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June 2024
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ABSTRACT

LEARNING CITATION-AWARE REPRESENTATIONS FOR

SCIENTIFIC PAPERS

In the field of Natural Language Processing (NLP), the tasks of understanding

and generating scientific documents are highly challenging and have been extensively

studied. Comprehending scientific papers can facilitate the generation of their contents.

Similarly, understanding the relationships between scientific papers and their citations

can be instrumental in generating and predicting citations within the text of scientific

works. Moreover, language models equipped with citation-aware representations can

be particularly robust for downstream tasks involving scientific literature. This thesis

aims to enhance the accuracy of citation predictions within scientific texts. To achieve

this, we hide citations within the context of scientific papers using mask tokens and

subsequently pre-train the RoBERTa-base language model to predict citations for these

masked tokens. We ensure that each citation is treated as a single token to be predicted by

the mask-filling language model. Consequently, our models function as language models

with citation-aware representations. Furthermore, we propose two alternative techniques

for our approach. Our base technique predicts citations using only the contexts from

scientific papers, while our global technique incorporates the titles and abstracts of papers

alongside the contexts to improve performance. Experimental results demonstrate that

our models significantly surpass the state-of-the-art results on two out of four benchmark

datasets. However, for the remaining two datasets, our models yield suboptimal results,

indicating potential for further improvement. Additionally, we conducted experiments on

sampled datasets to examine the effects of inherent factors on the datasets and to identify

correlations between these factors and our results.
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ÖZET

BİLİMSEL MAKALELERİN ALINTI YAPILARINI DİKKATE ALAN

GÖSTERİMLERİN ÖĞRENİMİ

Doğal Dil İşleme alanında, bilimsel belgelerin anlaşılması ile ilgili çalışmalar

büyük zorluklar içermektedir ve derinlemesine incelenmeye ihtiyaç duymaktadır. Bilimsel

makalelerin anlaşılması, içeriklerinin daha etkin bir şekilde oluşturulmasını sağlayabilir.

Ayrıca, bilimsel makaleler ile içlerindeki alıntıları arasındaki ilişkinin anlaşılması, bilim-

sel metinlerde alıntı oluşturma ve tahmin etme süreçlerinde önemli bir rol oynayabilir.

Alıntı yapılarını dikkate alan gösterimlere sahip dil modelleri, bilimsel literatürle ilgili

diğer görevlerde de önemli etkilere sahip olabilir. Bu tez, bilimsel metinlerdeki alıntı

tahminlerinin doğruluğunu artırmayı hedeflemektedir. Bu hedef doğrultusunda, bilimsel

makalelerden alınan kesitlerde maskeler kullanılarak alıntılar gizlenmiş ve ardından bu

maskeleri tahmin etmek için RoBERTa-base dil modeli daha fazla eğitilmiştir. Her bir

alıntının, maske dolduran dil modelleri tarafından tek bir maske için tahmin edilebilecek

şekilde olması gerekmektedir. Bu süreç sonunda, modellerimiz alıntıları dikkate alan

gösterimlere sahip olmuştur. Ayrıca, bu çalışmada alıntı tahmini için iki alternatif teknik

geliştirilmiştir. Temel tekniğimiz sadece bilimsel makalelerdeki paragraf kesitlerini kul-

lanarak alıntıları tahmin ederken, küresel tekniğimiz makalelerin başlıklarını ve özetlerini

de kullanarak alıntıları tahmin etmeyi hedeflemektedir. Küresel modelimizin sahip olduğu

ek bilgiler sayesinde başarısını artırması beklenmektedir. Deneysel sonuçlar, önerdiğimiz

modellerin dört kıyaslama veri kümesinden ikisinde en son teknoloji sonuçlarını önemli

ölçüde aştığını göstermektedir. Ancak, diğer iki veri kümesinde modellerimiz bekle-

nenden düşük performans sergilemiş ve yöntemimizin daha fazla iyileşme potansiyeline

sahip olduğunu göstermiştir. Ek olarak, veri kümelerinin özünde olan faktörlerinin etki-

lerini incelemek ve bu faktörler ile sonuçlarımız arasındaki ilişkileri belirlemek amacıyla

örneklenmiş veri kümeleri kullanılarak da ek deneyler gerçekleştirilmiştir.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

In recent years, the research area of Natural Language Processing (NLP) has been

revolutionized thanks to Transformers architecture and models like BERT. In many tasks of

NLP research, Transformer-based models have achieved state-of-the-art results. However,

specific tasks like citation prediction have not been thoroughly researched. Specifically,

large language models’ full potential have not been completely leveraged for the task of

citation prediction, and this leaves room for improvement in this area of research.

Citations are essential building blocks in scientific writing. Their accurate place-

ments indicate quality, as one should know the literature to claim contributions and put the

current study in the context of the existing work from different aspects, such as background,

method, etc. (Cohan et al. 2019).

The main goal of the citation prediction task is to predict the corresponding citation

of a scientific sentence or paragraph when we hide the in-text citation information from the

model. Another aspect of citation prediction is its ability to operate as a citation suggestion

mechanism. For a given scientific text, the model can suggest additional papers on a

similar topic. These suggestions can be considered additional reading material alongside

the targeted paper, corresponding to the ground truth citation value.

Another motivation behind the citation prediction task is the importance of using

this task as a basis for citation generation tools in the future. For example, scientific

document understanding of NLP models has significantly increased over the years. In

return, this also allowed the models to be better at scientific text generation. By this logic,

it makes sense that improvements in citation prediction systems can be helpful for citation

generation steps during scientific text generation. An example scenario of how citation

can be predicted for a given text is shown in Figure 1.1.

There are two levels of citation prediction: the first, whom to cite, and the second,

whom to cite in what context. The former is global citation prediction, traditionally per-
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Figure 1.1. An example scenario for the citation prediction task.

formed based on paper metadata such as author names, paper titles, abstracts, conference

venues, publisher information, etc. Recently, custom citation-aware language models

(SPECTER (Cohan et al. 2020), SciBERT (Beltagy, Lo, and Cohan 2019) learn good

citation-aware embeddings for full papers to perform well in this task. The latter task is

local citation prediction, aiming to determine the target paper for a citation placeholder.

Another closely related task is citation impact prediction. How a paper frames its work

through citations is predictive of the citation count it will receive (Jurgens et al. 2018).

Research in the area of citation prediction is limited compared to similar tasks.

Many past works have focused on the task of citation count prediction ((Dongen, Maillette

de Buy Wenniger, and Schomaker 2020), (Huang et al. 2022)) instead of directly predicting

citations. The term citation count refers to the number of times a paper gets cited after

publication. This task can help predict a paper’s future scientific impact. However, the

works in this area are disconnected from the task of citation prediction, mainly due to their

tendency to ignore the contents of the scientific papers.

Language model pre-training based on Transformers (Vaswani et al. 2017) provided

new state-of-the-art performances in many downstream tasks. Masked language modeling

(MLM) objective is the primary learning strategy behind BERT (Devlin et al. 2019) and

its variants (RoBERTa (Liu et al. 2019) etc.). Some works have focused on learning from

scientific papers using these approaches. For example, SciBERT (Beltagy, Lo, and Cohan

2019) tries to pre-train a language model using the entirety of scientific papers. The main

2



improvement of SciBERT is its capability to learn language representations better for

complex and challenging scientific data.

The task of citation prediction from context has been addressed in a handful of

works. One of the leading works is Hatten (Gu, Gao, and Hahnloser 2022). Hatten is a

two-step model that initially selects a group of papers related to a context from a paper

and tries to find the best candidates from a given pool of papers. In its second step, the

selected candidate papers get re-ranked using a fine-tuned SciBERT (Beltagy, Lo, and

Cohan 2019) model, and the most relevant papers are returned.

Hatten’s approach focuses on the task of local citation prediction. The authors aim

to predict citations within contexts rather than relying solely on paper metadata. However,

they leverage the titles and abstracts of cited papers to enhance prediction accuracy,

referring to this additional information as global information. Similarly, in our study,

we incorporate titles and abstracts as global information, aligning with this terminology.

Throughout the remainder of this work, the term ”global” denotes additional information

rather than the global citation prediction task itself.

There are four benchmark datasets in this area of research. Medić and Snajder

(2020) released the datasets named ACL-200, FullTextPeerRead (Peerread for short), and

Refseer. Lastly, Hatten (Gu, Gao, and Hahnloser 2022) shared the Arxiv dataset.

The existing citation prediction works are not built upon Transformers but benefit

from Transformers in indirect ways, such as re-ranking the results. Distinctively, we

propose a language model pre-training by specifically masking citations. In concrete

terms, we further pre-train a RoBERTa (Liu et al. 2019) base model using a citation

masking strategy so that the model can learn how to represent citations properly. We add

citation tokens to the model vocabulary beforehand. Here, the vocabulary items are in

the parenthetical author-date citation style, as it’s more appropriate for forming global IDs

than numerical citations.

Since a citation context may not refer to a reference uniquely but relates to a

set of candidate references, the next step is to extend the context with the ground-truth

reference’s global information, such as title and abstract, using the REALM framework

(Guu et al. 2020). This extended method of pre-training has the potential to encode

citation information thoroughly. In this way, we acquire citation-aware representations for

scientific papers. Pre-trained in this way, the proposed model predicts contextual citations

3



inside the scientific texts. Our experiments show promising results on the benchmark

citation prediction datasets.

Another prominent aspect of our approach is one can use citation token hidden

representations as their document-level embeddings alternative to SPECTER (Cohan et

al. 2020) or SciBERT (Beltagy, Lo, and Cohan 2019). In other words, these citation-

aware contextual representations can capture global properties such as closeness between

scientific papers.

We believe that a citation’s representation, as learned by a language model, can also

encapsulate the representation of its corresponding paper. Consequently, our models have

applications beyond merely predicting citations. While SPECTER learns a paper’s repre-

sentation through its citing relationships with other papers, it is unable to predict citations

or function as a language model. In contrast, our models can learn the representations of

papers by predicting their citations.

Lastly, our approach possesses a unique benefit compared to similar works. Our

model is a modified language model that can predict citations inside a scientific text. We

do not enforce our model to only predict from a limited pool of citations. The model

learns to predict citations by itself while still being able to predict any other token from its

vocabulary. Thanks to this ability of our model, each learned citation token representation

should be able to properly capture its contextual meaning in the entirety of the language

model. Additionally, it is possible to fine-tune our model further for citation-related tasks

to benefit from the citation-aware representation of each citation. For instance, the task of

text generation for scientific papers involves generating citations within the texts. By fine-

tuning our models for this task, we can leverage their ability to accurately predict citations,

thereby ensuring that the generated texts contain more precise and relevant citations.

1.2. Contributions

Our main contributions can be summarised as follows. Firstly, we propose an

approach that further pre-trains the RoBERTa model with a modified tokenizer to predict

citations inside scientific texts. Secondly, our model continues to operate as a language

model, unlike past works that used Transformer-based models for purposes like re-ranking.

This allows our model to be more flexible compared to past approaches. Another contribu-

4



tion of our approach is that our models can work as a suggestion mechanism thanks to their

ability to predict citations other than the ground truth. Also, we have performed additional

observations on the benchmark datasets of the citation prediction task and pinpointed

particular challenges with these datasets. Lastly, we have observed certain statistics as-

sociated with the datasets, like context per citation counts, to showcase its effects on the

success of our approach. We have also performed multiple sampling trials on our large

datasets better to understand the effects of dataset sizes on the results.

1.3. Outline of Thesis

The contents of the remaining chapters can be described as follows. Firstly, we

provide background information and explain the works related to our research in Chapter 2.

In Chapter 3, we explain our approach and the techniques we have used to investigate our

results further. We provide our results and discuss them in detail in Chapter 4. This chapter

also contains the details of an additional ablation study alongside a part that discusses the

limitations and disadvantages of our approach. Lastly, we give our concluding remarks

and discuss potential future work in Chapter 5.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter discusses basic concepts of the Natural Language Processing area and

its techniques, which are related to the task of citation prediction. Firstly, we explain the

basics behind language models and the effect of Transformers on this area of research in

Section 2.1. Then, we discuss the details of the BERT model and its learning strategy

for language models in Section 2.2. Strategies of pre-training and fine-tuning alongside

additional BERT model alternatives have been explained in Section 2.3. In Section 2.4,

we discuss tasks that are adjacent to citation prediction. Lastly, we explain the task of

citation prediction in detail and discuss the concept of citation awareness in Section 2.5.

2.1. Language Models

Natural Language Processing (NLP) is a discipline of artificial intelligence (AI)

research. The primary focus of NLP encompasses the comprehension, utilization, and

generation of natural language texts. The intricacies inherent in spoken languages present

numerous complexities. Consequently, NLP research is tasked with devising solutions

capable of surmounting these multifaceted challenges.

NLP encompasses numerous tasks and research topics that have been extensively

studied over the years. One of the most significant tasks is classification, which involves

selecting an option from two or more candidates based on specified criteria. Examples

of this include sentiment classification and spam classification. Other notable tasks

within this domain include named entity recognition, question answering, and information

retrieval.

In recent years, numerous techniques have been developed within the NLP domain.

However, specific topics within NLP continue to hold considerable potential for further

development. One such topic is the task of citation prediction.

Another crucial task in NLP is text generation, which aims to produce texts that

emulate human speech using various techniques. The most prominent technique for text

6



generation is the use of language models. Language models seek to capture the essence

of a spoken language by employing various methods to determine the likelihood of word

co-occurrence within sentences. These models treat sentences as sequences of words and

aim to predict the probability of subsequent words. Fundamentally, a language model

attempts to predict the next word given a sequence of words.

Language models initially started out as statistical language models. One such

statistical technique is n-grams (Brown et al. 1992). The goal of this approach is to find

which words are more likely to appear together in groups. The ”n” represents the number

of words in the selected groups. While this is a simple and efficient approach, it fails

to capture long-term connections between words and cannot generate sentences that are

semantically correct in general.

With the rise of neural networks, certain techniques like RNNs and LSTMs have

become the main techniques for language models. Recurrent Neural Networks (RNNs)

(Elman 1990) can take previous outputs into consideration for their next set of inputs.

This is particularly useful when the model is trying to predict the next word while still

considering past word outputs during text generation. This allows RNNs to operate with

a certain level of memory while generating sentences. However, this approach can be

computationally expensive and still fail to predict words in certain situations properly. For

example, the first word of a sentence will barely have any effect on the last word if the

sentence is very long. RNNs generally consider more recent output words to be more

significant, while older output words are more likely to be forgotten. This problem is

called vanishing gradients.

To solve this problem, a technique called Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997) has been introduced. This approach tries to improve

the memory of RNNs by adding a cell mechanism that is capable of selectively discarding

or retaining information from the memory. The LSTM network is more capable of

preserving information that belongs to the start of longer sequences thanks to its cell

mechanism. However, this approach is still computationally expensive since it takes its

inputs sequentially.

After these techniques, the model architecture called Transformers (Vaswani et

al. 2017) has been introduced. This architecture possessed clear benefits compared to

older techniques, and it is currently the most dominant approach used in the NLP area.
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The transformers are an advanced neural network approach that is highly capable of un-

derstanding the context and relationship between sequential data. Their main advantage is

their ability to process whole sequences at once instead of one-by-one like past approaches.

Figure 2.1 shows the overall architecture of Transformers.

Figure 2.1. Transformers architecture from the paper of Vaswani et al. (2017).

The main components of the Transformers architecture are the self-attention mech-

anism and encoder-decoder structure. The encoder-decoder structure is made up of mul-

tiple layers of encoders and decoders that transform an input into its embedding and the

embedding into its output. The attention mechanism helps the model focus on different

parts of the input and allows the model to learn from the input better. The self-attention

is a strategy that causes the model to focus on different parts of the input, and the model

improves its learning capabilities as a result. These components help this architecture to

learn the more complex connections between inputs and outputs.

8



2.2. BERT Model

One of the most prominent models in recent years is a Transformer-based model

called BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al. 2019).

Currently, models with Transformers (Vaswani et al. 2017) architecture and especially

BERT language models are the focus of NLP research. One of the most prominent tech-

niques that have come from BERT is the task of mask-filling. The models that have been

trained with this objective are called Masked Language Models (MLM).

BERT model contains only encoders in its design. Unlike the Transformers archi-

tecture, the BERT model does not make use of decoder layers since it mainly focuses on

understanding inputs instead of generating outputs. Although BERT is only made up of

encoders, it still makes use of Transformers’ self-attention strategy. Thanks to these design

choices, it can perform significantly well on tasks like classification, question answering,

and NER.

The most important advantage of BERT compared to older methods is that it can

take its inputs into consideration bidirectionally. Traditional language models process

text either from left-to-right or right-to-left. However, BERT is capable of processing the

entirety of the context of a given sentence or paragraph from both sides at the same time.

It does not need to take its inputs sequentially.

In principle, the main goal of BERT is to operate as a language model. As with

other language models, BERT also aims to predict words to understand natural languages.

BERT tries to train as a language model using two strategies. Firstly, it devises a strategy

called the Masked Language Model (MLM). In this strategy, approximately 15% of the

words of an input sentence are selected. 80% of the selected tokens are replaced with a

special mask token. 10% of the tokens are replaced with random tokens and the remaining

ones are left untouched. Afterward, BERT tries to predict these hidden words, and this

task is referred to as mask-filling.

The BERT model has a tokenizer that accompanies it. This tokenizer can process

the given inputs to provide the BERT model with proper tokenized inputs. Tokenizer

also contains the vocabulary of the model. BERT tries to predict masked words using its

tokenizer vocabulary. Vocabulary does not only contain full words, but it also possesses

necessary stop-words, special symbols, sub-words, etc. The BERT model can also learn
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a new word that was not inside its vocabulary thanks to this masking strategy. It is also

possible to manually provide additional words or special tokens to the model’s tokenizer

as well.

The second strategy of BERT is called Next Sentence Prediction (NSP). BERT

tries to predict the second sentence using the first sentence input while assuming both

sentences are connected. It marks the first sentence’s beginning with a special ”[CLS]”

token and separates the second sentence with a ”[SEP]” token.

During the training process, BERT attempts to learn using both strategies. The

authors of BERT suggest that this allows BERT to be a flexible and robust language model

that is able to consider both the contents of a sentence and connections between sentences.

BERT is capable of capturing a sentence’s meaning both semantically and syntactically.

It can learn the complex intricacies of natural languages significantly better than older

language models.

The authors of BERT have released two different versions of BERT. These are

called BERT-Base and BERT-Large. They have been trained using the same strategies

while possessing highly different sizes and capabilities. BERT-Base contains 12 encoder

layers and 110𝑀 parameters. Meanwhile, BERT-Large possesses 24 encoder layers and

340𝑀 parameters.

Naturally, when trained on the same tasks, BERT-Large provides superior results

compared to BERT-Base. BERT-Large’s increased size allows it to have a deeper under-

standing of the meaning and connections of a natural language. However, BERT-Large

requires larger storage spaces and longer training times due to its size. This leads to a need

to balance between larger and smaller models depending on the requirements of an NLP

task.

In recent years, Transformers models like BERT can be easily accessed using

the Transformers library of Python programming language. This library contains many

necessary tools for preprocessing a dataset and training a model. Especially, BERT and

its derivatives can easily be accessed and trained using the Transformer library.
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2.2.1. BERT Tokenizer

The BERT model and its derivatives have their own tokenizers to process their in-

put data. These models use a unique tokenization strategy to acquire the embeddings (i.e.,

representations) of words in an input. BERT tokenizer generates the embeddings of input

words alongside their segment embeddings and positional embeddings. Segment embed-

dings denote which segment a specific token belongs to in the provided input. Segments

of an input text can be designated using a special separator token. Meanwhile, positional

embeddings are generated using the position index of the tokens. These embeddings can

be learned and improved further during the pre-training of BERT models.

BERT tokenizer can also learn and represent words it has never seen before. BERT

tokenizers possess their own vocabularies as well. BERT can handle unknown words by

breaking them into known sub-words. Known sub-words refer to the words that are inside

the vocabulary of the BERT tokenizer. For example, the word ”sleeping” can be broken

into ”sleep” and ”##𝑖𝑛𝑔” using the BERT tokenizer. The tokenizer’s vocabulary contains

the word ”sleep”. Thanks to the sub-word strategy of BERT, it does not need to contain

the full word ”sleeping”. Thus, the model can learn the representations of new words by

simply breaking them up.

BERT-like RoBERTa (Liu et al. 2019) model also has its unique tokenizer. It has

multiple differences from the BERT tokenizer. Firstly, RoBERTa uses a larger byte-level

BPE vocabulary with 50K sub-word units instead of the character-level BPE vocabulary of

size 30K that was used for BERT. Secondly, RoBERTa does not have token-type IDs. So,

it does not need to show the position of each token according to the token’s segment. It is

enough to simply use a separator token to designate segments of a text. Lastly, RoBERTa

uses different symbols and conventions for its tokenization processes. For example, BERT

uses ”##” symbol for sub-words while RoBERTa uses ”�́�”. Another convention difference

between BERT and RoBERTa is their separator tokens, which are ”[SEP]” and ”</s>”,

respectively.

In Figure 2.2, we have shown the tokenization of an example sentence using

the RoBERTa tokenizer. The word ”stochastic” did not exist in RoBERTa’s vocabulary.

However, the model is able to learn its embedding by breaking it into ”sto”, ”ch”, and

”astic” sub-words. Another interesting aspect of this tokenizer is the �́� symbol before
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Figure 2.2. Tokenization of an example sentence using default RoBERTa-base tokenizer.

certain words. RoBERTa tokenizer uses these special symbols to mark the beginning

of each individual word in the input sentences. For example, the ”ch” sub-word of

”stochastic” does not possess this special symbol since it is not at the beginning of the full

word.

2.3. Pre-training, Fine-tuning, and BERT Alternatives

BERT model training has two main stages: pre-training and fine-tuning. Pre-

training is a stage where the BERT model is trained from scratch for both MLM and NSP

tasks. This stage requires a large amount of unlabeled data. As a result, the pre-trained

model can be used as a versatile language model that can predict masked tokens inside

texts. The fine-tuning stage consists of further training the BERT model for a specific

NLP task. These tasks are referred to as downstream tasks.

The BERT model needs to be fine-tuned on a downstream task to achieve improved

results. The fine-tuning process is much faster than the pre-training process, requiring

labeled data for its downstream task. The BERT model’s ability to adapt to any downstream

task with minimal modifications is a significant sign of how BERT is a very versatile model

for NLP research in general.

Another advantage of BERT is that it does not need word embeddings provided

beforehand. Older language model techniques required pre-made frozen embeddings like

Glove (Pennington, Socher, and Manning 2014), Word2Vec (Mikolov et al. 2013), etc.

Word2Vec learns high-dimensional word embeddings using vanilla neural networks to

predict a word according to its context or predict a context according to a target word. The
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former approach is called CBOW (Continuous Bag-of-Words), while the latter is called

the Skip-Gram method. On the other hand, Glove performs a similar process for learning

word embedding while using matrix factorization techniques rather than neural networks.

Word2Vec and Glove techniques were static embeddings that stayed the same

during the training of models. Because of this situation, they occasionally failed to

represent the true contextual meanings of words correctly. However, the BERT model’s

tokenizer can learn and readjust word embeddings by itself. It can also further improve

the embeddings of words during fine-tuning. This allows BERT to learn the embeddings

of entirely new words or tokens as well.

BERT-Base and BERT-Large are not the only pre-trained models for this area

of research. There are many different models derived from the core ideas of BERT,

which have been released over the years. One such model is RoBERTa (Liu et al. 2019).

RoBERTa removes the NSP strategy of the BERT model since the authors believe that the

MLM goal is the main reason behind the success of the BERT model. They claim that the

NSP strategy’s contribution to the results of BERT is minimal.

The authors of RoBERTa perform multiple refinements on the BERT model as

well. The resulting RoBERTa model can outperform BERT on various NLP tasks. For

this reason, many recent papers have preferred to use RoBERTa as a pre-trained model to

fine-tune rather than BERT. This also shows that BERT might not be completely optimized

as it had clear room for improvement.

There are other models derived from BERT, as well. For example, ERNIE (Sun

et al. 2019) allows multitasking in its pre-training step. This allows it to better understand

different uses of a language while pre-training for multiple tasks. The authors describe

ERNIE as capable of learning how to learn itself thanks to this multitasking structure.

Another example is SpanBERT (Joshi et al. 2020), which uses a different masking

strategy than BERT. While BERT randomly chooses 15% of tokens for masking, Span-

BERT randomly chooses groups of consecutive tokens to mask. The authors claim that

this helps the model to learn to predict consecutive token groups so that the model can

understand the meanings of word groups and their connections to the rest of the sentence

better.

Also, there is PMI-BERT (Levine et al. 2020) model, which chooses which tokens

to mask according to a statistic called Pointwise Mutual Information (PMI) rather than
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replacing them randomly.

There is also SciBERT (Beltagy, Lo, and Cohan 2019) model, which focuses on

learning from the entirety of scientific papers. BERT generally learns from a corpus

that is heavily varied in its content. However, the pre-training of the SciBERT model

is performed exclusively on scientific texts. Specifically, SciBERT is pre-trained on a

randomly sampled dataset of size 1.14𝑀 from the Semantic Scholar database. This

sampled corpus comprises 18% papers from the computer science domain and 82% from

the broad biomedical domain. SciBERT also uses its own in-domain vocabulary called

SciVocab. The resulting token overlap between BERT-Base’s BaseVocab and SciVocab is

42%.

The authors of SciBERT show that its results can outperform BERT on downstream

tasks that involve scientific data. Another benefit of SciBERT is its ability to be trained

on the entire text of scientific papers instead of only titles and abstracts of scientific

papers. Generally, models like BERT are limited to a 512-token input size. To overcome

this challenge, the authors of SciBERT have used a technique that splits the full text

of scientific papers so that the split part of papers can fit into the limit of 512 tokens.

They have observed that the average length of papers is 2796 tokens and split them using

ScispaCY (Neumann et al. 2019), which is optimized for scientific text.

The work of Cohan et al. (2020) named SPECTER manages to create document

embeddings of scientific papers from their titles and abstracts. They have managed to

represent a paper 𝑃 as a dense vector 𝑣 to acquire an appropriate representation of the

paper. They can also use these embeddings for downstream tasks.

𝐿 = 𝑚𝑎𝑥((𝑑 (𝑃𝑄, 𝑃+) − 𝑑 (𝑃𝑄, 𝑃−) + 𝑚), 0) (2.1)

SPECTER is trained using a triplet margin loss function described by Equation

2.1, where 𝑚 is the loss margin parameter and 𝑑 is a distance function. The distance

function, as depicted in Equation 2.2, utilizes L2 norm distance, where 𝑣𝐴 is the dense

vector representation of paper 𝐴. 𝑃𝑄 denotes the target paper while𝑃+ and 𝑃− represent
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positive and negative example papers selected for the target, respectively. Positive papers

are chosen from the reference list of the target paper, whereas negative papers are randomly

selected papers that are not cited by the target paper. SPECTER aims to minimize the

distance from positive papers while simultaneously maximizing the distance from negative

papers, thereby learning an optimal representation of paper 𝑄.

𝑑 (𝑃𝐴, 𝑃𝐵) = ‖𝑣𝐴 − 𝑣𝐵‖2 (2.2)

SPECTER does not function as a language model and therefore cannot predict

citations; however, it excels in learning and representing scientific papers accurately. In

our approach, our goal is to develop paper representations akin to those generated by

SPECTER. The authors of SPECTER have also considered using the full text of papers in

their approach since it could provide the complete picture of scientific papers. However,

they have opted to leave this improvement as an item of future work.

Another interesting BERT model that has been released by Chalkidis et al. (2020) is

called LegalBERT. This model aims to improve the results of the BERT model in the field

of law. By specifically pre-training a BERT model for this field, they achieve significant

improvements in downstream tasks related to law compared to directly fine-tuning vanilla

BERT on law-related downstream tasks. This also shows the importance of pre-training

domain-specific models to perform better on those domains. Using vanilla BERT with

fine-tuning on a specific domain-related task may not always achieve the best results.

Instead, it is important to pre-train domain-specific BERT-like models from scratch as

well.

Lastly, there are Transformer-based models that use fundamentally different strate-

gies from BERT. GPT (Generative Pre-trained Transformer) (Radford et al. 2018) models

are pre-trained using only decoder layers instead of encoder layers like BERT. The main

reason for this design choice is that GPT models are more focused on text generation com-

pared to BERT models. Another type of Transformer-based model is T5 (Text-To-Text

Transfer Transformer) (Raffel et al. 2020), which uses both encoder and decoder layers.
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2.4. Adjacent Tasks to Citation Prediction

The citation prediction task aims to guess the correct citation value for a given

scientific text section. This scientific text may come from any part of a paper. However,

this text should contain a reference to another scientific paper inside it. The model trained

for the citation prediction task should be able to predict which paper is being referenced

in the given text. Depending on the approach to solving this problem, the prediction

can be based on any information that belongs to either paper. Information from both the

referencing paper and the referenced paper can be useful for this task. This information

can consist of details like author names, paper publishing information, year, title, abstract,

other referenced papers, commonly referenced papers in both papers, etc.

While the specifics of this task appear to be simple, it does not have nearly enough

research papers focusing on it. In the area of citation prediction, there is a limited amount

of research papers. Instead, most of the past works have focused on the Citation Count

Prediction task. Citation counts refer to the number of instances where a paper will be

cited after it has been published. While this task may appear to be similar to the citation

prediction task, it is a fundamentally different task. However, it is a useful task that can

show the potential of a paper before it is published. The ability to predict the impact of

a paper beforehand can also be considered an important task. Many past works focus on

this task as well. We are also going over the details of this task since it can be considered

adjacent to the task of citation prediction.

An example paper in this area belongs to Brody and Harnad (2005), where they

tried to predict the future citations of a paper using web usage statistics. They have

mainly focused on web access counts of a citation and its age to predict another paper’s

future number of online accesses. Meanwhile, Abrishami and Aliakbary (2019) used a

SimpleRNN model to predict long-term citations using short-term citations. Interestingly,

works on this task made use of Transformer-based models before the works on citation

prediction. In fact, the works on citation prediction still have not made complete use of

modern model architectures in their approaches.

Additionally, Bai, Zhang, and Lee (2019) used a measure called Paper Potential

Index (PPI), which is based on a combination of certain manually acquired features like

the inherent quality of a paper, a paper’s impact decaying over time, the impact of a paper’s
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early citers, etc. The authors of this paper suggest that their manually acquired features

can be used together to calculate a measure that can predict a paper’s future impact. There

is also SChuBERT (Dongen, Maillette de Buy Wenniger, and Schomaker 2020). It uses

BERT architecture, and it is trained using certain contents of scientific papers like titles,

abstracts, section names, etc. While it uses similar data and tools with citation prediction

task’s models, SChuBERT still aims to predict a paper’s future citation count and impact.

From the perspective of citation prediction task, all these research papers focus

on a fundamentally different task because none of them aim to predict citations inside

paragraphs of a scientific text. They do not consider the contents of a scientific text and

look for which paper that text may be referring to. The works on citation count prediction

tasks generally ignore citation connections inside the paragraphs of a paper. Instead, they

sometimes focus on the bibliography section at the end of the papers while trying to predict

the future impact of a paper.

2.5. Task of Citation Prediction

The main focus of our research is the task of citation prediction. Only a handful of

works in recent years have been released on this task. This might be caused by the difficulty

of using limited information from a scientific paper to predict which different scientific

paper it may be referring to. In contrast, it might be easier to predict which scientific paper

the given context belongs to. However, trying to predict which scientific paper is being

referred to requires the trained model to capture a deeper semantic connection between

papers, and this relatively increases the difficulty of the task.

An initial work on this task belongs to Yu et al. (2012). They aim to predict papers

based on their three main features. These features are authors, venues, and keywords.

They use a meta-path-based prediction model that makes use of probabilities. However,

they do not make use of the contexts of scientific texts and simply use their superficial

features for their predictions. They also ignore the contents of titles and abstracts since

they cannot make use of them in a probabilistic prediction model. Additionally, their goal

is slightly different from citation prediction since they try to predict which paper the given

features belong to rather than trying to predict which papers it may be referencing.

Another work that focuses on citation prediction belongs to Tanner and Charniak
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(2015). They have also focused on the actual task of citation prediction using a technique

they refer to as Hybrid Generative Discriminative Approach. It is done by training a model

called LDA-Bayes using manually crafted features like “number of overlapping authors”

or “author’s previously cited sources”. The authors still do not make use of the contents

of scientific papers due to these manually crafted features. However, they are specifically

trying to predict a given paper’s potential citation connection. Hence, it can be said that

their research is exactly on the citation prediction task instead of any adjacent tasks.

The work of Luo et al. (2023) also can be considered adjacent to the task of citation

prediction. Specifically, their work is much closer to the citation prediction task compared

to the other works in the citation count prediction task. Their work’s only difference is that

it is focused on a different field’s data and potential usage areas instead of scientific papers.

The authors use BERT architecture models like RoBERTa and LegalBERT (Chalkidis et

al. 2020) and train the models using the full texts of legal data. Hence, their approach is

limited to the area of law. They have created a dataset called PACER to specifically test

predicting masked provision/law names in legal texts, which can be considered relatively

close to the general citation prediction task. PACER datasets contain three components:

1) Past legal records that show the reasoning of a lawyer are referred to as precedents. 2)

The definition of laws contained in provisions of the legislature is shortened to provisions.

3) Contexts that contain the masked provision names and their ground truth values are

also within PACER.

Luo et al. (2023) aim to predict provision names by minimizing L2 normalized

distance between contexts, precedents and provision names. Afterward, they calculate a

score value for each provision using the aforementioned distances. They pass these scores

through a feedforward layer and select the top-scoring provision name for the target mask

inside a context. Additionally, the authors do not fill the mask inside the context in the

general technique of BERT language models. Instead, they choose a provision/law name

out of the PACER dataset. The names of provisions are required to be inside the dataset

so that they can be scored and predicted. Since the contents of the PACER dataset and the

mask-filling technique of the model are fundamentally different from the general citation

prediction task, we cannot directly use these for our purposes.

The study by Medić and Snajder (2020) trains a Bi-LSTM model to determine

similarity scores between a target paper and its candidate papers. The target paper provides
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Figure 2.3. Overall process of Hatten from the work of Gu, Gao, and Hahnloser (2022).

a context with a hidden citation, and the model utilizes the titles and abstracts of candidate

papers to calculate their similarity scores. The candidate papers with the highest similarity

scores are selected as the predicted citations for the target paper.

Lastly, there is the work of Gu, Gao, and Hahnloser (2022) called Hatten. Hatten

uses a Hierarchical Attention Text Encoder and SciBERT-based Re-ranking scheme for the

task of citation prediction. It starts by pre-fetching potential candidate papers from a pool

of citations. Then, it re-ranks these pre-fetched papers to find the best recommendation

among them. The overall process of Hatten is shown in Figure 2.3.

The authors of Hatten consider this technique for the task they refer to as “Local

Citation Recommendation”. Their pre-fetching mechanism uses local citation contexts,

which are context windows, titles, and abstracts taken from scientific papers. Initially, they

perform pre-fetching out of a very large pool of scientific papers. So, the results of pre-

fetching are used to reduce the amount of candidate papers to choose from. Additionally,

the term context can be defined as a text section taken out of a paper’s paragraph that

contains the citation in its middle position. Both sides of the citation should generally

have an equal number of tokens.

Afterward, their proposed SciBERT re-ranker technique uses global citation con-

texts, which also include the cited paper’s title and abstract. Its purpose is to re-rank the

previously pre-fetched citations to have a better rank order according to their closeness to

the initial paper which the context, title and abstract originated from. SciBERT was able

to understand better connections between papers to acquire a better ranking of predicted

citations, thanks to its versatility. Since pre-fetcher reduces the number of papers that

need to be re-ranked, the SciBERT model is able to work in a more efficient manner. The
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Figure 2.4. Overall look at the SciBERT re-ranker of Hatten from the work of Gu, Gao,

and Hahnloser (2022).

overall look at the SciBERT re-ranker is shown in Figure 2.4.

Using this approach, the authors of Hatten have achieved considerably good results

on the four benchmark datasets, which are called ACL-200, FullTextPeerRead, Refseer, and

Arxiv. The initial three datasets belong to the work of (Medić and Snajder 2020) while the

last one has been made by the authors of Hatten. ACL-200 and FullTextPeerRead datasets

are relatively smaller datasets compared to Refseer and Arxiv datasets. Because of this

reason, the models for citation prediction task can be evaluated on both smaller and larger

datasets to observe the adaptability of the models.

The authors of Hatten leveraged the SciBERT re-ranker to significantly improve

the results of the pre-fetching step. While using the SciBERT re-ranker, the authors have

used titles, abstracts, and contexts to fine-tune the model. However, the authors did not

provide the details of this step in their results. We also needed to use a similar approach

in our training steps as well. So, to solve this problem, we have used the approach of

REALM (Guu et al. 2020) as inspiration.

Authors of REALM have proposed a retrieval-based language model pre-training.

In their retrieval step, they needed to use multiple pieces of global information tied together.

To achieve this, they simply connected two sentences using a special separator token like

”[SEP]” and provided these connected sentences as input to the model. Transformers-

based models like BERT can easily discern the connection between two inputs separated

by a special symbol and adjust their learning process accordingly. Similar to this approach,

we have also connected contexts, titles, and abstracts of scientific papers using a separator

token when trying an approach similar to Hatten’s SciBERT re-ranker.

Our work shares multiple similarities with related research; however, previous

works exhibit specific limitations when compared to our model. For example, Hatten can

only predict from a given pool of papers by re-ranking its initial predictions, leveraging the
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SciBERT model for re-ranking rather than utilizing its full language model capabilities.

In Table 2.1, we illustrate the differences between the capabilities of previous works

and our approach. Initially, we compared which approaches can function as language

models in their final states. Additionally, we grouped the tasks of predicting citations and

legal provisions into a single comparison category due to their similarity. Furthermore,

we evaluated whether the approaches can represent papers and citations. The ability

to represent papers or the citations referring to those papers can be considered roughly

equivalent. Both SPECTER and our approach generate embeddings that can represent

papers.

Table 2.1. Comparison between the capabilities of our approach and related works.

Approach
Capabilities RoBERTa SciBERT SPECTER Luo et al. (2023) Medić and Snajder (2020) Hatten Our approach

Language model + + - - - - +

Can predict citations

or legal provisions
- - - + + + +

Representations of

papers and citations
- - + - - - +

Our approach retains its functions as a language model after custom pre-training.

The ability to extend a model by incorporating newly published papers each year without

requiring complete re-training is a significant advantage. Our approach also benefits from

this capability, as we can continue training our models on a corpus that includes more

recent papers, thereby enhancing the predictive capabilities of our models. It is more

cost-effective to fine-tune the model for a smaller subset of recent papers than to retrain

the model on the entire dataset with slight extensions.
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CHAPTER 3

METHODOLOGY

We propose a custom masking strategy to predict citations by treating every citation

as a single token. To meet this objective, we further pre-trained RoBERTa-base (Liu et

al. 2019) on the existing benchmarks for citation prediction. The existing datasets provide

citation contexts from various articles where all contexts have a target citation in the middle.

The context sizes are counted in terms of characters, which causes some incomplete words

at the start and end of the contexts.

Figure 3.1. Three citation instances in the parenthetical author-date citation style.

Before training with the masked language modeling (MLM) objective, the token

set needs to be slightly modified by adding new items representing whole citations in the

parenthetical author-date citation style. Figure 3.1 shows some citation instances in this

style. Each added token corresponds to a paper’s citation from the benchmark datasets.

Since we aim to predict complete citation names from single masks inside contexts, we

must treat each citation name as a token. Figure 3.2 shows the difference between a

tokenized sentence before and after adding citation tokens to the tokenizer.

We do not refer to our approach as fine-tuning, as the resulting model retains its

functionality as a language model. Instead, we perform a custom further pre-training on
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Figure 3.2. Tokenization of an example sentence from the Refseer dataset (before and

after addition of citation tokens).

the RoBERTa-base language model to enable it to predict citations. The custom aspect of

this approach involves the addition of citation items in the vocabularies. For the purposes

of this work, we use the term ”further pre-training” to describe our methodology.

We propose two techniques for the citation prediction task: Base and Global. In

our Base technique, our model is only provided masked contexts and their ground truths as

inputs. The state-of-the-art work of Hatten (Gu, Gao, and Hahnloser 2022) uses contexts,

titles, and abstracts as inputs for their models. We limit the inputs to only contexts to

observe how our model performs compared to Hatten in a disadvantaged setting. In our

Global technique, our model receives titles and abstracts similar to Hatten’s approach.

We aim to compare our metrics against Hatten under the same conditions. In short, the

only difference between our Base and Global versions is the contents of their inputs. We

provide the details of our Base approach in Section 3.1. In Section 3.7, we explain the

details of our Global approach.

3.1. Base Technique: Learning Citation Representations with Contexts

During training, we provide the model with some contexts taken out from multiple

articles inside the datasets. All contexts have a targeted citation in their middle points,

and the size of the context is determined by character counts instead of token counts. This

causes some incomplete words at the context’s start and endpoints. We kept this structure
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Figure 3.3. An overall look at our approach.

the same since all datasets have been provided in this manner.

The model takes the contexts after they are masked with a proper masking strategy

for the target citations. Then, it tries to compare predicted mask values with the unmasked

ground truth context. Our overall approach has been depicted in Figure 3.3.

Our approach depends on citations that have been added to the vocabulary. This

is one of the biggest performance bottlenecks of our approach. For the larger datasets,

the addition of all citation tokens to a tokenizer can take up to 2 − 3 days. Since this is a

sequential task of adding all tokens one by one, it cannot be parallelized to save time, and

its performance is dependent on the processor instead of the GPU.

The work of Gu, Gao, and Hahnloser (2022) has been limited to predicting out of

a large pool of papers from their datasets. However, our model can predict any word as a

citation token since it also functions as a language model. Even with this setup, our model

can achieve good results while predicting citations since its tokenizer has access to all

citation names as additional tokens. So, while our approach has a performance bottleneck

due to the addition of citation tokens, it can operate more flexibly compared to past works.

Interestingly, our model can predict citations by only using context, unlike past

works that required a multitude of additional information like title, abstract, journal/conference

information, etc. Our model can still predict while having similar success rates to past

works.
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Another interesting aspect of our approach stems from the connection between

citations and contexts. The citations are simply author names and years. However,

after training, our model can learn to associate these citations with contexts. From the

perspective of a language model, author names and years should have a very minimal

connection to the words in the contexts semantically. However, our model can still learn

their connections to a certain degree and become capable of predicting with high success

rates. The only difference here is that vocabulary has been extended to contain citations as

they are unique identifiers. Even if we formed citations using random letters and numbers

instead of using author names and years, we believe our model would still be able to

predict with similar rates of success.

Instead of adding new vocabulary items, we have also considered masking the

citation spans inside a context. Then, we would be able to fine-tune a model like SpanBERT

(Joshi et al. 2020) to predict the citations for a given group of consecutive masks. However,

it’s not straightforward to decide the number of masks in each citation context as it varies.

For example, the citation ”Stalzer, 2017” is tokenized as [’ĠSt’, ’al’, ’zer’, ’,’, ’Ġ2017’]

with RoBERTa-base tokenizer. Meanwhile, ”Mcmahan and Orabona, 2014” is tokenized

as [’ĠMc’, ’m’, ’ahan’, ’Ġand’, ’ĠOr’, ’ab’, ’ona’, ’,’, ’Ġ2014’]. They have five and nine

tokens, respectively.

While manually providing the necessary number of masks for each context is an

option, it severely reduces the flexibility of our model. Thus, it is not a good solution.

Conversely, the number of masks may also serve as an additional feature for the prediction,

assuming we can find a way to accurately predict the number of masks for contexts.

However, even if we implement a mechanism that predicts the number of masks beforehand,

the model may learn its predictions with bias due to the varying number of masks. For

example, citations with longer names may have a higher chance of being predicted for

longer sequences of masks while ignoring the actual contents of the context and its

relevance to the citation.

Since the citations are tokenized in these formats, none of them correspond to a

single token. Due to this reason, it is not possible for our model to predict a complete

citation for a single token. Additionally, we have considered using the T5 model for this

task. The T5 model is shown to be capable of predicting multiple tokens for a single mask.

However, we were not able to leverage this ability of T5 due to its complexity and time
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Figure 3.4. Example scenario for citation prediction under different conditions.

constraints. We leave this approach as an item of future work.

To solve this problem, we tried to add every single citation to the tokenizer’s

vocabulary. For example, we manually added ”Gribkoff et al., 2014” to the tokenizer,

and the model became capable of predicting it as a single token corresponding to a single

mask. Since we need to perform this tokenizer addition operation incrementally, it takes

a considerable amount of time to add every citation of a dataset to the tokenizer.

In our experiments, the base tokenizer we used came from the RoBERTa-Base

model. All citations have been made sure to be in the forms given in Figure 3.1. In other

words, we have treated every citation like a single token by adding them to the vocabulary.

In this configuration, our model is now capable of predicting citations as a single token

for a single mask.

In Figure 3.4, we have shown an example scenario using a masked context. The

ground truth of the mask in this example is ”Kingma and Ba, 2014”. Afterward, we ask

our model to provide us with the top 10 predictions for the masked citation under three
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different conditions. In the first condition, we add the model’s tokenizer citations as a

single token, but we do not perform any training on the RoBERTa-Base model. As can be

seen from the top 10 predictions, the model fails to predict any token that is relevant for

the citations in this scenario.

In the second condition, we do not make any additions to the vocabulary of the

tokenizer and directly use RoBERTa-Base’s vocabulary. However, we perform training

and then observe the top 10 predictions. We notice predictions like ”King” or ”king” that

are relevant to the name ”Kingma” from the citation. However, the model fails to predict

the actual citation token since we did not make any additions to its vocabulary.

In the last condition, we perform the additions to the vocabulary and perform

training. As a result, we observed the ground truth citation on the first prediction, which

was in line with our goals. Also, there are some additional citation suggestions in the

remaining 9 predictions as well. We can assume these are also relevant to the contents of

the given masked context too. So, this model can also operate as a suggestion mechanism

as well.

3.2. Preprocessing of the Datasets

We conduct our experiments on the existing citation prediction datasets that are

ACL-200, FullTextPeerRead, RefSeer (Medić and Snajder 2020), and Arxiv (Gu, Gao,

and Hahnloser 2022). Table 3.1 presents the statistics of these datasets.

Table 3.1. Statistics of the datasets for citation prediction.

Dataset Name Train Size Validation Size Test Size Number of Papers Publication Years

ACL-200 30390 9381 9585 19776 2009 - 2015

FullTextPeerRead 9363 492 6184 4837 2007 - 2017

RefSeer 3521582 124911 126593 624957 - 2014

Arxiv 2988030 112779 104401 1661201 1991 - 2020

To use these datasets for our approach, we need to preprocess them in a certain

way. Our model requires the contexts that possess the target citations from these datasets.
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By default, these datasets include a “TARGETCIT” marker at the location of citations

within a context. They also contain other information such as complete author names,

publishing information, etc. We only need the citation contexts with and without masks.

However, these datasets generally do not have these contexts directly in this manner. So,

we performed a preprocessing step to acquire both versions of contexts alongside the

target citations. Additionally, we have directly used “<mask>” tokens as masks instead of

“TARGETCIT” tokens. This is a necessary modification because our chosen pre-trained

model, RoBERTa-base, requires the mask tokens in the former format. We also mask the

other appearances of the duplicate citations inside the same context.

After the preprocessing, we split the benchmark datasets into training and evalua-

tion partitions using a conventional ratio of 8 : 2. The original datasets consisted of train,

validation, and test partitions. However, our approach involves further pre-training on the

train partition and evaluating on the evaluation partition. Consequently, we only require

two partitions instead of three. The sizes of our training and evaluation partitions are also

shown in Table 3.1.

During the preprocessing, we eliminated certain problematic citation contexts from

some of the original datasets, and we had to decrease the total sizes of the datasets as

needed. The final statistics of our preprocessed datasets can be found in Table 3.2.

We also did not need extra information like citation count, publication details, etc.,

inside the datasets. For this reason, we did not include them in our preprocessed datasets.

Our preprocessed datasets only have the following information inside them: “Masked

context”, “Unmasked context” and “Citation Token Target”.

Table 3.2. Statistics of the preprocessed datasets.

Preprocessed Dataset Name ACL-200 FullTextPeerRead RefSeer - All Arxiv - All

Number of local contexts 63316 16669 3739189 3205210

Size of the training split 50652 13335 2991351 2564168

Size of the evaluation split 12664 3334 747838 641042

Number of eliminated local contexts 452 0 39577 0

Number of Vocabulary Additions 5259 2043 351896 368284
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3.3. Challenges of the Datasets

We encountered some issues during the processing of the datasets. ACL-200 and

RefSeer include some local contexts with specific problems. One such problem is the

conflict in author names between the context and the ground-truth citation. For example,

the “Petrović et al., 2010” citation was incorrectly written as “Petrovic et al., 2010” in the

target citation column of ACL-200. Another problem is incorrect ordering in citations

with two authors. For example, the citation ”Rivera and Zeinalian, 2016” is the name

provided in local contexts, but the name found in paper data, which contains titles and

abstracts, is ”Zeinalian and Rivera, 2016”. Another potential issue happens when the

dataset points to an incorrect reference paper for a citation context. Furthermore, there

are instances of empty author names in some contexts. We removed all these cases from

the two aforementioned datasets to ensure consistency.

We also needed to ensure that each context had its ”<mask>” token in its middle

position after tokenization. We believe that our model will learn more effectively when

the context window around the mask token is roughly the same length for both of its sides.

Another critical aspect of the preprocessing was determining the correct length

for citation contexts. An exploratory analysis of context lengths shows that ACL-200’s

contexts are significantly longer than the other datasets. After tokenization, we observed

that a limit of 200− 400 tokens was optimal for the datasets. This limit allows sufficiently

long contexts without a need for excessive amounts of padding tokens. Only ACL-200

has 607 contexts that exceed the 400 limit. This number is quite small compared to the

whole number of contexts in the dataset. Moreover, considering the rest of those contexts,

the amount of discarded tokens is negligible. Table 3.3 shows the chosen maximum token

limits for the datasets.

3.4. Evaluation Metrics

To measure the success of our model, we use four different metrics: Hits@10,

Recall@10, Exact match, and MRR. The trained model of each dataset is evaluated with

these metrics. Each dataset’s test set comprises 20% of the preprocessed datasets.

Hits@10 metric is calculated by checking the top 10 predictions of the model for
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Table 3.3. Maximum token limits for the preprocessed datasets.

Dataset Name Maximum Token Limit

ACL-200 400

FullTextPeerRead 400

Refseer – All 200

Arxiv - All 300

a given masked input context. The model, as previously mentioned, predicts target tokens

in the form of complete citations. If one of these top 10 predicted citations is the same as

the actual target citation, that counts as a successful prediction for the given context.

Recall@10 metric is calculated similarly to hits@10. However, it can check if

predictions belong to more than one actual target. Our datasets have been preprocessed in

such a way that there is only one actual target. So, this causes recall@10 to be the same

as hits@10 in our experiments. In all our experiments, these two metrics have always

resulted in the same value.

The exact match (EM) is calculated by checking whether the first prediction of our

model is the same as the target citation. This metric can also be considered as the accuracy

of our model since there is only one actual target citation for each context.

MRR (Mean Reciprocal Rank) is a metric that considers the position of the first

relevant item in a ranked top-k prediction list. In our experiments, we used 𝑘 as 10

and checked the model’s top 10 predictions. Thus, we considered the position of the

correctly predicted citation for each context and calculated the MRR value using its

formula. In Equation 3.1,𝑈 corresponds to the total number of contexts in the dataset, and

𝑖 corresponds to the position of the first relevant item for context 𝑢 in the top-K results.

𝑀𝑅𝑅 =
1

𝑈

𝑈∑

𝑢=1

1

𝑟𝑎𝑛𝑘𝑖
(3.1)
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Figure 3.5. ACL-200 and PeerRead - Log-log graphs of contexts per citation counts.

3.5. Factors on Performance

We have also tried to understand how certain attributes of the datasets can improve

the learning process. In simple terms, our model tries to predict a citation token (made

up of name(s) and a year) from at least one context that includes it. As one might expect,

the distribution of these contexts for each citation token is not balanced. Some citation

tokens have hundreds of contexts, while others have only a single context. Naturally, the

learning process becomes more complicated when a citation token has been used inside

only a single context. Thus, we tried to observe the overall distribution of contexts per

citation to better understand the learning capabilities of our model.

This section analyzes the impact of datasets’ characteristics on the overall perfor-

mance. The sparsity/density of the citation graph may influence the learning performance.

The distribution of the number of citation contexts per citation token gives insights into

the local connectivity pattern of the citation graph, and local patterns may induce global

behavior. In terms of learning, models are expected to be more accurate in predicting

the citation tokens that appear in a large number of contexts. Thus, to better understand

the learning capabilities of models, Table 3.4 summarizes the overall distribution of con-

texts per citation. The table reports citation tokens’ mean, median, standard deviation,

minimum, and maximum cited times. It also includes the number of citation tokens with

exactly one occurrence. These statistics are calculated according to each citation’s corre-

sponding context counts. For example, the ACL-200 dataset possesses a citation that has
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Figure 3.6. RefSeer-All and Arxiv-All - Log-log graphs of contexts per citation counts.

been cited in 829 contexts in the ACL-200 dataset. However, the mean and median of

ACL-200 are 113.69 and 73, respectively. So, the maximum count of 829 contexts is an

outlier compared to the rest of the dataset.

We draw log scale plots for each citation graph. In these graphs, the number of

citations corresponds to a point on the x-axis. The y-axis corresponds to its number of

occurrences, and they are sorted based on their number of occurrences in descending

order. Figure 3.5 and Figure 3.6 shows the log-log graphs of the datasets.

As the graphs show, the datasets contain many underutilized citations that cause

difficulties in the learning process. The past works, including Hatten (Gu, Gao, and

Hahnloser 2022), had trouble correctly predicting citations due to the skewed nature of

the datasets. Our model also faces problems due to this reason. However, we reached

significantly better results thanks to our approach that leverages citations as a single token

for mask-filling tasks. Especially, our global models were mostly capable of overcoming

the skewed nature of the datasets and produced even higher results than our base models.

Most of the citations that our models have failed to predict naturally belong to the under-

utilized citations. The approaches of the past works’ models most likely fail to predict

these underutilized citations alongside many other properly utilized citations. This could

explain the difference between the success metrics of our models and past works’ models.

The log-log graphs show that the citations with the higher number of contexts

correspond to dots in higher degree values. The frequency value of dots corresponds to

the number of contexts that belong to a citation. Meanwhile, the degree values of dots
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correspond to the number of citations that have the same frequency value, i.e., the citations

that have the same number of contexts citing them. For example, the ACL-200 dataset

has a total of 1385 citations with exactly one context. In the log-log graph of ACL-200,

notice that the dot corresponding to the 1385 frequency value is at the top right corner of

the graph. Similarly, the Peerread dataset has 669 as its total number of citations with one

context, and the dot corresponding to it can be seen on the top right corner of its graph.

From the log-log graphs, we can observe the effect of the number of citations

for each dataset. Since Peerread has fewer citation items compared to ACL-200, we can

see fewer dots on the Peerread graph. Similarly, the graphs of the larger datasets have

significantly more dots than smaller datasets. Another important aspect of the graphs is

where the dots with higher frequency values have the most density. We observe that the

Peerread dataset has the most balanced distribution among the benchmark datasets. While

the ACL-200 dataset has more density at the higher degree values compared to Peerread,

it still has a more balanced distribution compared to larger datasets. The dots in the higher

degrees of the larger datasets are grouped in a very dense line-like cluster. We believe this

denseness can lead to a negative impact on the success of the model on the larger datasets.

If a log-log has a more balanced distribution on its area with low frequency and high

degree, we believe it will achieve better results with our models. As can be seen from the

graph of the Refseer dataset, there is a very high density area with low frequency (9 − 12)

and high degree (400− 500). Similar observations can also be made for the Arxiv dataset.

We can observe additional key points from these graphs and statistics. For example,

there is a very large difference between citation item totals of smaller datasets and larger

datasets. Also, the number of citations with exactly one context in larger datasets is very

high as well. Since these individual examples are the only possible way to learn their

corresponding citations, it becomes very unlikely to learn these citations without more

examples that belong to them. Thus, it is very difficult for the model to correctly predict

the citation of an example like this during evaluation. It is possible to avoid this issue

if the benchmark datasets were better curated. Lastly, the large number of examples on

the x-axis of the log-log graphs corresponds to the number of citations with exactly one

context. So, the aforementioned issue can be observed in Refseer and Arxiv’s log-log

graphs.
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Table 3.4. Context per citation count statistics of the datasets.

Dataset Name ACL-200 FullTextPeerRead RefSeer - All Arxiv - All

Total # of citations 5259 2043 351896 368284

# of citations with exactly one context 1385 669 100765 107667

Minimum 1 1 1 1

Maximum 829 892 4030 10437

Mean 113.69 77.51 402.07 615.53

Median 73 44.5 331.5 361.5

Standard Deviation 141.62 122.22 349.51 860.93

3.6. Effects of Sampling Techniques on the Datasets

To test the effect of the datasets’ nature and size on the learning performance,

we applied different sampling techniques to generate samples from Arxiv and RefSeer.

Initially, we constructed samples of 200000 and 300000 for Refseer and Arxiv and named

these new samples Refseer-200k and Arxiv-300k, respectively.

Table 3.5. Statistics of the sampled datasets.

Dataset Name Refseer-200k Arxiv-300k-random Arxiv-300k-neg-sampling

Dataset size 200000 300000 300000

Maximum Token Limit 200 300 300

Total number of citations 66193 103796 3728

Arxiv-300k is more heavy-tailed than Refseer-200k, implying that there will be

fewer learning signals due to references cited only once. Generally, this causes a reduction

in the success of citation predictions.

After observing this issue, we decided to find the effect of the sampling technique

on the Arxiv-300k dataset. We aim to view the success rate of our model when it has been

trained on a dataset sampled under certain conditions.

Our initial Arxiv-300k dataset has been renamed to Arxiv-300k-random since it is

made with uniform sampling. Another sampled dataset we have created is Arxiv-300k-

neg-sampling. This dataset is sampled using the negative sampling algorithm so that the
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overall distribution of the original Arxiv dataset can be preserved. Negative sampling is

applied by sampling with the unigram distribution 𝑈 (𝑤) raised to the 3/4 power so that

the power makes less frequent citations be sampled more often.

Table 3.6. Contexts per citation counts statistics of the sampled datasets.

Dataset Name Refseer-200k Arxiv-300k-random Arxiv-300k-neg-sampling

Minimum 1 1 1

Maximum 299 1087 10370

Mean 56.77 128.20 586.16

Median 49.5 89.5 205.5

Std 45.58 136.05 1073.78

The statistics of these sampled datasets are shown in Table 3.5. Additionally,

we have demonstrated the contexts per citation count statistics in Table 3.6. The total

number of citations in the sampled dataset is less than those of the original datasets as

a consequence of the sampling process. Maximum token limits are identical to their

original datasets since the maximum lengths of the context inputs do not change during

sampling. After sampling, the contexts per citation counts statistics change significantly

due to the smaller size of the datasets. The minimum and maximum values correspond

to the citations with minimum and maximum number of contexts. For example, in the

original Refseer dataset, there was a citation that has been referenced in 4030 contexts.

However, in the Refseer-200k dataset, this citation was not selected during sampling, and

the new maximum context count of a citation is 299. Additionally, the mean, median,

and standard deviation values of sampled datasets have also changed for reasons similar

to those before.

After our initial observations, we have noticed that the total number of citation

items in uniformly sampled datasets (Refseer-200k and Arxiv-300k-random) tends to be

larger. Notice that these large numbers are closer to the numbers of the original Refseer

and Arxiv datasets. Meanwhile, the dataset created using the negative sampling approach

has significantly fewer citation items. These numbers are closer to the values of the smaller

datasets, which are ACL-200 and Peerread. Additionally, we have observed a very large

difference in the contexts per citation counts statistics between uniformly sampled datasets
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Figure 3.7. Refseer-200k - Log-log graph of contexts per citation counts.

and the neg-sampling datasets. There is a significant gap in their maximum, mean, median,

and standard deviation statistics. We believe these statistics have a significant impact on

the success of our model.

We have also drawn the log-log graphs of these datasets in Figure 3.7 and Figure

3.8 to better illustrate their distribution compared to their original versions. Like the

four main datasets, these log-log graphs show the distribution of the contexts per cita-

tion. Notice that Arxiv-300k-random’s graph is very similar to the original Arxiv graph.

Similar observation can be made for the Refseer-200k dataset as well since it also uses

uniform sampling. However, the Arxiv-300k-neg-sampling dataset has a more balanced

distribution compared to uniform sampled ones and the original datasets. This balanced

distribution can be observed in graph’s area with low frequency and high degree. We

believe this balanced distribution has a positive impact on the success of the models on

the negative sampled datasets. Additionally, we have observed that the uniformly sampled

datasets tend to have more contexts in the lower degrees, while the negative sampled

dataset has more contexts in the higher degrees.
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Figure 3.8. Arxiv-300k - Random and Negative Sampling - Log-log graphs of contexts

per citation counts.

3.6.1. Details of Sampling Techniques

In this section, we provide the sampling algorithms of the three techniques we have

used while acquiring our sampled datasets. In Algorithm 3.1, we show the pseudo-code

of our random sampling algorithm. This algorithm has been used for both Refseer-200k

and Arxiv-300k-random datasets. In Algorithm 3.2, we have provided the pseudo-code of

our negative sampling approach, which is used for the Arxiv-300k-neg-sampling dataset.

The random sampling algorithm directly uniform samples from all indices of the

context list and pre-processes them to acquire the dataset format we use for our models. In

line 1 of Algorithm 3.1, the three necessary inputs for the random sampling procedure are

shown. In line 2, we acquire a list of all indices of 𝐶. Then, we perform uniform sampling

on this list to acquire 𝑁 samples in line 3. Lines 4, 5, and 6 consist of creating three empty

lists to store the necessary information for our dataset. Afterward, we begin looping over

all contexts and decide whether to add each context to our dataset. In line 8, we check if

the current context’s index value is inside the selected indices in line 3. If it is not inside

the selected indices, we will skip that context. In line 10, we find the ground truth context

from the paper information dictionary 𝑃. We prepare the unmasked and masked contexts

in lines 11 and 12. Then, we append these values to their corresponding lists in lines 13,

14, and 15. If we have reached the target sample size of 𝑁 , we stop the loop early in lines

16 and 17. Finally, we merge the three lists we have acquired into a single dataset 𝐷 in

the remaining two lines.
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Algorithm 3.1 Random sampling algorithm for Refseer-200k and Arxiv-300k-random.

1: procedure Random sample from dataset(𝐶: a list of all contexts from a dataset,

𝑃: a dictionary containing all papers and their information, 𝑁: sample size)

2: 𝐶 𝑖𝑑𝑥 ← list of all indices of 𝐶
3: 𝑆 ← Randomly sample 𝑁 values from 𝐶 𝑖𝑑𝑥 (uniform sampling)

4: 𝐺 ← an empty list for ground truth contexts

5: 𝑀 ← an empty list for masked token contexts

6: 𝑇 ← an empty list for ground truth citation targets

7: for every element 𝑖 in 𝐶 do
8: if index of 𝑖 is not in 𝑆 then
9: continue

10: 𝑡 ← target citation token of 𝑖 acquired from 𝑃
11: 𝑔 ← ground truth context from 𝑖
12: 𝑚 ← context from 𝑔 with its citation replaced with <mask>
13: Append 𝑡 to 𝑇
14: Append 𝑔 to 𝐺
15: Append 𝑚 to 𝑀
16: if total number of elements in 𝐺 is equal to 𝑁 then
17: break
18: Merge the lists of 𝑇 , 𝐺, and 𝑀 to acquire the sampled 𝐷 dataset

19: return 𝐷

The negative sampling algorithm uses alpha as 3/4 to increase the chances of

selecting citations with fewer contexts. Then, we add these selected citations’ contexts

and relevant data until we reach the required sample size. In line 1 of Algorithm 3.2, we

use an additional input compared to Algorithm 3.1, which is a dictionary that consists of

appearance counts of each citation name, i.e., how many contexts each citation corresponds

to. We perform the operation in lines 2 and 3 so that we can acquire the probability

distribution of each citation name. In line 5, we use the 𝑎𝑙 𝑝ℎ𝑎 value to add noise to the

probability distribution. By summing and dividing the noise distribution, we normalize it

in lines 6 and 7. In line 8, we initialize an empty list for the citation names we will choose

during the negative sampling process. We keep the total counts of selected contexts in line

9 so that we can stop when the sample size 𝑁 is reached in lines 11 and 12. Afterward, we

perform sampling according to the probability distribution in 𝑛𝑜𝑟𝑚𝑃𝑟𝑜𝑏𝐷𝑖𝑠𝑡𝑂 𝑓𝐶𝑖𝑡𝑒𝑠 to

select a citation name in line 13. We append it to our list that contains the selected citation

names in line 14. Then, we add the number of contexts corresponding to the selected

citation in line 15. In line 16, we remove the selected citation from the distribution

dictionary so that it cannot be selected again. Starting from line 17, we perform the

identical steps of Algorithm 3.1, except in line 22. We decide whether to add the contexts
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of a citation to the dataset according to the 𝑐ℎ𝑜𝑠𝑒𝑛𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒𝑠 list.

The global version of these sampled datasets was also acquired using the same

methods. Their only difference is the addition of titles and abstracts to the masked and

ground truth contexts.

3.7. Global Technique: Learning Citation Representations with Global
Info

To further improve the results of our approach, we propose another technique

alongside our base approach. Initially, our base approach was being trained only using

the context windows taken from scientific papers. The masked citations we try to predict

have been made sure to be in the middle of these contexts. We believe that our model

should be able to benefit from certain additional information from the scientific papers

that originally contained the context windows. This additional information will be mainly

the titles and abstracts of scientific papers.

Figure 3.9. Overall look at the structure of the datasets.

We refer to our improved models as “global” models since they contain titles and

abstracts along with the contexts. To properly use titles and abstracts in our models,

we recreated our datasets inspired by the approach of REALM paper (Guu et al. 2020).

Our global models are further pre-trained using contexts, titles, and abstracts separated
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by special separator tokens. Specifically, we used the “</s>” token designated by the

pre-trained RoBERTa-base model. During the training process, our global model has

become capable of learning how to predict a mask in the context while also considering

the additional information from the title and abstract. Figure 3.9 shows an overall look at

at the structure of the base and global datasets.

We preprocessed the four main datasets according to these guidelines. Due to

having a limited token size after adding titles and abstracts, we had to limit our context

windows’ token numbers. For ACL-200 and Peerread datasets, we have created two

alternative versions with 50 token context windows and 200 token context windows. Each

context window has been made sure to have the masked citation in its middle point as well.

Afterward, we intuitively selected a maximum token limit for the addition of the titles and

abstracts.

Table 3.7. Maximum token limits for the preprocessed global datasets.

Dataset Name Context Token Limit Total Token Limit

ACL-200-context-50 50 500

ACL-200-context-200 200 500

Peerread-context-50 50 500

Peerread-context-200 200 500

Refseer – All 50 400

Arxiv - All 50 400

Refseer-200k 50 400

Arxiv-300k-random 50 400

Arxiv-300k-neg-sampling 50 400

We have observed that a limit of 500 tokens is appropriate for these two datasets.

The remaining two datasets’ token limits have been selected as 50 for contexts and 400

for total. The token limits for the datasets have been shown in Table 3.7. Additionally, we

have created the global versions of Refseer-200k, Arxiv-300k-random, and Arxiv-300k-

neg-sampling datasets as well. These sampled datasets have the same token limits as

their complete versions. Other specifics of all datasets have remained the same since only

adding titles and abstracts does not affect statistics like mean, median, etc.
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Algorithm 3.2 Negative sampling algorithm for Arxiv-300k-neg-sampling.

1: procedure Negative sample from dataset(𝐶: a list of all contexts from a dataset,

𝑃: a dictionary containing all papers and their information, 𝐴: a dictionary containing

all appearance counts of each citation, 𝑁: sample size)

2: 𝑡𝑜𝑡𝑎𝑙𝐶𝑖𝑡𝑒𝐶𝑜𝑢𝑛𝑡 ← total of each value in 𝐴
3: 𝑝𝑟𝑜𝑏𝐷𝑖𝑠𝑡𝑂 𝑓𝐶𝑖𝑡𝑒𝑠 ← each value in 𝐴 divided by 𝑡𝑜𝑡𝑎𝑙𝐶𝑖𝑡𝑒𝐶𝑜𝑢𝑛𝑡
4: 𝑎𝑙 𝑝ℎ𝑎 ← 3/4

5: 𝑛𝑜𝑖𝑠𝑒𝐷𝑖𝑠𝑡 ← each value of 𝑝𝑟𝑜𝑏𝐷𝑖𝑠𝑡𝑂 𝑓𝐶𝑖𝑡𝑒𝑠 to the power of 𝑎𝑙 𝑝ℎ𝑎
6: 𝑛𝑜𝑖𝑠𝑒𝑆𝑢𝑚 ← the sum of each value in 𝑛𝑜𝑖𝑠𝑒𝐷𝑖𝑠𝑡
7: 𝑛𝑜𝑟𝑚𝑃𝑟𝑜𝑏𝐷𝑖𝑠𝑡𝑂 𝑓𝐶𝑖𝑡𝑒𝑠 ← each value in 𝑛𝑜𝑖𝑠𝑒𝐷𝑖𝑠𝑡 divided by 𝑛𝑜𝑖𝑠𝑒𝑆𝑢𝑚
8: 𝑐ℎ𝑜𝑠𝑒𝑛𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒𝑠 ← empty list

9: 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝐶𝑜𝑢𝑛𝑡 ← 0

10: while True do
11: if 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝐶𝑜𝑢𝑛𝑡 > 𝑁 then
12: break
13: 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒 ← randomly sample a citation name from the

keys of 𝑛𝑜𝑟𝑚𝑃𝑟𝑜𝑏𝐷𝑖𝑠𝑡𝑂 𝑓𝐶𝑖𝑡𝑒𝑠 using the probability distribution in its values

14: Append 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒 to 𝑐ℎ𝑜𝑠𝑒𝑛𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒𝑠
15: 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝐶𝑜𝑢𝑛𝑡 ← 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝐶𝑜𝑢𝑛𝑡+ the number of contexts belong-

ing to 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒
16: Remove 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒 from 𝑛𝑜𝑟𝑚𝑃𝑟𝑜𝑏𝐷𝑖𝑠𝑡𝑂 𝑓𝐶𝑖𝑡𝑒𝑠 since

it has been selected

17: 𝐺 ← an empty list for ground truth contexts

18: 𝑀 ← an empty list for masked token contexts

19: 𝑇 ← an empty list for ground truth citation targets

20: for every element 𝑖 in 𝐶 do
21: 𝑡 ← target citation token of 𝑖 acquired from 𝑃
22: if 𝑡 is not in 𝑐ℎ𝑜𝑠𝑒𝑛𝐶𝑖𝑡𝑒𝑁𝑎𝑚𝑒𝑠 then
23: continue
24: 𝑔 ← ground truth context from 𝑖
25: 𝑚 ← context from 𝑔 with its citation replaced with <mask>
26: Append 𝑡 to 𝑇
27: Append 𝑔 to 𝐺
28: Append 𝑚 to 𝑀
29: if total number of elements in 𝐺 is equal to 𝑁 then
30: break
31: Merge the lists of 𝑇 , 𝐺, and 𝑀 to acquire the sampled 𝐷 dataset

32: return 𝐷
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1. Experiments

The experiments for the smaller datasets (ACL-200 and Peerread) have been per-

formed on a device with NVIDIA Titan V GPU. The remaining larger datasets (Arxiv and

Refseer) have been trained on two devices with NVIDIA V100 and NVIDIA RTX6000

GPUs. The models for these datasets have been further pre-trained for both their base and

global versions. Additionally, our sampled datasets have also been further pre-trained on

a device with NVIDIA Titan V GPU.

The number of epochs for the training has been decided after observing each

model’s losses and perplexity values. While training for smaller datasets can be performed

in a relatively short time, larger datasets require considerably longer training time. We

were able to observe the results of smaller datasets with different numbers of epochs like

30, 100, etc. However, their training could only be performed up to a range of 5 − 10

epochs for the larger datasets due to their large size.

Thanks to the smaller size of ACL-200 and Peerread datasets, they took 25 hours

and 6 hours, respectively, during their training process. Meanwhile, their global version

lasted 32 hours and 8 hours, respectively, for their training process.

Due to our limited resources, the larger datasets generally required a training time

ranging from 2 weeks to 4 months for epoch numbers like 5 and 10. Their global versions

increased these training times up to 6 − 7 weeks as well. However, training times vary a

negligible amount between Refseer and Arxiv since their overall sizes are approximately

similar to each other. With our limited hardware resources, if we tried to train the larger

datasets for 30 or 100 epochs, these training operations would potentially require more

than 6 months to be completed. Due to these reasons, we limited the total number of

epochs between 5 and 10 in general.

The training times of our sampled datasets are less than their complete versions.

Refseer-200k dataset’s base and global training steps last for 65 and 112 hours, respectively.
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Meanwhile, Arxiv-300k possesses similar training times for its two different versions.

Their base and global versions require training times of approximately 130 hours and 180

hours, respectively.

After completing their training, they have been evaluated on their corresponding

evaluation sets. Our evaluation process also takes a considerable amount of time since

generating the top 10 predictions for each example is a resource-intensive task. Especially

with our limited hardware resources, acquiring the larger datasets’ evaluation results may

take up to 3 − 5 days since larger datasets’ evaluation sets are also extensive. However,

smaller datasets naturally require less time for evaluation, which is roughly between 30

minutes and 2 hours.

The issue of slow evaluation time for larger datasets is not a problem exclusive to

our work. The authors of Hatten (Gu, Gao, and Hahnloser 2022) have also pointed out

long evaluation times as an issue. They have reported using only a smaller subsection of

each large dataset for their evaluation steps to speed up evaluation times. We still tried

to use complete evaluation datasets for our evaluations to keep our results as accurate as

possible.

4.2. Results

Table 4.1. The result metrics of the base datasets and their sampled versions.

Dataset Name Number of Epochs Perplexity Hits@10 Recall@10 Accuracy (Exact Match) MRR

ACL-200 100 1.02 73.02% 73.02% 48.12% 0.568

Peerread 100 1.04 64.40% 64.40% 41.93% 0.496

Refseer 3 1.19 0.52% 0.52% 0% 0.001

Arxiv 4 1.14 4.16% 4.16% 0% 0.013

Refseer-200k 100 1.09 35.30% 35.30% 22.68% 0.271

Arxiv-300k-random 100 1.04 14.23% 14.23% 7.23% 0.095

Arxiv-300k-neg-sampling 100 1.02 72.26% 72.26% 48.08% 0.564

In Table 4.1 and Table 4.2, the evaluation metric results for the base and global

models have been shown. Alongside the four main datasets, the training results of the

sampled datasets have also been provided. We generally aimed for 100 epochs of training

in our experiments. The reason our large datasets’ models (shortly referred to as large

models) have only 3 − 4 epochs is due to our limited time and hardware resources.
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Additionally, our models failed to achieve adequate results on these datasets. Even with

our limited resources, their experiments went up to 10 epochs. However, we have seen

that epoch 3 or 4 has the best results in these experiments after further analysis. So, we

have specifically shown the results of these epochs in the Table 4.1 and Table 4.2. The

reasons behind this issue are thoroughly explained in the Discussion chapter.

Table 4.2. The result metrics of the global datasets and their sampled versions.

Dataset Name Number of Epochs Perplexity Hits@10 Recall@10 Accuracy (Exact Match) MRR

ACL-200-global-context-50 100 1.01 96.93% 96.93% 95.57% 0.962

ACL-200-global-context-200 100 1.06 97.13% 97.13% 95.53% 0.963

Peerread-global-context-50 100 1.11 93.76% 93.76% 93.67% 0.937

Peerread-global-context-200 100 2.00 93.27% 93.27% 92.80% 0.930

Refseer-global 3 1.21 0% 0% 0% 0

Arxiv-global 3 1.11 11.85% 11.85% 0% 0.026

Refseer-200-global 100 1.09 62.33% 62.33% 55.96% 0.580

Arxiv-300k-random-global 100 1.06 42.04% 42.04% 37.04% 0.387

Arxiv-300k-neg-sampling-global 100 1.05 98.28% 98.28% 98.05% 0.981

The comparisons between state-of-the-art works and our approaches can be seen

in Table 4.3. For the Hatten approach, its most successful version with 2000 pre-fetched

recommendation candidates has been selected for comparison. Our approach does not

perform a pre-fetching step and directly returns predictions.

We also performed additional experiments to see the effect of different numbers

of epochs for some of the smaller and sampled datasets. The perplexity, hits@10, and

recall@10 result metrics of these datasets trained for 30 and 60 epochs have been shown

in Table 4.4. The datasets selected for this experiment have been selected to showcase the

effect of epoch number under many varied circumstances even if some datasets have not

been used for this experiment.

4.3. Ablation Study

Since we have observed a clear improvement in the global strategy, we have decided

to perform an ablation study to discover the effects of the title and abstract on the success

of our model. For this purpose, we have removed the contexts from the global strategy.
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Table 4.3. The comparisons of the results with past works. The results of Hatten have

been taken from its 2000 pre-fetched candidate version, which is the most successful one.

Dataset Approach Recall@10

ACL-200

Medić and Snajder (2020) 0.716

HAtten 0.633

Our Base Approach 0.730

Our Global Approach 0.969

Peerread

Medić and Snajder (2020) -

HAtten 0.757

Our Base Approach 0.644

Our Global Approach 0.938

Refseer

Medić and Snajder (2020) 0.534

HAtten 0.454

Our Base Approach 0.005

Our Global Approach 0

Arxiv

Medić and Snajder (2020) -

HAtten 0.439

Our Base Approach 0.042

Our Global Approach 0.118

Essentially, each entry in our datasets would be made up of “citation token + title +

abstract” instead of “context + title + abstract”. We performed the experiments for this

task on ACL-200 and Peerread datasets since they take less time to train compared to

others. After 100 epochs of training were conducted, the results shown in Table 4.5 were

obtained.

From the results, we can see that the removal of context slightly reduces the per-

formance of our model. However, this does not mean that the contexts are unimportant

because the models that have been trained only with contexts are still relatively successful

compared to other works in this field. Contexts can still be helpful for the learning capa-

bilities of our model. Also, the higher rate of success in our global models has shown that

adding citation tokens to a model can dramatically improve its results. This improvement

can be observed in the ablation study models as well. So, the main contribution of our

models comes from the addition of citation tokens to the models’ vocabularies.
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Table 4.4. The effect of the number of epochs on the results of some of our datasets.

Dataset Name Number of Epochs Perplexity Hits@10 Recall@10

Refseer-200k-global 30 1.07 63.25% 63.25%

Refseer-200k-global 60 1.08 61.50% 61.50%

Refseer-200k 30 1.08 29.54% 29.54%

Refseer-200k 60 1.09 30.58% 30.58%

Arxiv300k-random-global 30 1.05 45.32% 45.32%

Arxiv300k-random-global 60 1.06 43.56% 43.56%

Arxiv300k-neg-sampling-global 30 1.03 98.30% 98.30%

Arxiv300k-neg-sampling-global 60 1.04 98.27% 98.27%

Peerread-global-context-50 30 1.00 93.82% 93.82%

Peerread-global-context-50 60 1.00 93.79% 93.79%

Table 4.5. Ablation study results on ACL-200 and Peerread.

Dataset Name ACL-200 - ablation Peerread - ablation

Perplexity 1.00 1.00

Hits@10 96.84% 93.16%

Recall@10 96.84% 93.16%

Accuracy (Exact Match) 95.12% 93.13%

MRR 0.959 0.932

4.4. Qualitative Analysis on Prompting Large Language Models

We have performed experiments on large language models to see how they perform

on our task. By prompting large language models, we aim to analyze how they respond to

the needs of our task. We chose the “Llama-2-70b-chat” model to perform our prompting

trials on. At each prompt, we provided a list of citation tokens from our datasets alongside

some examples of masked contexts and their ground truth mask values. Afterward, we

asked the model to fill the mask in another context by selecting a citation from the list that

had been provided initially.

Due to the limited nature of the chat windows of large language models, we had to

limit the total number of citations by 200. In this limited setting, we have performed a few
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trials to view how a large language model responds to our prompts. Out of the four trials,

only one managed to correctly predict the value of the mask. The two of them selected an

incorrect citation from the list, while the last one filled the mask with a citation outside

the given list.

We have also performed additional trials that can be compared to our global

approach. The main difference between these trials is that each citation in the given list is

accompanied by its title and abstract. We had to limit the number of citations to 30 since

the addition of abstracts made the initial list very long. In these very limited trials, only

one of them out of four managed to correctly predict the mask. The remaining examples

have given the same incorrect prediction. This may be caused by the very general terms

given in the abstract for the incorrect prediction. The large language model might choose

this generally appropriate option if it fails to determine a better prediction.

As can be seen from these trials, the large language models are capable of correctly

predicting the mask in the contexts of our task. However, they are mostly held back by

their limited chat prompt sizes, and they still fail to give logical predictions most of the

time.

We have shown two example trials for the prompting examples in Figure 4.1. The

second one is an example of our global approach. Due to the space limitations, we have

partially shown the list of citations and example contexts with their ground truth mask

values.

In part (a) of Figure 4.1, we have shown one of our example prompting trials with

the base approach. The upper section of our example is our prompt, while the lower

section is the answer of the “Llama-2-70b-chat” model. In the prompt section, we start

by providing a complete list of citations of the chosen dataset. The figure only shows this

list’s start and end due to space limitations. After this list, we explain how the citation

prediction operation works to the model. In the following five paragraphs, we provide five

example contexts and their ground truth values to the model. Due to space limitations,

we have only shown a single example in Figure 4.1. Lastly, we asked the model to return

which citation should be predicted for the new input which is a masked context. The model

answers this prompt by directly providing the predicted citation as ”Shwartz et al., 2016”

and provides its reasoning for choosing this citation. As can be seen from the ground truth

value, ”Shwartz et al., 2016” is the correct prediction.
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In part (b) of Figure 4.1, we show one of our examples with the global approach.

This example is mainly similar to part (a). The main difference between these examples

is how the list of citations is provided. Each citation name is accompanied by its title and

abstract. Because of space limitations, we only show the beginning of the list. Also, we

could only fit 30 citations inside this list since the prompt input window of this model is

limited. The remaining parts of the prompt stay the same. The answer of the model has

the same contents as before. However, the model predicted the mask as ”Collobert et al.,

2011”, which is incorrect since the ground truth citation is ”Kim, 2014”.

4.5. Discussion

Our study yields three significant insights. Firstly, we have observed the effects

of treating word groups like citations as a single unified token. Normally, each citation

is made up of multiple tokens for the default tokenizers of pre-trained language models.

For example, a citation like “Nenkova and Passoneau, 2004” is tokenized as [’ĠN’, ’en’,

’k’, ’ova’, ’Ġand’, ’ĠPass’, ’on’, ’neau’, ’,’ , ’Ġ2004’]. However, with the addition of

single unified tokens, it is tokenized straightforwardly as “Nenkova and Passoneau, 2004”.

After this step, a model is further pre-trained for the citation prediction task. This simple

tokenizer addition step results in significant improvements in the task of citation prediction.

This approach may also have some potential for other tasks in NLP when there is a need

for treating multiple-word tokens as a single unified one.

Our second observation from our study is the effect of the distribution of contexts

per citation in the datasets. In the past works, these datasets’ contents have not been

studied extensively. We believe that our observed distribution has very significant effects

on the results of the citation prediction task. We have also shown multiple statistics and

graphs of these datasets since past works have not performed such additional analyses.

Further analysis of these datasets may also yield some additional factors on the results

as well. Also, we have discovered many issues in the contents of the datasets, especially

incorrect or missing author names and years. We also argue that these problems can cause

some performance reduction in the results as well.

Our approach also possesses the following benefits. Hatten’s state-of-the-art work

uses a two-step technique of pre-fetching and re-ordering. However, both our approaches
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Figure 4.1. Prompting examples on large language models for both approaches.
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consist of only a single step of mask prediction. While we need to add all citations

as a single token to the model’s vocabulary before training, it can be considered as a

preprocessing step. This can be considered another advantage of our approach.

We have also seen the effects of the difference between the results of our base

and the smaller dataset’s global versions. There is a significant improvement between

these two versions. The results of the smaller dataset’s global versions are even capable

of surpassing 90% in the results of our metrics. Interestingly, our base version results

are also very good. They generally have similar or better results than the state-of-the-art

results even though they only have access to the contexts from the datasets. However,

the state-of-the-art models generally have complete access to the datasets, including titles

and abstracts. Our global models can also access them, and they have significantly higher

results. However, these observations only apply to the results of smaller dataset’s models.

The models of larger datasets cannot achieve the highly successful results of the other

models. Both their base and global versions perform below our expectations.

There could be multiple reasons that cause the large model’s results to underper-

form. We have generally aimed to have a large number of epochs in our models. However,

we were not able to run our experiments with a large number of epochs on the larger

datasets due to their long training times and our limited hardware resources. We per-

formed their experiments up to 10 epochs. Since our large models may be unable to learn

for our task properly, we only chose their 3 − 4 epoch versions with the best results. So,

these models might not have been trained enough to achieve good results. Although we

have demonstrated that the number of epochs does not significantly impact the results for

smaller datasets, there remains a possibility that 10 epochs may be insufficient for larger

datasets. Due to the substantial size of these datasets, the models may not fully capture

the connections between citations and contexts within only 10 epochs. Therefore, it is

advisable to ensure adequate training is performed on these models to achieve optimal

results.

There are other factors that affect the results of large models as well. One of the

biggest causes behind the problem of large datasets may be their total number of citation

items. Larger datasets contain significantly more citation names than smaller datasets.

The model may experience difficulties while trying to learn how to predict citations when

it has too many citations to choose from. This scenario can also be observed in our
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Figure 4.2. Comparison between the default word embeddings and citation embeddings

in a tokenizer.

sampled datasets. Uniformly sampled datasets (Refseer-200k and Arxiv-300k-random)

perform noticeably worse than negative sampling datasets. Their statistics, like mean,

median, etc., might also be the cause of this problem. Since sampled datasets showcase

the importance of factors like the number of citation items, we can expect a similar reason

behind the problem of the larger datasets’ models.

Another reason behind this problem may be how BERT-like tokenizers operate.

These tokenizers can learn new words they have never seen from scratch. In other

words, any new word’s embedding can be learned during fine-tuning after initializing it

as with all zeros. While this advantage of BERT-like tokenizers allows the models to be

very adaptable, starting initial embeddings from 0 is still a disadvantage. This issue is

illustrated in Figure 4.2. While this is also a problem for smaller models, they contain

less total number of citation items. So, initializing new citation tokens as 0 does not affect

them as significantly as larger models.

We have also performed training only on the RoBERTa-base model. It might have

been possible to achieve better results under different conditions. Due to time limitations,

we had to perform our model evaluations at certain number of epochs. Instead, we could

have evaluated our models more often to select the best possible model for each dataset.
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To solve the problem of large models, we could perform training on a model like

RoBERTa-large to increase the total number of parameters in our model. It may be possible

that RoBERTa-base might not have enough parameters to properly learn from large datasets

with too many citation items. RoBERTa-large could capture a deeper understanding of

larger datasets and achieve improved results on larger datasets. Additionally, we could try

to initialize our tokenizers to have proper initial embeddings for manually added citation

items. Instead of learning their embeddings from scratch, the model can benefit from

proper initial embeddings.

Also, we could have used other pre-trained models like SciBERT or SpanBERT.

Further pre-training on SciBERT instead of RoBERTa may have yielded better results

since it shows better results on scientific texts. Meanwhile, SpanBERT could be used to

predict multiple masks of a citation instead of a single one to remove the requirement of

adding all citation items to the tokenizers. However, SpanBERT may lead to additional

problems, as we have explained in the Methodology chapter. Alternatively, a model like

T5 (Raffel et al. 2020) can predict multiple word tokens for a single mask token. This

could have allowed us to try to predict multiple-word citations directly from a single mask

token rather than adding all citations to the vocabulary of the model. Due to these reasons,

it might have been possible to achieve better results in our experiments with larger datasets

using alternative pre-trained models. The results of smaller datasets might have been

further improved as well.

4.5.1. Limitations

To accurately evaluate the results of our research, we need to discuss certain limited

and problematic aspects of our approach. We recognize the following limitations in this

study. Our experiments were only performed on the four benchmark datasets used in the

past works. While these datasets may be comprehensive enough for the task of citation

prediction, they have multiple shortcomings. Two of the datasets are very small compared

to the others. Especially, Peerread has less than 20000 examples. Also, the datasets have

a significant amount of incorrect or missing information that causes the elimination of

many of their examples.

Another limitation of our work is that our models can only produce results for their
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own datasets. It will not work with the other datasets. This is caused by the need to know

the names of the citation tokens to be able to predict them for a given context. Without the

corresponding list of citations for a dataset, the model will not be able to predict relevant

results for the contexts. However, it may predict citations that are close to the given context

in relevancy as a suggestion mechanism.

These limiting factors are also a part of the past works as well. In fact, even the

state-of-the-art model has these limitations while also requiring global information for its

predictions. Meanwhile, our work can also function without global information, and it

achieves slightly higher results compared to them. With the addition of global information,

the success of our model further increases.

The main limitation of our approach is its results on the larger benchmark datasets.

We could not achieve good results in larger datasets compared to smaller ones. Our model

is capable of reaching results that can surpass state-of-the-art works for smaller benchmark

datasets. However, it does not perform well for larger datasets because of reasons like a

large number of citation items, initialization of citation tokens by the tokenizer, etc. Trying

to predict citations from a single token might also be causing problems for our approach

since we need to manually add citation name tokens to the tokenizer beforehand. Thus, in

its current state, our work fails to perform adequately for two of the benchmark datasets.
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CHAPTER 5

CONCLUSION

In this work, we have proposed a new technique for predicting citations inside

scientific papers. We utilized an approach that further pre-trains a mask-filling language

model in a unique way to achieve significant improvements over the state-of-the-art results

on two of the benchmark datasets. Our novel approach focuses on treating each citation

as a single-word token and adjusting the vocabulary of the model as necessary. Thanks

to this approach, we were able to directly predict citations using our further pre-trained

mask-filling models.

The models developed in our approach can be considered as language models

capable of predicting citations. In other words, our model retains the functionality of

a language model and can be fine-tuned accordingly. Through our custom pre-training

strategy, our models can learn the representations of citations. Similar to SPECTER, each

citation’s embedding also represents its corresponding paper. These representations can

be utilized to assess the proximity between papers. Unlike previous works, our models

demonstrate greater robustness for application in other tasks. For instance, fine-tuning

our model for scientific text generation may enhance the accuracy of citations generated

within the output texts.

We also performed additional experiments to further analyze our results. Using our

base and global approaches, we analyzed the effects of the different levels of information

for citation prediction. Also, we observed the effects of the distribution inside the datasets

and tried to find their relationship with the results. We investigated the benchmark

datasets’ statistics related to a factor we referred to as contexts per citation and observed

how this factor affects the success of the model. Lastly, we believe our proposed model

demonstrates a unique utilization method of mask-filling models on the task of citation

prediction and leverages the strengths of the models’ tokenizers in a novel way.
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5.1. Future Work

For future work, we may need to investigate other predictions of our model’s top 10

predictions for a given context. These additional predictions can also be considered similar

scientific papers to the target citation’s paper. So, it might be possible to consider them as

suggested reading material for a given citation as well. We also believe that this technique

of learning representations for a multi-word token as a single one can be used in other

research areas as well. Additionally, we can restrict our model to only predicting citations

instead of other words from the vocabulary. Since Hatten can only predict citations out

of a pool, adding a similar restriction might allow us to compare our results under similar

conditions while potentially improving our success rates.

The most crucial improvement we can make on our approach is to increase its

result metrics on the larger datasets’ models. To improve the results of large models,

we should try to pinpoint the reason behind their failure to learn and predict citations

from datasets that have a large number of citation items. Firstly, we can perform our

training on different pre-trained models like SciBERT, RoBERTa-large, SpanBERT, or

T5. Especially, T5 can predict multiple words for a single token. Using T5 can negate

the requirement of manually adding all citation names to tokenizers and allow our model

to achieve increased results on large datasets. The T5 architecture may enable models to

predict citations for datasets on which they have not been specifically trained. In other

words, T5 has the potential to overcome the limitation observed in both Hatten’s approach

and our approach, which rely on the ability to predict citations solely for the datasets used

during training. Lastly, we can try to handle the initialization of the embeddings of our

manually added citation names to tokenizers and aim to increase the success of our large

models.
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