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ABSTRACT

COMMUNITY DETECTION ON GPU: A COMPREHENSIVE ANALYSIS,
UNIFIED MEMORY ENHANCEMENT, AND MEMORY ACCESS

OPTIMIZATION

Recent years have experienced a slowdown in the development of traditional
systems that use only the Central Processing Unit (CPU). However, significant progress has
been made in the development of heterogeneous systems utilizing not only the CPU but also
the Graphics Processing Unit (GPU). NVIDIA, one of the GPU manufacturers, through its
CUDA platform, has increased the interest of many researchers in heterogeneous systems
by providing a means to program GPUs more easily. The ease of application development
provided by the CUDA platform and the performance gains offered by these heterogeneous
systems have encouraged many researchers to develop algorithms and applications that
operate on these systems. One such algorithm that is frequently used in data analysis is
the community detection algorithm. Although there are applications that implement this
algorithm to run on GPUs, and while these applications work efficiently for many datasets,
they either fail to work or experience significant performance loss for large datasets that
exceed the GPU’s memory capacity.

In this thesis, we analyzed Rundemanen, which is one of the community detection
applications running on GPU. We also made enhancements that enable Rundemanen to
process datasets larger than the GPU’s memory capacity by utilizing CUDA’s Unified
Memory. Lastly, we tested various optimization methods to use Unified Memory more
efficiently. By using our memory-access advises, in comparison to the naive version, we
obtained up to 62x and 8x performance gain with artificial oversubscription scenarios and
for datasets that already do not fit into GPU memory, respectively.
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ÖZET

GRAFİK İŞLEMCİ BİRİMİ TABANLI TOPLULUK TESPİTİ: KAPSAMLI
ANALİZ, BİRLEŞİK BELLEK DESTEĞİ VE BELLEK ERİŞİM

OPTIMİZASYONU

Son yıllarda, yalnızca Merkezi İşlem Birimi’ni (MİB) kullanan geleneksel sistem-
lerin gelişiminde bir yavaşlama yaşanmış ancak sadece MİB’yi değil aynı zamanda Grafik
İşlem Birimi’ni (GİB) de kullanan heterojen sistemlerin gelişiminde önemli ilerlemeler
kaydedilmiştir. GİB üreticilerinden biri olan NVIDIA, kendi geliştirdiği CUDA platformu
aracılığıyla araştırmacıların GİB’leri daha kolay programlamalarına olanak tanıyarak, het-
erojen sistemlere olan ilgiyi artırmıştır. CUDA platformu tarafından sağlanan uygulama
geliştirme kolaylığı ve bu heterojen sistemler tarafından sunulan performans artışları, birçok
araştırmacıyı bu sistemlerde çalışan algoritmalar ve uygulamalar geliştirmeye teşvik etmiştir.
Veri analizinde sıkça kullanılan bu tür bir algoritma, topluluk tespiti algoritmasıdır. Bu
algoritmaya dayalı uygulamaların GİB’de çalışmasını gerçekleyen uygulamalar bulunsa da,
bu uygulamalar birçok veri kümesi için verimli çalışırken, MİB’nin bellek kapasitesini aşan
büyük veri kümeleri için çalışmamakta veya önemli performans kayıpları yaşamaktadır.

Bu çalışmada, topluluk tespiti algoritmasını GİB üzerinde uygulayan uygulamalar-
dan biri olan Rundemanen’i analiz ettik. Ayrıca, bu uygulamanın CUDA’nın Unified
Memory özelliğini kullanarak MİB’nin bellek kapasitesini aşan veri kümelerini işlemesini
sağlayan iyileştirmeler yaptık. Son olarak, Unified Memory’yi daha verimli hale getirmek
için çeşitli optimizasyon yöntemlerini sunduk. Bellek erişim şeklini değiştirerek, aşırı
abonelik (oversubscription) senaryoları için basit (naive) sürümle karşılaştırıldığında 62
kata kadar performans artışı elde ettik ve GİB belleğine sığmayan veri kümeleri için ise 8
kata kadar performans artışı sağladık.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Gordon Moore, co-founder of Intel, made a remarkable observation in 1965 that,
every year, the number of transistors on a chip doubles without extra costs (Moore 2006).
He revised it in 1975 by restating it would happen every two years rather than one.
Later, this observation started to be known as Moore’s Law. Moore’s Law inevitably
has implications for technological advancements in semiconductor industries. While the
computational power of scalar single-core processors was increasing, array (vector) pro-
cessors came into existence to be used heavily in scientific simulations, signal processing,
etc. Later, commercial single-core processors (Peleg and Weiser 1996) began to include
support vector operations similar to array processors with limited features.

In the early 2000s, people realized that increasing transistor counts or clock fre-
quency was not applicable anymore due to physical limitations and others. As a physical
limitation, the Power Wall (Kuroda 2001), a limiting factor caused by the need for excessive
power, thereby leading to unmanageable heat dissipation, became an obstacle to producing
computationally faster processors. The industry ceased shrinking transistors and raising
clock frequencies to increase processor throughput. Instead, it began adding more compo-
nents to enable processors to handle multiple tasks simultaneously. This transition started
the multi-core era (Venu 2011). The first multi-core processor, POWER4, was introduced
by IBM in 2001, and then Intel began to come into existence in this field around 2005 with
its dual-core processor along with AMD (Alseqyani and Almutairi 2023). Then, Intel and
AMD began to increase the core count, leading to the emergence of many-core processors,
such as Intel’s Xeon-Phi and NVIDIA’s and AMD’s GPUGPUs.

Although both multi-core and many-core processors enhance the computational
capability of the system, their architectures and usage areas differ. Unlike multi-core
processors, which are primarily employed for general-purpose computing, many-core pro-
cessors have gained popularity in handling highly parallel workloads, such as scientific
simulations, data analytics, and artificial intelligence. This popularity is attributed to
the nature of tasks that can be divided into numerous smaller tasks capable of running
almost independently in parallel. NVIDIA’s GPGPUs are among the most widely utilized
many-core processors, and their popularity can be ascribed to the developer-friendly pro-
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gramming environment offered by NVIDIA, known as CUDA (Compute Unified Device
Architecture).

Most algorithms have benefited from the computational power of NVIDIA’s GPG-
PUs, and their running time performance has improved; however, there are some excep-
tions, such as graph algorithms, due to their irregular memory access pattern (Burtscher,
Nasre, and Pingali 2012). Additionally, because GPGPUs have limited memory space,
dataset sizes have become so large that they do not fit into the memory. To solve this, in
2014, NVIDIA introduced Unified Memory, enabling developers to utilize all the available
system memory by GPGPUs. However, this approach has performance drawbacks un-
less developers understand the application’s memory usage pattern and take action using
Unified Memory API.

In this thesis, the study focuses on one of the graph applications: community
detection. Utilizing NVIDIA’s Unified Memory, the goal is to improve the application’s
performance for datasets that do not fit into the GPGPU’s memory.

1.2. Thesis Organization

We have organized this thesis into five distinct chapters:

• In the first chapter, we present an introduction to the thesis, explain the contribution,
and mention the thesis organization.

• The second chapter, titled "Background," explains the functioning and internals of
GPGPUs, Unified Memory, graph representations, and the community detection al-
gorithm, particularly focusing on the Louvain implementation.

• Chapter three delves into an in-depth analysis of one specific Louvain implementor,
Rundemanen. We classify data structures and group them based on their usage, elu-
cidate source code modifications for Unified Memory utilization, and explain how we
collect memory accesses and page faults. This chapter also outlines the methodology
for creating artificial oversubscription scenarios and applying memory advises utilized
in the experiments.

• In chapter four, besides introducing the datasets employed in this study and presenting
meta-information about them, we systematically collect and analyze each dataset’s
memory accesses and page faults and, considering the results, recommend suitable
memory advice hints. Lastly, we test the performance of the memory advises over the
naive Unified Memory version of the application.

• In chapter five, we draw conclusions from the results obtained through the experiments.
2



1.3. Contributions

In this thesis, we select the best application of the community detection algo-
rithm, namely Rundemanen, running on the GPU and enhance its capability to handle
datasets exceeding GPU memory capacity by leveraging Unified Memory. We analyze the
implementation in detail and suggest a method to collect memory access patterns. After
pinpointing the hotspot on memory accesses and analyzing the page faults, we recommend
several memory advises that alter the data access methodology. Applying this advises re-
sults in significant performance improvements over the naive version. Remarkably, we
achieve performance gains of up to 69x and 8x with artificial oversubscription scenarios
and datasets surpassing GPU memory limits, respectively.
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CHAPTER 2

BACKGROUND

2.1. GPUGPUs

GPGPUs, which stands for General-Purpose Graphics Processing Units, are pro-
cessing units that are basically used for graphic rendering as well as some applications
requiring heavy computations in fields such as scientific computing, physical simulations,
image processing, machine learning, and AI. Initially, they were called GPUs since they
were used only for graphics rendering. Later, developers and researchers began investigat-
ing the possibility of utilizing GPUs for general-purpose computing applications. Finally,
the vendors started to enhance their products so that they directly support general-purpose
computing; as a result, they took the name of GPGPUs (Owens et al. 2007).

2.2. CUDA Platform

Compute Unified Device Architecture (CUDA) is a revolutionary platform intro-
duced by NVIDIA in 2007 for programming GPUs produced by NVIDIA. It offers a unique
execution model along with a programming model called SIMT. In addition to support-
ing multiple programming languages (C, C++, Fortran), it provides various libraries and
middlewares for use with these languages (Wikipedia 2023).

2.2.1. Examining an Architecture

Figure 2.1.1 shows the block diagram of Fermi microarchitecture released by
NVIDIA in 2010. It is composed of several Streaming Multiprocessors(SMs), which are
the main processing blocks with special instruction cache, L1 cache, integer and floating

1. Credits https://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute
_architecture_whitepaper.pdf
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point arithmetic units, load/store units, and more as shown in Figure 2.2. ??. Newer
architectures have similar components with extended features.

Figure 2.1. The block diagram of Fermi microarchitecture.

2.2.2. Execution Model

One prominent CUDA feature is its simple yet powerful execution model. The
execution model guides us in understanding how GPUs operate at the hardware level.

Tasks, which are called CUDA kernels, assigned to a GPU are executed by CUDA
threads, and each thread belongs to a block. Each of these blocks is assigned to an SM
(Streaming Multiprocessor) at runtime. Although the smallest processing unit is a thread,
threads are executed in groups. These groups are called warps, and each warp contains 32
threads (John Cheng 2014).

Every SM contains one or more Warp Schedulers that manage the warps and hold
information about the warps currently assigned to that SM (Streaming Multiprocessor).
If a warp is ready to execute, meaning that the resources it needs are available and it is
not waiting on any memory operations, it is selected to run based on its priority status.

5



Figure 2.2. The block diagram of an SM(Streaming Multiprocessor).

Subsequently, the dispatch unit fetches and decodes the instructions for the warp and then
issues the instructions. If not enough cores are available when the warp is executed, the
warp is divided into subsets of threads which are executed sequentially.

If threads within the same warp encounter a branching instruction, and some
of these threads take this branch while others continue with a different branch, a warp
divergence(branch divergence) situation occurs. In this case, one of these divergent thread
groups is executed while the other group waits in an idle state and is executed later (Han
and Abdelrahman 2011).

2.2.3. Memory Model

Besides the execution model, CUDA provides a memory model that shows how
memory operations are applied. CUDA has multiple logical memory spaces (NVIDIA
2023a); these memory areas are described below.

• Register File: This is a space where local variables belonging to threads and parameters
of kernels are stored.

6



• Local Memory: This is the memory space used when threads require more local space.

• L1 Data Cache: This is a Global and Local memory cache area.

• Shared Memory: This space allows communication between threads within a thread
block.

• L2 Cache: This is a cache area for Global, Local, Constant, Texture and Surface
Memories.

• Constant Memory: This is a low-capacity area used to store read-only data. It has its
own cache.

• Global Memory: This is the memory area with the highest capacity.

• Zero-Copy Memory: This is the memory area of system memory that is directly
accessible by GPUs.

In addition to these, there are L0 and L1 Instruction caches and Texture and Surface
Memory areas. The memory areas mentioned may not have a physical counterpart or be
sharing a physical space with another memory area.

2.2.4. Programming Model

Before CUDA, although researchers and developers used GPUs for applications
beyond graphics, the solutions had to be implemented as if they were graphics applications.
This made using GPUs very challenging. This situation was resolved thanks to CUDA’s
programming model, making it easy to program GPUs for various application domains.

Programs written in CUDA operate according to the SIMT (Single Instruction,
Multiple Threads) programming model (John Cheng 2014). Although this programming
model resembles SIMD (Single Instruction, Multiple Data), in SIMT, each thread has its
own PC (Program Counter) (in Volta and later architectures), resources, and execution
path. Threads come together to form thread blocks, and thread blocks come together to
form grids.

2.2.4.1. Kernels

The function containing the code we want to run on the GPU is a CUDA kernel.
The number of thread blocks that would execute CUDA kernels and the number of threads

7



within each thread block can be configured. The configuration parameters may vary
depending on the code to be executed and the architecture. Setting these parameters
correctly is crucial as they significantly impact performance.

Listing 2.1. A simple kernel applying the square function over the array’s elements.
__global__ void s q u a r e ( int∗ da ta , int s i z e ) {

int g l o b a l I d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
if ( g l o b a l I d >= s i z e ) {

return ;
}
d a t a [ g l o b a l I d ] = d a t a [ g l o b a l I d ] ∗ d a t a [ g l o b a l I d ] ;

}

Listing 2.1. shows a simple CUDA kernel. This kernel calculates the square of
the elements of the given input array and writes the results back to that array. Although
every thread executes the same code, the value of the globalId variable inside each thread
is different. This is because each thread belongs to a block owning a unique ID, and each
thread has its own unique ID within the block.

Listing 2.2. A simple main function executing a kernel.
. . .
int b l o c k _ s i z e = 128 ;
int g r i d _ s i z e = ( n_elems + b l o c k _ s i z e − 1) / b l o c k _ s i z e ;
squa re <<< g r i d _ s i z e , b l o c k _ s i z e >>>( da t a , n_elems ) ;
cudaDev i c eSynch ron i z e ( ) ;
. . .

Listing 2.2. shows how the square kernel is configured and executed within a simple
main code. We provide the kernel launch parameters between <<< and >>>, which in
this case are block_size and grid_size.

2.2.4.2. Grids & Blocks

Threads come together to form thread blocks, and thread blocks, in turn, come
together to create grids. At runtime, a grid is created for each kernel. Blocks belonging to
a grid can be assigned to any SM, and each completes its lifetime in that SM. block_size
in Listing 2.2. specifies how many threads will run in each block. Since we want to apply
the operation on all elements of the array, we calculated grid_size considering the array
size to be processed (n_elems).

A grid can be 1D, 2D, or 3D, represented by an index at a point (𝑋 [, 𝑌 [, 𝑍]]) that
corresponds to a distinct thread block. Figure 2.3.a provides a pictorial representation
of a grid. Within kernels, programmers can determine which thread block the current
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(a) A pictorial view of a grid. (b) A pictorial view of a block.

Figure 2.3. A pictorial view of Grid & Block.

thread belongs to using the built-in variables blockIdx.x, blockIdx.y, and blockIdx.z. The
dimensions of a grid can be obtained using gridDim.x, gridDim.y, and gridDim.z. If the
grid is 1D, then gridDim.y, gridDim.z are set to 1, while blockIdx.y, and blockIdx.z are set
to 0. In the case of a 2D grid, gridDim.z is 1 and blockIdx.z is 0. To calculate the global
block ID, the following formula can be used:

𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑙𝑜𝑐𝑘 𝐼𝑑 = 𝑏𝑙𝑜𝑐𝑘 𝐼𝑑𝑥.𝑧 × (𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥 × 𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑦)
+ 𝑏𝑙𝑜𝑐𝑘 𝐼𝑑𝑥.𝑦 × 𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥

+ 𝑏𝑙𝑜𝑐𝑘 𝐼𝑑𝑥.𝑥
(2.1)

A block can be 1D, 2D, or 3D, with each point corresponding to a thread, as
illustrated in Figure 2.3.. Within kernels, CUDA provides three built-in variables for
indexing a thread: threadIdx.x, threadIdx.y, and threadIdx.z. Additionally, the dimensions
of a block can be determined using the built-in variables blockDim.x, blockDim.y, and
blockDim.z. The 1D and 2D conditions applicable to grids also apply to blocks. To
calculate the global thread ID, the following formula is used:

𝑔𝑙𝑜𝑏𝑎𝑙𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝑑 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑧 × (𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 × 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑦)
+ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑦 × 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

+ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
(2.2)

When initiating kernels, providing grid and block dimensions as integers results
in a 1D grid, with each block being 1D as well. To form a 2D or 3D grid, we can use
dim3 type objects while launching a kernel. The constructor of dim3 can take up to three
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parameters, with each argument corresponding to the dimensions’ lengths of X, Y, and Z.

2.2.5. Unified Memory

Unified Memory is a memory abstraction introduced by NVIDIA with CUDA 6. It
enables the host and device to share a single address space, thereby making memory man-
agement very simple for developers. It also supports memory oversubscription, allowing
devices to use more memory than it has. Without Unified Memory, the programmers must
manually move data back and forth between the host and device, which requires so much
effort to manage.

(a) without Unified Memory (b) with Unified Memory

Figure 2.4. Pictorial view of Unified Memory.

Without Unified Memory, when we want to process data on the device, we first
need to allocate space on the device using cudaMalloc API call and then copy the data
from the host to this allocated space on the device using cudaMempy API call. When the
device finishes its tasks, we also need to copy the data back from the device to the host
memory. However, with Unified Memory, there is no need for both separate allocation
and copying. A simple kernel execution with and without Unified Memory is shown in
Listing 2.3. and 2.4., respectively.

Listing 2.3. A sample code without Unified Memory.
. . .
constexpr s i z e _ t SIZE = 1000000;
int∗ h o s t _ a r r a y = ( int ∗ ) ma l loc ( SIZE ∗ sizeof ( int ) ) ;
i n i t i a l i z e ( h o s t _ a r r a y ) ;

int∗ d e v i c e _ a r r a y ;
cudaMal loc (& d e v i c e _ a r r a y , SIZE ∗ sizeof ( int ) ) ;
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cudaMemcpy ( d e v i c e _ a r r a y , h o s t _ a r r a y ,
SIZE ∗ sizeof ( int ) ,
cudaMemcpyHostToDevice ) ;

my_kernel < < < . . . , . . . > > > ( d e v i c e _ a r r a y , SIZE ) ;
cudaDev i c eSynch ron i z e ( ) ;

cudaMemcpy ( h o s t _ a r r a y , d e v i c e _ a r r a y ,
SIZE ∗ sizeof ( int ) ,
cudaMemcpyDeviceToHost ) ;

int t o t a l = 0 ;
for ( s i z e _ t i = 0 ; i < SIZE ; i ++){

t o t a l += h o s t _ a r r a y [ i ] ;
}
cudaF ree ( d e v i c e _ a r r a y ) ;
f r e e ( h o s t _ a r r a y ) ;
. . .

Listing 2.4. A sample code with Unified Memory.
constexpr s i z e _ t SIZE = 1000000;
int∗ a r r a y ;
cudaMallocManaged (& a r r ay , SIZE ∗ sizeof ( int ) ) ;

my_kernel < < < . . . , . . . > > > ( a r r ay , SIZE ) ;
cudaDev i c eSynch ron i z e ( ) ;

int t o t a l = 0 ;
for ( s i z e _ t i = 0 ; i < SIZE ; i ++){

t o t a l += a r r a y [ i ] ;
}
cudaF ree ( a r r a y ) ;
. . .

2.2.5.1. Internals

The smallest building block of Unified Memory is a page typically 4096B in
size. When the CPU or GPU tries to access data, the runtime first checks whether the
corresponding page resides in its memory. If not, the page is migrated to the accessed
side’s memory. This mechanism is called on-demand page migration. Besides, sometimes,
runtime speculatively prefetch a page before accessing it to utilize the bandwidth effectively
and increase the performance.
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2.2.5.2. Memory Advises

We can control the behavior of the UM page handling mechanism thanks to the
UM Advises. CUDA offers an API call cudaMemAdvise that we can apply to a specific
memory address range. Here are the advises that we can apply:

• cudaMemAdviseSetReadMostly: informs the runtime that the address range will be
used frequently for read operations, and write operations are not expected for the
specific processor. Thus, a copy of the pages corresponding to the specified address
range is created by the processor where the operation is performed, and read operations
are carried out on this copy. When a write operation is performed, copies on all other
processors become invalidated, excluding the one where the operation was performed.

• cudaMemAdviseSetPreferredLocation: is used to determine the runtime’s data place-
ment. If the processor seeking access has direct access to the preferred location, the
operation is executed without moving the page; otherwise, the runtime migrates the
page. Nonetheless, it aids the runtime in preventing memory thrashing at the preferred
location.

• cudaMemAdviseSetAccessedBy: allows a specific processor to access the data with-
out the need to transfer the page that contains it, thanks to remote mapping. When the
pages are migrated to the memory of another processor, the mapping is automatically
reestablished.

2.2.5.3. Oversubscription Support

Oversubscription is a situation where the processor uses more memory than its
memory space. For CPUs, this is done by migrating unused data to swap space residing on
a disk. When it comes to GPUs, they use the host’s memory as a swap area when it needs
more memory space than is currently available. The runtime evicts a page to the host
memory when the memory is full, according to an eviction policy. Because of the eviction,
a page might be migrated back and forth, if not at every access, every few accesses. This
is called memory thrashing and could lead to dramatic performance degradation.

12



2.3. Graphs

Many entities in nature and the relationships among these entities can be repre-
sented in the form of a graph: people and their friendship connections in social networks,
subatomic particles in the field of physics and their interactions, molecules and the chem-
ical bonds between them in the field of chemistry, etc. Entities are represented as vertices
in the graph, relationships as edges, and the data associated with the relationship are
represented as the edge weights (Shi et al. 2018).

2.3.1. Graph Representation

In programming, graph datasets can be represented in various ways. Non-negative
integer IDs are typically assigned to vertices and used. Starting vertex IDs from 0 facilitates
indexing operations on data structures. We present the following representations’ pictorial
view in Figure 2.5..

2.3.1.1. Adjacency Matrix

In this representation, a two-dimensional matrix is created. Each entry in the
matrix determines the presence of an edge from the vertex corresponding to the row ID
(tail) to the vertex corresponding to the column ID (head). The entry’s value is considered
the edge weight, and entries with a value of 0 indicate no edge. If the graph is undirected,
the matrix is symmetric.

2.3.1.2. Adjacency List

An adjacency array (or list) is created for each vertex, and these arrays are stored
in an array that can be accessed using the vertex ID. The head vertex of each edge incident
to the vertex is added to the adjacency list of that vertex. If the graph is weighted, these
arrays can be stored as vertex-weight pairs or a separate adjacency weight array can be
created for the weights.
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2.3.1.3. Edge List

Edges are stored in a list in pairs or triples if there is weight. If the graph is undi-
rected, instead of keeping two entries for each edge (ℎ𝑒𝑎𝑑𝐼𝐷, 𝑡𝑎𝑖𝑙 𝐼𝐷 and 𝑡𝑎𝑖𝑙 𝐼𝐷, ℎ𝑒𝑎𝑑𝐼𝐷),
storing a single entry for the edge is sufficient.

2.3.1.4. Compressed Formats

If the graph is sparse, with many 0s in the adjacency matrix, storing it in the matrix
would be inefficient in terms of memory space. Even in cases with no edges, the entry still
holds a value of 0, leading to unnecessary memory usage. Therefore, several compressed
representations were developed: Dictionary of keys (DOK), Coordinate list (COO), and
Compressed Sparse Row (CSR).

Among these formats, CSR is widely used. CSR is composed of three arrays:
indices, links, and weights. The indices array determines vertices’ neighbors’ start and
end indices. The links array stores the IDs of neighboring vertices, and if the graph is
weighted, the weights array stores the edge weights. To find where a vertex’s neighbors
start and end in the links array, the data corresponding to the vertex ID in the indices array
and the data corresponding to the next vertex ID (one more than the current vertex ID) are
used.
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(a) Graph

0 1 2 3 4 5 6 7
0 0 1 3 0 0 0 0 0
1 0 0 0 0 1 0 0 0
2 0 3 0 0 0 0 0 0
3 0 0 1 0 1 0 4 0
4 7 0 0 0 0 0 0 1
5 0 3 0 0 0 0 5 0
6 0 0 0 0 0 0 2 0
7 0 0 0 0 0 2 0 0

(b) Adjacency Matrix

0: 1 2
1 3

1: 4
1

2: 1
3

3: 2 4 6
1 1 4

4: 0 7
7 1

5: 1 6
3 5

6: 6
2

7: 5
2

(c) Adjacency List

0,1,1
0,2,3
1,4,1
2,1,3
3,2,1
3,4,1
3,6,4
4,0,7
4,7,1
5,1,3
5,6,5
6,6,2
7,5,2

(d) Edge List

indicies: 0 2 3 4 7 9 11 12 13

links: 1 2 4 1 2 4 6 0 7 1 6 6 5
weights: 1 3 1 3 1 1 4 7 1 3 5 2 2

(e) Compressed Sparse Row(CSR)

Figure 2.5. Various representations of an example graph.

15



2.4. Community Detection

Community Detection is a type of graph analysis that groups nodes within a graph
based on their interactions with each other or according to specific properties. These
groups, known as communities, help to reveal the patterns of interaction both within and
between them. Several community detection techniques have been proposed: Partitioning,
Statistical Inference, Dynamical methods, Deep Learning methods, Optimization-based,
and others (Su et al. 2022). Within the Optimization-based methods, the algorithms
try to maximize a predefined quality function such as Modularity (Newman and Girvan
2004) being heavily used. Fast Greedy Algorithm (Newman 2004), Louvain (Blondel
et al. 2008), ITS (Lü and Huang 2009), and some genetic algorithms (Liu, Yang, and Liu
2016; Tasgin, Herdagdelen, and Bingol 2006) are those trying to optimize Modularity.
Throughout this work, we will be examining Louvain due to its popularity. Louvain uses
Modularity optimization to find communities.

2.4.1. Modularity

Modularity (Newman and Girvan 2004) is a metric used in network science that
quantifies how well-defined the communities are in a network. Well-defined communities
refer to the situation in which the vertices in each community are more densely connected
with each other than the other vertices outside of their community.

𝑄 = 1
2𝑚

∑
𝑖, 𝑗

[
𝐴𝑖, 𝑗 −

𝑘𝑖𝑘 𝑗

2𝑚

]
𝛿(𝑐𝑖, 𝑐 𝑗 ) (Blondel et al. 2008)

where:

• 𝑄: Modularity

• 𝐴𝑖, 𝑗 : weight of the edge between vertex 𝑖 and vertex 𝑗

• 𝑘𝑖, 𝑘 𝑗 : the sum of the weights of the edges incident to vertex 𝑖 and vertex 𝑗 , respectively

• 𝑐𝑖, 𝑐 𝑗 : the communities of vertex 𝑖 and vertex 𝑗 respectively

• 𝛿(𝑐𝑖, 𝑐 𝑗 ): 1 if 𝑐𝑖 = 𝑐 𝑗 , else 0

• 𝑚: 1
2

∑
𝑖, 𝑗 𝐴𝑖, 𝑗
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2.4.2. Louvain

Louvain (Blondel et al. 2008) is a greedy method that assigns each vertex to a
community, maximizing the overall Modularity, and then creates a new graph in which
the communities become new vertices. These phases are the Vertex Movement and the
Aggregation (see Figure 2.6.), respectively. It applies these operations until the gain in
Modularity drops below a certain threshold. Louvain method was initially developed for
running on CPUs, and then several applications and libraries running on GPUs emerged.
These applications use Louvain as a base, and each tries to optimize Louvain for GPUs.
Rundemanen (Naim et al. 2017), cuGraph (RAPIDS.ai 2022), and cuVite (Gawande et
al. 2022) are examples of such applications. cuGraph is a CUDA library developed
by RAPIDS.ai. While cuVite makes Louvain applicable for multi-node systems, it can
also be used for single-node systems. On the other hand, Rundemanen is developed for
single-node systems, based on grappolo (Mahantesh Halappanavar and Ghosh 2020) that
parallelizes the Louvain method for CPUs. Although these applications are built upon
the Louvain method, they have employed certain heuristics to optimize their performance
specifically for GPUs.
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(a) Initial graph
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(b) After move phase

Aggregate
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(c) New graph

Figure 2.6. Louvain algorithm phases on an example graph.

Table 2.1. compares the performance of these applications on a Pascal GPU
(Quadro P4000) across various datasets, which are subsequently employed in the exper-
iments. While cuGraph and cuVite exhibit superior Modularity optimization for certain
datasets, the runtime analysis reveals that Rundemanen significantly outperforms both
cuGraph and cuVite. Additionally, cuGraph and cuVite face challenges, either due to
excessive memory requirements surpassing available resources or quality levels reached
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Table 2.1. Running times and qualities of the community detection applications collected
in the PASCAL environment.

Dataset Rundemanen cuGraph cuVite
Time(s.) Quality Time(s.) Quality Time(s.) Quality

audikw_12 0.751 0.621 17.46 0.953 44.52 0.924
soc-LiveJournal13 2.901 0.724 40.47 0.716 45.58 0.725
Long_Coup_dt64 0.979 0.912 17.50 0.998 18.73 0.995
dielFilterV3real5 0.624 0.547 - - 20.38 0.938

cage156 1.517 0.840 67.57 0.860 - -
rgg_n_2_24_s07 3.432 0.992 - - - -

kron_g500-logn218 1.484 0.042 76.88 0.035 - -
uk-20029 3.910 0.941 - - - -

that are not in valid ranges, preventing proper execution on all datasets. Considering all
these, choosing Rundemanen as the community detection application to analyze seems
reasonable; therefore, in this thesis, we choose Rundemanen as the base application.

2. (Mayer 2004; Davis and Hu 2011)
3. (Leskovec and Krevl 2014; Davis and Hu 2011)
4. (Janna, Ferronato, and Gambolati 2012; Ferronato, Bergamaschi, and Gambolati 2010; Bergamaschi,

Ferronato, and Gambolati 2008, 2007; Davis and Hu 2011)
5. (Dziekonski, Lamecki, and Mrozowski 2011; Davis and Hu 2011)
6. (Heukelum, Barkema, and Bisseling 2002; Davis and Hu 2011)
7. (Holtgrewe, Sanders, and Schulz 2010; Bader et al. 2014; Davis and Hu 2011)
8. (Bader et al. 2014; Davis and Hu 2011)
9. (Boldi and Vigna 2004; Boldi et al. 2011; Boldi et al. 2004; Davis and Hu 2011)
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CHAPTER 3

DATA-ACCESS AWARE COMMUNITY DETECTION

In this thesis, we analyze Rundemanen and make enhancements that enable Run-
demanen to process datasets larger than the Graphics Processing Unit’s memory capacity
by utilizing CUDA’s Unified Memory. Also, to improve Unified Memory performance,
we propose several memory-accessing hints on data structures.

3.1. Analysis of Rundemanen

Rundemanen is an implementation of the Louvain method, which is designed to
be performant on GPUs. It utilizes NVIDIA’s thrust (NVIDIA 2023b) library for trivial
tasks like scan, reduce, gather, for-each, transform, sort, copy, and count. Besides, it
uses thrust vectors that internally manage objects’ (arrays) lifetime. For custom kernels,
it employs a virtual warp-centric programming model (Hong et al. 2011) to mitigate
workload imbalance problem, and uses hash tables for faster accesses.

Rundemanen encompasses two consecutive phases executed repeatedly until the
Modularity gain between iterations falls below a certain threshold. These phases are of
the Louvain method: Vertex Movement (moveVertices) and Aggregation (aggregate).
The pseudocode for Rundemanen is outlined in Algorithm 1.

3.1.1. Initialization

The graph data is read from a file and then converted to Compressed Sparse Row
(CSR) representation and stored in the device’s global memory. The CSR representa-
tion comprises indices(g.indices), links(g.links), and weights(g.weights). indices, links
are types of thrust::device_vector<int> and thrust::device_vector<unsigned int> respec-
tively; and, weights is the type of thrust::device_vector<float>. Their lengths are |𝑉 | + 1,
|𝐸 |, and |𝐸 |. The lifetime of a CSR object ends after the Aggregate phase, and it is
replaced with the aggregated graph’s CSR.

Along with the graph data, Rundemanen reads some pre-computed prime numbers
19



Algorithm 1 Rundemanen
Require: 𝐶𝑆𝑅, 𝑝𝑟𝑖𝑚𝑒𝑠

1: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.000001
2: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2← 0.01
3: while 𝑡𝑟𝑢𝑒 do
4: (𝑣𝑒𝑟𝑡𝑇𝑜𝐶𝑜𝑚𝑚, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦) ← moveVertices(𝐶𝑆𝑅, 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2)
5: if 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 − 𝑝𝑟𝑒𝑣𝑄𝑢𝑎𝑙𝑖𝑡𝑦 <= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
6: if isLastRound then
7: break
8: end if
9: 𝑖𝑠𝐿𝑎𝑠𝑡𝑅𝑜𝑢𝑛𝑑 ← 𝑡𝑟𝑢𝑒

10: end if
11: 𝐶𝑆𝑅 ← aggregate(𝑣𝑒𝑟𝑡𝑇𝑜𝐶𝑜𝑚𝑚,𝐶𝑆𝑅, 𝑝𝑟𝑖𝑚𝑒𝑠)
12: end while

from a file. They are used to determine hash tables’ capacities’, and they are placed into
a devPrimes(thrust::device_vector<int>). The vector remains unchanged until the app
terminates.

The dataflow chart of the Initialization phase is shown in Figure 3.1. below.

Figure 3.1. Initialization phase’s flow chart.

Rounded light-aqua and light-red shapes show the construction and destruction of objects,
respectively. Additionally, rectangular boxes show operations.
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3.1.2. Vertex Movement

The Vertex Movement(moveVertices) phase (see Algorithm 2) involves multiple
iterations where each vertex is assigned to a community to maximize the network’s
Modularity. First, vertices are grouped into buckets based on their degrees. Before the
movement operations, each vertex is placed in a unique community. Each bucket of
vertices is processed in a specific order. While applying the movement operation, each
vertex is detached from its current community, and then the Modularity gain from this
vertex to each of its neighboring communities, including the current one, is calculated.
Subsequently, the vertex is placed in the community, leading to maximum Modularity gain.
These steps are executed for each bucket, and then the total graph Modularity is evaluated;
if the difference compared to the previous Modularity surpasses a specified threshold, the
movement operations are rerun. If not, the vertex movement phase concludes.

Algorithm 2 moveVertices(Host)
Require: 𝐶𝑆𝑅, 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝐷𝑒𝑔𝑟𝑒𝑒𝑠← calculateVerticesDegrees(𝐶𝑆𝑅)
2: (𝑏𝑢𝑐𝑘𝑒𝑡1𝑡𝑜4, 𝑏𝑢𝑐𝑘𝑒𝑡5𝑡𝑜8,

𝑏𝑢𝑐𝑘𝑒𝑡9𝑡𝑜16, 𝑏𝑢𝑐𝑘𝑒𝑡17𝑡𝑜32,
𝑏𝑢𝑐𝑘𝑒𝑡33𝑡𝑜83, 𝑏𝑢𝑐𝑘𝑒𝑡84𝑡𝑜318,
𝑏𝑢𝑐𝑘𝑒𝑡319𝑡𝑜𝐼𝑛 𝑓 ) ← bucketize(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝐷𝑒𝑔𝑟𝑒𝑒𝑠)

3: ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑠← allocateHashTables(𝑏𝑢𝑐𝑘𝑒𝑡319𝑡𝑜𝐼𝑛 𝑓 , 𝑏𝑢𝑐𝑘𝑒𝑡84𝑡𝑜318)
4: 𝑔𝑟𝑎𝑝ℎ𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 ← calculateGraphTotalWeight(𝐶𝑆𝑅)
5: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠← calculateVerticesWeights(𝐶𝑆𝑅)
6: 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜 ← initializeCommunityInfo(𝐶𝑆𝑅, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠)
7: while 𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑠 <= 1000 do
8: moveBigDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡319𝑡𝑜𝐼𝑛 𝑓 , ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑠, 𝐶𝑆𝑅,

𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜, 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠,

𝑔𝑟𝑎𝑝ℎ𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡)
9: moveSmallDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡5𝑡𝑜8, 𝐶𝑆𝑅, 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜,

𝑝𝑟𝑖𝑚𝑒𝑠, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡𝑠, 𝑔𝑟𝑎𝑝ℎ𝑇𝑜𝑡𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡)
10: moveSmallDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡9𝑡𝑜16, ...)
11: moveSmallDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡1𝑡𝑜4, ...)
12: moveSmallDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡17𝑡𝑜32, ...)
13: moveSmallDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡33𝑡𝑜83, ...)
14: moveBigDegVertices(𝑏𝑢𝑐𝑘𝑒𝑡84𝑡𝑜318, ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑠, ...)
15: 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 ← calculateModularity(𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜)
16: if modularity < previousModularity then
17: break
18: end if
19: end while
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Figure 3.2. shows a dataflow chart of the Vertex Movement phase and the objects’
lifetimes. Here is the explanation of the objects:

• sizesOfNhoods is a thrust::device_vector<int> of size |𝑉 |. It is used to bucketize the
vertices. Elements at indices are the degrees of vertices.

• g_next.indices is a thrust::device_vector<int> of size |𝑉 |. Unlike its name, it stores
the vertices of buckets such that the vertices of the buckets whose degree range is
bigger are placed first.

• g_next.links is a thrust::device_vector<unsigned int> of size |𝑉 |. Though its name
implies that it is for storing graph data, it is used as temporary storage.

• globalHashTable is a thrust::device_vector<HashItem>. It stores the entries of the
hash tables, and its length equals two times the vertices’ degrees sum. These vertices
are from the first two buckets that hold the largest degree vertices, and if the number of
vertices exceeds 90, the first 90 is considered. A HashItem comprises two fields: the
target community as int and the aggregated weight as float from a vertex to the target
community. Moreover, to store the beginning indices of the hash tables for these 90
vertices —at max—, a thrust::device_vector<int>, namely hashTablePtrs, is used.

• wDegs is a thrust::device_vector<float> of size |𝑉 |. It stores the weight of each
vertex.

• n2c_old, n2c, and n2c_new are types of thrust::device_vector<int> of size |𝑉 |. They
store the corresponding community for each vertex. n2c_old and n2c_new are used
temporarily between kernels. n2c is also used in the Aggregate phase.

• tot, tot_new are types of thrust::device_vector<float> of size |𝑉 |. They store each
community’s weights equal to its vertices’ aggregated weights.

• in is a thrust::device_vector<float> of size |𝑉 |. It stores each community’s inner(self-
loop) weights —, i.e. the total weights from each vertex to others inside the community.

• cardinalityOfComms, cardinalityOfComms_new are types of thrust::device_vector<int>
of size |𝑉 |. They store each community’s size.

• result_array is a thrust::device_vecor<double> of size |𝑉 |. It stores each community’s
contribution to the graph Modularity.

In Figure 3.2., we see several functions call. For the sake of brevity, we group ac-
tual functions in the source code into these. They internally use thrust functions and some
custom kernels. However, the functions lookAtNeighboringComms and neigh_comm di-
rectly correspond to moveBigDegVertices and moveSmallDegVertices, respectively. These
functions represent kernels executing on GPUs, optimizing the Modularity.
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Figure 3.2. Vertex Movement phase’s flow chart.

Rounded light-aqua, light-yellow, and light-red shapes show the construction, resizing,
and destruction of objects, respectively. Additionally, rectangular boxes show function
calls, and the diamond shape shows if statement.

23



Within moveBigDegVertices, each block processes only a vertex inside the bucket
in a grid-stripe loop. The allocation of hash tables, contingent on the vertex’s degree,
occurs in either global or shared memory. Shared memory is selected if the degree falls
below a specified threshold; otherwise, global memory is employed. Each thread within
a block is responsible for computing the weight between the vertex and the community
of an adjacent vertex. Given that multiple adjacencies of a vertex may be in the same
community, the accumulated weight is aggregated in a hash table entry through the use of
CUDA’s atomicAdd API call. Following the completion of this calculation, the community
leading to the optimal gain is identified within a block using warp-level shuffle functions.
Subsequently, only one thread updates the relevant data structures.

In moveBigDegVertices, each warp is subdivided into sub-warps based on bucket
processing, with each sub-warp assigned to process a specific vertex within a grid-stride
loop. Shared memory is utilized for hash tables, and each thread in a sub-warp performs
the same tasks as the threads in moveBigDegVertices.

3.1.3. Aggregation

Within The Aggregation(aggregate) phase(see Algorithm 3), each non-empty
community is selected and then renumbered. The weights of the edges connecting ver-
tices within a community to vertices in other communities are aggregated. A new edge is
created for every pair of communities if the aggregated weight is greater than 0. Moreover,
the weights of the edges connecting the vertices to each other in a community are aggre-
gated and assigned to the edge representing the self-loop. Once these computations are
completed, the existing communities and edges are transformed into vertices and edges
within the new graph structure.

Figure 3.3. shows a flowchart of the Aggregation phase and the objects’ lifetimes.
Here is the explanation of the objects:

• n2c is a thrust::device_vector<int> of size |𝑉 |. Its elements show which vertex
belongs to which community. n2c is calculated in the previous phase.

• renumber is a thrust::device_vector<int> of size |𝑉 |. It is used to store which com-
munity’s size is greater than 0.

• n2c_new is a thrust::device_vector<int> of size |𝑉 |. It is used as a mapping from a
community to its new ID.

• pos_ptr_of_new_comm and super_node_ptrs are types of thrust::device_vector<int>
of size |𝑛𝑒𝑤𝑉 | +1. They store non-empty communities’ sizes in a cumulative manner.
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Figure 3.3. Aggregate phase’s flow chart.

Rounded light-aqua, light-yellow, and light-red shapes show the construction, resizing,
and destruction of objects, respectively. Additionally, rectangular boxes show function
calls, the diamond shape shows if statement, and the rounded pink shape shows moving
operations of the contents of the objects. 25



Algorithm 3 aggregate(Host)
Require: 𝐶𝑆𝑅, 𝑝𝑟𝑖𝑚𝑒𝑠, 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜

1: 𝑟𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑑𝐶𝑜𝑚𝑚𝑠𝐼𝐷𝑠← renumberCommunities(𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜)
2: 𝑐𝑜𝑚𝑚𝑆𝑖𝑧𝑒𝑠← calculateCommunitySizes(𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐼𝑛 𝑓 𝑜)
3: (𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡1𝑡𝑜127,

𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡128𝑡𝑜479,
𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡480𝑡𝑜𝐼𝑛 𝑓 ) ← getVertices(𝑐𝑜𝑚𝑚𝑆𝑖𝑧𝑒𝑠)

4: ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑠← allocateHashTables(𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡480𝑡𝑜𝐼𝑛 𝑓 ,
𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡128𝑡𝑜479)

5: 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ← initializeNewGraph(𝑐𝑜𝑚𝑚𝑆𝑖𝑧𝑒𝑠, 𝐶𝑆𝑅,

𝑟𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑑𝐶𝑜𝑚𝑚𝑠𝐼𝐷𝑠)
6: aggregateBigComms(𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡480𝑡𝑜𝐼𝑛 𝑓 , ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑠, 𝑝𝑟𝑖𝑚𝑒𝑠

𝐶𝑆𝑅, 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ, 𝑐𝑜𝑚𝑚𝑆𝑖𝑧𝑒𝑠,

𝑟𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑑𝐶𝑜𝑚𝑚𝑠𝐼𝐷𝑠)
7: aggregateBigComms(𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡128𝑡𝑜479, ...)
8: aggregateSmallComms(𝑐𝑜𝑚𝑚𝐵𝑢𝑐𝑘𝑒𝑡1𝑡𝑜127, 𝑝𝑟𝑖𝑚𝑒𝑠,

𝐶𝑆𝑅, 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ, 𝑐𝑜𝑚𝑚𝑆𝑖𝑧𝑒𝑠,

𝑟𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑒𝑑𝐶𝑜𝑚𝑚𝑠𝐼𝐷𝑠)
9: 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ𝐶𝑆𝑅 ← convertToCSR(𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ)

10: return 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ𝐶𝑆𝑅

• degree_per_node is a thrust::device_vector<int> of size |𝑛𝑒𝑤𝑉 | + 1. It stores non-
empty communities’ sizes.

• comm_nodes is a thrust::device_vector<int> of size |𝑉 |. It stores vertices such that
the vertices in the same community are placed consecutively.

• g_next.links is a thrust::device_vector<unsigned int> of size |𝑛𝑒𝑤𝑉 |. It is used
as temporary storage until a point. Then it is resized to |𝑛𝑒𝑤 𝐸 |, and used as the
aggregated(new) graph’s CSR representation’s colind.

• g_next.indices is a thrust::device_vector<int> of size |𝑛𝑒𝑤𝑉 |. At first, it is used to
store the communities of buckets such that the communities of the buckets whose
degree range is bigger are placed first. Then it is resized to |𝑛𝑒𝑤𝑉 | + 1, and used as
the aggregated(new) graph’s CSR representation’s rowptr.

• estimatedSizeOfNeighborhoods is a thrust::device_vector<int> of size |𝑛𝑒𝑤𝑉 | + 1.
It stores the aggregated size of the number of vertices adjacent to all vertices in each
community.

• globalHashTable is a thrust::device_vector<HashItem>. It stores the entries of the
hash tables, and its length is equal to the communities’ degrees sum —a commu-
nity’s degree is equal to the aggregated size of the number of vertices adjacent to all
vertices in it. These communities are from the first two buckets that hold the largest
degree communities, and if the number of communities exceeds 150, the first 150 are
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considered. A HashItem comprises two fields: the target community in int and the
aggregated weight in float from a community to the target community. Moreover, to
store the beginning indices of the hash tables for these 150 communities —at max—,
a thrust::device_vector<int>, namely hashTablePtrs, is used.

• member_count_per_new_comm is a thrust::device_vector<unsigned int> of size |𝑛𝑒𝑤𝑉 |+
1. It stores the number of adjacent communities of each community. Later, this is
used as the aggregated(new) graph’s CSR representation’s rowptr(g.indices).

• new_nighbor_lists and new_weight_lists are types of thrust::device_vector<unsigned
int> and thrust::device_vector<float> respectively. Their lengths equal the sum of all
elements of estimatedSizeOfNeighborhoods.

In Figure 3.3., we see several functions call. For the sake of brevity, we group
actual functions in the source code into these. They internally use thrust functions and
some custom kernels. However, the functions aggregateBigComms and aggregateSmall-
Comms directly correspond to findNewNeighodByBlock and determineNewNeighborhood,
respectively. These functions represent kernels executing on GPUs, constructing the new
graph’s data.

Within findNewNeighodByBlock, each block processes only a community in a
grid-stripe loop. The allocation of hash tables, contingent on the number of vertices the
community includes, occurs in either global or shared memory. Shared memory is selected
if the size falls below a specified threshold; otherwise, global memory is employed. Each
thread within a block is tasked with computing the weight between the vertex inside
the community and its adjacent vertices’ communities. Given that multiple vertices of a
community may be in the same community, the accumulated weight is aggregated in a hash
table entry through the use of CUDA’s atomicAdd API call. Following this calculation’s
completion, the community’s adjacent communities along with their weights are collected
from the hash table and written into the new graph’s data.

In determineNewNeighborhood, each warp is subdivided into sub-warps based on
bucket processing, with each sub-warp assigned to process a specific community within a
grid-stride loop. Shared memory is utilized for hash tables, and each thread in a sub-warp
performs the same tasks as the threads in findNewNeighodByBlock.

3.2. Data Access-Aware Unified Memory for Rundemanen

In this section, we demonstrate the source code enhancements enabling support
for large-sized graphs, detail the development of a memory access tracker, describe the
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implementation of data-access aware Unified Memory advises at variable granularity,
illustrate our approach for gathering both spatial and temporal characteristics of program
variables to assess their influence on execution performance and elucidate our method for
monitoring both memory accesses and page faults in case of oversubscription.

3.2.1. Migration to Unified Memory

Our target implementation, Rundemanen, heavily uses NVIDIA’s thrust’s (NVIDIA
2023b) device_vector, which is a type of object that wraps arrays with additional meta-
data and utility functions —they are like C++ std::vector. thrust::device_vector allocates
memory on the device using cudaMalloc. If we want this allocation in Unified Memory,
we can use thrust::universal_vector, which uses cudaMallocManaged internally.

Using thrust::universal_vector directly can create problems with certain memory
advises, like setting cudaSetPreferredLocation to CPU. The issue arises during object con-
struction and resizing. When an object of the thrust::universal_vector type is constructed
or resized, an initialization function that initializes the elements on the GPU is called
directly. Consequently, pages are created on the GPU before we can apply any memory
advice. If we want data to be in a certain location like the CPU, we must migrate the
pages, resulting in performance drawbacks.

One solution to this issue is to apply memory advice before the pages are created.
By preventing the kernel responsible for initialization from being called immediately
after construction or resizing and ensuring that this process occurs after applying memory
advisories, the problem can be resolved. We have created a custom vector type, my_vector,
which functions similarly to thrust::universal_vector. The only difference is that it doesn’t
perform automatic initialization, allowing us to apply memory advisories directly after
construction and resizing operations. Manual initialization using thrust::fill_n is required
after providing memory advisories (Note: Clearing is necessary just before the resize
operation).

Listing 3.1. Custom vector implementation.
# i n c l u d e < t h r u s t / u n i v e r s a l _ v e c t o r . h>
# i n c l u d e < t h r u s t / e x e c u t i o n _ p o l i c y . h>

struct my_exec_pol
: t h r u s t : : d e v i c e _ e x e c u t i o n _ p o l i c y <my_exec_pol >

{
} ;

template<typename T>
struct my_a l loc

28



: public t h r u s t : : u n i v e r s a l _ v e c t o r <T > : : a l l o c a t o r _ t y p e
{

using sy s t em_ type = my_exec_pol ;
void sys tem ( ) {}

} ;

template<typename I t e r , typename Size , typename T>
I t e r u n i n i t i a l i z e d _ f i l l _ n ( my_exec_pol ,

I t e r f i r s t ,
S ize ,
const T&)

{
// Do nothing
return f i r s t ;

}

template <typename T>
using my_vec tor = t h r u s t : : d e t a i l : : v e c t o r _b a s e <T , my_al loc <T> >;

3.2.2. Other Modifications

We fixed compilation bugs, replaced deprecated CUDA warp shuffling functions,
removed printing statements influencing the performance and the vectors allocated but
not used, added warp synchronization statement, the absence of which causes incorrect
results, added several prime numbers to the file including pre-computed primes and a
bucket for 0-degree vertices to fix the runtime error, and call shrint_to_fit function after
every clear function call whose object would not be used until next iteration to evaluate
the memory requirement correctly.

We use C++ std::swap operation when we replace the old graph with the new one;
after swapping, we reapply memory advises and cudaMemPrefetchAsync to migrate pages
to the preferred location if cudaMemAdviseSetPreferredLocation is set.

Also, we edited the source codes to log operations like construction, resizing,
swapping, clearing, and destruction applied to vectors. The log details vary by operation:

• Construction: operation type, operation time, object’s name, start address, end ad-
dress.

• Resize: operation type, operation time, object’s name, new start address, new end
address.

• Clear: operation type, operation time, object’s name.

• Destruction: operation type, operation time, object’s name.
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• Swap: operation type, operation time, first object’s name, seconds object’s name.

3.2.3. Data Access Characteristics

For this thesis, we perform instrumentation on the application to collect memory
accesses on Rundemanen. Using our instrumentation, we collect a set of metrics that
specify the spatial and temporal characteristics of the object groups. While we collect
memory access requests dynamically for general program execution, we also track page
faults for oversubscribed scenarios.

3.2.4. Data Structures

We classify each vector based on its functionality in the implementation and group
them into four categories:

• Graph’s CSR: represents the CSR (Compressed Sparse Row) representation of the
graph being processed. It is composed of: g.indices, g.links, and g.weights.

• Hash Tables: stores aggregated weight from vertices to communities. It is composed
of: globalHashTable, hashTablePtrs, and devPrimes.

• Community Information: includes several objects storing community-related infor-
mation, such as the weights and sizes of the communities and the community IDs of
the vertices. It is composed of: n2c, n2c_new, n2c_old, in, tot, tot_new, comm_nodes,
cardinalityOfComms and cardinalityOfComms_new.

• Others: includes objects used temporarily for buckets, new graph information, and
other bookkeeping data. It is composed of: g_next.indices, g_next.links, g_next.weights,
sizesOfNhoods, wDegs, result_array, member_count_per_new_comm, new_nighbor_lists,
new_weight_lists, pos_ptr_of_new_comm, super_node_ptrs, estimatedSizeOfNeigh-
borhoods and renumber.
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3.2.4.1. Memory Access Tracking

To instrument the application, we add some functionality and data structures to
handle memory accesses and write a Python script that modifies PTX source files.

Within Memory Access Handler, we define some variables holding essential data
and implement a set of functions to perform data collection during program execution,
as shown in Listing 3.2.. Specifically, we define six variables: a pointer for the buffer
holding the memory addresses, a pointer for the buffer holding the access times, a pointer
for the current time (Unix time in nanoseconds), the number of elements the buffers hold
(size), the buffers’ capacity, and the number of operations recorded. The buffers and the
current time variable are allocated on the host memory with zero-copy mode, and the
others are allocated on the device memory. The current time is updated every 0.1 seconds
by a separate host thread. The variable holding the number of operations is used to skip
some writing the buffers. To use the handler, we first initialize it in the main function and
then periodically dump the buffers.

Listing 3.2. Variables and functions for memory access tracking.
constexpr int N_BUFFER_ELEMS = 1000000000;
__constant__ void∗∗ a d d r e s s e s _ b u f f e r _ p t r ;
__constant__ long∗ t i m e s _ b u f f e r _ p t r ;
__device__ long n_ope r s ;
__constant__ long c a p a c i t y ;
__device__ long s i z e ;
__constant__ long∗ c u r r e n t _ t i m e _ p t r ;

void u p d a t e _ t i m e r ( ) {
// Updates the value current_time_ptr
// every 0.1 seconds

}

void i n i t _mem_acc_hand l e r ( ) {
// Allocates space for the buffers
// Initializes the variables
// Starts a thread that runs update_timer()

}

void r e s e t _ b u f f e r s ( ) {
// Resets the buffers’ content and the variables

}

void dump_memory_accesses ( ) {
// Writes the contents of the buffer into a file
// Calls reset_buffers()

}
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Since getting the information related to load and store operations is more practical, we
create a Python script, .ptx processor(see Listing 3.3.), which modifies the target PTX
code instead of CUDA kernel code modification. Our .ptx processor inserts the directives
that include the buffers and variables’ definitions into the target code. Then, it reads the
original PTX code line by line and copies the line to the generated PTX code. If the line
contains memory load and store operation on GPU global memory, the processor inserts
our additional instructions that handle the memory access tracking with the address and
time information.

Listing 3.3. The ptx processor Python Source Code.
import sys , r e

def c a n _ p l a c e _ d e f i n i t i o n s ( l i n e ) :
return ".address_size" in l i n e

DEFINITIONS = """
.extern .const .align 8 .u64 addresses_buffer_ptr;
.extern .const .align 8 .u64 times_buffer_ptr;
.extern .const .align 8 .u64 current_time_ptr;
.extern .const .align 8 .u64 capacity;
.extern .global .align 8 .u64 size;
.extern .global .align 8 .u64 n_opers;
"""

INSTRUCTIONS = """
{

.reg.pred %myp;

.reg.u64 %r_n_opers;
atom.global.add.u64 %r_n_opers , [n_opers], 1;
and.b64 %r_n_opers , %r_n_opers , __SKIP_N_OPERS__;
setp.ne.u64 %myp, %r_n_opers , 0;
@%myp bra SKIP;

.reg.u64 %r_capacity;
ld.const.u64 %r_capacity , [capacity];
.reg.u64 %r_current_index;
atom.global.add.u64 %r_current_index , [size], 1;
setp.ge.u64 %myp, %r_current_index , %r_capacity;
@%myp bra SKIP;

.reg.u64 %r_offset;
mov.u64 %r_offset , %r_current_index;
shl.b64 %r_offset , %r_offset , 3;

.reg.u64 %r_page_addr;
mov.u64 %r_page_addr , __ADDRESS__;
.reg.u64 %r_address_buffer_ptr;
ld.const.u64 %r_address_buffer_ptr , [addresses_buffer_ptr];
cvta.to.global.u64 %r_address_buffer_ptr , %r_address_buffer_ptr;
add.u64 %r_address_buffer_ptr , %r_address_buffer_ptr , %r_offset;
st.global.u64 [%r_address_buffer_ptr], %r_page_addr;

.reg.b64 %r_current_time_ptr;
ld.const.u64 %r_current_time_ptr , [current_time_ptr];
cvta.to.global.u64 %r_current_time_ptr , %r_current_time_ptr;
.reg.u64 %r_current_time;
ld.global.volatile.u64 %r_current_time , [%r_current_time_ptr];

.reg.u64 %r_times_buffer_ptr;
ld.const.u64 %r_times_buffer_ptr , [times_buffer_ptr];
cvta.to.global.u64 %r_times_buffer_ptr , %r_times_buffer_ptr;
add.u64 %r_times_buffer_ptr , %r_times_buffer_ptr , %r_offset;
st.global.u64 [%r_times_buffer_ptr], %r_current_time;
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SKIP:
}
"""

ADDR_GROUP_NAME = "addr"
MEM_ACC_PATTERN = r"(ld|st|atom)\.(?!param|const|shared|local|volatile).*\[(?P<" \

+ ADDR_GROUP_NAME\
+ r" >.*)\].*;"

SKIP_N_OPERS = 15 # must be (2^n - 1)

for f i l e _ p a t h in sy s . a rgv [ 1 : ] :
file = open ( f i l e _ p a t h , "r" )
new_con ten t = ""
for l i n e in file :

new_con ten t += l i n e
if c a n _ p l a c e _ d e f i n i t i o n s ( l i n e ) :

new_con ten t += DEFINITIONS
continue

match = r e . s e a r c h (MEM_ACC_PATTERN, l i n e )
if match :

add r = match . group (ADDR_GROUP_NAME)
new_con ten t += INSTRUCTIONS . r e p l a c e ( "__ADDRESS__" , add r ) \

. r e p l a c e ( "__SKIP_N_OPERS__" , str ( SKIP_N_OPERS ) )
file . c l o s e ( )
file = open ( f i l e _ p a t h , "w" )
file . w r i t e ( new_con t en t )
file . c l o s e ( )

The application outputs memory access information, with each entry including the
address and the time of the corresponding memory operation, along with the execution
logs (see Section 3.2.2.). We use a Python script to determine which object’s address
range includes each address at its respective time.

The complete compilation and execution phases are described in Figure 3.4.. In
the Compilation Phase (a), we manually apply the operations that the nvcc compiler uses
internally to intercept the process and insert instrumentation-related code into the .ptx file.
After adding instrumentation code, we complete the remaining compilation operations,
and finally, run the linker to link all object files.

3.2.4.2. Page Faults

CUDA Unified Memory, by default, uses on-demand paging, where if the requested
page is not found (on the requested location, either CPU or GPU), a page fault exception
occurs, and the OS handles it by relocating the page data to the accessed location. When
the memory space is insufficient, a page is replaced based on the eviction policy. In
the case of oversubscription, where the complete memory space is allocated, and when
the eviction policy does not match the application’s access patterns, we have memory
thrashing, which causes page movements back and forth. Therefore, identifying object
groups with high page fault rates and the pages leading to thrashing and eliminating them
may result in performance gain.

To collect page fault counts for each object group, we utilize NVIDIA Nsight
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(a) Compilation phase.

(b) Execution phase.

Figure 3.4. The steps of the memory accesses’ data collection.

Systems to monitor the addresses of pages experiencing faults. Profiling of applications
is carried out by utilizing the Nsight System’s command-line tool with data exported
to a .sqlite file. A dedicated Python script has been developed to extract information
pertaining to page faults. This script parses the .sqlite file and execution logs, associating
each faulted page address with a specific object. It’s important to note that only entries
within the memory copy table are considered, with a specific focus on page faults occurring
between host and device memory.

3.2.5. Artificial Oversubscription Scenerios

To evaluate the system performance under different oversubscription rates, we
configure a set of oversubscription scenarios, where we pre-allocate memory space on the
GPU device memory using cudaMalloc as it is done in (Shao et al. 2022). Specifically,
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we generate five different oversubscription scenarios in which varying percentages of the
required space of the graph are pre-allocated on the global memory. The scenarios are
No, 10%, 30%, 50%, and 70% oversubscriptions. To calculate how much memory space
we need to pre-allocate, we use the following formula:

(𝑀𝑒𝑚.𝑆𝑖𝑧𝑒) − (1 − 𝑂𝑣𝑒𝑟𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛%

100
)𝑥(𝑀𝑒𝑚.𝑅𝑒𝑞.)

where 𝑀𝑒𝑚.𝑆𝑖𝑧𝑒 is the total GPU global memory size and 𝑀𝑒𝑚.𝑅𝑒𝑞. is the maximum
(peak) memory requirement of the application.

3.2.6. Data-Access Aware UM Advises

This thesis investigates how migration policies applied at the data structure level
impact performance using various UM Advises. Table 4.5. shows which advice is used
for each object group. The advises are created considering the memory accesses and page
faults shown in Preliminary Experiment (Section 4.4.).

For each object, a memory advice is applied right after construction and resizing
using the cudaMemAdvise function. If it is required to set both the prefLoc. and accBy. for
the object, the function is called twice: one with cudaMemAdviseSetPreferredLocation
and the other with cudaMemAdviseSetAccessedBy. Listing 3.4. shows how these are
applied to indices of Graph’s CSR.

Listing 3.4. An example C++ that applies memory advice to a thrust object.
inline int g e t _ d e v i c e _ i d ( ) {

int d e v i c e _ i d ;
cudaGetDev ice (& d e v i c e _ i d ) ;
return d e v i c e _ i d ;

}
# d e f i n e THRUST_RAW_PTR_CAST( x ) t h r u s t : : r a w _ p o i n t e r _ c a s t ( x . d a t a ( ) )
# d e f i n e THRUST_PTR_TYPE( x ) s t d : : r emove_po in t e r < d e c l t y p e (THRUST_RAW_PTR_CAST( x ) ) > : : t yp e

. . . f u n c t i o n ( . . . ) {
# i f d e f UM_OTHERS_ADVISE1_ENABLED
cudaMemAdvise (THRUST_RAW_PTR_CAST( i n d i c e s ) ,

sizeof (THRUST_PTR_TYPE( i n d i c e s ) ) ∗ i n d i c e s . s i z e ( ) ,
cudaMemAdv i seSe tP re f e r r edLoca t i on ,
cudaCpuDeviceId ) ;

# e n d i f
# i f d e f UM_OTHERS_ADVISE2_ENABLED
cudaMemAdvise (THRUST_RAW_PTR_CAST( i n d i c e s ) ,

sizeof (THRUST_PTR_TYPE( i n d i c e s ) ) ∗ i n d i c e s . s i z e ( ) ,
cudaMemAdviseSetAccessedBy ,
g e t _ d e v i c e _ i d ( ) ) ;

# e n d i f
}
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CHAPTER 4

EXPERIMENTAL STUDY

In this chapter, we introduce the datasets used throughout this study, provide meta
information about them, collect and analyze memory accesses and page faults for each,
and, by considering the results, suggest which memory advice hint to apply. The effects
of memory advices are discussed in the next chapter.

4.1. Machine Specification and Compilation

The application was compiled using GCC 10.5.0 and CUDA 12.0 Toolkit. Table
4.1. displays the testing environments and their specifications. We selected two machines,
each featuring a distinct GPGPU microarchitecture, to demonstrate that the memory advice
we will introduce performs well across different microarchitectures. This choice also aims
to emphasize any variations resulting from architectural differences, if present.

Table 4.1. The testing environments and their specifications.

Test
Environment Specification

PASCAL
2 x Xeon® Silver 4114 CPU

32GB RAM
8GB Quadro P4000 GPU

AMPERE
Xeon® E5-2609 v4

64 GB RAM
NVIDIA RTX 3060 Ti 8GB
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4.2. Datasets

Table 4.2. shows the datasets used in the experiments. All datasets are loaded in
MatrixMarket (.mtx) file format. After loading the graph, any self-loop is deleted.

Table 4.2. Datasets used in the experiments.

Test
Env. Dataset |V| |E| Symmetric Weighted |E| After

Conversion

PASCAL
&

AMPERE

audikw_1 943,695 39,297,771 Yes Yes 76,708,152
soc-LiveJournal1 4,847,571 68,993,773 No No 68,475,391
Long_Coup_dt6 1,470,152 44,279,572 Yes Yes 85,618,840
dielFilterV3real 1,102,824 45,204,422 Yes Yes 88,203,196
cage15 5,154,859 99,199,551 No Yes 94,044,692
rgg_n_2_24_s0 16,777,216 132,557,200 Yes No 265,114,400
kron_g500-logn21 2,097,152 91,042,010 Yes Yes 182,081,864
uk-2002 18,520,486 298,113,762 No No 292,243,663

AMPERE

uk-20051 39,459,925 936,364,282 No No 921,345,078
kmer_V1r2 214,005,017 232,705,452 Yes No 465,410,904
kron_24_243 16,777,216 386,959,739 Yes No 773,919,478
sk-20054 50,636,154 1,949,412,601 No No 1,930,292,948

Note: For kron_𝐴_𝐵, 𝐴 is the scale used in the number of vertices the graph would
include(|𝑉 | = 2𝐴), and 𝐵 represents the average vertex degree.

4.3. Peak Memory Requirements

Table 4.3. displays the peak memory requirements for each dataset’s object groups
during runtime collected in the PASCAL environment. In general, Others consumes the
most memory space, followed by Graph’s CSR, Community Info., and finally, Hash Tables.

The higher memory requirement of Hash Tables for kron_g500-logn21 can be
attributed to the means of the degrees of vertices being high for both the bucket319toInf
and bucket84to318 (see Algorithm 2) in the Movement phase and commBucket480toInf
and commBucket128to479 (see Algorithm 3) in the Aggregation phase. Additionally, for
some datasets, Community Info demands more memory due to having relatively small

1. (Boldi and Vigna 2004; Boldi et al. 2011; Boldi et al. 2004; Davis and Hu 2011)
2. (Benson et al. 2012; Davis and Hu 2011)
3. (Jurĳ Leskovec and Faloutsos 2005; Beamer, Asanovic, and Patterson 2015)
4. (Boldi and Vigna 2004; Boldi et al. 2011; Boldi et al. 2004; Davis and Hu 2011)

37



average degrees of vertices; in other words, compared to the number of edges, the number
of vertices is high. Consequently, the initial number of communities and their associated
data are substantially more.

Table 4.3. Object groups and their peak memory requirements in MB for all datasets
collected in the PASCAL environment.

Dataset Graph’s
CSR

Hash
Tables

Community
Info. Others

audikw_1 617 43 30 890
soc-LiveJournal1 293 391 155 606
Long_Coup_dt6 690 29 47 1,057
dielFilterV3real 710 30 35 926

cage15 772 99 164 941
rgg_n_2_24_s0 1,127 2 536 2,188

kron_g500-logn21 1,465 775 67 2,022
uk-2002 1,243 314 592 2,451

4.4. Preliminary Analysis Experiments

We conducted preliminary experiments in the PASCAL environment to determine
which memory hints to apply to which object group. We generated charts for memory
accesses and page faults to identify the pages migrating back and forth between host and
device memories, leading to memory thrashing.

4.4.1. Memory Accesses

Table 4.4. shows the numbers of memory accesses and Figure 4.1. depicts memory
access ratios for each object group across all datasets, specifically at the 0% oversubscrip-
tion as memory requests remain consistent across oversubscription scenarios. With the
exception of kron_g500-logn21, Hash Tables exhibits low memory accesses compared to
other object groups. Graph’s CSR and Community Info. hold the 1st and 2nd positions for
the highest memory accesses, except for uk-2002 where Others account for the majority
of memory accesses. The average memory access percentages for Graph’s CSR, Hash
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Tables, Community Info. Others are 35.1%, 5.2%, 33.4% and 26.3%, respectively.

Table 4.4. The numbers of memory accesses of each object group for all datasets collected
in the PASCAL environment.

Dataset Graph’s CSR Hash Tables Community Info. Others
audikw_1 677 × 106 68 × 106 514 × 106 499 × 106

soc-LiveJournal1 627 × 106 77 × 106 734 × 106 572 × 106
Long_Coup_dt6 917 × 106 18 × 106 925 × 106 603 × 106
dielFilterV3real 1, 564 × 106 125 × 106 896 × 106 1, 212 × 106

cage15 595 × 106 36 × 106 681 × 106 331 × 106
rgg_n_2_24_s0 754 × 106 51 × 106 833 × 106 387 × 106

kron_g500-logn21 99 × 106 73 × 106 89 × 106 61 × 106
uk-2002 1, 015 × 106 80 × 106 1, 055 × 106 1, 366 × 106
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Figure 4.1. Memory access ratios of each object group for all datasets collected in the
PASCAL environment.

Figures 4.2. to 4.9. present memory access charts for each object group across all
datasets. The y-axis represents pages, and the x-axis represents the time frame of the
memory accesses. Each non-black point signifies memory accesses at a specific time
frame for a particular page. The color of a point implies the frequency of the memory
accesses within the page, with a higher position of a color on the color bar corresponding
to more memory accesses at the page, signifying a higher spatial locality —i.e. the
addresses of the accesses are very close to each other, for example, they are in the same
page. Horizontal non-black points suggest a higher temporal locality, indicating that the
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same memory addresses are accessed more than once across different time frames. The
more horizontally scattered the points, the higher the temporal locality. On the other hand,
vertically scattered points imply that there are memory accesses across different pages
within the same time frame. The greater the vertical scattering, the higher the memory
bandwidth required.

For all datasets, in general, we observe that Graph’s CSR and Others exhibit
higher temporal locality due to their densely concentrated areas horizontally. Meanwhile,
Community Info. demonstrates better spatial locality, indicated by the points on the charts
having colors located on top of the color bar (specifically more yellow and green colors).
On the other hand, Hash Tables has very sparse accesses except for the kron_g500-logn21
dataset, as only this dataset has a higher percentage of memory accesses on Hash Tables.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.2. Memory accesses of each object group for audikw_1 dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.3. Memory accesses of each object group for soc-LiveJournal1 dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.4. Memory accesses of each object group for Long_Coup_dt6 dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.5. Memory accesses of each object group for dielFilterV3real dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.6. Memory accesses of each object group for cage15 dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.7. Memory accesses of each object group for rgg_n_2_24_s0 dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.8. Memory accesses of each object group for kron_g500-logn21 dataset.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.9. Memory accesses of each object group for uk-2002 dataset.
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4.4.2. Page Faults

Figure 4.10. presents the page fault ratios for each object group across all datasets at
a 30% oversubscription. The data on the chart do not exhibit a one-to-one correspondence
with the data in Figure 4.1.. Graph’s CSR exhibits the highest page fault percentage, and
we observe that this percentage is higher for all datasets compared to its percentage of
memory accesses for the same datasets. The exception is uk-2002, where the majority of
page faults are caused by Others. The average page fault percentages for Graph’s CSR,
Hash Tables, Community Info., and Others are 53.3%, 3.3%, 14.4%, and 29%, respectively.

au
di

kw
_1

so
c-

Li
ve

Jo
ur

na
l1

Lo
ng

_C
ou

p_
dt

6

di
el

Fi
lte

rV
3r

ea
l

ca
ge

15

rg
g_

n_
2_

24
_s

0

kr
on

_g
50

0-
lo

gn
21

uk
-2

00
2

Graph’s CSR Hash Tables Community Info. Others

Figure 4.10. Page fault ratios of each object group for all datasets at 30% oversubscription
collected in the PASCAL environment.

Figures 4.12. to 4.19. illustrate page fault charts for object groups at a 30% over-
subscription rate across all datasets. Similar to the memory access charts, the y-axis
represents pages, and the x-axis represents the time of the faults. Each non-black point
signifies faults at a specific time frame for a particular page. Horizontal non-black points
suggest higher temporal locality, indicating that they are accessed more than once across
time frames. The more horizontally scattered the points, the higher the temporal locality.
On the other hand, vertically scattered points imply that there are faults of different pages
within the same time frame. The greater the vertical scattering, the higher the memory
bandwidth required between the host and the device.

As the oversubscription rate increases, the application primarily spends a signif-
icant portion of its time in the Aggregate phase during the first iteration, as depicted in
Figure 4.11.. The rectangular dense areas in the memory access charts correspond to
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this phase, and these areas have higher temporal and spatial locality. Therefore, at higher
oversubscriptions, this leads to more page faults due to thrashing, resulting in performance
drawbacks. To provide clarity, consider the case of a 30% oversubscription, where a sub-
stantial amount of time is spent in this phase across all datasets. It’s important to note that
these noticeable patterns are not reflected in the memory access charts. Consequently, the
memory access charts and their corresponding page fault charts at the 30% oversubscrip-
tion rate do not exhibit similarity because the execution during which the memory access
charts are generated did not encounter the page faults that would lead to an increase in
running time. Considering the x-axes as unit lengths, for example, the page faults covering
the time range from 0.05 to 0.95 in Figure 4.12.(a) correspond to memory accesses in
Figure 4.2.(a), spanning the time range between 0.15 and 0.20.
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Figure 4.11. Iterations’ running times(secs.) of all datasets at No, 30%, and 70%
oversubscription configurations collected in the PASCAL environment.

When examining the page fault charts, it is notable that Graph’s CSR is the primary
contributor to the majority of page faults for all datasets, generally followed by Others, and
occasionally by Community Info.. Conversely, Hash Tables do not significantly contribute
to page faults. Besides, the page faults are densely and horizontally scattered, indicating
a significant incidence of memory thrashing.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.12. Page fault charts of audikw_1 dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.13. Page fault charts of soc-LiveJournal1 dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.14. Page fault charts of Long_Coup_dt6 dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.15. Page fault charts of dielFilterV3real dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.16. Page fault charts of cage15 dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.17. Page fault charts of rgg_n_2_24_s0 dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.18. Page fault charts of kron_g500-logn21 dataset at 30% oversubscription.
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(a) All object groups

(b) Graph’s CSR (c) Hash Tables

(d) Community Info. (e) Others

Figure 4.19. Page fault charts of uk-2002 dataset at 30% oversubscription.
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4.5. Memory Advises

Considering the Memory Accesses Section (4.4.1.) and the Page Faults Section
(4.4.2.), we observe that having a higher spatial locality of memory accesses has no impact
on page faults because it implies that the accessed memory addresses are in the same page,
and therefore, it does not cause page faults.

Table 4.5. shows the configurations for memory advises applied to object groups.
Aside from the naive version, called base, we create adv1 to observe the impact of all
object groups together. Then, we define four different advise configurations to test each
object group individually: adv2, adv3, adv4, adv5. Additionally, because Graph CSR
has the highest number of page faults, we pair it with the next dense two object groups,
Community Info. and Others as adv6, adv7, and adv8. Lastly, since its impact on page
faults is negligible, we create adv9 to test the object groups except Hash Tables.

Table 4.5. Configurations for memory advises applied to object groups.

Name preferredLocation CPU accessedBy GPU
base - -
adv1 All object groups All object groups
adv2 Graph’s CSR Graph’s CSR
adv3 Hash Tables Hash Tables
adv4 Community Info. Community Info.
adv5 Others Others

adv6 Graph’s CSR,
Community Info.

Graph’s CSR,
Community Info.

adv7 Graph’s CSR,
Others

Graph’s CSR,
Others

adv8 Community Info.,
Others

Community Info.,
Others

adv9
Graph’s CSR,

Community Info.,
Others

Graph’s CSR,
Community Info.,

Others

Note: CPU means the host’s memory and GPU means the device’s memory.
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4.6. Results

We collected the running times of Rundemanen in the PASCAL and AMPERE
environments for several datasets with memory advises at 0%, 10%, 30%, 50%, and 70%
artificial oversubscriptions explained in Section 3.2.5.. Figures 4.20., 4.21., and 4.22.
display the results along with Table 4.6., presenting the average performance gain of each
memory advice over the base configuration.

The running time of base shows an increasing trend as the oversubscription rate
increases because, when there is memory oversubscription, we cannot mitigate page
thrashing by directly accessing data from the host memory. Additionally, we cannot
obtain performance benefits from the pages of the memory addresses exhibiting higher
temporal or spatial locality because these pages are also subject to eviction, alongside
other pages. adv3 and adv4 exhibit similar behavior to base, as the contribution of Hash
Tables is negligible, and the contribution of Community Info. is so small to the page
faults(see Figure 4.10.) compared to other object groups. Thus, applying memory advice
to these two object groups provides almost no benefit over base.

Applying memory advises to all object groups as in adv1 yields consistently average
performance across all datasets. The running time remains unaffected by the increasing
oversubscription rate as the data reside in the host memory and are accessed from that
location, irrespective of the available device memory.

Graph CSR is the main contributor to page faults followed by Others. As a result,
the memory advises applied to these object groups, adv2 and adv7, enhance the base’s
performance a lot when there is oversubscription. At 70% oversubscription, adv7 has
the most performance gain, and at 50% oversubscription, either adv2 or adv7 shows
the most performance gain, with only one exception for rgg_n_2_24_s0 in the PASCAL
environment. Furthermore, at 30% oversubscription, adv2, if the best is neither base nor
adv5, outperforms the performance of other memory advises.

adv6, adv8 and adv9 adversely affect performance at smaller oversubscriptions
except for audikw_1, and cage15; at higher oversubscriptions, their performance gain falls
somewhere in the middle compared to other memory advises. Although the performance
gain of adv5 is not significant for all datasets, we observe that it shows good performance
gain at 10%, 30%, and 50% oversubscriptions for rgg_n_2_24_s0 and cage15.

As a side note, although the application performance is better in the AMPERE
environment than in the PASCAL environment, the performance gain is negligible in
contrast to the gains obtained when applying memory advises.
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Figure 4.20. The running times of Rundemanen for several datasets with memory advises
at different oversubscription rates (I).
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Figure 4.21. The running times of Rundemanen for several datasets with memory advises
at different oversubscription rates (II).
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Figure 4.22. The running times of Rundemanen for several datasets with memory advises
at different oversubscription rates (III).

When we divide the running time of each advice by the running time of base
and calculate the average, we obtain Table 4.6.. As the oversubscription rate increases,
all advises’ average performance gains also increase except adv3’s and adv4’s at 30%
oversubscription.
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Table 4.6. The average performance gains of all advises over base.

Advise Oversubscription
No 10% 30% 50% 70%

adv1 0.098 1.642 1.742 4.194 18.934
adv2 0.470 7.201 8.583 9.274 17.004
adv3 0.278 1.351 0.783 1.069 1.333
adv4 0.171 1.323 0.754 1.319 1.629
adv5 0.312 5.687 6.266 6.854 3.260
adv6 0.149 1.833 2.518 4.790 16.512
adv7 0.284 3.778 5.702 13.020 62.516
adv8 0.131 2.129 2.387 4.478 5.429
adv9 0.117 2.047 2.290 5.272 27.527

4.6.1. Results of Non-fitting Datasets

The experiments whose results are shown above are run with artificial oversub-
scription scenarios. These scenarios might not completely represent the reality. To ensure
that the results are reliable, we also test some datasets that already do not fit into the GPU’s
memory in the AMPERE environment. Table 4.7. shows these datasets and how much
percentage of them are oversubscribed.

Table 4.7. The Oversubscription rates of datasets collected in the AMPERE environment.

Dataset
Peak

Memory
Requirement

Oversub.
Ratio

uk-2005 13.7GB 37%
kmer_V1r 14.7GB 41%

kron_24_24 15.9GB 45%
mawi_20151202033 20.9GB 58%

sk-2005 34.9GB 75%

According to the chart in Figure 4.23., as in artificial oversubscription scenarios
above, adv2 and adv7 have the shortest running times. In contrast to the results of the
artificial oversubscription scenarios above, adv2’s performance gain overscores adv7 for
all datasets regardless of the oversubscription percentage.
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Figure 4.23. The running times of the application for non-fitting datasets collected in the
AMPERE environment.

4.7. Discussion

Our study’s findings indicate a notable performance gain when we make the object
group with the highest number of page faults to be accessed directly from the main memory.
By applying memory advises to the graph’s data structures ()Graph’s CSR), we achieved
performance improvements of 7x, 8x, 9x, and a substantial 17x at 10%, 30%, 50%, and
70% artificial oversubscriptions, respectively, compared to the naive version. Extending
memory advises to include temporary structures (Others) resulted in a significant 62x
performance gain at a 70% artificial oversubscription. These outcomes align with our
expectations, supporting the efficacy of our proposed memory optimization strategies.

There are some limitations to this work. Firstly, the current version applies memory
advises in a fixed way for all datasets, indicating a lack of adaptability. Additionally, the
absence of a clear explanation for the outcomes linked to specific memory suggests a
need for deeper investigation into the underlying mechanisms at play. Another noteworthy
limitation is the manual effort in generating the charts, presenting a practical challenge
highlighting the importance of refining data collection methods in future studies. These
identified limitations underscore the nuances in the current research and point toward areas
for improvement and growth.

In future research, memory advises could be adjusted adaptively according to
the data characteristics, which may improve the performance. These memory advises
could also be tested for other graph applications to see if similar benefits are brought.
Furthermore, a framework can be developed that automatically collects memory accesses
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and page faults and then generates charts.
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CHAPTER 5

CONCLUSION

Running a GPU application with non-fitting datasets is straightforward using
thrust’s vector, but without fine-grained memory optimization, performance degrades.
Unified Memory allows us to modify data access with memory advises, but doing so with-
out understanding the application’s memory access characteristics can harm performance.

Following our analysis of Rundemanen, we identified that data structures related to
graph representation significantly contribute to page faults, particularly at higher oversub-
scription rates, negatively impacting performance regardless of the dataset characteristics.

By applying memory advises solely to the graph’s representation data structures,
we enable the GPU to access related data from host memory directly, reducing memory
thrashing. This led to a substantial performance gain over the naive version at higher
oversubscription percentages. Additionally, we recognized that the performance benefit
of applying memory advises to other data structures is highly dependent on the specific
characteristics of the datasets.

Examining performance outcomes, on average, we achieved 7x, 8x, 9x, and 17x
performance gains at best over the naive version at 10%, 30%, 50%, and 70% oversubscrip-
tions by applying memory advises to the graph’s data structures (Graph’s CSR). Notably,
extending memory advises by applying it to also temporary structures (Others) resulted in
a remarkable 62x performance gain at 70% oversubscription.

In summary, our exploration of Rundemanen with large datasets underscores the
critical role of fine-grained memory optimization. The strategic use of targeted memory
advises is crucial in achieving significant performance improvements, particularly in
scenarios involving oversubscription.
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