
A Metric for Measuring Test Input Generation
Effectiveness of Test Generation Methods for

Boolean Expressions

Deniz Kavzak Ufuktepe ∗, Ekincan Ufuktepe∗, Tolga Ayav†
∗ Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, MO 65211, USA

† Department of Computer Engineering, Izmir Institute of Technology Izmir, Turkey

Email: dkyb5@mail.missouri.edu, euh46@missouri.edu, tolgaayav@iyte.edu.tr

Abstract—The literature includes several methods to generate
test inputs for Boolean expressions. The effectiveness of those
methods needs to be analyzed by extensive comparisons. To this
end, mutation analysis is often benefited by applying a distinc-
tively selected set of mutants on each test generation method.
Mutation analysis provides substantive information about the
effectiveness of a test suite by indicating the percentage of
killed mutants, which is a common metric. However, as we
claim and show in this paper, this metric alone is not sufficient
to demonstrate the effectiveness of the methods. For a test
generation method, the amount of generated test inputs is also
an important attribute to evaluate effectiveness. To the best of
our knowledge, there is no metric that measures the effectiveness
within a scale taking into account several attributes. In this study,
we propose a new metric to measure the effectiveness of test input
generation methods, which takes into account both the number of
killed mutants and the number of test inputs. We demonstrate our
new metric on three well-known test input generation methods
for Boolean expressions.

Index Terms—Test input generation, Boolean expressions, mu-
tation analysis, effectiveness

I. INTRODUCTION

There exist many test generation techniques and the amount

of these techniques is still growing. Whenever a new method

is introduced or a method needs to be selected for a specific

goal, effectivenesses of the tests are brought into question.

Generally, the decision criteria are based on the amount of

generated test inputs, the number of killed mutants, or the

number of mutants killed per test. These criteria, however,

are not sufficient to represent the effectiveness of a test

generation method and could be misleading. For instance,

mutation analysis is a method that has been widely used to

measure the success of a test generation method, by finding

the percentage of the killed mutants by a given set of test

inputs. Besides, the number of the test inputs generated by

a method, i.e. test suite size for that Boolean expression is

a valuable metric to show the success of that test generation

method. Even though the mutation analysis results and test

suite size are used to define a method’s success separately, a

new metric that combines both the mutant kill ratio and test

suite size could be quite beneficial. To the best of authors’

knowledge, there is no such metric proposed in the literature.

The need for this new metric is due to the fact that standalone

metrics can be misleading in certain cases. For instance, a

100% mutant kill ratio can be considered high success if only

the test suite is minimal. For sufficiently large test suites, this

ratio is not meaningful. Contrarily, if a method generates a

small test suite (which makes it very fast and feasible) and the

mutant kill ratio is low, then there is no success. Generally,

the fraction of the number of killed mutants over the number

of test inputs is used to measure the success of a test input

set. However, the problem with this approach is that there is

no difference between a test input set of one test input and a

hundred test inputs, as long as each test input kills a mutant,

i.e. both would have the value of 1.0.

In this study, a new metric called “effectiveness” is proposed

that ranges between a value 0-100%. The effectiveness metric

is proposed to be used in order to measure the quality of a test

input set that is generated by a test input generation method.

The proposed metric combines both mutation kill success of

generated test inputs and the number of test inputs a method

generates. The number of test inputs is not used directly, the

APFD value of the test inputs is used instead, which will give

us the opportunity to distinguish the aforementioned cases.

II. RELATED WORK

In the literature, there is no metric that measures the

effectiveness of a test generation method. However, we believe

that the concept of test minimization is highly related to test

generation and the idea of test minimization can be adapted

to test generation. The ideas of test minimization and test

generation intersect at the point, where they want to achieve

the same optimal amount of tests. Let us assume the maximum

number of tests that could be generated for a given system is

n, and the optimal amount of tests that could be generated or

minimized is m. Based on these information, the difference

between test generation and test minimization is that, test

minimization tries to approach to m from m ≤ x ≤ n. On

the other hand, any test generation tries to achieve m from

zero. Therefore, in this section we provide related work that

measure the effectiveness of test minimization methods.

One of the way to measure the effectiveness of test mini-

mization was proposed by Wong et al. [1], where they have

studied on 10 common Unix programs using randomly gener-

ated test suites. In order to reduce the size of the test suites,978-1-6654-1070-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on February 20,2025 at 09:05:10 UTC from IEEE Xplore. Restrictions apply.

they used a testing tool called ATAC, which was developed by

Horgan and London [2]. First, they have created a large pool of

test cases by using a random test data generation. After test

suites were randomly generated, they have seeded artificial

faults into the programs. They have categorized the artificial

faults into four groups. The faults in Quartile-I can be detected

by [0–25)% of the test cases from the original test suite; the

percentage for Quartile-II, III and IV is [25–50)%, [50–75)%

and [75–100]%, respectively. To measure the effectiveness

of the minimization, they have used the formula given in

Equation 1:

(1−
of test cases in the reduced test suite

of test cases in the original test suite
) ∗ 100% (1)

Then, the impact of minimized test suite is measured by

calculating the reduction in fault detection effectiveness, which

is given in Equation 2:

(1−
of faults detected by the reduced test suite

of faults detected by the original test suite
)∗100%

(2)

On the other hand, to measure the quality and effectiveness

of test cases or a test suite one of the most popular approach is

calculating the mutation score, which is proposed by Geist et

al. [3]. There are two types of mutation score calculation. The

first mutation score calculation does not include equivalent

mutant information whereas the second one does. For a given

program P and test suite T , to calculate the mutation score

of test suite T , the number of mutants M , the number of

killed mutants K and the number of equivalent mutants E are

required. With respect to the given information the mutation

score calculation without the equivalent mutant information is

given in Equation 3, while the mutation score calculation with

equivalent mutant information is given in Equation 4.

MS(P, T) =
K

M
(3)

MSE(P, T) =
K

(M − E)
(4)

In the context of test generation, the Test Effectiveness (TE)

measure has been widely used [4]–[6], which is given in Equa-

tion 5. The Test Effectiveness measure calculates a positive

real number. The smaller the real number is, the effective the

tests are. However, the major burden of this measure assumes

that equivalent mutants’ identification requires approximately

additional relative effort with test data generation. Therefore,

Papadakis et al [7] proposed an alternative measure to Test

Effectiveness, which is called Cost Effectiveness (CE). The

calculation for Cost Effectiveness is given in Equation 6.

TE =
number of test cases

number of exposed faults
(5)

CE =
of test cases+# of equivalentmutants

of exposed faults
(6)

III. MOTIVATION

Mostly, the information of the number of killed mutants by

a test input set and the number of test inputs are combined in

the following way [3]:

success =
#killedmutants

#test inputs
(7)

This ratio makes sense since it provides the number of killed

mutants per test, which takes into account both important

attributes. Therefore, it seems useful to measure the quality

of a test input for a given test input set. However, it is not

helpful in all circumstances. Even though a single test input

kills many mutants and some of the test inputs kill only one

mutant or none, this metric will give us an estimate of the

quality of a single test input. The main problem with this

metric is that it does not consider the total number of possible

tests and the total number of mutants we are dealing with in the

mutation analysis phase. In order to understand the possible

consequences come with this negligence, assume that there are

two different test generation methods, A and B that generates

different amount of test inputs that kills different amount of

mutants. Assume that test generation method A generated 1

test input -it may be a randomly generated test input- that

kills one mutant out of 300 mutants. On the other hand, assume

that test generation method B has generated 300 test inputs and

kills all of the 300 mutants. If we look at the success measure,

both will have the same success value of 1.0. However, these

two test generation methods cannot be considered equivalent.

For test generation method A, it has only generated a single test

input that exactly kills one mutant, which can be considered

as a success in terms of not generating redundant test inputs.

The disadvantage of method A is that it does not kill all the

introduced mutants. Nevertheless, test generation method B

generated many test inputs, but that kills all of the introduced

mutants is also a success. However, test generation method B

might have generated similar (redundant) test cases, and could

have killed all the introduced mutants with fewer test cases.

For smaller systems, the disadvantages of B might be harmless,

but in a relatively large and complex system, execution a large

test suite can increase the test execution time drastically. For

instance, in an industrial project [8] [9], running the entire test

suite is said to take seven weeks.

To measure the effectiveness of the test generation method,

we tackle the problem by treating it like f-measurement, which

is also defined as a harmonic mean. The f-measurement or the

harmonic mean is mostly used to combine two metrics; preci-

sion and recall, which are mostly used in information retrieval

and machine learning in order to understand the relevancy.

These two metrics both provide valuable, yet independent

information. Therefore, these two metrics are combined into a

single metric called f-measurement or harmonic mean. In this

study, we use two valuable information; number of generated

test inputs and number of killed mutants. These two attributes

are crucial measurements in the context of test generation.

For any test generation method, it is desired to generate few

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on February 20,2025 at 09:05:10 UTC from IEEE Xplore. Restrictions apply.

test inputs. On the other hand, it is also important that the

generated test inputs are able to expose all potential faults, in

other words, to kill all the mutants.

IV. PROPOSED METRIC

In this section, we define the criteria for the effectiveness

measurement of tests. The effectiveness is defined over the two

facts: i) To have a minimal amount of test inputs, ii) To kill all

the mutants associated to the potential faults. Therefore, for

any test generation method, it is essential to generate a minimal

test suite that is able to reveal all potential faults. Such a test

suite is called effective. This leads to a situation that the test

generation technique generates such a small yet effective test

inputs that each test input kills more than one mutants. On the

other hand, small test suites would be beneficial for regression

testing, in terms of reducing the execution time of the entire

suite. For a given test generation technique, let;

• mk = number of killed mutants.

• mt = number of total mutants.

• t = number of generated test inputs.

• T = maximum number of test inputs required to reveal

all faults in a system. For a 5-input system, maximum

number of tests would be 25 = 32.

We construct our metric combining two different measure-

ments and it is scaled in the range between 0-1. The first input

is the ratio of generated test inputs with respect to maximum

number of tests and the second input is the mutant kill ratio.

We begin with the definition of the first input, Generated

Test Inputs (GTI) that ranges in [0, 1]. When we divide the

generated test inputs by the maximum number, small ratios

closer to zero mean that the test suite is very small and

effective in this manner. We define the most effective test suite,

i.e. GTI=1.0, such that the test suite contains only one test. The

GTI formula is given in Equation 8. Note that the maximum

value of GTI is 1.0 whereas its minimum is 1/T .

GTI = 1−
|t− 1|

T
(8)

The second input for the effectiveness calculation is the

Mutant Kill Success (MKS) that also ranges in [0, 1]. The

MKS values closer to 1.0 mean that the test suite kills almost

all mutants. Contrarily, smaller MKS values mean that the

test suite is unable to kill the mutants, that is unsuccessful or

ineffective. Equation 9 gives the MKS calculation.

MKS =
mk

mt

(9)

Finally, based on harmonic mean, GTI and MKS metrics

constitute the proposed Test Generation Effectiveness Score

(TGES) metric, as shown in Equation 10.

TGES =
2 ·GTI ·MKS

GTI +MKS
∗ 100 (10)

In the next section, we evaluate this formula on three well-

known test case generation methods for Boolean expressions

and compare their effectiveness.

Fig. 1: Cause effect graph of selected requirement of TCAS-2.

V. EXPERIMENTAL SETUP

In this section, we present the selected Boolean expression

and its corresponding cause effect graph, the selected test

case generation methods to evaluate the proposed metric, and

finally the tool used to evaluate these methods.

A. Boolean Expression and Cause Effect Graph

TCAS-2 is an avionics system that is used to avoid col-

lisions. The requirements of the TCAS system is often used

in experimental studies particularly for testing critical systems

[10]–[14], and these requirements can be found in [13]. For

evaluations, we select one of the requirements of TCAS-2,

given below:

(ab)(def +def +def)(ac(d+e)h+a(d+e)h+ b(e+f)))
Cause effect graphs are a graphical presentation of Boolean

expressions that can be also used in test input generation. The

graph has three main node components; Cause, Intermediate

and Effect nodes. The logical and, or, exclusive or and some

other defined relationships between different cause nodes can

be represented in the graph. From left to right: cause to effect,

each component forms an intermediate node which will in the

end form together the final effect node. After simplifying by

taking similar components in the expression as single nodes,

reusing nodes if possible and determining the exclusive or

relationship. Then, we get the corresponding Cause effect

graph in Figure 1, which is one specification out of a 20

requirements cause effect graph.

B. Selected Test Input Generation Methods

In the experiments, we used three well-known test input

generation methods for Boolean expressions: Myers method,

MUMCUT and Unique MC/DC.

By refining the cause effect testing proposed by Elmendorf

[15], Myers proposed an efficient test input generation method

from cause effect graphs of any Boolean expressions [16].

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on February 20,2025 at 09:05:10 UTC from IEEE Xplore. Restrictions apply.

He defined a few rules that will be used to decide which

test inputs should be selected from all possible test inputs

for that specific Boolean expression. The method analyzes the

cause effect graph from the effect nodes to cause nodes. The

corresponding formula for each AND and OR relations with

their each possible truth value is used to decide the final test

input set. This method generates only the test inputs that the

rules defined as necessary.

Chen et. al. proposed MUMCUT [17], which is a fault based

approach to generate test inputs targeting specific fault types

in Boolean expressions given in Disjunctive Normal Form.

Disjunctive Normal Form contains components connected by

OR logical operation. It is a combination of three sub-methods

called Multiple Unique True Point (MUTP), Multiple Near

False Point (MNFP) and Corresponding Unique True Point and

Near False Point Pair (CUTPNFP). Each of these sub-methods

target different types of faults, and the combination of them

is used to get MUMCUT test input set. An example of the

approach can be given as; for each literal in each component

of the Boolean expression, each possible truth value with their

effects on the outcome, both in original expression and in

the expression where that literal is negated, is considered as

different test inputs. Therefore, this method generates a high

number of test inputs, with high success in fault detecting.

Unique Modified Condition/Decision Coverage (Unique

MC/DC) is an efficient test input generation method for

Boolean expressions [18], [19]. It is widely used and accepted

as a standard that needs to be met in critical systems. Avion-

ics, automotive and health related software should meet this

standard recommended under ISO26262 and DO-178C. This

approach considers each literal in each component and their

effects on the output directly. It is done by changing the truth

value of the selected literal while fixing the truth values of

all the other literals. A test input with this characteristics is

selected. Then, a second test input is selected with the same

characteristics, where the only difference is the truth values

of the selected literal and the outcome is the opposite of the

first selected test input. These two test inputs are called an

independence pair and these pairs are selected for each literal

in each component. The aim is to generate test inputs for each

possible truth value for each literal with their direct effects on

the output, so that any fault related to that specific literal can

be caught.

C. Tool

The tool proposed in [20], [21] is used in the experiments

to generate test inputs by using the selected methods, and

evaluate the mutation success of each. Test input sets are

generated by Myers, MUMCUT and Unique MCDC methods

and the corresponding mutation kill successes are computed.

The mutation types generated and evaluated in the tool are:

Operator Reference Fault (ORF), Expression Negation Fault

(ENF), Variable Negation Fault (VNF), Missing Variable Fault

(MVF), Variable Reference Fault (VRF), Clause Conjunction

Fault (CCF), Clause Disjunction Fault (CDF), Stuck at-0

(SA0), Stuck at-1 (SA1). All possible mutants on each given

fault type is created and the generated test inputs are run on

these mutants to find the number of killed mutants.

VI. EVALUATION OF TEST GENERATION METHODS WITH

TGES

In this section, we evaluate the test generation effectiveness

for three test input generation methods; Myers [16], Unique

MC/DC [18], [19] and MUMCUT [17]. We perform our

evaluations by using TGES and Test Effectiveness (TE) on

including all mutant types and for each mutant type individu-

ally. Thereby, we will be able to evaluate the test generation

method by their overall and mutant type based effectiveness.

In Section V-A, we describe the Boolean expression that we

use the experiments. In order to calculate the TGES for each

test generation method and to evaluate them we need two

prior information; the maximum amount of test inputs that

could be generated and the amount of total mutants that are

introduced. The Boolean expression has 7 inputs, therefore,

the total number of test inputs can be 27 = 128 at most. As

for the total number of mutants, we introduce 122 mutants. For

calculating TE, we only need the information of total amount

of generated tests and the number of exposed faults. Based on

these information we can perform TGES and TE calculations.

The calculation results and evaluations are given in Tables I

and II.

In Table I, we have calculate the TGES results for each

test generation method, and with respect to the TGES results,

Unique MC/DC ranks first with the highest score 81.96 and

MUMCUT ranks third with a 70.54 test generation effec-

tiveness score (TGES). The TE results, also give the same

ranking order with TGES. For Unique MC/DC the TE score

is calculated as 0.12, 0.37 for Myers, and finally 0.50 for

MUMCUT. In literature, Unique MC/DC is known to be an

effective test generation method that generates few test inputs

that are able to reveal many faults. Furthermore, we can see

that Unique MC/DC has only generated 11 test test inputs

over 128. On the other hand, MUMCUT is well known to

have a higher mutant kill success, but generates too many test

inputs as can be seen in Table I. Briefly, for the given Boolean

expression, with our proposed test generation effectiveness

metric, Unique MC/DC is found to be a more effective test

generation method compared to Myers and MUMCUT.

We also perform an experiment using TGES and TE based

on the mutant types we introduce, where the results are shown

in Table II. We believe that this experiment might show which

test generation method is more effective on which type of

mutants with respect to the test inputs that are generated.

Therefore, in Table II we have given a detailed information

for each test generation method and mutant type that includes

the number of Killed Mutants (KM) by the test generation

method, Mutant Kill Success (MKS), Generated Test Inputs

(GTI), TGES and TE. In Table II, one can see that with

TGES, Unique MC/DC has a 95.94 effectiveness over mutant

type ORF, with respect to the generated test inputs and MKS.

On the other hand, with TE Unique MC/DC has a 0.78

effectiveness score. However, in terms of TGES, for mutant

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on February 20,2025 at 09:05:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Test Generation Effectiveness Score and Attributes for three Test Generation Methods based on including all mutant

types

Test Generation Method Number of Generated Test Inputs GTI Killed Mutants MKS TGES Test Effectiveness (TE)
Unique MC/DC 11 0.9219 90 0.7377 81.96 0.12

Myers 34 0.7422 93 0.7541 74.81 0.37
MUMCUT 52 0.6016 104 0.8525 70.54 0.50

type SA1, MUMCUT has a higher effectiveness than Myers

and Unique MC/DC. Although that MUMCUT has the highest

effectiveness score for SA1 mutant type with TGES, according

to the TE scores, MUMCUT has the lowest effectiveness score

and Unique MC/DC has the highest effectiveness score. For

mutant type SA0, both calculated with TGES and TE Unique

MC/DC has generated effective test inputs than MUMCUT

and Myers. On the other hand, we can see that all the

test generation methods did not quite generated effective test

inputs for mutant type CDF. Among three test generation

methods, for mutant type CDF MUMCUT has generated the

most effective test inputs, which has 56.54 effectiveness score.

However, according to TE scores, MUMCUT has the lowest

effectiveness and Unique MC/DC has the highest effectiveness

score. For the remaining five mutant types CCF, VRF, ENF,

MVF and VNF, with TGES and TE, Unique MC/DC has

outperformed MUMCUT and Myers in terms of generating

effective test inputs. With respect to the experimented Boolean

expression and the TGES results in Table II, Unique MC/DC

has generated effective inputs over seven mutant types (ORF,

SA0, CCF, VRF, ENF, MVF and VNF), and MUMCUT has

generated effective inputs over two mutant types (SA1 and

CDF). However, the TE scores shows that Unique MC/DC has

generated effective inputs over all of the mutant types. Based

on the TGES and TE results that are specifically measured for

each mutant type, we can have a brief idea about the rules

of the test generation methods and effectiveness over specific

mutant types.

VII. DISCUSSION

We perform the experiments on a single Boolean expression

given in Section V-A, and calculate the effectiveness of the

generated test inputs with our proposed metric TGES and

compare it with a widely used effectiveness measure TE (Test

Effectiveness).

According to the outcomes given in Section VI, TGES

provides general score within a given scale, while TE provides

varying range of effectiveness score. On the other, TE does not

provide whether the test generation method is really effective

or not, but still can be used for comparing test generation

methods. However, even in comparing test generation methods

TE can be misleading, since that it does not include the

surviving mutants. This could be seen, for the mutant type

SA1, where Unique MC/DC has the least amount of test inputs

generated, but low mutation score for SA1. In addition, we can

see that MUMCUT has a higher mutation score for SA1, but

higher test inputs generated. As for the final outcome based on

mutant type SA1, MUMCUT is slightly more effective than

Unique MC/DC. In Table II, another example can be seen

for mutant types ORF and VNF. It can be seen that TE has

generated the same test effectiveness scores. However, they do

not share the same mutation score. Intuitively, they should not

share the same effectiveness score, the test generation method

with the highest mutation score must have a higher score.

Table II shows that for ORF and VNF the effectiveness scores

by TGES are different, and the mutant type with a higher

mutation score has also a higher effectiveness score.

Furthermore, another advantage of TGES is that, if a test

generation method fails to kill any of the existing mutant, the

TGES score for the test generation method will be 0, which

indicates that the test suite is entirely ineffective.

VIII. THREATS TO VALIDITY

In this section, we discuss the limitations of our overall

case study design, setting and the proposed metric. The metric

we propose is more adequate for critical systems, where

requirements are clearly defined. However, this metric may

not be appropriate in software systems with complex inputs,

such as objects types and free text content inputs. These inputs

increase the complexity of calculating all possible test inputs.

However, the complexity might be decreased by using domain

partitioning and sampling.

Common metrics such as Test Effectiveness and Mutation

Score are the best alternatives that take into account equivalent

mutants under consideration. In our study, we do not construct

TGES score based on equivalent mutants. Therefore, our

experimental study does not dwell upon further investigation

about which mutants are equivalent.

There are not enough real life examples of Boolean ex-

periments or open source critical systems that can be used

for evaluation purpose. Most of the studies that focus on test

generation for Boolean expressions forge their own Boolean

expression in their case study. TCAS-II seems to be a unique

and common real example. The evaluations should be repeated

with more real systems.

IX. CONCLUSION AND FUTURE WORK

The existing metrics that measure the effectiveness of a

test generation method, provides a useful insight about the

quality of the generated tests. However, these metrics can be

unreliable, when they exclude the surviving mutants or faults.

In our motivation, we have given an example where two dif-

ferent test generation method can have the same effectiveness

results even though they are obviously different. Therefore,

in this study, we propose a new metric that measures the

effectiveness of test generation methods, namely TGES. The

metric provides an percentage score that ranges between 0-

100. To calculate the effectiveness score, the metric requires

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on February 20,2025 at 09:05:10 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Mutant type based TGES and TE results

Mutant Type

Total

Number

of Mutants

Myers Unique MC/DC MUMCUT

Test inputs = 34
GTI = 0.7422

Test inputs = 11
GTI = 0.9219

Test inputs = 52
GTI = 0.6016

KM MKS TGES TE KM MKS TGES TE KM MKS TGES TE
ORF 14 14 1.0 85.20 2.42 14 1.0 95.94 0.78 14 1.0 75.12 3.71
SA1 15 7 0.4667 57.31 4.86 7 0.4667 61.97 1.57 10 0.6666 63.24 5.2
SA0 15 14 0.9333 82.69 2.42 12 0.8 85.66 0.91 14 0.9333 73.16 3.71
CDF 15 6 0.4 51.98 5.66 5 0.3333 48.96 2.2 8 0.5333 56.54 6.5
CCF 15 8 0.5333 62.06 4.25 8 0.5333 67.57 1.37 11 0.7333 66.10 4.72
VRF 15 12 0.8 77.00 2.83 12 0.8 85.66 0.91 15 1.0 73.16 3.46
ENF 11 11 1.0 85.20 3.09 11 1.0 95.94 1.0 11 1.0 75.12 4.72
MVF 7 7 1.0 85.20 4.85 7 1.0 95.94 1.57 7 1.0 75.12 7.42
VNF 15 14 0.9333 82.69 2.42 14 0.9333 92.76 0.78 14 0.9333 75.12 3.71

two types of information. The first required information is the

ratio of generated test inputs divided by the total amount of

test inputs that could be generated. The second required input

is mutation kill success ratio. With these two information, we

calculate a test generation effectiveness score.

We try our metric on a TCAS requirement and compare

it with a common metric called Test Effectiveness (TE).

Furthermore, we compared TGES and TE on three popular test

generation methods over 9 types of mutants. We perform two

evaluations with TGES and TE. The first evaluation was on

the overall effectiveness of test generation methods. In the first

evaluation, TGES and TE provide the same ranking among

the three test generation methods. However, it is important

to mention that TGES provides a general effectiveness of a

test generation method, and does not require a comparison

if a test generation method if effective or not. On the other

hand, TE provides a positive real number, that can be used

for comparison, but does not provide an output if the test

generation method is effective based on a scale. The second

evaluation was on measuring the test generation methods’

effectiveness over mutation types. TE inferred the Unique

MC/DC is effective on every mutant type. However, TGES

inferred that Unique MC/DC is effective on seven out nine

mutant types, and MUMCUT effective on the remaining two

types of mutants.

There might be two possible extensions to this work in

future. The first one is that, our metric does not take into

account the test case generation time. For instance, MUMCUT

is known to have a higher complexity and longer runtime

compared to other test generation methods. Sometimes the

time spent on generating a test suite can be considerable,

which plays a factor in choosing a test generation method.

Therefore, this time can also be included in the effectiveness.

The second potential extension of our work could be taking

equivalent mutants into account. Existing metrics such as

mutation score and test effectiveness have alternative metrics

that take equivalent mutants under consideration. Thereby,

the TGES formula can be extended by including equivalent

mutants.

REFERENCES

[1] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set minimization on fault detection effectiveness,” Software: Practice

and Experience, vol. 28, no. 4, pp. 347–369, 1998.
[2] J. R. Horgan and S. London, “A data flow coverage testing tool for c,” in

[1992] Proceedings of the Second Symposium on Assessment of Quality

Software Development Tools. IEEE, 1992, pp. 2–10.
[3] R. Geist, A. J. Offutt, and F. C. Harris Jr, “Estimation and enhance-

ment of real-time software reliability through mutation analysis,” IEEE

Transactions on Computers, no. 5, pp. 550–558, 1992.
[4] E. J. Weyuker, “More experience with data flow testing,” IEEE trans-

actions on software engineering, vol. 19, no. 9, pp. 912–919, 1993.
[5] M. Papadakis and N. Malevris, “An empirical evaluation of the first and

second order mutation testing strategies,” in 2010 Third International

Conference on Software Testing, Verification, and Validation Workshops.
IEEE, 2010, pp. 90–99.

[6] N. Li, U. Praphamontripong, and J. Offutt, “An experimental compar-
ison of four unit test criteria: Mutation, edge-pair, all-uses and prime
path coverage,” in 2009 International Conference on Software Testing,

Verification, and Validation Workshops. IEEE, 2009, pp. 220–229.
[7] M. Papadakis and N. Malevris, “An effective path selection strategy

for mutation testing,” in 2009 16th Asia-Pacific Software Engineering

Conference. IEEE, 2009, pp. 422–429.
[8] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing

test cases for regression testing,” IEEE Transactions on software engi-

neering, vol. 27, no. 10, pp. 929–948, 2001.
[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioriti-

zation: A family of empirical studies,” IEEE transactions on software

engineering, vol. 28, no. 2, pp. 159–182, 2002.
[10] M. F. Lau and Y. T. Yu, “An extended fault class hierarchy for

specification-based testing,” ACM Transactions on Software Engineering

and Methodology, vol. 14, no. 3, pp. 247–276, 2005.
[11] T. Y. Chen, M. F. Lau, K. Y. Sim, and C. Sun, “On detecting faults

for boolean expressions,” Software Quality Journal, vol. 17, no. 3, pp.
245–261, 2009.

[12] U. Badhera, P. G.N., and S. Taruna, “Fault based techniques for testing
boolean expressions : A survey,” International Journal of Computer

Science & Engineering, vol. 3, no. 1, pp. 81–90, 2011.
[13] E. Weyuker, T. Goradia, and A. Singh, “Automatically generating test

data from a boolean specification,” IEEE Transactions on Software

Engineering, vol. 20, no. 5, pp. 353–363, 1994.
[14] A. Gargantini and G. Fraser, “Generating minimal fault detecting test

suites for general boolean specifications,” Information and Software

Technology, vol. 53, no. 11, pp. 1263–1273, 2011.
[15] W. R. Elmendorf, “Cause-effect graphs in functional testing,” [Pough-

keepsie, N.Y.] : IBM, Tech. Rep., 1973.
[16] G. J. Myers, The Art of Software Testing, 1979.
[17] T. Chen, M. Lau, and Y. Yu, “Mumcut: A fault-based strategy for testing

boolean specifications,” in Asia-Pacic Software Engineering Conference,
1999, p. 606.

[18] K. Foster, “Sensitive test data for logic expressions,” ACM SIGSOFT

software engineering notes, vol. 9, no. 2, pp. 120–125, 1984.
[19] J. Chilenski and S. Miller, “Applicability of modified condition/decision

coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193–200, 1994.

[20] D. Kavzak Ufuktepe, T. Ayav, and F. Belli, “Test input generation from
cause–effect graphs,” Software Quality Journal, pp. 1–50, 2021.

[21] D. Kavzak Ufuktepe, “Test case generation from cause effect graphs,”
Master’s thesis, Izmir Institute of Technology, 2016.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on February 20,2025 at 09:05:10 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T12:13:58-0400
	Preflight Ticket Signature

