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Abstract: The correct diagnosis and early treatment of respiratory diseases can significantly improve
the health status of patients, reduce healthcare expenses, and enhance quality of life. Therefore, there
has been extensive interest in developing automatic respiratory disease detection systems. Most
recent methods for detecting respiratory disease use machine and deep learning algorithms. The
success of these machine learning methods depends heavily on the selection of proper features to be
used in the classifier. Although metaheuristic-based feature selection methods have been successful
in addressing difficulties presented by high-dimensional medical data in various biomedical classifi-
cation tasks, there is not much research on the utilization of metaheuristic methods in respiratory
disease classification. This paper aims to conduct a detailed and comparative analysis of six widely
used metaheuristic optimization methods using eight different transfer functions in respiratory
disease classification. For this purpose, two different classification cases were examined: binary and
multi-class. The findings demonstrate that metaheuristic algorithms using correct transfer functions
could effectively reduce data dimensionality while enhancing classification accuracy.
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1. Introduction

There are many respiratory diseases, such as chronic obstructive pulmonary disease
(COPD), asthma, pneumonia, bronchiectasis, bronchiolitis, and upper/lower respiratory
tract infections. These diseases are at the top of the list when considering global deaths, em-
phasizing the importance of their accurate and early diagnosis. Correct diagnosis and early
treatment of respiratory diseases can significantly improve the health status of patients,
reduce healthcare costs, and improve quality of life. Among the various diagnostic tools
available, analysis of respiratory sounds by auscultation is a basic method for identifying
respiratory abnormalities. Respiratory sounds such as roughness, coarse crackling, mono-
phonic wheeze, polyphonic wheeze, stridor, bronchus, and squawk provide valuable clues
about the respiratory system. Upper respiratory tract infection (URTI), COPD, bronchiec-
tasis, pneumonia, bronchiolitis, asthma, and lower respiratory tract infection (LRTI) are
among the most common respiratory diseases that can be detected by auscultation methods.
Traditional auscultation relies heavily on the experience and interpretation capability of the
physician, which can lead to variabilities in diagnosis. Digital stethoscopes and advanced
signal processing algorithms provide a more objective analysis of respiratory sounds. They
have also paved the way for the use of automatic decision-making algorithms.

Recent advancements in machine and deep learning algorithms have encouraged
researchers working on respiratory sound analysis to develop automated classification
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systems. Studies in this field fall under two main groups. The first group includes the
classification of respiratory diseases, such as asthma, COPD, etc. The second group fo-
cuses on classifying respiratory sounds, such as crackle, wheeze, etc. Under these main
topics, many valuable studies exist in the literature. Shuvo et al. [1] used a lightweight
convolutional neural network (CNN) model, which demonstrates significant efficacy in
classifying respiratory auscultation sounds. The model employs a hybrid approach uti-
lizing empirical mode decomposition and continuous wavelet transform, achieving an
accuracy of 98.92% in three-class chronic disease classification and 98.70% in six-class
pathological classification. Naqvi and Choudhry [2] presented an automated low-cost
diagnostic method for COPD and pneumonia, utilizing respiratory sound analysis from
the International Conference on Biomedical and Health Informatics (ICBHI) open-access
database. The method achieved a classification accuracy of 99.7%. Garcia-Ordas [3] pro-
posed a novel approach utilizing a Variational Convolutional Autoencoder (VAE) combined
with a Convolutional Neural Network (CNN) to classify respiratory sounds into healthy,
chronic disease, and non-chronic disease categories as well as six specific pathologies. They
achieved performance improvements over state-of-the-art methods with a reported F-Score
of 0.993 in the ternary classification. Fraiwan et al. [4] investigated the classification of
respiratory diseases using respiratory sound signals, achieving an accuracy of 98.27% with
boosted decision trees, which outperformed traditional classifiers such as support vector
machines. Pham et al. [5] presented a robust deep-learning framework for the analysis of
respiratory anomalies and the detection of respiratory diseases using auscultation record-
ings. They achieved an 84% ICHBI score that averages specificity and sensitivity metrics,
which surpasses the previous state-of-the-art result of 72%. In another study by Pham
et al. [6], an inception-based deep learning model was developed to detect respiratory
anomalies and respiratory diseases from audio recordings, utilizing the ICBHI benchmark
dataset. The model achieved 0.53/0.45 ICBHI scores (arithmetic and harmonic averages
of sensitivity and specificity) for respiratory anomaly detection and 0.87/0.85 for disease
prediction, outperforming several state-of-the-art systems. Kababulut et al. [7] introduced
a clinical decision support system for respiratory disease identification using decision tree
algorithms and a Shapley-based feature selection to improve performance. Their findings
highlight that effective feature selection significantly enhances classification performance
in respiratory disease detection. Sfayyih et al. [8] analyzed deep learning applications in
respiratory sound analysis, focusing on the effectiveness of CNNs in classifying respiratory
sounds. The authors concluded that deep learning techniques show high accuracy in
diagnosing respiratory conditions, underscoring Al's potential in medical diagnostics.

It is widely known that feature extraction has a substantial impact on the efficiency
of clinical decision systems. The literature presents numerous diverse feature extraction
methods. Classical methods such as Fourier Transform [9], Empirical Mode Decomposi-
tion [1], Wavelet Transform [1,6], and Mel-Frequency Cepstral Coefficients (MFCC) [10-15]
are among the most commonly used methods for feature extraction in the respiratory
sound classification field. The proper selection of the most descriptive feature subsets
from all extracted features has also been very important for the success of the classification
system. Through feature selection, the computational burden on the classifier is reduced by
employing a smaller feature set, and in addition classification performance is increased.
Therefore, finding effective feature selection (FS) methods has been an extensively studied
topic. Filter, wrapper, and embedding techniques are the three general categories into which
feature selection methods fall [16]. Kang et al. [17] provide a comprehensive overview
of FS techniques, highlighting their significance in managing the challenges posed by
high-dimensional datasets. Igbal et al. [18] presented a comprehensive approach to feature
extraction and selection from physiological signals.

In recent years, the application of nature-inspired metaheuristic algorithms for fea-
ture selection has gained significant attention within the machine-learning community.
Metaheuristic algorithms are primarily used as wrapper-type feature selection methods.
Metaheuristic methods range from well-established techniques, like genetic algorithm (GA)
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and particle swarm optimization (PSO), to newer and more creative approaches, such as the
grey wolf optimizer (GWO), teaching learning-based optimization (TLO), Whale Optimiza-
tion Algorithm (WOA), and the Equilibrium Optimizer (EO). The comprehensive review
conducted by Nssibi et al. [19] evaluated various metaheuristic techniques, highlighting
their effectiveness in navigating the complex search space associated with feature selec-
tion tasks. Sathiyabhama et al. [20] introduced a novel computer-aided diagnosis (CAD)
system that employs a GWO and rough set-based approach to identify abnormalities in
mammogram images effectively. Kang et al. introduced the Two-Stage Teaching-Learning-
Based Optimization (TS-TLBO) algorithm, which demonstrates significant improvements
in classification accuracy [17]. Nadimi-Shahraki et al. [21] presented an enhanced version
of the Whale Optimization Algorithm (E-WOA) specifically tailored for medical feature
selection with a focus on the COVID-19 case study. The experimental results demonstrated
that E-WOA significantly outperforms traditional WOA variants and other well-known
optimization algorithms. Chen et al. introduced a novel approach that combines particle
swarm optimization (PSO) with the 1-nearest neighbor (1-NN) classifier, demonstrating
its effectiveness on various life science datasets [22]. Elgamal et al. [23] introduced an en-
hanced version of the Harris Hawks Optimization (HHO) algorithm, termed Chaotic Harris
Hawks Optimization (CHHO), which integrates chaotic maps and simulated annealing
(SA) to address the limitations of the standard HHO. Rajammal et al. [24] presented a binary
improved grey wolf optimizer (BIGWO) that integrates a mutation operation and an adap-
tive k-nearest Neighbor (AKNN) algorithm to enhance feature selection efficacy. Prabhakar
and Won [25] proposed several innovative techniques, including metaheuristics feature
selection methods for classification in telemedicine applications. The study highlights the
effectiveness of these methods in analyzing respiratory sounds and showcases the potential
for enhanced diagnostic capabilities in healthcare settings. Abedi et al. [26] developed an
innovative algorithm that utilizes GA and support vector machine (SVM) classification
to analyze thoracic respiratory effort and oximetric signal features. Alvarez et al. [27]
conducted a comprehensive study for detecting OSA patients. The authors employed GA
for feature selection, achieving very high diagnostic accuracy. All of these studies show that
metaheuristic feature selection methods have been successful in addressing the difficulties
presented especially by high-dimensional data. Classifier models using features selected by
metaheuristic methods enhance prediction accuracy, decrease computing costs, and clarify
the process by eliminating unimportant features.

Though successfully used for feature selection in many studies, there is not much
research on the utilization of metaheuristic feature selection methods in respiratory dis-
ease classification. This study aims to conduct a detailed and comparative analysis of
metaheuristic optimization methods in respiratory disease classification. For this purpose,
various features were extracted from audio recordings obtained from the publicly available
ICBHI 2017 Respiratory Sound Database [28] using 15 frequently used feature extraction
techniques. Then, by employing diverse statistical metrics on the collected numerical data,
a new feature set was created. Next, to determine the best features that enhance classifi-
cation performance, six well-known metaheuristics methods were employed with eight
transfer functions. Finally, the performances of each method were measured and compared
with each other using a simple and identical KNN classifier. In this study, two different
classification problems were examined. The first one was a binary classification task (res-
piratory disease vs healthy) while the second one was a multi-class task (healthy, chronic
respiratory disease, nonchronic respiratory disease). Since the database used is highly
imbalanced, MCC metric was used as the main performance metrics instead of accuracy.
The findings demonstrate that metaheuristic algorithms using correct transfer functions
could effectively reduce data dimensionality while enhancing classification accuracy.

This paper is organized as follows: Section 2 provides information about the materials
and methods used, including the feature extraction methods from audio recordings, imple-
mentation of metaheuristic feature selection methods and transfer functions, classification
stage, and evaluation of the results. Section 3 conducts a detailed comparative analysis
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based on the results obtained. Finally, Section 4 presents the discussion and conclusions of
the study.

2. Materials and Methods
2.1. Data Source

The present study utilizes the openly accessible ICBHI 2017 Respiratory Sound
Database [28]. ICBHI 2017 comprises 5.5 h of recordings obtained from seven different
chest locations, namely trachea, left and right anterior, posterior, and lateral. The recordings
encompass 6898 breathing cycles, labeled by respiratory specialists as containing crack-
les, wheezes, a combination of both, or no abnormal respiratory sounds. The database
was compiled from 126 individual participants over several years by two separate study
teams located in two countries. The database contains 920 annotated audio samples from
126 participants (77 adult/49 children and 79 male/46 female), which were recorded using
heterogeneous types of equipment, namely Meditron, LittC2SE, Litt3200 stethoscopes, and
AKGC417L microphones. The age of the participants is 43.0 £ 32.2 years. Participants
included patients with lower respiratory tract infections, upper respiratory tract infections,
pneumonia, COPD, asthma, bronchiolitis, bronchiectasis, and cystic fibrosis. The respira-
tory cycles were also categorized into eight distinct conditions by experts: URTI, Chronic
Obstructive Pulmonary Disease (COPD), Bronchiectasis, Pneumonia, Bronchiolitis, Asthma,
LRTI, and Healthy.

2.2. Feature Extraction

The feature extraction phase was executed utilizing Python’s Librosa library Ver.0.10 [29].
The default value of the library was utilized as the number of features to be extracted for
each method. In this study, 15 distinct methods were employed for the feature extraction
procedure. The specific characteristics of these methods are displayed in Table 1 [30]. Since
the number of features obtained from each method is very large (several thousands), a new
and reduced feature set was generated by computing five statistical measures (minimum,
maximum, mean, standard deviation, and skewness) of feature values for each feature
extraction method. Then, these features were concatenated to form the feature vector for
each sample. This way, each sample is represented by 15 x 5 = 75 feature values.

Table 1. Feature extraction methods employed in the study.

No. Method Abbreviation Explanation

It calculates a chromatogram by
analyzing either a waveform or a
power spectrogram.

1 Chror.na Short Time Chro_stft
Fourier Transform

Chroma Constant-Q It calculates the Constant-Q

Chro_cqt

chromagram chromagram.
Chroma Ener It calculates the chroma variant
3 nersy Chro_cens known as Chroma Energy
Normalized .
Normalized.
4 Chroma Variable-Q Chro_vqt It calculates the Variable-Q
chromagram chromagram.
5 Mel-Frequency Mfcc It calculates the mel-frequency
Cepstral Coefficients cepstral coefficients
It calculates the root mean square
6 Root Mean Square Rms value for each frame, using either

the audio samples or the
spectrogram.
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Table 1. Cont.

No. Method

Abbreviation

Explanation

7 Spectral Centroid

Spec_cent

It calculates the spectral centroid.
Every individual frame of a
magnitude spectrogram is
standardized and considered as a
distribution across frequency bins.
From this distribution, the average
value is calculated for each frame.

8 Spectral Bandwidth

Spec_bandw

It calculates the spectral
bandwidth.

9 Spectral Contrast

Spec_cont

It calculates the spectral content of
each frame by dividing it into
sub-bands. The energy contrast for
each sub-band is determined by
comparing the average energy in
the highest quantile (peak energy)
with that of the lowest quantile
(valley energy).

10 Spectral Flatness

Spec_flat

It calculates the spectral flatness.
Spectral flatness, also known as
tonality coefficient, is a metric
used to quantify the degree to
which a sound resembles noise
rather than a distinct tone. A
spectral flatness value closer to
1.0 indicates that the spectrum is
more like white noise.

Spectral Roll-off

1 Frequency

Spec_rof

It calculates the roll-off frequency.
The roll-off frequency is
determined for each frame as the
central frequency of a spectrogram
bin that contains at least roll
percent of the energy of the
spectrum in that frame, as well as
the bins below it.

12 Polynomial Features

Poly_fea

It obtains the coefficients for fitting
a polynomial to the individual
columns of a spectrogram.

Tonal Centroid

1
3 Features

Tonnetz

It calculates the tonal centroid
characteristics. This representation
employs the technique of
projecting chroma features onto a
six-dimensional basis, where the
perfect fifth, minor third, and
major third are each represented
by two-dimensional coordinates.

14 Zero Crossing Rate

Zero_cr

It calculates the rate at which the
audio time series crosses the
Zero axis.

2.3. Classification Cases Examined

Once the feature extraction step was completed, feature selection and classification
stages followed. This study examines two different cases. Case 1 examines a binary
classification task where respiratory sound recordings are categorized into two classes
diseased and healthy. The disease class consists of recordings that belong to individuals
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with seven respiratory diseases specified in Section 2.1; the healthy class comprises data
collected from individuals who do not have any respiratory illnesses. Case 2 pertains
to a multi-class categorization with three distinct classes: Chronic Respiratory Diseased,
Non-chronic Respiratory Diseased, and Healthy. The Chronic Diseased class was formed by
amalgamating instances of individuals with COPD, asthma, and bronchiectasis, which are
representative of chronic respiratory conditions. The Non-chronic Diseased class consists
of respiratory sound recordings obtained from individuals diagnosed with pneumonia,
URT], bronchiolitis, and LRTI. The scenario for the healthy class is analogous to Case 1.
Table 2 provides information about the datasets utilized.

Table 2. Distribution of data in Case 1 and Case 2.

Case Class Sample Size Number of Features
Healthy 35
! Diseased 885
Healthy 35 75
2 Chronic diseased 810
Non-chronic diseased 75

2.4. Feature Selection by Metaheuristic Methods

This study examines six different metaheuristic methods with various transfer func-
tions to identify the most effective approach for classifying respiratory diseases from
respiratory sounds. The methods include genetic algorithm (GA), particle swarm opti-
mization (PSO), grey wolf optimization (GWO), teaching learning-based optimization
(TLO), Whale Optimization Algorithm (WOA), and the Equilibrium Optimizer (EO). Each
algorithm was executed in 25 trials using identical experimental settings to achieve statis-
tically meaningful outcomes. In each trial, the population was initialized with a size of
100 individuals, and the simulation was run for 50 iterations.

Metaheuristic algorithms inherently generate continuous solutions that lie within the
upper and lower boundaries of the search space. One of the primary strategies to discretize
these approaches is to utilize transfer functions. The primary objective of transfer functions
is to acquire a 0-1 vector representing the characteristics to be chosen for feature selection
while keeping the original procedure unchanged. The continuous values produced by the
transfer function are transformed into either 0 or 1 using a thresholding operation. Thus,
this approach yields a solution or possible answers to the binary optimization issue of
identifying the most efficient characteristics for diagnosing respiratory disease. Transfer
functions exhibit distinct characteristics, and when employed for discretization, varying
outcomes are bound to arise [31]. Various transfer functions have been examined in many
studies, but it remains necessary to make comparisons to determine which specific transfer
functions should be employed to achieve discretization. To this end, this study utilizes a
total of eight commonly employed transfer functions, which belong to two distinct families,
namely S-shaped and V-shaped functions. Formulas for S-shaped transfer functions S1 to
54 and V-shaped transfer functions V1 to V4 are provided in Table 3. The function curves
for them are given in Figure 1.

Our study introduces a wrapper feature selection strategy that utilizes the aforemen-
tioned metaheuristic search algorithms and the KNN classifier as the evaluator. When
using feature selection methods, it is crucial to consider both a solution’s representation
and the optimization process’s evaluation. The dataset used in this study exhibits a se-
rious class imbalance issue. Thus, accurate prediction of minority classes is also crucial
for a reliable model. Therefore, we used the Matthews correlation coefficient (MCC) as
the fitness value for the optimization problem since the MCC metric is more suitable for
distinguishing between various misclassification distributions in datasets with imbalanced
class issues [32].
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Table 3. V-shaped and S-shaped transfer functions.

V-Shape S-Shape
Name Formula Name Formula
Vi Vi(x) = |erf(§x)\ S1 S1(x) = 1“%2»
V2 V2(x) = |tanh(x)| S2 S2(x) = 1=
V3 V3(x) = | )| S3 83(x) =
V4 V4(x) = |2arctan(Z x)| S4 S4(x) = H;%)
i 1.0
0.8 A1
0.6 A
0.4 -
— V1
V2
0.2 -
-==- V3
—=- V4
0.0 A1
-10 -5 0 5 10 -10 -5 0 5 10
V-shape Transfer Function S-shape Transfer Function

Figure 1. V-shaped and S-shaped transfer functions.
2.5. Classifier

When the studies in the field of feature selection using metaheuristic methods are ana-
lyzed, it is seen that the KNN algorithm has been frequently utilized as the classifier [33-36].
This is due to its simplicity and ease of application, as well as its ability to provide fairly
accurate results. This is due to its simplicity, practicality, ease of application and use, as
well as its ability to provide rapid and accurate results when dealing with large datasets.
For the same reasons, a simple KNN (K = 5) classifier is utilized in this study. This classifier
functions as a decision-maker during both the feature selection and classification phases.
To make the comparisons fair, the same classifier was used in all trials.

3. Results

This study conducted experiments for comparing six different metaheuristics feature
selection methods using eight different transfer functions from two families (V-shaped and
S-shaped) to determine the best feature selection methods to be used for respiratory disease
classification problems. This means finding the methods that lead to high classification
performance while using a small number of features. Findings are examined, evaluated, and
commented on below under three headings: transfer function fitness values, comparison of
the classification performances of metaheuristic feature selection methods, and comparison
with traditional feature selection methods.

3.1. Fitness Values of Transfer Functions for Each Feature Selection Method

During the feature selection phase, the classification model is evaluated using the test
data, which is a randomly retained 20% of all data. The fitness values are computed by
comparing the actual values with the predicted results. The fitness value is a numerical
measure that quantifies the quality of a solution candidate with respect to the optimization
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fitness

fitness

problem at hand. In our study, fitness function takes into consideration both a classification
performance metric, which is selected as MCC, and also the number of features selected.
Therefore, it simultaneously tries to maximize MCC value while minimizing the number
of features selected. This feature selection process is repeated 25 times for each transfer
function for each optimization method. Since there is an issue of imbalance in the class labels
for both Case 1 and Case 2, the MCC metric was used to utilize the results. Figures 2 and 3
display the fitness values of eight transfer functions for each feature selection method
obtained after 25 trials for Case 1 and Case 2, respectively.

EO GA GWO
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Figure 2. Fitness values of different transfer functions for each MHA FS method for Case 1.
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Figure 3. Fitness values of different transfer functions for each MHA FS method for Case 2.

The fitness values in Figures 2 and 3 show the overall performance of the transfer
functions. As can be seen in Section 3.3, there are significantly fewer number of features
selected for V-shaped transfer functions, while MCC values are slightly higher for S-shaped
transfer functions. Therefore, considering both factors, the fitness values of V-shaped
functions are slightly higher. In addition, the vertical size of the plots, which represent the
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dispersion of fitness values in 25 trials, shows that V-shaped functions are generally more
stable than S-shaped ones. This implies that the fitness values of V-shaped functions do not
change much from trial to trial.

3.2. Comparison of Classification Performance of Metaheuristic Feature Selection Methods

Once the feature selection process was concluded, the KNN classifier was fed by
the selected features for testing. The same test set used in the FS phase is also used for
classification. However, whereas each sample is represented by 75 features in the FS
phase, the number of features used for each sample in the classification stage is less than
75, depending on the transfer function used. Classification conditions are maintained
consistent by using the same random state rate, which is chosen as 42, and identical test
data for the evaluation of all methods. Evaluation of the classification results is made based
on MCC scores since the dataset is highly imbalanced. Each metaheuristic method was
executed 25 times for each of the eight different transfer functions (51-54, V1-V4). For each
run, an MCC value was calculated, resulting in 200 MCC values per method. To compare
the effects of the S and V-shaped transfer function families on classification performance we
calculated the mean and standard deviation of 100 MCC scores obtained for both families
for each metaheuristic method. The mean and standard deviation of MCC values for each
transfer function family are presented in Table 4 for Case 1 and Table 5 for Case 2.

Table 4. Comparison of Metaheuristic Algorithms for S- and V-shaped Transfer Function Families for
Case 1.

Shape Method Mean MCC Std. D. of MCC

EO 0.5909 0.1211

GA 0.5627 0.1206

S GWO 0.5803 0.1136
PSO 0.5956 0.1043

TLO 0.6171 0.1055

WOA 0.5392 0.1174

EO 0.4916 0.1335

GA 0.4193 0.1704

v GWO 0.5191 0.1476
PSO 0.5395 0.1621

TLO 0.4767 0.1891

WOA 0.4272 0.1626

Numbers given in bold are the best scores of S and V shaped functions.

Table 5. Comparison of Metaheuristic Algorithms for S- and V-shaped Transfer Function Families for

Case 2.
Shape Method Mean MCC Std. D. of MCC

EO 0.6927 0.0528

GA 0.6730 0.0548

S GWO 0.6918 0.0523

PSO 0.6882 0.0414

TLO 0.6905 0.0466

WOA 0.6768 0.0550
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Table 5. Cont.
Shape Method Mean MCC Std. D. of MCC

EO 0.6590 0.0410

GA 0.6292 0.0604

v GWO 0.6657 0.0345

PSO 0.6709 0.0445

TLO 0.6688 0.0326

WOA 0.6262 0.0667

0.6

0.5

MCC

04

0.3

0.55

S1

S1

S2

S2

Numbers given in bold represents the best scores for S and V shapes in terms of Mean MCC metric

The bold-styled values in these tables represent the best average scores obtained for
each transfer function family. The performance results of each individual transfer function
are also presented in a graphical format in Figures 4 and 5. It can be observed that methods
using S-shaped transfer functions obtain higher classification performance than those using
V-shaped ones.

Optimizer
EO
GA
GWO
PSO
TLO

S3 S4 V1 V2 V3 V4 WOA
Transfer Function

Figure 4. Comparison of MHA FS methods for individual transfer functions for Case 1.

Optimizer
EO
GA
GWO
PSO
TLO

S3 S4 V1 V2 V3 V4 WOA
Transfer Function

Figure 5. Comparison of MHA FS methods for individual transfer functions for Case 2.

3.3. Comparison of Metaheuristic Feature Selection Methods Based on Number of Features Selected

In addition to classification performance, the number of features selected by meta-
heuristic algorithms for different transfer functions was also investigated and compared.
Every metaheuristic method for each of the eight different transfer functions is employed
25 times and statistical averages (mean and standard deviation) are calculated for each of
these 25 runs for fair assessment. We first compared the effects of transfer function families.
In other words, we took the average of scores obtained for all V-shaped functions; we also
did the same for all S-shaped functions. The results are presented in Tables 6 and 7 for Case
1 and Case 2, respectively.
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Table 6. Mean and standard deviation of number of selected features of MHA FS methods for Case 1.

Method Shape Mean Std. D. Shape Mean Std. D.
EO 30.90 4.49 3.21 0.94
GA 31.02 3.48 3.03 1.00

GWO S 30.56 3.75 v 3.44 0.87
PSO 27.13 3.53 8.47 3.44
TLO 30.85 3.84 3.93 1.59

WOA 19.73 5.88 2.96 1.00

Table 7. Mean and standard deviation of number of selected features of MHA FS methods for Case 2.

Method Shape Mean Std. D. Shape Mean Std. D.
EO 39.57 5.29 5.83 0.59
GA 42.56 7.96 5.72 1.33

GWO S 39.78 5.64 v 5.90 0.44
PSO 30.71 3.05 18.31 3.57
TLO 36.99 3.69 6.17 1.00

WOA 33.26 5.55 5.55 0.77

The dispersion of selected feature size in one of 25 trials for each individual transfer
function is also presented as a scatter plot in Figures 6 and 7, for Case 1 and 2, respectively.
It can be observed that methods using V-shaped functions use significantly fewer features
than those using S-shaped ones.
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3.4. Comparison of Metaheuristic Feature Selection Methods with Classical Feature
Selection Methods

In this section, the effectiveness of metaheuristic feature selection methods is compared
with the following classical feature selection methods: Spearman’s correlation (Spearman),
mutual information (MI), relief, variance threshold (VAR), mean absolute difference (MAD),
dispersion ratio (DR), lasso, tree-based, recursive feature elimination (RFE), and sequential
forward selection (SFS). These classical methods were implemented using the Mafese li-
brary [37], which is an open-source Python library. The number of features to be selected
was determined by ranking them based on their MCC scores. This was achieved by calcu-
lating all possible combinations of features within the range of minimum and maximum
number of features for each method. The number of features that lead to the highest MCC
value was taken as the optimum feature size for that method. The performance values are
presented in Tables 8 and 9 for Cases 1 and 2, respectively. The bold types represent the
highest scores for each metric. In order to compare the results of classical feature selection
methods with metaheuristic ones, the highest average performance values, obtained over
25 trials, for each metaheuristic method are presented in Tables 10 and 11 for Cases 1 and
2, respectively. These tables also show with which transfer functions (one for S-shaped
functions and the other for V-shaped functions), these values are obtained. Tables 8-11 also
represent the number of features selected by each method and their computation time.

Table 8. Best performances of Classical FS methods for Case 1.

Method ACC F1 Macro MCC Number of Features =~ Comp. Time (s)

DR 0.978 0.744 0.506 17 1.21
Lasso 0.967 0.492 —0.012 3 1.24
MAD 0.973 0.493 0.000 7 2.77
MI 0.978 0.661 0.442 9 16.28
RELIEF 0.973 0.493 0.000 7 60.43

Recursive 0.978 0.744 0.506 31 758.31
SPEARMAN 0.989 0.872 0.770 55 2.68

Sequential 0.989 0.897 0.794 47 2597.45
Tree 0.978 0.661 0.442 11 6.26
VAR 0.973 0.493 0.000 7 0.10

Numbers given in bold represents the best values achieved for ACC, F1 Macro, and MCC metrics.

Table 9. Best performances of Classical FS methods for Case 2.

Method ACC F1 Macro MCC Number of Features = Comp. Time (s)

DR 0.918 0.689 0.597 18 1.46
Lasso 0.842 0.352 0.054 5 1.22
MAD 0.891 0.511 0.528 14 2.89
MI 0.891 0.511 0.528 57 17.35
RELIEF 0.891 0.511 0.528 14 58.73

Recursive 0.940 0.677 0.711 39 941.72
SPEARMAN 0.891 0.511 0.528 72 2.63

Sequential 0.962 0.797 0.829 67 2590.82
Tree 0.908 0.515 0.533 27 5.87
VAR 0.891 0.511 0.528 15 0.15

Numbers given in bold represents the best values achieved for ACC, F1 Macro, and MCC metrics.
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Table 10. Best results according to the average of 25 trials of MHA FS methods for Case 1.
Method Transfer Function MCC iilcill::; ACC F1 Macro Avf,rfag:alt\ti:;ber Com}()s.)Time
54 0.628 0.650 0.918 0.630 29.92 150.98
EO V3 0.535 0.613 0.905 0.612 3.36 108.22
S2 0.606 0.631 0.914 0.616 33.44 152.08
GA V2 0.448 0.564 0.891 0.567 3.20 102.35
S4 0.630 0.651 0.918 0.629 30.52 146.72
GWO V2 0.569 0.639 0.911 0.637 3.40 100.77
54 0.616 0.658 0.916 0.643 28.08 150.78
Pso V1 0.564 0.619 0.908 0.610 9.24 140.44
S3 0.638 0.659 0.920 0.636 29.04 508.87
Lo Vi 0.525 0.597 0.905 0.590 4.20 232.92
S3 0.557 0.611 0.903 0.599 25.56 285.29
WOoA V2 0.436 0.538 0.888 0.536 3.16 124.85
Bold numbers represents the best value achieved for MM, Balanced Accuracy, ACC, and F1 Macro metrics.
Table 11. Best results according to average of 25 trials of MHA FS methods for Case 2.
Method Transfer Function MCC 221::;223 ACC F1 Macro Avil-falg::alt\i:;rer;ber ComI()S')Time

S2 0.698 0.695 0.937 0.704 40.04 280.76
EO V2 0.669 0.689 0.931 0.698 592 188.76
52 0.684 0.675 0.934 0.683 43.44 277.84
GA V2 0.652 0.676 0.928 0.685 5.92 186.54
54 0.708 0.709 0.938 0.716 37.6 151.40
WO Vi 0.674 0.696 0.931 0.706 6.00 128.04
S4 0.696 0.702 0.936 0.713 31.88 202.25
FSO V2 0.681 0.698 0.933 0.712 17.76 251.96
S4 0.707 0.703 0.938 0.710 34.68 34242
Lo Vi 0.675 0.694 0.931 0.701 5.96 423.54
S4 0.697 0.689 0.937 0.697 34.88 220.66
woaA V4 0.628 0.657 0.924 0.656 5.56 216.66

Bold numbers represents the best value achieved for MM, Balanced Accuracy, ACC, and F1 Macro metrics.

4. Discussion

In this study, we explored and compared the performances of nature-inspired meta-
heuristic algorithms for feature selection in respiratory disease classification. The main
objective is to enhance classification accuracy while reducing the feature set size, thereby
improving the model’s computational efficiency. The experiments were conducted on a
dataset consisting of respiratory sound recordings belonging to different diseases. Our
approach utilized a variety of metaheuristic algorithms and two popular families of trans-
fer functions to select the most relevant features. We first analyzed the fitness values of
eight different transfer functions belonging to two families for each metaheuristic feature
selection algorithm. It is seen that fitness values of V-shaped functions exhibit slightly
higher values than S-shaped ones. In addition, the vertical size of the plots, which represent
the dispersion of fitness values obtained in 25 trials (Figures 6 and 7), shows that V-shaped
functions are generally more stable than S-shaped ones. In other words, fitness values of
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V-shaped functions do not change much from trial to trial. Then we analyzed the effects of
these MHA and transfer functions on the classification performance for two different cases.
It reveals that MHA methods using S-shaped transfer functions obtain slightly better classi-
fication performance than the same methods when they use V-shaped functions. However,
using V-shaped transfer functions has two important advantages. First, they are much more
stable, which means their fitness values do not change much from trial to trial. Second,
the number of features selected by MHA methods when employing V-shaped transfer
functions is significantly less than the same methods when they use S-shaped functions.

Next, we compared the performances of MHA-based feature selection methods with
classical feature selection methods based on MCC metric and number of features selected.
Upon analysis of the results, it is seen that the proposed MHA-based feature selection
methods obtain better results than most, if not all, of the classical methods in both binary
and multi-class cases. The “Sequential” feature selection method, which is a classical
one, obtained the highest scores in both cases. In addition, two other classical methods,
“Spearman” and “Recursive,” obtained the second highest scores in Case 1 and Case 2,
respectively. However, these methods select a large number of features, increasing the
computational burden on the classification system. We also measured computational time
of each method for the feature selection process. The MHA-based methods’ computational
time is found to be significantly lower than FFS (Sequential) method. These results show
that if, in addition to classification performance, small number of features and low compu-
tational time are required, then MHA feature selection methods (in particular, GWO and
PSO) using V-shaped transfer functions should be chosen.

There is one point that needs explanation here. The accuracy values obtained by
classical feature selection methods are higher than MHA-based methods. This result
can lead to the conclusion that metaheuristic methods are worse. However, we want to
emphasize that the Accuracy metric could be misleading in datasets with class imbalances.
Therefore, in such datasets, metrics such as MCC, F1 or Balanced Accuracy should be used.
Our study uses a highly imbalanced dataset. Thus, we used one of these metrics, i.e., MCC,
for measuring classification performances. This way, we have derived models that can also
accurately forecast minority classes.

A possible limitation of this study is that it was conducted using a single database.
The results that would be obtained with other databases could be different than the ones
obtained here. Another limitation is due to the database used since some disease classes
are represented by very small numbers of data. Still another drawback is the use of only six
MHA; although these are the most-used ones in the literature, there are other MHA that
are not included in this study.

5. Conclusions

The main goal of this detailed comparison study is to examine the performance of
different nature-inspired MHA for feature selection in respiratory disease classification.
The results show that MHA-based feature selection algorithms provide robust mechanisms
for navigating the high-dimensional feature space, ensuring that the selected features
contribute maximally to the classification task. Furthermore, the reduction in the number
of features, especially by using V-shaped transfer functions, not only decreases the compu-
tational load but also minimizes the risk of overfitting. This is particularly important in
the context of respiratory disease classification, where the diversity and variability of the
data can lead to complex decision boundaries. The overall improvement in classification
accuracy and computational efficiency underscores the effectiveness of these algorithms
in feature selection for respiratory disease classification. Future work could explore the
combination of these algorithms with other advanced machine learning techniques, such
as ensemble learning, to further enhance the robustness and generalizability of the models.
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