.41 %0.88

Exception Catching

Throwing

%13.20 %44.96

General Fixture %7.65 %9.22

Mystery Guest %3.58 %4.34

Print Statement %3.89 %4.05

Redundant Assertion %1.04 %1.55

Sensitive Equality %5.81 %6.75

Verbose Test %14.11 %0

Sleepy Test %1.28 %1.46

Eager Test %16.52 %20.55

Lazy Test %25.48 %19.53

Duplicate Assert %11.17 %15.85

Unknown Test %17.69 %18.8

Ignored Test %4.25 %5.88

Resource Optimism %4.40 %4.84

Dependent Test %0 %0

