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ABSTRACT 

 

INVESTIGATION OF SEMI-EMPIRICAL BATTERY AGING MODELS 

OF ELECTRIC VEHICLES 

 

Batteries have been the focus of attention due to their numerous advantages in 

distinct applications such as recently on Electric Vehicles A limiting factor for adaptation 

by industry is related to the aging of batteries over time. Characteristics of battery aging 

vary depending on many factors such as battery type, electrochemical reactions and 

operation conditions. Aging could be considered in two sections according to its type: 

calendaring and cycling. This thesis presents a review of empirical and semi-empirical 

modelling techniques and studies of aging. It focuses on the trends observed across 

different studies for two types of aging and highlights the limitations and challenges of 

various models. It introduces three different models for semi-empirical modelling based 

on Arrhenius Law from the literature for calendar aging, which cover all three important 

factors for calendar aging: temperature, stage of charge, and time. Moreover, four more 

models are developed based on these three factors and the Arrhenius law to contribute to 

the literature. To examine the usability and compatibility of these models, we selected 

five different experimental sets based on different chemistries and operating conditions 

from the literature. We also added calendar aging experiments carried out within the 

scope of our HORIZON-Helios European Project and examined a total of six 

experimental sets. The Helios Project dataset is split into 70% training data and 30% 

prediction data to measure the ability to predict future capacity loss. For this purpose, 

linear regression and genetic algorithm methods were used to determine the parameters 

of each semi-experimental model by minimizing the mean square error value between the 

prediction results and experimental capacity data. As a result, it was seen that the 

numerical solution obtained using the genetic algorithm gave better results than the 

analytical solution obtained by linear regression.  

The objective of this thesis is to present comprehensive and accurate models by 

examining the compatibility of models proposed in the literature models developed in our 

research with experimental sets. 7 Semi-Empirical Models (SEM), based on a fixed set 

of defined parameters, have obtained satisfactory estimates of calendar obsolescence for 
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given storage conditions. SEM-3 and 7 were able to predict capacity loss with low errors. 

In particular, SEM-3 had the lowest RMSE in most experimental sets. While model errors 

are generally close to each other, Redondo-Iglesias et. al model and Model 7 have lower 

errors, similar to SEM-3. When all data sets are examined, it is seen that the lowest and 

highest RMSE values in the model predictions are 0.036 and 3.91, respectively.  

Keywords: Electric Vehicles Battery, Battery Aging, Calendaring and Cycling Aging, 

Calendaring Aging Modelling 
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ÖZET 

 

ELEKTRİKLİ ARAÇLARIN YARI-AMPİRİK BATARYA YAŞLANMA 

MODELLERİNİN İNCELENMESİ 

 

Piller, son dönemde Elektrikli Araçlar gibi farklı uygulamalardaki sayısız 

avantajlarından dolayı ilgi odağı olmuştur. Endüstrinin adaptasyonunu sınırlayan 

faktörlerden biri de pillerin zaman içinde yaşlanmasıyla ilgilidir. Yaşlanma, türüne göre 

iki bölümde ele alınabilir: Takvim ve döngüsel yaşlanma. Bu iki yaşlanma tipi için farklı 

çalışmalar arasında gözlemlenen eğilimlere odaklanarak, ampirik ve yarı-ampirik 

modelleme tekniklerinin ve eskime çalışmalarının bir incelemesi sunulmaktadır. Daha 

sonra takvimsel yaşlanma için literatürden Arrhenius Yasası’na dayalı yarı-ampirik 

modelleme kullanan üç farklı model sunulmuştur. Ayrıca literatüre katkı sağlamak 

amacıyla Arrhenuis Yasası’na bağlı 4 farklı model daha geliştirilmiştir. Bu modellerin 

kullanabilirliği ve uyumluluğunu incelemek için literatürden birbirinden farklı kimyalara 

ve çalışma koşullarına bağlı 5 farklı deney seti seçilmiştir. HORIZON-Helios Avrupa 

projesi kapsamında gerçekleştirilen takvimsel yaşlanma deneyleri de eklenmiş olup 

toplamda 6 adet deney seti incelenmiştir. Helios Projesi veri seti, gelecekteki kapasite 

kaybını tahmin etme yeteneğini ölçmek için %70 eğitim, %30 tahmin verisiyle 

bölünmüştür. Bu amaçla, yarı-ampirik modellere ait parametreleri belirlemek için 

Doğrusal Regresyon ve Genetik Algoritma kullanılmıştır. Bunun sonucunda genetik 

algoritma kullanılarak elde edilen modellerin doğrusal regresyonda elde edilen modellere 

göre daha iyi sonuçlar verdiği görülmüştür. Bu tezin amacı, literatürdeki ve geliştirilen 

modellerin, deney setleriyle uyumluluğunu inceleyerek kapsamlı ve doğru modeller 

sunmaktır. Bir dizi tanımlanmış parametreye dayanan 7 yarı-ampirik modelleme, belirli 

depolama koşulları için takvim eskimesi konusunda tatmin edici tahminler elde etti. 

Özellikle Model-3 çoğu deney setinde en düşük kök kare ortalama hatasına (RMSE) 

sahipti. Literatürdeki verilerin kullanıldığı model hataları genel olarak birbirine yakın 

olmakla birlikte Redondo-Iglesias vd. modeli ve Model-7, Model-3'e benzer şekilde daha 

düşük hatalara sahiptir. Tüm veri setleri incelendiğinde model tahminlerinde en düşük ve 

en yüksek RMSE değerlerinin sırasıyla 0,036 ve 3,91 olduğu görülmektedir.  

Anahtar Kelimeler: Elektrikli araç bataryası, Batarya yaşlanması, Takvimsel ve döngü 

yaşlanması, Takvimsel yaşlanma modellemesi
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CHAPTER 1 

 

INTRODUCTION 

 

The majority (almost 80%) of global energy demand is supplied from fossil fuels 

1. The emissions associated with them is responsible for environmental pollution and 

climate change. Enabling the use of renewable energy sources in transportation is being 

embodied in electric vehicles in recent years with an accelerated pace. Thus, the emissions 

related with transportation would be decreased greatly to decelerate environmental 

pollution and climate change 2. Furthermore, some additional benefits of electric vehicles 

(EVs) in comparison to the conventional internal combustion vehicles are enhanced 

sustainability, diversification of energy sources, quiet operation (noise pollution), and low 

operating costs 3,4.  

The advantages of EVs over the traditional transportation solutions and support of 

legislations around the world have accelerated the transition to EVs. Therefore, it is 

evident EVs will become widespread in the upcoming decade. Thus, the importance of 

batteries is becoming essential more than ever. There are many distinct types of batteries 

used in electric vehicles depending on their chemistry, shape, characteristics etc. Li-ion 

(Lithium Ion) batteries are the most preferred ones for EVs where NiMH (Nickel Metal 

Hydrate) and Pb-acid (Lead-Acid) 5. 

NiMH batteries have high energy density, high power, fast charging feature, long 

life, wide operating temperature range, and completely closed maintenance features. 

NiMH batteries have a lower energy storage capacity than Li-ion batteries. NiMH 

batteries can experience a memory effect if not properly charged and discharged, which 

can lead to a reduced usable capacity over time 6. 

Pb-acid batteries are one of the oldest and are known for their reliability and low 

cost. They have lower charging efficiency compared to lithium-ion batteries. In addition, 

they have relatively low energy storage (energy/weight and energy/volume ratio) 

capability 7.  

Lithium-ion batteries are the most used energy sources in current electric vehicles 

thanks to their advanced technological benefits comparison to other types 8. Lithium-ion 

batteries have many advantages such as high power, high charge rate, high capacity, no 
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memory effect, low self-discharge, and improved safety performances. In addition to 

these features, due to their relatively low cost, they are demanded for automotive and 

aerospace applications 9,10. In addition, heating, performing optimally in a limited 

temperature range and limited life cycle are disadvantages of Li-ion batteries. The most 

of commercial Li-ion cells use intercalating compounds as active materials. The negative 

electrode (anode) is usually graphite. There are six distinct types of lithium-ion batteries: 

Lithium Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium Iron 

Phosphate (LFP), Lithium Nickel Manganese Cobalt Oxide (NMC), Lithium Nickel 

Cobalt Aluminum Oxide (NCA), Lithium Titanate Oxide (LTO) 11. Mobile electronic 

devices often powered by high-energy-density lithium polymer batteries, LCO (LiCoO2) 

cathode with a graphite anode. LFP (LiFePO4), LMO (Li2MnO3 or LiMn2O4 spinel), 

NCA, NMC and LTO are widely used in EVs due to their high energy density in 

comparison to other chemistries 12 

Battery cell performance and useful capacity decrease over time while internal 

resistance increases due to the aging of batteries 13–16. Batteries in EVs and hybrid electric 

vehicles (HEVs) should be replaced as their capacity decreases to 70% (80% is considered 

as the limit for some) of the original capacity. Therefore, critical measures should be taken 

to design battery packs for HEVs/EVs 17,18. 

Aging is caused by various chemical mechanisms that affect the electrolyte, 

electrodes, separator, current collectors, and separator (Figure 1) 19. The predominant 

cause of capacity degradation, as acknowledged by many authors, is attributed to the loss 

of active lithium20–22. This viewpoint is grounded in the belief that the deterioration of 

both the cathode and anode occurs at a significantly slower rate compared to the 

utilization of accessible active lithium. Consequently, the key factor limiting capacity is 

the lithium inventory itself. The primary loss of active lithium predominantly arises from 

the electrolyte's reduction occurring at the anode's surface, culminating in the creation of 

an insulating solid electrolyte interphase (SEI) in close proximity to the anode surface 23. 

At relatively high state of charges (SoC) and temperatures, SEI dissolves which increases 

the anode impedance 24,25. In addition to the effect of SEI growth on the aging of negative 

electrode, lithium plating and binder decomposition play an integral role. The aging 

mechanism in the positive electrode is dominated by active material degradation, 

mechanical breakage and electrode separation 13. Table 1 documents the factors affecting 

aging, the chemical and physical mechanisms of aging, and the effects it causes 26. This 
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table can provide insight into the cause-effect relationship and the battery aging event 

cycle.  

Battery aging can be classified in two major categories: cycle and calendar aging. 

Calendar aging occurs when the battery is at rest, (i.e., lack of charge/discharge cycle) 

and cycle aging occurs when the battery is experiencing charging/discharging cycles. 

However, all the cells experiencing charge/discharge cycles also age due to calendric 

effects which requires both effects of cycle and calendar aging should be combined to 

offer a more realistic approach.  

 

 

Figure 1 Lithium-ion battery schematic 27. 

 

Battery aging is a complex process as many factors interact with each other while 

both environmental conditions and user characteristics (drive cycle profile) also play a 

role on aging. Establishing appropriate aging predictions is essential to ensure the 

efficient use of battery cells as well their safe operation 28. Battery capacity degradation 

depends on charge output, time and operation parameters such as SoC, temperature, 

current amplitude and depth of discharge (DoD) 29–32. Even though many external factors 

play a role on the aging mechanism, the most dominant one is the effect of temperature 

on the aging as it triggers some chemical reactions and accelerate the reaction speed of 

others on degradation. Fast charging and discharging are among the most critical factors 

that cause a sudden temperature increment in battery cells which increases degradation. 
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Furthermore, extreme conditions such as overcharging, over-discharging and relatively 

high ambient temperature (generally accepted as more than 30°C) decrease battery life a 

lot faster in comparison to normal use conditions. Likewise, the current increment 

accelerates aging (degradation) which also increases the probability of failure during a 

cycle 33. 

The majority of theoretical models predicting battery aging are based on physical 

relationships. Therefore, experimental and computational aging studies on battery cells 

are simultaneously documented to reveal EV batteries' aging mechanisms and capacity 

degradation. This thesis aims to summarize the capacity degradation of batteries, factors 

affecting battery life, and experimental-semi-experimental prediction models for calendar 

and bicycle aging. In Chapter 2, experimental studies on calendar and cycle aging are 

examined. This chapter begins with an overview of relevant aging mechanisms and stress 

factors for battery types commonly used in calendar aging studies. Then, the studies are 

analyzed and a general conclusion is made, and the degradation models are examined in 

detail in Chapter 3. In Chapter 4, the model methods and validation studies of the models 

determined for calendar aging are examined. In Chapter 5, the data sets taken from the 

literature and our project are explained in detail. In Section 6, model parameters are fitted 

to these experimental sets, and the results are discussed. In Chapter 7, the conclusions 

drawn from the entire study are discussed.
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Table 1. Factors affecting aging, chemical and physical mechanisms, and the effects it 

causes 26.  

Degradation 

Mechanism 
Cause Degradation Mode 

SEI growth Time  

High temperature 

High SoC 

Current load 

Loss of lithium inventory 

SEI decomposition High temperature 

High SoC 

Current load 

Loss of lithium inventory 

Electrolyte 

decomposition 

High temperature 

High SoC 

Loss of lithium inventory 

Binder Decomposition High temperature 

High SoC 

Loss of active anode material 

Loss of active cathode material 

Graphite exfoliation High SoC 

Current load 

Loss of active anode material 

Structural disordering Current Load Loss of active cathode material 

Lithium plating Low temperature 

Stoichiometry 

Low SoC 

Loss of lithium inventory 

Loss of active anode material 

Loss of electric contact Current load 

Mechanical stress 

Low SoC 

Loss of active anode material 

Loss of active cathode material 

Electrode particle 

cracking 

Current load 

Mechanical stress 

Loss of active anode material 

Loss of active cathode material 

Transition metal 

dissolution 

Stoichiometry 

Low SoC 

Loss of active cathode material 

Corrosion of current 

collectors 

Low SoC Loss of active anode material 

Loss of active cathode material 
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CHAPTER 2 

 

LITARETURE SURVEY 

 

The literature on cycling aging and calendar aging was reviewed, encompassing 

experimental studies. Firstly, an examination of experimental studies focusing on 

calendar aging was conducted. It commenced with an overview of the pertinent aging 

mechanisms and stress factors associated with battery types commonly utilized in 

calendar aging research. Subsequently, experimental studies concerning bicycle aging 

were explored. The same procedures outlined for calendar aging are applicable to cycling 

aging within this section. 

 

2.1. Calendar Aging  

 

Calendar aging includes all aging mechanisms that are in the resting state of 

battery cells, i.e., absent of charge and discharge cycle 34. Over time, the chemical 

reactions occurring within the battery cells during storage gradually degrade the active 

materials on the electrodes and the electrolyte, leading to a reduction in the battery's 

energy storage capacity. These reactions can lead to the formation of a SEI layer, 

electrolyte decomposition, and changes in electrode materials over time.  

Several interconnected factors contribute to calendar aging in EV batteries. 

Calendar aging is affected greatly from SoC, temperature and the time elapsed 35. 

Temperature plays a critical role in calendar aging. High temperatures accelerate the 

chemical reactions within the battery, leading to the breakdown of its components and a 

faster decline in its capacity and performance. However, extremely low temperatures can 

also adversely affect the battery's efficiency and overall performance 36,37. SoC is another 

critical factor influencing calendar aging. Storing a battery at high SoC levels for 

prolonged periods can increase calendar aging. On the other hand, storing the battery at 

very low SoC levels can also lead to degradation due to other chemical reactions that 

occur at low charge levels. Time itself is a significant contributor to calendar aging. As 

time passes, even if the battery is not actively used, chemical reactions within the cells 

continue to take place.  
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This section aims to explore various experimental studies in the literature that have 

produced noteworthy findings on the subject of battery calendar aging. Our primary focus 

will be on highlighting the influence of temperature and SoC to gain a better 

understanding of their impact on battery longevity. The ultimate objective of this analysis 

is to derive valuable insights that can enhance the lifespan of batteries, leading to 

improved performance and efficiency. 

 

2.1.1. Effect of Temperature on Calendar Aging 

 

Temperature significantly impacts battery calendar aging, which refers to the 

gradual capacity loss and reduced lifespan of a battery over time. When exposed to high 

temperatures, several adverse effects can occur, all of which contribute to a shorter battery 

lifespan and reduced overall performance. In this subsection, we focus on temperature 

parts in calendar aging studies found in the literature, providing illustrative examples 

from various battery chemistries 38,39. Electrochemical reactions are primarily responsible 

for the aging of battery cells which affects their life cycle of them. However, temperature 

play an integral role in electrochemical reactions; therefore, the effect of temperature on 

life cycle is essential. Abnormal ambient temperatures (25-30°C) negatively impact 

battery safety, functionality and aging. Both low and high temperatures have distinct 

effects on battery performance 40,41. 

Wang et al. 42 conducted extensive tests on NMC+LMO cells with a capacity of 

1.5 Ah, focusing on their calendar life performance over 400 days at 10% DoD and 

temperatures of 10°C, 20°C, 34°C, and 46°C, uncovering the pronounced impact of 

lithium inventory loss on capacity degradation. The findings demonstrated the highest 

capacity reduction at 46°C, which was a 22% capacity reduction. In order to elucidate the 

exhaustive impact of temperature, a time-dependent model was formulated, incorporating 

the Arrhenius correlation. While the model exhibited slight predictions for the 

temperature of 20°C, it tended to overestimate the capacity loss at higher temperatures of 

34°C and 46°C.  

A study by Ecker et al. 43 examined the aging of lithium-ion batteries by combining 

the electric-thermal model with a semi-empirical aging model. Over a period of 60 weeks, 

they conducted accelerated tests on 6 ah NMC batteries, taking into account temperature 

(25°C, 35°C, 50°C, and 65°C) and SoC (20%, 50%, 80%, and 100%). The test outcomes 



 

 8 
 

revealed that at the 65°C storage temperature, unexpected chemical reactions occurred at 

lower temperatures, and some cells stored at 65°C exhibited gassing processes. These 

reactions caused the cell to die rapidly at 65°C. Furthermore, the test results demonstrated 

that the reduction in capacity exhibited an exponential dependence on voltage and 

temperature. 

Omar et al. 44 performed calendar life tests on LFP pouch battery cells with a 

nominal capacity of 7 Ah. Batteries were examined at four distinct temperatures (10°C, 

25°C, 40°C, 60°C) for various SoC (25%, 50%, 100%) for 28-280 days. Their results 

conclude that the effect of high storage temperatures is detrimental to the life of battery 

cells and that the storage temperature has a greater effect on aging of batteries than the 

SoC. They highlighted that the optimal storage conditions for LFP batteries are at a 

temperature in the vicinity of 25°C. They also document that the aging increases 120% at 

20°C, 135% at 40°C and 138% at 60°C. In another study that provides evidence 

supporting the notion that temperature exerts a more significant influence on aging than 

SoC, Grolleau et al. 45 examined the aging behavior of commercial LFP cells with a 

nominal capacity of 15 Ah. Cells were stored for 450 days at nine distinct conditions: 

three nominal SoCs (30%, 65%, 100%) for three temperatures (30°C, 45°C, 60°C). While 

the capacity loss of cells stored at 45°C reached 20% in 450 days, the capacity loss of 

cells stored at 60°C reached 20% in 150 days. They developed a model capable of 

predicting cell degradation under various SoC and thermal storage conditions. It was seen 

from the good agreement between the prediction and the capacity loss that the rate of 

capacity reduction depends only on the storage conditions and not on the aging history. 

Kassem et al., 46 an investigation into the aging of 8 Ah LFP cells was presented, 

considering their storage under three distinct temperature conditions (30°C, 45°C, and 

60°C) and various SoC levels (30%, 65%, and 100%) during up to 8 months. Following the 

storage period, the trend of reduced capacity was observed in all cells except those 

preserved at 30°C and particularly severe aging was noted at a storage temperature of 

60°C. The study suggested a direct correlation between the extent of capacity loss and the 

storage temperature, and cyclic lithium loss constituted the primary contributor to 

capacity reduction. They suggested that lithium loss was due to side reactions occurring 

at the anode. Cells aged at 45°C or 60°C exhibit both reversible and irreversible capacity 

losses, with the magnitude of these losses being quite similar at 45°C. However, at 60°C, 

the irreversible losses notably surpass the reversible ones.  
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Sarasketa-Zabala et al. 47 performed storage tests on 2.3 Ah LFP cells at different 

temperatures (30°C, 40°C and 50°C) and different SoC values (30%, 70%, 90%) for 300-

650 days. They created a model using a combination of storage temperature and SoC 

parameters based on the Arrhenius law. The research revealed that prolonged storage time 

and exposure to high temperatures over 40°C triggered additional aging effects, causing 

the primary degradation mechanism to shift to a combination of LLI and LAM. 

Furthermore, the LAM aging phenomenon greatly accelerated the decline in cell 

performance. The model's predictions closely matched the experimental results, with the 

model's error consistently below 1% during the entire experimental period. 

Werner et al. 48 reported the calendar aging of an NCA cell as a function of 

temperature (40°C, 50°C and 60°) and SoC (20-100%) under open circuit conditions, 

considering self-discharge for 21 months. The voltage was monitored continuously during 

storage periods, and high temperatures and high SoC levels were found to lead to 

significant self-discharge, particularly at 100% SoC with a storage temperature of 60°C. 

An empirical model was formulated to describe the cell's degradation. This study also 

takes into account a possible path dependence on temperature. The results show that there 

is no dependence of the cells on historical temperature conditions.  

Eddahech et al. 49 conducted a study elucidating calendar aging outcomes for four 

distinct Li-ion battery chemistries. In the study, prismatic 5.3 Ah LMO+NMC, prismatic 

12 Ah NMC, cylindrical 8 Ah LFP and cylindrical 7 Ah NCA battery cells are used. These 

batteries were subjected to storage at three varying temperatures (30°C, 45°C, and 60°C) 

and maintained at three different SoC levels (30%, 65%, and 100%). The research aimed 

to discern disparities in the behaviors of Li-ion battery chemistries, revealing the 

sensitivity of lithium batteries containing Manganese (particularly LMO and NMC) to 

elevated temperatures. In contrast, LFP batteries demonstrated an extended calendar life 

and robust thermal stability. Additionally, NCA cells were identified as striking a balance 

between extended life cycles and high-performance efficiency measurements.  

Geisbauer et al. 50  conducted a study on six different chemistries of lithium-ion 

batteries (NCA, NMC, LFP, LCO, LMO, and LTO) under three different ambient 

temperatures (18.5°C, 50°C, and 60°C) and three various SoC (2%, 38%, and 100%) for 

calendar aging. The researchers conducted experimental measurements on six lithium-

ion batteries with nominal capacities ranging from 1.3 to 2.6 Ah for a duration of 120 to 

150 days. The results showed that capacity loss was most severe at 60°C and higher 
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storage voltages, even for titanate oxide cells. NMC, NCA, and LTO cells exhibited the 

most severe capacity degradation at 60°C. At 60°C and the highest storage voltage, NMC 

and NCA cells did not show any open-circuit voltage as the current interruption 

mechanisms were triggered. In most cases, extreme conditions, such as 100% SOC and 

higher temperatures (such as 60°C), will result in increased capacity loss. In general, the 

effects of calendar aging are more severe in 60°C storage than in 50°C storage. 

Similar to the impact of elevated temperatures, lower temperatures also exert 

adverse effects on battery capacity and internal resistance. Additionally, it's important to 

acknowledge that the influences of low and high temperatures on battery performance 

can exhibit variations. Jaguemont et al. 51 presented the results of aging tests conducted 

on a 100Ah prismatic LFP battery cell under low-temperature conditions. Accelerated 

aging experiments were performed on four cells to investigate the influence of low 

temperatures on Li-ion batteries. Three of these cells underwent a standardized driving 

cycle at three different temperature settings (-20°C, 0°C and 25°C), while a calendar test 

was conducted on a single battery at -20°C, with a SoC maintained at the mid-range (50%) 

for 400 days. The study found that the end-of-life criterion, defined as 80% of the nominal 

capacity, was met after 415 hours of storage, equivalent to 17 days at -20°C. The results 

underscored the imperative need to account for the impact of cold temperatures on the 

lifespan of battery packs. 

Maures et al. 52 introduced a calendar aging model for 2.5 Ah NCA Lithium-ion 

batteries, emphasizing the pivotal role of time and temperature. Their investigation 

spanned a temperature range from -20°C to 55°C at a SoC of 95% for approximately 200-

300 days, highlighting the quantification of degradation processes such as conductivity 

loss (CL), active material loss (LAM), and lithium inventory loss (LLI). They modeled 

these decay processes using an equation derived from the Arrhenius law. Consequently, 

they found that the aging based on LAM and LLI coefficients can be described by the 

Arrhenius’s law. LLI is linked to the formation of SEI and follows Arrhenius law. 

However, at lower temperatures, especially at -20°C, a different degradation mechanism, 

lithium plating, becomes more significant. Despite this change, they suggested that the 

Arrhenius law still applies. 
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2.1.2. Effect of SoC on Calendar Aging 

 

SoC significantly influences the calendar aging of lithium-ion batteries, which 

refers to the degradation occurring over time, regardless of usage. SoC plays a critical 

role in this process, impacting the battery's overall lifespan and performance. High SoC, 

where the battery is maintained close to 100%, can accelerate calendar aging. This is 

because elevated SoC levels can trigger unwanted chemical reactions within the battery, 

leading to the degradation of electrode materials and capacity reduction. High SoC can 

also lead to mechanical stress within the battery due to material expansion, potentially 

causing damage. Conversely, low SoC, close to 0%, over extended periods can also 

contribute to calendar aging.  

 Schmalstieg et al. 53 introduced a comprehensive aging model derived from 

accelerated aging tests conducted on 2.05 Ah NMC batteries at varying temperatures 

(35°C, 40°C, and 50°C) and SoC levels ranging from 0% to 100% for range of 160-500 

days. Analyzing the experimental results, they noted that the SoC value with the least 

pronounced impact on calendar aging is 50%. Mathematical functions were fitted using 

these data to describe capacity fade, employing a two-step fitting process for calendar 

aging. After using an electric-thermal model to generate battery SoC and voltage, they 

proposed a semi-empirical model based on the Arrhenius law to predict battery future 

calendar aging, revealing that aging speed increased linearly with voltage during calendar 

aging tests.  

 Zheng et al. 54 conducted a comprehensive investigation into the degradation 

characteristics of high-power 1.06 Ah LFP batteries exposed to various temperatures 

(25°C, 40°C, and 55°C) and different SoC levels (30%, 60%, and 100%) for 10 months. 

The study specifically focused on samples stored at 30%, 60%, and 100% SoC at 55°C, 

employing a combination of electrochemical techniques and postmortem analysis. Their 

findings revealed that the most severe capacity loss occurred when batteries were stored 

at 55°C with a SoC of 100%. Notably, the batteries exhibited substantial performance 

deterioration when subjected to high SoC conditions. Under high SoC and 55°C storage 

conditions, they observed significant lithium-ion loss at the LFP cathode, along with a 

minor reduction in capacity at the graphite anode. Also, for lithium-ion LFP cells, 

Redondo-Iglesias et al. 55 proposed to use Eyring acceleration model for calendar aging 

modeling. Eyring's law extends Arrhenius's law to other stress constraints. The model was 



 

 12 
 

validated in an experimental setup on 2.3 Ah LFP batteries at temperatures of 30°C, 45°C, 

and 60°C and with SoC values of 30%, 65%, and 100% for 500-800 days. This model, 

which is not common, has been proposed to express the aging laws of batteries in some 

recent studies 56,57 Cells may experience self-discharge (SoC shift) during idle operation. 

Therefore, In this study calculations were made by taking into account the SoC shift 

during calendar aging tests. As a result, while the estimation error was 2% in the Eyring 

law model, the error becomes 4.8% if SoC estimation shift is not considered. Therefore, 

SoC shift consideration increases the accuracy compared to the applied classical models. 

 In another study, a different path was followed by taking into account non-static 

conditions as well as static conditions. Su et al. 58 examined the aging of 3 Ah NMC 

batteries under both static and non-static conditions, investigating the pathway 

dependence of lithium-ion cells. They conducted 12 assessments involving three different 

temperatures (45°C, 53°C, and 60°C) and four SoC levels (40%, 60%, 80%, and 95%) 

for 240 days. During the non-static storage tests, both temperature and SoC change over 

time throughout the testing procedure. Results showed that the mode of cell senescence 

remained consistent across temperatures, but a notable acceleration was observed at 95% 

SoC, deviating from patterns at lower SoCs. An empirical model was then employed to 

describe cell senescence in static storage tests. The derived model was able to predict the 

capacity reduction with a maximum error of 1% for 240-day static storage tests and a 

maximum of 3% error for 180-day non-static storage tests. 

Naumann et al. 59 presented a comprehensive calendar aging study conducted at 

different temperatures (0°C, 25°C, 40°C, and 60°C) and SoCs ranging from 0% to 100% 

using 2.3 Ah LFP batteries with a test duration of 29 months. When examining the 

experimental results, it was observed that capacity fades increased with higher storage 

SoCs, but the ratio remained relatively constant in the middle SoC range (37.5-62.5%). 

Similar SoC behavior had previously been demonstrated by Keil et al. 60 in different 

lithium-ion cells with graphite anodes, and it was attributed to stages in the graphite anode 

potential. Utilizing the measurement data, the article presents a semi-empirical aging 

model for capacity loss that is valid for all storage conditions (static and dynamic 

conditions). When compared against validation data points, the absolute model errors for 

capacity loss remained below 2.2% for all dynamic validation tests.          

 Xu et al. 61 studied the effects of irregular battery operation on battery degradation. 

The study considered several fundamental theories of battery degradation, including SEI 
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film formation and the Arrhenius law relation. In order to develop a model, storage tests 

were performed on LMO cells at various SoC (60%, 80%, 100%) levels and temperature 

of 25°C. Storing the battery at 100% SoC caused a more significant capacity reduction 

than storing it at 60% SoC. However, they found that the effect of SoC on capacity fade 

becomes more pronounced as storage time increases, i.e., especially after the 2nd year. 

 Similarly, a study by Montaru et al. 62 addressing the decrease in capacity at high 

temperatures with high SoC values develops a model for capacity degradation. They 

document a dual tank aging model 63,64 which combines a physics-based model for SEI 

growth and an empirical model for electrode capacity degradation. Model validated on 

LMO+NMC Li-ion cells with 43 Ah nominal capacity at various SoC (0%, 30%, 65%, 

80%, 100%) and temperatures (0°C, 25°C, 45°C, 60°C) for 380-700 days. They noticed 

that at high temperature (45°C), the increasing capacity reduction with the growth of SEI 

thickness was significant at higher SoC ranging from 65% to 100%. The model 

demonstrates the evolution of lithium contents, electrode potentials, and electrode 

capacities. The model showed satisfactory accuracy (maximum 3.1%). 

 Hoog et al. 65 proposed a semi-empirical combined lifetime model for 20 Ah NMC 

cells. Two variables were considered in their test matrix: SoC (20-80%), temperature (25-

45°C). Their numerical model predicted combined lifespan with less than 5% accuracy 

relative to the experimental results. Analyzing the results of storage tests conducted over 

a 16–17-month period of calendar aging, it was evident that cells stored at SoC levels 

exceeding 80% tended to reach their defined End-of-Life (EOL) earlier than those stored 

at lower SoC levels (<50%). Conversely, an initial increase in capacity was observed 

when cells were stored at a low charge state, attributed to electrochemical grinding. This 

observation indicated that side reactions did not impact SEI growth.  

 Calendar senescence analysis involves a recurring process of calendar aging and 

cell characterization. Historically, the impact of cell characterization on the outcomes of 

calendar aging studies has been generally considered insignificant. Krupp et al. 66 in this 

calendar aging study involving NMC cells with a capacity of 64 Ah, they utilized 

additional periodic characterization measurements to quantify and rectify the impact of 

control on capacity loss attributed to calendar aging. In the calendar aging tests, batteries 

were subjected to three different temperatures (23°C, 40°C) and various SoC (50%, 70% 

and 90%) values over a period of 450 days. The observed aging behaviors displayed some 

deviations from previous studies, notably in the relationship between SoC and capacity 



 

 14 
 

loss. Rather than a linear dependence, a constant capacity loss was identified between 

70% SoC and 90% SoC, which was attributed to the influence of cathodic and combined 

side reactions.  

 Finally, a study combining different battery chemistries in a single study was 

examined. Keil et al. 60 documented calendar aging of three 18650 lithium-ion cells with 

distinct cathode materials (NCA, NMC, LFP). Experiments were carried out at several 

temperatures (25°C, 40°C, 50°C) for 16 SoC values from 0% to 100% for 270-300 days. 

They showed that there is no linear relation between calendar aging and SoC. In addition, 

the anode potential has a significant effect on capacity weakening. Capacity fade during 

storage is significantly affected by the intermediate anode potential, which typically 

occurs between 30% and 60% SoC for NMC and NCA cells and between 40% and 70% 

SoC for LFP cells. When SoC values are below 30 - 40%, the capacity decreases while 

the anode potential increases.  

 

2.1.3. Summary of Calendar Aging 

 

When a battery is stored in calendar mode, it can experience irreversible loss of 

capacity. This loss may be sped up or slowed down based on storage conditions, with 

temperature being the most significant factor, followed by SoC. As detailed in Chapter 2, 

various experimental studies in the literature have explored the impact of these parameters 

on calendar aging behavior. Some studies focus solely on time and temperature, while 

others propose correlations for aging behavior that consider time, SoC, and temperature. 

A summary of the studies analyzed in this review is presented in Table 2. 

Aging mechanisms happen in lithium-ion batteries during calendar aging, which 

is natural deterioration over time, regardless of usage. It has been observed that the three 

main mechanisms that temperature, SoC, and time cause calendar aging in Li-ons are loss 

of lithium inventory, loss of active material in the electrodes, and loss of electrical 

conductivity 42,52. Lithium inventory loss occurs due to side reactions that consume Li-

ions, such as the formation of SEI on the surface of graphite negative electrodes, 

electrolyte degradation processes, and binder dissociation. These side reactions destroy 

Li-ions permanently and cause a gradual decrease in capacity. Loss of active material is 

typically caused by decomposition of the electrolyte, irreversible phase transition, and 

cracking of the electrode particles during storage. The loss of electrical conductivity is 



 

 15 
 

related to the deterioration of the collectors and connectors. Lithium inventory loss and 

active material loss are the dominant modes of calendar aging40.  

SEI growth is particularly affected by SoC, temperature, and storage time. 

Continuous expansion of the SEI layer results in loss of lithium inventory and increased 

internal impedance. As the SEI layer thickens, some active materials such as the 

electrolyte become less electrochemically active, resulting in negative electrode active 

material loss, which accelerates calendar aging 47,62.  

The degradation of batteries may exhibit varying chemical reactions at high and 

low temperatures. High temperatures over 40°C can cause lithium loss, resulting in less 

available lithium for intercalation and inducing capacity fade. One notable effect is the 

acceleration of chemical reactions within the battery. High temperatures can lead to 

increased chemical activity, causing the breakdown of active materials and the formation 

of unwanted compounds. This phenomenon ultimately results in a reduction in the 

battery's capacity and performance, which means that an EV's range on a single charge 

will diminish more rapidly in hotter climates 42–49. The lifespan of cells is negatively 

affected by high temperatures, regardless of their chemistry. However, certain chemistries 

may be more sensitive to temperature changes than others. For instance, the NMC + LMO 

mixture shows a significant increase in degradation rates at temperatures between 40 °C 

and 60 °C, particularly at high SoC 42,62. In contrast, NCA chemistry experiences only a 

minor change in degradation rates across the same temperature range48. The effect of 

temperature on LMO chemistry is similar to that of the NMC + LMO mixture, but pure 

LMO cells showed one less aging effect compared to blended NMC + LMO cells 49,60. 

On the other hand, cells containing NMC, on their own, have poor high-

temperature performance and are susceptible to rapid degradation 43,50,53. 

Low temperatures below 10°C can cause a loss of active material or less available 

active material for diffusion, which modifies the battery chemistry. At low temperatures, 

the lithium coating on the anode becomes more important and contributes to battery 

degradation differently than other degradation mechanisms 52,59,67. Particularly for LFP 

and NMC cells, aggressive capacity degradation was observed in the low-temperature 

field. LTO cells, on the other hand, are less sensitive to low and high storage temperatures 

than NMC, LCO, LFP and NCA cells. Among LCO batteries, it seems to be the most 

sensitive to low temperature and SoC changes compared to other batteries 50. 
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Table 2. Overview of calendar aging studies reported in the literature. 
 

Study Chemistry 
Capacity 

(Ah) 

Storage Time 

(Days) 

Parameters 

 

Temp. (°C) 
SoC (%) 

Eddahech 

et al. 49 

NMC, LMO, 

NCA and LFP 

5.3, 5.3, 12 

and 8 

respectively 

1000-1200 45 and 60 65 and 100 

Geisbauer 

et al. 50   

NCA, NMC, 

LFP, LCO, 

LMO 

and LTO 

1.3 to 2.6 120-150 18.5, 50 and 60  2, 38 and 100 

Keil et al. 60 
NCA, NMC, 

and LFP  

2.8, 2.05 

and 1.1 

respectively 

270–300 25, 40, and 50 0 to 100 

Wang et al. 
42 

NMC+LMO 1.5 400-600 10, 20, 34 and 46 50 

Montoru et 

al. 62 
NMC+LMO 43 380-700 0, 25, 45 and 60 

0, 30, 65, 80 

and 100 

Sarsketa-

Zabala et 

al. 47 

LFP 2.3 300-650 30, 40 and 50 30, 60 and 90 

Omar et al. 
44 

LFP 7. 28-280 10, 25, 40 and 60 25, 50 and 100 

Grolleau et 

al. 45 
LFP 15 420-480 30, 45 and 60 30, 65 and 100 

Kassem et 

al. [42] 
LFP 8  230 30, 45 and 60 30, 65 and 100 

Zheng et al. 
54 

LFP 1.06 280 25, 40 and 55 50, 60 and 100 

Redondo-

Iglesias et 

al. 55 

LFP 2.3 500–800  30, 45 and 60 30, 65 and 100 

Jaguemont 

et al. 51 
LFP 100 400 -20 50 

Naumann et 

al. 59 
LFP 2.3 810  0, 25, 40 and 60 0 to 100 

 

Ecker et al. 
43 

NMC 6 420 25, 35, 50 and 65 
20, 50, 80 and 

100 

Schmalstieg 

et al. 53 
NMC 2.05 330-520 35, 40 and 50 

0, 10, 20, 30, 

50, 60, 70, 80, 

85, 

90 and 95 

Su et al. 58 NMC 3 240 45, 53 and 60 
40, 60, 80 and 

95 

(cont. on next page) 
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Table 2. (cont.). 

Hoog et al. 
65 

NMC 20 470 25, 35 and 45 20 to 80 

Krupp et al. 
66 

NMC 64 450 23 and 40 50, 70 and 90 

Werner et 

al. 48 
NCA 3.2 590 40, 50 and 60 

20, 35, 50, 65, 

80, 90 and 100 

Maures et 

al. 52 
NCA 2.5 200-300 -20, 25 and 55 95 

Xu et al. 61 LMO 1.1 1800-3600 
15, 25, 35, 45 

and 55 
60, 80 and 100 

 

SoC level is also a stress factor contributing to aging during calendar mode. Cells 

stored at the same temperature but different SoCs age at different rates. Higher battery 

degradation effects are expected at high SoC levels (SoC >80%), caused by a potential 

disequilibrium on the electrode/electrolyte interface, promoting secondary or side 

chemical reactions. Additionally, batteries are chemically stressed when they are 

maintained at high SoC, causing degradation of the electrode materials over time 53,57–

62,68. During calendar mode, the accelerated aging tests focused on examining how 

temperature and SoC affect cell performance in terms of capacity degradation 44,46,53,60. 

The results showed that high SoC values not only speed up the aging process but also 

capacity degradation effects are non-linear over time. Additionally, It has been observed 

that capacity degradation increases as storage SoC increases, but the rate remains 

relatively constant in the mid-SoC range according to studies 59,60. 

The aging rate in NMC cells was found to increase at 100% SoC, while NCA cells 

experienced an aging rate increase at SoC values above 90% 60,65,66. Senescence in LFP 

cells, on the other hand, is affected by SoC but not as significantly as in NMC and NCA 

cells 49. In contrast, LCO chemistry degrades rapidly when the cell is charged and kept at 

a temperature of 40-50°C. However, reducing the SoC slightly can significantly reduce 

the degradation rate. Additionally, compared to other batteries, LCO batteries are the most 

sensitive to changes in low temperature and SoC 50. Comparing these results with LFP 

degradation rates, it is evident that LFP chemistry has a slightly lower degradation rate 

under the same conditions (high temperature and SoC). However, the degradation rate 

remains fairly constant despite changes in SoCs at a given temperature. Therefore, it can 

be concluded that temperature has a greater impact on degradation within LFP cells 47,54,69. 

There is not as much literature available on the calendar aging of LTO-based cells 

compared to other types of batteries. However, it is understood that cells with LTO are 
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less affected by temperature and SoC than NMC and NCA cells. It is worth noting that 

LTO cells tend to degrade more quickly when at a low SoC compared to a high SoC. This 

could be due to the depletion of limited lithium inventory, particularly at low potentials 

50. 

In addition, when examining battery aging, larger lithium-ion cells may have 

different performance and aging patterns compared to smaller ones, even if they have the 

same cell chemistry. These distinctions stem from variations in factors like current 

density, design, geometry, and spatial irregularities in electrical potential. In the above 

two studies conducted under similar conditions (45, 46), the relative capacity of the 15 Ah 

LFP cell is 0.55 under 250-day 65 °C and 100% SoC storage conditions, while it is 0.68 

for the 8 Ah capacity LFP cell. 

 

2.2. Cycling Aging  

 

 Battery cycling aging in electric vehicles is a critical consideration in their long-

term performance and reliability. The cycling mode corresponds to the irreversible loss 

of capacity that occurs during the charging and discharging of a battery.  Over time, the 

battery's capacity gradually decreases, impacting its ability to store and deliver energy 

efficiently. In addition to temperature and SoC, various other stress factors become 

pertinent during cycling, including the rate of discharge or charge, often referred to as the 

C-rate, and the SoC ranges (∆SoC) throughout a cycle 70–72. The ∆SoC represents the 

degree of variation in SoC experienced during a single cycle. 

 This section aims to explore various studies in the literature that have produced 

noteworthy findings on the subject of battery cycling aging. Our primary focus will be on 

highlighting the influence of temperature, SoC and C-rate to gain a better understanding 

of their impact on battery longevity. The ultimate objective of this analysis is to derive 

valuable insights that can enhance the lifespan of batteries, leading to improved 

performance and efficiency. 

 

 2.2.1. Effect of Temperature on Cycling Aging 

 

The effect of temperature on cycling aging is a critical factor that significantly 

influences the long-term performance and lifespan of rechargeable batteries, such as 



 

 19 
 

lithium-ion batteries commonly used in various applications. Elevated temperatures, 

whether due to environmental conditions or internal heat generated during charging and 

discharging, can have detrimental effects on batteries. Firstly, increased temperature 

accelerates the chemical reactions within the battery, leading to more rapid degradation 

of the electrode materials, the electrolyte, and the formation of solid electrolyte interface 

(SEI) layers. These reactions contribute to capacity fade and reduced cycle life 40.  

Conversely, lower temperatures can slow down chemical reactions and reduce the 

rate of cycling aging. However, excessively cold temperatures can also have adverse 

effects on battery performance, such as increasing internal resistance and decreasing the 

battery's ability to deliver power effectively. To maximize the lifespan and performance 

of batteries, manufacturers and battery management systems often incorporate 

temperature control mechanisms to maintain the battery within an optimal operating 

temperature range. This range varies depending on the specific battery chemistry and 

application but typically falls between 25°C to 30°C 38,39.  

A study conducted by Han et al. 73 examined the effects of cycle aging on five 

types of commercial Li-ion cells: 20 Ah LTO/NMC, 60 Ah and 11 Ah graphite/LFP, and 

35 Ah and 10 Ah graphite/LMO. The batteries underwent charging at 1/3C and 

discharging at 1.5C, undergoing 90 cycles at both 45°C and 5°C. This allowed the cells 

to experience high and low temperatures without the influence of SoC. This process was 

repeated a total of 1000 cycles to expose the cells to high and low temperatures without 

the effect of SoC.  However, for the LTO/NMC cell, there was almost no loss of battery 

capacity and LTO anode active material inside the battery, but there was obvious loss of 

NMC cathode active material. The aging diagnosis for LMO and LFP cells showed that 

both experienced a loss of lithium inventory and anode active material.  The LFP cells 

experienced a 20% capacity loss in 200-300 cycles, while the LMO cells experienced a 

loss in 420 cycles. 

Yang et al. 74 investigates unbalanced discharging and aging caused by 

temperature differences among parallel connected cells. Cycling experiments were 

conducted on 2.2 LFP cells for up to 1000 cycles at ambient temperatures of 25°C and 

40°C. Cells were charged at 3C and discharged at 5C. They estimated the capacity 

reduction of lithium-ion batteries by Arrhenius approach during a charge/discharge cycle 

68,75. Their conclusion is that the increase in capacity loss is directly proportional to the 

increased temperature difference between the cells in the battery packs connected in 
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parallel. Therefore, in order to increase the battery life, the temperature difference 

between the cells must be minimized as much as possible.  

Baghdadi et al. 76 conducted a cycling study for 5.3 Ah LMO+NMC and 7Ah NCA 

cells. Their model development relies on SIMSTOCK and SIMCAL project, which 

includes the effects of temperature (40°c, 45°C and 50°C), SoC (20% and 40%) and 

current (1C and 2C) on aging 77,78 They relied on a chemical ratio approach based on 

Dakin degradation model 79. They conclude that the aging rate increases exponentially as 

SoC, temperature (40°C, 45°C, and 50°C) and current increase. Cycling at relatively low 

temperature values accelerate overall aging. Notably, the aging rate exhibited a significant 

increase when temperatures decreased within the range of -5°C to 25°C and when 

temperatures increased within the range of 25°C to 60°C. 

Hoog et al. 65 presented cycling a aging study on 20 Ah NMC cells for 3000 cycle 

that four variables were considered in their test matrix: Mid SoC (35%, 50%, 65% and 

80%), temperature (25°C, 35 and 45°C), DoD (20-100%) and C-rate (from C/3 to 2C). In 

terms of temperature, they showed that at 100% depth of discharge (DoD), higher 

operating temperatures have a more pronounced effect on the lifetime of the cell. 

Specifically, the cells exhibited a faster deterioration, reaching end-of-life more rapidly 

at 45°C compared to 25°C. This observation aligns with findings in the existing literature, 

which demonstrate that at lower temperatures (T < 25°C), lithium plating leads to 

accelerated capacity fade in NMC-based cells.  

 Wu et al. 80 examined the effect of low temperatures and cycling charging on 

battery degradation. For this purpose, a test setup was created for 5Ah LFP batteries with 

various charge C-rates (0.3C, 0.5C) at temperatures of -10°C and -20°C. They 

documented a significant degradation of up to 35% in the batteries. They documented at 

low temperatures that the lithium-ion losses turned into lithium coating and do not 

reconnect to anode structure but form dendrites. Dendrite formation caused a further 

reduction in ohmic resistance, ultimately leading to a decrease in capacity.  

Also, Burow et al. 81 investigated the aging of 25Ah prismatic NMC Li-ion cells 

at low temperatures (5°C-20°C). Capacity loss started after the 200th cycle. From post-

mortem analysis, they uncover that the primary aging mechanism is due to lithium 

plating. Furthermore, observed that the distortion examined at the anode was not 

distributed homogeneously. 
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In another study conducted at low temperatures, Rauhala et al. 82 examined the 

challenges of implementing large lithium-ion battery systems in countries with cold 

climates, with a focus on the reduced cycle life of LFP cells at low temperatures (room 

temperature, 0°C, and -18°C). The study involves an extensive post-mortem analysis of 

2.3 Ah cylindrical cells that were subjected to simulated battery electric vehicle usage 

patterns. Their results show that lithium loss is due to lithium coating on the electrode 

and SEI growth. They document that lithium coating and SEI formation were observed at 

0°C on the graphite electrode while only lithium coating was observed at -18°C.  

 

2.2.2. Effect of SoC on Cycling Aging 

  

SoC plays a crucial role in determining the cycling aging of rechargeable batteries, 

such as lithium-ion batteries commonly found in electric vehicles. SoC indicates the level 

of charge of a battery, typically expressed as the percentage of its maximum capacity. It 

impacts cycling aging because different SoC levels expose the battery to varying levels 

of stress and chemical reactions during each cycle. 

When a battery is cycled at high SoC levels, meaning it is frequently charged to 

near its maximum capacity and discharged to a low level, it experiences more stress due 

to the higher voltage and increased chemical activity. High SoC values can lead to more 

severe aging because they accelerate degradation due to the relation between electrode 

potentials and the rate of parasitic side reactions 61. Moreover, the cathode structure can 

suffer permanent damage when SoC of a cell is high 83.   

Todeschini et al. 84 developed an experimentally validated capacity degradation 

model for LFP batteries. They conducted an aging campaign using six 2.3 Ah LFP battery 

cells, with the goal of simulating real battery usage in a low-charge state during cycling 

conditions. The temperature was maintained at a constant 55°C, and they created an 

experimental matrix consisting of nine different tests with varying SoC levels (0-10%, 0-

30%) and different C-rates (2C, 4C and 8C) up to 4000 cycles. When examining the 

experimental results, it became evident that the SoC range associated with the most 

significant aging was within 0-30%. The most rapid aging was observed specifically in 

the test condition with 0-30% SoC at 8C, resulting in a decrease to 80% of the battery 

capacity after 4000 cycles. Conversely, the least aging occurred at 0-10% SoC at 2C. 

Subsequently, they presented a semi-empirical model that links SoC and C-rate factors in 
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which battery cells are tested to predict capacity degradation. Comparing the proposed 

model with experimental data, the average error rate is only 0.24%. 

 Cordoba-Arenas et al. 85 developed a semi-empirical cycle life model for 15 Ah 

LMO+NMC cells. To gain insights into the aging process, they conducted a series of 16 

distinct cycling experiments over a span of 3 months, considering minimum SoC levels 

(25%, 35% and 45%), charging rates (C/3, 3C/2 and 5C), and temperatures (10°C, 30°C 

and 45°C), while also accounting for charge sustaining/depleting (0 < Ratio < 1). The 

outcomes of these experiments revealed that the rate of capacity fade increased with rising 

minimum SoC values, with a more pronounced effect observed when SoCmin exceeded 

35%. When they compared the capacity fade model with the experimental data, it 

exhibited an almost perfect fit, as indicated by the RMSE of 0.0047%. 

 Lithium-ion batteries are used in various applications for energy storage and may 

not always experience complete charging and discharging cycles. Saxena et al. 86 

investigated the effect of partial charge-discharge cycles on the capacity loss of 1.5 LCO 

pouch cells. The study was carried out under different SoC ranges (0-100%, 20-80%, 40-

60%, 40-100% and 0-60%) and discharge currents (C/2, 2C) up to 800 EFC. Since cells 

under partial SoC intervals do not complete full cycles, accurately defining the number 

of cycles is not possible. Hence, the cycle life performance of the cells was evaluated 

using equivalent full cycles (EFC). The results showed that average SoC values during 

the first 500 full cycles played a crucial role in cell disruption. However, ∆SoC intervals 

between 600-800 full cycles had a more significant impact on degradation. 20-60% SoC 

range and cells cycled at C-rate of C/2 exhibited the least capacity loss. Then, they 

developed a model of battery degradation based on partial and full charge cycles. The 

model describing this degradation is based on the power law model 87,88 which is 

compatible for the full number of cycles in the first 500 cycles. 

 In different research that studied various SoC ranges, Gao et al. 89 conducted 

cycling life tests on 8 Ah NMC at 25 °C and 6C with SoC ranges of 0–20%, 20–40%, 40–

60%, 60–80%, 80–100% and 0–100% up to 3400 EFC. The results showed that among 

five ranges with 20% discharge depth, the cycle below 0-20% causes less capacity loss, 

while the cycle below 80%-100% causes more capacity loss. They found that the 

degradation behavior of the batteries was similar in the remaining three intervals. They 

revealed that the most effective aging mechanism in batteries below 20% DoD is lithium 

loss. 
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 Wikner and Thiringer 90 investigated the impact of aging at various SoC levels in 

an electric vehicle. The tests were performed with Li-ion cells consisting of 26 Ah 

LMO+NMC. These cells were subjected to life cycle tests for a duration of three years 

with SoC varying at 10% intervals, various temperature (25°C and 35°C) and C-rate (1C, 

2C and 4C). An empirical battery model was generated based on the degradation observed 

during the experiments. The findings indicate that reducing SoC to 50% can increase the 

lifetime of the vehicle battery by 44-130%, considering aging from discrete types of 

driving only at high SoCs. The study also reveals that high SoC accelerates aging more 

than low SoCs. Moreover, batteries with high SoC and experience various C-rates 

experience accelerated aging relative to high C-rates for a given SoC.  

 Gantenbein et al. 91 focused on the capacity loss caused by lithium loss, which is 

permanently linked to the SEI on the graphite surface. They conducted cycling 

experiments on a 2.6 Ah NCA cell at various SoC ranges (5–25%, 25–45%, 45–65%, 65–

85% and 75–95%), covering discrete graphite potential ranges. The results revealed that 

lithium-ion loss was the dominant aging mechanism in each cycling life test. Over 4000 

test cycles, the cells lost 2.5% active cathode material and 3.5% active anode material, 

while 7.5% active lithium-ion was lost. The maximum value for capacity and active 

lithium-ion loss was observed in the 65-85% SoC range.  

 Benavente-Araoz et al. 92 conducted an extensive study involving quasi-realistic 

aging tests on 2.5 Ah NCA lithium-ion cylindrical cells. The cells were partially cycled 

at four different cut-off voltages and ΔSoC (65–95%, 35–65%, 20–50%, and 20–95%) 

over 700-1000 cycles. Cells cycled with high cut-off voltages and wide ΔSoC (20% to 

95%) were severely affected by material degradation and electrode shift. High cut-off 

voltage and narrow ΔSoC (65% to 95%) caused greater electrode degradation but 

negligible cell unbalance.  

 In a multi-year cycling investigation by Preger et al. 93,  LFP, NCA, and NMC 

cells were subjected to different SoC values (40-60%, 20-80%, and 0-100%), temperature 

(15°C, 25°C and 35°C) and C-rate (0.5C, 1C, 2C and 3C). When compared to LFP cells, 

both NCA and NMC cells exhibited a more pronounced shift in capacity degradation as 

they transitioned from partial to complete SoC, a finding consistent with prior research. 

This transition can be attributed to the higher operating voltages of metal oxide cathodes 

(with 100% SoC corresponding to 4.2 V for NCA and NMC, in contrast to 3.6 V for LFP), 

which may promote electrolyte oxidation. Notably, NCA and NMC cells exhibited rapid 
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capacity fade in cycle aging studies when operated at 100% SoC. In addition, the LFP 

cells had significantly longer cycle life spans compared to NCA and NMC cells under 

tested conditions: 2500-9000 EFC vs 250-1500 EFC and 200-2500 EFC, respectively. 

 Naumann et al. 94 conducted a thorough 29-month study on the cyclic aging of 

lithium-ion cells. They examined the development of capacity in 2.85 Ah LFP cells under 

different conditions, including temperature (25°C and 40°C), C-rate (0.2C, 0.5C, and 1C), 

depth of cycle (DoC) (1%, 5%, 10%, 20%, 40%, 80%), and SoCmean (25%, 50%, and 

75%). Results from the 19 test points showed that capacity loss was strongly affected by 

DoC and SoC. Test points with lower DoC initially had higher rates of capacity 

degradation, but this leveled off as the number of cycles increased. Larger DoC led to 

higher ultimate capacity losses at higher cycle numbers, as expected. In terms of capacity, 

cycling around DoCs =20% around SOC =50% resulted in higher aging than low and 

high SoC ranges. A semi-empirical model was developed based on the static cycle aging 

study to predict capacity loss for the influence of C-rate, DOC, and Ah-throughput. 

 

2.2.3. Effect of Current rate on Cycling Aging  

  

The current rate at which a rechargeable battery is charged and discharged has a 

significant impact on its cycling aging, which refers to the gradual degradation and 

capacity loss that batteries experience over repeated charge and discharge cycles. The 

current rate, often expressed in terms of C-rates, determines how quickly electrons are 

transferred between the battery's electrodes during these processes. When a battery is 

subjected to higher current rates, it undergoes more rapid charge and discharge cycles. 

This increased electron flow can lead to several detrimental effects on the battery. Firstly, 

it generates more heat due to higher internal resistance, which can accelerate chemical 

reactions within the battery and promote the growth of SEI layers. These reactions can 

contribute to capacity loss and reduced cycle life. Secondly, the increased stress on the 

battery's materials, particularly the electrode materials, can lead to mechanical wear and 

tear, further deteriorating the battery's performance over time. 

 Conversely, charging and discharging a battery at lower current rates results in 

slower, gentler electron transfer. This reduces the heat generated, lowers the likelihood of 

SEI layer growth, and minimizes stress on the battery's components. Consequently, 

batteries cycled at lower current rates tend to exhibit slower cycling aging and retain their 
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capacity and performance for a longer duration. Battery aging is influenced by various 

factors, including SoC levels, charging/discharging cutoff voltages, temperature and the 

current rate. Notably, the current rate has a direct effect on battery temperature due to 

internal losses. Particularly, higher charging and discharging currents lead to a significant 

increase in battery temperature. 

 Wang et al. 95 established cycle-life model to investigate the capacity degradation 

induced by cycling in an LFP battery. To create this model, they performed an extensive 

cycle test (exceeding 2000 cycle numbers) with lifetime data of LFP cells with a capacity 

of 2.2 Ah. This matrix encompassed three key parameters: temperature (ranging from -30 

to 60°C), DoD (ranging from 90% to 10%), and discharge rate (measured in C-rate, 

ranging from 2 to 10). The experimental results demonstrated that at lower C rates, 

capacity loss was significantly influenced by both time and temperature, with the DoD 

effect being comparatively less pronounced. However, at higher C rates, the impact of 

charge/discharge rates became more significant, with noticeable cell heating during 

cycles involving high discharge rates. 

 Wang et al. 42 conducted thorough tests on NMC+LMO cells with a 1.5 Ah 

capacity in their next work. The tests were conducted at different temperatures (10°C, 

20°C, 34°C and 46°C) and C-rates (0.5C, 2C, 3.5C, 5C and 6.5 C) for 2000-5000 cycles 

at 10% constant DoD.  The Tests conducted on the cycle life indicate that lower 

temperatures and higher C-rates lead to more mechanical breakdown and cycle life loss. 

results are shown in Figure 2. At 10°C, the capacitance decrease showed a clear 

dependence on the C rate, but the difference between the C rates for the ambient 

temperature of 34°C and 43°C decreased, indicating a reduced dependence. It is possible 

to explain this observation as the result of voltages induced by diffusion at the negative 

graphite electrode during fast discharge. When the lithium diffusion kinetics in the 

graphite negative are inhibited at low temperatures, the effect of rate becomes more 

prominent. In addition to the calendar models, we described in Chapter 2, they created an 

empirical cycle aging model from the experimental results obtained by subtracting 

calendar tests from life tests. For most of the conditions, the predicted values are within 

±5% of the measured values for capacity loss. 

Omar et al. 69 conducted experiments on LFP batteries with a nominal capacity of 

2.3Ah to examine cycle aging under different current rates (1C, 5C, 10C and 15C), 

operating temperatures (-18°C, 0°C,25°C, and 40°C) and discharge depths up to 3000 
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cycles. The objective was to assess the long-term performance of LFP battery cells under 

diverse discharge constant current rates. The results of the investigation notably highlight 

the adverse consequences associated with elevated current rates on battery characteristics. 

Specifically, it was observed that the battery's cycle life was limited to only 560 cycles 

when subjected to the highest C-rate of 15C.  

 Sarasketa-Zabala et al. 96 performed cyclic tests on 2.3 Ah LFP cells at different 

C-rate (1C, 2C and 3.5C) and different DoD values (5%, 10%, 30%, 50%, 60% 100%) 

and derived a semi-empirical model. Experiments were always performed at 303K and 

50% mean SoC for cycling aging for 2000-6000 EFC. In the current study, static cycling 

was found to have a more pronounced impact on cell behavior than dynamic operation. 

Notably, under dynamic cycling conditions, the predictive model demonstrated a root-

mean-square error of only 1.75%. When cycling at a low 10% depth of discharge, the 

duration of cycling (measured in Ah-throughput) emerged as a more influential factor 

than the C-rate. However, at an intermediate 60% depth of discharge, the C-rate's 

influence was heightened, though the observed trends did not align with the conventional 

theory suggesting that higher C-rates lead to increased degradation rates, a pattern 

observed in the 10% DoD test. 

Groot et al. 97 conducted a comprehensive study on the cycle life of LFP cells, exploring 

various charging and discharging C-rates. The lifespan of 2.3Ah LiFePO4/graphite cells 

was evaluated by testing under varying conditions, including charge and discharge rates 

from 1 to 4C, temperatures ranging from 23 C to 53 C, and 60% or 100% SoC. This 

research aims to quantify aging in terms of capacity loss under conditions typical of high-

power automotive applications, involving high charge/discharge rates, elevated 

temperatures, and wide state-of-charge ranges. Notably, when these cells underwent 

symmetric cycles at C-rates ranging from 1C to 3.75C, and across the full SoC spectrum, 

the observed aging was heavily influenced by both current rate and temperature. Looking 

at the experimental data, it was observed that the combination of 1 C- rate discharge and 

3.75 C-rate loading caused faster degradation compared to symmetric cycles with 3.75 

C-rate in both directions. That is fast charging coupled with slow discharging significantly 

reduced cycle life compared to symmetric cycling in all cases studied. 

Wu et al. 98 presented a battery aging study on 5 Ah LCO+NCA pouch cells to 

investigate the effect of various discharge rates (1C, 2C, 3C) and temperatures (10°C, 

25°C, 40°C) on the cycle life. Compared to cells in other aging studies in the literature, 
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these pouch cells are more sensitive to low temperatures and less sensitive to discharge 

rates. Sensitivity to low temperature is due to cathode deterioration. Even at discharge 

rates as high as 5C, the number of cycles of 3000-5000 can be reached before a 20% 

reduction in capacity occurs. It allows capacity utilization at higher discharge rates due 

to less thermal and mechanical stress in their geometry.  

  Petit et al. 99 developed an experimental cyclic capacity model for 2.3 Ah NCA 

and LFP cells, considering stress factors like temperature (ranging from 5 to 30°C) and 

current (ranging from 1/6C to 4C) for cycle aging. Their findings indicated that higher 

charging currents expedited battery degradation and increased capacity loss due to cyclic 

aging, with this effect more pronounced in simulations involving charge rates below 4C. 

Additionally, they observed that prolonged exposure of batteries to high SoC resulting 

from fast charging also increases capacity loss. This study effectively demonstrated the 

influence of fast charging on battery aging, revealing notable distinctions between 

NCA/C and LFP/C battery technologies. Specifically, NCA/C-based battery has been 

found to be more susceptible to cyclic aging and ages earlier when exposed to high charge 

rates. 

Barcellona and Piegari 100 analyzed the aging of a 10Ah LCO battery to examine 

how cycling aging is affected by the current rate. To isolate the impact of temperature, 

increase from that of the current rate on the aging process, their study employed Peltier 

cells to control and maintain battery temperature within a safe range of 20°C to 30°C 

during testing, especially for high currents (0.8C, 2.5C and 5C). The test results revealed 

that capacity fade remains independent of the current rate for moderate rates (up to 5C) 

and initial capacities of up to 95%, provided that the battery temperature is maintained 

within the appropriate range, and the cell is not subjected to excessive voltage stress. 

Saldana et al. 101 presented a simple but realistic degradation model for a 63Ah 

NMC battery cell in a commercial EV. This model was created from experimental data 

under different temperatures (25°C, 45°C), C-rate (0.3786C, 0.4812C and 0.6710C) and 

DoD (20%, 40%, 60%, 80%) for the desired 1800 number of cycles. The model found an 

average capacity fade estimation error of 1.2% under distinct temperatures, C-rates, and 

DoDs for the desired number of cycles. This observation underscores that, among the 

variables considered, C-rate, in addition to temperature, exerts the most substantial 

influence on battery degradation, whereas DoD exhibits a linear relationship with 

degradation, particularly in the context of capacity fade. 
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Figure 2. Cycling capacity loss at different temperatures (10 C, 34 C and 46 C 

respectively) for different discharge rates (0.5 C, 2 C, 3.5 C, 5 C, 6.5 C) 42. 
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2.2.4.  Summary of Cycling Aging 

 

Cycling aging in EVs refers to the gradual deterioration of the battery pack over 

time due to repeated charge and discharge cycles. This phenomenon is primarily 

associated with the use of lithium-ion batteries, which are common in EVs and several 

parameters influence cycling aging. The primary factors include the number of charge 

and discharge cycles the battery undergoes, the range of SoC during these cycles, the 

operating temperature, and the charging and discharging rates. The cumulative effect of 

these factors leads to capacity fade, where the battery can store less energy over time, 

reducing the EV's driving range. As detailed in Chapter 3, various experimental studies 

in the literature have explored the impact of these parameters on cycling aging behavior. 

Cycling aging behaviors can be interpreted differently depending on the parameters 

studied. For example, while some studies investigate the impact of combining 

temperature and SoC, other studies propose correlations between aging and the 

combination of temperature and C-rate. In order to provide a comprehensive overview of 

the research conducted, a summary of the detailed examined studies has been 

meticulously compiled in Table 4. 

Battery cycle aging can occur during both charging and discharging. It is caused by 

various factors such as the battery's level, usage patterns, temperature conditions, and 

current demands.  Additionally, the factors mentioned in calendar aging also apply to 

studies of cyclic aging, as they have a similar impact on battery performance. Because 

these aging phenomena occur during both batteries use and when it is not. Thus, this 

article will delve deeper into the C-rate and ∆SoC (or SoCmean) factors that contribute to 

bicycle aging, in addition to the factors already discussed in calendar aging.

 Because at high SoC and at higher temperatures (T > 25°C), the cathode undergoes 

degeneration 102–104.  

Cycling aging impacts several critical parameters, including capacity, voltage, 

internal resistance, state of charge range, and overall performance. Over time, the battery's 

ability to store energy diminishes, reducing the driving range and affecting power 

delivery. Internal resistance increases, slowing down charging and decreasing efficiency. 

Temperature sensitivity plays a crucial role, with high temperatures accelerating 

degradation. Additionally, charging time and rate may become affected, and warranties 

often cover significant capacity degradation. As a result, proper maintenance and 
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charging habits are essential for prolonging an EV battery's lifespan and preserving its 

performance105.  

Similar to the calendar mode, elevated temperatures exceeding 30°C and high 

%SoC levels surpassing 70% tend to foster degradation and the growth of the SEI, 

resulting in diminished battery performance. Because at high SoC and at higher 

temperatures, the cathode undergoes degeneration. High temperatures have a larger 

impact on aging in LCO cells, followed by NMC, NCA, LMO cells, and to a lesser extent, 

LFP and LTO cells. This effect becomes even more pronounced at high discharge or 

charge rates and is further accelerated when high temperatures, high C-rates, and high 

∆SoCs coincide 85,87,106.  

Battery lifetime decreases also at low temperatures similar to high temperatures 

where significant deterioration in battery structure observed in both cases 103. Decreased 

cycle life due to ambient conditions is one of the major issues that has prevented the 

widespread adoption of electric vehicles in cold climate regions. Therefore, the impact of 

low temperatures on battery aging and performance is noteworthy. Specifically, low 

temperatures can alter battery chemistry and result in the loss of active substances. 

Additionally, at low temperatures, the diffusion rate of Lithium-ion slows down, and the 

conductivity of the electrolyte weakens, leading to a reduction in capacity 67. When 

temperatures drop below 20 ◦C, the rate at which lithium diffuses into the anode or 

electrolyte decreases 80,82. Additionally, the intercalation potential of graphite material 

becomes more similar to that of metallic lithium, which can lead to the occurrence of 

metallic lithium plating. This is especially common when SoC and temperature are low, 

and the C-rates are high 80. 

The factors that contribute to cycling aging are dependent on the usage mode of 

the battery. One of the most commonly cited factors in research is ∆SoC, which reflects 

the changes in the load state during a cycle. This factor primarily takes into account the 

amount of charge that the battery receives (or discharges) during a cycle. Studies have 

shown that high ∆SoC values lead to accelerated capacity loss, regardless of other 

conditions. This is mainly due to the degradation of the positive electrode and the 

development of SEI caused by high discharge or charge 90,91.  

Studies have shown that the lowest cycling aging occurs at a SoCmean of around 

50%, which is within 40-60% ∆SoC. On the other hand, the highest cyclic aging occurs 

at a SoCmean of 95%, which is within 90-100% ∆SoC. 
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Table 3. Overview of cycling aging studies reported in the literature. 

Study Chemistry 
Capacity 

(Ah) 

Cycle 

Numbers / 

EFC  

Parameters 

Temp. 

(°C) 

∆SoC 

(%) 

DoD 

(%) 

C-Rate 

(C) 

Han et al. 73 

LTO+NMC, 

LMO and 

LFP 

20, 35 and 10, 

60 and 11, 

respectively. 

1000 
5 and 

45 
- - 1.5 

Preger et al. 
93 

LFP, NCA 

and NMC 
1.1, 3.2 and 3 

2500-9000, 

250-1500 

and 200-

2500, 

15 

40-60, 

20-80, 

and 0-

100 

0-100, 

20-80 

and 40-

60 

0.5, 1, 

2 and 3 

Petit et al. 
99 

NCA and 

LFP 
7 and 2.3 4000 5-30 - - 

0.16- 

4C 

Baghdadi et 

al. 76 

LMO+NMC 

and NCA 
5.3 and 7 - 

40, 45, 

and 50 

20, 30 

and 40 
- 1 and 2 

Wang et al. 
42 

LMO+NMC 1.5 2000-5000 

10, 22 

34, and 

46 

- 10 

0.5, 2, 

3.5, 5 

and 6.5 

Wikner and 

Thiringer 90 
LMO+NMC 26 

2000-

10000 

25 and 

35 

0-10, 0-

30, 10-

20, 20-

30, 40-

50, 60-

70, 70-80 

and 80-

90 

10, 20, 

30, 40, 

50, 60, 

70, 80 

and 90 

1, 2 

and 4 

Cordoba-

Arenas et 

al. 85 

LMO+NMC 15 - 
10, 30 

and 45 

25, 35 

and 45 
- 

0.33, 

0.75 

and 5C 

Wu Yao et 

al. 98 
LCO+NCA 5 3000-6000 

10, 25 

and 40 
50 - 

1, 2 

and 3 

Yang et al. 
74 

LFP 2.2 1000 
25 and 

40 
- 75 3C 

Wu et al. 80 LFP 5 40-100 
-10 and 

-20. 
0-100% - 0.3-0.5 

Rauhala et 

al. 82 
LFP 2.3 - 

 -18, 0 

and 25 
- - 1 

Todeschini 

et al. 84 
LFP 2.3 

4000-

14000 
55 

0-10 and 

0-30 
- 

2, 4 

and 8 

Wang et al. 
95 

LFP 2.2 0-10000 

0, 15, 

45 and 

60 

- 10-90 

0.5, 2, 

6 and 

10 

Omar et al. 
69 

LFP 2.3 1500-3000 

-18, 0, 

25 and 

40 

 - 

20, 40, 

60, 80 

and 100 

1, 5, 10 

and 15 

 

(cont. on next page) 
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Table 3. (cont.). 

Sarasketa-

Zabala et 

al. 96 

LFP 2.3 2000-6000 30 50 

5, 10, 

30, 50, 

60 and 

100 

1, 2 

and 3.5 

Groot et al. 
97 

LFP 2.3 600-4800 23-53 60-100 
60 and 

90 
1-4 

Naumann et 

al. 94 
LFP 2.85 

2000-

14000 

25 and 

40 

25, 50 

and 75 
- 

0.2, 0.5 

and 1 

Hoog et al. 
65 

NMC 20 3000 
25, 35 

and 45 

35, 50, 

65 and 

80 

20-100 
0.33, 1 

and 2 

Burow et 

al. 81 
NMC 25 500 

5 and 

20 
0-100 - 1 

Gao et al. 89 NMC 8 2800-3400 25 

0–20, 

20–40, 

40–60, 

60–80, 

80–100% 

and 0–

100 

20 6 

Saldana et 

al. 101 
NMC 63 1800 

25 and 

45 
- 

20, 40, 

60 and 

80 

0.3786, 

0.4812 

and 

0.6710 

Gantenbein 

et al. 91 
NCA 2.6 4000 25 

5–25, 

25–45, 

45–65, 

65–85 

and 75–

95 

20 

 

 

1 

 

 

 

Benavente-

Araoz et al. 
92 

NCA 2.5 700-1000 25 

65–95, 

35–65, 

20–50, 

and 20–

95 

- 0.1 

Saxena et 

al. 86 
LCO 1.5 800 25 

0-100, 

20-80, 

40-60, 

40-100 

and 0-60 

- 
0.5 and 

2 

Barcellona 

and Piegari 
100 

LCO 10 - 20-30 20-80 - 
0.8, 2.5 

and 5 
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The impact of SoC may vary depending on the different stages of lithiation of the 

graphite anode. When the graphite anode charges, it expands in volume, and when it 

discharges, it retracts. This expansion and retraction are more noticeable during the 

switching of lithiation stages. Cycling between these stages can lead to an increased 

particle fraction and the formation of new SEI. Also, in every SoC range, Li-on loss 

occurs due to the dominant aging mechanism 92.  

 At higher ∆SoC levels, LMO cells experience an accelerated aging process. In 

batteries featuring a graphite anode, Mn2+ ions may migrate towards the anode and 

undergo reduction on its surface, as the graphite anode has a low potential. These ions 

catalyze the thickening of the solid electrolyte interphase (SEI) film, which causes a 

reduction in battery capacity and an increase in resistance. As a result, during cycling, 

LMO cells experience a more significant increase in their capacity decay rates at elevated 

SoC levels and temperatures compared to other types of cells 73,90,107. Studies on cycling 

aging have shown that NMC and NCA cells are more susceptible to SoC range cycling 

compared to LFP cells 89,91,93,94. LTO chemistry is also more resistant to calendar aging 

than other battery chemistries when the state of charge is kept at medium to high levels 

73. LCO cells degrade rapidly at high SoCs and temperatures of 40-50°C, with SoC 

changes having the biggest impact for degradation. 

One factor that affects the lifespan of a lithium-ion battery and its functionality is the rate 

of charge and discharge it undergoes over time. The main cause of aging from this factor 

is positive electrode degradation and the development of SEI due to high discharge or 

charge. Inferences regarding C-rate-dependent degradation can be interpreted from many 

studies with different chemistries. One type of battery, LFP cells, are known for their 

capacity to handle high amounts of power but also the literature shows that LMO cells 

have a longer life than LFP cells, which is consistent with the observed cycling trends 95. 

The aging process of LMO cells is sped up when they are discharged to a lower potential 

at high rates. This happens because lithium ions gather on the surface of the LMO 

particles, and more lithium ions are added due to their faster diffusion rates in the 

electrolytes compared to LMO particles during discharge 42. Li-on cells that use LTO 

anodes have the ability to sustain extremely high C rates with minimal degradation. 

Because, since LTO does not change volume when charged or discharged, it is a zero-

voltage material. This comes at the cost of lower energy density due to their higher 

potential. Additionally, studies have shown that NCA cells are more susceptible to aging 
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under high C-rates. However, when conducting cyclic aging tests, it is important to 

consider the impact of energy density on the C rate. If comparing cells with different 

energy densities but the same electrode surface area, it is possible to experience higher 

current densities for cells with higher energy density, potentially leading to an unfair 

comparison between different battery chemistries. After reviewing several studies, it was 

found that degradation rates exponentially increase when C rates exceed 2C. However, it 

was also discovered that LFP and NMC cells did not experience a significant increase in 

degradation when C -rates were below 2C and temperatures ranged from 30°C to 45°C. 

In one study 98, it was found that increasing the C-rate from 0.5C to 2C had little effect at 

40°C but had a noticeable effect at 25°C, indicating that temperature affects C-rate.   The 

authors suggested that the higher reaction rate and ion diffusion kinetics at these 

temperatures may decrease the stress caused by the increased C rate. 

 To properly explain how the C-rate affects battery performance, it is important to 

distinguish between temperatures above and below room temperature. When the 

temperature is lower, the conductivity of ions and the rate of intercalation decrease. On 

the other hand, a higher C-rate leads to faster diffusion kinetics and therefore higher 

current density. This means that at lower temperatures, the harmful effects of an increased 

C rate are accelerated, leading to more mechanical and kinetic stress on the electrodes 

and a greater polarization gradient. This can ultimately result in lithium plating. However, 

even at higher temperatures, the C-rate can still cause structural damage, such as crack 

propagation in the SEI layer, overloading of the cathode resulting from the increased 

polarization gradient, or exfoliation of graphite at the anode and cathode 26,102. Overall, 

during cycling, temperature and C-rate are the most significant stress factors for all 

chemistries in both low and high-temperature domains. The most suitable cell chemistries 

for applications requiring high C-rates are LTO and NCA, followed by LFP, NMC and 

LCO cells 84,86,100,101.  

 In summary, cells with different chemistries for calendar and cyclic aging modes 

may exhibit divergent susceptibility to stressors affecting aging. Table 4 shows a 

qualitative comparison of the effects of stressors on different cell chemistries for both 

types of aging modes. LTO batteries seem to be the best option in this table, but they are 

not preferred too much in electric vehicles due to their low energy density and high 

weight. 
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Table 4. Effect of stress factors on aging for cell chemistries for both aging modes. 

(●●●●: highest impact, ●●●: high impact, ●●: medium impact, ●: low impact). 

Parameter Cell Chemistry 

LFP NMC NCA LMO LCO LTO LMO+NMC 

Energy Density 

(Wh/Kg) 
●●● ●●●● ●●●● ●● ●●● ● ●● 

Low SoC/∆SoC ● ● ● ● ● ●● ● 

Low C-rate ● ● ● ● ● ● ● 

Low 

Temperature 
●● ●● ● ● ● ● ● 

Medium 

SoC/∆SoC 
● ● ● ● ● ● ●● 

Medium C-rate ● ●● ● ●● ● ● ●● 

Medium 

Temperature 
● ●● ● ● ●● ● ● 

High SoC/∆SoC ●● ●●● ●●●● ●●●● ●●●● ●● ●●● 

High C-rate ●●● ●●● ●● ●● ●●● ● ●●● 

High 

Temperature 
●●● ●●●● ●●● ●●● ●●● ●● ●●●● 
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CHAPTER 3 

 

THEORETICAL BACKGROUND  

 

Battery degradation in EVs is caused by a combination of factors. When batteries 

are repeatedly charged and discharged, they undergo chemical degradation, which leads 

to a gradual reduction in their capacity over time. Both very high and very low 

temperatures can speed up this process. Quick charging, deep discharging, and high 

charging rates can also contribute to faster deterioration. Even when they're not being 

used, batteries undergo calendar aging, which causes them to lose their overall capacity 

little by little. Both battery management systems (BMS) and manufacturing quality have 

a role to play in mitigating the effects of battery deterioration. 

 

3.1. Battery Aging Modelling 

 

As mentioned earlier, batteries can degrade over time due to various factors. To 

determine the battery's health over its lifetime, it is essential to comprehend and measure 

these processes accurately. In this reason, to gain a better understanding of the design and 

operational implications of performance degradation of Li-ion batteries, life prediction 

models have been developed. There are various methods of predicting lithium-ion battery 

wear and tear, which depend on the performance trait being observed (such as reduced 

capacity or increased resistance), the kind of battery life being evaluated (whether it is 

based on cycles or calendar), and the overall modeling method. As the battery ages, 

various characteristics such as resistance, capacity and power are predicted by these 

models. The degradation model for the application can be empirical, physics-based, or a 

combination of both. A vast range of model forms has been developed due to this. Some 

of these techniques employ electrochemical models that rely on theory to comprehend 

and predict the actual reactions that cause degradation within the battery. Other 

approaches utilize a more empirical method to model battery aging and establish 

connections between battery aging and specific variables by utilizing experimental data. 

Generally, the specific form of the model will depend on the technology used and stress 

factors monitored for degradation analysis 26,63,108. 
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3.1.1. Electrochemical Modelling 

 

Electrochemical models are utilized to optimize the physical aspects of batteries 

and characterize the voltage, power and current parameters. Physical models can be used 

to determine battery aging by quantifying the impact of various factors on battery 

performance evolution. Battery aging can be predicted with the help of physical models 

that aim to measure the impact of various factors and thus provide a description of battery 

performance evolution. The aim of these approaches is to gain a clear understanding of 

the specific chemical and physical phenomena that occur during battery usage. The 

ultimate goal is to obtain a detailed description of battery performance and to use this 

information to optimize battery design and performance. Electrochemical models rely on 

the Butler-Volmer equations and porous electrode theory (Doyle and Newman 1995; 

Newman and Tiedemann 1975) as well as the single-particle model (SPM) to estimate 

the performance of a battery. While they are highly accurate, these models are complex 

to formulate and require the measurement and estimation of several electrochemical 

parameters to accurately describe the performance of the cell. Additionally, the solver 

may take hours to solve the non-linear differential equations with many unknown 

parameters. Furthermore, it is difficult to measure the physical parameters of the battery 

over time and use, as the battery usage and aging cause the parameters to change. Due to 

these reasons, electrochemical models are not extensively used for online estimation of 

battery aging. 

 In the context of battery management systems for vehicles, it is generally not 

practical to rely on PDE-based electrochemical models, as these models are 

computationally intensive and are mostly used in research settings. Therefore, attempting 

to model the battery pack using an electrochemical scheme would not be advantageous 

for long-duration simulations8 . 

 

3.1.2. Equivalent circuit based Modelling 

 

Models based on electrical principles use equivalent circuit components to 

forecast how batteries will behave in terms of their terminal characteristics, such as 

voltage and current. However, the definition of equivalent circuit varies between studies 

and the parameters used to predict battery aging may include both internal battery 
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parameters and resistor aging parameters. The identification of these parameters can be 

achieved through direct measurements or more complex methods that involve equivalent 

circuit models. These methods require a diverse and large dataset, and testing is time-

consuming. The equivalent circuit parameters differ with the battery's operating 

conditions such as temperature, SoC, and current, and also change as the battery ages. To 

accurately analyze the performance and aging of batteries, it is necessary to conduct an 

HPPC (hybrid pulse power characterization) test. This test helps to determine how the 

batteries respond to various operating conditions and how likely they are to deteriorate 

over time. By extrapolating degradation trends, predictions can be made about which 

battery components like electrolyte, anode, cathode, etc. are degrading and at what rate. 

However, since it is impossible to predict all possible deterioration events that may occur 

in the future, the predictions made through extrapolation are inherently inaccurate 108,109. 



3.1.3. Semi-Empirical Modelling 

 

There are different mathematical models in the literature for predicting battery 

calendar aging, based on empirical evidence. These models can be divided into two 

categories: empirical and semi-empirical.  

Both electrochemical and empirical approaches have drawbacks. Electrochemical 

approaches are often too complex and theoretical to be practical. An empirical formula is 

a mathematical expression or curve that best fits observations or measurements. However, 

they require experimental data and are only valid for specific operating conditions. This 

can make it challenging to predict outcomes beyond the study range or designed 

experiment. The semi-empirical approach aims to combine the advantages of both 

approaches by using theoretical principles and experimental results to assign values to the 

fit parameters of the model. Semi-empirical models use a combination of theory and curve 

fitting. For instance, a theory predicts a linear relationship, and the best linear relationship 

is found from the available data, even if the best fit curve is non-linear42,48. Compared to 

electrochemical models, semi-empirical models are simpler, yet can be applied to a wider 

range of conditions than empirical models.  This section aims to provide an in-depth 

analysis of both experimental and quasi-experimental studies. We will explore and 

elucidate the intricacies of these studies to ensure a comprehensive understanding of their 

methodologies. 
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3.1.3.1.  Empirical/Semi-Empirical Modelling of Calendar Aging 

 

A commonly used semi-empirical model, which follows the Arrhenius equation, 

has been extensively used in various studies to describe the deterioration of battery 

capacity while in storage. As a result of the influence of storage temperatures on physical 

reactions, battery SEI growth can be elucidated through the Arrhenius law. This approach 

correlates temperature with chemical reaction rate. Literature shows Arrhenius equation 

agrees with aging rates, especially for calendar aging 42: 

 

𝑄𝑙𝑜𝑠𝑠 =  𝐴. 𝑒−
𝐸𝑎
𝑅𝑇. 𝑡𝑧                                                   (1) 

 

In this equation, A represents the exponential factor, Ea represents the activation 

energy, R is the gas constant, T is the absolute temperature and t represents time. SEI layer 

thickness inversely affects Li-ion consumption rate, which follows roughly the square 

root of time. Therefore, z is the power-law factor, and is typically assumed to be range 

0.45-1.  

Taking into account the correlation between temperature and SoC, the Arrhenius law can 

be formulated:  

 

𝑄𝑙𝑜𝑠𝑠 =  𝑓( 𝑇, 𝑆𝑜𝐶, 𝑡)                                               (2) 

 

According to Arrhenius' law, the degradation in calendar capacity can finally be expressed 

in a specific semi-empirical form as follows [43], [44], [45], [59], [96]: 

 

𝑄𝑙𝑜𝑠𝑠 =  𝐴(𝑆𝑜𝐶). 𝑒−
𝐸𝑎
𝑅𝑇. 𝑡𝑧                                         (3) 

 

Recognizing that the effects of storage SoC on parasitic chemical reactions can 

lead to degradation of battery capacity, studies have revealed both linear and exponential 

dependencies of the SoC.  These models establish mathematical relationships between 

capacity loss, temperature, and SoC for the calendar life model. According to Sarasketa-

Zabala et al. 47  calendar aging model, T refers to the storage temperature, t represents the 

storage time in days, and fitting parameters α1, β1, α2, and β2 are utilized. In their model, 

Hoog et al. combined both empirical and semi-empirical models. The Arrhenius law 
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establishes the correlation between temperature and calendar aging, whereas a linear 

empirical model is established for the SoC connection. The parameters a, b, c and d in 

the formula are fitting parameters. 

Also, Eddahech et al. 49 modeled SoC dependence as a polynomial function, 

accounting for the interdependence of temperature and SoC through multiplication. The 

parameters a1−3, b1−3, C, and D in the formula are fitting parameters. 

Both the exponential term A and the activation energy Ea in the equation are SoC 

dependence terms: So, the two parameters for calendar aging are expressed as a function 

of SoC: A(SoC) and Ea(SoC). Redondo-ıgleases et al. 55 selected a shape function f(t) = t 

z in their model, where the value of z remains constant regardless of T and SoC. The 

model was examined in this research using two different z values: 0.5 and 1. The general 

equation for the ageing model is given by Equation (8), where k represents the Boltzmann 

constant. The prediction error of the model is 4.5%. 

In another study 48, a semi-empirical model that combines an exponential and a 

linear function following the Arrhenius law agrees well with measurements for all SoC 

and temperatures. It has been suggested that it reflects the aging process better than the 

commonly used square root dependence of time. The square root function tends to 

overestimate the decrease in capacity at the beginning of aging, and underestimate aging 

in the later period, especially when extrapolated. The Arrhenius model has three 

coefficients - αC, βC, and γC - which are adjusted separately for SoC and temperature. The 

activation energy Ea is the same for the exponential coefficients αC and βC, but different 

for γC, which defines the linear contribution.  

In the literature, capacity loss models are typically presented as cumulative data extracted 

from experiments conducted under constant stress conditions (such as temperature and 

SoC). However, in real-world scenarios such as electric transportation, stress conditions 

vary over time. In this reason, a model that accounts for capacity decrease over time has 

been developed, unlike other semi-empirical models 45,58,59: 

 

𝑑𝑄𝑙𝑜𝑠𝑠

𝑑𝑡
= 𝑘(𝑇, 𝑆𝑜𝐶) . (1 +

𝑄𝑙𝑜𝑠𝑠(𝑡)

𝐶𝑛𝑜𝑚
)
−𝛼(𝑇)

                              (4) 

 

k(T,SoC) represents the capacity fade evolution during storage concerning 

temperature and SoC. Qloss(t)/Cnom is the fractional capacity degradation at aging time t. 

In Grolleu et al. 45 model, the expression ka and kb represent how the rate of capacity 
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degradation changes with temperature and SoC when a battery is stored. Su et al. 58 

describe the effect of temperature and SoC on the k parameter using a quadratic 

polynomial.  

Naumann et al. 59also developed a model for dynamic conditions that takes into 

account the decrease of capacity over time. After the aging model was developed, a 

differential form of aging models has been derived by differentiating the model with 

respect to time, to apply model equations with changing temperatures or SoCs over time. 

While Kref represents the reference aging rates (temp. and SoC) for temperature, cQloss and 

dQloss parameters are curve-fitting parameters depending on the SoC obtained at the end 

of the aging study. These studies demonstrate that models can be developed with minimal 

errors under dynamic as well as static conditions (error < 4). 

In their research, Ecker et al. 43 compare various empirical model equations and 

come to the conclusion that their measurement data has little to no linear component. As 

a result, they chose to use a semi-empirical model due to its low RMSE and smaller 

number of coefficients for capacity, ohmic, and polarization resistance. This model uses 

the parameters of temperature, aging period, and potential, which is related to the SoC of 

the cell: 

 

𝐿(𝑇,𝑉,𝑡)

𝐿(𝑇0,𝑉0,𝑡0)
= 1 + 𝐵(𝑇, 𝑉). 𝑐𝑎 . 𝑡0.5                                       (5) 

 

The coefficient "ca" is utilized to gauge the rate at which capacity declines under 

reference conditions T0, t0, and V0. The value of L(T, V, t) provides an estimation of the 

resistance or capacitance at a particular time t with temperature T and voltage V. 

Furthermore, the effects of temperature and storage voltage are calculated according to 

an exponential dependence (6): 

 

𝐵(𝑉, 𝑇) =  𝐶𝑣

𝑉−𝑉0
∆𝑉 . 𝐶𝑇

𝑇−𝑇0
∆𝑇                                             (6) 

 

The reference temperature and voltage are represented by T0 and V0 respectively. 

DT and DV have been set at 10°C and 0.1 V respectively, based on arbitrary values. The 

proposed law (6) utilizes cT and cV parameters, which are determined by analyzing the 
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results of accelerated calendar aging tests. It is assumed that the degradation rates are 1/2 

dependent on time, based on this data. 

  Similarly, Schmalstieg et al. 53 also take a comparable approach, utilizing the 

Arrhenius function to account for temperature dependency of aging and a linear 

relationship to describe voltage dependency. However, they use a modified version of the 

square root with an exponent of 0.75 to account for time dependency. 

The models discussed above are summarized in Table 3, highlighting their key 

elements. These different models vary in the stressors they consider, such as time, storage 

temperature and SoC, and in the outcomes of the aging type they examine. It should be 

noted that empirical and semi-empirical methods measure a battery's available capacity 

under reference conditions throughout its lifespan, eliminating variations in available 

capacity caused by different operating condition. 

 

Table 5. Overview of Semi-Empirical/Empirical calendar aging models reported in the 

literature. 

Source 
Model 

Cases 

Initial 

Value 

(%) 

Model Equation 

Model 

paramete

rs 

Mode

l 

Erro

r 

Wang et 

al.  42 
SEM 

Capacity 

Loss 
𝐴. 𝑒−

𝐸𝑎
𝑅𝑇𝑡0.5 

Temperatur

e and time 
5 

Redondo

-Iglesias 

et al. 55 

SEM 
Capacity 

Loss 
𝐴. 𝑒𝐵𝑠.𝑆𝑜𝐶 . 𝑒

−𝐸𝑎+𝐶𝑠.𝑆𝑜𝐶
𝑘𝑇 𝑡𝑧 

Temperatur

e, SoC and 

time 

4.5 

Sarasket

a-Zabala 

et al. 47 

SEM 
Capacity 

Loss 
𝛼1. 𝑒𝑥𝑝(𝛽1. 𝑇

−1). exp(𝛽2. 𝑆𝑜𝐶) . 𝑡0.5 

Temperatur

e, SoC and 

time 

0.9 

Eddahec

h et al. 49 
EM 

Remaini

ng 

Capacity 

(𝑎1. 𝑆𝑜𝐶 + 𝑎2. 𝑇+ 𝑎3 .𝑇. 𝑆𝑜𝐶). 

𝑒(𝑏1.𝑆𝑜𝐶+ 𝑏2 .𝑇+ 𝑏3 .𝑇.𝑆𝑜𝐶).𝑡 + 𝐶𝑒𝐷𝑡 

Temperatur

e, SoC and 

time 

- 

Werner 

et al. 48 
SEM 

Remaini

ng 

Capacity 

1 + 𝛼𝐶〈𝑆𝑜𝐶, 𝑇〉 . (exp( −𝛽𝐶〈𝑆𝑜𝐶, 𝑇〉 . 𝑡) −

1) + 𝛾𝐶〈𝑆𝑜𝐶, 𝑇〉 . 𝑡   

Temperatur

e, SoC and 

time 

0.12-

0.15 

 

(cont. on next page) 
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Table 5. (cont.). 

Hoog et 

al. 65 

SEM-

EM 

Capacity 

Loss 

𝐴. 𝑒−
𝐸𝑎
𝑅𝑇𝑡𝑧 

/ (𝑎1. 𝑇
𝑎2 . 𝑎3 .𝑡

 𝑏1.𝑇𝑏2.𝑏3 . 𝑆𝑜𝐶𝑐1.𝑇𝑐2)

+ ( 𝑑1. 𝑇
𝑑2 . 𝑑3. 𝑆𝑜𝐶. 𝑡) 

Temperatur

e, SoC and 

time 

5 

Grolleu 

et al. 45 
SEM 

Capacity 

Loss 

𝑘𝐴. exp  {−
𝐸𝑎𝐴

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)} . 𝑆𝑜𝐶 +

𝑘𝐵 . exp

 

{−
𝐸𝑎𝐵

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)} . (

1

+
𝑄𝑙𝑜𝑠𝑠(𝑡)

𝐶𝑛𝑜𝑚

)

−∝(𝑇)

  

Temperatur

e, SoC and 

time 

3-4 

Su et al. 

58 
SEM 

Remaini

ng 

Capacity 

𝑎 + 𝑏.
𝑇−52.5

7.5
+ 𝑐. (

𝑇−52.5

7.5
)

2

  

+ 𝑑.
𝑆𝑜𝐶−0.6

0.2
+ 𝑒. (

𝑆𝑜𝐶−0.6

0.2
)

2

+

𝑓.
𝑇−52.5

7.5
 .

𝑆𝑜𝐶−0.6

0.2
 . (1 +

𝑄𝑙𝑜𝑠𝑠(𝑡)

𝐶𝑛𝑜𝑚
)

−𝛼0.𝑒𝑥𝑝(
𝜆

𝑇
)

  

Temperatur

e, SoC and 

time 

3 

Nauman

n et al. 59 
SEM 

Capacity 

Loss 

𝑘𝑟𝑒𝑓,𝑄𝑙𝑜𝑠𝑠 . exp {−
𝐸𝑎𝑄𝑙𝑜𝑠𝑠

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)} .  

(𝐶𝑄𝑙𝑜𝑠𝑠(𝑆𝑜𝐶 − 0.5)3 + 𝑑𝑄𝑙𝑜𝑠𝑠). (2√𝑡)
−1

  

Temperatur

e, SoC and 

time 

2.2 

Ecker et 

al. 43 
SEM 

Remaini

ng 

Capacity 

1 + 𝐶𝑎 . 𝐶𝑣

𝑉−𝑉0
∆𝑉 . 𝐶𝑇

𝑇−𝑇0
∆𝑇 . √𝑡  

Temperatur

e, voltage 

and time 

0.7-1 

Schmalst

ieg et al. 

53 

SEM 

Remaini

ng 

Capacity 

1 − (𝐶𝑣1. 𝑉 − 𝐶𝑣0). 106. 𝑒𝑥𝑝 (−
𝐶𝑇

𝑇
) . 𝑡0.75  

Temperatur

e, voltage 

and time 

1.2-

1.7 

 

3.1.3.2.  Empirical/Semi-Empirical Modelling of Cycling Aging 

 

Models based on cell aging studies, known as semi-empirical models, use limited 

data from cycled and stored cells under accelerated aging conditions. Cycle aging is more 

difficult to predict as it involves various independent variables such as temperature and 

current voltage. Moreover, these variables are linked to external conditions and battery 

usage. The primary factors taken into consideration are temperature, cycle number, 

SoCmean, ∆SoC and C-rate. Cycling aging models are less uniform than calendar aging 

models and have varying structures and stressors considered. Generally, cyclic aging 

models utilize either the cumulative charge efficiency (Ah-throughput) or the total 

number of equivalent full cycles (EFC) to represent the battery cycle.  

Cycle quantity is typically determined by scaling the EFC of the total charge 

efficiency (Q) with the battery capacity (Cbatt) in Ah: 
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𝑄 =  ∫ |𝐼(𝑡′)|𝑑𝑡′𝑡

0
                                                   (7) 

 

𝐸𝐹𝐶 =
𝑄

2∗𝐶𝑏𝑎𝑡𝑡
                                                       (8) 

 

Here, I represents the charge-discharge current. Multiple definitions of Cbatt exist, 

including nominal battery capacity at the beginning of life and present degraded battery 

capacity. The term "Ah-throughput" refers to the amount of Ah that the battery delivers 

over multiple cycles. Throughput is often modeled using a power-law relationship, similar 

to calendar aging (9). Additionally, throughput can also be associated with the number of 

cycles parameter (10): 

 

𝑄 =  𝑓(𝑆𝑜𝐶, 𝑇, 𝐷𝑜𝐷, 𝐼)𝐴ℎ𝑧                                              (9) 

𝑄 =  𝑓(𝑆𝑜𝐶, 𝑇, 𝐷𝑜𝐷, 𝐼)𝑁𝑧                                              (10) 

  

Ah represents the total amount of energy delivered by the cell, N is the number of 

cycles performed, often expressed in terms of depth of discharge, and z is the power-law 

factor. Studies modeling the effect of throughput on cyclic aging often find an Ahz 

relationship with 0.45 ≤ z ≤ 1 and z is typically associated with the growth of the SEI 

layer. 

 Wang et al. 42 uncovered a power law correlation between battery capacity loss 

and charge throughput and developed a cycle life model based on it. The equation shows 

that capacity loss follows a power law relationship with time or load flow, while an 

Arrhenius correlation accounts for temperature effects. Also, it is widely accepted that the 

Arrhenius law applies to the effect of temperature on the reaction rate for most chemical 

processes for cycling aging, just as in calendar aging 53,61,65,95,110. They created a battery 

life model that considers Ah throughput (time), C-rate, and temperature, which is a 

generalized model. Additionally, the study found that capacity fade is dependent on 

Ah0.55, which is directly proportional to aging time. This parameter allows degradation to 

be correlated for different C-rates. In this equation, B represents the pre-exponential 

factor, Ea is the activation energy in J/mol, R stands for the gas constant, T represents the 

absolute temperature, and Ah is the Ah-throughput. According to the article, Ah-

throughput can be defined using the following equation: 
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Ah =  (cycle number)  × (DoD) × (full cell capacity)                      (11) 

 

 In their next study, Wang et al. 42 created a new life model by merging the calendar 

and cycling models. They developed an empirical cycle model based on the C-rate and 

temperature, which they combined with their semi-empirical calendar model. In the 

model, capacity degradation has an exponential relationship with C-rate and a linear 

relationship with time (or charge throughput). For temperature, the researchers obtained 

a highly effective empirical model that uses both an exponential and a quadratic 

polynomial relationship. The equation includes fitting parameters a, b, and c, which 

depend on temperature, and fitting parameter d, which depends on both temperature and 

c-rate. Additionally, parameter E depends only on c-rate. 

 In a study on the cycling aging model using Ah-throughput, Sarasketa-Zabala et 

al. 96 developed a semi-empirical model for dynamic conditions. They established 

mathematical relationships to connect DoD and charging efficiency in the cycle life 

model. First equation is used for DoD between 10% to 50%, while second equation is for 

all other DoD values. The cycling performance loss as a function of Ah-throughput 

differed depending on the DoD level (Ah0.87 or Ah0.65). The cycle aging model includes 

fitting parameters such as α3, β3, α4, β4, γ1, γ2, and γ3, while the parameter k is a correction 

factor for dynamic operating conditions and equals 1 if the cyclic DoD is constant. 

However, the only challenge in applying this cycle life model is that SoC release during 

charge and discharge (DoD) is assumed to always occur around a mid-SoC of 50%. 

 The capacity degradation can be expressed as a function of either Ah or n, based 

on the one-to-one relationship between total ampere-hours throughput and total aging 

cycle. Unlike most studies in literature, instead of representing capacity degradation as a 

function of Ah-throughput, Todeschini et al. 84 used a power law fitting curve to express 

it as a function of n. The representation is as follows: 

 

 C𝑓.𝑖(n)  =  a𝑖  ·  n𝑏𝑖                                                         (12) 

  

A model has been created to simulate the usage of low-charged batteries during 

the charging process. They uncovered that the most accurate curve fit was achieved with 

z = 1.23, using an exponential factor greater than 1 because of the battery's quick decline 

in charge. The variables α, β, and γ are fitting parameters used in the model. 
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 A semi-empirical cyclic aging model has been developed by Cordoba-Arenas et 

al. 85, this research considered the amount of time that a vehicle spends in Charge-

Depleting (CD) and Charge-Sustaining (CS) modes when assessing the capacity loss 

caused by cell cycling. The concept is defined by the following equation and ranges from 

0 to 1: 

 

𝑅𝑎𝑡𝑖𝑜 =
𝑡𝐶𝐷

𝑡𝐶𝐷+𝑡𝐶𝑆
                                                  (13) 

  

The equation for capacity degradation relies on the temperature of the battery 

during active phases, its minimum SoC level, and the efficiency of Ah. The parameters 

αc, βc, and γc in the equation are used for fitting, while the power law factor z is set to 

0.48. The battery's minimum SoC is determined by calculating the average SoC before 

each charging event. 

 In another study 94, it was aimed to create a unified aging model by superimposing 

calendar aging and cyclical aging model. In this study, a model representing pure cyclical 

aging was created in addition to the calendar aging model mentioned earlier. Similar to 

calendar aging models, they developed a model that only includes relevant impact 

parameters in the cyclical aging model. Therefore, they considered the impact of C-rate, 

DoC, and Ah yield on aging in their models. In the literature, DoC is also commonly 

referred to as depth of discharge (DoD or ΔDoD). One of the limitations of the model is 

that it does not account for the SoC stress factor in cyclic aging.  

 Omar et al. 69 proposed a new and intricate method for assessing the aging 

parameters of lithium batteries. The degradation of the batteries was modeled separately 

based on various factors such as charge-discharge current rates, operating temperatures, 

and discharge depths. These relationships were then integrated into MATLAB Simulink 

to create a general cycle life model under the suggested operating conditions. The 

researchers argued against the application of the Arrhenius law, as the battery exhibited 

nonlinear behavior throughout its cycle life. They instead used an empirical model with 

a 3rd-degree polynomial equation to explain the temperature and cycle life development. 

Additionally, the cycle life development for other factors (Charge-discharge rate and 

DoD) is defined as an exponential function. Equations 1, 2, 3, and 4 represent the life 

models associated with temperature, discharge, charge, and DoD, respectively. All 

parameters in the equations, except for stress factors, are fitting parameters. According to 
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the validation test, there is a maximum 5.4% error between the simulated and 

experimental results. 

 Saxena et al. 86 created a power law model that takes into account different SoC 

ranges to demonstrate how partial charge-discharge cycles can impact battery aging. The 

model shows that battery degradation is impacted not only by the average SoC, but also 

by the change in SoC (∆SoC) during cycling. The model considers three different 

parameters at a constant temperature and C-rate: average SoC, ∆SoC, and equivalent full 

cycles. In the equation, the average SoC and ∆SoC are expressed as fractions instead of 

percentages, and the constants k1, k2, and k3 are fitting parameters. The study also focused 

on the relationship between normalized discharge capacity (NDC) and capacity fade, as 

shown below: 

 

Normalized Discharge Capacity (%) =  100 −  Capacity Fade (%)             (14) 

 

 Most studies on cycling aging utilize the Arrhenius equation, as well as a power 

law relationship for efficiency or number of cycles, described in the models above. This 

form of modeling is often well suited to predicting aging due to cycling during post-

processing computation. However, for online calculations over a shorter period of time 

or under rapidly changing operating conditions, the current age of the battery is often not 

taken into account in each new calculation. This situation was solved by Petit et al. 99 by 

varying the Arrhenius/power law over time. The study focused on temperature and current 

as stress factors for cycle aging. The semi-empirical model includes Bcyc as a pre-

exponential factor in Ah1-zcyc. This factor depends on the current, while a represents a 

coefficient for aging acceleration due to current, expressed in Jmol-1A-1. Additionally, zcyc 

is an exponent constant that should be approximately 0.5 for a diffusion-limited process. 

 In studies based on Arrhenius and power law, aging of batteries is usually 

simulated by only considering degradation in the initial stages of battery life. However, 

as the battery ages, the rate of degradation tends to decrease. To account for this, Hoog et 

al. 65 created a polynomial equation based on the number of cycles, temperature and DoD, 

which models the point where the rate of degradation decreases. The impact of 

operational temperature is analyzed alongside the impact of DoD. This equation 

calculates the relative capacity degradation (RCD) percentage of a battery. The full 

equivalent cycle number is represented by x, and the DoD percentage is represented by y. 
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The ai and bj parameters are used for fitting, while n and m represent the order of x and y. 

This polynomial model differs from other exponential models, as it considers the 

increasing rate of degradation during the later stages of battery life due to lithium plating.  

 The models discussed above are summarized in Table 6, highlighting their key 

elements. These different models vary in the stressors they consider, such as cycle time, 

temperature, SoC, and C-rate in the outcomes of the aging type they examine. It should 

be noted that empirical and semi-empirical methods measure a battery's available capacity 

under reference conditions throughout its lifespan, eliminating variations in available 

capacity caused by different operating conditions.  
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Table 6. Overview of Semi-Empirical/Empirical cycling aging models reported in the 

literature. 

Source 
Model 

Cases 

Initial 

Value 

(%) 

Model Equation 
Model 

parameters 

Model 

Error 

(RMSE) 

Hoog et al. 

65 
EM 

Capacity 

loss 
∑ 𝑎𝑖𝑥

𝑖 + 𝑏𝑖𝑦
𝑖

𝑛,𝑚

𝑖=0,𝑗=0

 
DoD and 

EFC 
- 

Wang et 

al. 95 
SEM 

Capacity 

loss 
𝐵. 𝑒𝑥𝑝 (

−𝐸𝑎 + 370.3 + 𝐶𝑟𝑎𝑡𝑒

𝑅. 𝑇
)𝐴ℎ0.55 

Temperature, 

C-rate and 

Ah-

throughput 

- 

Wang et 

al. 42 
EM 

Capacity 

loss 

(𝑎. 𝑇2 + 𝑏. 𝑇 + 𝑐). exp[(𝑑. 𝑇

+ 𝑒). 𝐼𝑟𝑎𝑡𝑒] . 𝐴ℎ 

Temperature, 

C-rate and 

Ah-

throughput 

5 

Sarasketa-

Zabala et 

al. 96 

SEM 
Capacity 

loss 

(𝟏) (𝛾1. 𝐷𝑜𝐷2 + 𝛾2. 𝐷𝑜𝐷

+ 𝛾3). 𝑘. 𝐴ℎ0.87 

(𝟐) (𝛼3. 𝑒𝑥𝑝(𝛽3𝐷𝑜𝐷)

+ 𝛼4. 𝑒𝑥𝑝(𝛽4𝐷𝑜𝐷)). 𝑘. 𝐴ℎ0.65 

DoD and 

Ah-

throughput 

1.75 

Cordoba-

Arenas et 

al. 
85

 

SEM 
Capacity 

loss 

(𝛼𝑐 +  𝛽𝑐(𝑅𝑎𝑡𝑖𝑜)𝑏𝑐

+ 𝛾𝑐 . (𝑆𝑜𝐶𝑚𝑖𝑛 − 0.25)𝑐𝑐). 𝑒
−𝐸𝑎
𝑅𝑇 . 𝐴ℎ𝑧 

Temperature, 

DoD, SoC 

and Ah-

throughput 

0.0047 

Saxena et 

al. 86 
SEM 

Remaining 

capacity 

(𝑘1.  𝑆𝑜𝐶𝑚𝑖𝑛 . (1 + 𝑘2. ∆𝑆𝑜𝐶

+ 𝑘3.∆𝑆𝑜𝐶2). (𝐸𝐹𝐶
100⁄ )0.453 

SoC, ∆SoC 

and EFC 
- 

Naumann 

et al. 94 
SEM 

Remaining 

capacity 

(𝑎𝑄𝑙𝑜𝑠𝑠 . 𝐶 − 𝑟𝑎𝑡𝑒

+ 𝑏𝑄𝑙𝑜𝑠𝑠). (𝑐𝑄𝑙𝑜𝑠𝑠(𝐷𝑜𝐶 − 0.6)3

+ 𝑑𝑄𝑙𝑜𝑠𝑠). 𝐸𝐹𝐶𝑧𝑄𝑙𝑜𝑠𝑠 

Current rate, 

DoC and 

EFC  

0.98 

Todeschini 

et al. 84 
EM 

Remaining 

capacity 
(𝛼 + 𝛽. ∆𝑆𝑜𝐶 + 𝛾. 𝑒𝐶−𝑟𝑎𝑡𝑒). 𝑛1.36 

∆SoC, C-rate 

and cycle 

number 

0.24 

 

(cont. on next page) 
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Table 6. (cont.). 

Petit et al. 

99 
SEM 

Remaining 

capacity 

|𝐼|

3600
𝑧𝐵(𝐼). 𝑒𝑥𝑝 

−𝐸𝑎 + 𝛼|𝐼|

𝑅𝑇
.

 

(
𝑄𝑙𝑜𝑠𝑠

𝐵(𝐼)𝑒𝑥𝑝
−𝐸𝑎 + 𝛼|𝐼|

𝑅𝑇

)

1−
1
𝑧

 

Current, 

Temperature 

and Ah-

throughp ut 

5 

 

 

 

Omar et 

al. 69 
SEM 

Remaining 

capacity 

(𝟏) 𝐶𝐿(𝑇) = 𝑎. 𝑇3 −  𝑏. 𝑇2 +  𝑐. 𝑇 + 𝑑 

 

(𝟐) 𝐶𝐿(𝐼𝑑) =  𝑒. 𝑒(𝑓.𝐼𝑑) + 𝑔. 𝑒(ℎ.𝐼𝑑) 

 

(𝟑) 𝐶𝐿(𝐼𝑐ℎ) =  𝑚. 𝑒(𝑛.𝐼𝑐ℎ) + 𝑜. 𝑒(𝑝.𝐼𝑐ℎ) 

 

(𝟒) 𝐶𝐿(𝐷𝑜𝐷) =  𝑖. 𝑒(𝑗.𝐷𝑜𝐷)

+  𝑘. 𝑒(𝑙.𝐷𝑜𝐷) 

Temperature, 

C-rate and 

DoD 

5.4 
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CHAPTER 4 

 

METHOD AND VALIDATION 

 

Chapter 3.1.2 highlights the existence of a plethora of empirical and semi-

empirical models for calendar aging, which have been extensively studied and 

documented in the literature. These models provide a valuable framework for 

understanding the aging behavior of batteries and predicting their performance over time. 

By analyzing the fundamental mechanisms that drive the aging process and incorporating 

relevant main factors, such as time, temperature and SoC, these models offer insights into 

the complex nature of calendar aging and the factors that influence it. 

To model battery aging, a variable that reflects battery degradation must be 

selected, such as cell impedance or the decrease in capacity over time. In this study, the 

capacity decay development, which is a crucial parameter in electric vehicle (EV) 

applications, is chosen for modeling. Equation (15) is a general example of the QLoss aging 

model as a function of time (t), temperature (T), and SoC, where the aging factors (T, 

SoC) are separated from time 111:   

 

Qloss(T, SoC, t) =  CA. (T, SoC). f(t)                                    (15) 

 

This equation implies that the evolution of Qloss for each cell follows the identical 

shape (f(t)), regardless of the value of T and SoC. Typically, researchers choose f(t) to be 

a power of time (tz) 112, an exponential function 113, or a time functions combination 43. 

The traditional approach to aging modeling involves expressing the capacity aging (CA) 

in an Arrhenius expression 112,114. The pre-exponential factor (A) and activation energy 

(Ea) of the Arrhenius law may vary with other aging factors. For calendar aging, it is 

possible to express these two parameters as a function of SoC: A = A(SoC), Ea= Ea(SoC) 

55.  

Arrhenius law-based SEM-type models, which are based on physical reactions, 

are commonly used in literature. Therefore, in this study, we focus on investigating 

Arrhenius law-based SEMs that consider the effects of battery storage SOC, temperature, 

and storage time on battery capacity loss Qloss. 
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Given that the structure of a regression model is flexible, many semi-empirical 

models have been reported in the literature. Three of these models detailed above were 

selected for detailed analysis based on the following criteria: 

• The capability to apply to various aging conditions; 

• Stress factors which determine the rate of aging (operating conditions); 

• Applicability to various chemistries; 

In this chapter, we explain the aging models and equations to be used for the 

experiments. First, we describe the mathematical solution methods of the models. Two 

methods were considered: Linear Regression Least Squares and Genetic Algorithm (GA). 

When a linear relationship was observed between variables, the least squares method was 

used to examine and draw inferences about how the variables affect each other. The 

procedures for identifying all model parameters using the linear regression method were 

conducted within the MATLAB program. When there is no linear relationship between 

variables, model parameters were found using the genetic algorithm. In the following 

section, each of these models in the literature is explained, and validation studies are 

conducted. Finally, to contribute to the literature with comprehensive and different 

models, four different calendar aging models are generated and clarified. All of these 

models will be compared on the different experimental sets that will be explained later. 

 

4.1.  Linear Regression Least Squares Method 

 

Least squares is a method for implementing linear regression. To apply this 

method, it is necessary to bring the model into linear state-space form. Linearization is 

the process of taking the gradient of a nonlinear function with respect to all variables and 

creating a linear approximation at that point. An example of exponential model can be 

given as follows (16): 

 

𝑓(𝑥) = 𝑦𝑖 = 𝑏2exp (𝑏1𝑥𝑖)                                           (16) 

 

Where the b2 and b1 model parameters. Then, by taking the logarithm of both 

sides, the equation can be formed into a linearized form such that (17): 

 

ln(𝑦𝑖) = ln(𝑏2) + 𝑏1𝑥𝑖                             𝑓𝑜𝑟 𝑖 = 1,… , 𝑛                    (17) 
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The exponential function can be transformed into a linear fitting problem for 

easier handling. The open form of the above equation can be represented as follows, 

where i=1,…,n: 

 

ln(𝑦1) = ln(𝑏1) + 𝑏2𝑥1 

ln(𝑦2) = ln(𝑏1) + 𝑏2𝑥2                                                           (18)                                                       

⋮ 

ln(𝑦𝑛) = ln(𝑏1) + 𝑏2𝑥𝑛 

 

         The above simple linear regression equation can be expressed in matrix notation as: 

 

                                                              [

1 𝑥1

1 𝑥2

⋮ ⋮
1 𝑥𝑛

] [
𝑏1

𝑏2
] = [

𝑦
1

𝑦
2

⋮
𝑦

𝑛

]                                              (19)                                                       

    

                                                           A         x           Y 

 

In matrix notation this model can be written as: 

 

                      𝐴𝑥 = 𝑌                                                                      (20) 

 

Where the Y=ln(f(x)), x is the column vector that includes the model parameters 

b1 and b2, and A includes the corresponding matrix where the terms are known. After that, 

by taking the pseudo-inverse of the A the model parameters can be found as following: 

 

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦                                                                  (21) 

 

After the coefficients of the functions of the exponential model are found, yi can 

be estimated for any xi respectively using Equation (16). 

The least-squares estimate minimizes the sum of the squares of the errors, also 

known as the mean-squared error (MSE): 

 

MSE =
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1                                                      (22) 
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The corresponding predicted value for Yi is denoted as Yî, where Yi represents the 

ith observed value. The total number of observations is denoted as n.  

 

4.2.  Genetic Algorithm (GA)  

 

Genetic Algorithm performs a permutation-based optimization and is a non-linear 

function that searches under convergence criteria over probabilities. It is a search and 

optimization method that works similarly to the evolutionary process observed in nature. 

Genetic Algorithm is explained in the literature as follows: GA is a powerful evolutionary 

strategy inspired by the basic principles of biological evolution. Genetic algorithms 

imitate the evolutionary process in a computer environment to solve problems. In genetic 

algorithm terminology, a solution set that represents many possible solutions to the 

problem is called a population or population. Populations consist of sequences of numbers 

called vectors, chromosomes, or individuals. GA mechanisms create individuals in the 

population in the evolutionary process. Each element within the individual is called a 

gene. A gene is a representation of a model parameter (or decision variable) that is 

optimized, using bits that consist of 0s and 1s 115. 

The first step for a researcher is correctly defining the variable type and problem being 

addressed and writing code accordingly. Then, the fitness function, one of the inputs of 

the Algorithm, is defined and the objective function that needs to be optimized is this 

function. Chromosomes in a population are evaluated based on fitness function.  

To determine the fitness of each chromosome, the following method can be applied: 

 

𝐹(𝐶𝑖) =
𝑓(𝐶𝑖)

∑𝑓(𝐶𝑖)
                                                                 (23) 

 

Where Ci represents chromosome i; F(Ci) is the percentage of variables in the pool 

that corresponds to the fitness value of chromosome i; and f(Ci) is the value of the 

objective function evaluated for chromosome i. The resulting fitness values determine 

which chromosomes are fit for reproduction and can mate with others who also have high 

fitness scores. These chromosomes produce new chromosomes called children at the end 

of the crossover process. As a result of chromosomes being subjected to the fitness 

function process, the fitness value is determined, which evaluates how close the solution 

is to the optimal solution. The Genetic Algorithm, with an initial population created, 
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works with three evolution operators. These are selection, crossover and mutation 

operators. In general, each of these operators is applied to every chromosome of the 

population that will be formed in the new generation 116. 

The selection process is selecting parent individuals to create new individuals, 

depending on the fitness values of individuals in the population. The crossover operator, 

which is used after the selection phase, refers to the mutual replacement of certain parts 

of the chromosomes of the parent individuals, thus creating individuals with new features. 

Mutation involves altering a gene within any of the chromosomes of a newly formed 

individual, potentially occurring based on the likelihood of mutation. Illustrated in Figure 

3, the value initially at 153 undergoes modifications through crossover and mutation, 

eventually culminating in a final value of 249. This process spans across diverse solution 

domains117,118 . 

 

 

Figure 3. Example for GA process 117,118.  

 

 Finally, convergence criteria must be met, and the problem must be solved with 

optimal cost. GA conducts a global search, not a local one, to solve the problem. There 

are various methods to finalize the genetic algorithm process. These methods: When the 

desired solution is found during the operation of the Algorithm when the total number of 

iterations defined at the beginning of the GA is reached, or when the fitness value remains 

constant, the solution represented by the best individual found is presented as the most 

appropriate solution found for the problem. If many factors affect the problem, using a 

Genetic Algorithm in the solution is recommended in the literature 119. A diagram 

describing the process of the genetic algorithm is shown in Figure 4. 
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Figure 4. Process of Genetic Algorithm 118.  
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It is important to note that the GA model has the ability to generate varying values 

for its model parameters with each run. This is due to the fact that random initial values 

are assigned to each model parameter, in addition to the major operations of cross-over 

and mutation. The search process in GA involves limiting the range of each parameter for 

each model during every iteration. These limitations will be changed according to a theory 

or the functions to which it is connected and repeated until the correct result is reached. 

For this study, we used the trial version of the GA solver, which was developed for 

Microsoft Excel by Palisade Corporation, known as EVOLVER 120. Using the Recipe 

Solving Method, the algorithm aims to optimize an objective function while adhering to 

predefined constraints. By minimizing the mean square error objective function (MSE), 

the optimal parameter values were determined. In all the studies shown below, in which 

genetic algorithm was used to find the optimal parameter, the MSE function was used. 

The program has a dialog box for setting parameters and parameters limits and is 

shown in Figure 5. The initial values assigned for each model parameter of the GA model 

are taken from the analytical solutions and it should be noted that the GA model may 

produce different values for the model parameters in each run due to the main crossover 

and mutation operations. During the GA search process, the range of t parameters in each 

model was limited to [0.45, 1] and the fitting parameters related to temperature were 

limited to values ranging between [minus,0] in each iteration.  

 

 

Figure 5. Evolver Model dialog box. 
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Convergence criteria for model parameters were set to: if 20000 trials have passed 

and the target cell value has not improved by more than 0.01%, the evolution will stop 

(10-2 > Errorn-1 - Errorn). Convergence criteria adjustments are made in the Evolver 

optimization settings box shown in Figure 6. 

 

 

Figure 6. Optimization settings box. 

 

4.3.  Validation  

 

Validation studies of these three selected models are included in the following 

subheadings. All data were taken from the main article for validation studies, and 

verification processes were carried out without modification. 

 

4.3.1.   Model – 1  

 

The paper by E. Sarasketa-Zabala et al. 47 presents a study on how the capacity of 

2.3 Ah LFP Lithium-ion batteries is affected by different states of charge (30%, 70%, 

90%) and temperatures (30°C, 40°C, 50°C). They analyzed five static calendar aging 

conditions to model the dominant aging phenomenon, which is the SEI and the resulting 

loss of active lithium. The data used to model the calendar aging was obtained from 

experiments that lasted 300-400 days. 
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Based on the experimental data, the study concluded that exponential methods are 

more suitable for analyzing the effects of parasitic chemical reactions on capacity loss 

and voltage and the final version of the equation is given below (24):  

 

𝑄𝑙𝑜𝑠𝑠, % = 𝛼1. exp  (𝛽1. 𝑇
−1) . exp(𝛽2. 𝑆𝑜𝐶) .  𝑡0.5                     (24) 

 

The equation contains unknown parameters such as α1, β1, and β2, while T, SoC, 

and t are known values obtained experimentally. To find the parameters in the equation, 

mathematical transformations were performed. Equation (24) can be converted into a 

linear regression function, and Equation (25) illustrates the transformed form: 

 

ln( 𝑄𝑙𝑜𝑠𝑠, %) = ln (𝛼1) + (𝛽1. 𝑇
−1) + (𝛽2. 𝑆𝑜𝐶) + 0.5lnt              (25) 

 

Since z is taken as constant, the equation is transformed into the following form: 

 

ln( 𝑄𝑙𝑜𝑠𝑠, %) − 0.5lnt = ln (𝛼1) + (𝛽1. 𝑇
−1) + (𝛽2. 𝑆𝑜𝐶)              (26) 

 

For each experiment, there is a corresponding set of Qloss, T, SoC, and t values. 

The z coefficient on T is taken as a constant value of 0.5. Thus, the total experimental 

data can be converted into matrix form as shown below: 

 

[
 
 
 
 
 1

1

𝑇1
𝑆𝑜𝐶1

1
1

𝑇2
𝑆𝑜𝐶2

⋮ ⋮ ⋮

1
1

𝑇𝑛
𝑆𝑜𝐶𝑛]

 
 
 
 
 

 [

𝛼0

𝛽1

𝛽2

] =  

[
 
 
 
 
ln(𝑄𝑙𝑜𝑠𝑠,1) − 0.5lnt1

ln(𝑄𝑙𝑜𝑠𝑠,2) − 0.5lnt2
⋮

ln(𝑄𝑙𝑜𝑠𝑠,𝑛) − 0.5lnt𝑛]
 
 
 
 

                     (27) 

 

In order to simplify the equation (27), the matrix A and Y were assigned the 

following values: 
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𝐴 =  

[
 
 
 
 
 1

1

𝑇1
𝑆𝑜𝐶1

1
1

𝑇2
𝑆𝑜𝐶2

⋮ ⋮ ⋮

1
1

𝑇𝑛
𝑆𝑜𝐶𝑛]

 
 
 
 
 

  𝑌 =  

[
 
 
 
ln (𝑄𝑙𝑜𝑠𝑠,1)

ln (𝑄𝑙𝑜𝑠𝑠,2)
⋮

ln (𝑄𝑙𝑜𝑠𝑠,𝑛)]
 
 
 
                              (28) 

 

Equation (29) represents the least squares estimates of the unknown number. AT 

is the transpose matrix of A, while A-1 is the inverse matrix of A: 

 

[

𝛼0

𝛽1

𝛽2

] = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑌                                            (29) 

 

The fitting parameters, α0, β1, and β2, were determined from the experimental data. 

Analytical optimal values of model parameters were obtained using 55 measured data 

sets. Equation (29) was solved using MATLAB's inner language "inv" and "transpose" to 

calculate the transport and inverse matrices. The fitting parameters found during the 

verification process were compared with those in the article and are shown in Table 7. 

 

Table 7. Model parameters for Sarasketa-Zabala et al. Model and current model 47.  

Model  α1 β1 β2 

Sarasketa-Zabala et al. Model 265.103 -4148 0.01 

Current Model 268.103 -4243 0.0092 

 

Figure 7 displays the experimental results (markers) for capacity fading under 

aging conditions and the estimates resulting from the model (dashed lines) constructed 

using Equation (24). 

The model estimates have a root-mean-square error of 0.87% for the calendar 

capacity fade. The accuracy of the model for estimating calendar aging was high for 40°C 

and 70% state of charge (SoC) conditions (RMSE: 0.16). Furthermore, the model 

accuracy was observed to be high in data for 70% SoC and various temperatures (30, 40 

and 50°C) (RMSE: 0.32). 

These results imply that calendar aging is strongly related to temperature. The 

model has a very accurate goodness of fit with the experimental results, making it possible 

to predict calendar aging in most cases under high-temperature conditions. However, 



 

 61 
 

when tested under 40°C and 90% SoC storage conditions, the model output had the lowest 

accuracy (RMSE: 1.42). 

According to the article by Sarasketa-Zabala et al., the RMSE value was found to 

be 1. This indicates a reduction in model error, with a 13% improvement in model error 

compared to the RMSE value we obtained during validation (0.87). 

 

 
Figure 7. Capacity loss during storage at different temperatures (30°C, 40°C, 50°C) and 

SoCs (30%, 70%, 90%) taken from test results and model. 

 

4.3.2.  Model – 2  

 

Redondo-Iglesias et al. 42 have developed a calendar model that can predict the 

lifespan of lithium-ion batteries. The researchers conducted tests on LFP batteries with a 

capacity of 2.3 Ah at various temperatures (30°C, 45°C, and 60°C) and SoCs (30%, 65% 

and 100%) over a period of 500-800 days.  

The chosen time-dependent shape function in this study’s model is tz, where z is 

a fixed value independent of T and SoC. The model has been analyzed with two different 

values of z, namely 0.5 and 1. Only the z:1 value will be used in this validation study. 

This is because when z:1 is taken, it provides a much better model prediction than 0.5. 

Equation (30) represents the final equation of the ageing model, where k denotes the 

Boltzmann constant: 

 

𝑄𝑙𝑜𝑠𝑠, % = 𝐴0. exp  (𝐵𝑠. 𝑆𝑜𝐶) . exp (
−𝐸𝑎0+𝐶𝑠.𝑆𝑜𝐶

𝑘.𝑇
) .  𝑡1                     (30) 
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It is demonstrated that log(A) and Ea are linearly dependent on SoC. Therefore, a 

linear regression can be conducted to determine the parameters A0, Bs, Ea0, and Cs: 

 

𝑙𝑛(𝑄𝑙𝑜𝑠𝑠, %) = ln𝐴0 + 𝐵𝑠. 𝑆𝑜𝐶 + (
−𝐸𝑎0

𝑘.𝑇
) + (

𝐶𝑠.𝑆𝑜𝐶

𝑘.𝑇
) + 1lnt               (31) 

 

Since z is taken as constant, the equation is transformed into the following form: 

 

𝑙𝑛(𝑄𝑙𝑜𝑠𝑠, %) −  1lnt = ln𝐴0 + 𝐵𝑠. 𝑆𝑜𝐶 + (
−𝐸𝑎0

𝑘.𝑇
) + (

𝐶𝑠.𝑆𝑜𝐶

𝑘.𝑇
)              (32) 

 

The total experimental data can be converted into matrix form as shown below 

Eqn. (33): 

 

[
 
 
 
 
 1 𝑆𝑜𝐶1 −

1

𝑘𝑇1

𝑆𝑜𝐶1

−𝑘𝑇1

1 𝑆𝑜𝐶2 −
1

𝑘𝑇2

𝑆𝑜𝐶2

−𝑘𝑇2

⋮ ⋮ ⋮ ⋮

1 𝑆𝑜𝐶𝑛 −
1

𝑘𝑇𝑛

𝑆𝑜𝐶𝑛

−𝑘𝑇𝑛]
 
 
 
 
 

 [

𝐴0

𝐵𝑠

𝐸𝑎0

𝐶𝑠

] =  

[
 
 
 
ln(Qloss,1) − 1lnt1
ln (Qloss,2) − 1lnt2

⋮
ln (Qloss,n) − 1lntn]

 
 
 

              (33) 

 

In order to simplify the equation (33), the matrix A and Y were assigned the 

following values (33): 

 

 𝐴 =

[
 
 
 
 
 1 𝑆𝑜𝐶1 −

1

𝑘𝑇1

𝑆𝑜𝐶1

−𝑘𝑇1

1 𝑆𝑜𝐶2 −
1

𝑘𝑇2

𝑆𝑜𝐶2

−𝑘𝑇2

⋮ ⋮ ⋮ ⋮

1 𝑆𝑜𝐶𝑛 −
1

𝑘𝑇𝑛

𝑆𝑜𝐶𝑛

−𝑘𝑇𝑛]
 
 
 
 
 

 𝑌 =  

[
 
 
 
ln(Qloss,1) − 1lnt1
ln (Qloss,2) − 1lnt2

⋮
ln (Qloss,n) − 1lntn]

 
 
 

                  (34) 

 

Equation (35) represents the least squares estimates of the unknown number. AT 

is the transport matrix of A, while A-1 is the inverse matrix of A: 

 

   [

𝐴0

𝐵𝑠

𝐸𝑎0

𝐶𝑠

]  = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑌                                                 (35) 
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The fitting parameters, A0, Bs, Ea0 and Cs were determined from the experimental 

data. Analytical optimal values of model parameters were obtained using 160 measured 

data sets. Equation (35) was solved using MATLAB's inner language "inv" and 

"transpose" to calculate the transport and inverse matrices. The fitting parameters found 

during the validation process were compared with those in the article and are shown in 

Table 9. 

 

Table 8. Model parameters for Redondo-Iglesias et al. Model and current model 42.  

Model A0 (p.u./dayz) Bs Ea0 (eV) Cs 

Redondo-Iglesias et al. Model 3.22.1011 -6.16.10-2 0.969 -4.52.10-3 

Current Model 2.83.109 -9.10-2 0.8321 -2.7.10-3 

 

Figure 8 displays experimental results (markers) for capacity degradation under 

aging conditions and predictions obtained from a model built using Equation (30) (dashed 

lines). To enable easy comparison, all capacity measurements and simulations are relative 

to initial capacity (p.u.). 

 

 

Figure 8. Capacity loss during storage at different temperatures (30°C, 45°C, 60°C) and 

SoCs (30%, 65%, 100%) taken from test results and model. 
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After examining the model's predictions, it was seen that the reduction in calendar 

capacity for the entire experimental setup has a root mean square error of 2.75. 

The model generally fits well with experimental results, enabling the prediction 

of calendar aging in different temperature and SoC conditions in most cases. The model's 

accuracy for predicting calendar aging was high (RMSE: 0.37) for 30°C and 30% SoC 

conditions. Additionally, it was observed that the model accuracy was at its highest values 

in the data for various SoC values at 30°C. At 60°C and 30 SoC, the model was 

compatible with other temperatures (RMSE: 0.82). However, the accuracy of the model 

output was the lowest (RMSE: 4.43) when tested under storage conditions of 60°C and 

65% SoC. This may be because the experimental data degrades more rapidly at 65% SoC, 

surpassing even the degradation rates seen at 100% SoC. 

According to the article by Redondo et al., the model error value was found to be 

4.8%. This indicates a reduction in model error, with a 33.3% improvement in model 

error compared to the error value we obtained during validation. 

 

4.3.3.  Model – 3  

 

Schmalstieg et al. 53 developed a cycling and calendar aging model to study the 

aging of lithium-ion batteries. The researchers conducted tests on 2.05 Ah NMC batteries 

for a duration of 160-500 days, at different temperatures (35°C, 40°C, and 50°C) and SoC 

levels ranging from 0% to 100% to study the calendar aging model. 

Due to the cell's OCV dependence on SoC and OCV dependence on anode 

potential, it should be noted that for calendar aging, voltage, SoC, and anode potential 

capture identical phenomena. This means that the calendar aging model is capable of 

simulating Voltage or SoC in the same direction for any load profile. Therefore, the 

authors also showed that the model can be written as functions dependent on SoC and T 

instead of voltage. 

After testing the effect of various SoC values at a constant temperature of 50°C 

on the capacity's aging factor, it was observed that the aging factor displays a linear trend 

across the full range of SoC. Therefore, it can be defined as follows (36):  

 

𝛼(𝑆𝑜𝐶) = 𝑎1𝑆𝑜𝐶 + 𝑎2                                                   (36) 
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This function was selected to model the relationship between the aging factor and 

SoC, using fitting parameters a1 and a2. In this study, the dependence function of the SoC 

differs from the exponential function studies mentioned above. 

It was observed that the time dependence of the experimental data did not match 

the linear and square root functions well. However, the superimposed linear and square 

root functions matched the data well. Therefore, to get accurate aging parameters, the 

function with t0.75 was used: 

 

𝑄(𝑇, 𝑆𝑜𝐶, 𝑡) = 𝑎(𝑆𝑜𝐶, 𝑇). 𝑡0.75                                          (37) 

 

For a mathematical model of calendar aging, the dependencies on SoC and 

temperature need to be combined. The equation in its final form is as follows (38): 

 

𝑄(𝑇, 𝑆𝑜𝐶, 𝑡) = (𝑎1𝑆𝑜𝐶 + 𝑎2). 𝑒𝑥𝑝 (
𝐸𝑎

𝑇
) . 𝑡0.75                        (38) 

 

The equation (37) includes unknown parameters like a1, a2, and Ea, whereas T, 

SoC, and t are known values that are obtained via experimentation. However, it is not 

possible to convert Equation (37) into a linear regression function as the SoC-dependent 

function side becomes nonlinear during the conversion process. For this reason, a 

numerical optimization algorithm based on GA was used to solve the problem. This 

method and the numerical solution program are explained in more detail in the following 

subheading. The fitting parameters found during the validation process are shown in 

Table 9. 

 

Table 9. Model parameters for current model. 

Model a1 a2 Ea 

Current Model 2.5.106 6.9.104 -6.6.103 

 

Figure 9 displays the experimental results (markers) for capacity fading under 

aging conditions and the estimates resulting from the model (dashed lines) constructed 

using Equation (37). Figure (a) shows the results at a constant 50% SoC and at different 

temperatures, while Figure (b) shows the results at a constant 50°C constant temperature 
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and different SoC values. Here Cact/Cint is the ratio of the actual value in capacity to the 

initial value. 

The model estimates have a root-mean-square error of 1.11% for the calendar 

capacity fade. The accuracy of the model for estimating calendar aging was high for 50°C 

and 50% SoC conditions (RMSE: 0.46).  

These results imply that calendar aging is strongly related to temperature. The model has 

a very accurate fit with the experimental results, making it possible to predict calendar 

aging in most cases under high-temperature different SoCs conditions. However, when 

tested under 50°C and 30% SoC storage conditions, the model output had the lowest 

accuracy (RMSE: 1.55). 

 

 
 

Figure 9. Capacity loss during storage at different temperatures (30°C, 40°C, 50°C) and 

SoCs (0%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 85%, 90%, 95%) taken 

from test results and model. 
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4.5.  Developed Models 

 

In order to contribute to the literature, we propose four different Semi-Empirical 

Models (SEM) for calendar aging. The models include both temperature and SoC stress 

factors.  

It is evident from the equations that the coefficient of t over z is considered a 

variable in these models. The reason behind this is that, as mentioned in the literature, the 

z coefficient varies based on experimental sets. Therefore, since the models taken from 

the literature (Sarasketa-Zabala et al., Redondo et al. and Schmalstieg et al.) will be used 

in different data sets, the z coefficient was taken as a variable in these models as well. 

Additionally, the linear regression matrices of these models were updated to include the 

z coefficient and the equations were modified accordingly.  

For an overview of all model equations to be used in this study, they are 

summarized in Table 10 below.  The equations are given with the parameter numbers 

corresponding to the model. In order to compare the models, the literature's equation 

parameters were rearranged. In the models by Redondo-igleases et al. and Schmalstieg et 

al., the Ea/R function is represented with a single parameter, as Ea and R remain constant 

parameters throughout the model. 

While the fitting parameters of Models 4, 5 and 6 were found by linear regression, 

the parameters of Model 7 were found by the GA method. The steps to find the fitting 

parameters using the regression method for Models 4, 5 and 6 are shown below, 

respectively. 

The equation of Model-3 is transformed into a linear regression function: 

 

ln(𝑄𝑙𝑜𝑠𝑠) = 𝑙𝑛𝑐1 + (𝑐2. 𝑆𝑜𝐶2 + 𝑐3. 𝑆𝑜𝐶 + 𝑐4)+ (
𝑐5.𝑆𝑜𝐶

𝑇
) . 𝑐6𝑙𝑛𝑡                 (39)          

 

The total experimental data can be converted into matrix form as shown below 

Eqn. (40): 
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[
 
 
 
 
 1 𝑆𝑜𝐶1

2 𝑆𝑜𝐶1 1
𝑆𝑜𝐶1

𝑇1
𝑙𝑛𝑡

1 𝑆𝑜𝐶2
2 𝑆𝑜𝐶2 1

𝑆𝑜𝐶2

𝑇2
𝑙𝑛𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 𝑆𝑜𝐶𝑛
2 𝑆𝑜𝐶𝑛 1

𝑆𝑜𝐶𝑛

𝑇𝑛
𝑙𝑛𝑡]

 
 
 
 
 

 

[
 
 
 
 
 
𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6]
 
 
 
 
 

=  

[
 
 
 
ln(𝑄𝑙𝑜𝑠𝑠,1)

ln (𝑄𝑙𝑜𝑠𝑠,2)
⋮

ln (𝑄𝑙𝑜𝑠𝑠,𝑛)]
 
 
 

                       (40) 

 

In order to simplify the equation (40), the matrix A and Y were assigned the 

following values: 

 

𝐴 =

[
 
 
 
 
 1 𝑆𝑜𝐶1

2 𝑆𝑜𝐶1 1
𝑆𝑜𝐶1

𝑇1
𝑙𝑛𝑡

1 𝑆𝑜𝐶2
2 𝑆𝑜𝐶2 1

𝑆𝑜𝐶2

𝑇2
𝑙𝑛𝑡

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 𝑆𝑜𝐶𝑛
2 𝑆𝑜𝐶𝑛 1

𝑆𝑜𝐶𝑛

𝑇𝑛
𝑙𝑛𝑡]

 
 
 
 
 

 𝑌 =  

[
 
 
 
ln(𝑄𝑙𝑜𝑠𝑠,1)

ln (𝑄𝑙𝑜𝑠𝑠,2)
⋮

ln (𝑄𝑙𝑜𝑠𝑠,𝑛)]
 
 
 

                       (41) 

 

Equation (42) represents the least squares estimates of the unknown number. AT 

is the transport matrix of A, while A-1 is the inverse matrix of A. 

 

[
 
 
 
 
 
𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6]
 
 
 
 
 

= (𝐴𝑇 𝐴)−1𝐴𝑇 𝑌                                                    (42) 

 

The equation of Model-4 is transformed into a linear regression function: 

 

ln(𝑄𝑙𝑜𝑠𝑠) = 𝑙𝑛𝑑1 + (𝑑2. 𝑆𝑜𝐶 + 𝑑3)+ (
𝑑4

𝑇
) . 𝑑5𝑙𝑛𝑡                          (43) 

 

The total experimental data can be converted into matrix algebra form as shown 

below Eqn. (43): 

 

[
 
 
 
 
 1 𝑆𝑜𝐶1 1

1

𝑇1
𝑙𝑛𝑡

1 𝑆𝑜𝐶2 1
1

𝑇2
𝑙𝑛𝑡

⋮ ⋮ ⋮ ⋮ ⋮

1 𝑆𝑜𝐶𝑛 1
1

𝑇𝑛
𝑙𝑛𝑡]

 
 
 
 
 

 

[
 
 
 
 
𝑑1

𝑑2

𝑑3

𝑑4

𝑑5]
 
 
 
 

=  

[
 
 
 
ln(𝑄𝑙𝑜𝑠𝑠,1)

ln (𝑄𝑙𝑜𝑠𝑠,2)
⋮

ln (𝑄𝑙𝑜𝑠𝑠,𝑛)]
 
 
 

                              (44) 
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The operations described in Equations 41 and 42 in Model 4 were respectively 

applied in this model. 

The equation of Model-5 is transformed into a linear regression function: 

 

ln(𝑄𝑙𝑜𝑠𝑠) = 𝑙𝑛𝑒1 + (𝑒2. 𝑆𝑜𝐶 + 𝑒3)+ (
𝑒4.𝑆𝑜𝐶

𝑇
) . 𝑒5𝑙𝑛𝑡                             (45) 

 

The total experimental data can be converted into matrix form as shown below 

Eqn. (46): 

 

  

[
 
 
 
 
 1 𝑆𝑜𝐶1 1

𝑆𝑜𝐶1

𝑇1
𝑙𝑛𝑡

1 𝑆𝑜𝐶2 1
𝑆𝑜𝐶2

𝑇2
𝑙𝑛𝑡

⋮ ⋮ ⋮ ⋮ ⋮

1 𝑆𝑜𝐶𝑛 1
𝑆𝑜𝐶𝑛

𝑇𝑛
𝑙𝑛𝑡]

 
 
 
 
 

 

[
 
 
 
 
𝑒1

𝑒2

𝑒3

𝑒4

𝑒5]
 
 
 
 

=  

[
 
 
 
ln(𝑄𝑙𝑜𝑠𝑠,1)

ln (𝑄𝑙𝑜𝑠𝑠,2)

⋮
ln (𝑄𝑙𝑜𝑠𝑠,𝑛)]

 
 
 

                                  (46) 

 

The operations described in Equations 41 and 42 in Model 3 were respectively 

applied in this model. 
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Table 10. Overview of all model equations. 

Model Equation Parameters 

Sarasketa-

Zabala et al. 

SEM-1 

𝑎1. exp(𝑎3. 𝑆𝑜𝐶) . exp  (
𝑎2

𝑇
) .  𝑡𝑎4 4 

Redondo-

Iglesias et al. 

SEM-2 

𝑏1. exp  (𝑏2. 𝑆𝑜𝐶) . exp (
𝑏3 + 𝑏4𝑆𝑜𝐶

𝑇
) .  𝑡𝑏5  5 

SEM-3 𝑐1. exp(𝑐2. 𝑆𝑜𝐶2 +𝑐3. 𝑆𝑜𝐶 + 𝑐4). exp (
𝑐5

𝑇
) . 𝑡𝑐6 6 

SEM-4 𝑑1. exp( 𝑑2. 𝑆𝑜𝐶 + 𝑑3). exp (
𝑑4

𝑇
) . 𝑡𝑑5 5 

SEM-5 𝑒1. exp( 𝑒2. 𝑆𝑜𝐶 + 𝑒3). exp (
𝑒4. 𝑆𝑜𝐶

𝑇
) . 𝑡𝑒5 5 

Schmalstieg et 

al.  

SEM-6 

(𝑓1𝑆𝑜𝐶 + 𝑓2). 𝑒𝑥𝑝 (
𝑓3
𝑇

) . 𝑡𝑓4 4 

SEM -7 (𝑔1𝑆𝑜𝐶2 + 𝑆𝑜𝐶𝑔2 + 𝑔3). 𝑒𝑥𝑝 (
𝑔4

𝑇
) . 𝑡𝑔5  5 
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CHAPTER 5  

 

AGING DATA AVAILABLE IN LITERATURE 

 

In this section, the details and working conditions of a total of 7 experimental sets, 

including 6 different experimental sets taken from the literature and our own experimental 

set (Helios Project), are explained.  Empirical aging models are dependent on a regression 

fitted to aging data, as was covered in the preceding chapter.  In order for the model to be 

useful in different scenarios, the aging data used for calibration should encompass a range 

of operating conditions, including temperature and SoC, particularly in the case of 

calendar aging. 

This section discusses six experimental sets taken from studies in literature. While 

selecting the experimental sets, attention was paid to using different battery chemistries. 

A total of 4 different battery chemistries were selected: 2 NMC, 1 LFP, 1 NCA and 1 

LMO/NMC. Generally, the purpose here is to examine the behavior of aging models in 

different battery chemistries. 

The selection of these datasets was based on the criteria specified for the purpose 

of detailed analysis: 

• Availability of data 

• Range of operating conditions 

• Usage profile/target application 

• Cell chemistries 

In addition to the experimental sets in the literature, the calendar aging experiment 

set we carried out on NMC batteries within the scope of the HORIZON-HELIOS2022 

project is explained in detail. 

For each of these datasets, the testing parameters, cells utilized, and testing time 

are described in detail in the following section. The subsequent section presents a crucial 

comparison of these datasets. 
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5.1.  Schmitt 2017 NMC Dataset  

 

Sony Energy Devices Corporation's US18650V3 high-energy cylindrical 

commercial 18650 cells were put through testing 121. The nominal capacity, as stated by 

the manufacturer, is 2.15 Ah when the discharge current rate is 0.2C. These cells' specifics 

are listed in Table 11. 

 

Table 11. Schmitt 2017 NMC Dataset – cell specifications. 

Manufacturer Sony 

Cell Chemistry NMC 

Model US18650V3 

Nominal Capacity (Ah) 2.15 

Voltage Range (V) 3.5-4.2 

 

Cells were kept in climate chambers under carefully monitored settings for the 

duration of calendar aging studies. The cells were kept in storage for around 30 days, and 

then they were put in a temperature chamber set at 20°C until thermodynamic equilibrium 

was attained. After conducting electrochemical characterization, the SoC was reset. The 

combinations of temperatures and SoC tested during storage are shown in Table 12. 

  

Table 12. Test matrix of storage conditions. Tested combinations of ambient temperature 

and SoC are marked by an ’ ✓’. 

SoC/T 0 °C 20 °C 45 °C 

25 %  ✓  

50 % ✓ ✓ ✓ 

75 %  ✓  

100 % ✓ ✓ ✓ 

 

Each test was performed with three cells to see statistical effects. After the 

characterization procedure, cells were adjusted to a defined SoC. Since the 

characterization ended at 50% SoC, no SoC correction was needed for cells stored at this 

SoC at three temperatures. For storage conditions at 100% SoC, cells were fully charged 

using CCCV (constant current constant voltage) charging at 1C. To adjust other storage 
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SoC levels, cells were charged with CCCV and then CC (constant current) discharged 

with 1C. The cells were disconnected from the battery test system and stored at defined 

ambient temperatures T for approximately 30 days. The results shown in this study are 

based on approximately 470 days of observed aging.  

To observe statistical effects, three cells were used for each test. After the 

characterization process, the cells were adjusted to a specific SoC. As the characterization 

ended at 50% SoC, cells stored at this level did not require any SoC correction at three 

different temperatures. For cells held at this level, no SoC correction was needed at three 

different temperatures because the characterization concluded at 50% SoC. Using CCCV 

charging at 1°C, batteries were completely charged for storage conditions at 100% SoC. 

After that, the cells were disconnected from the battery test system and stored at specific 

ambient temperatures T, approximately for 30 days. The experimental results are shown 

in Figure 10 below. 

 

 

Figure 10. NMC-1 Experimental results for each storage condition. 

 

5.2.  Dane 2017 NMC Dataset  

 

The Dane 2017 122 dataset measured the impact of calendar aging on the capacity 

of NMC cells. This data is the data of the aging study conducted for NMC cells from the 

European project on battery materials and mechanisms called MAT4BAT. Calendar 
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aging tests were performed on 18 state-of-the-art Li-ion cells (NMC/Graphite, 16 Ah). 

The specifications of the battery are shown in Table 13.  

 

Table 13. Dane 2017 dataset – cell specifications. 

Manufacturer Kokam 

Cell Chemistry NMC 

Model SLPB78205130H 

Nominal Capacity (Ah) 16 

Voltage Range (V) 2.7-4.2 

 

The aging mode was examined under 9 different operating conditions, including 

3 different SOCs (50%, 90% and 100%)) and 3 different ambient temperatures (5°C, 25°C 

and 45°C). This means that 2 cells were used for each operating condition. The duration 

of the experiment ranged from 120 to 540 days. 

This study involves creating an extensive experimental plan for aging, both in 

terms of calendar and cycling. Additionally, it includes performing periodic electrical 

tests at a temperature of 25°C, regardless of the aging conditions.  

The Extended Check-Up (ECU) includes two capacity tests at 1C-1C, a Dynamic Stress 

Test (DST) discharge, pulses at 1C – 30s according to 3 SoC, and for some experimenters, 

additional Electrochemical Impedance Measurements. The experimental results are 

shown in Figure 11 below. 

 

 

Figure 11. NMC-2 Experimental results for each storage condition. 
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5.3.  Sun 2018 LFP Dataset  

 

The Sun 2018 123 dataset used 3 Ah 26650 LFP cells to measure the decrease in 

capacity caused by calendar aging. The manufacturer's datasheet in Table 14 shows the 

parameter values of the cells.  

 

Table 14. Sun 2018 dataset – cell specifications. 

Manufacturer Sony 

Cell Chemistry LFP 

Model US26650FTC1 

Nominal Capacity (Ah) 2.85 

Voltage Range (V) 2-3.65 

 

The experiments were carried out at 25°C, 40°C, and 60°C for all cells. The cells 

were stored at 0%, 50%, and 100% SOC for each temperature condition. The maximum 

continuous charging current used in this aging study was 1C. To reduce the effect of 

parameter variation from cell to cell and possible deviations in aging behavior, 3 cells 

were used for each operating condition. This also helped to reduce the danger of 

premature cell failure. 

 All cells were stored at approximately 8°C with a storage SoC of 50% to 

minimize inevitable calendar aging. An initial extended check-up was performed with all 

selected cells at the beginning of the calendar aging study. The capacity of the 27 selected 

cells showed a slight decrease of about 0.5-1.2%, with an average of 0.8%. After this and 

subsequent check-ups, each cell was loaded into the corresponding storage SoC as 

defined by the test matrix through Ah counting relative to the actual capacity measured 

at the full discharge step of the previous capacity measurement. All cells were then stored 

at the temperature defined in the experimental design. This entire experimental procedure 

took approximately 900 days. The experimental results are shown in Figure 12 below. 

The graph clearly illustrates a significant capacity reduction of 60% to 100% at 

different SoC. As anticipated, batteries operating at lower temperatures and lower SOCs, 

such as 25 degrees and 0%SoC, exhibited a lesser capacity decrease compared to other 

temperature conditions. 

 



 

 76 
 

 

Figure 12. LFP Experimental results for each storage condition. 

 

5.4.  Baghdadi 2020 LMO/NMC Dataset  

 

The Baghdadi 2016 76 dataset conducted extensive testing to simulate the batteries 

in an EV. They used Li-on batteries based on LGChem's cathode NMC/LMO. Table 14 

summarizes the fundamental characteristics of batteries and their respective charging 

procedures. The dataset is a subset of dataset from SIMCAL and SIMSTOCK projects 

commissioned by National Research Agency and French ADEME 77,124. The study 

examined unused batteries initially stored at low temperatures (<10°C) and medium SoC. 

Before checking their initial performance, the batteries underwent a preconditioning 

process that involved six complete charge/discharge cycles to eliminate any suspect cells. 

Both calendar and power cycling tests were performed on both technologies, and three 

cells were tested for each aging condition to ensure reproducibility and for postmortem 

analysis. 

 

Table 15. Baghdadi 2020 dataset – cell specifications. 

Manufacturer LGChem 

Cell Chemistry NMC/LMO 

Nominal Capacity (Ah) 7 

Voltage Range (V) 2.3-4 
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The aging test environment was controlled using climate chambers. The 

temperature was controlled within 1C for the calendar aging test. The test matrix of aging 

conditions under calendar aging and the corresponding symbols are presented in Table 2. 

The battery technology was aged under nine different conditions, including three different 

temperatures (30, 45, and 60°C) and three different SoCs (30, 65, and 100%). After each 

performance check, the target SOC was determined by ampere-hour counting after fully 

charging the battery using the relevant protocol. The batteries were then discharged under 

a 1C current at 25°C for a specific time of 1 hour multiplied by 100-SoC/100. The 

experimental results are shown in Figure 13 below. 

 

 
Figure 13. LMO/NMC Experimental results for each storage condition. 
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in uniform intervals of 15°C, while the storage SoCs were defined arbitrarily between 

fully charged and fully discharged states. 

 

Table 16. Keil Dataset- Tested cell specifications. 

Manufacturer Panasonic 

Cell Chemistry NCA 

Model NCR1860PD 

Nominal Capacity (Ah) 2.8 

Voltage Range (V) 2.5-4.2 

 

For each of the four temperatures, eight cells with different SoCs were stored in 

the corresponding thermal chamber. The aging process was checked periodically 

throughout the entire testing period and evaluated at 25°C. The control procedure 

included voltage ramps for cyclic voltammetry, CCCV charging and discharging for 

capacitance measurements, and pulses at 50% SoC to monitor changes in internal 

resistances. Finally, each cell was brought back to its own storage level. These 

experiments continued for a period of approximately 700 days. The experimental results 

are shown in Figure 14 below. 

 

 

Figure 14. NCA Experimental results for each storage condition. 
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5.6.  HORIZON-HELIOS 2022 NMC Dataset 

 

Under the scope of the HORIZON 2022- HELIOS project, aging tests were carried 

out on Farasis NMC cells. Battery specifications shared by the manufacturer are given in 

Table 16. 

 

Table 17. Farasis cell specifications. 

Manufacturer Faras is 

Cell Chemistry 811 NMC 

Model P73 

Nominal Capacity (Ah) 73 

Voltage Range (V) 2.75-4.2 

Nominal Voltage 3.6 

 

As the calendar ages, batteries are stored in different states of charge and 

temperatures. To ensure accurate results, the tests were conducted in climate chambers. 

The cells were isolated during storage and examined for a duration of 1 year.  

For the project, a test matrix was developed to study the impact of temperature and SoC 

on the internal resistance and capacity of the batteries. The test matrix included 19 tests 

per cell, and the recommended temperature and SoC values were determined using a 

design of experiments (DoE) approach. The distribution of the 19 tests and the 

recommended temperature and SoC values are presented in Table 17. 

 

Table 18. Helios Test matrix of storage conditions. 

Temperature SoC values (%) 

25 °C 5% 37% 65% 80% 93%** 

40 °C 0% 50%*** 75% 100%**  

60 °C 0% 25% 50% 75% 100% 

** represents that it will be repeated 2 times, *** represents that it will be repeated 4 

times. 
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The test procedure is briefly mentioned in order to have information about the 

tests. Capacity tests are conducted to measure the energy content and capacity of a cell at 

different C-rates and temperatures. The data obtained from these tests is considered as the 

basic information for modeling the cells. These tests are also known as discharge 

performance tests. They are divided into three parts: Part A, Part B, and Part C. In Part 

A, the capacity test procedure is carried out only at 25°C, where the cell is discharged 

until the lower cut-off voltage is reached. Then the cell is charged with CC-CV until the 

current drops to C/3. In Part B, the same steps are repeated for other test temperatures in 

addition to Part A. Part C is the capacity testing procedure for only one fresh cell, which 

should be performed at 25°C, 40°C, and 60°C. 

Pulse tests (pulse power characterization tests) were performed to estimate the 

power capacity of the cells during charging and discharging processes. Testing is usually 

performed under different SoC, temperature and current rates. Pulse tests were performed 

immediately after capacity tests. The tests were divided into three parts: A, B and C. In 

Pulse A, the battery cells were fully charged at 25°C to cut-off voltage and then at constant 

voltage until the current dropped below C/10. Immediately afterward, the cell was 

discharged with a constant current up to the first test SoC level. In Part B, the mid-aging 

impact test procedure was repeated with the same procedure at 40°C and 60°C. Part C, 

the Impact test procedure for fresh cells, is similar to part A except that it is applied at all 

three temperatures 25°C, 40°C and 60°C. 

Since the project is ongoing, tests are still performed under the storage conditions 

given in Table 17. For this reason, in this study, analyses were made considering the data 

obtained so far. The analyses available so far are shown in two separate graphs below, 

25°C degrees and 60°C. The experimental results are shown in Figure 15 below. Figure 

15 a) shows the experimental results at different SoC values at 25°C, figure 15 b) shows 

the experimental results at different SoC values at 60°C. 

Calendar aging tests were conducted on Farasis NMC batteries spanning 240 to 

360 days. These tests involved 4 different States of Charge (SoCs) at temperatures of 25 

and 60 degrees Celsius. The results for the 40-degree test have not yet been initiated and 

thus were not included in the analysis. It's evident that cells exposed to 60 degrees age 

more rapidly than those at 25 degrees. Consistent with literature findings, an increase in 

State of Charge values correlates with a higher aging rate in these batteries. 
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Figure 15. Helios Farasis NMC experimental results for each storage condition. a) for 

25°C and b) for 60°C. 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400

C
ap

ac
it

y 
lo

ss
 (

%
)

Time (days)

60°C 0%SoC 60°C 25%SoC 60°C 50%SoC

60°C 75%SoC 60°C 100%SoC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400

C
ap

ac
it

y 
lo

ss
 (

%
)

Time (days)

25°C 5% 25°C 37%SoC 25°C 65%SoC

25°C 80%SoC 25°C 93%SoC

a
) 

b
) 



 

 82 
 

CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

Under this heading, you can find the outputs of 5 SEMs calculated with linear 

regression and 7 SEMs calculated with Genetic Algorithm. For each dataset used in the 

study, we examined the compatibility of these different SEMs with the dataset. Moreover, 

we compared the corresponding quantitative measurements for the entire model-dataset 

fit. 

This evaluation study utilizes three quantitative metrics to evaluate the prediction 

capabilities of various aging models. The initial metric, mean-absolute-error (MAE), 

quantifies the average prediction error of the models and is defined in Equation (47). 

 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦𝑖 − 𝑦�̂�|

𝑁
𝑖=1                                              (47) 

 

where y represents the measured capacity values and by represents the capacity 

values predicted by the utilized model. These definitions are also adopted for the 

following metrics. The second metric, root-mean-squared-error (RMSE), which also 

represents the average model prediction error. It differs in that it involves squaring the 

errors before averaging, assigning greater significance to larger errors. The RMSE metric 

emphasizes the points with large deviations between predicted and measured values as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ |𝑦𝑖 − 𝑦�̂�|2

𝑁
𝑖=1                                        (48) 

 

The last metric, mean-absolute-percentage-error (MAPE), is a variation of the 

MAE metric. In Equation (49), MAPE not only evaluates the errors between predicted 

and actual values but also incorporates the ratio between these errors and the actual values 

themselves. This means that MAPE accounts for the relative magnitude of errors in 

relation to the true values: 

 

𝑀𝐴𝑃𝐸 =
100%

𝑁
 ∑

|𝑦𝑖−𝑦�̂�|

𝑦𝑖

𝑁
𝑖=1                                           (49) 
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6.1. NMC-1 Dataset 

 

The model parameters obtained through various methods for the NMC-1 dataset 

are presented. Additionally, the models' MAE, RMSE, and MAPE values were compared. 

 

6.1.1.  Linear Regression Solution 

 

Table 18 shows the parameter identification results obtained after performing 

linear regression calculations for every 5 SEMs based on all aging data in ' NMC-1 

Dataset'. According to the fit results for all SEMs as shown in Figure 16, the SEM is 

capable of providing a long-term capacity degradation trend with a generalized 

exponential form.  

 

Table 18. NMC-1 model parameters are based on an analytical solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 24.781 a2 = -2071.3 a3 = 0.0084 a4 = 0.7829   

SEM-2 b1 = 255.5 b2 = -0.0226 b3 = 9.1183 b4 = -2755 b5 = 0.7820  

SEM-3 c1 = 3.385 c2 = -0.0002 c3 = 0.0353 c4 = 1.2196 c5 = -2069 c6 =0.78 

SEM-4 d1 = 4.978 d2 = 0.0084 d3 = 1.6051 d4 = -2071 d5 = 0.7829  

SEM-5 e1 = 0.145 e2 = 0.0901 e3 = -1.924 e4 = 23.943 e5 = 0.7823  

 

 
Figure 16. Performance indicators for each NMC-1 dataset modeling with analytical 

solution. 
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In general, for the NMC-1 dataset, SEM 3 provides more effective prediction 

results than other SEMs, with an RMSE of 0.7205. SEM 5 provides fitting results with a 

23% higher RMSE than the best-fitting model. On the other hand, SEM 1 gives the closest 

model fit after SEM 3, with an RMSE of 0.7464. This is 3% less than SEM 3. 

 

6.1.2.  GA Solution 

 

Table 19 shows the parameter identification results obtained after performing 

Genetic Algorithm for every 5 SEMs based on all aging data in 'NMC-1 Dataset'. Figure 

17 shows the corresponding quantitative measurements for each model fitting.  

 

Table 19. NMC-1 model parameters based on a GA solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 154.03 a2 = -2668.7 a3 = 0.0070 a4 = 0.83   

SEM-2 b1 = 9133.3 b2 = -0.0438 b3 = 15.611 b4 = -3937 b5 = 0.84  

SEM-3 c1 = 21.599 c2 = -0.0002 c3 = 0.0353 c4 = 0.9321 c5 = -2670 c6 = 0.85 

SEM-4 d1 = 20.324 d2 = 0.0071 d3 = 1.9962 d4 = -2635 d5 = 0.81  

SEM-5 e1 = 17.331 e2 = 0.0923 e3 = -6.7447 e4 = -25.63 e5 = 0.84  

SEM-6 f1 = 10.308 f2 = 681.77 f3 = -2621.8 f4 = 0.52   

SEM-7 g1 = -0.536 g2 = 98.386 g3 = -655.28 g4 = -3252 g5 = 0.72  

 

 
Figure 17. Performance indicators for each NMC dataset modeling with GA. 
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With the GA solution, SEM 3 provides more effective prediction results than other 

SEMs, with an RMSE of 0.5763. SEM 6 provides fitting results with a 52% higher RMSE 

than the best-fitting model. An average of 15% improvement was seen in the RMSEs of 

models analyzed with GA instead of linear regression. 

 

6.2 . NMC-2 Dataset 

 

The model parameters obtained through various methods for the NMC-2 dataset 

are presented. Additionally, the models' MAE, RMSE, and MAPE values were compared. 

 

6.2.1.   Linear Regression Solution 

 

Table 20 shows the parameter identification results obtained after performing 

linear regression calculations for every 5 SEMs based on all aging data in 'NMC-2 

Dataset'.  

 

Table 20. NMC-2 model parameters based on an analytical solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 682.51 a2 = -3501 a3 = 0.02 a4 = 0.92   

SEM-2 b1 = 0.89 b2 = 0.10 b3 = -24.78 b4 = -1528 b5 = 0.92  

SEM-3 c1 = 76.632 c2 = -0.0004 c3 = 0.0512 c4 = 4.3386 c5 = -3481 c6 = 0.92 

SEM-4 d1 = 26.124 d2 = 0.0152 d3 = 3.262 d4 = -3501 d5 = 0.92  

SEM-5 e1 = 0.0719 e2 = 0.1587 e3 = -2.631 e4 = -42.636 e5 = 0.92  

 

Figure 18 shows the corresponding quantitative measurements for each model 

fitting. In general, for the NMC-2 dataset, SEM 5 provides more effective prediction 

results than other SEMs, with an RMSE of 1.681. SEM 5 provides fitting results with a 

25% higher RMSE than the best-fitting model. On the other hand, SEM 1 gives the closest 

model fit after SEM 2, with an RMSE of 1.8018.  
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Figure 18. Performance indicators for each NMC-2 dataset modeling with analytical 

solution. 

 

6.2.2.   GA Solution 

 

Table 21 shows the parameter identification results obtained after performing 

Genetic Algorithm for every 5 SEMs based on all aging data in 'NMC-2'. Figure 19 shows 

the corresponding quantitative measurements for all model cases. 

 

Table 21. NMC-2 model parameters based on a GA solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 23043 a2 = -4838.9 a3 = 0.0214 a4 = 1.00   

SEM-2 b1 = 28.331 b2 = 0.0999 b3 = -25.63 b4 = -2564 b5 = 0.96  

SEM-3 c1 = 104.72 c2 = 0.0005 c3 = -0.0596 c4 = 9.8766 c5 = -5425 c6 = 1.0 

SEM-4 d1 = 873.99 d2 = 0.0203 d3 = 6.7396 d4 = -5897 d5 = 1.00  

SEM-5 e1 = 0.1748 e2 = 0.1780 e3 = -3.6303 e4 = -49.173 e5 = 1.00  

SEM-6 f1 = 9305.4 f2 = -412 f3 = -5347.1 f4 = 1.00   

SEM-7 g1 = 148.05 g2 = 10002 g3 = 11205 g4 = -5637 g5 = 1.00  
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Figure 19. Performance indicators for each NMC-2 dataset modeling with GA. 

 

SEM 3 provides more effective prediction results with the GA solution than other 

SEMs, with an RMSE of 0.7099. Then, the closest fit result gives SEM 4 with 0.7313 

RMSE. SEM 6 provides fitting results with a 49% higher RMSE than the best-fitting 

model. An average of 46% improvement was seen in the RMSEs of models analyzed with 

GA instead of linear regression. 

 

6.3. LFP Dataset 

 

The model parameters obtained through various methods for the LFP dataset are 

presented. Additionally, the models' MAE, RMSE, and MAPE values were compared. 

 

6.3.1.   Linear Regression 

 

Table 22 shows the parameter identification results obtained after performing 

linear regression calculations for every 5 SEMs based on all aging data in 'LFP Dataset'. 

According to the fit results for all SEMs as shown in Table 22, the SEM is capable of 

providing a long-term capacity degradation trend with a generalized exponential form. 

Figure 20 shows the corresponding quantitative measurements for all model cases. 
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Table 22. LFP model parameters based on an analytical solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 6486.2 a2 = -3650 a3 = 0.0156 a4 = 0.62   

SEM-2 b1 = 303670 b2 = -0.060 b3 = 23.998 b4 = -4858.6 b5 = 0.62  

SEM-3 c1 = 776.78 c2 = -0.0001 c3 = 0.0260 c4 = 4.34102 c5 = -3650 c6 = 0.62 

SEM-4 d1 = 80.540 d2 = 0.0156 d3 = 4.3887 d4 = -3600.6 d5 = 0.62  

SEM-5 e1 = 0.2408 e2 = 0.1260 e3 = -1.423 e4 = -34.688 e5 = 0.62  

 

 
Figure 20. Performance indicators for each LFP dataset modeling with analytical solution. 

 

In general, for the LFP dataset, SEM 3 provides more effective prediction results 

than other SEMs, with an RMSE of 1.9533. SEM 5 provides fitting results with a 100% 

higher RMSE than the best-fitting model.  

 

6.3.2.  GA Solution 

 

Table 23 shows the parameter identification results obtained after performing 

Genetic Algorithm for every 7 SEMs based on all aging data in 'LFP Dataset'. Figure 21 

shows the corresponding quantitative measurements for all model cases. 
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Table 23. LFP model parameters are based on a GA solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 2435 a2 = -3056.9 a3 = 0.0090 a4 = 0.55   

SEM-2 b1 = 3445 b2 = -0.0035 b3 = 4.1232 b4 = -3171 b5 = 0.55  

SEM-3 c1 = 73.19 c2 = -0.0001 c3 = -0.0222 c4 = 4.4416 c5 = -3290 c6 = 0.48 

SEM-4 d1 = 72.95 d2 = 0.0089 d3 = 4.7091 d4 = -3299 d5 = 0.47  

SEM-5 e1 = 0.254 e2 = 0.1084 e3 = -0.077 e4 = -31.55 e5 = 0.49  

SEM-6 f1 = 56.10 f2 = 3066.8 f3 = -3058.0 f4 = 0.49   

SEM-7 g1 = -0.451 g2 = 122.76 g3 = 3819.0 g4 = -3143 g5 = 0.48  

 

 
Figure 21. Performance indicators for each LFP dataset modeling with GA. 

 

SEM 7 provides more effective prediction results with the GA solution than other 

SEMs, with an RMSE of 1.3062. Then, the closest fit result gives SEM 3 with 1.3224 

RMSE. An average of 35% improvement was seen in the RMSEs of models analyzed 

with GA instead of linear regression. 

 

6.4. LMO/NMC Dataset 

 

The model parameters obtained through various methods for the LMO/NMC 

dataset are presented. Additionally, the models' MAE, RMSE, and MAPE values were 

compared. 
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6.4.1.   Linear Regression Solution 

 

Table 24 shows the parameter identification results obtained after performing 

linear regression calculations for every 5 SEMs based on all aging data in 'LMO/NMC 

Dataset’. Figure 22 shows the corresponding quantitative measurements for all model 

cases. 

 

Table 24. LMO/NMC model parameters are based on an analytical solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 6x10^6 a2 = -5498 a3 = 0.0075 a4 = 0.53   

SEM-2 b1 = 73592 b2 = 0.0398 b3 = -10.3 b4 = -4823 b5 = 0.53  

SEM-3 c1 = 3057 c2 = 0.0001 c3 = -0.008 c4 = 8.0253 c5 = -5503 c6 = 0.53 

SEM-4 d1 = 2472 d2 = 0.0075 d3 = 7.813 d4 = -5498 d5 = 0.53  

SEM-5 e1 = 0.4557 e2 = 0.2338 e3 = -0.785 e4 = -72.16 e5 = 0.52  

 

 
Figure 22. Performance indicators for each LMO/NMC dataset modeling with analytical 

solution. 

 

In general, for the LMO/NMC dataset, SEM 2 provides more effective prediction 

results than other SEMs, with an RMSE of 0.8237. Then, the closest fit result gives SEM 

3 with 1.0532 RMSE.  
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6.4.2.  GA Solution 

 

Table 25 shows the parameter identification results obtained after performing 

Genetic Algorithm for every 7 SEMs based on all aging data in 'LMO/NMC Dataset’. 

Figure 23 shows the corresponding quantitative measurements for all model cases. 

 

Table 25. LMO/NMC model parameters are based on a GA solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 6x10^6 a2 = -5556.7 a3 = 0.0095 a4 = 0.53   

SEM-2 b1 = 85590 b2 = 0.0125 b3 = -8.754 b4 = -3623 b5 = 0.53  

SEM-3 c1 = 3598.3 c2 = 0.0001 c3 = -0.0069 c4 = 8.3881 c5 = -5667 c6 = 0.51 

SEM-4 d1 = 2080.5 d2 = 0.0094 d3 = 8.5173 d4 = -5682 d5 = 0.51  

SEM-5 e1 = 0.4549 e2 = 0.2349 e3 = -0.3604 e4 = -74.20 e5 = 0.52  

SEM-6 f1 = 0.4214 f2 = 249.33 f3 = -1694.0 f4 = 0.8210   

SEM-7 g1 = 1251.1 g2 = 1237.2 g3 = 1153.3 g4 = -5648 g5 = 0.51  

 

 
Figure 23. Performance indicators for each LMO/NMC dataset modeling with GA. 

 

SEM 7 provides more effective prediction results with the GA solution than other 

SEMs, with an RMSE of 0.6714. Then, the closest fit result gives SEM 6 with 0.6796 

RMSE. An average of 25% improvement was seen in the RMSEs of models analyzed 

with GA instead of linear regression. 
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6.5. NCA Dataset 

 

The model parameters obtained through various methods for the NCA dataset are 

presented. Additionally, the models' MAE, RMSE, and MAPE values were compared. 

 

6.5.1.   Linear Regression Solution 

 

Table 26 shows the parameter identification results obtained after performing 

linear regression calculations for every 5 SEMs based on all aging data in 'NCA Dataset. 

Figure 24 shows the corresponding quantitative measurements for all model cases. 

 

Table 26. NCA model parameters are based on an analytical solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 5719.9 a2 = -3185.7 a3 = 0.0084 a4 = 0.48   

SEM-2 b1 = 9530.0 b2 = -0.0015 b3 = 3.0720 b4 = -3340 b5 = 0.48  

SEM-3 c1 = 86.307 c2 = 0.0001 c3 = -0.0065 c4 = 4.4579 c5 = -3202 c6 = 0.49 

SEM-4 d1 = 75.630 d2 = 0.0084 d3 = 4.3259 d4 = -3185 d5 = 0.48  

SEM-5 e1 = 0.4234 e2 = 0.1535 e3 = -0.859 e4 = -44.20 e5 = 0.47  

 

 
Figure 24. Performance indicators for each NCA dataset modeling with analytical 

solution. 
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6.5.2.  GA Solution 

 

Table 27 shows the parameter identification results obtained after performing 

Genetic Algorithm for every 7 SEMs based on all aging data in 'NCA Dataset'. 

 

Table 27. NCA model parameters are based on a GA solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 3629.0 a2 = -3061.3 a3 = 0.0762 a4 = 0.51   

SEM-2 b1 = 9874.6 b2 = 0.0017 b3 = 1.9870 b4 = -3340.7 b5 = 0.49  

SEM-3 c1 = 97.964 c2 = 0.0001 c3 = -0.0048 c4 = 4.5272 c5 = -3235 c6 = 0.48 

SEM-4 d1 = 63.945 d2 = 0.0076 d3 = 4.8253 d4 = -3271.0 d5 = 0.48  

SEM-5 e1 = 0.3537 e2 = 0.1487 e3 = -0.275 e4 = -44.552 e5 = 0.48  

SEM-6 f1 = 53.227 f2 = 4219.4 f3 = -3154.1 f4 = 0.52   

SEM-7 g1 = 0.4928 g2 = 47.962 g3 = 8980.1 g4 = -3291.4 g5 = 0.48  

 

According to the fit results for all SEMs as shown in Table 27, the SEM is capable 

of providing a long-term capacity degradation trend with a generalized exponential form. 

Figure 25 shows the corresponding quantitative measurements for all model cases. 

 

 
Figure 25. Performance indicators for each NCA dataset modeling with GA. 
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SEM 3 provides more effective prediction results with the GA solution than other 

SEMs, with an RMSE of 0.4810. Then, the closest fit result gives SEM 1 with 0.5043 

RMSE. An average of 21% improvement was seen in the RMSEs of models analyzed 

with GA instead of linear regression. 

 

6.6. HORIZON-HELIOS 2022 NMC Dataset 

 

In order to measure the capacity of the data set in our Helios project to predict 

future capacity loss data, calculations were made by dividing the total data into two: 70% 

training data and 30% prediction data. So, approximately 70% of each case was used to 

calculate model parameters. The objective here is to assess the models' capacity to predict 

future data. Under the heading 6.1.1, the prediction results covering 30% of the data set 

are shown, and in 6.1.2, the estimated values for the total data set are shown. Table 28 

shows the ten different experimental cases in the experiment set.  

 

Table 28. Storage conditions for each case. 

T (°C) SoC (%) Case Number 

25 

 

5 Case-1 

37 Case-2 

65 Case-3 

80 Case-4 

93 Case-5 

60 

0 Case-6 

25 Case-7 

50 Case-8 

75 Case-9 

100 Case-10 

 

6.6.1. Prediction Results 

 

70% of the experimental data obtained from NMC batteries within the scope of 

the Helios project was used to determine the model parameters. The analysis results of 

the model parameters using Linear Regression are shown under the heading specified in 
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6.6.1.1, and the analysis results using the Genetic Algorithm are shown under the heading 

6.6.1.2..  

 

6.6.1.1.  Linear Regression 

 

Table 29 displays the parameter identification results obtained from performing 

linear regression calculations for every 5 SEMs, based on 70% of the aging data in the 

'Helios dataset. 

 

Table 29. Helios NMC model parameters based on an analytical solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 220.41 a2 = -2634.4 a3 = 0.0163 a4 = 0.58   

SEM-2 b1 = 87.655 b2 = 0.0331 b3 = -5.3776 b4 = -2340.4 b5 = 0.58  

SEM-3 c1 = 16.092 c2 = -0.0002 c3 = 0.0427 c4 = 2.7783 c5 = -2803.2 c6 = 0.58 

SEM-4 d1 = 14.846 d2 = 0.0163 d3 = 2.6977 d4 = -2634.4 d5 = 0.58  

SEM-5 e1 = 0.2375 e2 = 0.1324 e3 = -1.4234 e4 = -37.224 e5 = 0.59  

 

Figure 26 displays the model error results obtained from performing linear 

regression calculations for every 5 SEMs based on all prediction aging datasets in the 

'HORIZON dataset'. 

 

Figure 26. Performance indicators for each Helios NMC prediction case modeling with                   

analytical solution. 

 

(cont. on the next page.) 
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Figure 26. (cont.) 
 

In Case 6, SEM 5 provides the best fit results with an RMSE of 0.038. SEM 3 

offers the most effective prediction results for Case 9 and Case 1, with corresponding 

RMSEs of 0.232 and 0.451. Overall, SEM 3 (RMSE: 0.51) and SEM 1 (RMSE: 0.92) 

outperform their counterparts in terms of prediction results. 

 

6.6.1.2.  GA Solution 

 

Table 30 displays the parameter identification results obtained from performing 

Genetic algorithm for every 7 SEMs, based on 70% of the aging data in the 'Helios 

dataset. 

 

Table 30. Helios NMC model parameters based on a GA solution for each SEM. 

Model 

Cases 

Fitting Parameter 

SEM-1 a1 = 132.05 a2 = -2301.0 a3 = 0.0111 a4 = 0.56   

SEM-2 b1 = 6.1890 b2 = 0.0571 b3 = -16.162 b4 = -1124.7 b5 = 0.57  

SEM-3 c1 = 14.824 c2 = -0.0002 c3 = 0.0448 c4 = 2.5821 c5 = -2665.2 c6 = 0.56 

SEM-4 d1 = 49.947 d2 = 0.0112 d3 = 2.1937 d4 = -2702 d5 = 0.56  

SEM-5 e1 = 0.2596 e2 = 0.1121 e3 = -1.622 e4 = -28.22 e5 = 0.56  

SEM-6 f1 = 303.93 f2 = 8981.9 f3 = -3975.9 f4 = 0.65   

SEM-7 g1 = -23.10 g2 = 4568.9 g3 = 32639 g4 = -4534 g5 = 0.59  
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Figure 27 shows the model error results obtained after performing Genetic 

Algorithm for every 7 SEMs based on all prediction aging data in 'HORIZON dataset'.  

 

 

Figure 27. Performance indicators for each Helios NMC prediction case modeling with 

analytical solution. 

 

In Case 9, SEM-7 provides the best fit results with an RMSE of 0.031. For Case 

6, SEM 3 provides the best fit results with an RMSE of 0.042. For Case 2, SEM 2 provides 

the best fit results with an RMSE of 0.402.  On the other hand, SEM 2 gives the most 

accurate result for Case 5, with an RMSE of 0.334. Overall, SEM 3 (RMSE: 0.39) and 

SEM 1 (RMSE: 0.82) outperform their counterparts in terms of total results. 

 

6.6.2. Total Results 

 

In this section, the compatibility between the aging models found using 70% of 
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6.6.2.1.  Linear Regression Solution 

 

Figure 28 shows the model RMSE results obtained after performing linear 

regression calculations for every 5 SEMs based on all aging data in 'HORIZON dataset'. 

SEM 3 provides the most effective prediction results for Case 6 and Case 1; 

corresponding RMSEs of 0.214 and 0.218. For Case 4, SEM 5 provides the best fit results, 

with RMSEs that are 23.4% lower than the worst fit cases. On the other hand, SEM 4 

gives the most accurate result for Case 2, with an RMSE of 0.340, which is 22.5% less 

than SEM 5. It is important to note that different SEMs will yield different training results 

for a given storage situation. Overall, SEM 1 (RMSE: 0.35) and SEM 3 (RMSE: 0.86) 

outperform their counterparts in terms of total results. 

 

 

 
Figure 28. Performance indicators for each Helios NMC case modeling with analytical 

solution. 

 
 
 

0

1

2

3

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5

R
M

SE

25°C 

Case-1 Case-2 Case-3 Case-4 Case-5

0

1

2

3

SEM-1 SEM-2 SEM-3 SEM-4 SEM-5

R
M

SE

60°C 

Case-6 Case-7 Case-8 Case-9 Case-10



 

 99 
 

6.6.2.2.  GA Solution 

 

Figure 29 shows the model RMSE results obtained after performing Genetic 

Algorithm for every 7 SEMs based on all aging data in 'HORIZON dataset'. 

 

 
 

Figure 29. Performance indicators for each Helios NMC case modeling with GA. 

 

Quantitatively, SEM 3 offers the most effective prediction results for Case 6 and 

Case 1, with corresponding RMSEs of 0.205 and 0.209, which are almost half of the 

RMSEs obtained using the other three SEMs. For Case 4, SEM 4 provides the best fit 

results, with RMSEs that are 60.2% lower than the worst fit cases. On the other hand, 

SEM 2 gives the most accurate result for Case 5, with an RMSE of 0.334. It is important 

to note that different SEMs will yield different training results for a given storage 

situation. Overall, SEM 3 (RMSE: 0.18) and SEM 1 (RMSE: 0.62) outperform their 

counterparts in terms of total results. 
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CHAPTER 7 

 

CONCLUSION 

 

Adaptation of EVs could be achieved by enhancing the feasibility of batteries 

where lifetime is an essential contributor. The lifespan of batteries decreases over time, 

which affects the mileage in the lifetime of operation and is primarily caused by complex 

and multiple side reactions. This study delves into the behavior and semi-empirical 

modeling of Li-ion aging, emphasizing the impact and interdependence of various 

operational stress factors. The study concludes that it is challenging to generalize aging 

behavior under operational conditions since many stress factors contribute to battery 

aging, rather than a single factor. Therefore, when creating empirical and semi-empirical 

aging models for batteries, it is essential to consider the relationships between stress 

factors and the limitations of the models. The literature shows that there is no perfect 

aging prediction model but should be decided based on application and relative variables 

and estimation algorithms should be based on the target application.  Key findings of the 

study are summarized below: 

• This study examined aging models for various battery types, focusing on 

calendar, and cycling aging. The findings were summarized in separate tables for each 

aging type. The articles reviewed revealed that model prediction errors were lower in 

calendar aging models than in bicycle aging models. Additionally, the literature showed 

quite satisfactory prediction accuracy for calendar aging. 

• Temperature and SoC are the most critical factors that affect aging mechanisms 

in batteries. Increased chemical activity caused by high temperatures and degradation 

mechanisms such as lithium loss accelerate battery degradation. Also, battery 

performance can be negatively impacted by low temperatures, which increase battery 

aging. Lithium plating is the main degradation mechanism at low temperatures, unlike 

high temperatures. Although there is no linear relation between SoC and battery capacity, 

the battery capacity tends to decrease more quickly at high SoC values.  

• One of the most critical aging mechanisms for cycling and calendar aging is SEI 

growth. During idle conditions, there is a strong correlation between the SEI layer growth 

and the anode potential, with a higher SoC leading to increased growth. However, other 
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kinetic effects during cycling can accelerate aging at low SoC. Aging induced by SoC can 

take various forms, such as exponential or linear, depending on the operating conditions. 

• Another stress factor that occurs during cycle aging is the charge and discharge 

rate to which the battery is exposed. High rates of charge or discharge can lead to the 

development of SEI and degradation in the positive electrode. Additionally, it has been 

observed that there exists a strong relationship between the C rate and temperature: as the 

temperature rises, the impact of the C ratio decreases. In other words, as temperature 

increases, the negative effects of the C ratio intensify. Some models fail to consider this 

aspect, which can be attributed to the fact that testing is often conducted under accelerated 

conditions. 

• Various studies have investigated the impact of temperature, state of SoC, and 

C-rate stress factors on battery aging for different chemistries, including LFP, NMC, 

NCA, LMO, LCO, LTO, and LMO+NMC. Among these, Li-ions with LTO and LFP cell 

chemistries show greater resistance to battery degradation compared to other chemistries. 

• The Arrhenius model is useful for understanding how temperature affects 

calendar aging. However, it's important to consider that different aging processes occur 

at temperatures above and below room temperature during cycling. Therefore, when 

creating models for cyclic aging below room temperature, these differences must be taken 

into account. 

• In general, calendar aging models represent battery storage time using a time-

dependent exponential z coefficient. The aging behavior, which is primarily affected by 

the passivation properties of the SEI layer, is most commonly modeled using a tz 

relationship, where 0.45 ≤ z ≤ 1. By taking z as a variable instead of the t over z 

coefficient, which is assumed constant in literature, model compatibility with different 

data sets can be improved. 

• In calendar aging modeling, it has been observed that most of the models in the 

literature can be solved by linear regression. However, in order for the equations to be 

solved using linear regression, they must be linearized. As a result of this linearization, 

the error is minimized by considering the natural logarithm of the Qloss parameter instead 

of Qloss itself. Therefore, when analyzing modeling studies, it is a better approach to use 

numerical solutions. 
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• As seen from 5 different analytical SEMs of 6 different experimental sets, the 

model error increases as the temperature increases. This error increase is caused by the 

1/T dependence of temperature in the models. 

• Based on evaluations in studies using a fixed set of defined parameters, SEMs 

can obtain satisfactory calendar aging estimates for a given storage situation.  Model-3, 

4, and 5 were able to predict capacity loss with low errors. In particular, Model-3 had the 

lowest RMSE in most experimental sets. While model errors are generally close to each 

other, Redondo-Iglesias et al. model and Model 7 have lower errors, similar to Model-3.  

• As can be seen from the data in the Helios project, if the same parameters are 

still used in other different storage conditions, the prediction performance will inevitably 

decrease. This situation can be corrected in two ways: by improving the qualities of the 

relevant weathering tests and by further improving the adaptability of the SEM. 

• The aging trend of a battery capacity generally shows an initial rapid 

deterioration followed by a relatively more linear deterioration. This is mainly due to the 

phenomenon of 'anode bulge', which represents the presence of excess anode electrode 

area compared to the cathode-electrode area. It can be seen that the exponential form in 

the Arrhenius-based SEM matches well with the rapid initial capacity decay. 
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