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ABSTRACT 

 

MODELLING VERTICALLY LOADED PILE GROUPS BY 

CONSIDERING PILE-SOIL-PILE INTERACTIONS 

 

The aim of the study presented in this thesis is to create a model that takes into 

account the interaction between piles for the analysis of pile groups embedded in a linear 

elastic medium. This research builds upon prior work by Vallabhan and Mustafa (1996) 

introduced a single pile model and the pile-soil-pile interaction model proposed by İşbuğa 

(2023). The model has undergone further development to encompass the entire spectrum 

of pile groups regardless of how many piles it has and what kind of layout it has. This 

comprehensive model addresses two distinct scenarios: one involving a free-head pile 

group and another featuring a pile group that has a rigid pile cap. 

In the context of a free-head pile group, single piles within the group show 

different displacements due to load and interactions. On the other hand, in the case of a 

rigid pile cap, the piles must have equal displacements because of the rigid nature of the 

pile cap. Two different algorithms have been developed for both of these scenarios, and 

these algorithms have been implemented using the Python programming language. 

The model has been used to analyze various pile groups, and the analysis results 

were compared with previous studies and finite element method solutions. In addition to 

comparing the results, the computation times of the models proposed by this study and 

those of the finite element method were also compared. 
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ÖZET 

 

KAZIK-ZEMİN-KAZIK ETKİLEŞİMLERİNİ DİKKATE ALARAK 

DÜŞEY YÜKLÜ KAZIK GRUPLARININ MODELLENMESİ 

 

Bu tezde sunulan çalışmanın amacı, elastik zemin katmanlarına yerleştirilmiş 

kazık gruplarının analizinde kazıklar arası etkileşimi de hesaba katan bir elastik model 

oluşturmaktır. Bu araştırma, Vallabhan ve Mustafa (1996) tarafından tek kazıklı bir 

modelin yanı sıra İşbuğa (2023) tarafından önerilen kazık-zemin-kazık etkileşim 

modelinin tanıtıldığı önceki çalışmalara dayanmaktadır. Model, kaç kazığa sahip 

olduğuna ve ne tür bir yerleşime sahip olduğuna bakılmaksızın tüm kazık grupları 

yelpazesini kapsayacak şekilde daha da geliştirilmiştir. Bu kapsamlı model iki farklı 

senaryoyu ele almaktadır: biri kazık başlığı bulunmayan durum, diğeri ise rijit bir kazık 

başlığının olduğu durum. 

Kazık başlığı bulunmadığı durumda, grup içindeki münferit kazıklar yük ve 

etkileşimler nedeniyle farklı yer değiştirmeler gösterebilir. Öte yandan, rijit bir kazık 

başlığı durumunda, kazık başlığının rijit yapısı nedeniyle kazıkların eşit yer 

değiştirmelere sahip olması gerekir. Bu senaryoların her ikisi için de iki farklı algoritma 

geliştirilmiş ve bu algoritmalar Python programlama dili kullanılarak uygulanmıştır. 

Model, çeşitli kazık gruplarını analiz etmek için kullanılmış ve analiz sonuçları 

önceki çalışmalar ve sonlu elemanlar yöntemi çözümleri ile karşılaştırılmıştır. Sonuçların 

karşılaştırılmasının yanı sıra bu çalışmada yazılan program ile oluşturulan modeller ile 

sonlu elemanlar yöntemi ile oluşturulan modellerin çözüm hızları da karşılaştırılmıştır. 
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CHAPTER 1 

 

INTRODUCTION 

1.1. Introduction and Scope of Study 

Piles, known as deep foundations, are generally preferred when the local soil 

conditions do not have sufficient load-bearing capacity or the loads from the 

superstructure or design requirements compel a deep foundation application. Depending 

on the location and purpose of the foundations, they can be made of different types of 

materials, such as metal, concrete, and timber. Understanding the behavior of piles is 

crucial as they represent a significant component within the realm of construction.  

In general, piles are used in the form of pile groups in which interactions among 

piles play an essential role in the response of the pile group. Due to such interactions, the 

load-displacement curve of a pile placed in a pile group will differ from that of a single 

isolated pile. Such difference does not work in favor of the pile group since the group 

interaction causes piles to have additional displacement compared to a single isolated pile. 

Interaction among piles depends on some parameters, such as the pile's location in the 

group, pile spacing, geometric properties of piles, and material properties of piles and soil 

in which the pile group is embedded. Therefore, it is crucial to model the response of pile 

groups accurately and efficiently to account for the effect of the group interactions among 

piles in a group.  

Vallabhan and Mustafa (1996) presented a study about pile-soil interaction for a 

single isolated pile. Their model was extended by İşbuğa (2023) to consider the 

interaction between two identical piles, along with the development of an algorithm for 

the model. The aim of this study is to accurately model pile groups with more than two 

piles, as well as pile groups featuring both rigid and free head piles while accounting for 

the interaction among the piles. In this respect, the model proposed by İşbuğa (2023) and 

the algorithm were further extended to include pile groups. 
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1.2. Organization of the Thesis 

This thesis consists of five chapters. The first section (CHAPTER 1) is an 

introduction chapter summarizing the thesis studies. 

The second section (CHAPTER 2) presents the literature review for pile-soil 

interaction and pile-soil-pile interaction. 

The third section (CHAPTER 3) explains how the pile-soil-pile interaction is 

applied to pile groups in this study, how the numerical model is created and the working 

principle of the algorithms using flowchart. 

The fourth section (CHAPTER 4) includes the properties of the analyzed pile 

groups and the comparison of the results with previous studies and finite element method 

results. 

The final part of the thesis (CHAPTER 5) is the conclusion part. This section 

summarizes all the studies and obtained results. 
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CHAPTER 2 

 

LITERATURE SURVEY FOR THE SINGLE PILE 

MODELS AND PILE GROUP MODELS 

2.1. Introduction 

Modeling the response of piles under various loading conditions is already a 

challenging task, and there have been studies focusing on pile-soil interaction models in 

the literature. Winkler (1867), which models the soil layers as discrete springs, is one of 

the most used among the pile models. In their work, Reese and Seed (1957) assumed that 

both the pile and the soil possess compressible properties. They proposed that the load is 

transmitted into the surrounding soil influenced by the relative movement of the pile. 

Randolph and Wroth (1979) assumed that soil deformation could be described by a 

logarithmic function which depends on the radial distance r from the pile's center. Poulos 

and Davis (1980) proposed a new approach to the pile-soil interaction assuming that there 

is no residual stress on the pile and soil due to the installation of the pile. Vallabhan and 

Mustafa (1996) studied a new model for pile-soil interaction which includes the 

continuum behavior of soil around the pile. Some models were also extended to model 

interaction among the piles in the pile groups Mylonakis and Gazetas (1998) extended 

the Randolph and Wroth (1978) model for grouped piles in layered soil, Cao and Chen 

(2008) extended the Muki and Sternberg's (1970) model for two pile interaction, also 

İşbuğa (2023) extended the Vallabhan and Mustafa (1996) single pile model for the two-

pile interaction. There are various numerical approaches to model the interaction among 

the piles, including the boundary element method and the finite element method, which 

also provides the opportunity to employ the conventional soil plasticity models. However, 

such numerical tools require expertise in using software to create models and also demand 

extensive time to create geometry and models for analyses. This time demand increases 

if multiple try-and-error attempts are involved to derive an optimum pile group design.  

One of the earliest works in the field belongs to Poulos (1968). Poulos (1968) 

defined the interaction factor by dividing the extra settlement due to the neighboring pile 

by the settlement due to the load carried by the pile. Poulos (1968) developed a model for 
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analyzing pile groups by superposition approach to obtain the interaction factor. 

Butterfield and Banerjee (1971) presented a rigorous model for compressible and rigid 

pile groups with floating pile caps. Randolph and Wroth (1979) introduced an 

approximate analytical solution that relies on the superposition of single pile 

displacements. Mylonakis and Gazetas (1998), presented a solution by employing the 

Winkler (1867) model of soil response. Chen et al. (2011) extended the Muki and 

Sternberg (1970) model by employing a Fredholm integral equation to investigate the 

interaction between two vertically loaded piles.  

Vallabhan and Mustafa (1996) introduced an approach that facilitates a 

comprehensive analysis of the interaction between piles and the surrounding soil. This 

approach considers the deformation characteristics and stresses across the entire soil 

medium.  

Isbuga (2023) presented a model that considers the pile-soil-pile interaction by 

extending the method proposed by Vallabhan and Mustafa (1996). This study further 

presents a new algorithm to model axially loaded pile groups by extending the interaction 

model proposed by Isbuga (2023) for pile groups with different numbers of piles. This 

study compares the results of the present model with the finite element method and those 

of previous models existing for various cases in the literature. 

2.2. Pile-Soil Interaction 

2.2.1. Winkler Model (1867) 

The Winkler (1867) model is an idealization that considers the soil as a system of 

springs, which undergo displacement in response to the applied load. Soil can have linear 

or nonlinear stress-strain behavior in the model. In the Winkler (1867) model, the springs 

are limited to vertical displacement and are attached to two nodes, with the lower nodes 

being fixed in place. The main limitation of the Winkler (1867) model is that it neglects 

the soil's shear capacity. By disregarding shear stresses, the model does not account for 

the lateral spreading of displacement in the transverse direction. Due to the neglected 

shear capacity of soils, the Winkler (1867) model assumes displacement discontinuity 

between loaded and unloaded surfaces (Teodoru and Bogdan, 2009). However, in reality, 

soil has shear capacity, and as a result, no displacement discontinuity occurs in practice 
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(Aron and Jonas, 2012). The discontinuity in the mentioned displacements is shown in 

Figure 2.2, the difference between the Winkler model and the soil behavior in practice 

can be seen. 

 

Figure 2.1 The Winkler model for a pile under axial loading 

 

Figure 2.2 Behaviour of elastic foundations under uniform load: a – Winkler model, b – 

deflection of soil foundation (Teodoru and Bogdan, 2009) 
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2.2.2. Reese Model (1964) 

Seed and Reese (1957) investigated the behavior of the axially loaded pile and the 

surrounding soft clay. Seed and Reese (1957) assume that the pile is compressible, and 

the amount of load that is transferred into the soil surrounding the pile is influenced by 

the pile's movement relative to the surrounding soil. Reese (1964) uses t-z curves. The 

behavior of the soil-pile interface is described in terms of displacement and shear stress 

by t-z curves. In Figure 2.3, the illustration represents the pile as a deformable body, with 

the soil replaced by mechanisms demonstrating the nonlinearity of unit load transfer in 

skin friction concerning the pile's movement. The unit load transfer is described by a set 

of t-z curves where t denotes the load transfer inside resistance at a specific point along 

the pile, and z represents the displacement of that point relative to its initial position before 

loading. 

 

Figure 2.3 Model of axially loaded pile (Reese, 1964) 

In Figure 2.4, the dashed line represents the applied stress, which diminishes as 

the distance from the pile wall increases. At a certain distance away from the pile, the 
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applied stress matches the shearing resistance of the clay, and when the pile is under full 

load, there is a likelihood of sliding to occur. 

 

Figure 2.4 Conceptual curves for locating the position of failure (Seed and Reese,1957) 

2.2.3. Vallabhan and Mustafa (1996) 

Vallabhan and Mustafa (1996) are a valuable addition to the widely recognized 

Reese(1964) model, which utilizes t-z curves to study the settlement of axially loaded 

piles. Unlike the Reese (1964) model, Vallabhan and Mustafa (1996) incorporate the 

continuum behavior of the soil, treating it as a continuous medium with linear elastic 

properties. This approach enables a comprehensive analysis of the interaction between 

the pile and the surrounding soil, taking into account the deformation characteristics and 

stresses in the entire soil medium. 

 The model by Vallabhan and Mustafa (1996) offers a comprehensive 

understanding of the settlement behavior of axially loaded piles in soft clay. The model 

introduces a method to calculate the axial settlement of piles by employing a variational 

approach and minimizing a potential energy functional. In this model, it is assumed that 
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there is perfect compatibility of displacements between the pile and the surrounding soil 

at the interface between them, also both pile and soil behave linearly. The derived 

equations in Vallabhan and Mustafa (1996) corroborate the initial empirical assumptions 

that were made by Reese (1964). In contrast to the Reese (1964) model, the model 

proposed by Vallabhan and Mustafa (1996) takes into account not only the shear stresses 

in the surrounding soil but also regards the presence of a compressive strain in the soil, 

which was previously disregarded. 

This model ignores the radial displacement of the soil because it is negligible 

compared to vertical displacement. The assumption is made that the vertical displacement 

of the soil at any point surrounding the pile could be obtained. This feature of the model 

made it possible to employ this approach to model interaction between two piles and, in 

turn, interaction among all the piles in the pile groups. Isbuga (2023) proposed using 

Vallabhan and Mustafa (1996) model to model the interaction between two piles and 

proposed the formulation, and also developed an algorithm to employ the model in a 

Python computer code.  The details of Vallabhan and Mustafa (1996) and Isbuga (2023) 

are presented in the following chapters. 

2.2.4. Randolph and Wroth (1978) 

In previous research on the soil-pile interface, shear strains around the pile were 

assumed to be confined within a limited softened zone. Randolph and Wroth (1978) 

proposed a sufficient semi-analytical model, which assumes that the soil deformation can 

be described using a logarithmic function that depends on the radial distance r from the 

center of the pile (Vallabhan and Mustafa, 1996). In this model, the behavior of the soil 

around the pile and below the pile base is treated differently. This approach is shown in 

Figure 2.5.  
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Figure 2.5 Top and bottom soil layers behaviour (Randolph and Wroth, 1979) 

AB line divide soil layers into two, one is surrounding the pile and the other is 

below the pile base, as shown in Figure 2.5. The model assumes that the soil above point 

AB will undergo deformation solely due to the stresses transferred from the pile shaft, 

while the soil below point AB will deform solely because of the stresses at the pile base 

(Randolph and Wroth, 1978). 

2.2.5. Poulos and Davis (1980) 

Poulos and Davis (1980) conducted a review of work completed until 1980. In 

their work, they considered a cylindrical pile loaded with an axial load P at the ground 

surface. For the analysis, the pile is subjected to a system of uniform shear stresses around 

its periphery, while the base experiences uniform vertical stress (Poulos and Davis, 1980). 

In this analysis, it is assumed that both the pile and the soil are initially stress-free and 

that there are no residual stresses due to the pile installation. Both the soil and the pile are 

considered to behave linearly elastic. The pile's sides' roughness ensures deformation 
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compatibility between the pile shaft and the surrounding soil. At the pile-soil interface, 

no slip occurs, and it remains elastic. Thus, the displacements of the pile and the 

neighbouring soil must be same to maintain compatibility between them. 

 

Figure 2.6 Analysis of floating pile (Poulos and Davis, 1980) 

In the model, the soil is assumed to possess linear elastic properties, homogeneity, 

and isotropy. The soil is considered semi-infinite, extending infinitely in all directions. 

Furthermore, the displacements at the pile-soil interface are assumed to be adaptable, 

ensuring that there are no discontinuities or slips between the pile and the surrounding 

soil. 
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2.3. Pile-Soil-Pile Interaction 

Piles are generally used in the form of groups to transfer the load from structure 

to soil. The behavior of piles in groups is different from that of single piles, depending on 

the pile spacing. When a pile is loaded, it disturbs the soil around the pile and creates a 

displacement field in the soil surrounding the pile. These fields can overlap depending on 

the spacing of the piles as seen in Figure 2.7 and this situation increases the settlement of 

piles. This interaction mechanism has attracted the attention of researchers, and various 

studies have been conducted on the subject. The interaction behavior was described using 

the interaction factor, which has been widely adopted by researchers. The one initially 

proposed by Poulos (1968) is the most prevalent among various interaction factors. 

Poulos (1968) defines the interaction factor by dividing the extra settlement because of 

the neighboring pile to settlement due to the load carried by the pile itself. Some of the 

pioneering and recent works in the field include Poulos (1968), Butterfield and Banerjee 

(1971), Randolph and Wroth (1979), Chow (1986), Mylonakis and Gazetas (1998), and 

Chen et al. (2011) presented research on pile-soil–pile interaction. The following sections 

will discuss these models. 

 

Figure 2.7 Overlapping zone in two piles (Das B. M., 2016) 
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2.3.1. Poulos (1968) 

Poulos (1968) conducted a settlement analysis to characterize the interaction 

between two piles in an elastic soil. He quantified the additional settlement experienced 

by each pile due to the interaction effect, expressing it in terms of an interaction factor. 

Additionally, Poulos (1968) demonstrated that for pile groups showing symmetrical 

behaviour (all piles settle and load equally), the change in settlement caused by the 

interaction can be determined by simply superposing the values of the interaction factors 

for each pile within the group. This simplification allows for an efficient analysis of 

settlement behavior in such pile configurations (Poulos and Davis, 1980). During his 

study, Poulos (1968) investigated two distinct scenarios: one with piles having a rigid pile 

cap, and the other with piles having a flexible pile cap. In the flexible pile cap case, each 

pile in the group has an equal load, and the interaction factor can be utilized to account 

for the interaction effects among the piles. However, in the case of a rigid pile cap, where 

all the piles in the group experience the same settlement, the interaction factor cannot be 

directly applied. Instead, a group reduction factor (Rg) is used to consider the group effect 

on settlement behavior. To model the pile shaft load, Poulos (1968) employed a method 

where he replaced it with uniform vertical shear stress applied on each pile elements' 

surface. The discontinuity of the model results from the existence of the piles in soil was 

neglected. In his study, Poulos (1968) employed two different values for Poisson's ratio 

to investigate the effects of soil stiffness on pile group behavior. By using these different 

values, the researcher ought to understand how the variation in Poisson's ratio influences 

the settlement and interaction effects within the pile group. Furthermore, to validate the 

accuracy and reliability of his analytical findings, Poulos compared his research results 

with field data. Indeed, Poulos (1968) not only captured the correct trends in pile group 

behavior but also yielded quantitative values that showed reasonably close agreement 

with the observed values from field data. 
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Figure 2.8 Group of two piles (Poulos, 1968) 

2.3.2. Butterfield and Banerjee (1971) 

Butterfield and Banerjee (1971) presented an analytical approach that is 

elaborated upon and extended to examine the behavior of axially loaded rigid and 

compressible pile groups that have floating caps positioned in an arbitrary manner. 

Butterfield and Banerjee (1971) demonstrated that significant errors occur in the 

computed values of radial stress components near a loaded pile when assuming that the 

disruption caused by the presence of the piles in the elastic half-space is neglected. They 

presented the results of their research through a set of graphs illustrating the impact of 

varying pile properties and soil properties, and the relationship of the load-displacement 

and base enlargement behavior of single axially loaded piles (Butterfield and Banerjee, 

1971). Butterfield and Banerjee (1971) obtained similar results for the group reduction 

factor as those presented in Poulos (1968). 
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2.3.3. Randolph and Wroth (1979) 

Randolph and Wroth (1979) presented an approximate analytical approach for 

calculating the vertical deformation of a group of piles. This method relies on 

superimposing the displacement patterns of single piles within the group (Chen et al, 

2011). The technique relies on combining the displacement patterns of single piles 

through superposition. Their work involves treating the average behavior along the pile 

shafts independently from the behavior beneath the pile base. The soil was represented as 

an elastic material defined by a shear modulus, presumed to change linearly with depth, 

along with a constant Poisson's ratio (Randolph and Wroth, 1979). There is a 

displacement field around each single pile, and if the displacement field of a pile crosses 

another pile's displacement field like in Figure 2.7, the displacement of piles will increase. 

They propose that the interaction factors between two piles at a specific pile spacing could 

be determined through integral equation analysis, assuming all of the piles in the group 

should be the same length. Consequently, a pile group could be analyzed by constructing 

a matrix of interaction factors for each pair of piles within the group.  

2.3.4. Mylonakis and Gazetas (1998) 

Mylonakis and Gazetas (1998) studied pile–soil–pile interaction in layered elastic 

soil. They devised an analytical method by employing the Winkler model of soil response 

to compute the vertical interaction factors between two piles positioned within a soil 

composed of multiple layers. Mylonakis and Gazetas (1998) demonstrate that these 

interaction factors are influenced by not just the displacement pattern resulting from the 

subsidence of a loaded ('source') pile, but also by the relationship between the neighboring 

('receiver') pile and the soil affected. 
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Figure 2.9 Influence of source pile (loaded) on the receiver pile (unloaded pile). 

(Mylonakis and Gazetas, 1998) 

In order to simulate the interaction between the receiver pile and the soil, the 

receiver pile is represented as a beam that is supported with Winkler springs as seen in 

Figure 2.9. The loading of these springs originates from the attenuated soil displacement. 

2.3.5. Chen, Song, and Chen (2011) 

Muki and Sternberg (1970) introduced a method to examine the interaction 

between soil and piles, utilizing the concept of a fictitious pile-extended half-space model. 

Chen and Cao (2008) expanded upon the model proposed by Muki and Sternberg (1970) 

to address the case of two vertically loaded piles that are embedded within a soil half-

space as seen in Figure 2.10. Their assumption was that the axial strains present in the 

fictitious piles match those occurring at the center points within the corresponding 

extended soil (Cao and Chen, 2008). Their model was limited to situations involving 

semi-infinite soil and thus lacked direct applicability when considering piles embedded 

within a finite soil layer. The approach proposed by Chen et al. (2011) represents a further 
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development of the model introduced by Cao and Chen (2008). They employed the 

Fredholm integral equation of the second kind to describe the unknown axial forces along 

the hypothetical piles and subsequently resolved this equation through numerical 

techniques. They conducted a comparison between their results and those presented by 

Poulos and Davis (1980), along with those from Mylonakis and Gazetas (1998). 

 

Figure 2.10 Geometry of piles and embedding soil medium (Chen et al., 2011) 
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CHAPTER 3 

 

THE NUMERICAL APPROACH USED TO MODEL PILE 

GROUPS AND THE ALGORITHMS 

3.1. Introduction 

A numerical model comprises a multitude of mathematical equations that rely on 

computer-based calculations to approximate solutions for the underlying physical 

problem (Zafarparandeh and Lazoglu, 2012). The general classification of numerical 

methods is shown in Figure 3.1.  

 

Figure 3.1 General classification of numerical methods (Thote et al., 2016) 

A continuous model is a mathematical representation of the problem or system 

that has continuous variables and generally, it is useful for such systems where changes 

in variables are smooth. This contrasts with discrete variables, which can only take on 

distinct, separate values. The Finite Element Method (FEM) is a numerical technique used 
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to solve engineering and mathematical problems. The FEM divides a complex problem 

into simpler, smaller elements (thus the name finite elements) that are easier to analyze 

(Chapra and Canale, 2010). The boundary element method (BEM) is a numerical 

technique where the boundary surrounding a region is divided into elements, as opposed 

to the finite element method, which divides the region itself into elements (Pincus, 2003). 

The finite difference method (FDM) is an approximate method for solving differential 

equations by discretizing the domain into a grid of points the finite difference method has 

found application in solving a broad spectrum of problems (Zhou, 1993). In this thesis, 

the finite difference method is used as a numerical modeling method. 

3.2. Finite Difference Method 

In the finite difference method, the derivatives present in the differential equation 

are estimated using finite difference formulas. The interval [a, b] can be partitioned into 

n equal subintervals of length h, as illustrated in Figure 3.2. 

 

Figure 3.2 Finite difference method example on the curve (Kong et al., 2020) 

Derivatives of differential equations are approximated by using finite differences. 

Backward difference, forward difference, and central difference methods can be used. 

Generally, the accuracy of the central difference method is higher than that of the 
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backward and forward difference methods (Zhou, 1993). In this study, the central 

difference method was used. 

The central difference formula in the finite difference method is given by: 

 
𝑑𝑦

𝑑𝑥
=

𝑦𝑖+1−𝑦𝑖−1

2h
 (3.1) 

 

 
𝑑2𝑦

𝑑𝑥2 =
𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

h2  (3.2) 

3.3. Finite Element Method 

Finite Element Method (FEM) is a powerful numerical technique employed to 

solve diverse engineering and physical problems, particularly those that can be described 

by partial differential equations. FEM is widely used across various fields, including 

structural analysis, fluid dynamics, heat transfer, and more, as it provides a versatile and 

efficient means to approximate and analyze complex real-world phenomena. This method 

subdivides a problem's domain into smaller, discrete elements, allowing for the accurate 

approximation of solutions to partial differential equations (Reddy, 2005). Within each 

element, the field variable (e.g., displacement or temperature) is approximated using 

interpolation functions. These functions typically take the known values of the field 

variable at the element's nodes and create a continuous approximation within the element 

(Logan, 1986). The governing partial differential equation is converted into a weak form 

or variational formulation. This typically involves multiplying the partial differential 

equation by a weight function and integrating it over the domain. The aim is to find a 

solution that minimizes the error. Individual contributions from all the elements are 

integrated to create a comprehensive system of algebraic equations. This process entails 

the assembly of the element equations into a single global stiffness matrix (Ern and 

Guermond, 2004). The resulting system of equations is solved using numerical 

techniques. 
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Figure 3.3 Finite element method discretization, (a) discretized domain, (b) discrete 

element of domain (Gąsiorowski, 2022) 

Discretization of the domain by triangular mesh and triangular element is shown 

in Figure 3.3. 

3.4. Mathematical Formulation of the Single Pile Model 

This section provides a detailed explanation of the mathematical formulation of 

the model introduced by Vallabhan and Mustafa (1996), this model is used to analyze 

isolated single piles. The theory presented here was initially devised by Vallabhan (1994), 

with the objective of investigating the linear elastic load-settlement behavior of piles. The 

formulation shows similarity to the approach employed for analyzing slabs and beams on 

elastic foundations, as introduced by Vallabhan et al. (1991). Utilizing the boundary 

conditions and field equations, Vallabhan and Mustafa (1996) introduced a solution in 

closed form. This closed-form solution facilitates the identification of the key non-

dimensional parameters which control the behavior of all system. 
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Figure 3.4 Pile and the soil medium (Vallabhan and Mustafa, 1996) 

The system is shown in Figure 3.4, there is an isolated single pile embedded in 

layered soils. The first layer extends through the pile shaft and surrounds the pile; the 

second layer is underneath the pile shoe and provides bearing resistance. Young's 

modulus and Poisson's ratio of soils can be different, as indicated in Figure 3.4. The cross-

sectional area, radius, length, and Young's modulus of the pile are Ap, R, l, and Ep, 

respectively. The model is axisymmetric and as stated in the literature, Vallabhan and 

Mustafa (1996) assumed radial displacement (u(r,z)) is negligible compared to the 

vertical displacement (w(r,z)) in the soil. Moreover, the assumption is made that the 

vertical displacement at any given point within the soil encompassing the pile can be 

represented as follows: 

 𝑤(𝑟, 𝑧) = 𝑤(𝑧)∅(𝑟) (3.3) 

The total potential energy of the system in this model given as: 

 𝜑 = 𝑈𝑝𝑖𝑙𝑒 + 𝑈𝑠𝑜𝑖𝑙 − 𝑃𝑤(0) (3.4) 
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 =
1

2
∫ 𝐸𝑝𝐴𝑝𝜀𝑧

2𝑑𝑧
𝑙

0
+  

1

2
∫ ∬ 𝜎𝑖𝑗𝜀𝑖𝑗𝑑𝑣𝑜𝑙 − 𝑃𝑤(0)

 

 

 

𝑠𝑜𝑖𝑙
 (3.5) 

Taking variations of w and ∅ using variational calculus after substituting for the 

stresses and strains, the following equation was obtained by Vallabhan and Mustafa 

(1996): 

 −(𝐸𝑝𝐴𝑝 + 2𝑡1)
𝑑2𝑤

𝑑𝑧2
+ 𝑘1𝑤 = 0, 𝑓𝑜𝑟 0 < 𝑧 < 𝑙 (3.6) 

Boundary conditions: 

 𝑎𝑡 𝑧 = 0, −(𝐸𝑝𝐴𝑝 + 2𝑡1)
𝑑𝑤

𝑑𝑧
= 𝑃0 (3.7) 

 𝑎𝑡 𝑧 = 𝑙, −(𝐸𝑝𝐴𝑝 + 2𝑡1)
𝑑𝑤

𝑑𝑧
= 𝐾𝑤1 (3.8) 

 𝑤ℎ𝑒𝑟𝑒 𝐾 = √[𝑘2(𝐸2𝜋𝑅2 + 2𝑡2)] (3.9) 

In the above equations: 

 𝑘𝑖 = 2𝜋𝐺𝑖 ∫ 𝑟 (
𝑑∅

𝑑𝑟
)

2

𝑑𝑟
∞

𝑅
 (3.10) 

 𝑡𝑖 = 2𝜋𝐸𝑖 ∫ 𝑟∅2𝑑𝑟
∞

𝑅
 (3.11) 

Two regions of the soil are shown by subscripts i=1,2. The field equation for the soil 

domain is: 

 𝑟
𝑑

𝑑𝑟
(𝑟

𝑑∅

𝑑𝑟
) −

𝑛

𝑚
𝑟2∅ = 0,   𝑓𝑜𝑟 𝑅 < 𝑟 < ∞ (3.12) 

with boundary conditions: 

 𝑎𝑡 𝑟 = 𝑅, ∅ = 1 (3.13) 

 𝑎𝑡 𝑟 = ∞,
d∅

𝑑𝑟
= 0 (3.14) 

the functions m and n are: 

 𝑚 = 2𝜋𝐺1 ∫ 𝑤2𝑑𝑧 +  𝜋𝐺2
𝑤𝑙

2

𝛼

𝑙

0
 (3.15) 

 𝑛 = 2𝜋𝐸1 ∫ (
𝑑𝑤

𝑑𝑧
)

2

𝑑𝑧 +  𝜋𝐸2𝛼𝑤𝑙
2𝑙

0
 (3.16) 
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where 

 𝛼 = √[
𝑘2

(𝐸2𝜋𝑅2+2𝑡2)
] (3.17) 

The equations in this model were developed by Vallabhan and Mustafa (1996) 

through the application of energy principles, taking into account the assumptions made 

for the displacements.  

 

Figure 3.5 Axial displacement vs depth (Vallabhan and Mustafa, 1996) 
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Figure 3.6 Axial force vs depth (Vallabhan and Mustafa, 1996) 

It's evident that the outcomes of this model (Figure 3.5 and Figure 3.6) 

demonstrate a reasonable level of agreement with those produced by a more sophisticated 

finite element model. 

3.5. Mathematical Formulation of the Two-Pile Interaction Model 

İşbuğa (2023) proposed that Vallabhan and Mustafa (1996), which accounts for 

both pile and soil displacement around the pile, can be effectively utilized for modeling 

the interaction between two identical piles embedded in the same soil. Figure 3.7 depicts 

the novel interaction model between the two piles examined by İşbuğa (2023). In Figure 

3.7, S represents the center-to-center radial distance (pile spacing) between the piles, and 

ws symbolizes the soil displacement at the location of the receiver pile. 
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Figure 3.7 Pile-soil-pile interaction between two piles (İşbuğa,2023) 

According to İşbuğa (2023) by assuming that both piles share the same material 

and geometric properties, the governing differential equation provided for a single pile in 

Equation 3.6 can be adapted to incorporate this interaction as follows: 

 −𝐸𝑝𝐴𝑝
𝑑2𝑤2

𝑑𝑧2
− 2𝑡1

(2) 𝑑2(𝑤2−𝑤𝑠)

𝑑𝑧2
+ 𝑘1

(2)(𝑤2 − 𝑤𝑠) = 0 (3.18) 

In Equation 3.18, 𝑤2  represents the displacement of the receiver pile, which arises 

as a result of the loading imposed by the source pile. In this model, he takes into account 

that the soil reaction varies with respect to relative displacement, so boundary conditions 

are modified as mentioned: 

 𝑎𝑡 𝑧 = 0, −𝐸𝑝𝐴𝑝
𝑑𝑤2

𝑑𝑧
− 2𝑡1

(2) 𝑑(𝑤2−𝑤𝑠)

𝑑𝑧
= 0 (3.19) 

 𝑎𝑡 𝑧 = 𝐿, −𝐸𝑝𝐴𝑝
𝑑𝑤2

𝑑𝑧
− 2𝑡1

(2) 𝑑(𝑤2−𝑤𝑠)

𝑑𝑧
= 𝐾(2)(𝑤2 − 𝑤𝑠)𝐿𝑝

 (3.20) 
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Where 2𝑡1
(2)

 and 𝑘1
(2)

 are the soil parameters for the second pile and 𝐾(2) is 

defined as the same as given in Equation 3.6 but using the soil parameters 2𝑡1
(2)

 and 𝑘1
(2)

 

for the receiver pile. 

3.6. Mathematical Formulation of the Pile Group Model 

In this study, İşbuğa (2023) has been further extended to consider the behavior of 

pile groups that have any number of piles. Two different algorithms were developed for 

this model, one of them for pile groups with free-head and the other one is pile groups 

with rigid pile cap.  

Equation 3.18 has been revised in this respect since a pile in pile groups will 

interact with all the other piles around it, so there is more than one pile affecting the pile. 

Each pile will create a soil displacement field, and to find soil displacement at the location 

of the receiver pile, soil displacement caused by each pile at the location of the receiver 

must be summed up. This process should be done for each pile in the group (each pile is 

also a receiver pile).  

 −𝐸𝑝𝐴𝑝
𝑑2𝑤𝑖

𝑑𝑧2 − 2𝑡1
(2) 𝑑2(𝑤𝑖−∑ 𝑤𝑠)

𝑑𝑧2 + 𝑘1
(2)(𝑤𝑖 − ∑ 𝑤𝑠) = 0 (3.21) 

In equation 3.21, the ∑ 𝑤𝑠 means soil displacement created at the location of the 

receiver pile by all neighboring piles. For example, consider a pile group consisting of 4 

piles. Soil displacement due to the loading of the other three piles in the region of the first 

pile here is ∑ 𝑤𝑠. Also, boundary conditions will be modified because in this model pile 

has more neighboring piles.  

 𝑎𝑡 𝑧 = 0, −𝐸𝑝𝐴𝑝
𝑑𝑤𝑖

𝑑𝑧
− 2𝑡1

(2) 𝑑(𝑤𝑖−∑ 𝑤𝑠)

𝑑𝑧
= 0 (3.22) 

 𝑎𝑡 𝑧 = 𝐿, −𝐸𝑝𝐴𝑝
𝑑𝑤𝑖

𝑑𝑧
− 2𝑡1

(2) 𝑑(𝑤𝑖−∑ 𝑤𝑠)

𝑑𝑧
= 𝐾(2)(𝑤𝑖 − ∑ 𝑤𝑠)𝐿𝑝

 (3.23) 

Variables from Equation 3.10 to Equation 3.17 were used in the same way. Two 

different algorithms were developed for the mathematical formulation of the pile group. 

One of them is for free-head pile groups, as considered by İşbuğa (2023). The other one 

is for pile groups which have rigid pile caps. In a rigid pile cap situation, all piles in a 
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group show the same top displacement but support different loads because of interaction, 

and in a free-head situation, a pile can show different displacements under the same load 

because of interaction.  

3.6.1. Algorithm for Analysis of Free-Head Pile Groups 

This section summarizes the algorithm used for the pile groups with free head 

conditions, which denotes that piles are loaded with force at the top surface rather than 

stringent displacement boundary conditions such as the rigid pile cap. The load acting on 

each pile in the group is defined as a point load on the top of the pile. Piles can have equal 

or different loads. As an example, point loads acting on piles in a pile group are shown in 

Figure 3.8. If the pile loads are the same, the displacements created by the pile under that 

load in the surrounding soil are calculated, and since it will be the same for other piles, 

the displacement in the soil is assigned to other piles and the interaction calculation is 

completed. This case makes the algorithm faster than the analysis under different loads. 

When the loads they exposed have different magnitudes for each pile, the displacements 

they create around the surrounding soil will be different for each pile, and in this case, the 

algorithm must repeat this step as many as the number of piles. 
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Figure 3.8 Point loads on piles 

The input parameters we need to define in the program are as follows: 

E1: Elasticity of soil upper layer  

E2: Elasticity of soil bottom layer  

Ep: Elasticity of piles 

vp: Poisson's ratio of piles 

v1: Poisson's ratio of upper soil 

v2: Poisson's ratio of bottom soil 

P: Force acting on the piles 

R: Radius of piles 

l: Length of piles 

N_Pile: number of piles 

Coor: Coordinates of piles 

dr: Radical increment for numerical derivation 

dz: Vertical increment for numerical derivation 

r: Length of the radial boundary of the model 
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err: Tolerable error 

When deciding on vertical increment and radial increment of numerical 

differentiation, different values were used for analysis to test optimum incremental step 

size and the largest case where further minimization does not affect the result and is also 

below the acceptable error should be selected. Also, different values can be selected when 

deciding on the radial limit, but the smallest case should be chosen where increasing the 

limit more does not affect the interaction and displacement of piles. 

The parameters that the algorithm calculates and uses as a result of the operations 

are as follows: 

𝐸1
̅̅ ̅: Elasticity of soil upper layer in Vallabhan and Mustafa (1996) 

𝐸2
̅̅ ̅: Elasticity of soil bottom layer in Vallabhan and Mustafa (1996) 

G1: Shear modulus of soil upper layer 

G2: Shear modulus of soil bottom layer 

k1: Stiffness parameters of Vallabhan and Mustafa (1996) for the upper soil layer 

k2: Stiffness parameters of Vallabhan and Mustafa (1996) for the bottom soil layer 

t1: Stiffness parameters of Vallabhan and Mustafa (1996) for the upper soil layer 

t2: Stiffness parameters of Vallabhan and Mustafa (1996) for the bottom soil layer 

m: Function of Vallabhan and Mustafa (1996) 

n: Function of Vallabhan and Mustafa (1996) 

α: Function of Vallabhan and Mustafa (1996) 

ws: Soil displacement  

Finally, we get the pile displacements (wr) as output. We can summarize the 

algorithm as follows: 

• When we enter the input data, the algorithm first calculates the shear 

modulus and elasticity to be used in the model.  

• Then using the while loop, the algorithm calculates the single pile 

displacement and the soil displacement due to the pile. To begin this 

calculation, the algorithm must use Bessel's equation of order zero. A 

random value is assigned to start the while loop. This while loop continues 

until the margin of error is below the specified tolerance level. As a result 

of the first part, we get the single pile displacement and the soil 

displacement.  



  

30 

• In order to find the distances of the piles to each other, the distance matrix, 

including the relative distance of piles to each other, is calculated for each 

pile. By using the distance matrix, the total soil displacement at each pile 

point is calculated. After the nested loop in which the distance matrix is 

calculated, the displacements resulting from the interaction are found for 

each pile.  

The flow chart of the algorithm is shown in Figure 3.9.  

 

Figure 3.9 Flowchart of an algorithm for free head pile group  
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3.6.2. Algorithm for Analysis of Pile Groups with Rigid Pile Cap 

In this situation, all piles in a group show the same displacement because of the 

rigidity of the pile cap. While having the same displacement at the top, the load taken by 

each pile is different because they are exposed to additional interaction forces, which will 

depend on the pile's location in the group.  The additional settlements that the interaction 

forces would cause will be equaled by the rigid pile cap, which, in turn, compels the force 

distribution among the piles to be adjusted to comply with the same displacement at the 

top as a boundary condition.  

In the scenario where the piles feature a rigid pile cap, the algorithm utilized for 

the analysis of free-head pile groups is initially employed. The displacement of piles in a 

group is calculated by applying a unit load to each pile using the algorithm of a free-head 

pile group situation. This unit load is applied to each pile separately so that the 

coefficients of that pile are found in the stiffness matrix for each loading. This step is 

applied to each pile within the group. Upon completing this loop for all piles, the stiffness 

matrix of the entire pile group, effectively representing the model, is obtained. Once we 

have the stiffness matrix, we can calculate the corresponding forces shown in Equation 

3.24 by providing the displacement values as input. 

   [𝐾]𝑛𝑥𝑛 ∗  [𝑊]𝑛 = [𝑃]𝑛 (3.24) 

where K is the stiffness matrix, W is the displacement matrix of the top 

displacement of piles, and P is the force matrix on piles. 

In the case of a rigid pile cap, the algorithm performs more operations. First of all, 

we apply a unit load to each pile and calculate the top displacements corresponding to 

this unit load. Then, this operation is performed once in the case of a free-head pile group 

for each pile. In order to obtain the stiffness matrix, each pile must be loaded separately 

and the effect of the loaded pile on the other unloaded piles must be calculated. The 

coefficients in the row of the loaded pile in the stiffness matrix can be calculated. To 

create the stiffness matrix, the coefficients in the stiffness matrix of each pile are brought 

together and the matrix is created. After the stiffness matrix is created, the desired top 

displacement is given, and that displacement is assigned to each pile. Then, the load each 

pile carries under the same displacement is calculated. We know that the stiffness matrix 

of the system does not change with the load applied to the piles, the stiffness matrix 
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changes depending on the soil properties, pile properties, and the location of the piles. In 

these processes, we do not change the pile length, pile properties, soil properties, or pile 

layout, we only change the load on the piles. Equation 3.25 is obtained by multiplying 

Equation 3.24 with the inverse of the stiffness matrix.  

   [𝑊]𝑛 = [𝐾]−1
𝑛𝑥𝑛 ∗  [𝑃]𝑛  (3.25) 

To use Equation 3.25, as we mentioned before, we loaded each pile separately and 

calculated the effect of this loading on the piles. Now, we will look at how the inverse of 

the stiffness matrix is calculated. To solve Equation 3.25, we load each pile separately, 

knowing that the stiffness matrix will not change with the load. We know that only one 

pile is loaded, and other piles are unloaded. Therefore, their values are zero in force matrix 

P. Inverse matrix of K is a matrix consisting of k elements, W is a matrix consisting of w 

elements, and P is a matrix consisting of p elements. Therefore, we can show this process 

in which we load the piles one by one as in Equation 3.26 below. 

   𝑘𝑖,𝑗 =
𝑃𝑗

𝑤𝑖
  (3.26) 

 

First, we loaded the first pile and obtained the displacement of the other piles 

according to this loading. By applying Equation 3.26, we find the first column of the 

inverse of the stiffness matrix.  

   𝑘𝑖,1 =
𝑃1

𝑤𝑖
  (3.27) 

When we load the first pile, we can use Equation 3.27. We know the W matrix so 

that we can find each element of the inverse of the stiffness matrix.  

We repeat this process by loading the second pile, and when we load the second 

pile, we will find the second column of the inverse of the stiffness matrix. When this 

process is completed for each pile, we will have all the values of the inverse of the 

stiffness matrix. Since inverse of inverse of the stiffness matrix gives the stiffness matrix, 

we also find the stiffness matrix. In this way, we can now apply Equation 3.24. 
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After finding the stiffness matrix, we can now find the loads on the piles in the 

case of a rigid pile cap. In this case, since all piles will be displaced equally, we will give 

equal displacement to the piles and calculate the corresponding loads. 

All piles are given equal displacement w. The corresponding loads were found by 

multiplying the stiffness matrix and the displacement matrix. On the right side of 

Equation 3.24 is the matrix with the corresponding loads. 

 

Figure 3.10 Pile group with rigid pile cap 

Figure 3.10 shows the 3D view of a pile group consisting of nine piles with a rigid 

pile cap. In this case, the load is applied to the pile cap and all piles displace equally as a 

result of the stiffness of the pile cap. The flow chart of the algorithm is shown in Figure 

3.11.  
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Figure 3.11 Flowchart of an algorithm for pile group with rigid pile cap 
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CHAPTER 4 

 

RESULTS OF THE APPLICATION OF THE METHOD 

DEVELOPED FOR THIS STUDY 

4.1. Introduction 

In this chapter of the thesis results of the numerical analysis of the method which 

is used in this study are presented. Pile groups with different numbers of piles with 

different spacings are analyzed. Analyzed pile groups have rigid pile cap or they are free-

head pile groups. Analysis results were compared with the results of the studies existing 

in the literature and those of the finite element methods.  

4.2. Numerical Examples 

The numerical results of pile groups analyzed in this study are given in this 

section. Four different cases were analyzed, including two free-head pile groups and two 

pile groups having rigid pile cap. 

4.2.1. Example-1: Free Head Pile Group (3x1)  

This section presents the application results of the algorithm, which is mentioned 

in Section 3.6.1, and compares the present study results with those of the finite element 

methods that were performed by using Abaqus. Abaqus is a suite of engineering analysis 

software packages. It is used for simulating the physical behavior of structures and solid 

bodies in response to a variety of factors, such as mechanical loads, temperature 

variations, contact interactions, impacts, and other environmental conditions (Simulia, 

2008). Abaqus is primarily used for performing finite element analysis, a numerical 

simulation technique used to analyze the behavior of structures and systems under various 

conditions and loads. Abaqus was used for pile group analysis to compare the results of 

this study for comparison purposes. For this comparison, a pile group consisting of three 

(3x1) piles was analyzed. The interaction factor was determined for the results obtained 
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by increasing the spacing of this pile group. Both the interaction factors on the piles and 

the computation time of the proposed method and finite element method were compared. 

The layout of the analyzed pile group is shown in Figure 4.1 and Figure 4.2. 

 

Figure 4.1 Plan view of 3x1 pile group 

 

Figure 4.2 Section view of 3x1 pile group 

The spacing between piles was increased step by step, starting from 2D up to 30D. 

The interaction factor-spacing graph was drawn with the results.  

A pile with a diameter of 60 centimeters and a length of 30 meters was created as 

the soil domain in Abaqus. Properties of soil and pile are shown in Table 4.1. 
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Table 4.1 Properties of soil and pile 

Esoil 103 kN/m2 

vsoil 0.3 - 

Epile 106 kN/m2 

vpile 0.2 - 

Lpile 15 m 

Dpile 0.5 m 

Boundary conditions of the soil domain are different at the sides and bottom of 

the soil. Displacement and rotations are used as boundary conditions in this analysis. 

Information about boundary conditions is given in Table 4.2 and Table 4.3.  

Table 4.2 Boundary conditions on the side of the soil domain 

Boundary Condition Allowable (Yes/No) 

Displacement in x-direction No 

Displacement in y-direction No 

Displacement in z-direction No 

Rotation in the x-direction Yes 

Rotation in the y-direction Yes 

Rotation in the z-direction Yes 

Table 4.3 Boundary conditions at the bottom of the soil domain 

Boundary Condition Allowable (Yes/No) 

Displacement in x-direction No 

Displacement in y-direction No 

Displacement in z-direction No 

Rotation in the x-direction No 

Rotation in the y-direction No 

Rotation in the z-direction No 

 

As seen in Table 4.2, rotations were allowed at the side, but displacement was not. 

For the bottom of the soil domain displacement and rotations were not allowed.  
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Figure 4.3 Boundary conditions and loads of model in Abaqus. 

 

Figure 4.4 Mesh of finite element analysis when spacing is 30D. 
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Figure 4.5 Results of finite element analysis in meter when spacing is 30D. 

Figure 4.5 shows the results of finite element analysis when spacing is 30D. 

Generated mesh is also shown in Figure 4.4, triangular elements are used to form mesh 

and mesh is getting finer around the piles. 

The results of the interaction factor of pile P2 are shown in Figure 4.6, P2 is the 

pile in the middle of the other two piles. 

Poulos (1968) calculated the interaction factor by subtracting the displacement of 

a single pile carrying the same load from the displacement of piles within the group and 

dividing the result by the displacement of a single pile. For example, the interaction factor 

for the P2 pile was calculated as in equation 4.1, 𝛼 is the interaction factor. 

   𝛼 = (𝑤𝑃2 − 𝑤𝑠𝑖𝑛𝑔𝑙𝑒)/𝑤𝑠𝑖𝑛𝑔𝑙𝑒 (4.1) 

Where wsingle is the single pile top displacement under identical conditions and wP2 is the 

top displacement of pile P2. The interaction factor was calculated for each spacing by 

changing the spacing between piles and the interaction factor vs. s/D plot, where s is the 

spacing, is shown in Figure 4.6. 
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Figure 4.6 Interaction factor vs. s/D graph for the pile P2. 

The interaction factor vs. s/D plot is also drawn for the P1 pile and is shown in 

Figure 4.7. 

 

Figure 4.7 Interaction factor vs. s/D graph for the pile P1. 

The presence of a strong agreement between the finite element method and this 

study in terms of interaction factors, as demonstrated in Figure 4.6 and Figure 4.7, is 

clearly observable. This matching result suggests that the method proposed in this study 

aligns well with the finite element method, strengthening the credibility of the current 

study. 

Comparing the solution times of the finite element method and the study is a 

valuable way to assess the computational efficiency of each method. Additionally, 

considering the number of nodes in the mesh for both the model proposed in this study 

and the finite element method is essential, as it can provide insights into the computational 

complexity of the models and their ability to handle the analysis efficiently. The number 
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of nodes in the mesh created in the models and the computation times of these models are 

given in Table 4.4. 

Table 4.4 Computational time and node number of FEM and This Study 

  FEM This Study 

Spacing Number of Nodes Time (s) Number of Nodes Time (s) 

2D 71070 59.00 300000 1.22 

3D 24910 20.00 300000 1.28 

4D 23700 20.00 300000 1.14 

5D 21722 18.00 300000 1.20 

10D 25128 22.00 300000 1.12 

15D 141015 165.00 300000 1.12 

20D 134405 129.00 300000 1.19 

30D 94176 94.00 300000 1.17 

 

The significant difference in solution times between this study and the finite 

element method, as demonstrated in Table 4.4, is remarkable. It's apparent that this study 

achieves solutions much faster, so this can have practical implications for efficiency and 

productivity in engineering and analysis tasks.  

The comparison of displacements at the top of the P2 pile between the finite 

element models and this study, as shown in Figure 4.8, indicates a difference of 

approximately 10%. The results of this study are around 10% smaller than those obtained 

from finite element analysis. This difference can be attributed to the fact that this study 

does not account for the radial displacement in the model. 

 

Figure 4.8 Displacement at the pile top (P2) vs. s/D 
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It's noteworthy that the 10% difference appears to be consistent across different 

pile spacings. This consistency suggests that the mesh used in the study doesn't 

significantly affect the results. Rather, the primary reason for the difference lies in the 

fact that radial displacement is not considered in the study, which is inherited from the 

single pile model used as a basis for this study. If radial displacement was allowed in this 

study, it might have influenced the results, likely leading to increased pile displacements.  

4.2.2. Example-2: Free Head Pile Group (5 Pile) 

In this section, a pile group consisting of five piles was analyzed with the Abaqus 

software and the methods developed in this study. The plan view of the model is given in 

Figure 4.9. As it can be seen in Figure 4.9, there are piles in the corners and one in the 

middle. Since the piles at the corners will behave symmetrically under equal loads, the 

same numbering is used for them. In this model, the pile that will show different 

displacements under equal load is the one in the middle. 

 

Figure 4.9 Plan view of pile group 

The soil properties are shown in Figure 4.10, three different soils can be seen. This 

problem is also modeled in finite element method. However, the model written in this 

study is suitable for two-layered soils. In the proposed model, it is possible to model soil 

along the pile depth and a different soil below the pile toe. For this reason, the soil shown 

in Figure 4.10 was used for the bottom of the pile, but the weighted average of the soils 

shown in Figure 4.10 was taken for the soil around the pile. 
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Figure 4.10 Soil properties of the FEM model 

 

Figure 4.11 Averaged soil properties used for the current study 

Three-dimensional views of the models are shown in Figure 4.12 and Figure 4.13. 

As seen in Figure 4.12, three different soil types were applied around the piles in finite 

element analysis. For the model proposed in this study, there are two soil layers one of 

them around the piles and the other one below the pile toe as seen in Figure 4.13. 
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Figure 4.12 3D view of the FEM model 

 

Figure 4.13 3D view of the current study model 
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The soil and pile properties used in this analysis are given in Table 4.5. It was 

multiplied by the coefficient numbers given in Figure 4.10 and Figure 4.11 and used in 

the models. 

Table 4.5 Properties of soil and pile 

Esoil 103 kN/m2 

vsoil 0.3 - 

Epile 106 kN/m2 

vpile 0.2 - 

Lpile 14 m 

Dpile 0.5 m 

The boundary conditions used in the finite element model are the same as the 

boundary conditions given in Table 4.2 and Table 4.3. The view of boundary conditions 

in the finite element model is shown in Figure 4.14. 

 

Figure 4.14 Boundary conditions of the model in Abaqus. 
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Each of the five piles in the model carries a load of 100 kPa. The load is given as 

surface traction in finite element analysis. However, in the proposed method, the load is 

given as point load and each pile is loaded with 19.64 kN point load, this value is obtained 

by multiplying 100 kPa by the pile surface area. The mesh used in finite element analysis 

is shown in Figure 4.15, there are a total of 316252 nodes in this mesh. 

 

Figure 4.15 Mesh of finite element model. 

Finite element analysis results are shown in cross-section in Figure 4.16. The 

section taken cuts the middle pile from its center. 
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Figure 4.16 Results of finite element analysis. 

In Figure 4.16, the model results are shown with contours. The section cuts the 

middle pile from its center. The two piles behind the center pile can also be seen in this 

section. 

In the layout shown in Figure 4.9, the pile expected to show the most displacement 

is the pile in the center. The pile in the center is the pile closest to all the other piles, and 

thus it is the pile that interacts with the other piles the most. For this reason, the results of 

the finite element method and those of this study were compared for the center pile. This 

comparison aims to measure the success of this study against the finite element method 

in modeling the interaction between piles. 

In Figure 4.17, the finite element method results and the results found with the 

current study are compared. 
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Figure 4.17 Displacement of the center pile along its depth in FEM and this study 

As seen in Figure 4.17, the results of the current study are compatible with finite 

element method. The computation time of the finite element method and the current study 

are presented in Table 4.6. 

Table 4.6 Computational time and node number of FEM and This Study 

FEM This Study 

Number of Nodes Time (s) Number of Nodes Time (s) 

316252 871.80 280000 1.39 

As can be seen in Table 4.6, the computation time of the current study in reaching 

the solution is much faster than the finite element method. 
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4.2.3. Example-3: Pile Group with Rigid Pile Cap (3 x 3) 

Chen et al. (2011) conducted an analysis of pile groups using their unique model, 

which is detailed in Section 2.3.5. They specifically studied a 3x3 pile group with a rigid 

pile cap and compared the forces supported by the single piles within the group. 

The layout of the pile group is illustrated in Figure 4.18 and Figure 4.19. Notably, 

there are three distinct types of piles due to their positions within the layout. Corner piles 

are situated at the corners of the layout and exhibit symmetrical behavior relative to one 

another. Side piles are positioned along the sides of the layout and demonstrate 

symmetrical behavior among themselves. Centre pile is one pile situated in the center of 

the layout. 

The analysis focused on understanding how these different pile positions and their 

symmetrical or asymmetrical arrangements within the group influence the distribution of 

forces and load-sharing characteristics among the piles. 

 

Figure 4.18 Plan view of 3x3 pile group 
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Figure 4.19 Section view of 3x3 pile group 

Chen et al. (2011) used a ratio of L/D=60, indicating that the length of the pile (L) 

was 60 times greater than its diameter (D). This value characterizes the geometry of the 

piles within the group. The Poisson's ratio for the soil was set to 0.3. Poisson's ratio is a 

material property that describes how a material deforms in response to a load. In this case, 

it represents the soil's behavior. The researchers used two different Ep/Es ratios, where Ep 

is Young's modulus of pile and Es is the Young's modulus of soil. 

The results of their analysis for these two different values of Young's modulus 

ratio are presented in Figure 4.20 and Figure 4.21. These figures illustrate how changes 

in the stiffness properties of the soil and pile materials impact the forces supported by the 

single piles within the group. 
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Figure 4.20 Spacing - load distribution graph of in 3x3 pile group: Ep/Es = 5000 

 

Figure 4.21 Spacing - load distribution graph of in 3x3 pile group: Ep/Es = 500 

In Figure 4.20, the results are in good agreement with the results of Chen et al. 

(2011). However, the difference between this study and Chen et al. (2011) increases as 

the ratio of Young's modulus (Ep/Es) decreases as seen in Figure 4.21. 

In this study, the interaction responds faster as the spacing between the piles 

increases, as the spacing increases, the piles reach to support the same load faster. 
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4.2.4. Example-4: Pile Group with Rigid Pile Cap (5 Pile) 

In this section, the case of the model mentioned in Section 4.2.2 with a rigid pile 

cap is analyzed. This was analyzed by finite element method and the method developed 

in this study. The rigid pile cap case for finite element method was calculated using a 

similar method as in the approach mentioned in Section 3.6.2. For this, the stiffness matrix 

of the system was found by loading each pile separately in the finite element model. After 

finding the stiffness matrix, the forces on the piles were calculated by using the finite 

element results with the method in the algorithm described in Section 3.6.2. The results 

of this study were calculated using the algorithm described in Section 3.7.2 and used in 

Section 4.2.3. The plan view of the pile layout is given in Figure 4.22. 

 

Figure 4.22 Plan view of pile group 

In the finite element analysis, the soil shown in Figure 4.10 was modeled. For the 

proposed method, the soil shown in Figure 4.11 was modeled. As soil properties, the 

properties specified in Table 4.5 were used. 

The three-dimensional view of the models used in the finite element method and 

the model performed in the current study are given in Figure 4.23 and Figure 4.24. 
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Figure 4.23 3D view of the FEM model 

 

Figure 4.24 3D view of the current study model 
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Table 4.7 Results and computational times of FEM and This Study 

FEM This Study 

Number of Node Time (s) Pcenter/Pavg Number of Node Time (s) Pcenter/Pavg 

316252 955.00 0.75 280000 4.13 0.65 

Looking at the results in Table 4.7, the computation time of the proposed method 

is smaller than that of the finite element method. In other words, in the result of the 

approach applied in this study, the pile in the center carries 65% of the average load per 

pile. However, according to the finite element method, the pile in the center carries 75% 

of the average load per pile. It is understood from these results that the approach used in 

this study finds the interaction between piles more than the finite element method. If there 

was no interaction between the piles, each of them would carry an equal load, but due to 

the interaction, the load carried by the pile in the center is less since it already shows 

displacement.  

In the approach applied in this study, the stiffness created by the piles in the area 

where they are located is not taken into account. More precisely, in this approach, the area 

where the piles are located is taken into account as the soil and then the displacement in 

the soil is transferred to the pile located there. The finite element method, on the other 

hand, takes into account the stiffness of the pile in the soil. Therefore, in the finite element 

method, the pile in the center carries more load. The difference between the results is 

explained in this way. 

 

Figure 4.25 Load-Displacement curve of corner pile and center pile 
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The analyses were repeated under different loads using the proposed method. The 

load-displacement graphs for the corner piles and the center pile are shown in Figure 4.25. 

As can be seen in Figure 4.25, the difference between the graphs increases as the 

load increases, but the ratio between them does not change. The center pile carries 65% 

of the average load per pile under each loading. This is expected because, in the model 

developed in this study, the soil and the pile are considered as elastic materials.  

Figure 4.25 shows that in the finite element method, the difference between the 

loads carried by the piles in the group is less than those found in the current study. This 

is because, as mentioned earlier, the approach in this study does not take into account the 

stiffness of the piles on the soil. Instead, the location of the piles is considered as the soil, 

and the soil displacement due to the neighboring piles at that point is calculated, and the 

total soil displacement is converted to the interaction force by multiplying it with soil 

stiffness parameters. This interaction force acts on the receiver pile. When we look at the 

single pile results, we see that the results of this study are higher than those of the finite 

element method. However, in the group pile results (P2 pile), the results of this study have 

less load than the finite element method results. This shows that not taking stiffness which 

is caused by piles in the soil into account may cause us to overestimate the interaction 

between the piles. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

56 

CHAPTER 5 

 

CONCLUSION 

In this study, different pile groups were analyzed, and the analysis results were 

compared with previous studies and finite element method results. Cases, including pile 

groups that have rigid pile caps and no capping (free-head) are considered separately, and 

comparisons, including finite element method results and other existing methods in the 

literature, are made accordingly. In addition, analysis was made using a weighted average 

for non-homogeneous soils, and the results of this analysis were modeled as non-

homogeneous in the finite element method, and a comparison was made between them. 

In the case of the free head, the interaction factor calculated for the piles shows 

that the results are in good agreement with the finite element method. In the same results, 

there is a 10% difference in terms of displacements between the model developed in this 

study and the finite element method, and the finite element method results show more 

displacement. In terms of computation time, the model developed in this study is much 

faster than the finite element method. 

The model developed in this study for non-homogeneous soil conditions is not 

suitable for direct use; currently, this model allows the defining of two soil layers. It is 

possible to model soil along the pile depth and a different soil below the pile toe. For this 

reason, soil parameters were used by taking the weighted average for the non-

homogeneous situation. Analyses performed in this way have shown that the analyses 

made by taking the weighted average of elasticity moduli are in good agreement with the 

finite element method results. In this way, it can be said that this model developed can 

also be used for non-homogeneous cases.  

The results of this study show that the developed model is more successful than 

the finite element method in terms of computation time. However, it is still possible to 

improve the model. From this perspective, the work to be done to develop the model can 

be listed as follows: 

• Radial displacements are not taken into account in the model developed in 

this study, which may be one of the significant reasons for the difference 

in results. 
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• The model does not take into account the stiffness created by placing the 

piles in the soil; taking this situation into account will change the 

interaction between the piles. 

• For non-homogeneous soils, analyses are made by taking a weighted 

average. This situation can be improved by making the model suitable for 

non-homogeneous soils. 

This study shows us that the proposed model presents results that match those 

of the finite element method and the other models previously proposed by researchers in 

the literature. In addition, the proposed method reaches a solution many times faster than 

the finite element metod. For this reason, it is understood from the analysis results that 

the success of this model is undeniable. 
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