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ABSTRACT

ELECTRONIC PROPERTIES OF CORRELATED IMPURITIES IN TWO 
DIMENSIONAL MATERIALS

This Master’s thesis investigates the effects of single and dual impurity potentials 
on the electronic properties of both pristine and gapped graphene, being examples of 
two-dimensional materials. The behavior of 2D materials at the atomic levels, 
particularly graphene, has been of interest due to their particular electronic properties, 
such as high electron mobility at certain conditions. The presence of impurities may 
significantly influence these properties, providing a modifiable platform for 
rearranging electronic characteristics for diverse applications.

Our research focuses on how the impurity states that emerge, especially around 
energies at low DOS, affect the electronic structure and the interaction between the 
impurities. We study these effects in the presence of both single and dual impurity 
potentials of varied strength using computational models based on tight-binding 
approach. We begin by looking at how the single impurity potentials affect the 
electronic properties of pristine graphene and gapped graphene. We analyze the 
change in DOS and energy of the system, along with the identification of the impurity 
states, utilizing participation ratio for localization. Then, we extend our study to dual 
impurity potentials and their impacts to provide a knowledge of multi-impurity 
scenarios. We explore the interaction of the impurities mediated by the Fermi sea. In 
particular, we studied the hybridization of impurity states and corresponding impurity 
energies. Next, we determine the force arising between impurities for various Fermi 
energies, impurity-impurity distances and impurity potential strengths for graphene and 
gapped graphene.
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ÖZET

İKİ BOYUTLU MALZEMELERDE İLİŞKİLİ SAFSIZLIKLARIN 
ELEKTRONİK ÖZELLİKLERİ

Bu yüksek lisans tezi, tek ve ikili safsızlık potansiyellerinin, iki boyutlu malzeme 
örneği olan grafen ve bant aralıklı grafenin elektronik özellikleri üzerindeki etkilerini 
araştırmaktadır. İki boyutlu malzemelerin, özellikle de grafenin atom seviyesindeki 
davranışı, belirli koşullar altında yüksek elektron hareketliliği gibi belirli elektronik 
özelliklerinden dolayı ilgi çekici olmuştur. Safsızlıkların varlığı bu özellikleri önemli 
ölçüde etkileyebilir ve çeşitli uygulamalar için elektronik özelliklerin yeniden 
düzenlenmesi için değiştirilebilir bir platform sağlayabilir. Araştırmamız, özellikle 
düşük durum yoğunluğundaki enerjiler etrafında ortaya çıkan safsızlık durumlarının 
elektronik yapıyı ve safsızlıklar arasındaki etkileşimi anlamaya odaklanmaktadır. Bu 
etkileri, ’tight-binding’ yaklaşımına dayalı hesaplama modelleri kullanarak, çeşitli 
büyüklüklerdeki hem tekli hem de ikili safsızlık potansiyellerinin varlığında 
inceliyoruz. Tek safsızlık potansiyellerinin grafenin ve bant aralıklı grafenin elektronik 
özelliklerini nasıl etkilediğine bakarak başlıyoruz. Daha sonra, çoklu safsızlık 
senaryoları hakkında bilgi sağlamak için çalışmamızı ikili safsızlık potansiyellerini ve 
bunların etkilerini kapsayacak şekilde genişletiyor ve Fermi denizinin aracılığıyla 
oluşan safsızlık potansiyellerinin etkileşimlerini araştırıyoruz. Özellikle, safsızlık 
durumlarının hibridizasyonunu ve bunlara karşılık gelen safsızlık enerjilerini inceledik. 
Daha sonra, grafen ve bant aralıklı grafen için, safsızlıklar arasında ortaya çıkan kuvveti 
çeşitli Fermi enerjileri, safsızlıklar arası mesafe ve potansiyel güçlerine göre 
belirleyerek analiz ediyoruz.
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CHAPTER 1

Introduction

2D materials, sometimes referred to as single layer materials, are crystalline ma-
terials consisting of a single layer of atoms. Graphene, commonly associated with 2D
materials, is one of the most studied examples of these materials, while there are many
others these days, such as hexagonal boron nitride (h-BN), phosphorene and silicene.
Graphene, a two-dimensional hexagonal lattice of carbon atoms, has attracted extensive
interest in the field of condensed matter physics due to its special electronic properties.
Its unique band structure and transport characteristics have led to various applications,
ranging from nanoelectronics to energy storage devices. Understanding the electronic
behavior of graphene under different conditions is essential for exploring its potential
applications and improving its performance.

The theoretical foundations of graphene can be traced back to 1947, when Wallace
demostrated the unusual semi-metallic behavior of this material in his valuable work "The
Band Theory of Graphite" (Wallace, 1947). Diamond and graphite were considered to
be the only two physical forms of carbon until the mid-1980s (Seekaew et al., 2019).
Boehm et al. proposed the name "graphene" in 1986 by combining the words graphite
with the suffix "en" (Boehm et al., 1994). A historic moment in graphene research oc-
curred in 2004, when Novoselov et al. synthesized graphene using the micromechanical
cleavage technique (Novoselov et al., 2004). Given the significance of this achievement
for physics and materials research, Novoselov and Geim were awarded the Nobel Prize in
Physics in 2010. Graphene has great potential for both scientific and technological appli-
cations due to its unique electronic properties, such as high electron mobility and thermal
conductivity. This potential spans a spectrum of applications, from ultra-high frequency
transistors and gas sensors to transparent flexible electrode materials (Wehling et al., 2009).

In recent years, the investigation of the electronic properties of graphene has ex-
tended beyond pristine systems to include the effects of impurities and defects. Impurity
potentials, resulting from adsorbed atoms or vacancies in the lattice, can significantly
modify the electronic structure and transport properties of graphene(Wehling et al., 2009).
Therefore, understanding the impact of these impurities on graphene’s electronic behavior
is of great importance. Furthermore, the physics of graphine exhibits interesting phe-

1



nomena such that its low energy excitations are massless, Chiral, and Dirac fermions
(Castro Neto et al., 2009). The interaction between impurities in graphene can be de-
scribed as a fermionic version of the Casimir interaction, with massless fermions acting as
photons. Depending on whether the impurities are on the same sublattice or on different
sublattices, the interaction will be either attractive or a repulsive (Shytov et al., 2009). This
gives the possibility of adjusting the sign of the impurity interaction through Fermi energy
modifications (Lebohec et al., 2014). In the presence of impurities and defects in a elec-
tronically conducting medium induces perturbations due to the scattering of its electrons.
These variations in electronic scattering emerge as spatial oscillations known as Friedel
oscillations (Lawlor et al., 2013). The introduction of magnetic impurities in graphene
has created an exciting field for researchers. These impurities can induce local magnetic
moments, leading to potential applications in spintronics (Uchoa and Castro Neto, 2007).
Furthermore, the interaction between these magnetic moments and graphene’s 𝜋 elec-
trons can lead to various many-body effects, including potential magnetic ordering or the
emergence of the Kondo effect (Wehling et al., 2008).

Figure 1.1: Construction of materials from Graphene for different dimensions. (Geim and
Novoselov, 2007).

In this Master’s thesis, we focus on studying the electronic effects of impurity
potentials on a sample graphene bulk. The toroidal geometry is chosen to simulate the
behavior of graphene samples by imposing periodic boundary conditions. The system
consists of a torus-shaped graphene sheet, which can be represented as a periodic array of
unit cells as a finite-sized system. In order to better understand the electronic properties
of a 2D material like graphene, two impurities have been studied as a further step along
with a single impurity.
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To investigate the electronic properties of this system, we employ a tight-binding
model, which accurately captures the quantum mechanical behavior of electrons in
graphene. The tight-binding Hamiltonian provides a computationally efficient frame-
work for simulating the electronic structure and transport properties of graphene-based
systems. We utilize Matlab, a powerful numerical computing environment, to construct
and solve the tight-binding Hamiltonian for the graphene sheet.

The primary objectives of this thesis are as follows:

* Constructing the tight-binding Hamiltonian for the torus-shaped graphene bulk
as a finite-sized system.

* Introducing a single impurity potential within the lattice and studying its elec-
tronic effects on the graphene system.

* Analyzing the modification of the electronic band structure and density of states
due to the impurity potential along with the total energy change of the system by adjusting
fermi level.

* Investigating the total energy changes in the system consists of two impurities
by determining the localized states for various impurity potentials.

* Determining the attractive and repulsive interactions between impurity states for
different potential strengths and adjusted fermi levels that emerge from the existence of
two impurity potentials.

By achieving these objectives, we aim to provide insights into the electronic
behavior of graphene in the presence of impurities, contributing to the fundamental un-
derstanding of graphene physics and its potential applications

In the subsequent chapters, we will present the theoretical background of graphene,
the tight-binding model, and the methodology used to construct the tight-binding Hamil-
tonian for the torus-shaped graphene bulk. We will then discuss the results obtained
from our simulations and provide a comprehensive analysis of the effects on electronic
properties induced by the impurity potentials. Finally, we will draw conclusions based on
our findings and propose future directions for further investigation.

Overall, this Master’s thesis aims to contribute to the growing body of knowledge
on the electronic behavior of graphene, specifically focusing on the impact of impurity
potentials in a finite-sized graphene sheet obeying boundary conditions.
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1.1 Graphene

Graphene is a two-dimensional crystal with a periodic arrangement of atoms ex-
tending along both the x and y axes in the plane. The honeycomb lattice of graphene
consists of two carbon atoms per unit cell, labelled A and B as scetched in Fig.1.2. The
graphene unit cell is thus described as a two-atom basis with hexagonal lattice symmetry.
Three valance electrons of carbon,- out of four, make 𝑠𝑝2(sigma bonds) bonding with
their nearest neighbors. Remaining unpaired one electron in 𝑝𝑧 orbital feels weak periodic
potential and moves almost freely in graphene.

To begin with, we define the lattice vectors, or primitive vectors, of the graphene
unit cell. These vectors, denoted as 𝒂1 and 𝒂2, point from one lattice point to another.
They are typically chosen to form the edges of the unit cell, with each vector spanning
from one carbon atom to another. The primitive vectors can be written as:

𝒂1 = 𝑎

(√
3

2
,
3

2

)
𝒂2 = 𝑎

(
−
√
3

2
,
3

2

)
(1.1)

where 𝑎 is the lattice constant which is approximately 1.42 𝐴0 which is the distance
between two adjacent carbon atoms in graphene.

The reciprocal lattice is a lattice in reciprocal space, i.e., in momentum space;
which is very important for understanding several phenomena in the context of solid-state
physics. The corresponding reciprocal lattice vectors, denoted 𝒃1 and 𝒃2, are given by:

𝒃1 =
2𝜋

3𝑎

(√
3, 1

)
𝒃2 =

2𝜋

3𝑎

(
−
√
3, 1

)
(1.2)

As shown in Fig.1.3 there are three 𝑲 and 𝑲′ points at the corners of graphene
Brillouin zone (BZ). These crucial points are also named Dirac points. They are as follows:

𝑲 =
2𝜋

3𝑎

(√
3

3
, 1

)
𝑲′ =

2𝜋

3𝑎

(
−
√
3

3
, 1

)
(1.3)
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Figure 1.2: Lattice structure of graphene with A and B sites labeled. 𝛿1, 𝛿2 and 𝛿3 are
nearest neighbor vectors (Castro Neto et al., 2009).

Figure 1.3: Burillioun zone of graphene with Dirac poins 𝐾 , 𝐾′ and zone center Γ point
(Castro Neto et al., 2009).
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1.2 Tight-binding Hamiltonian

The tight-binding model is a mathematical framework used to describe the elec-
tronic structure of a solid. Considering nearest neighbor hopping (NN) 𝑡1 and next-nearest
neighbor hopping (NNN) 𝑡2, the tight-binding Hamiltonian for graphene is

𝐻 =
∑︁
𝑖

𝜀𝑜

(
𝑎
†
𝑖
𝑎𝑖 + 𝑏†𝑖 𝑏𝑖

)
− 𝑡1

∑︁
⟨𝑖, 𝑗⟩

(
𝑎
†
𝑖
𝑏 𝑗 + 𝑏†𝑗𝑎𝑖

)
) − 𝑡2

∑︁
⟨⟨𝑖, 𝑗⟩⟩

(
𝑎
†
𝑖
𝑎 𝑗 + 𝑏†𝑖 𝑏 𝑗 + ℎ.𝑐.

)
, (1.4)

where 𝑖( 𝑗) labels sites in sublattice 𝐴(𝐵), the fermionic operator 𝑎†
𝑖
(𝑎𝑖) creates (anni-

hilates) an electron at the 𝐴 site whose position is r𝑖, and 𝑏†
𝑗

(
𝑏 𝑗

)
acts similarly for 𝐵

sublattice, 𝜀𝑜 (set to 0 for simplicity) is the on-site energy. Additionally, "h.c." stands for
"Hermitian conjugate." which is 𝑎†

𝑗
𝑎𝑖 + 𝑏†𝑗𝑏𝑖 in (1.4). We can rewrite the sum over nearest

neighbors as ∑︁
⟨𝑖, 𝑗⟩

(
𝑎
†
𝑖
𝑏 𝑗 + 𝑏†𝑗𝑎𝑖

)
=

∑︁
𝑖∈𝐴

∑︁
𝛿

(
𝑎
†
𝑖
𝑏𝑖+𝛿 + 𝑏†𝑖+𝛿𝛿𝑖

)
(1.5)

where the sum over 𝛿 is carried out over the nearest-neighbor vectors 𝛿1, 𝛿2, and 𝜹3, and
the operator 𝑏𝑖+𝛿 annihilates a fermion at the 𝐵 site whose position is r𝑖 + 𝜹. Using

𝑎
†
𝑖
=

1√︁
𝑁/2

∑︁
k

𝑒𝑖k·r𝑎†
k
, (1.6)

where 𝑁/2 is the number of 𝐴 sites, and similarly for 𝑏†
𝑖+𝛿, we can write the tight-binding

Hamiltonian for graphene (1.4) including only NN interactions by taking 𝑡2 = 0 as

6



𝐻 = − 𝑡1

𝑁/2
∑︁
𝑖∈𝐴

∑︁
𝛿,kk′

[
𝑒𝑖(k−k

′)·r𝑖𝑒−𝑖k
′·𝛿𝑎†

k
𝑏k′ + h.c.

]
= −𝑡1

∑︁
𝛿,k

(
𝑒−𝑖k·𝛿𝑎†

k
𝑏k + h.c.

)
= −𝑡1

∑︁
𝛿,k

(
𝑒−𝑖k·𝛿𝑎†

k
𝑏k + 𝑒𝑖k·𝛿𝑏†k𝑎k

)
, (1.7)

where in the second line we have used

∑︁
𝑖∈𝐴

𝑒𝑖(k−k
′)−ri =

𝑁

2
𝛿kk′ . (1.8)

The Hamiltonian can now be represented as

𝐻 =
∑︁
k

Ψ†h(k)Ψ (1.9)

where

Ψ ≡
(
𝑎k

𝑏k

)
, Ψ† =

(
𝑎
†
k
𝑏
†
k

)
(1.10)

The matrix form of the Hamiltonian will be

h(k) ≡ −𝑡1

(
0 Δk

Δ∗
k

0

)
(1.11)
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with
Δk ≡

∑︁
𝛿

𝑒𝑖k·𝛿 . (1.12)

The eigenvalues of h(k) are 𝐸± = ±𝑡1
√︁
ΔkΔ

∗
k
. We can compute this by writing Δk out

more explicitly:

Δk = 𝑒
𝑖k·𝛿1 + 𝑒𝑖k·𝛿2 + 𝑒𝑖k·𝛿3

= 𝑒𝑖k·𝛿3
[
1 + 𝑒𝑖k·(𝛿1−𝛿3) + 𝑒𝑖k·(𝛿2−𝛿3)

]
= 𝑒−𝑖𝑘𝑧𝑎

[
1 + 𝑒𝑖3𝑘𝑥𝑎/2𝑒𝑖

√
3𝑘𝑦𝑎/2 + 𝑒𝑖3𝑘𝑧𝑎/2𝑒−𝑖

√
3𝑘𝑦𝑎/2

]
= 𝑒−𝑖𝑘𝑧𝑎

[
1 + 𝑒𝑖3𝑘𝑥𝑎/2

(
𝑒𝑖
√
3𝑘𝑦𝑎/2 + 𝑒−𝑖

√
3𝑘𝑦𝑎/2

)]
= 𝑒−𝑖𝑘𝑧𝑎

[
1 + 2𝑒𝑖3𝑘𝑥𝑎/2 cos

(√
3

2
𝑘𝑦𝑎

)]
.

(1.13)

Thus, the energy bands are given by

𝐸±(k) = ±𝑡1

√√√
1 + 4 cos

(
3

2
𝑘𝑥𝑎

)
cos

(√
3

2
𝑘𝑦𝑎

)
+ 4 cos2

(√
3

2
𝑘𝑦𝑎

)
, (1.14)

or, as it can be written as well,

𝐸±(k) = ±𝑡1
√︁
3 + 𝑓 (k) (1.15)

where

𝑓 (k) = 2 cos
(√

3𝑘𝑦𝑎
)
+ 4 cos

(
3

2
𝑘𝑥𝑎

)
cos

(√
3

2
𝑘𝑦𝑎

)
. (1.16)
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These are two gapless bands that touch at the Dirac points K and K′. In other words,
the Dirac points are the points in k-space for which 𝐸±(k) = 0. The resulting dispersion
relation as a graph can be seen in Fig.1.4

Figure 1.4: Energy bands for graphene from nearest-neighbor interactions. The bands
meet at the Dirac points, at which the energy is zero.
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CHAPTER 2

Impurities on 2D Material

The electronic properties of graphene are unique due to its special crystal structure,
and can be modeled using the tight-binding model. The model offers the ability to
numerically build even straightforward models in order to analyze the impact of impurities
on graphene. In addition to being of theoretical importance, understanding how impurities
affect graphene is crucial for applications that can benefit from its special characteristics.
Graphene and gapped graphene have been represented using this method to give a basis
for understanding 2D materials. Table 2.1 can be used to have quick snapshot about the
covered areas to be analyzed .

Table 2.1: The map of the covered areas for numerical analysis.

Pure Graphene Gapped Graphene

Single Impurity - DOS - DOS

- Energy by Index - Energy by Index

- Energy and PR by
Strength

- Energy and PR by
Strength

Two Impurities DOS DOS

- Energy by Index - Energy by Index

- Energy and PR by
Strength

- Energy and PR by
Strength

- Total Energy - Total Energy

- Force between imp.
states

- Force between imp.
states
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2.1 Pristine Graphene

2.1.1 Single Impurity

In this section, the effects of a single impurity on a sample graphene sheet have
been studied. Firstly, tight-binding Hamiltonian for the sample has been constructed as
a matrix for the numerical analysis. The constructed tight-binding Hamiltonian, 𝐻 with
an impurity has been diagonalized to analyze the effects of impurity on the electronic
properties of graphene; such as localized eigenstates, density of states(DOS) and energy
changes in the system. In this study the sample is composed of 10000 (100x100) unit cells
containing 20000 atoms and the impurity was assumed to be located on 𝑨 site of the unit
cell designated as the sample sheet’s initial unit cell. Three input parameters are used to
construct 𝐻 :

• 𝑁 , the number of atoms in each direction;

• 𝑡1, the hopping parameter (due to NN overlapping);

• 𝑉𝑖𝑚𝑝, the impurity potential.

Imposing periodic boundary conditions ensures that the electronic states are prop-
erly described for a periodic system. Then the hopping matrix construction continued by
iterating over all pairs of atoms and setting the off-diagonal elements to −𝑡1 if the distance
between the atoms is less than a certain threshold which is the nearest neighbor atoms in
this case. Finally, the impurity potential has been added to the diagonal element of 𝐻.
On-site energies are assumed to be 0 for the simplicity since all atoms are identical in
the system. Each lattice site corresponds to an atomic orbital resulting the hamiltonian
matrix of size (𝑁x𝑁). Lastly the value of 𝑡1 is set to 1, to allow for easy comparison of
the numbers in the study.

Fig. 2.1 aims to help visualize a basic small sample of a lattice structure consist-
ing of 7x7 unit cells in real space coordinates. Fig. 2.2 shows the reciprocal lattice in
reciprocal space, which corresponds to the 90° rotated shape of the lattice in real space.
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Figure 2.1: Representation of graphene lattice in real space.
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Figure 2.2: Representation of graphene lattice in reciprocal space.

12



Once having the Hamiltonian matrix ready, now it can be diagonalized to obtain
the eigenvalues and eigenvectors. The eigenvalues represent the allowed energy levels,
while the corresponding eigenvectors provide information about the electronic wavefunc-
tions and their spatial distribution.

DOS is defined as
𝐷 (𝐸) =

∑︁
𝑖

𝛿(𝐸𝑖 − 𝐸) (2.1)

by using lorentzian function for a smooth plot

𝐿 (𝐸) = 1

𝜋
· 𝛿

(𝐸 − 𝐸𝑖)2 + 𝛿2
(2.2)

we can get the DOS shown in Fig. 2.3a and 2.3b for pure graphene and for graphene with
single impurity accordingly.
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2000

3000

4000

5000
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(a) With no impurity

-4 -2 0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000

6000

(b) With a single impurity; 𝑉𝑖𝑚𝑝 = 10𝑡1

Figure 2.3: DOS using lorentzian with 𝛿 = 0.1
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In order to visualize the change in DOS around the Fermi energy level 𝛿 is set to 0.001 and
the plots have been combined with a zoom in part around 𝐸 = 0 in Fig. 2.4 In our numer-
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4
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7

8

9

10
10

4

Magnified

region in the

right plot

(a) combined form of Fig.2.3a and 2.3b.
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Energy / t
1

Impurity
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(b) Zoomed in region of the plot 2.4a

Figure 2.4: Paired and zoomed region of the Fig.2.3 with 𝛿 = 0.001

ical analysis of a single impurity potential on the sample, we observed notable changes
in the density of states (DOS) and energy distribution. From the DOS graph, we saw a
distinct peak around the Fermi energy level, indicative of the influence of the impurity. We
identify this peak as impurity state. In contrast, the pristine graphene exhibited a zero DOS
at the Fermi level, characteristic of its semi-metallic behavior. The energy distribution
by index plot further provided insights into the scattering effects caused by the impurity
(Fig.2.5). A shift in energy levels was seen, supporting the disruption in the electronic
structure of graphene. These findings, as visually represented in the provided plots, re-
inforce the substantial impact of a single impurity on the electronic properties of graphene.

To gain a better understanding of the impact of impurity potential strength on the
impurity state that emerges near the Fermi level, energy by strength and participation ratio
by strength relationships have been investigated. The participation ratio (𝑃𝑅) is often
used as a measure of the localization of a quantum state. It is defined as the the sum of the
squares of the probabilities of the state in a given basis. In other words, if a normalized
quantum state |Ψ⟩ can be expressed as a linear combination of 𝑁 basis states |𝑛⟩ with
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Figure 2.5: Paired and zoomed region of Energy by Index graphs

coefficients 𝑐𝑛, then the participation ratio is given by:

𝑃𝑅 =
∑︁
𝑛

|𝑐𝑛 |4 (2.3)

where |𝑐𝑛 |2 is the probability to find the state in the 𝑛𝑡ℎ state. A high participation ratio
indicates that the state is highly localized in the chosen basis, while a low participation
ratio indicates that the state is more delocalized.

To find the localized impurity states, the first five states with the greatest PR were
evaluated. The PRs for a few states, despite being higher than the mean PR of all states,
cannot be distinguished in the region of 𝑉𝑖𝑚𝑝 between 0 and 10𝑡1 in Fig.2.6. However, a
state differs from others when the impurity state with highest PR is excluded and focused
on the rest four states as shown in Fig.2.7

Once the impurity state has been detected the Fig.2.6 is refined to clearly show the
impurity state in Fig.2.8

A graph of the states in real space configuration is plotted to visualize the picture
of localizations in Fig. 2.9.
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Figure 2.6: Energy and PR by 𝑉𝑖𝑚𝑝 strength between 0 − 10𝑡1 for states with the highest
five PRs
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Figure 2.7: Energy and PR by 𝑉𝑖𝑚𝑝 strength between 0 − 10𝑡1
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Figure 2.8: Energy and PR by 𝑉𝑖𝑚𝑝 strength between 0 − 10𝑡1

Figure 2.9: The States: 20000 and 9994 in real space lattice for the single impurity
potential 𝑉𝑖𝑚𝑝 = 7𝑡1. The circle sizes proportional to the + (blue) and - (red) values.
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2.1.2 Two Impurities

A basic model of two impurities has been constructed and examined in order to
understand the impact of two impurities on graphene’s electronic structure and on each
other. To begin, 𝐻 has been updated to include the second impurity in addition to the
first, which is again located at the 𝐴 site of the initial cell. Both impurity strengths have
been set to the same value 𝑉𝑖𝑚𝑝1 = 𝑉𝑖𝑚𝑝2 = 7𝑡1, with all other parameters staying identical
from the single impurity example. The addition of a second impurity increases the degree
of freedom for the case under examination, which is the position of the second impurity
𝑉𝑖𝑚𝑝2 in relation to 𝑉𝑖𝑚𝑝1.

In the case of two impurities, DOS and energy by index graphs were created after
diagonalizing 𝐻 to examine the impact of two impurities on the sample. We observed
some changes in DOS, especially around 𝐸 = 0, for different impurity potential strengths,
as can be seen in the enlarged part of the region in Fig. 2.10. The DOS just below E =
0 increased with increasing potential strengths in accordance with the shifts in the high
DOS zones, where the energy is farther from 0. The results, as graphically displayed in
the plots, confirm the influence of two impurities on the electronic properties of graphene.

Figure 2.10: Spectrum of DOS of graphene for 4 different distances between 𝑉𝑖𝑚𝑝1 = 7𝑡1
and 𝑉𝑖𝑚𝑝2 = 7𝑡1 .
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As shown in Fig. 2.11, We observed variations in energy distribution once more
while keeping a constant distance between two impurities. To make a better comparison
between the effects of single and two impurities on energy levels around 𝐸 = 0, they are
plotted on the same graph in Fig.2.12. It can be observed that the single impurity state
splits into a pair of impurity states due to the presence of the second impurity. We have
identified the pair of impurity states, a doublet, one being the bonding type(𝐸−) and the
other one being the anti-bonding type(𝐸+).
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Figure 2.11: Paired and zoomed region of Energy by Index graph.

Figure 2.12: Energy by Index for single and two impurities on graphene.
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For two impurities, Fig. 2.13 shows the localized impurity states (No: 9994 and
9993) as well as the states (Nos: 20000 and 19999) resulting from the addition of impuri-
ties (𝑉𝑖𝑚𝑝 = 7𝑡1) to the two random A-sites of the sheet.

Figure 2.13: Representations in the real space lattice with state no. 20000, 19999, 9994,
and 9993 for strength𝑉𝑖𝑚𝑝 = 7𝑡1. The + (blue) and - (red) values are reflected as the circle
sizes.

The energy and PR of a doublet is shown in Fig. 2.14 for the potential strengths
from 1𝑡1 to 10𝑡1 and for the distances between the added impurities, starting from the clos-
est position to the furthest in the armchair direction movement. These 3-D graphs can be
used to analyze how energy and PR are in relation to changing strength and distance; two
different angles are presented for better examination. Higher energy values and separation
can be seen for increasing strength.

In order to have a deeper understanding of the implications of presence of two
impurities, energies of doublets have been analysed in a plot along with the total energies
determined by 𝐸𝐹 set to 𝐸𝐹 < 𝐸− for changing distance and for𝑉𝑖𝑚𝑝1,2 = 7𝑡1. In Fig.2.15,
four different doublets around the Dirac point have been combined to see the effects
of increasing distance between the impurities. They are labeled Doublet-1, Doublet-2,
Doublet-3, and Doublet-4 based on their proximity to the Dirac point. The average energies
of the doublets have also been added to the graph to have the insight of splitting the single
impurity states after adding the second impurity to the sample graphene sheet.
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(a) Viewing Angle-1

(b) Viewing Angle-2

Figure 2.14: Impurity State Energy and PR by impurity potential strengths between 0−10𝑡1
and by distance between 𝑉𝑖𝑚𝑝1 and 𝑉𝑖𝑚𝑝2 for two viewing angles.
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Figure 2.15: Energy by distance for four doublets around Dirac point.
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For the impurity states emerged around the Dirac point, the total energy is calcu-
lated for three different Fermi levels(𝐸𝐹) at which the states are filled up with electrons.
Fermi levels are arranged according to the energies of the doublet -(just below 𝐸−, between
𝐸− and 𝐸+ and just above 𝐸+). In Fig.2.16, total energy by distance for two doublets which
are within the vicinity of the Dirac point can be examined.
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(b) Total Energy in the vicinity of Dirac point: Doublet-2

Figure 2.16: Total energy by distance for several potential strengths where 𝐸𝐹 is set in the
vicinity of two impurity states.
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In the presence of two impurities, the calculated forces for Doublet-1 and Doublet-
2, around Dirac point, are plotted in Fig.2.17 where Doublet-2 has the higher PR.
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Figure 2.17: The force between impurities for three different 𝐸𝐹 are calculated. In each
figure, the impurity strengths, 2𝑡1, 4𝑡1, 7𝑡1, and 10𝑡1, are added together for comparison.

The force vanishes at large distances in all cases for Doublet-1. For the situation
𝐸− < 𝐸𝐹 < 𝐸+, only the bonding orbital is occupied, thus the force is attractive for
sufficiently large impurity potentials for Doublet-1. When 𝐸𝐹 < 𝐸−, which implies that
all impurity pairs are occupied, the force is of repulsive character for sufficiently strong
impurity potentials. The force strength is rapidly decreasing with increasing distance as
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expected in the case of 𝐸𝐹 > 𝐸+. For Doublet-2 case, Fig. 2.17b, Fermi velocity is
non-zero. This leads to Friedel oscillations in total energy and force as well. Note that
Friedel oscillations are absent in Fig. 2.17a when Fermi wavevector is zero.

In a similar manner, The forces derived from the total energy for the doublets
near Dirac point are represented in Fig.2.18 to display the same information focusing on
the impurity strengths enclosing different 𝐸𝐹 values. In order to reveal the bonding/anti-
bonding character of the two impurity states, Fermi energy is set as 𝐸𝐹 < 𝐸−, 𝐸− < 𝐸𝐹 <

𝐸+ and 𝐸𝐹 > 𝐸+.
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Figure 2.18: The force between impurity states for four different impurity strengths are
calculated. In each figure, Fermi levels; 𝐸𝐹 < 𝐸−, 𝐸− < 𝐸𝐹 < 𝐸+ and 𝐸𝐹 > 𝐸+ are
combined in the plot for comparison.
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2.2 Gapped Graphene

Although graphene’s massless charge carriers make it possible for high electron
mobility and other interesting quantum effects, the absence of a natural bandgap limits the
material’s potential use in a variety of disciplines. Graphene that has been modified to
include an energy gap is known as gapped graphene. This can be achieved through applying
a perpendicular electric field to bilayer graphene (a structure composed of two layers of
graphene), doping it with certain impurities, or mechanically straining the graphene lattice.
The creation of a bandgap in graphene opens up a range of potential applications, because
it enables the material to have semiconductor-like properties.

By making the appropriate Hamiltonian adjustments, the model created for graphene
in section 1 has also been employed in this section of the study for gapped graphene. This
was accomplished by updating the diagonal elements of the 𝐻 matrix with ±Δ𝜀/2, where
Δ𝜀 is the energy difference between sublattices 𝐴 and 𝐵, used as 𝜀𝑜 for both sites in Eq.
1.4.
Dispersion relation of gapped graphene for Δ𝜀 = 0.25𝑡1 can be seen in Fig.2.19

Figure 2.19: Energy bands for graphene with a bandgap formation, as named gapped
graphene.
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2.2.1 Single Impurity

A single impurity atom can have a significant effect on the electronic properties of
gapped graphene, similar to the situation in pure graphene. The specific effect will depend
on several factors, including the type of impurity atom, its position in the lattice, and the
nature of the gapped graphene, such as on-site energy difference in unit cell.

After diagonalizing 𝐻, for Δ𝜀 = 0.25𝑡1, DOS and Energy by index were examined.
Fig.2.20 shows the change in DOS around 𝐸 = 0.
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Figure 2.20: Gapped graphene DOS using lorentzian with 𝛿 = 0.1

By looking at the merged graph with 𝛿 = 0.001 in lorentzian, the impurity state
can be observed in Fig. 2.21. The impurity state appears very close to 𝐸 = 0 within the
bandgap due to single impurity potential as shown in Fig. 2.22.

Fig. 2.23 shows how the impurity state set apart from mean Participation Ratio
with increasing potential strength. The energy of the state is increasing and approaching
to zero by increasing strength as well.

The graph of the states in real space configuration is plotted to get a visualize the
picture of localizations in Fig 2.24.
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Figure 2.21: Paired and zoomed region with 𝛿 = 0.001
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Figure 2.22: Energy by Index graph with enlarged region.
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Figure 2.23: Energy and PR by 𝑉𝑖𝑚𝑝 strength between 0 − 10𝑡1

Figure 2.24: The States: 20000 and 10000 in real space lattice for the single impurity
potential 𝑉𝑖𝑚𝑝 = 7𝑡1. The circle sizes proportional to the + (blue) and - (red) values.
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2.2.2 Two Impurities

Similar to the single impurity case, two impurities can introduce localized states
into the graphene lattice. The impurities may interact with each other, depending on the
strength and relative position between the them. This interaction can make changes on the
electronic properties of the system, including its band structure and electrical conductivity.
Additionally, each impurity can also act as a scattering center, potentially leading to further
changes in the transport properties of the graphene. Depending on the type and position
of the impurities, their effects on the bandgap of gapped graphene could either combine
or compete with each other. This could potentially lead to a more significant modulation
of the bandgap.

Energy of the gapped graphene system has been examined to identify the energy
levels of impurity states emerged. Two states emerged at very close range to 𝐸 = 0 as
shown in Energy by index for gapped graphene plot in Fig.2.25.
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Figure 2.25: Energy by Index for two impurities.

Similar to graphene analysis, We observed variations in energy distribution once
more while keeping a constant distance between two impurities. For the sake of comparison
between the effects of single and two impurities on energy levels around 𝐸 = 0, they are
plotted on the same graph in Fig.2.26. In a manner similar to the graphene case, it is
again observed that the single impurity state splits into a pair of impurity states due to the
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presence of the second impurity.
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Figure 2.26: Energy by Index for gapped graphene for both single and two impurities.

9960 9980 10000 10020 10040

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Energy by Index

9960 9980 10000 10020 10040

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Energy by Index

X 10000

Y -0.130218

X 10001

Y 0.0364927

X 10001

Y 0.130218

X 10000

Y -0.0364927

Figure 2.27: Energy by index comparison of graphene and gapped graphene.

Energy by index comparison of graphene and gapped graphene is shown in Fig.
2.27. The opened gap can easily be observed due to Δ𝜀 which is the energy difference
between sublattices 𝐴 and 𝐵.
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DOS has been affected mainly around Dirac point as observed in the graphene
study. The formation around 𝐸 = 0 can be observed for increasing distance between
impurity potentials as seen in Fig. 2.28.

Figure 2.28: Spectrum of DOS of gapped graphene for 4 different distances between
𝑉𝑖𝑚𝑝1 = 7𝑡1 and 𝑉𝑖𝑚𝑝2 = 7𝑡1 .

For gapped graphene, Fig. 2.29 shows the localized impurity states (No: 10000
and 9999) due to impurities (𝑉𝑖𝑚𝑝1 = 𝑉𝑖𝑚𝑝2 = 7𝑡1) located randomly to the A-sites of the
sheet along with the edge states (No: 20000 and 19999).

The energy and PR of a doublet are shown in Fig. 2.30 for the potential strengths
from 1𝑡1 to 10𝑡1 and for the distances due to the movement in the armchair direction. In
contrast to the graphene findings, increasing distance causes a rapid decrease of the energy
difference of 𝐸− and 𝐸+ and a similar pattern for PR as well.

To see the implications of presence of two impurities the detailed plot for the
energies of the states around Dirac point is again produced for gapped graphene. The
energies of the splitting state emerged in bandgap meets to the same level rapidly compared
to the other three doublets while the distance is increasing between the impurities, Fig.2.31.
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Figure 2.29: Representations in the real space lattice with state no. 20000, 19999, 10000,
and 9999 for the strength 𝑉𝑖𝑚𝑝 = 7𝑡1. The + (blue) and - (red) values are reflected as the
circle sizes.
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Figure 2.31: Energy by distance for four doublets around the Dirac point.

The total energy is calculated for the doublets around the Dirac point in the same
manner by setting 𝐸𝐹 related to the energies of the states as 𝐸𝐹 < 𝐸− ; 𝐸𝐹 > 𝐸+ ;
𝐸− < 𝐸𝐹 < 𝐸+. The total energy by distance graphs for Doublet-1 and Doublet-2 are
shown in Fig.2.32.
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(a) Viewing
Angle-1

(b) Viewing Angle-2

Figure 2.30: Impurity State Energy and PR by impurity potential strengths between 0−10𝑡1
and by distance between 𝑉𝑖𝑚𝑝1 and 𝑉𝑖𝑚𝑝2 for two viewing angles.

In the presence of two impurities for gapped graphene, the calculated forces for
Doublet-1 and Doublet-2, around Dirac point, are plotted in Fig.2.33 where Doublet-1
has higher PR than Doublet-2. The force vanishes at large distances in all cases. For the
situation 𝐸− < 𝐸𝐹 < 𝐸+, only the bonding orbital is occupied, thus the force is attractive
for sufficiently large impurity potentials for Doublet-1. When 𝐸𝐹 < 𝐸−, which implies
that all impurity pairs are occupied, the force is of repulsive character for sufficiently strong
impurity potentials. The force strength is rapidly decreasing with increasing distance as
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Total Energy by Distance for Two Impurities

(Gapped Graphene)
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Figure 2.32: Total energy by distance for several potential strengths where 𝐸𝐹 is set in the
vicinity of two impurity states.

expected in the case of 𝐸𝐹 > 𝐸+. For Doublet-2 case, Fig. 2.33b, Fermi velocity is
non-zero. This leads to Friedel oscillations in total energy and force as well. Note that
Friedel oscillations are absent in Fig. 2.33a when Fermi wavevector is zero.
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Force by Distance by Fermi Level
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Figure 2.33: The force between impurity states for three different Fermi levels are calcu-
lated. In each figure, the impurity strengths, 2𝑡1, 4𝑡1, 7𝑡1, and 10𝑡1, are added together for
comparison.
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The forces for the doublets near Dirac point are drawn in Fig.2.34 emphasizing the
impurity strengths where Fermi energy is set as 𝐸𝐹 < 𝐸−, 𝐸− < 𝐸𝐹 < 𝐸+ and 𝐸𝐹 > 𝐸+.
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Figure 2.34: The force between impurity states for four different impurity strengths are
calculated. In each figure, Fermi levels; 𝐸𝐹 < 𝐸−, 𝐸− < 𝐸𝐹 < 𝐸+ and 𝐸𝐹 > 𝐸+ are
combined in the plot for comparison.
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CHAPTER 3

Conclusion

Throughout this thesis, we have conducted a systematic study of the influence of
single and dual impurity potentials on the electronic properties of two-dimensional (2D)
materials, with a special focus on graphene and gapped graphene. In the case of single
impurity in graphene, a highly localized impurity state is identified at the band edge. Be-
sides from this state, relatively less localized family of impurity states near Dirac point are
identified. Similarly, for gapped graphene, again a highly localized state is observed at the
band edge. Then, the following most localized state arises at the mid-bandgap, as well as
a family of impurity states at the valance or conduction band depending on the sign of the
impurity potential relative to hopping constant. We have investigated localization of the
impurity states by studying the participation ratio, an indicative quantity for identifying
localization. When two impurity potentials are introduced, it is observed that total energy
of the system, both for graphene and gapped graphene, changes with the distance between
two impurities. This implies a force between the impurities mediated by the Fermi sea.
Further, we have investigated cluster of two impurity states. It is observed that the single
impurity states split into a doublet of bonding/anti-bonding type orbitals with an energy
difference changing with impurity-impurity distance. The highly localized states at the
band edge are insensitive to the distance between the impurities and their value remains
close to that of single impurity state. For the case of graphene, the family of doublets
arise near the Dirac point. These doublets have an energy splitting highly dependent
on impurity-impurity distance. In the case of gapped graphene, doublet at the mid-gap
has the highest splitting. The family of doublets at the valance band also depend on
the impurity-impurity distance, albeit weakly compared to mid-gap state. The energy of
doublets converges to the single impurity energy value as impurity-impurity distance goes
to infinity. We calculated the PR for impurity doublets as a function of impurity-impurity
distance and impurity potential strength. We have seen a high correlation between the PR
and force. We investigated the force when Fermi energy is 𝐸𝐹 < 𝐸−, 𝐸− < 𝐸𝐹 < 𝐸+

and 𝐸𝐹 > 𝐸+. For strong enough impurity potentials, force is of attractive character when
only bonding orbital of the doublet is occupied. When Fermi energy is bigger than the
energy of the anti-bonding orbital the force rapidly dies off with distance. However total
energy and force as well exhibit Friedel oscillations when the Fermi wavevector is non-zero.
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