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ABSTRACT

QUANTUM THERMAL CONDUCTIVITY OF LOW-DIMENSIONAL
DISORDERED MATERIALS

The shrinking of technological devices leads to the emergence of exotic heat con-

duction behaviors such as quantization of thermal conductivity, phonon tunneling, and

ballistic conduction. Understanding and exploiting these quantum effects is crucial for

advancing technologies such as thermal management and designing advanced materi-

als in nanoscale systems. This research has focused on two topics: the possibility of

constructing a device based on phonon tunneling and the quantum thermal conductiv-

ity of amorphous graphene, which shows quantum effects on room temperature due to

strong carbon-carbon bonds. In doing so, we calculated the transmission coefficients

using Green’s functions for both systems, and the Kubo-Greenwood method was used ad-

ditionally for amorphous graphene. We worked in the harmonic limit since the scattering

due to the material’s internal structure is the dominant scattering mechanism in disordered

materials. Thermal conductivities were calculated using the Landauer formulation. For

the distribution function in the Landauer formula, two different distribution functions,

Bose-Einstein and Maxwell-Boltzman, were used to determine the quantum and classical

thermal conductivities.

A thermal chromator and a medium with a phononic gap were adjoined and placed

between two thermal reservoirs to construct the phonon tunneling device. The depen-

dency of transport properties on the gap system’s length is investigated. Results reveal

the possibility of building such a device. Besides, the classical thermal conductivities of

amorphous graphene are almost twice as high as the quantum thermal conductivity, which

shows that quantum thermal conductivity determines the thermal properties in high Debye

materials where phonon-phonon interactions are suppressed.

iv



ÖZET

DÜŞÜK BOYUTLU DÜZENSİZ MALZEMELERİN KUANTUM ISIL
İLETKENLİĞİ

Teknolojik cihazların küçülmesi, termal iletkenliğin kuantizasyonu, fonon tünel-

lemesi ve balistik iletim gibi egzotik ısı iletimi davranışlarının ortaya çıkmasına neden

olmaktadır. Bu kuantum etkilerinin anlaşılması ve kullanılması, termal yönetim gibi

teknolojilerin ilerletilmesi ve nano ölçekli sistemlerde gelişmiş malzemelerin tasarlan-

ması için çok önemlidir. Bu araştırma iki konuya odaklanmıştır: fonon tünellemesine

dayalı bir cihaz inşa etme olasılığı ve güçlü karbon-karbon bağları nedeniyle oda sıcaklı-

ğında kuantum etkileri gösteren amorf grafenin kuantum termal iletkenliği. Bunu ya-

parken, her iki sistem için de Green fonksiyonlarını kullanarak iletim katsayılarını hesapla-

dık ve amorf grafen için ek olarak Kubo-Greenwood yöntemini kullandık. Malzemenin iç

yapısından kaynaklanan saçılma, düzensiz malzemelerdeki baskın saçılma mekanizması

olduğundan harmonik limitte çalıştık. Termal iletkenlikler Landauer formülasyonu kul-

lanılarak hesaplanmıştır. Landauer formülündeki dağılım fonksiyonu için, kuantum ve

klasik termal iletkenlikleri belirlemek üzere Bose-Einstein ve Maxwell-Boltzman olmak

üzere iki farklı dağılım fonksiyonu kullanılmıştır.

Fonon tünelleme cihazını oluşturmak için bir termal kromatör ve fononik bant

boşluklu bir ortam bitişik hale getirilmiş ve iki termal rezervuar arasına yerleştirilmiştir.

Taşıma özelliklerinin boşluk sisteminin uzunluğuna bağımlılığı araştırılmıştır. Sonuçlar

böyle bir cihazın inşa edilebileceğini ortaya koymaktadır. Ayrıca, amorf grafenin klasik

termal iletkenlikleri kuantum termal iletkenliğinin neredeyse iki katıdır, bu da kuantum

termal iletkenliğinin fonon-fonon etkileşimlerinin bastırıldığı yüksek Debye malzemele-

rindeki termal özellikleri belirlediğini göstermektedir.
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CHAPTER 1

INTRODUCTION

Any material contains disorders above a specific temperature.[1] Even in crys-

talline materials, where atoms dwell in a repetitive, ordered pattern, irregularities are

inevitable. The most common disorder in crystals is the thermal motion of atoms.[2] Be-

sides, atoms can be displaced, substitutional or interstitial impurity atoms can be present,

and points defects may form. Disorders can occur randomly, or they can be intention-

ally created in order to control the properties of materials since the existence of disorder

gives rise to rich physics.[3–10] Apart from deviations from crystalline structure, atoms

in a solid may dwell in a completely irregular, amorphous pattern.[11] These amorphous

solids lack long-range translational order. Earlier, amorphous solids were thought of as

crystals containing disorders.[12, 13] However, many amorphous solids do not even have

a crystalline structure that is a counterpart. In 1932, Zachariasen worked on the forms

of oxide glasses and concluded that the amorphous solids have continuous random net-

works. He asserted the fundamental discrepancy between a pristine and amorphous net-

work is the absence of symmetry and long-range periodicity in the latter.[12] Apart from

this, the bond character is the same, and the angles in Zachariasen’s glasses slightly differ

from those in crystals. Even though Zachariasen’s work is an essential cornerstone in un-

derstanding amorphous solids’ structural properties, different models continue to emerge,

and an adequate scientific explanation of the amorphous form is still being investigated.

[14–18]

Materials in which the wave equation of carriers is confined to at least one di-

mension are called low-dimensional materials. High-tech practical instances of low-

dimensional systems are one-dimensional (1D) materials, such as nanotubes, nanowires,

rods, and fibers; two-dimensional (2D) materials, graphene, layered insulators and semi-

conductors; and zero-dimensional materials(0D), quantum dots. Low-dimensional mate-

rials have emerged as favorable candidates for practical device ingredients due to the rapid

development of nanoscience and nanotechnology. Low-dimensional materials mostly

own this prominence to the quantum confinement effect and high surface area to vol-

ume. [19] The higher surface-to-volume ratio and ultra-shrink size provide more active

sites than conventional bulk materials.[20–24] The quantum confinement of the carriers

constitutively leads to a discrete spectrum. Low-dimensional materials provide parame-

ters, such as size, to tune energy levels.[25] This property allows us to tune the properties
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of low-dimensional materials.

Thermal conductivity is one of the principal characteristics of materials. So, we

cannot design materials without regarding their thermal properties. In one condition, high

thermal conductivity is desirable, while in another situation, low thermal conductivity

is vital. Thermoelectrics is a typical example that requires materials with low thermal

conductivity. On the other hand, electronic applications require materials with high heat

conduction properties to remove excessive heat from devices. Fourier made the first quan-

titative description of thermal conductivity in the early 1800s. This definition states that

the heat flux is inversely proportional to the temperature gradient, J = −κ4T .[26]. The

proportionality constant, k, is called the thermal conductivity. However, Fourier’s law is

a relevant picture when diffusion dominates heat conduction. With the miniaturization of

devices, the mean free path, the average distance traveled by carriers without collisions,

has become comparable with devices’ lengths, see Fig.1.1. As a result, carriers travel

through devices without scattering, and the diffusion picture fails to describe the transport

properties. Electrons are the dominant heat carriers in metals and conductors. Nonethe-

less, in dielectric solids, phonons, the quanta of collective atomic vibrations, are primary

heat carriers. Below the temperature corresponding to the highest phonon mode energy,

i.e., Debye temperature, materials manifest quantum effects.[27] The research on quan-

tum thermal transport is of critical importance for the progress of state-of-art nanodevices

that drastically differ from macroscopic devices.

Figure 1.1. The illustration of carriers’ propagation through a solid in the ballis-
tic(upper) and diffusive(lower) transport regime. λ indicates the mean free
path.
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1.1. Quantum Thermal Transport

Classical particles obey the Maxwell-Boltzmann distribution. Bose-Einstein or

Fermi-Dirac distributions govern the occupancy of quantum particles due to their spins;

see Fig.1.2.[28] Particles with integer spins are called bosons, and particles with odd half-

integral spins are called fermions. Fermions can not occupy the same state due to the Pauli

exclusion principle, while more than one boson can occupy the same energy level. One

of the boson statistics’ primary conclusions is the disparency between the diamond’s heat

capacity at low and high temperatures. When the thermal energy is lower than the gap

between the discrete vibrational spectrum, the quantum effects govern the heat capacity

much lower than the Dulong-Petit prediction at low temperatures.[29–32]

Figure 1.2. Comparision of Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac dis-
tributions. Both quantum mechanical distributions become Maxwell-
Boltzman at high temperatures, as they should be. Nevertheless, at low
temperatures, there is a marked difference between them.

In the nanoscale, thermal transport occurs through discrete channels. Heat con-

duction, like electron conduction, is quantized when the mean free path of the carriers is

equal to or longer than the length of the medium. Landauer-Buttiker formula describes

the thermal flux as[33–35]

Jth =
∑
m

∫ ∞
0

dω ~ω [fhot − fcold] Ξm(k) (1.1)
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where m is the mode index, Ξm reprensents transmission coefficient, ωm(q) indicates the

phonon dispersion relation, f = [exp(~ωm/kBT )− 1]−1 is Bose-Einstein distribution for

the two(hot/cold) thermal reservoirs. The conductance is determined from the heat flux

via

Gth =
Jth
4T

=
k2
b

h

∑
m

∫ ∞
xm

dx
x2e2

(ex − 1)2
Ξm(xkBT/~) (1.2)

where x = hw(q)/kbT . In the limit, ~ω(q = 0) = 0, consider a one-dimensional

ballistic system, where the four lowest lying modes, one longitudinal, two transverse, one

torsional, make an appreciable contribution and if the interface between the reservoirs and

the scattering field is perfect, i.e., the transmission coefficient is equal to one, the Eq.1.2

becomes

Gth = g0 = π2k2
BT/(3h) (1.3)

This value characterizes the maximum possible contribution of a single phonon channel.

The quantization of the thermal conductance has been experimentally observed at room

temperature in a gold single-atom junction[36] and at very low temperatures in suspended

insulating nanostructures[37]. In the ballistic regime, the transmission coefficient equals

the number of channels.

1.2. Phonon Tunneling

Tunneling, a characteristic behavior of waves, may occur when the wave propa-

gates through different mediums. So, electromagnetic waves penetrate optic barriers just

as water waves pass through a barrier in a ripple tank.[38] When a propagating wave

encounters an interface, the second medium may transmit, refract, or totally reflect the in-

coming wave. The wave equation has decaying solutions with an imaginary wave vector

for total reflection in the second medium region.[39] These evanescent solutions exponen-

tially decay with the length. If a third medium is placed sufficiently close to the boundary

between the first and second, the incoming wave can tunnel through the second medium

via these evanescent waves.[38] Under wave-particle duality, quantum mechanical parti-

cles can also tunnel through an energy barrier.[40]

Phonons, the primary heat carriers in non-metallic (insulating or semiconducting)

crystalline solids, propagate through vibrational waves. In some solids, a certain number

of vibrational modes are forbidden; this opens a gap in their thermal spectrum, the so-

called phononic gap or stopband. Consequently, the phonon propagation in such solids

may display the tunneling phenomenon when the frequency of propagating phonon falls
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inside the phononic gap. Several Molecular Dynamical studies have shown that phonon

tunneling plays an essential role in tuning thermal conductivity behavior of periodic struc-

tures, nano-composites[41], superlattices[42–44], interface structures [45, 46], and lay-

ered (wander walls) structures[47].

Due to the artificial periodicity of superlattices, a stop band appears at the center

and the boundary of the folded Brillouin zone. The experimental evidence for this occur-

rence was demonstrated by the use of the phonon spectroscopy technique in crystalline

superlattices[48] and in amorphous superlattices[49]. Since the early experimental study

of Narayanamurti, the forbidden phonon propagation mechanism has been investigated

experimentally and theoretically. Mizuno and Tamura studied phonon resonant tunneling

on single-[50], double-[51] and multiple-barrier[52] structures where barriers are made of

periodic superlattices. They adopted the continuum model-based transfer matrix method

and revealed the resonant transmission condition of acoustic phonons. Further, they dis-

cussed the tunneling times through single- and double-barrier structures.[53, 54]. They

claim that since phonons’ propagation occurs at the speed of sound, much slower than

that of light, the measurement of tunneling time is expected to be easier.

Ridley elucidated that despite the absence of propagating vibrational modes, the

polar optical modes can be transmitted through a rigid barrier layer in favor of long-range

electric fields generated by themselves.[55] He used a macroscopic continuum model

that simultaneously includes the mechanical and electrostatic boundary conditions. The

model’s scope has been widened to explain the phonon tunneling of optical nonpolar

modes by Perez and Alvarez.[56] Additionally, they et al. are concerned with the times of

phonon tunneling phenomenon.[57–60] Beside these, a particular amount of experimen-

tal and theoretical works have been made on tunneling through waveguides and phononic

crystals.[61–67] These studies can be exemplary of acoustic phonon tunneling. A few

experimental measurements from them assert that tunneling of phonons occurs at super-

sonic speed. Despite the considerable work on tunneling and its times, there are still open

questions.

The nanobridge structure is a typical structure widely used in molecular electron-

ics, nanophononics, nanomechanics, and optoelectronics.[68–73] With the novel exper-

imental techniques, it is now possible to measure the thermal conductance of a single

molecule in favor of this structure.[74] In this study, we propose a phonon tunneling de-

vice that could enable observation of the phonon tunneling phenomenon through a general

bridge set-up based on advances in nano-scale heat transfer measurements. The device

consists of a thermal dichromator, a medium with a phononic gap at the frequency of inter-
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est, and two macroscopic reservoirs. The thermal dichromator is instead of a monochro-

mator since acoustic phonons are hard to scatter and barely affected by atomic details.

So, we can not open a gap in the low-frequency range. As a result, the dichromator only

allows the propagation of low-frequency phonons and a portion of phonons with frequen-

cies that coincide with the phononic gap. The phononic gap system acts as a barrier

to selected phonons. Transmission characteristics of the structure are revealed based on

Green’s Functions Method, which, in phonon tunneling research, was used only to verify

the resonance condition in Mizuno’s work to the best of the author’s knowledge.[51]

1.3. Thermal Transport in Amorphous Materials

The mechanism that underlies amorphous materials’ thermal conductivity is

distinctively different from ordered solids.[75, 76] Fig.1.3 demonstrates the thermal con-

ductivity of both ordered and amorphous phases of silicon. The amorphous silicon phase

has a much lower thermal conductivity than the crystalline phase. A significant drop is

noticeable in the low-temperature range compared with crystalline thermal conductivity.

The thermal conductivity of ordered solids increases with temperature at low temperatures

but decreases at high temperatures due to the phonon-phonon scatterings, the solid line

in Fig.1.3. However, the amorphous silicon’s thermal conductivity shows a peculiar rela-

tionship with temperature. At low temperatures, amorphous conductivity increases with

temperature, as in crystals. A plateau region appears at medium temperatures; within

this region, the conductivity is independent of the temperature. Then, with the increasing

temperature, the amorphous conductivity increases again until it saturates a finite value.

The strange temperature dependence is also recognized in a few noncrystalline dielectric

solids, such as B2O3, SiO2, and As2S3.[77] As well known, phonons are responsible for

thermal transport in perfectly ordered semiconductors or insulators. They are delocalized

carriers and have plane-wave-like character. Nevertheless, the concept of phonons is ir-

relevant due to the absence of long-range periodicity of amorphous solids. Scientists have

made several attempts to explain the physical mechanism underlying the thermal transport

of amorphous solids.

Slack established the minimum thermal conductivity model in 1979.[78] He as-

sumed that the mean free paths of oscillators are equal to the phonon’s wavelength. In

1989, Cahill advanced the minimum thermal conductivity model by equating the mean

free paths to half the Debye wavelength.[79] The thermal conductivity is expressed within

the minimum thermal conductivity model with this advance as
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κmin =

(
π

6

) 1
3

kbn
2
3

∑
i

vi

(
T

ΘD

)2 ∫ ΘD/T

0

x2ex

(ex − 1)2
dx (1.4)

where n is the number density of atoms, vi is the speed of sound, and ΘD is the Debye

frequency. With Cahill’s contribution to this method, the model successfully predicted the

thermal transport properties of many amorphous solids.[80]. Later, Agne developed the

diffusion minimum thermal conductivity model, an efficient model in diffusional trans-

port regimes.[81] Besides these, Molecular Dynamics is a widely adopted tool to predict

amorphous solids’ thermal transport properties.[82]

Figure 1.3. The thermal conductivity of crystalline, and fused quartz. Reprinted fig-
ure with permission from Ref.[76]. Copyright 1971, American Physical
Society.

Even though some of these existing models reasonably predict the thermal con-

ductivity of amorphous materials, more is needed to explain the strange three-stage rela-

tionship of amorphous conductivity with temperature. In 1993, Allen and Feldman pro-

posed a theoretical model based on supercell lattice dynamics to explain the reason behind

this strange dependence.[83, 84] According to heat carriers’ characteristics of amorphous

phases, they divided the vibrational modes into three classifications: locons, propagons,

and diffusons.[85]
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Figure 1.4. The density of vibrational states of amorphous silicon(left). Reprinted fig-
ure with permission from Ref[85]. Copyright 1999, Taylor and Francis.
The thermal conductivity of vitreous silica(right). The dashed lines show
the individual contributions of different carriers. Reprinted figure with per-
mission from Ref[84]. Copyright 1993, American Physical Society.

Locons are highly localized carriers and have a negligible contribution to trans-

port. Both diffusons and propagons are extendons as opposed to locons. Propagons are

also delocalized and have common characteristics with phonons. They have long wave-

lengths and a well-defined wavevector like phonons. Diffusons are also delocalized car-

riers, but they are non-propagating. Their transport profile is diffusive. The left panel of

Fig.1.4 demonstrates the density of vibrational states of amorphous silica. The boundary

between locons and extendons is known as ”mobility edge”. The frontier zone between

the diffusons and propagons is named ”Ioffe-Regel crossover” by Allen and Feldman.

The whole vibrational spectrum consists mainly of diffusons.

The right panel of Fig.1.4 demonstrates the contribution of different vibrational

modes to the conductivity of amorphous silica. Propagons are the dominant carrier at the

low-temperature range, and the relationship of conductivity with temperature is quadratic.

The individual contribution from propagons is shown with the dotted line in the right

panel Fig.1.4. Propagons significantly contribute to conductivity since their profile is

similar to the phonons, and their mean free path is more extended than diffusions and

locons. Propagons are scattered by inelastic processes like phonons, causing a fall in the

contribution from propagons above T ≈ 10K, which evolves the plateau. Then, with the
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rising temperature, diffusons start to contribute, and the rise with temperature continues

until a saturated value is reached. The dashed line in the right panel Fig.1.4. shows the

individual contribution from the diffusons.

Locons do not contribute to the conductivity due to the robust localization, and

diffusons are not as efficient carriers as phonons; consequently, amorphous solids demon-

strate much lower thermal conductivity than ordered solids. Owing to low thermal con-

duction, amorphous solids are promising candidates for thermal barrier coatings, ther-

mal protection, and thermoelectric applications. Although this work by Allen and Feld-

man has opened a critical perspective into our understanding of the thermal conductiv-

ity of amorphous solids, there are still controversial topics.[86] How these heat carriers

interact with other particles, like electrons, is a fascinating debate and can lead to room-

temperature superconductors.[86] Moreover, the distinction between propagons and diffu-

sons has only been made qualitatively. What exactly distinguishes these carriers? Lastly,

whether the peculiar temperature dependence is observed in all amorphous solids, espe-

cially in two-dimensional amorphous solids, is a critical question of the literature.[87]

Moreover, the specific heat also demonstrates distinct behavior in amorphous

solids at low temperatures.[88] In this range, amorphous solids have higher specific heat

than their crystalline counterparts.[76] Further, the density of states of amorphous solids

does not involve a Van Hove singularity. The absence of translational symmetry broadens

it.[75]

1.4. Two-dimensional amorphous materials

Lately, the research on two-dimensional materials has attracted much atten-

tion from fundamental and practical applications.[89–92] The atomic thickness and novel

layered structure make two-dimensional materials manifest several distinguished optical

and electrical properties from their bulk counterparts. Existing studies have primarily

focused on two-dimensional crystalline materials.[14] Still, amorphous two-dimensional

materials draw expanding attention since they have shown tremendous potential for ap-

plications in diverse fields. Bulk amorphous materials have widely been employed in

many applications, and exploring their low-dimensional versions would be technologi-

cally beneficial.[17, 93] Indeed, two-dimensional, amorphous materials integrate the ad-

vantages of both amorphous and two-dimensional morphology.[94] The novel, highly

disordered structure, high-quality large-area uniformity, and nominal fabrication expen-

diture make them fundamental ingredients of numerous practical applications, including
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catalysis reactions, energy storage, and electronic and optoelectronic applications.[95–98]

Two-dimensional materials are distinctly different from their bulk parts concern-

ing the confinement of electrons in two dimensions, strong in-plane covalent bonds,

unconventional atomic thickness, and high specific surface area.[89, 99, 100] Amor-

phous structures have more reactive sites due to many defect sites and more exposed

atoms.[93, 94] Consequently, two-dimensional, amorphous materials are excellent nom-

inees for catalysis reactions due to more active sites and high surface area. Besides, the

ultrathin thickness of two-dimensional structures can shrink the transportation length, and

amorphous structures could supply additional paths to carriers.[94, 98, 101] Therefore,

fast transportation of ions/electrons might occur in amorphous two-dimensional struc-

tures. On the other hand, because of high disorder, the propagation of waves can be

restricted in amorphous media; hence, carriers can be localized.[84, 87] Localization of

carriers leads to low conductivity; as a result, they can be used as barriers or insulators.

Moreover, it is recognized that their defects and impurities regulate amorphous

materials’ electronic and thermal properties.[102, 103] This property allows us to tune the

properties of two-dimensional, amorphous materials. The synthesis of amorphous two-

dimensional materials such as metal oxide, metal hydroxide, metal chalcogenides, alloy,

silicates, amorphous graphene, amorphous MoS2, amorphous BN, and amorphous BP has

already been accomplished, and amorphous structures can be produced at a comparably

low temperature.[101, 104–111] The amorphous two-dimensional materials’ application

field is still limited compared to crystalline counterparts, although their excellent catalysis

performance, energy storage, and mechanics have been demonstrated. The most practi-

cal approach is synthesizing more two-dimensional, amorphous structures with unique

properties and functions to expand their applications.

1.4.1. Amorphous graphene

The carbon atom is capable of generating distinctive structures owing to its va-

lency. Carbon-based materials have extreme stiffness and high mechanical strength, and

hence, they show excellent thermal transport properties. Its two-dimensional honeycomb

lattice, graphene, was first exfoliated in 2004.[112] Since then, the fabrication and charac-

terization of graphene have attracted much attention due to its unique properties.[99, 113–

115] It has been shown that graphene fits from aerospace applications to nanoelectronics.

[116, 117] For instance, graphene is a promising candidate for flexible electronics, which

can dramatically change our lives.[118, 119] Wearable electronics have been advanced
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based on flexible electronics, primarily for health care.[120] In the future, clothes can

constantly check human health by monitoring blood pressure, temperature, breath, and

heart rates.

Researchers have mainly focused on graphene crystal growth, but large-sized fab-

rication of graphene has polycrystalline morphology. To understand the macroscopic

properties of graphene, one must reveal the consequences of the polycrystalline struc-

ture, such as grain size distribution.[121] Also, it has been shown that polycrystalline

graphene fits a class of applications, from spintronic instruments to wearable-flexible

electronics to biosensors. Furthermore, Kotakoski et al. experimentally achieved an

amorphous graphene structure from graphene irradiated with electron beams.[122] They

demonstrated the process step by step by nucleation and growth of rotated hexagons and

polygons. Also, they performed density functional theory calculations to show how de-

fects migrate and gather together. In 2012, a theoretical study predicted an amorphous

graphene structure using geometrical modeling and molecular dynamics.[16] The output

structures have a continuous random network. So they are Zacheriasen glasses. Recently,

an experimental work showed that laser-assisted chemical vapor deposition directly syn-

thesizes monolayer amorphous graphene.[17] The advantage of this growth method over

the former methods is the capacity to produce a larger size. The same team also per-

formed Monte-Carlo calculations to construct monolayer amorphous carbon. The work

showed that amorphous monolayer carbon is not a Zacheriasen glass due to the presence

of crystalline carbon islands. Nevertheless, all agree that amorphous graphene lacks long-

range periodicity. The concept of unit cell and lattice is unuseful due to the absence of

translational symmetry.

Amorphous graphene is a potential candidate for transparent electronic applica-

tions since it demonstrates transparent behavior in the wavelength range from 200 nm to

1000 nm.[123] Due to the high surface area and dielectric strength, amorphous graphene

can be used in transformer oil nanofluids applications.[124] Besides, fabricating Zachari-

asen continuous monolayer into a field-effect transistor increases the resistance two or-

ders of magnitude than that of ordered counterparts.[125] A hybrid system that contains

amorphous graphene can enhance field emitter properties because amorphous graphene

demonstrates satisfying field emitter performance. Also, owing to flexibility, amorphous

graphene can be utilized in flexible electronics applications.

For almost all applications, one of the essential properties of substances is thermal

conductivity. Many scientists have widely studied the thermal conductivity of crystalline

graphene. However, research on the thermal properties of the amorphous phase lagged
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behind the research on the crystalline phase, so there are still open questions. By now,

molecular dynamic calculations have been performed to reveal the thermal transport prop-

erties of amorphous graphene.[87, 126, 127] Molecular dynamics is a widely accepted

method to study the thermal properties of materials, but it is based on Newtonian mechan-

ics; consequently, it does not include the quantum effects intrinsically. Hence, the liter-

ature lacks the thermal transport properties of amorphous graphene at a low-temperature

range, and the quantum mechanical effects on the thermal transport of the amorphous

graphene remain unknown. We expect these effects on amorphous graphene’s transport

properties to be significant since the material’s corresponding crystalline phase has a high

Debye temperature.

All existing studies on the thermal conductivity of amorphous monolayer carbon

phase agree that amorphous graphene has lower thermal conductivity than crystalline

graphene. Mortazavi et al. demonstrated that the thermal conductivity of amorphous

carbon monolayer could be two orders of magnitude lower than its pristine form.[128]

They considered periodic boundary conditions in their equilibrium molecular dynamics

simulation. Zhu and Ertekin performed the generalized Debye/Peierls and Allen/Feldman

approach besides molecular dynamics simulations to reveal the contributions of vibra-

tional states to thermal transport.[87] They concluded that diffusons contributions to the

transport are negligible, and propagons dominate the transport. They did not observe

a plateau region in their temperature dependence of thermal conductivity, but their study

lacks low-temperature calculations. Bazrafshan and Rajabpour presented non-equilibrium

molecular dynamics calculations for structures with various defect concentrations (up to

54%) and under different tensile strains (up to 0.12).[127] They showed that just 1% de-

fect concentration can develop a 27% decrease of the thermal conductivity. Antidormi

et al. analyzed the vibrational modes of amorphous graphene and the effect of the de-

gree of amorphousness, demonstrating how the samples’ progressing loss of crystallinity

leads.[126] They characterized the degree of amorphousness by computing the triatic or-

der parameter, q3, which shall be explained in the method section. This parameter effec-

tively captures the deviation from the ideal sp2-hybridized crystalline structure. Their

thermal conductivity computations have been achieved within the Green-Kubo modal

analysis, and the results showed a substantial enhancement of thermal conductivity as

a function of the triatic order, displaying how amorphousness effectively suppresses ther-

mal transport. Nevertheless, none of these studies demonstrated the quantum effects on

amorphous graphene thermal transport properties and lack of low-temperature calcula-

tions. The lowest temperature is 200 K in the calculations.
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This dissertation is organized as follows: Chapter 2 explains the methods for gen-

erating amorphous graphene structures and determining thermal properties. Chapter 3

presents the phonon tunneling device. Chapter 4 focuses on the quantum thermal trans-

port properties of two-dimensional amorphous carbon monolayers. Chapter 5 is the con-

clusion.
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CHAPTER 2

METHODS

2.1. Amorphous graphene structure

There are several theoretical models to generate an amorphous graphene struc-

ture. One of the amorphous graphene producing procedures involves Molecular Dynam-

ics.[16] Melting crystalline graphene supercells produces two-dimensional liquid config-

urations. Cooling the liquid systems by removing kinetic energy generates amorphous

graphene. Another method based on Molecular Dynamics is the liquid quench method,

a reactive molecular dynamics study.[129] In this method, the process starts with a sim-

ulation cell with N carbon atoms placed randomly. Then, the simulation cell is ramped

temperature to 10000 K and equilibrated at that temperature like approximately 15 ps.

Following this, the cell is quenched to 3000 K to the cell. After annealing at 3000 K for

annealing time, ta, the cell is quenched to 300 K and equilibrated.

The kinetic Monte-Carlo method is the primary method used in this work to gen-

erate amorphous graphene structures lacking periodicity.[16, 17] As mentioned in the

introduction, there is still debate on amorphous structures.[130] So, we decided to study

both the Zachariasen and nanocrystallite phases of the two-dimensional, amorphous car-

bon phase. Three different kinds of amorphous graphene structures can be gained with

two akin kinetic Monte-Carlo algorithms. One starts with the crystal structure and amor-

phize it, while the other begins with a random network and crystallizes the beginning

structure. Common to both algorithms, each iteration rotates a randomly chosen carbon-

carbon bond from the device region by 90◦. Energies before and after the rotation are de-

termined. All energy calculations have been performed with the LAMMPS package.[131]

Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential parameters

for hydrocarbons are adapted to describe interatomic forces. During energy calculations,

structures and the cell are relaxed with the conjugate-gradient algorithm until all forces

fall below 0.1 eV/Å, and the relaxation of the simulation cell is allowed. Periodic bound-

ary conditions are implemented in all directions, but the simulation cell is long enough

to hinder the layers’ interactions in the transverse direction. The Metropolis acceptance
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criterion specifies the acceptance of bond transposition.

P = min[1, exp[(Ei − Ef )/kbT ]] (2.1)

where Ei and Ef are the former and later energies of the system. According to the final

and initial energy, the upcoming structure shall be accepted or not. Whether the algo-

rithm accepts the new system depends on the network we start with. So, the acceptance

conditions are unique to each algorithm.

Figure 2.1. Theflowchart of amorphization algorithm.

The amorphization procedure starts with a crystalline graphene supercell. Subse-

quently, the algorithm rotates a randomly picked bind carbon-carbon pair by 90 degrees,

i.e., creates a Stone-Wales defect within the area under interest. The structures and the

cell are relaxed, and the energies are calculated as described. To amorphize the beginning

structure, we reject the upcoming structures in which bond rotation lowers the energy, i.e.,
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Ef < Ei. If not, the Metropolis acceptance probability is calculated, and a random num-

ber between zero and one is generated; the temperature is kept high enough so that the

probability shall be high enough to accept half of the upcoming configurations in which

the bond rotation augmented the energy. If the probability is greater than the randomly

generated number, r, but lower than one, it is checked whether the structure contains a

coordination defect. If the following configuration has any coordination defect, our amor-

phization algorithm denies it. The flowchart of the amorphization algorithm is shown in

Fig.2.1.

With the amorphization algorithm, two different kinds of single-layer amorphous

carbon phases are generated. Our first amorphous graphene configuration type is similar

to Kumar’s configuration obtained by geometric modeling in 2012.[16] Since the most

crucial feature of Kumar’s structure is that it does not contain any coordination defects,

we put the condition that the upcoming configuration can not contain coordination defects

in the acceptance cases. We allow each atom to have three atoms around 2.1 Å; thus,

each atom is threefold coordinated. The resultant structure is similar to the Zachariasen

glasses since it has a continuous random network and mainly consists of five-, six-, and

eight-membered carbon rings, as shown in the left panel of Fig.2.2. We named this type

of structure the 3CGM type.

For the second type of structure, the acceptance condition has one difference.

Now, we let each atom have three neighboring atoms around 2 Å. The difference between

the previous and this types of structures is that while the second can consist of three-

and four-ring members, the first can not. Again, all atoms are three-coordinated, and this

structure type is also equivalent to Zachariasen’s glasses. The middle panel of Fig.2.2

displays a piece from this device type named type.

For the crystallization procedure, we use Zhuang’s algorithm, which accepts all

the upcoming configurations in which bond rotation lowers the energy.[132] The proce-

dure begins with a supercell consisting of randomly placed carbon atoms with the same

density as crystalline graphene. The system is subsequently relaxed, adopting a conjugate

gradient algorithm. The simulation cell is not relaxed at the algorithm’s early steps since

the completely random configurations tend to disperse due to a lack of order. Then, the

bond-switching process applies to a randomly chosen carbon-carbon bond. The initial

and final energies are determined as we described previously. The next step is calculating

the Metropolis acceptance probability and generating a random number between zero and

one. The temperature was set at 6000 K. If the Metropolis probability is higher than the

randomly generated number, r, the upcoming configuration is accepted. The flowchart
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and a detailed description of this algorithm can be seen in Ref.[132]. This last configu-

ration type is significantly different from the two others, and it is not Zazhariasen glasses

since it still has some crystalline phases; indeed, its structure is similar to the crystallite

model in which crystalline carbon islands still remain in amorphous media. Also, resul-

tant structures may have coordination defects, voids, and three- and four-membered rings.

We named this structure NC type. The right panel of Fig.2.2 shows a fragment from this

type of configuration. All three-type structures have out-of-plane buckling due to internal

distortions.

Figure 2.2. The piece from the structures for the exhibition of the difference between
device types. The left, middle, and right are 3CGM, 3C, and NC device
types. Color map representing the q3 parameter value.

The last thing required to be introduced is the triatic order parameter, which quan-

titatively identifies the degree of amorphousness and effectively captures the deviation

from the ideal hexagonal pristine graphene structure.[126, 133, 134] The amorphousness

of structures is quantified with the local bond order parameter, which quantifies the struc-

tural symmetry around a particle, i, and is defined as

qlm =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij) (2.2)

where Nb(i) is the number of first neighbors around particle i, i.e., number of atoms of

the ith atom around 2.3 Å(the second pick of the radial distribution function of perfect

graphene), and Y m
l (rij) is the spherical harmonics of the vector from ith atom to jth

atom. l is an integer within the range −l ≤ m ≤ l. Since for sp2-hybrization, l = 3, the

local bond order parameter becomes the triatic order parameter
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The individual local bond order parameter for each atom is calculated as

q̃l(i) =
1

Nb(i)

∑
jεNb(i)

ql(i) · ql(j) (2.3)

=
1

Nb(i)

∑
jεNb(i)

m=3∑
m=−3

ql3(i)√∑m=3
m=−3 |q3m(i)|2

· q∗l3(j)√∑m=3
m=−3 |q3m(j)|2

(2.4)

The system’s order parameter is determined by averaging the q̃l(i) values. The q3 param-

eter takes a value between zero and one and is one for perfect crystals. For ideal pristine

graphene, q3 = 1. In other words, lesser q3 means more disordered graphene structure.

For a detailed explanation of the local bond order parameter, see [135].

All the local bond order parameters are determined after the uttermost relaxation

with optimized Tersoff potential parameters, as described in the upcoming section. In

Fig.2.2, each colored circle stands for one carbon atom, and its color indicates the q3

parameter value. Fragments shown in Fig.2.2 were selected from configurations with the

same q3 parameter. For the atoms that belong to three- and four-membered rings or have

coordination defects, the q3 parameter is close to zero due to high asymmetry.

Figure 2.3. The radial distribution function, which is calculated with Ref.[136]
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We have plotted the radial distribution function, which provides information about

the internal structure, in Fig.2.3. The radial distribution function is discrete at T=0 K in

crystalline structures due to the high symmetry. Nonetheless, in networks where the long-

range order is missing, the peaks are broadened due to variations in the bond lengths and

vanish after a few angstroms. In our structures, the peaks are broadened, indicating the

absence of long-range order. The first peak came in around 1.42, as in crystals, but unlike

crystals, it was broadened. Peaks start to vanish at distances greater than four angstroms

because of randomness in structures. The highest peaks came in the NC configuration

with q3=0.70 structure because the NC structures are nanocrystalline and still contain

crystalline islands. Nevertheless, the 3C configurations showed a lower maximum, while

they were more broadened because they are Zachariasen glasses, which have a continuous

random structure, but all atoms are three coordinated.

2.2. Dynamical Matrices

The primary input for our methods is the dynamical matrices obtained with the

simulation package based on the finite difference method. Before obtaining dynamical

matrices, configurations are finally relaxed with the conjugate gradient algorithm and a

force tolerance by 10−3eV/Å. We apply periodic boundary conditions in each direction,

and the simulation cell length in the transverse direction is 50 Å to prevent interaction

between layers. We used optimized Tersoff empirical potential parameters extending the

original Tersoff potential to describe interactions.[137–139] Tersoff’s potential parame-

ters set provides a more robust fit to experimental graphene phonon dispersion with this

extension.

Thus, the most widely used many-body potential parameters for the thermal prop-

erties of carbon-based structures are the optimized Tersoff potential parameters.[141–

173] To validate our calculations, we reproduce the dispersion shown in the top panel

of Fig.2.4. Blue triangles represent the measured values adapted from the Ref.[140].

The reactive empirical bond order(REBO) potential, parametrized for C-H-O systems,

is used during the Monte Carlo algorithm. Even though the optimized Tersoff poten-

tial parameters are most appropriate for studying the thermal behavior of carbon-based

materials, they are insufficient to build an amorphous carbon configuration, especially

for the crystallization procedure; it created long carbon chains instead. To compare

the Rebo-CHO parameters with optimized Tersoff potential parameters, we also deter-

mine the phonon dispersion relation(the bottom panel of Fig.2.4), which agrees with the
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Figure 2.4. Phonon Dispersion relations. Blue triangles represent the measured values
adapted from the Ref.[140]. The phonon dispersion relation of graphene
was determined with optimized Tersoff potential(top panel) and optimized
Rebo-CH potential(bottom panel).
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previous calculations.[174, 175] The optimized Tersoff potential parameters capture the

graphene’s optic phonon modes better than Rebo-CHO potential parameters.

The equation for the dynamical matrix as an output of LAMMPS is following.

D =
Φkk′

αβ√
mkm′k

(2.5)

where mk indicates the mass of the kth atom; Φ representes the force constant matrix and

defined as within the harmonic approximation[88]

Φkk′

αβ =
∂2U

∂uk,α∂uk′,β
(2.6)

where U represents the interatomic potential energy and u is deviation of atomic coordi-

nates from the equilibrium positions. The q-dependent dynamical matrix is

D(q) =
1√
mkm′k

∑
l′

Φ
0k,l
′
k

αβ eiq·R
′
l (2.7)

where α and β are Cartesian components, l′k stands for the kth atom of lth unit cell, Rl

is the lattice vector of the lth unit cell. Dispersions are obtained by lattice dynamical

calculations. The square root of eigenvalues of the q-dependent dynamical matrix gives

the dispersion, ω(q).

2.3. Landauer Method and Green’s Functions

Green’s function technique is an efficient theoretical approach to determine trans-

port properties of nanostructures.[176, 177]. The method enables the determination of the

transport properties of complex nanostructures, which can have boundaries, interfaces,

scattering regions, and defects. The system must be divided into three fields: scattering

region, left and right reservoirs to apply Green’s functions. The reservoirs are two semi-

infinite crystal lattices, while the scattering region has an arbitrary finite structure. The

first step of the formalism is to compute the Green’s functions of bulk left- and right-

reservoirs. The definition of the Green’s function is

G(ω) =
(
(ω2 + iη)1−D

)−1 (2.8)

where D is the dynamical matrix directly constructed from the force constants and masses,

and η is a sufficiently small number. Due to the partitioning scheme, the dynamical matrix
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becomes

D =


Dl Dld 0

Ddl Dd Ddr

0 Drd Dr

 (2.9)

where Dld = D†dl, and Drd = D†dr. Here, l(r) and d represent the left(right) reservoir and

scattering(device) region, respectively.


(ω2 + iη)1−Dl −Dld 0

−Ddl (ω2 + iη)1−Dd −Ddr

0 −Drd (ω2 + iη)1−Dr



×


Gl(ω) Gld(ω) Glr(ω)

Gdl(ω) Gd(ω) Gdr(ω)

Grl(ω) Grd(ω) Gr(ω)

 = 1

If we only consider the product with the 2nd column of the matrix of Green’s functions

G−1
l (ω)Gld(ω)−DldGd(ω) = 0 (2.10)

−DdlGld(ω) +
(
(ω2 + iη)1−Dd

)
Gd(ω)−DdrGrd(ω) = 1 (2.11)

−DrdGd(ω) +G−1
r (ω)Grd(ω) = 0 (2.12)

where G−1
l(r)(ω) =

(
(ω2 + iη)1−Dl(r)

)
. Rearranging Eq.2.10 gives

Gld(ω) = Gl(ω)DldGd(ω) (2.13)

. And, similarly Eq.2.12 becomes Grd(ω) = Gr(ω)DrdGd(ω). Substituing into Eq.2.11

(
(ω2 + iη)1−Dd

)
−DdlGl(ω)Dld −DdrGr(ω)Drc

)
Gd(ω) = 1 (2.14)

Now we can define self-energies, which measures the interactions between the scattering

region and each reservoir

Σl(r)(ω) = Ddl(dr)Gl(r)(ω)Dld(rd) (2.15)
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After taking into account the interactions, the Green’s function of the scattering region,

Eq.2.14, becomes

Gd(ω) =

[(
(ω2 + iη)1−Dd

)
− Σl − Σr

]−1

(2.16)

Finally, phonon transmission is calculated by

Ξ(ω) = Tr
[
ΓlGd(ω)ΓrG

†
d(ω)

]
(2.17)

where the broadening function is Γl(r) = −2Im(Σl(r)). Assuming that ∆T → 0, namely

equilibrium transport, conductance is defined as we defined in the introduction chapter

G =
J

∆T
=

1

2π

∫
dω ~ω Ξ(ω)

∂f

∂T
(2.18)

where f is the distribution function, we calculated thermal conductivities with two differ-

ent distribution functions: Bose-Einstein and Maxwell-Boltzman distributions. All other

parts of the method apply to both mechanics. The transmission function obtained by

Green’s functions method remains the same for both quantum and classical mechanics in

the harmonic limit. Only the distribution function makes the difference here. Thus, we

can only see the effect of phonon occupancy factors on thermal conduction, independent

of all other parameters.

To obtain the Maxwell-Boltzman distribution function, consider a solid consist-

ing of harmonic oscillators, which have a range of frequencies, g(ε). Assume there is no

quantization, i.e., E(η, ε) = η ε, where η is not restricted to having discrete integer values,

but it is continuous. Then, the single-particle partition function is

Z =

∫
dε g(ε)

∫
dη e−β ε η =

1

β

∫
dε g(ε) ε (2.19)

We know the density of states,
∫
dε g(ε) ε, is equal to a finite value; let us say I . Then,

the partition function becomes

Z =
1

β
I (2.20)
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Hence, the average energy is U = − 1
Z
∂Z
∂β

= kBT . For a solid with N independent atoms

Z3D = Z3N , so U = 3NkBT . One can rewrite the energy as

U =

∫
dε g(ε) εf(β, ε) (2.21)

Remember quantum mechanically, fbe(β, ω) = 1/(eβ~ω − 1). Classically, one finds by

comparison

fcl(β, ω) =
1

βε
. (2.22)

With this distribution, we compute Boltzmann-Landauer conductivities. The weight fac-

tor, (ε/kB)∂Tf (quantum mechanically ε = ~ω), which determines the contribution of

vibrational modes to conductivity, is plotted in Fig.2.5 for both distribution functions.
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Figure 2.5. The comparision of the weigth factors with f indicates the distribution
function. Weight factors are obtained at three different temperatures by us-
ing either the Maxwell-Boltzmann distribution function(MB) or the Bose-
Einstein distribution function(BE).

The calculations are performed at different temperatures. Results show that the

Maxwell-Boltzmann weight factor is independent of temperature, and all frequencies are

equally probable. The dotted-black line on Fig.2.5 stands for Maxwell-Boltzmann weight

factor. On the contrary, at lower temperatures, the considerable contribution comes from

the lower energy states when the distribution function is the Bose-Einstein. The contri-
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bution from the higher energy levels increases with the temperature rise. In Fig.2.5; red,

orange, blue, and yellow starred lines indicate Bose-Einstein weight factor at 100 K, 300

K, 500 K, and 1000 K, respectively. The difference between Maxwell-Boltzmann and

Bose-Einstein weight factors vanishes at sufficiently high temperatures. This behavior is

very similar to heat capacity. In the classical limit, all the modes contribute to tunneling,

while low energetic modes contribute at low temperatures.

2.3.1. Renormalization-Decimation Algorithm

The thermal reservoirs are perfect semi-infinite crystals. So now we are deal-

ing with semi-infinite dynamical matrices. An efficient iterative algorithm for obtaining

the surface Green’s functions was developed by M.P. López Sancho, J.M. López Sancho

and J Rubio[178]. The equivalent algorithm was proposed by F. Guinea et al.[179], and

they studied two-dimensional Hamiltonians at surfaces. Moreover, Nardalli also used the

method to study the electronic properties of carbon nanotubes.[180]. The algorithm is

suitable for any dynamical matrix that can be expressed on a localized basis. Again, the

system is divided into layers that are large enough so that just neighboring layers interact.

Consequently, the dynamical matrix is in the following form:

D =



D00 D01

D10 D00 D01

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .


or



. . . . . . . . .
. . . . . . . . .

. . . . . . . . .

D10 D00 D01

D10 D00



where D00 represents the intralayer interactions, and D01 indicates the interactions be-

tween neighbouring layers. What we are interested in here is obtaining the surface green

function of reservoirs.
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The procedure starts with

t0 =
(
(ω2 + iη)1−D00

)−1
D†01

t̃0 =
(
(ω2 + iη)1−D00

)−1
D01

and continue with

tn = (1− tn−1t̃n−1 − t̃n−1tn−1)−1t2n−1

t̃n = (1− tn−1t̃n−1 − t̃n−1tn−1)−1t̃2n−1

The iteration continues until tn, t̃n ≥ σ, where σ is arbitrarly small. Then, each iteration

was joined to the existing one

T = t0 + t̃0t1 + t̃0t̃1t2 + . . .

T̃ = t̃0 + t0t̃1 + t0t1t̃2 + . . .

Finally, the surface Green’s functions of reservoirs are determined by

G(ω) =
(
(ω2 + iη)1−D00 −D01T −D†01T̃

)−1 (2.23)

In this study, thermal reservoirs are identical. If not, the calculation process of surface

Green’s functions shall be slightly different. Finally, while applying Green’s functions,

one to two blocks of crystal reservoirs to the left and right of the scattering region should

be included so that the interaction matrices(Dld(rd)) are also constructed from the D01(10)

matrices.

2.3.2. Decimation Technique

When systems extend, Green’s functions technique faces computational power

problems. We have overcome these problems using the decimation technique, an effective

tool to handle while working with extended systems.[178–180] The decimation method
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is a numerical approach to reduce input matrix size; thus, the technique reduces both

memory consumption and computing time.[181, 182] The Green’s function method is an

order N2 in memory and due to matrix inversion order N3 in operation time. With the

decimation algorithm, Green’s functions method shall gain memory and time since the

decimation method is an order N method.

To derive the elemental equation of decimation, consider a dynamical matrix of a

bipartite system, all elements of which are themselves invertible matrices

D =

(
D11 D12

D21 D22

)
(2.24)

where Dαβ = D†βα. The relevant Green’s function of the system

G(ω) =
(
(ω2 + iη)1−D

)−1 (2.25)

=

(
G11(ω) G12(ω)

G21(ω) G22(ω)

)
(2.26)

Rewriting Eq.2.8 in the form G(ω) [(ω2 + iη) − D] = 1, and expanding the equation,

we obtain four equations

[(ω2 + iη)1−D11] G11(ω) + D12 G21(ω) = 1 (2.27)

D21 G11(ω) + [(ω2 + iη)1−D22] G21(ω) = 0 (2.28)

[(ω2 + iη)1−D11] G12(ω) + D12 G22(ω) = 0 (2.29)

D21 G12(ω) + [(ω2 + iη)1−D22] G22(ω) = 1 (2.30)

Rearranging Eq.2.27 as

G21(ω) = −[(ω2 + iη)1−D22]−1 D21 G11(ω) (2.31)

and substituting into Eq.2.28 gives
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(
[(ω2 + iη)−D11] − D12 [(ω2 + iη)1−D22]−1 D21

)
G11(ω) = 1 (2.32)

Finally, we obtain the elemental equation of decimation:

G11(ω) =

(
[(ω2 + iη)1−D11] − D12 [(ω2 + iη)−D22]−1 D21

)−1

(2.33)

Remember, G22(ω) =
(
(ω2 + iη)1−D22

)−1 So, the elemental equation becomes

G11(ω) =

(
[(ω2 + iη)1−D11] − D12 G22(ω) D21

)−1

(2.34)

Consequently, the effective dynamical matrix of the system 1:

Deff
11 = D11 + D12 G22(ω) D21 (2.35)

one can similarly derive the other parts.

To demonstrate an application, now begin with the dynamical matrix of a tripartite

system

D =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 (2.36)

The corresponding Green’s function is

G(ω) =
(
(ω2 + iη)1−D

)−1 (2.37)

=


G11(ω) G12(ω) G13(ω)

G21(ω) G22(ω) G23(ω)

G31(ω) G32(ω) G33(ω)

 (2.38)

We are only interested in the first and third systems, not the second one. So, decimating
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out the central system gives

(
Deff

11 Deff
12

Deff
21 Deff

22

)
=

(
D11 +D12G22(ω)D21 D13 +D12G22(ω)D23

D13 +D32G22(ω)D23 D33 +D32G22(ω)D23

)
(2.39)

The Green’s function can now be determined by

(
G11(ω) G13(ω)

G31(ω) G33(ω)

)
=

(
(ω2 + iη)1−

(
Deff

11 Deff
12

Deff
21 Deff

22

))−1

(2.40)

Lastly, to reveal the general procedure, consider the dynamical matrix of an ex-

tended system

D =



D11 D12

D21 D22 D23

. . . . . . . . .
. . . . . . . . .

DN−1,N−2 DN−1,N−1 DN−1,N

DN,N−1 DN,N


(2.41)

Decimating out the second cell of the input matrix


D

(1)
11 D

(1)
12

D
(1)
21 D

(1)
22 D

(1)
23

. . . . . . . . .

D
(1)
N−1,N−1

 =

=



D
(0)
11 +D

(0)
12 G

(0)
22 (ω)D

(0)
21 D

(0)
12 G

(0)
22 (ω)D

(0)
23 . . . . . . 0

D
(0)
32 G

(0)
22 (ω)D

(0)
21 D

(0)
33 +D

(0)
32 (ω)G

(0)
22 D

(0)
23 D

(0)
34

0 D
(0)
43 D

(0)
44

. . .
... . . . . . .

0 . . . . . . D
(0)
N,N


where G(0)

22 (ω) =
(
(ω2 + iη)1−D22

)−1, and D(0)
ij = Dij . And again, decimating out the
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second cell of the once-decimated matrix gives


D

(2)
11 D

(2)
12

D
(2)
21 D

(2)
22 D

(2)
23

. . . . . . . . .

D
(2)
N−2,N−2

 =

=



D
(1)
11 +D

(1)
12 G

(1)
22 (ω)D

(1)
21 D

(1)
12 G

(1)
22 (ω)D

(1)
23 . . . . . . 0

D
(1)
32 G

(1)
22 (ω)D

(1)
21 D

(1)
33 +D

(1)
32 G

(1)
22 (ω)D

(1)
23 D

(1)
34

0 D
(1)
43 D

(1)
44

. . .
... . . . . . .

0 . . . . . . D
(1)
N−1,N−1


where G(1)

22 (ω) =
(
(ω2 + iη)1 − D(1)

22

)−1. The algorithm continues in this manner. We

can deduce a general formulation since only the neighboring elements of the decimated

cell are affected at each decimation step.

G
(n)
22 (ω) =

(
(ω2 + iη)1−D(n)

22

)−1

D
(n+1)
11 = D

(n)
11 +D

(n)
12 G

(n)
22 (ω)D

(n)
21

D
(n+1)
12 = D

(n)
12 G

(n)
22 (ω)D

(n)
23

D
(n+1)
21 = D

(n)
32 G

(n)
22 (ω)D

(n)
23

D
(n+1)
22 = D

(n)
33 +D

(n)
32 G

(n)
22 (ω)D

(n)
23

Finally, we obtain the effective dynamical matrix

(
Deff

11 Deff
12

Deff
21 Deff

22

)
=

(
D

(N−2)
11 D

(N−2)
12

D
(N−2)
21 D

(N−2)
22

)

Also, we print the algorithm of the procedure.

Consider a carbon nanotube’s tripartite dynamical matrix for a practical applica-

tion. The entire tube can be divided into blocks, which are extensive enough that there

is just interaction between neighboring blocks. So, the relevant matrix is a finite block
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Algorithm: Decimation Technique
Input : D, ω(η)

1: d oo← D(1, 1); d on← D(1, 2)
2: d no← D(2, 1); d nn← D(2, 2)
3: while i← 3 : N do . where N is the number of blocks
4: g ← (ω(η)1− d nn)−1

5: d oo← d oo+ d on ∗ g ∗ d no
6: d on← d on ∗ g ∗D(i− 1, i)
7: d no← D(i, i− 1) ∗ g ∗ d no
8: d nn← d nn+D(i, i− 1) ∗ g ∗D(i− 1, i)

9: Deff ← [[d oo, d on], [d no, d nn]]
10: out← Deff

Figure 2.6. (5,5) Armchair carbon nanotube transmission and density of states, calcu-
lated with and without decimation technique to validate decimation tech-
nique.
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tridiagonal form. 2Nx2N effective dynamical matrix is obtained by applying the decima-

tion algorithm recursively to the input matrix, where N is the total number of degrees of

freedom in a block. Applying the algorithm should not change any numerical result, as

seen in Fig.2.6. We apply this method to one-dimensional atom chains for the tunneling

work where chains’ lengths can be extended to 120000 atoms long.

2.4. Kubo-Greenwood Method

Kubo-Greenwood is an efficient method to handle disordered, glass-like, amor-

phous nanostructures. The method includes quantum mechanical effects intrinsically and

is based on a real-time propagation of an initial wave packet.[182–184] Basically, the

Kubo-Greenwood method superimposes a random phase vector on the system, tracks how

it evolves, and extracts a propagation feature. The propagation properties are averaged

over multiple random vectors. As a result, thermal properties are deduced. Nonequilib-

rium Green’s function method is an efficient alternative theory that also contains quantum

mechanical effects. However, by definition, thermal reservoirs are perfectly ordered bulk

crystals, creating interfaces between reservoirs and amorphous device regimes. Besides,

the Kubo-Greenwood method can handle larger systems than the nonequilibrium Green

functions scheme without any spatial limitations. Most importantly, the Kubo-Greenwood

scheme’s computational cost is linearly dependent on the number of degrees of freedom,

i.e., an order-N method.

The vibrational Hamiltonian within harmonic approximation is defined as

H =
∑
i

p̂2
i

2Mi

+
∑
ij

Φijûiûj (2.42)

with ûi and p̂i being the displacement and momentum operators of the ith degrees of

freedom, respectively. Φ indicates the force contant tensor, and Mi is the mass. Kubo’s

formula relates the phonon conductivity, σ, along the x direction to the current-current

correlation function.

κ = ΩT−1 lim
ω→0

lim
η→0

∫ β

0

dλ

∫ ∞
0

dtei(ω+iη)t〈Ĵx(−i~λ)Ĵx(t)〉 (2.43)

where T and Ω are temperature and volume, respectively. The x component of energy
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flux operator, Ĵx, is defined as

Ĵx = 1/2Ω
∑
ij

(X̂i − X̂j)Φijûiv̂j (2.44)

with velocity operator, v̂j , and equilibrium position of ith degrees of freedom, X̂j . Ĵx can

be expressed in annihilation and creation operators, Ĵx =
∑

m,n J
x
mnâm † ân, with

Jx =
∑
m,n

Jxmn

(√
ωm
ωn

+

√
ωn
ωm

)
〈m|[X,D]|n〉 (2.45)

where D indicates mass-normalized dynamical matrix, and X demonstrates the diago-

nal matrix of equilibrium positions. Allen and Feldman demonstrated that the phonon

conductivity can be expressed as

κ =
πΩ

~T
∑
m,n

∂fb
∂ωm

JxmnJ
x
nmδ(ωm − ωn) (2.46)

with fb being the Bose-Einstein distribution function. Defining Vx = −i[X,D], the ther-

mal conductivity of a one-dimensional system can be written as

κ = −π
Ω

∫ ∞
0

dω
~

4ω

∂fb
∂T

Tr{Vxδ(w −
√
D)Vx(ω −

√
D)} (2.47)

where
√
D =

∑
n ωn|n〉〈n|, and Tr{...} is the trace operator. When comparing the Lan-

dauer formula ( recall Eq.1.2), we deduce transmission function as

Ξ(ω) =
2π2

L2
Tr{Vxδ(w −

√
D)Vx(ω −

√
D)} (2.48)

In diffusion regime, transmission coefficient can be expressed in terms of diffusion coef-

ficient, D,

Ξ(ω) =
2ωπ

L2
Tr{δ(w2 −D)}Dmax(ω) (2.49)
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Figure 2.7. The flowchart of the Kubo-Greenwood method.
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where D = X2/t. The definition of the mean square displacement is

χ2(ω, t) =
Tr{[X,U(t)]†δ(ω2 −

√
D)[X,U(t)]}

Tr{δ(ω2 −
√
D)}

(2.50)

The mean square displacement,X2, is the central quantity in the Kubo-Greenwood scheme.

The flowchart for the implementation procedure of the Kubo-Greenwood scheme is illus-

trated in Fig.2.7. The only input is the mass-normalized dynamical matrix. The mean-

square displacement can be computed using Lanczos tridiagonalization, continued frac-

tion method, and Chebyshev expansion polynomials. Bra-kets are calculated using the

Lanczos and continued fraction methods. The Lancoz technique enables the simulation

of large systems by avoiding matrix inversions. It is an iterative method to solve the

eigenvalue problem of linear integral and differential operators. The use of Chebyshev

expansion computes time evaluation. The numerator of mean square displacement is de-

termined for each iteration, and the diffusion constant is calculated from the mean square

displacement. The Kubo-Greenwood iteration continues until the maximum diffusion

coefficient is reached. Tr{[X,U(t)]†δ(ω2 −
√
D)[X,U(t)]} are averaged over certain

number of random vectors.

One essential feature of thermal properties is mean free path, which barry informa-

tion about how disorder limits the thermal conductivity; and, mean free path is extracted

via

mfp(ω) =
Dmax(ω)

2υ(ω)
(2.51)

where υ(ω) is the avarage group velocity. In this study, all phonon group velocities are

obtained by PHONOPY package.[185, 186]

2.4.1. Lanczos and continued fraction method

The Lanczos method used to tridiagonalize the dynamical matrix is robust for

defect-associated problems.[187] The process is followed by the continued fraction ex-

pansion, which computes Green’s functions matrix elements and the total density of

states.[182–184, 188]

Tr
{
{δ(ω2 −D)}

}
=

Nd∑
i=1

〈ψi
∣∣δ(ω2 −D)

∣∣ψi〉 =
Nd

Nrp

×
Nrp∑
J=1

〈ψJrp
∣∣δ(ω2 −D)

∣∣ψJrp〉 (2.52)
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∣∣ψrp〉 =
1√
Nd

Nd∑
i=1

ei2πθi
∣∣ψi〉 (2.53)

The process starts with a normalized random phase vector
∣∣ψ1〉 =

∣∣ψrp〉:
a1 = 〈ψ1

∣∣D∣∣ψ1〉 (2.54)

∣∣ψ̃2〉 = D
∣∣ψ1〉 − a1

∣∣ψ1〉 (2.55)

b1 =
√
〈ψ̃2

∣∣ψ̃2〉 (2.56)∣∣ψ2〉 =
1

b1

∣∣ψ̃2〉 (2.57)

and n > 1 recursion steps:

an = 〈ψn
∣∣D∣∣ψn〉 (2.58)∣∣ψ̃n+1〉 = D

∣∣ψn〉 − an∣∣ψn〉 − bn−1

∣∣ψn−1〉 (2.59)

bn =
√
〈ψ̃n+1

∣∣ψ̃n+1〉 (2.60)∣∣ψn+1〉 =
1

b1

∣∣ψ̃n+1〉 (2.61)

The coefficients an and bn are diagonal and off-diagonal matrix elements of the

tridiagonalized dynamical matrix and named recursion coefficients. Now, our dynamical

matrix in the Lanczos basis is as follows:

D̃ =



a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . bn

bn an


(2.62)

Here, the dynamical matrix is based on the tight binding. The total density of states can

be deduced as a continued fraction.

〈ψrp
∣∣δ(ω2 −D)

∣∣ψrp〉 = lim
n→0
− 1

π
Im
(
〈ψrp

∣∣ 1

ω2 + iη −D
∣∣ψrp〉) (2.63)

〈ψrp
∣∣ 1

ω2 + iη −D
∣∣ψrp〉 =

1

ω2 + iη − a1 − b21

ω2+iη−a2−
b22

ω2+iη−a3−
b23

...

(2.64)
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Figure 2.8. Recursion coefficients for pristine (5,5) armchair carbon nanotube. The
blue line represents the coefficient an, and the red is the coefficient bn.

G1(ω) =
1

ω2 + iη − a1 − b21

ω2+iη−a2−
b22

ω2+iη−a3−
b23

...

(2.65)

G1(ω) =
1

ω2 + iη − a1 − b2
1G2

(2.66)

GN(ω) =
1

ω2 + iη − aN − b2
NGN+1

(2.67)

The subspace of Lanczos is finite because recursion coefficients an and bn oscillate

around their average a and b value and tend quickly generally within a few hundred of the

recursion step which depends on the complexity of phononic spectrum, see Fig.2.8. Then,

GN(ω) =
1

ω2 + iη − aN − b2
NGN

=
1

ω2 + iη − aN − b2
NΣ(ω)

(2.68)

The termination is

Σ(ω) =
ω2 + iη − a− i

√
(2b)2 − (ω2 + iη − a)2

2b2
(2.69)
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Figure 2.9. The total density of states for pristine (5,5) armchair carbon nanotube. The
red dashed line is computed using Lanczos and continued fraction expan-
sion. The blue line is calculated with Green’s functions.

Figure 2.10. The total density of states for 50% isotopic mass-disordered (5,5) armchair
carbon nanotube computed with Lanczos and continued fraction expan-
sion.
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Density of states are averaged over a certain number of random vectors. For a more de-

tailed description, see Ref.[184]. The total density of states for pristine (5,5) armchair

carbon nanotube is plotted in Fig.2.9 to validate the Lanczos method with Green’s func-

tions. Mass-disordered one is determined to advance Chebychev polynomial expansion

because the rest of this method does not work for perfect, pristine systems(Fig.2.10).

2.4.2. Chebyshev Expansion of The Time Evolution Operator

Our method to determine the quantum-mechanical-thermal transport properties of

amorphous graphene is Kubo-Greenwood. The central quantity to be calculated is the

mean square displacement

χ2(ω, t) =
Tr{[X,U(t)]†δ(ω2 −

√
D)[X,U(t)]}

Tr{δ(ω2 −
√
D)}

(2.70)

where X is the position operator. The time development is determined with Chebyshev

Expansion of U(4t). Any function of an operator can be expanded as

f(x) =
∞∑
k=0

akTk(x) (2.71)

where Tk(x) = cos(k(arccos x)) is the kth Chebyshev polynomial, k is a nonnegative

integer, and the definition of the Chebyshev coefficient, ak

ak = (2− δk0)
1

π

∫ 1

−1

f(x)Tk(x)
dx√

(1− x2)
(2.72)

where δ is the Kronecker-Delta function. An important property of Chebyshev polynomi-

als [189–191]

T0(x) = 1

T1(x) = x

Tk(x) = 2xTk−1 − Tk−2 where k ≥ 2 (2.73)
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The electronic time evolution operator is the following

f(x) = U(4t) = e−ix4t = cos(x4 t)− i sin(x4 t) (2.74)

where x mimics the function of Hamiltonian in the time evolution operator. Just consider

the real part of the operator

f(x) = cos(x4 t) =
∞∑
k=0

akTk(x) (2.75)

ak = (2− δk0)
1

π

∫ 1

−1

cos(x4 t)Tk(x)
dx√

(1− x2)
(2.76)

let x = cosφ; then Tk(cosφ) = cos(kφ). Then the coefficient formula of the real part

becomes

ak = (2− δk0)
1

π

∫ π

0

cos(4t cosφ) cos(kφ)dφ (2.77)

Similarly, for the imaginary part, f(x) = sin(x4 t)

f(x) = sin(x4 t) =
∞∑
k=0

akTk(x) (2.78)

ak = (2− δk0)
1

π

∫ 1

−1

sin(x4 t)Tk(x)
dx√

(1− x2)
(2.79)

let x = cosφ. Then the coefficient formula for the imaginary part becomes

ak = (2− δk0)
1

π

∫ π

0

sin(4t cosφ) cos(kφ)dφ (2.80)

The Jacobi-Anger identity[192]

eix sinφ = J0(x)+2iJ1(x) sinφ+2J2(x) cos(2φ)+2iJ3(x) sin(3φ)+2J4(x) cos(4φ)+ ....

(2.81)

where Jk(x) is the kth-order Bessel function of first kind. Equating the real and imaginary

parts of the Jacobi-Anger identity gives
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cos(x sinφ) = J0(x) + 2J2(x) cos(2φ) + 2J4(x) cos(4φ) + .....

sin(x sinφ) = 2J1(x) sinφ+ 2J3(x) sin(3φ) + 2J5(x) sin(5φ) + .....

Change φ into (π/2− φ), hence

cos(x cosφ) = J0(x)− 2J2(x) cos(2φ) + 2J4(x) cos(4φ)− .....

sin(x cosφ) = 2J1(x) cosφ− 2J3(x) cos(3φ) + 2J5(x) cos(5φ)− .....

Multiply the above formulas by cos kφ and integrate from 0 to π

∫ π

0

cos kφ cos(x cosφ)dφ =

∫ π

0

{
J0(x)− 2J2(x) cos2 2φ+ 2J4(x) cos2 4φ− .....

}
dφ∫ π

0

cos kφ sin(x cosφ)dφ =

∫ π

0

{
2J1(x) cos2 φ− 2J3(x) cos2(3φ)

+ 2J5(x) cos2(5φ)− ..
}
dφ

∫ π

0

cos kφ cos(x cosφ)dφ =
π

2

{
1 + (−1)k

}
(−1)k/2Jk(x)∫ π

0

cos kφ sin(x cosφ)dφ =
π

2

{
1 + (−1)k

}
(−1)(k−1)/2Jk(x)

Finally,

cos(x4 t) =
∞∑
k=0

(2− δk0)
1

2

{
1 + (−1)k

}
(−1)k/2Jk(4t)Tk(x)

sin(x4 t) =
∞∑
k=0

(2− δk0)
1

2

{
1 + (−1)k

}
(−1)(k−1)/2Jk(4t)Tk(x)

We have plotted the real and imaginary parts of the electronic time evolution oper-

41



ator, computed numerically(marked) or analytically(dashed) in Fig.2.11. Each part con-

verges in its corresponding analytic value quickly; this demonstrates the numerical stabil-

ity of the Chebyshev expansion method.

Figure 2.11. Illustration of the efficiency of Chebyshev expansion. The parameters have
been chosen as x = 0.5,4t = 100. x mimics the Hamiltonian role in the
time evolution operator. So, this demonstrates the numerical stability of
the expansion.

Algorithms for both Lanczos method and Chebyshev expansion are following

Algorithm: Lanczos tridiagonalization
Input : Φ

1: Starts with a normalized seed vector |ψ1〉
2: b0 ← 0
3: |ψ0〉 ← 2 . it does not matter, since it will be multiplied by b0 = 0
4: while n← 1 : N do
5: an ← 〈ψn|Φ|ψn〉
6: |ψ′n+1〉 ← Φ|ψn〉 − an|ψn〉 − bn−1|ψn−1〉
7: bn ←

√
〈ψ′n+1|ψ′n+1〉

8: ψn+1 ← 1
bn
|ψ′n+1〉
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Algorithm: Chebyshev Polynomial expansion
Inputs : Φ, |ψ〉

1: |α0〉 ← 0
2: |α1〉 ← Φ′|ψ〉
3: |β0〉 ← 0
4: c1 ← 2(−i)1J1(2b4 t) . Jn: mth-order Bessel function of first order
5: |β1〉 ← [X,Φ′]|ψ〉
6: out← c1|β1〉
7: while n← 1 : Npoly do
8: |αn+1〉 ← 2Φ′|αn〉 − |αn−1〉
9: |βn+1〉 ← |βn〉+ 2[x,Φ′]|αn〉 − |βn−1〉

10: cn ← 2(−i)nJn(2b4 t)
11: out← out+ cn|βn+1〉
12: |αn−1〉 ← |αn〉
13: |βn−1〉 ← |βn〉
14: |αn〉 ← |αn+1〉
15: |βn〉 ← |βn+1〉
16: out← [X,U(4t)]|ψ〉

2.4.3. Chebyshev Expansion of the Time Evoluation Operator with

Dynamical Matrix

Now, our matrix is not an electronic Hamiltonian; indeed, it is a dynamical matrix

that is relevant to the vibrational properties of systems. Due to the fact thatDu = ω2u, the

square root of the eigenvalues belonging to the dynamical matrix gives us the frequency

of the normal modes of the corresponding system. The time evolution operator for the

vibrational dynamics of the system is the following

UD(4t) = exp
(
−i4 t

√
D
)

(2.82)

First, one needs to scale dynamical matrices, D′ = (D− a)/2b (where a is midfrequency

and 4b is the spectral range), since the Chebyshev polynomials’ domain is in the range

[−1, 1].

e−i4t
√
x =

∑
k

akTk(x
′)

=
∑
k

{
2− δk0

π

∫ 1

−1

dx′
e−i4t

√
2bx′+a Tk(x

′)√
1− x′2

}
Tk(x

′)
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The expansion coefficients are determined numerically with the Chebyshev-Gauss quadra-

ture.

x′ = cos

(
π(n+ 1

2
)

N

)
, n = 0, 1, 2, ........, N − 1 (2.83)

These abscissas are the N zeros of the Chebyshev polynomial TN . And the corresponding

quadrature relation ∫ 1

−1

f(x′)√
1− x′2

dx′ =
π

N

N−1∑
n=0

f(x′) (2.84)

Figure 2.12. The absolute value of the real and imaginary part of Chebyshev expansion
coefficients that are computed on a Chebyshev-Gauss grid.

Figure 2.13. Real and imaginary parts of both numeric and analytic values of the func-
tion, f(x) = e−i

√
x for the x value of 2500 within the range [0, 5x105].
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The computed expansion coefficients are demonstrated in Fig.2.12 and are consis-

tent with the existing literature.[183] Both the real and imaginary parts of the coefficients

decay quickly with the number of Chebyshev polynomials, as expected, the condition

for expansion convergence.Also, how the real and imaginary parts of the phononic time

evolution operator quickly converge to their analytical value is shown in Fig.2.13.

2.4.4. Time Iteration

The commutator is in the following form

[X,U(t)]|ψ〉 =
∑
k

ak(t)[X,Tk(Φ)]|ψ〉 (2.85)

Under the Eq.2.73, commutator becomes

[X,Tk+1(D′)] = 2[X,D′Tk(D
′)]− [X,Tk−1(D′)] (2.86)

Implying |αk〉 = Tk(D
′)|ψ〉 and |βk〉 = [X,Tk(D

′)]|ψ〉 one can write

|βk+1〉 = 2D′|βk〉+ 2[X,D′]|αk〉 − |βk−1〉 (2.87)

where |β0〉 = 0 and |β1〉 = [X,D′]|ψ〉 by definition. To compute |βk〉, |αk〉 are needed.

They satisfy the following relation via the Chebyshev polynomial relation, Eq.2.73

|αk+1〉 = Tk+1(D′)|ψ〉

= 2D′|αk〉 − |αk−1〉

where |α0〉 = |ψ〉 and |α1〉 = D′|ψ〉. Finally, the time evolution operator and commutator

can be computed via
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U(4t)|ψ〉 =

Npoly∑
k

ak(4t)|αk〉

[X,U(4t)]|ψ〉 =

Npoly∑
k

ak(4t)|βk〉

Npoly depends on the bandwidth and the spectrum complexity.

Once the vectors [X,U(4t)]|ψ〉 and U(4t)|ψ〉, the time evolution can be com-

puted as

U((m+ 1)4 t) |ψ〉 = e−i(1+m)
√
D4t |ψ〉

= e−i
√
D4t e−im

√
D4t |ψ〉

= U(4t) U(m4 t) |ψ〉

[X, U((m+ 1)4 t)] = [X, e−i
√
D4te−im

√
D4t] |ψ〉

= [X, e−i
√
D4t] e−im

√
D4t + e−i

√
D4t[X, e−im

√
D4t] |ψ〉

= [X, U(4t)]U(m4 t) + U(4t)[X, U(m4 t)] |ψ〉

where [A,BC] = [A,B]C +B[A,C].

2.4.5. Test Case: CNT(5,5) with isotop disorder

As a test case, we applied the method to the (5,5) a-CNT with 30% 14C isotope

disorder since the analytical formula for elastic mean free paths of a isotope disordered

CNT can be also obtained by[88, 182, 183, 193]

mfp(ω) =
12 a Nuc Nch(ω)

π2 f
∣∣4M
M

∣∣2 ρ2
uc(ω) ω2

(2.88)
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where a is the lattice vector in the translational direction, Nuc is the number of atoms in

the unit cell, Nch(ω) is the number of channels per unit cell, f is the percentage of the

isotopic impurity, 4M is the mass difference, M is the avarage mass, and ρ(ω) is the

density of states per unit cell.

Figure 2.14. Mean free paths of (5,5) armchair carbon nanotube with 30% 14C isotope
disorder.

The analytic and numeric mean free paths are plotted in Fig.2.14. The numeric re-

sult is quite approximate to the analytic one. But, thermal conductivity values are in good

agreement; see Fig.2.15, in which we have plotted the normalized thermal conductivities.

The conductivity values are determined within the Landauer scheme, and the transmission

values are calculated via Ξ(ω) = Nch(ω)/(1 + L/ mfp(ω)). The considerable reduction

in conductivity is expected.[194] Here, the carbon nanotube length is 2.86 µm.

Figure 2.15. Normalized thermal conductivity of (5,5) armchair carbon nanotube with
30% 14C isotope disorder.
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CHAPTER 3

PHONON TUNNELING

In this study, by phonon tunneling, we mean the leakage of vibrational energy

through a phononic gap system, which stops the propagation of vibrational modes that

coincide with the frequency gap of its phononic spectrum. Hence, the system acts as

a barrier to incoming phonons. In order to describe phonon tunneling principally, the

symmetrical case, where the same material dwells on both sides of a barrier to act as

thermal reservoirs, is examined in detail. For this case, the reservoirs are identical semi-

infinite monoatomic chains, and the barrier, i.e., scattering region, is a finite diatomic

chain with a gap in its phononic spectrum. Due to finite structure, the diatomic chain has

a discrete spectrum; see middle plot of Fig.3.1. Also, in the figure, the right and left plots

demonstrate the density of states of the semi-infinite chains, which are determined within

NEGF formalism. All chains are one-dimensional for simplicity.

Monoatomic 1D Chain 

of A atoms

Diatomic 1D Chain

of AC atoms

z

 

 

 
 ω

a-a

Monoatomic 1D Chain 

of A atoms

Figure 3.1. Schematic illustration of the reservoir-barrier-reservoir system. The
left and right plots demonstrate the density of states of semi-infinite
monoatomic chains. The middle demonstrates an exemplary discrete spec-
trum of a finite diatomic chain with a phononic gap.

Phonons are described by their dispersion relations that link the frequency to

the wavevector, ω(q). In order to reveal the individual phononic properties of both

monoatomic and diatomic chains, their phonon dispersion relations are determined. The
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chains are modeled as coupled harmonic oscillators by considering the first nearest neigh-

bors’ interactions within the harmonic approximation; the elastic response is a quadratic

function of small displacements of atoms around their equilibrium positions. An ordinary

interatomic potential between two atoms can be considered parabolic near its minimum.

The equation of motion, which is constructed by integrating Hooke’s law into Newton’s

first law, is given for the monoatomic chain as[195–197]

m ün = Φ (un+1 − un) + Φ (un − un−1) (3.1)

where Φ, m, and u denote force-constants, masses, and the displacements of atoms

around their equilibrium condition, respectively. Plane waves solve the equation of mo-

tion.

un = ε ei(qz−ωt) = ε ei(qnd−ωt) (3.2)

where ε, q, and d refer to the amplitude of the motion of nth atom, the wave vector, and the

atomic spacing of the chain, respectively. Since all atoms dwell in the same environment,

one can adopt the periodic boundary condition

uN+1 = u1

ε ei[q(N+1)d−ωt] = ε ei[qd−ωt]

eiqNd = 1

q =
2πn

Nd
, n ∈ [0, 1, 2, 3, ..., N − 1]

Here, N is the number of atoms in the chain. Substitution of both the second derivative

and definition of plane waves into the equation of motion gives

−mω2ε ei(qnd−ωt) = [Φ( eiqd − 1) + Φ( e−iqd − 1)]ε ei(qnd−ωt) (3.3)

The arrangement of the above equation results in the dispersion relation of the monoatomic

chain

ω(q) =

√
4Φ

M

∣∣ sin(1

2
qd

)∣∣ (3.4)

Each q value represents a normal mode. Dispersion of the monoatomic chain has transla-

tional symmetry with period 2π/d.

The phonon dispersion relation of the diatomic chain can be determined by con-

49



sidering the chain with a basis of two non-equivalent atoms. Each atom is assumed to

interact only with its first neighbors. The equations of motion for both types are

ma üs = Φac (us+1 − us) + Φac (us−1 − us)

mc ül = Φac (ul+1 − ul) + Φac (ul−1 − ul)

Assuming solutions have the form of traveling waves with different amplitudes on alter-

nate planes, us = εs e
i(Qz−ωt), and ul = εl e

i(Qz−ωt) . The replacement of solutions to

their corresponding equations of motion concludes in the following homogeneous linear

equation

mamcω
4 − 2Φac(ma +mc)ω

2 + 2Φ2
ac(1− cosQd) = 0 (3.5)

The roots of the equation provide the exact solutions of the dispersion of the diatomic

chain

ω(Q) =

√
Φac(

ma +mc ±
√
m2
a +m2

c + 2mamc cosQd

mamc

) (3.6)

Figure 3.2. The dispersion relation of the diatomic chain. The wavevectors have imagi-
nary values for the modes that fall inside the phononic gap. ωminop , ωmaxac
stand for the minimum frequency of the optical band and maximum fre-
quency of the acoustic band, respectively. ωminop =

√
2Φac/mlight, and

ωmaxac =
√

2Φac/mheavy.
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There are two dispersion branches, i.e., the optic and acoustic branches. For the

acoustic branch, atoms oscillate in phase with each other, while for the optic branch,

atoms perform out-of-phase movements. The middle graph of Fig.3.2 shows the dis-

persion relation of the diatomic chain. The acoustic branch ranges from 0 to ωmaxac =√
2Φac/mheavy, while optic one ranges from ωminop =

√
2Φac/mlight to ωmax =√

2Φac(1/ma + 1/mc). The dispersion relation of the diatomic chain has a distinct fea-

ture: phononic gap, which extends from ωmaxac to ωminop . The vibrational modes can not

propagate inside the phononic gap, and the wavevectors, Q, have imaginary values.[198]

To illustrate this circumstance, an imaginary part of the dispersion is plotted on the right

side of Fig.3.2. The solution of the equation of motion for the vibrational modes that fall

inside the gap is in the form of

u(z) = εeQz (3.7)

and here we consider a time-independent situation and removed the exp(−iωt) factor.

After analyzing the phonon dispersion relations of individual chain, the reservoir-

barrier-reservoir system can be discussed. Inside the band, oscillations are allowed, and

the solutions are normal modes

ui(z) = Arie
iqz + Alie

−iqz (3.8)

where Ari and Ali represent coefficients of the waves propagating to the right and the

left, respectively. i runs over the left reservoir, the barrier, and the right reservoir. For the

modes that fall inside the phononic bands, the solution is in the form of

u(z) =


Arle

iqz + Alle
−iqz, if x < −a.

Arbe
iQz + Albe

−iQz, if −a < x < x.

Arre
iqz, if a < x.

(3.9)

where the capital symbol represents the wave vectors of the barrier region, Q, to distin-

guish from the wave vectors of the reservoirs. The solutions with the amplitudes Ar, Al,

and Ar can be considered as the solutions of incident, reflected and transmitted waves,
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respectively. For the modes that fall inside the phononic gap:

u(z) =


Arle

iqz + Alle
−iqz, if x < −a.

Arbe
−Qz + Albe

Qz, if −a < x < a.

Arre
iqz, if a < x.

(3.10)

The inverted dispersion relations determine the wave vectors q and Q.

q =
2 arcsin

(
ω
√

ma
4Φaa

)
daa

Q =
arccos(mamc/2Φ2

ac ω
4 − ((ma +mc)/Φacω

2) + 1)

dac

where daa(dac) is the repeating distance of the monoatomic(diatomic chains). The follow-

ing step is to implement the continuity condition at boundaries.

Continuity of u at -a : Arle
−iqa + Alle

iqa = Arbe
Qa + Albe

−Qa

Continuity of ∂u/∂z at -a : iq(Arle
−iqa + Alle

iqa) = Q(Arbe
Qa + Albe

−Qa)

2Arle
−iqa = (1− iQ

q
)Arbe

Qa + (1 + i
Q

q
)Albe

−Qa (3.11)

Continuity of u at a : Arbe
−Qa + Albe

Qa = Arre
iqa

Continuity of ∂u/∂z at a : −Q(Arbe
−Qa + Albe

Qa) = iq(Arre
iqa)

Albe
Qa(1 + i

q

Q
) = Arre

iqa & Arbe
−Qa = (1− i q

Q
)Arre

iqa (3.12)
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2Arle
−iqa = (1− iQ

q
)(1 +

iq

Q
)Arre

iqa e
−2Qa

2
+ (1 +

iQ

q
)(1− iq

Q
)Arre

iqa e
2Qa

2

=
Arre

iqa

2

{[
1 + i

( q

Q
− Q

q

)
+ 1
]
e−2Qa +

[
1 + i

(Q
q
− q

Q

)
+ 1
]
e2Qa

}
=
Arre

iqa

2

[
2
(
e−2Qa + e2Qa

)
+ i

(Q2 − q2)

Qq

(
e2Qa + e−2Qa

)]
=
Arre

iqa

2

[
4 cosh(2Q) + i

(Q2 − q2)

Qq
2 sinh(2Qa)

]
= 2Arre

iqa

[
cosh(2Q) + i

(Q2 − q2)

2Qq
sinh(2Qa)

]

Transmission coefficient, Ξ, can be determined by taking the ratio, Arr/Arl , and similarly

reflection coefficient is defined as All/Arl . For the frequency range in which the barrier

has no propagating vibrational mode, the transmission coefficient is found

Ξ =

∣∣∣∣ArrArl

∣∣∣∣2 =
1

cosh2(2Qa) + (Q2−q2)2

(2Qq)2
sinh2(2Qa)

(3.13)

In order to determine the transmission coefficient for the modes that fall inside the bands,

one can follow the receipt that is applied above starting with solutions, Eq.3.9. The result

is

Ξ =

∣∣∣∣ArrArl

∣∣∣∣2 =
1

cos2(2Qa) + (Q2+q2)2

(2Qq)2
sin2(2Qa)

(3.14)

Fig.3.3 presents the transmission coefficients in logarithmic scale as a function of barrier

length. Inside the gap, the transmission coefficient decays exponentially. The exponen-

tial decay with barrier thickness is evidence of the tunneling effect. When the barrier

chain is long enough to prevent tunneling, the vibrational modes within the gap can not

be transmitted via the barrier. Otherwise, these modes can tunnel through the barrier by

virtue of imaginary solutions. Outside the phononic gap, the transmission coefficient of

allowed modes oscillates with the barrier length. Phonons inside the barrier region are re-

peatedly reflected from interfaces. Back-reflected phonons constructively or destructively

interfere with each other. Inside barriers with different thicknesses, different phase shifts

occur. Hence, various interference patterns are formed. This mechanism is well-known

for Fabry-Perot interference.[199–201] In this way, the transmission coefficient oscillates

with the thickness of the barrier region due to the phase difference.
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Figure 3.3. The transmission coefficients in logarithmic scale as a function of barrier
length. While the transmission coefficient of the forbidden mode decays
exponentially, the transmission coefficient of the allowed mode oscillates.

The organized version of the eq.3.14 is Ξ = [1+((Q2−q2)/2Qq)2 sin2(2Qa)]−1.

The amplitude of oscillation that depends on the length of the barrier system is deter-

mined by the wavevectors of either the barrier or the reservoir while the oscillation period

changes with both the length, a, and the wave vector of the barrier, Q. In Fig.3.3, the

transmission coefficients of two different modes are plotted. The allowed mode has a

frequency that does not coincide with the phononic gap, while the forbidden mode prop-

agates with a frequency that coincides with the stop band. While the allowed mode’s

transmission coefficient oscillates, the forbidden mode’s transmission coefficient expo-

nentially decays with the length.

3.1. Phonon Dichromator

The investigation of thermal properties of disordered materials occupies an es-

sential position in phononics, as in other fields, since some characteristics of disordered

materials can be desirable.[202, 203] Phonon propagation through disordered materials

has been broadly supposed to be restricted due to the localization of the carriers.[204]

However, a recent theoretical study uncovered the presence of anomalous transparent vi-
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brational state despite disorders.[205] A transparent state appears in a one-dimensional

harmonic chain with completely random disorders due to the intrinsic cooperation of

force constant and mass disorders. The authors investigated a toy model based on nano-

junction geometry where a binary alloy model, A1−xBx, with the impurity concentration

x, is placed between two thermal reservoirs made up of monoatomic semi-infinite chains

of A atoms. The geometry of nano-junction is illustrated in Fig.3.4. Within a monoatomic

system, replacing an impurity atom creates simultaneous changes in the nearest neighbor-

ing force constants. When the force constant between the host and impurity atoms is a

harmonic average,

Φab =
2ΦaaΦbb

(Φaa + Φbb)
(3.15)

there exists a common resonant state which gives perfect transmission. Here, Φaa, Φbb,

and Φab are the force constants among the neighboring pairs of AA, BB, and AB(BA),

respectively. According to the results, the phonon propagation through completely ran-

dom disordered materials branches out into three regimes: I) The full localization regime

where all states with high frequency are localized, and the transmission rapidly decays

from unity to zero. In Fig.3.5, the red line displays the effect of localization due to si-

multaneous mass and force constant disorder that does not satisfy the harmonic relation.

II) The sub-ballistic regime where a great number of transparent states exist. When a

system satisfies the relation, Φaama = Φbbmb, besides the harmonic condition, nearly

perfect transmission plateau appears within the low-frequency range, the brown line in

Fig.3.5. III) The resonant regime where a common resonant state presents perfect trans-

mission. The disordered systems, represented by the blue and maroon lines in Fig.3.5

exhibit the resonant behavior that exists in favor of the harmonic relation. The common

resonant frequency(ωcrf ) only depends on the intrinsic parameters, i.e., force constants

and masses, and can be determined by

wcrf = 2

√
ΦaaΦbb(maΦaa −mbΦbb)

mamb(Φ
2
aa −Φ2

bb)
(3.16)

Consequently, it is insensitive to the system’s size, impurity concentration, and atomic

configuration. The masses of A-type and B-type atoms are represented by ma and mb.

The transmission spectrum of a specific long chain has completely random reso-

nance peaks that have no track with the harmonic relation. Transmissions are averaged

over 105 completely random configurations to remove those peaks. We set both ma and

Φaa to 1.0 for all calculations. Without disorder, all states below the maximum (cut-off)
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frequency give perfect transmission, such as the black line in Fig.3.5. The difference,

|Φaama − Φbbmb|, gives information about the peaks’ isolation. The greater difference

means a narrower peak. For instance, the differences for the brown, maroon, and blue

lines from Fig.3.5 are calculated as 0.10, 0.18, and 0.67, respectively.

 
  

Binary Alloy A  B7 3
 RESERVOIR

 A

RESERVOIR

 

 RESERVOIR

 A

RESERVOIR

 

Figure 3.4. A preliminary illustration of a nano-scale junction where the junction is
made of thermal dichromator structure.

The binary alloy model, A1−xBx, with the impurity concentration 30%, is used as

a dichromator for this work. Specifically, the alloys whose transmission spectra are illus-

trated with the maroon and brown lines in Fig.3.5 are chosen. The calculated common

resonant frequencies of the brown and maroon lines are 12.6742 THz and 8.0583 THz,

respectively. In order to both filter random resonant peaks and suppress the contribution

of the low-frequency modes to the conductivity, the alloy sizes are extended to 120000

atoms long. For extremely long chains, the perfect transmission peak of the common res-

onant frequency can deteriorate or completely disappear. In the sub-ballistic region, peaks

are more robust to scatter than those of the resonant regime. So, our chosen dichromators

have adequately sub-ballistic character. Our chromators select a small portion of the trans-

mission spectrum. The disordered chains block all frequencies except the zero frequency,

the common resonant frequency, and their neighbors. For each type of chromator, five

distinct atomic configurations whose zero-frequency and the standard resonant frequency

give approximately the same contribution to the conductivity are selected to comprehend

the barrier effect on ωcrf obviously.
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Figure 3.5. The transmissions as a function of frequency for distinctly tuned force con-
stant and masses disorder combinations. Both ma and Φaa are equal to 1.0
for all cases. The length of binary alloys is 1000 atoms long, and the im-
purity concentration is 30%. Transmissions are averaged over 105 atomic
configurations.

3.2. Numerical Findings

One of the dichromatic systems is adjoined to a phononic gap system and placed

between two macroscopic thermal reservoirs to build a tunneling device. The schematic

illustration of the device is shown in Fig.3.6. Since the supplement of A atoms at the ends

of our chains does not change their transmission, few are placed between the barriers and

dichromators to prevent B and C atoms from becoming neighbors. The parameters of

barrier systems are selected so that the common resonant frequencies of corresponding

dichromators fall inside the phononic gaps of their barriers. The transmissions of the sys-

tems are calculated with the NEGF, and the non-linear phonon-phonon interactions are

not considered. The transmission spectrums of the dichromator, whose common reso-

57



nant frequency is 12.6742 THz, and its corresponding phononic gap system are shown in

Fig.3.7 to illustrate how their spectra coincidence with each other. The parameters, Φac

and mc, are set to 0.285 eV/Å2 and 0.619 amu, respectively. The gap extends from 11.8

THz to 15.0 THz. This barrier blocks all the modes within this frequency range. On the

other hand, the dichromator gives nominal transmission at all vibrational modes except

neighbors of either zero-frequency or its common resonant frequency. Hence, only the

lower energy states are common for dichromator and phononic gap systems. The length

of the barrier system whose transmission spectrum is shown at the bottom of Fig.3.7 is

sufficiently long to open the gap. Compared to entirely random configurations of dichro-

mators, barriers are one-dimensional lattices with a unit cell consisting of one pair of A

and C atoms. The discrete levels of the diatomic chain are broadened due to the interac-

tions with reservoirs.
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Figure 3.6. Schematic illustration of the phonon tunneling device.

The dependence of transmissions and conductivities on the length of barriers is in-

vestigated since evanescent solutions decay with length. Tunneling occurs when the bar-

rier length is sufficiently short to allow penetration of evanescent waves. Placement of the

barriers starts with placing one unit cell of the barrier system and continues with adding

one unit cell at a time. For each step, we determined the transmission coefficient. As

we mentioned before, for each type of dichromator, five different atomic configurations

are selected in which the contributions of the zero-frequency and the common resonant

frequency to the conductivity are approximately the same. Accordingly, the conductivity

values should drop to approximately half above a specific temperature.

The phononic transmission spectrum that belongs to one of the tunneling devices

is demonstrated in Fig.3.8 in order to observe the filtering effect that is applied by both

dichromators and phononic gap systems to each other. The present dichromator’s com-

mon resonant frequency is 8.0583 THz, and the corresponding phononic gap falls be-
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Figure 3.7. The transmission spectra of a dichromator(top) and its corresponding bar-
rier(down). The barrier length is sufficiently long to illustrate the gap dis-
tinctly.
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Figure 3.8. The transmission spectrum of a phonon tunneling device.

Figure 3.9. The transmission coefficients in logarithmic scale as a length function are
plotted for a set of vibrational modes around the resonant frequency of the
above system’s dichromators.
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tween 7.81 THz and 9.37 THz. For this range, the intrinsic parameters, Φac(mc), are set

to 0.125 eV/Å2 ( 0.694) amu. The transmission coefficients of the shared vibrational

modes between the dichromator and phononic gap system fluctuate as expected. At the

gap, until the barrier length is sufficiently long to prevent tunneling, transmission still oc-

curs due to the penetration of evanescent waves through the barrier. Exponential decays

of the transmission coefficients with length are evidence of tunneling. Consequently, the

conductivity is expected to be enhanced at a sufficiently small thickness of the phononic

gap system. Moreover, the filtering effect of the dichromator can be observed from the

spectrum. It stops all the vibrational modes except those neighbors of either the zero-

frequency or 8.0583 THz. For a set of vibrational modes from neighbors of the common

resonant frequency, the transmissions in logarithmic scale as a function of barrier length

are plotted in Fig.3.9. The modes indicated by the blue and red lines are common for

both the dichromator and the barrier, and the other three are forbidden because they fall

inside the gap. While the transmissions of forbidden modes decay with barrier length,

transmission coefficients of the common modes exhibit Fabry-Perot oscillations with the

length, and either oscillations’ periods or oscillations’ amplitudes are diverse.

When the transmission coefficient is calculated considering only harmonic inter-

actions, quantum effects do not come into play. Therefore, an identical value is ob-

tained whether the method is based on classical or quantum mechanics. Thermal con-

ductance values are calculated via the Landauer formula with both the Bose-Einstein and

the Maxwell-Boltzmann distribution functions to see the effect of statistics on the tun-

neling mechanism. Consequently, we verify that the tunneling phenomenon is not purely

quantum mechanical; instead, it is also performed by classical waves.

The length dependence of thermal conductivity is investigated to relate the tun-

neling effect on a measurable quantity. Conductivities, which are calculated with the

Bose-Einstein distribution function, are demonstrated in Fig.3.10. Calculations are per-

formed at three different temperatures. The figures are arranged from top to bottom ac-

cording to their calculation temperatures. The top, middle, and bottom graphs introduce

conductivities of 100 K, 300 K, and 1000 K, respectively. In all, conductivity is on a

logarithmic scale. The different line styles indicate the dichromator types, while col-

ors characterize the different atomic configurations. The dot-dashed lines indicate the

chromator whose common resonant frequency is 8.0583 THz, and the dashed lines repre-

sent the chromator whose common resonant frequency is 12.6742 THz. The insets point

to the conductivity drops because ten-atom-long barriers have sufficient length to pre-

vent tunneling. The atomic configurations characterized by the same intrinsic parameters
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Figure 3.10. Conductivities which are calculated with the Bose-Einstein distribution
function at 100 K (top), 300 K (middle), and 1000 K (bottom).
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give roughly comparable conductivities. The conductivities of devices in which the used

chromator’s common resonant frequency is 12.6742 THz are higher than that of the oth-

ers since chromators have higher force constant and lighter atoms. The fluctuations of

the conductivities originate from the Fabry-Perot oscillations in transmission coefficients.

They are more distinct in the devices whose dichromator’s resonant frequency is 8.0583

THz since this chromator’s transmission peak is narrower than the transmission peak of

the other chromator due to the higher difference between the multiplications Φaama and

kbbmb. When the chromator’s peaks are broader, more vibrational modes are common for

the dichromator and barrier; hence, the fluctuations are averaged out.

When the distribution function is the Bose-Einstein function at absolute tempera-

ture, the zero-frequency modes dominates the thermal conductivity because, at low tem-

peratures, low energetic vibrational modes contribute to the conductivity. Hence, conduc-

tivity is insensitive to either the barrier system’s presence or extension. However, with the

temperature rise, the contribution from the common resonant frequency incrementally in-

creases, and conductivity increases. The highest decrease due to tunneling occurs at 1000

K. Conductivities drop within the range between 50% and 70%. Moreover, a considerable

drop in conductivity is still possible at room temperature.
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Figure 3.11. Conductances which are calculated with the classical distribution function.
When the Maxwell-Boltzman governs the distribution, conductances are
independent of temperature.
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The conductivities determined with the Maxwell-Boltzmann distribution function

are plotted in Fig.3.11. In this figure, the same color and style code with Fig.3.10 is

applied. When statistics is classical, conductivities are independent of temperature. Since

at sufficiently high temperatures, the behavior of quantum mechanical weight function

is similar to that of classic mechanical one, the conductivity values are similar. When

Fig.3.10 and Fig.3.11 are carefully compared, the values are approximately the same, and

considerable drops in conductivities with length are observable.

Figure 3.12. The illustration shows the robustness of the common resonant transmission
peak against deviations in Φab value from the harmonic condition. Bothma

and Φaa are equal to 1.0 .

The endurance of perfect transmission at common resonant frequency against de-

viations in Φab value from the harmonic average of Φaa and Φbb was investigated in order

to reveal the possibility of construction a phonon tunneling device. In the fig.3.12, trans-

missions calculated for a set of deviated kab values are demonstrated. For this reason, the

system, indicated by the blue line in Fig.3.5, is chosen. Again, transmissions are average

over 105 random atomic configurations. Transmission is not unity for slight deviations,

but 10 percent to 20 percent drops are acceptable and do not prevent the observation of

phonon tunneling. The transmission value decreases to half when the deviation is around

4%. However, the resonant transmission peak completely disappears when the kab value

deviates more than 10% from the harmonic average.

To conclude, this chapter presented a toy model of a phonon tunneling device
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based on the bridge structure. Tunneling is an exotic phenomenon displayed by all waves

and quantum mechanical particles. Due to the advances in probing the nano-scale heat

transfer, with this presented phonon tunneling device, phonon tunneling is expected to

be observed. This device comprises a phononic gap system as a barrier, and a phononic

dichromator filters incoming phonons. The gap is arranged so that one of the incoming

frequencies of the dichromator falls inside the gap. At sufficiently short lengths of the

barrier, thermal conductivity is enhanced due to the phonon tunneling. Conductivity is

considerably decreased, like 50% and 70% , when the barrier length is sufficient to prevent

tunneling completely.
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CHAPTER 4

THE SIGNIFANCE OF QUANTUM EFFECTS ON

THERMAL CONDUCTIVITY OF AMORPHOUS

GRAPHENE

Quantum mechanics comes into play in determining the thermal conductivity of

materials in two ways. The first is the effect of phonon occupancy factors on transport,

and the second is the role quantum mechanics plays in determining the magnitudes of

self-energies arising from multiple phonon scattering in anharmonic processes. In many

materials, these effects can be neglected at room temperature so that classical molecular

dynamics simulations can give good enough results on the thermal conductivity of ma-

terials. However, systems with high Debye temperatures, such as graphene, should be

carefully studied. In this study, we investigate the thermal conductivity of amorphous

graphene by adapting the Landauer transport formulation to phonon transport. Since

multiple phonon scattering is suppressed in the amorphous system, it is studied in the

harmonic limit. For this section, structures are created by amorphization in the middle of

the 14 nanometer-long graphene. The width of the graphene is 10 nanometers long. The

8-angstrom long regions of the structures from the right and left were fixed. Therefore,

buffer zones have been placed between the right and left reservoirs and the device; see

Fig.4.1.

Figure 4.1. The partition of the structure as the left, the device, and the right system is
shown.

We have chosen configurations with the same q3 parameter from each type of

device region to compare thermal properties. All picked structures are shown in the ap-
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pendix. Mass-normalized dynamical matrices of selected systems are obtained by the

finite difference method as it is implemented in the LAMMPS package. This step adapts

the optimized Tersoff potential parameter to characterize the interatomic potentials.[139]

Non-Equilibrium Green’s Functions are applied to obtain transmissions. Phonon trans-

mission is calculated by Ξ = trace[ΓlGdΓrG
†
d]. From transmissions, conductivities are

determined with the Landauer formula. Assuming that ∆T → 0, namely equilibrium

transport, conductivity is defined as

κ =
G ∗ L
A

=
L

A

J

∆T
=

L

2πA

∫
dω ~ω Ξ(ω)

∂f

∂T
(4.1)

where f is the distribution function and A is the cross sectional area. We determined

thermal conductivities with two distribution functions: Bose-Einstein and Maxwell-

Boltzman distribution function, fcl(β, ε) = 1/β ε.

In the harmonic approximation, the transmission function does not change under

the interchange of mechanics between classical and quantum. So, this work focuses on

the effect of alternating the distribution function from classical to quantum mechanics on

thermal transport properties. The nobility of this work, classical and quantum mechanical

thermal conductivities, can be determined within one scheme.

The calculated vibrational density of states within Green’s functions scheme can

be seen in Fig.4.2. Despite the differences in both configuration type and q3, the density

of states shows a similar character. Correspondingly, the density of states is in agreement

with the existing literature. The transmissions are shown in Fig.4.3. Colors characterize

the device type. We used red for the 3CGM type, black for the 3C type, and blue for the

NC type; this color code is applied to all figures. Solid lines indicate configurations with

a q3 parameter of 0.70, dotted lines indicate structures with a q3 parameter of 0.50, and

lines with diamonds demonstrate the arrangements with a q3 parameter of 0.40. The first

thing to notice when looking at the transmission graphs is that the transmission values de-

crease as the q3 parameter decreases. While high-energy phonons were most affected by

the defects, acoustic modes that are difficult to scatter are less affected by the disorders,

regardless of the q3 parameter and the device type. The effect of the absence of three- and

four-membered rings is negligible. Irrespective of the q3 parameter, 3CGM and 3C trans-

missions seem very close. The NC device configuration scatters phonons with moderate

energies more than the other two due to the absence of voids and coordination defects.

However, in optical and acoustic phonons, the change of configuration type has a minor

effect on their transmission.
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Figure 4.2. The vibrational Density of States of amorphous graphene with different
phases and amorphousness degree.

Thus far, all our calculations were common to classical and quantum mechan-

ics. For the impact of classical and quantum mechanical statistics on thermal transport

properties, we stated that we calculated the conductivity for two different distribution

functions. The obtained conductivities are seen in Fig.4.4. The dashed lines demonstrate

the conductivities, which are calculated with classical statistics. The solid lines indicate

the conductivities, which are computed with Bose-Einstein statistics. We used the same

color and line code for the devices’ types and the q3 parameters. As seen in the conduc-

tivity figure, there are considerable disparities between classical and quantum mechanical

thermal conductivities. As with heat capacity, we expect this disparency between classical

and quantum mechanics to disappear at higher temperatures. Since the Debye tempera-

ture of graphene is 1813 K[206], we see that the apparent distinction does perish at about

those temperatures. Since we’re not dealing with high temperatures, we plotted conduc-

tivities up to 500 K to inspect temperatures around room temperature. Further, a slight

variance between conductivities belonging to different device types with the low q3 pa-

rameter is observed. So, we can deduce the absence of three- and four-membered rings

has almost no impact on thermal conductivities, and voids and coordination defects have

a bare influence when the structure has a high disorder.

Additionally, the calculated conductivities at 300 K and their proportions are listed

in table 4.1. Conductivities lower with decreasing q3 parameters as transmissions since
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Figure 4.3. Transmissions for different values of q3 and device types. The black, red,
and blue lines demonstrate 3CGM, 3C, and NC device types. Lines are
dotted(marked with diamonds) to indicate the configurations with q3 =
0.55(0.40).

Table 4.1. The conductivity values and their proportions determined at 300 K.

Conductivity (W (mK)−1)
Device Type q3 Canonical Ensemble Quantum Mechanical Proportion

3CGM
0.70 18.48 9.48 1.95
0.55 10.77 6.04 1.79
0.40 6.86 4.02 1.74

3C
0.70 18.93 9.46 1.96
0.55 10.88 5.92 1.78
0.40 6.74 3.79 1.74

NC
0.70 14.08 6.98 2.02
0.55 9.58 4.97 1.93
0.40 6.74 3.55 1.89
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Figure 4.4. Conductivities. The dashed lines demonstrate the conductivities, which are
calculated with classical statistics. The solid line shows the conductivities
calculated with the Bose-Einstein distribution function. Except this, the
line and color codes are the same as the transmission figure.

Figure 4.5. The proportions vs. the local bond order parameter, q3. The inset shows
the proportions against temperature.

70



lower q3 means more disorder, thus stronger resistance to heat flow. Moreover, the dis-

crepancies between classical and quantum mechanical conductivities get smaller with

lower q3 parameters. However, even at its high amorphous degree, classical mechanics

overestimates thermal conductivity by almost 80 percent. To deeply investigate the de-

pendence of the proportion on amorphousness degree, we plot the ratios as a function of

temperature as shown in Fig.4.5. At low temperatures, the prediction of classical mechan-

ics is almost five times greater than quantum mechanical conductivities since classical

mechanics excite all vibrational modes regardless of the temperature, while quantum me-

chanics excite vibrational modes according to the ambient temperature. So, the difference

gets larger with the decreasing temperature. The inset of Fig.4.5 shows proportions as a

function of the q3 parameter. The ratio lifted significantly for all device types with lower

amorphousness degrees. NC device configurations give slightly higher proportions than

the other two types due to stronger scattering to phonons with moderate energies.

4.1. Size Dependence

The thermal conductivity values and the proportions presented in the previous sec-

tion must be independent of the length. We showed that our results are independent of

size by repeating our transmission and conductivity calculations with two other dimen-

sions, longer and shorter than the structure we used in the previous section. The device

lengths of the systems whose results are exhibited in the central part are 4.0 nanometers.

While the device length of the configurations we call short is 1.6 nm, the distance of the

devices we call long is 7.5 nanometers. All chosen structures are printed on the supple-

mentary material. The width of all systems is 10 nm. Calculations for this purpose were

made only for the 3CGM device type. The structures we created for this purpose can be

seen in Fig.A5-A6. Transmission and conductivity calculations are only reproduced for

the configurations of 0.70 and 0.55 q3 parameters. We demonstrated the transmission fig-

ures in a simpler view by grouping these two q3 parameters in a separate graph (Fig.4.6).

The blue lines are for perfect graphene(10x14 nm2); the green, black, and orange lines

indicate the systems with lengths 1.6, 4.0, 7.5 nm. The higher the phonon frequencies,

the more they are affected by the distortions in the structure. As the length of the device

increases, the transmission values of all modes decrease even though the systems have the

same q3 parameter; significantly, the scattering of medium-energy frequencies increases.

The last figure shows the conductivity values. Again, black, green, and orange line colors

indicate the configurations with device lengths of 4.0, 1.6, and 7.5 nm. The dashed lines
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(a) q3: 0.70

(b) q3: 0.55

Figure 4.6. Transmission figures for systems with different device lengths and the
same q3 parameter.
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are for classical thermal conductivities, and the dotted lines are for the configurations

with q3 = 0.55. Slight differences in conductivity are observed, but even though struc-

tures have the same q3 parameter, the differences in the structure’s atomic details lead to

slight differences in conductivity. Nevertheless, when the values are carefully examined,

the results demonstrate thermal conductivity values are independent of system size, as

expected.

Figure 4.7. Thermal conductivity values as a function of temperature.

4.2. Kubo-Greenwood Results

One issue that can arise from using Green’s functions method is the interface effect

on thermal conductivity. Kapitza resistance occurs when a carrier crosses an interface.

[207] Due to the amorphous and crystalline phases having different resistivities to the

heat carriers, the overall structure can cause Kapitza resistance. Another issue can be

the length of the device region. If it remains smaller than the mean free path, diffusion

may not occur, and carriers that have a diffusional profile may show a ballistic character.

The Kubo-Greenwood method can handle much larger structures than Green’s functions.

The decimation technique can help the size issue, but increasing the width can still be

challenging since the block size will increase with the increasing width. Consequently,
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we validate our results with the Kubo-Greenwood method, which is free from size and

interface issues.

We have chosen the 3C type configuration with q3=0.70 since the presence of

three- and four-membered rings have a bare impact on conductivities; we can compare

3CGM and 3C structures. Now, our structure is 25x25 nm2. According to Green’s

functions results, we estimated the average mean free path to be approximately 4-5 nm

for configurations with q3=0.70. So, our sample size is much larger than to uncover

whether there is a size issue. The calculated mean free paths are shown in Fig.4.8, and

the inset demonstrates the transmission values calculated from the mean free paths via

Ξ(ω) = Nch(ω)/(1 + L/mfp(ω)). Mean free path values are closer to the estimated

value. We also have estimated the average mean free path for q3=0.40, approximately

1 nm. So, we expect this value to be a quite good approximation. Moreover, when the

transmission values of configurations with q=0.70 (Fig.4.6a) are examined, it is observed

that the transmission of the structure with a length of 7.5 nm is reduced to one-fifth of that

of the perfect one. The values shown in the inset show more reduction in the transmis-

sion, as it should be. When the device increases from 1.6 nm to 4.0 nm, the transmission

values decrease significantly more than when the device increases from 4.0 nm to 7.5 nm.

Consequently, the device with the 1.6 nm length is below the mean free path.

Figure 4.8. Mean free paths of 3C configuration with q3=0.70. The system size is
25x25 nm2. The inset demonstrates the transmissions of pristine and amor-
phous phases.
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Figure 4.9. Thermal Conductivities of Configurations with q3=0.70. The
dashed(solid) lines demonstrate the classical (quantum) conductivities.
The 25 nm long configuration is calculated with the Kubo-Greenwood
method, while the Green’s functions method is applied to others.

The thermal conductivity has also been plotted in Fig.4.9. Here, we have plotted

the thermal conductivity with the q3=0.70 configurations from the previous section for a

clean comparison. The conductivities are in quite good agreement at low temperatures,

while Kubo Greenwood gives higher values at high temperatures. This shows that the

Kapitza resistance may have been realized for high-frequency carriers. The interface re-

sistance must be at high-frequency carriers, as there is almost no difference between the

quantum thermal conductivities, while the classical thermal conductivity is higher than

the Kubo-Greenwood calculation of Green’s functions. We made this estimation only

quantitatively, so this situation needs more work to estimate interface resistance qualita-

tively. Still, although there is no ensemble average in our computations, the fact that we

get almost the same results with two different methods indicates that our analyses are con-

crete. With the Kubo-Greenwood results, the classical quantum proportion has increased

additionally. These results show that in amorphous materials, where the scatterings due

to the interaction between the carriers are suppressed due to the high disorder of the in-

ternal structure of the system and where the scatterings due to the deterioration of the

internal network are the dominant scattering mechanism, quantum thermal conductivity

is deterministic if also the material has high Debye temperature.
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Lastly, no plateau region was observed in the temperature-dependence behavior of

the thermal conductivities with either method. Henry also did not observe a plateau region

in his study of amorphous carbon films.[27] Whether this is due to the amorphous carbon

structure or our methods or dimensions requires further investigation. Jund and Julian did

not observe a plateau region in thermal conductivity calculations of amorphous SiO2 until

they introduced finite-size correction.[208] Moreover, the literature needs a measurement

of the thermal conductivity of two-dimensional amorphous carbon monolayers to reveal

this situation.
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CHAPTER 5

CONCLUSION

An essential pillar of technological development is discovering materials with

functional properties. One way to do this is to tune the properties of materials by control-

ling the irregularities within them. A specific example of this is the creation of a phononic

dichromator using the intrinsic cooperation of impurity atoms. If the common resonant

frequency of the dichromator is tuned to coincide with the stop band of the phononic gap

material, and the length of the phononic gap material is short enough, tunneling phenom-

ena can be observed. This work links the tunneling phenomenon to a measurable physical

property, thermal conductivity. Our calculations show a significant decrease in thermal

conductivity when the size of the gap system reaches a sufficient length to prevent tunnel-

ing. This property could pave the way for us to develop systems that would allow us to

construct devices that are based on phonon tunneling. Similarly, frequency-specific stress

sensors can be designed if our toy model becomes a reality. Moreover, we show tunneling

is not only a quantum phenomenon but can also occur classically. The only factor that

made our analysis quantum mechanical is the Bose-Einstein distribution. So, when the

classical distribution governs the distribution function, our analysis is classic mechanical,

and the phonon tunneling effect on thermal conductivity is still observable. This shows

that the tunneling phenomenon is purely quantum mechanical and can be performed by

classical waves.

Quantum effects can affect thermal conductivity in two ways. One is through

phonon statistics, and the other is through phonon-phonon interactions. However, phonon

scattering due to internal structure disorder is the dominant scattering mechanism in heav-

ily disordered materials. Therefore, the only quantum effects involved in the thermal

conductivity of these materials are due to statistics. In this study, we derive the Maxwell-

Boltzman distribution function instead of the Bose-Einstein distribution function and cal-

culate the classical and quantum thermal conductivity of amorphous graphene using the

Landauer formulation. Thus, the classical thermal conductivity can also be estimated

using the Landauer formulation with this developed distribution function. In addition,

classical thermal conductivity agrees with existing studies in the literature. Nonetheless,

since this material has a high debye temperature, quantum effects were expected to be

significant even at room temperature. The results show that the thermal conductivity
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calculated using the classical distribution function is about two times higher than the

quantum thermal conductivity. This disparity increases with the decreasing temperature,

and these results support Henry’s findings, which establish approximately ten times lower

at lower temperatures when he includes quantum corrections in thermal conductivity.[27]

Finally, as mentioned in the introduction, the plateau region has emerged in the

temperature dependence of the thermal conductivity of some three-dimensional amor-

phous materials. Whether this is a general rule of thumb for all amorphous materials is

debatable. Plateau regions are observed at very low temperatures. This indicates that the

plateau region can only be observed in quantum mechanical thermal conductivity calcula-

tions. Although our calculations are quantum mechanical, we did not observe any plateau

region in the temperature dependence of the thermal conductivity of amorphous graphene.

Whether this is a size effect or not requires further work.
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Pauly, Peter Nielaba, Juan Carlos Cuevas, Edgar Meyhofer, and Pramod Reddy.

Quantized thermal transport in single-atom junctions. Science, 355(6330):1192–

1195, 2017.

[37] K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes. Measurement of the

quantum of thermal conductance. Nature, 404(6781):974–977, 2000.

[38] Paul A. Tipler. Modern Physics. Worth Publishers, Incorporated, 1977.

[39] J.P. Wolfe. Imaging Phonons: Acoustic Wave Propagation in Solids. Cambridge Uni-

versity Press, 2005.

[40] P. Atkins, V. Walters, J. De Paula, C. Trapp, and M. Cady. Physical Chemistry for the

Life Sciences. Macmillan Higher Education, 2011.

[41] Konstantinos Termentzidis, Valentina M. Giordano, Maria Katsikini, Eleni Paloura,

Gilles Pernot, Maxime Verdier, David Lacroix, Ioannis Karakostas, and Joseph

Kioseoglou. Enhanced thermal conductivity in percolating nanocomposites: a

molecular dynamics investigation. Nanoscale, 10:21732–21741, 2018.

82



[42] Jianjun Liu, Yang Liu, Yuhang Jing, Yufei Gao, Junqing Zhao, and Bin Ouyang.

Phonon transport of zigzag/armchair graphene superlattice nanoribbons. Interna-

tional Journal of Thermophysics, 39(11):125, 2018.

[43] Kui-Kui Zhou, Ning Xu, and Guo-Feng Xie. Thermal conductivity of carbon nan-

otube superlattices: comparative study with defective carbon nanotubes. Chinese

Physics B, 27(2):026501, 2018.

[44] Ming Hu Yuhang Jing. Phonon transport of rough si/ge superlattice nanotubes. Com-

puters, Materials & Continua, 38(1):43–59, 2013.

[45] Ping Yang, Yunqing Tang, Haiying Yang, and Yongsheng Wu. Thermal conductiv-

ity reconstruction at tio2/zno multilayer nanoscale interface structure. Science of

Advanced Materials, 6(9):1986–1992, 2014.

[46] Z. T. Tian, B. E. White, and Y. Sun. Phonon wave-packet interference and phonon

tunneling based energy transport across nanostructured thin films. Applied Physics

Letters, 96(26):263113, 2010.

[47] Zhiyong Wei, Zhonghua Ni, Kedong Bi, Minhua Chen, and Yunfei Chen. Inter-

facial thermal resistance in multilayer graphene structures. Physics Letters A,

375(8):1195 – 1199, 2011.

[48] V. Narayanamurti, H. L. Störmer, M. A. Chin, A. C. Gossard, and W. Wiegmann. Se-

lective transmission of high-frequency phonons by a superlattice: the ”dielectric”

phonon filter. Phys. Rev. Lett., 43:2012–2016, 1979.

[49] O. Koblinger, J. Mebert, E. Dittrich, S. Döttinger, W. Eisenmenger, P. V. Santos, and

L. Ley. Phonon stop bands in amorphous superlattices. Phys. Rev. B, 35:9372–

9375, 1987.

[50] Seiji Mizuno and Shin-ichiro Tamura. Theory of acoustic-phonon transmission in

finite-size superlattice systems. Phys. Rev. B, 45:734–741, 1992.

[51] Seiji Mizuno and Shin-ichiro Tamura. Impurity levels and resonant transmission

of acoustic phonons in a double-barrier system. Phys. Rev. B, 45:13423–13430,

1992.

83



[52] Seiji Mizuno and Shin ichiro Tamura. Multiple-barrier systems for phonons: trans-

mission characteristics. Japanese Journal of Applied Physics, 32(Part 1, No.

5B):2206–2209, 1993.

[53] Seiji Mizuno and Shin-ichiro Tamura. Transmission and reflection times of phonon

packets propagating through superlattices. Phys. Rev. B, 50:7708–7718, 1994.

[54] Shin ichiro Tamura and Seiji Mizuno. Dynamic properties of phonons in superlattices.

Physica B: Condensed Matter, 263-264:455 – 458, 1999.

[55] B. K. Ridley. Optical-phonon tunneling. Phys. Rev. B, 49:17253–17258, 1994.
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APPENDIX A

AMORPHOUS GRAPHENE STRUCTURES

As a supplement, we have added all the structures used in the transmission and

thermal conductivity calculations achieved within Green’s functions. Colormap repre-

sents the individual q3 value of carbon atoms and can be seen; blue(red) represents

one(zero). For systems designed for Green’s function method, the systems’ local bond

order parameters are averaged over just scattering region atoms; the buffer and reser-

voir regions are excluded from the average. The structures are documented in ascending

order of iteration from top to bottom. The amorphization algorithm starts with a pris-

tine graphene structure and runs towards a lower q3 value. The crystallization algorithm

begins with a random network, and as iteration progresses, the system moves toward a

higher q3 value. The q3 values of some hexagons are below one because of the out-of-

plane deteriorations. The device lengths of the systems whose results are exhibited in the

central part are 4.0 nanometers. While the device length of the configurations we call

short is 1.6 nm, the distance of the devices we call long is 7.5 nanometers. The width

of all systems is 10 nm long. The length of the system with a scattering region of four

nanometers is 14 nm, and the length of the system with a scattering region of 1.6(7.5) nm

is 11.6(17.5) nm. We have again printed the partition figure(Fig.4.1) here for a complete

look.

Figure A1. The partition of the structure as the left, the device, and the right system is
shown.
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(a) q3: 0.70, 149th step

(b) q3: 0.55, 553th step

(c) q3: 0.40, 8441th step

Figure A2. 3CGM type configurations, device length: 4.0 nm
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(a) q3: 0.70, 126th step

(b) q3: 0.55, 249th step

(c) q3: 0.40, 500th step

Figure A3. 3C type configurations, device length: 4.0 nm
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(a) q3: 0.40, 5362th step

(b) q3: 0.55, 26152th step

(c) q3: 0.70, 93996th step

Figure A4. NC type configurations, device length: 4.0 nm
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(a) q3: 0.70, 36th step

(b) q3: 0.55, 64th step

Figure A5. 3CGM configuration type, device length: 1.6 nm
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(a) q3: 0.70, 357th step

(b) q3: 0.55, 8122th step

Figure A6. 3CGM type configurations, device length: 7.5 nm
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