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ABSTRACT 

 

DESIGN OF ADVANCED PROCESS CONTROL SYSTEM FOR 

DELAYED COKER UNIT 

 

It is essential for refineries to optimize the upgrading vacuum residue (VR) 

processes due to reducing of conventional light crude oil resources and increasing of fuel 

global demands. Delayed coking is a thermal cracking process used in refineries to 

upgrade and convert vacuum residuum into liquid and gas product streams including 

Light Coker Gas Oil (LCGO), Heavy Coker Gas Oil (HCGO), Sour Liquefied Petroleum 

Gas (LPG), Sour Coker Product Gas, Stabilized Naphtha and Petroleum Coke as a solid 

concentrated carbon material. Delayed coking is a semi-batch process where one or more 

pairs of coke drums are used for the thermal cracking and coking process. Simultaneously 

in each pair of coke drums, the feed stream is switched between two drums and one drum 

is online for the coking process while the other drum is offline undergoing decoking. The 

switching of the coke drums severely destabilizes the operation of the main fractionator 

and downstream process units. Applying advanced control concepts minimizes the 

disturbances and improves product quality and unit stability. Delayed coking is one of the 

most difficult refinery units to operate and control due to disturbances. Industrial chemical 

processes must operate at maximum efficiency and one of the ways to save energy and 

still obtain high quality product by using Advanced Process Control (APC) systems. The 

objective of thesis is to design an advanced process control system for main fractionator 

column of the delayed coker unit using Honeywell RMPCT. The aim of the APC is to 

decrease standard deviation of LCGO Final Boiling Point (FBP) quality in main 

fractionator column during steady state operation. The methods used in this thesis are the 

determination of the controller matrix and the application of pre-step and main tests to 

obtain process models for the advanced process control. According to obtained results, 

standard deviation for the LCGO FBP quality results are compared before and after APC 

implementation. It is shown that when the APC is turned on, the standard deviation of the 

LCGO product FBP quality is decreased by 3 ℃.  
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ÖZET 

 

GECİKTİRMELİ KOKLAŞMA ÜNİTESİ İÇİN İLERİ PROSES 

KONTROL SİSTEMİ TASARIMI 

 

Rafinerilerin, geleneksel hafif ham petrol kaynaklarının azalması ve global yakıt 

talebinin artması nedeniyle, vakum distilasyon kolonu dip ürünü olan vakum kalıntısı 

(VR) işlemlerini optimize etmeleri gereklidir. Gecikmeli koklaşma ünitesi, rafinerilerde 

vakum kalıntısını değerli ürün olan, Hafif Koklaşma Gaz Yağı (LCGO), Ağır Koklaşma 

Gaz Yağı (HCGO), Sıvılaştırılmış Petrol Gazı (LPG), Kok Ürün Gazı, Stabilize Nafta 

gibi sıvı ve gaz ürün akışlarına dönüştürmektedir, ilave olarak da katı yoğun karbon 

malzemesi olan petrol kok ürününe dönüştürmektedir. Gecikmeli koklaştırma, termal 

parçalama ve koklaştırma işlemi için bir veya daha fazla kok tamburunun kullanıldığı 

yarı-sürekli bir işlemdir. Eş zamanlı olarak her bir kok tamburu çiftinde, besleme akışı iki 

tambur arasında değiştirilir ve bir tambur koklaştırma işlemi için çevrim içi iken diğer 

tambur çevrimdışı olup kok giderme işlemine tabi tutulur. Kok dramlarının değiştirilmesi, 

ana fraksiyon kolonunun işleyişinde ve aşağı akım proses ünitelerinde bozulma etkisi 

yaparak, ünite proseslerini ciddi şekilde etkilemektedir. İleri proses kontrol kavramlarının 

uygulanması, bu tür bozulmaları en aza indirir ve ürün kalitesini ve ünite stabilizasyonunu 

artırır. Gecikmeli koklaşma ünitesi, bozulmalardan dolayı işletilmesi ve kontrol edilmesi 

en zor olan rafineri ünitelerinden biridir. Endüstriyel kimyasal işlemler en yüksek 

verimlilikte çalışmalıdır ve enerji tasarrufu yapmanın ve yüksek kaliteli ürünler elde 

etmenin yollarından biri İleri Proses Kontrol (APC) methodlarını kullanmaktır. Tez 

çalışmasının amacı, Honeywell RMPCT kullanarak gecikmeli koklaşma ünitesinin ana 

fraksiyon kolonunda ileri proses kontrol sistemi tasarlamaktır. APC'nin amacı, stabil 

operasyon sırasında ana fraksiyonlandırma kolonunda LCGO Son Kaynama Noktası 

kalitesinin standart sapmasını azaltmaktır. Bu tezde kullanılan yöntemler, ileri süreç 

kontrolüne yönelik süreç modellerinin elde edilmesi için kontrolör matrisinin 

belirlenmesi ve ön adım ve ana testlerin uygulanmasıdır. Elde edilen sonuçlara göre 

LCGO FBP kalite sonuçlarının standart sapması APC uygulamasından önce ve sonra 

karşılaştırılmıştır. APC devrede olduğunda LCGO ürününün FBP kalitesinin standart 

sapmasının 3 °C azaldığı gösterilmiştir. 
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 CHAPTER 1 

 

  

                                INTRODUCTION 

 

 

1.1. General Perspective on Refineries 

 

 

Crude oil encompasses valuable liquid fuels, solvents, lubricants, and various 

other products once it undergoes the refining process. These refined crude oil constituents 

are utilized as both gas and liquid fuels, and they can also function as lubricants for 

machinery. As a pivotal energy source, the fuels derived from crude oil play a significant 

role, accounting for roughly one-third to one-half of the worldwide energy supply. 

Refinery units fractionate crude oil to generate valuable products. The main objective of 

crude oil distillation units is to separate the diverse hydrocarbon components present in 

crude oil based on their unique boiling points via a distillation process. These units are 

tailor-made to handle varying types and densities of crude oil and produce LPG, Naphtha, 

Kerosene, and Diesel intermediates as their output. Vacuum distillation units serve a dual 

purpose: they provide feedstock for conversion units while also producing Fuel Oil or 

Asphalt. The FCC (Fluid Catalytic Cracking) unit plays a vital role in breaking down the 

Heavy Vacuum Gas Oil obtained from the vacuum distillation columns. It transforms this 

material into gasoline and LPG, which are more valuable and versatile. This cracking 

process involves the conversion of heavy hydrocarbons into lighter and more valuable 

hydrocarbons. To further enhance the value of the products, a hydrocracker unit is 

employed. This unit operates within a hydrogen-rich environment, at high pressure and 

temperature, to efficiently break down the medium product derived from Heavy Vacuum 

Gas Oil obtained during vacuum distillation. The outcome is the production of even more 

valuable products, including LPG, naphtha, diesel, and kerosene. The objective is to 

extract pure elemental sulfur by making use of hydrogen sulfide, which is produced 

during the removal of sulfur compounds from petroleum products. Initially in a liquid 

form, sulfur is cooled and solidified before undergoing crushing processes to produce 
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solid powdered sulfur. These units have a critical role in the transformation of 

environmentally harmful byproducts, generated during the purification of petroleum 

products, into environmentally friendly products that have demand in the market (Speight, 

2016) . After refining processes variety of products produced, and Figure 1.1 shows a 

schematic overview of the refinery. 

 

 

 

Figure 1.1. Schematic overview of refinery (Speight, 2016) 

 

 

Boiling fractions of Crude oil is shown in Table 1.1. 

 

 

Table 1.1. Boiling Fractions of Crude Oil (Speight, 2016) 

Fraction Boiling Rangea 

 ℃ ℉ 

Light Naphtha -1-150 30-300 

Gasoline -1-180 30-355 

Heavy Naphtha 150-205 300-400 

Kerosene 205-260 400-500 

Light Gas Oil 260-315 400-600 

Heavy Gas Oil 315-425 600-800 

      (cont. on the next page) 
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Table 1.1. (cont.) 

Fraction Boiling Rangea  

 ℃ ℉ 

Lubricating Oil >400 >750 

Vacuum Gas Oil 425-600 800-1100  

Residuum >510 >950 

a: for convience, boiling ranges are converted to the nearest 5o. 

 

 

Indeed, gas and gasoline fractions are regarded as more valuable and are lower-

boiling products compared to the higher-boiling fractions. Naphtha is sourced from the 

lighter and middle distillates. The higher-boiling products obtained from crude oil 

encompass lubricating oils, gas oil, and residuum. 

 

 

1.2. Refinery Technologies 

 

 

1.2.1. Atmospheric Distillation 

 

 

Atmospheric distillation is the process of segregating crude oil into its constituent 

components by exploiting the varying boiling points of different petroleum products. This 

separation procedure takes place within distillation towers, operating under specific 

pressure and temperature conditions. Substances that have low boiling points are referred 

to as top products, while those with high boiling points are known as bottom products. 

Petroleum is indeed a complex mixture, and atmospheric distillation involves not only the 

separation of top and bottom products but also various intermediate products. This 

process serves as the crucial initial step in the separation of petroleum products. 

Additionally, it is common for the capacity of a refinery to be determined by the capacity 

of its atmospheric distillation column because this process establishes the groundwork for 
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subsequent refining procedures. In an atmospheric distillation unit, the initial feed is 

heated in a furnace to reach the necessary feed temperature. During this process, a portion 

of the feed is converted into vapor, while the remaining liquid portion collects at the base 

of the distillation column. The vaporized material then rises up the tower and undergoes 

fractionation, leading to the separation of gas oils, kerosene, and naphtha (Speight, 2016). 

Figure 1.2 shows the atmospheric distillation scheme. 

 

 

 

Figure 1.2. Atmospheric Distillation Scheme (Speight, 2016) 

 

 

1.2.2. Vacuum Distillation 

 

 

In a vacuum distillation unit, the process takes place under reduced pressure 

conditions. The typical operating range for vacuum distillation is between 50-100 mm of 

mercury, whereas atmospheric pressure is around 760 mm of mercury. Vacuum 

distillation feed consists of components with high boiling points and fewer volatile 

substances. These high-boiling products require elevated temperatures to undergo 

decomposition reactions under normal atmospheric conditions. The fractions obtained 
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through vacuum distillation include heavy gas oil, lubricating oil, and residuum. These 

fractions have various uses, such as in asphalt production, and they can serve as feedstock 

for the delayed coker unit in refineries. 

 

 

1.2.3.Thermal Processes 

 

 

Thermal processes are utilized to transform heavier petroleum products into 

lighter oils. The resulting liquid products from these thermal processes often contain 

elevated levels of olefins, aromatics, and sulfur. To improve the properties of these 

products, hydrogen treatment is essential. Coking is a procedure that entails the removal 

of carbon, yielding lighter components while leaving behind heavier residues. These 

lighter components typically have low sulfur content, as most of the sulfur remains in the 

form of coke. In the thermal cracking of hydrocarbons, the mechanism involves free 

radical reactions that initiate in the initial step. Because of this reaction mechanism, as 

the reactions progress, heavier fractions and coke are generated towards the latter stages 

of the process (Fahim et al., 2010). Figure 1.3 shows the thermal cracking reaction 

mechanism. 
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Figure 1.3.  Thermal cracking mechanism (Fahim et al., 2010) 

 

 

There are three types of thermal processes, including mild cracking, which applies 

gentle heat to break down the residue enough to reduce its viscosity and also produce 

some lighter products; The second process is delayed coking, in which moderate thermal 

cracking converts the residue to a lighter state. The third process for producing products 

and coke involves severe thermal cracking, in which part of the coke is burned and used 

to heat the feedstock in a cracking reactor, as in liquid coking. 

 

 

1.2.3.1.Visbreaking 

 

 

Visbreaking is a thermal process used to generate light products under either 

vacuum or atmospheric pressure. The goal is to produce a cracked material with a reduced 

viscosity, typically in the range of 75-85%. This cracked material can be utilized as light 

products or fuel oil. The feedstock for visbreaking is typically vacuum residue, which is 

the heaviest fraction obtained from the vacuum distillation process. It comprises heavy 

hydrocarbons, asphaltene, and resins. The primary reaction in visbreaking involves the 

thermal cracking of these heavy hydrocarbons and the conversion of high-viscosity 

materials into lighter and more valuable products. 
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1.2.3.2. Delayed Coking 

 

 

Delayed coking is a thermal cracking process where the necessary heat for coking 

reactions is supplied by a furnace. The thermal cracking reactions commence in 

specialized drums, and coking occurs within these drums. This process operates in cycles, 

typically with 24 hours dedicated to coking and 24 hours for decoking. Efficiency is 

achieved by minimizing the residence time in the furnace, often by introducing steam into 

the furnace tubes. During the process, coke is formed and remains within the drums, while 

hydrocarbon products are recovered and directed to other processing units. However, it is 

important to note that the products obtained from delayed coking are often unstable and 

contain unsaturated compounds. To enhance their stability and remove impurities, these 

coker products usually undergo hydrotreating, which is a subsequent treatment process. 

The feed for the coker unit can consist of vacuum residue and atmospheric residue, both 

of which contain components like asphaltenes, resins, aromatics, sulfur, and metals. The 

products produced from the delayed coker unit primarily include olefins as cracked 

products. Notably, the delayed coker unit is the sole unit in refineries responsible for 

producing coke. The C3-C4 content of the delayed coker products is typically sent to the 

LPG (liquefied petroleum gas) plant, while the aromatic naphtha is directed into the 

gasoline pool. The light coker gas oil product undergoes hydrotreatment and is then 

channeled into the diesel pool. The heavy coker gas oil product is routed to the 

hydrocracker unit for further processing. Figure 1.4 illustrates the position of the delayed 

coker unit within the refinery's unit configuration. 
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Figure 1.4.  Delayed Coker Unit in Refinery Units (Fahim et al., 2010) 

 

 

1.3. Process Control in Refineries 

 

 

In refineries, numerous parameters, including operating pressure, temperature, 

and chemical concentrations, play a crucial role in the effectiveness of various processes. 

These parameters need to be carefully monitored and controlled to ensure the continuous 

and safe operation of refinery processes. Operational constraints, such as safety and 

environmental regulations, must be taken into account when setting and maintaining these 

parameters within acceptable limits. Control systems are an integral part of refinery 

operations and consist of instrumentation and control equipment. These include 

measuring devices to monitor process variables, control valves to regulate the flow of 

fluids, controllers to manage the operation of equipment, computers for data analysis and 

process control, as well as plant operators and designers who oversee and optimize the 

processes. The primary purpose of these control systems is to ensure process safety, 
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reliability, and efficiency by keeping operations within allowable limits and responding 

to deviations or disturbances in real-time. This helps prevent accidents, maintain product 

quality, and maximize the overall performance of the refinery. Control systems prevents 

the disturbances, provides stability of the processes and optimization of the processes 

requirements (Lahiri, 2017). In refineries, PID (proportional–integral–derivative) 

regulatory controllers indeed play a crucial role in maintaining process stability and 

responding to disturbances in a wide range of industrial applications, including refineries. 

Their ability to provide proportional, integral, and derivative control actions makes them 

versatile tools for achieving desired process conditions and improving control system 

performance. The PID controller operates based on three primary control actions. By 

combining these three control actions, a PID controller can effectively regulate processes, 

maintain stability, and mitigate disturbances, making it a valuable tool in the control and 

automation of refinery operations. PID controllers include three control modes: 

proportional (P), Integral (I) and Derivative (D) controls (Smuts, 2011). 

 

 

1.3.1. PID Control 

 

 

1.3.1.1. Proportional Control 

 

 

The P component responds to the current error between the desired set-point and 

the actual process variable. It applies a control output that is proportional to the error, 

which helps reduce deviations from the set point. If error is large, it requires larger control 

action to correct errors. The controller gain (Kc) show that how much proportional action 

is required to correct error (Smuts, 2011). 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐾𝑐 ∗ 𝐸                                                                     Eqn 1. 

where, KC is the controller gain, E is the error between process value and set point. 
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1.3.1.2. Integral Control 

 

 

The I component considers the accumulated past errors over time. It acts to 

eliminate any sustained or steady-state error by continuously adjusting the control output. 

The equation for integral control action is as below; 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐾𝑐

𝑇𝐼
∗ ∫ 𝐸 𝑑𝑡                                                                      Eqn 2. 

where, KC is the controller gain,  TI is the integral time, E is the error between process 

value and set point (Smuts, 2011). 

 

 

1.3.1.3. Derivative Control 

 

 

The D component anticipates future error by evaluating the rate of change of the 

error. It helps dampen rapid changes and reduces overshooting of the setpoint (Smuts, 

2011). 

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐾𝑐 ∗ 𝑇𝐷 ∗
𝑑𝐸

𝑑𝑡
                                                                Eqn 3. 

where, KC is the controller gain,  TD is the derivative time, E is the error between process 

value and set point. 

 

 

 1.3.2. Advanced Process Control 

 

 

PID controllers cannot optimize complex processes, which have multivariable 

structures. Optimizing complex processes often requires more advanced control strategies 

and techniques, such as Advanced Process Control (APC). These methods take into 

account the relationships and interactions between multiple process variables and use 

mathematical models and optimization algorithms to achieve the best possible process 
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performance. Advanced Process Control is a control system including, feedforward 

control, multivariable control system and inferential control system. MPC (Model 

Predictive Control) is an Advanced Process Control system and a software package for 

multivariable control system (Nicolae et al., 2019) . MPC predicts the process behavior 

considering the past behavior of the process dynamics. 

 

 

 

Figure 1.5.  MPC Technique (Nicolae et al., 2019)  

 

 

MPC (Model Predictive Control) is a powerful control strategy that takes into 

account a range of process constraints such as such as pressure limit, furnace maximum 

temperature limit, compressor amper limit, column flooding limit, product purity limit 

and feed supply limit and economic objectives to optimize the operation of a plant or 

refinery. It operates by continuously predicting the future behavior of the process based 

on mathematical models and historical data, and then calculates the optimal control 

actions to keep the process within desired limits while maximizing economic 

performance. Control operators and production engineers try to operate the plant at the 

center of the acceptable operating region. Figure 1.6 shows the operator comfort zone and 

optimum operating point of the process. According to the red point, MPC goal is to keep 

the process operating within this "economically optimum zone," which is the region 

where the process is both economically efficient and compliant with all constraints 

(Lahiri, 2017).  
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Figure 1.6. Optimum Operating Point versus Operator Comfort Zone (Lahiri, 2017) 

 

  

1.3.3. Variables Used in MPC 

 

 

1.3.3.1. Manipulated Variables (MV) 

 

 

Manipulated variables are the inputs that can be changed by the control system to 

influence the process and maintain the CVs within their desired ranges. In the context of 

refinery or industrial processes, manipulated variables can include parameters like reflux 

flow, feed temperature, feed flow rate, compressor speed, overhead pressure, and many 

others (Lahiri, 2017). 

 

 

1.3.3.2. Controlled Variables (CV) 

 

 

Controlled variables are the process conditions or parameters that are actively 

controlled to maintain the desired state or performance of a system. Control variables can 

be the process conditions such as temperature, pressure, delta pressure, product quality 

inferential calculations, valve positions and measured analyzer values (Lahiri, 2017). 
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1.3.3.3. Disturbance Variables (DV) 

 

 

Disturbance variables are factors that can influence the control variables (CVs) in 

a process but are typically outside the direct control of the Model Predictive Control 

(MPC) system. Disturbance variables can be feed temperature, feed composition and 

ambient temperature (Lahiri, 2017). 

 

 

1.3.4. Benefits of MPC 

 

 

MPC provides feedforward control by taking into account the influence of 

disturbance variables like feed temperature and composition and MPC can proactively 

adjust manipulated variables to maintain desired control variable values and stabilize the 

process. Additionally, MPC closes controlled variables through operational constraints. 

Figure 1.7 shows the MPC stabilization effect and after MPC is implemented, process 

variables are closed the operating limits (Lahiri, 2017). 

 

 

 

Figure 1.7. MPC Stabilization Effect (Lahiri, 2017)  

 

 

Before MPC is implemented, Operators typically focus on controlling basic 

process parameters such as temperature, pressure, and level. The primary objective is to 
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maintain these parameters within safe and acceptable ranges while ensuring stable 

operation. The control actions are often reactive, responding to deviations from set-points 

or disturbances. After MPC is implemented, MPC takes a predictive and proactive 

approach, continuously optimizing manipulated variables to achieve these performance 

and constraint objectives. By shifting the focus to performance parameters and using 

MPC's predictive capabilities, better process conditions can be obtained. This results in 

improved overall process efficiency, product quality, and adherence to operational 

constraints, ultimately contributing to increased profitability and reduced operational 

risks in industries such as refining. As shown in Figure 1.7, process stabilization is 

obtained and this cause less product quality variations and decreased the downstream unit 

variability. 

 

 

1.3.5. Position of MPC in Control Hierarchy 

 

 

MPC position in the control hierarchy is given in Figure 1.8.  

 

 

Figure 1.8. Hierarchy of plant‐wide control framework (Lahiri, 2017) 
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1.3.5.1. PID Control Layer 

 

 

The bottom part of the control hierarchy is regulatory PID Control Layer, which 

consists of the instruments (transmitters, valves) of the plant single sensing element and 

single final control element. Simple conventional temperature, pressure, flow control 

loops along with cascade control, and ratio controls are example of PID Controllers. Base 

level control provides disturbance rejection, and operational stability (Lahiri, 2017). 

 

 

1.3.5.2. Advance Regulatory Control (ARC) Layer 

 

 

The second layer above the regulatory PID control layer is called the advanced 

regulatory control. It helps optimize the process further, ensure product quality, and 

maintain stability by considering multiple inputs and outputs and using more advanced 

control techniques. Pressure‐compensated temperature, pressure, temperature, and 

density‐compensated flow or mass flow, simple feedforward control based on auxiliary 

measurements, and override or adaptive gain controls are example of MISO systems. 

Control frequency of advanced regulatory PID control layer is in between 0,3- 1 second 

(Lahiri, 2017). 

 

 

1.3.5.3. Multivariable Model‐Based Control 

 

 

MPC is characterized by its ability to simultaneously consider and control 

multiple controlled variables (CVs) while adjusting multiple manipulated variables 

(MVs). In a MIMO system, the control actions are based on the interactions and 

relationships between various CVs and MVs, allowing a comprehensive and coordinated 

approach to control. MPC relies on dynamic mathematical models of the process to 

predict the future paths of control variables. These models take into account the historical 

behavior of the process and the interactions between variables to make predictions. In 
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control hierarchy, multivariable model predictive is above a regulatory control 

implemented in DCS and takes measured data values from DCS and give set point to the 

regulatory control. Control frequency of MPC is in between 1-3 minutes (Lahiri, 2017). 

 

 

1.3.5.4. Economic Optimization Layer 

 

 

Optimization part is figured above the multivariable control layer. Optimization 

layer includes three layers as following; 

 

1.3.5.5. First Layer of Optimization 

 

 

MPC plays a crucial role in optimizing the operation of the process. It focuses on 

taking control variables (CVs) within specified limits while considering various 

constraints and objectives. MPC achieves this by predicting the future behavior of the 

process using dynamic mathematical models and then calculating optimal manipulated 

variable (MV) adjustments to maintain the CVs within desired ranges. 

 

 

1.3.5.6. Second Layer of Optimization 
 

 

Second layer of optimization is figured above the first layer of optimization. The 

aim is to increase the profit of the plant based on the maximization or minimization of the 

objective function shown in below equation 4. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑏𝑗 = ∑ 𝑝𝑖𝐶𝑉𝑖 + ∑ 𝑞𝑖
2((𝐶𝑉𝑖 − 𝐶𝑉0𝑖)

2)𝑖 + ∑ 𝑝𝑗𝑗𝑖 𝑀𝑉𝑖𝑗 +

∑ 𝑞𝑗
2 ((𝑀𝑉𝑗 − 𝑀𝑉0𝑗)

2
)𝑗                                                                                              Eqn 4. 

In the provided equations: "𝑝𝑖" represents the linear coefficients associated with 

the Controlled Variables (CVs), "𝑝𝑗" represents the linear coefficients associated with the 
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Manipulated Variables (MVs)," 𝑞𝑖" represents the quadratic coefficients associated with 

the CVs, "𝑞𝑗" represents the quadratic coefficients associated with the MVs," 𝐶𝑉0𝑖" stands 

for the desired resting values of the CVs," 𝑀𝑉0𝑗" stands for the desired resting values of 

the MVs. Maximizing the objective function rather than minimizing can be achieved by 

multiplying each term in the objective function by -1. The controller's goal is to minimize 

or maximize the negative of this objective function while ensuring that all controlled 

variables (CVs) remain within specified limits or at their set points, and all manipulated 

variables (MVs) stay within their control limits. 

 

 

1.3.5.7. Third Layer of Optimization 

 

 

This level of optimization focuses on maximizing the overall profitability of the 

plant by making strategic decisions based on real-time information considering the market 

demand and raw material availability.  

 

 

1.4. Applications and Benefits of MPC in Industry  

 

 

In industry, MPC has indeed come a long way since its inception in the 1970s. Its 

applications have expanded beyond chemical plants and oil refineries to include diverse 

fields such as robotics, space exploration, and biochemical plants. Over the years, MPC 

technology has undergone structural modifications, and now it is a widely applied 

technology in chemical companies, petrochemical companies and refineries. Table 1.2. 

shows the obtained benefits by MPC in petrochemical industry. 
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Table 1.2. Typical Benefits of MPC Implementation in Petrochemical Industry (Lahiri, 

                 2017)  

        

Petrochemicals Benefit (per year) 

Ethylene  2-4% Increase in production 

VCM 3-5% Increase in capacity(1-4% yield 

improvement 

Aromatics 3.4-5.3 M US$ 

Chemicals  

Ammonia 2-4% Increase in capacity 

Polyolefins 2-5% Increase in production 

Oil & Gas  

Upstream Production - 

Industrial Utilities - 

Cogeneration/Power Systems 2-5% Decrease in operating costs 

Pulping - 

Bleaching 10-20% Reduction in Chemical Usage 

TMP (Thermos Mechanical Pulping) $1M-$2M 

 

 

Table 1.3. shows the benefits that can be obtained by MPC in refinery units. 

 

 

Table 1.3. Typical Benefits of MPC implementation in Refinery (Lahiri, 2017) 

Refining Benefit (per year) 

Crude Distillation 2.7-7 M US$ 

Coking 2.2-4.8 M US$ 

Hydrocracking 3.3-7.6 M US$ 

Catalytic Cracking 2.4-5.4 M US$ 

Reforming 1.8-4.7 M US$ 

Alkylation 1.1-2.8 M US$ 

Isomerization 0.3-1.8 M US$ 
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The usage of MPC application is increased and except from petrochemical and 

refinery industry, MPC is increasingly utilized in polymer, oil and gas, pulp and paper, 

power/steam generation and chemicals industries.  

 

 

1.5. Dynamic Control Strategy of MPC 
 

 

MPC is implemented to the Distributed Control System (DCS) systems as a 

higher-level control strategy. DCS connecting to various sensors and transmitters that 

monitor key process variables such as flow, temperature, pressure, and level. Dynamic 

control strategy begins with plant DCS system. Inferential control, as part of the dynamic 

control strategy, takes this input data from the DCS and utilizes it to predict future steady-

state values for controlled variables (CVs). These predictions are essential for making 

informed decisions and optimizing the control actions within the system. A steady‐state 

optimization module takes predicted Controlled Variable (CV) values as input. These 

predictions are often generated by inferential models or other methods based on real-time 

data. The module's goal is to find steady-state optimum targets for both CVs and 

Manipulated Variables (MVs). To determine dynamic strategy, obtained MV and CV 

targets are fed to dynamic control module to calculate MV movement value. Dynamic 

control modules are responsible for determining how to adjust MVs in response to 

changes in the process to maintain CVs at or near their targets. To formulate this dynamic 

control strategy, the module requires additional inputs, including MV and CV limits 

(constraints) and tuning constants. Figure 1.9 shows the dynamic strategy of MPC. 
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Figure 1.9. Dynamic Control Strategy of MPC (Lahiri, 2017)  

 

 

1.6. Soft Sensors (Inferential) 

 

 

Soft sensors are used to calculate controlled variables (CVs) within the process. 

These CVs are important for MPC because they represent key process parameters that 

need to be controlled to achieve specific objectives, such as product quality or process 

efficiency. In refining and petrochemical processes, product impurities, qualities (e.g., 

Initial Boiling Point, Final Boiling Point), and other attributes are critical for ensuring 

product consistency and meeting regulatory standards. Soft sensors help infer these 

quality attributes based on available data and measurements. Quality inferential, which 

are essentially soft sensor outputs, are used as CVs in MPC models. This is important 

because maintaining product quality within specified limits is a primary objective in many 

refining and petrochemical processes. In refineries, for most of the critical qualities, 

analyzers are used to measure product properties and soft sensors are use as backup when 

there is a calibration issue in analyzer (Lahiri, 2017). 
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1.7. Functional Design of MPC Controllers 

 

 

Functional design shows the MPC control strategy including MV, CV, DV of the 

models, the key process variables and parameters that will be included in the MPC model. 

This involves selecting the Manipulated Variables (MVs), Controlled Variables (CVs), 

and Disturbance Variables (DVs) that are most relevant to achieving the desired process 

objectives. In MPC, an objective function is determined to quantify the process's 

performance goals. This function may include economic objectives, such as maximizing 

production rates or minimizing energy consumption, as well as constraints on CVs and 

MVs. 

 

 

1.7.1. Identify Process Constraints 

 

 

Process constrains should be specified when a MPC is being designed. A MPC 

increases the throughput considering process limitations, safety limitations, equipment 

limitations, raw material and utility limitations and product limitations. 

 

 

1.7.2. Variable Selection 

 

 

In this part of the functional design, MV, CV and DV of the process are 

determined. Manipulated variables are changed to control CVs. Controlled variables are 

the process conditions to be controlled. When the desired CV is not measurable such as 

yield, selectivity etc., there should be calculation and inferential to identify the CVs. 

Disturbance variables are measured disturbances in the process that affect the CVs but it 

is not changed by MPC control. 

 



 

22 
 

1.7.3. Preliminary Process Test and Step Test 

 

 

1.7.3.1. Pre-Step Test 

 

 

The primary purpose of pre-stepping is to prepare the control system for the main 

step test. By making controlled movements in MVs and DVs before the main test, the 

control team can observe how these adjustments affect the controlled variables (CVs). 

This process helps in assessing the control system's response and identifying any issues 

or improvements needed. Step size should be large enough to induce a noticeable change 

in the relevant CVs, allowing the control team to observe the system's response clearly. 

Before starting the step test, tuning of the controllers should be available and performance 

of the inferential should be good. Before pre-step test is started, expected control matrix 

including all MVs and CVs and their gain direction (negative or positive) is created and 

follow to ensure the CV responses are correct. Figure 1.10 shows the example of control 

matrix including MVs, CVs and DVs and their expected response. 

 

 

 

Figure 1.10. Expectational Control Matrix (Lahiri, 2017) 

 

 

Objective of the pre-step test is to determine the settling time of the system. The 

pre-step test provides an opportunity to observe and analyze any disturbances or 

variations in the process that occur before the main step test. After pre-step test is applied, 

main step test is completed and dynamic models between MVs and CVs determined. 

Figure 1.11 shows that basic concept of step test and CV response due to change of MV. 
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Obtaining good MPC models, responses should be clear, and the direction of response 

should be correct.        

 

 

Figure 1.11. Basic Concept of Step Test (Lahiri, 2017) 

 

  

1.8. Delayed Coker Unit Process Description 

 

 

Delayed Coker Unit processes atmospheric and vacuum residue as unit charge, 

which is the bottom product of atmospheric and vacuum distillation columns coming from 

the crude oil unit in refinery. The process includes a furnace, two coke drums, fractionator 

and stripping section. Vacuum residue enters the bottom of the flash zone in the 

distillation column or just below the gas oil tray. Fractions lighter than heavy gas oil are 

flashed off and the remaining oil are fed to the coking furnace. Steam is injected in the 

furnace to prevent premature coking. The feed to the coker drums is heated above 496 

℃. The liquid–vapor mixture leaving the furnace passes to one of the coking drum. Coke 

is deposited in this drum for 24 h period while the other drum is being decoked and 

cleaned. Hot vapors from the coke drum are quenched by the liquid feed, thus preventing 

any significant amount of coke formation in the fractionator and simultaneously 

condensing a portion of the heavy ends which are then recycled. Vapors from the top of 

the coke drum are returned to the bottom of the fractionator. These vapors consist of steam 

and the products of the thermal cracking reaction (gas, naphtha and gas oils). The vapors 
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flow up through the quench trays of the fractionator. Figure 1.12 shows the scheme of 

delayed coker unit. 

 

 

 

Figure 1.12. Delayed Coker Unit (Speight, 2016) 

 

 

Vacuum residue is received at the unit battery limits and preheated by a series of 

exchangers: the HCGO Product / Feed Exchanger and the HCGO Pump around / Feed 

Exchanger. Recycle from the Coker Fractionator shed section combines with the fresh 

feed in the bottom of the tower. The combined fresh feed and recycle flows to the heater 

charge pumps, which are equipped with the coke crushing impellers. The liquid is pumped 

under flow control through each pass of the Coker Heaters, where it is rapidly heated to 

the desired temperature for coke formation in the Coke Drums. Delayed Coking is a 

thermal process in which a residuum material is rapidly heated in a furnace and then 

thermally cracked in coke drums under proper conditions of temperature and pressure. 

Products from the Delayed Coker are Sour Coker Product Gas, Sour LPG (C3s and C4s), 

Full Range Stabilized Coker Naphtha, Light Coker Gas Oil (LCGO), Heavy Coker Gas 

Oil (HCGO), and Coke (Fuel Grade). Delayed Coking is an endothermic reaction with 

the furnace supplying the necessary heat of reaction. 
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1.8.1. Delayed Coker Unit Process Variables 

 

 

The yields and quality of the products are directly related to three process 

variables as temperature, pressure, throughput ratio (TPR). Throughput ratio is defined as 

the ratio of total liquid feed to the coker heater to total fresh feed entering from the battery 

limits.  In general, an increase in coking temperature decreases coke production, decreases 

coke volatile combustible matter (VCM), increases liquid hydrocarbon yield, and 

increases the propensity to produce shot coke. The effect of increasing pressure and 

throughput ratio is to increase gas and coke make and to decrease liquid hydrocarbon 

yield. At constant pressure and throughput ratio, the coke yield decreases with increasing 

temperature. More of the charge is flashed off at the higher temperature and hence, is not 

converted to coke and gas. Since the reaction is endothermic, the furnace must supply the 

heat of reaction. Based on the physical properties of the charge, the temperature drop from 

the heater outlet to the top of the coke drum may vary. In actual practice, the furnace 

outlet temperature and the drum outlet temperature may vary only between relatively 

narrow limits. At too low temperature the reaction does not proceed far enough, and a 

soft coke or pitch with a high volatile combustible matter (VCM) is produced. At too high 

a temperature, the coke is too hard and is difficult to remove from the drum with hydraulic 

cutting equipment. Also, at higher temperatures the possibility of coking in the heater 

tubes and transfer line is increased. At constant temperature and throughput ratio, 

increasing the pressure increases the liquid trapped in the drum (by suppressing 

vaporization); thereby increasing coke and gas make. The gas oil end point is also 

reduced, as is the yield of liquid hydrocarbons.  Increasing the throughput ratio at constant 

temperature and pressure also, increases coke and gas make at the expense of liquid 

hydrocarbon yield. The throughput ratio is used primarily to control the end point of the 

Heavy Coker Gas Oil (HCGO). Figure 1.13 shows each heater effluent flows into one of 

a pair of coke drums where, under the proper time-temperature-pressure conditions, the 

trapped liquid is converted to coke and hydrocarbon vapors. A control valve system 

directs the feed to enter one of the drums, where the reactions take place and coke is 

deposited on the drum walls, and the products flow back to the main fractionator column. 

In this case, the drum is in the filling mode. At the same time, the other drum is cut off 

from the rest of the system while the coke is being removed. The drum in this case is in 
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the cutting mode. When a drum is filled with coke, the heater effluent is directed through 

one of the coker switch valves into the other drum of each pair. Each heater is dedicated 

for a pair of Coke Drums. 

 

 

 

Figure 1.13. Delayed Coker Unit-Coke Drums (Kedia et al., 2019) 

 

 

The flow to each coke drum is maintained for twenty-four hours. The filled drum 

is decoked in twenty-four hours. Thus, each drum goes through a 48-hour cycle. While 

one drum is in coking service other drum is in various stages of decoking. 

Decoking operation occur in following 8 steps; 

1. Steam out to Fractionator, 

2. Steam out to Blowdown, 

3. Quenching and Filling, 

4. Water draining and Unheading, 

5. Decoking Operation (Coke cutting), 

6. Reheading and Testing, 

7. Preheating, 

8. Drum Switch 
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 In steam out to fractionator step, The coke-filled drum is steamed out to the Coker 

Fractionator Column. This operation permits recovery of light material entrained 

in the coke.   

 In Steam out to Blowdown step, Quench steam is routed through the coke drum 

to the Coker Blowdown Tower.  

 In quenching and filling step, water for cooling the coke drum is furnished by the 

quench water pump. Quenching proceeds until the coke drum overhead is cooled.  

 In water draining and unheading step, after the coke drum is vented to atmosphere 

through the coke drum, water draining is provided after drain valve is opened. 

 In decoking operation step, after the top and bottom heads have been opened, the 

coke cutting pump and hydraulic cutting tool are commissioned, and the decoking 

operation begins.   

 In reheading and testing step, after decoking, the top and bottom heads are closed. 

The drum is first purged and then pressure tested with steam. 

 In preheating step, after pressure testing the coke drum, the empty drum is 

preheated by vapors from the other coke drum, which is in the final stage of the 

coking operation. 

 In drum switch step, the preheated coke drum is returned to coking service, and 

the decoking cycle is repeated for the other drum in the pair. 

 

 

1.9. Disturbance Effects of Decoking Steps 

 

 

Drum switch and preheating steps of decoking operation cause disturbance to the 

operation in the fractionation column. When the drum is switched, the hot charge coming 

out of the heater is converted from the coke filled drum to the empty drum. In the 

meantime, since the temperature of the empty drum is not at a sufficient temperature for 

the cracking process to start, the temperature profile of the column decreases abruptly as 

the amount and temperature of the hydrocarbon vapor sent from the top of the drum to 

the fractionation column decreases. The temperature reaches its maximum value within 

3-4 hours after the drum switch. In the preheating process, approximately 5-6 hours before 

the drum switch starts, the hot top vapors from the coking drum is used to heat the empty 
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drum instead of being sent to the fractionation column and result with decreasing 

temperature profile of fractionator column. In the study, which is aimed to investigate 

handling of the delayed coker disturbances with APC. In his study, four disturbance 

events are indicated (Jaguste, 2016). In the first event, approximately six hours before 

switching coking drums, the hot vapors from the active coking drum are sent to an empty 

drum for vapor preheating. This causes sudden temperature decreases in the main 

fractionator column and creates a disturbance in the distillation process. Temperature 

changes can affect the separation efficiency and the distribution of hydrocarbon fractions 

in the column. This step is done to improve the efficiency of the coking process and 

reduce energy consumption. In the second event, after the preheating step, the empty 

drum is warmed up. This warming process likely involves heating the drum to prepare it 

for receiving hot vapors from the coking process. In this step about one-third of the hot 

vapors generated in the coking drum are directed to the bottom of the empty drum. The 

third event involves changing the active coking drum to allow for continuous coking 

operations. During the drum switch, the effluent from the furnace, which contains hot 

hydrocarbon feedstock, is directed to the empty drum. The empty drum's temperature is 

not sufficient for the cracking reactions that need to occur and both the heat and vapor 

mass that should be generated during cracking are reduced. In the fourth event, after drum 

switch occur and temperature of the empty drum is increases by the cracking reactions 

and the temperature profile of the main fractionator increases since, vapor flow to the 

main fractionator increase. The effects of four events about disturbances are illustrated in 

Figure 1.14. According to Figure 1.15, 1AB/BA and 1CD/DC represent the first event, 

which corresponds to the preheating step. During this event, the temperature profile of 

the main fractionator decreases, resulting in a decrease in the HCGO draw temperature in 

the column. On the other hand, 2AB/BA and 2CD/DC represent the second event, which 

occurs between the drum switch and preheating steps. During this event, one-third of the 

hot vapor from the coking drum is directed to the bottom of the empty drum, causing an 

increase in the temperature profile of the HCGO draw temperature. 3AB/BA and 3CD/DC 

represents the third event that is drum switch step, there is a sudden temperature reducing 

effect since, both the heat and vapor mass sent to the main fractionator is reducing. 

4AB/BA and 4CD/DC represents the fourth event, which occur after the drum switch 

step, temperature of the empty drum is increases gradually by the cracking reactions. 

Therefore, HCGO draw temperature profile increases since, heat and mass sent to the 

main fractionator increases. 
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Figure 1.14.  HCGO Draw temperature profile in drum switch event in 24 hours  

                            (Jaguste, 2016) 

 

 

Due to drum switch and preheating operations, temperature profile of the main 

fractionator column is affected by the vapor load changing to the main fractionator 

column. The disturbance effect by the drum switch and preheating steps is shown in 

Figure 1.15 and it shows that HCGO draw temperature trend when the drum switch occurs 

in 24 hours between AB drum pairs and CD drum pairs. HCGO draw temperature profile 

is changing due to the logically inferred drum switch and (vapor heating) preheating 

pulses. When drum switch and preheating occur, this causes a major disturbance effect 

and the temperature profile of the column decreases and resulting in decreasing HCGO 

draw temperature. 

 

 

 

Figure 1.15. HCGO Draw Temperature - Drum switch/Preheating Pulses (Jaguste,2016) 
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The operation of the main fractionator plays a critical role in determining the 

product yields and qualities. When the drum switch and preheating steps occur within the 

unit, significant disturbances are introduced into the main fractionator column. These 

disturbance effects can be mitigated by carefully balancing heat and mass flows. Inside 

the main fractionator column, there are internal reflux flows, such as the HCGO wash oil 

flow and HCGO pump around flow. These circulating refluxes can be adjusted quickly 

before the drum switch and preheating steps begin. In the Delayed Coker Unit, operators 

take various actions when the drum switch and preheating steps occur to prevent any 

reduction in product quality and the generation of off-spec products. This proactive 

approach helps maintain the integrity of the product and ensures that it meets the required 

specifications. Handling disturbances caused by drum switch and preheating steps can be 

effectively managed through an APC (Advanced Process Control) system that 

incorporates multivariable predictive control (MPC) and product quality inferential 

techniques. The design of the APC system relies on dynamic models obtained from step 

tests. In the Delayed Coker Unit (DCU), operations are not continuously in a steady state 

due to the drum switch occurring every 12 hours. The operation remains stable for 

approximately 3-4 hours each day. To achieve the optimal design for the DCU APC and 

to mitigate disturbances caused by the drum switch and preheating steps, it is essential to 

incorporate these disturbances as inputs during the modeling phase of the APC system.  

Figure 1.16 displays a step test trend for the HCGO circulating reflux, and it provides 

both plant data and model predictions for the response of HCGO draw temperature. 

During the step test, the effects of drum switch and preheating disturbances are reflected 

in the results, allowing for a more comprehensive understanding of their impact on the 

process. This information is valuable for designing an effective APC system that can 

proactively manage these disturbances and ensure stable and high-quality operation. 
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Figure 1.16. HCGO-CR Circulating Reflux Step- test (Jaguste, 2016) 

 

 

During drum switch and preheating steps, to prevent product quality give aways 

and off spec production, control priorities can be changed. In drum switch and preheating 

steps, both heat and mass sent to the main fractionator column reduces. To provide heat 

balance, when drum switch and preheating steps start HCGO circulating reflux should be 

reduced to prevent heat removal by HCGO circulating reflux. However, after the drum 

switch step vapor flow to the main fractionator increases gradually and HCGO circulating 

reflux flow should be increased to control temperature by changing control priority. 

Figure 1.17 shows that HCGO circulating reflux (HCGO-CR) actions with APC when the 

drum switch and preheating steps occur. To provide disturbance rejection, HCGO 

circulating flow is reduced aggressively when the drum switch occurs.  
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Figure 1.17. Control of HCGO draw temperature by feed-forward actions (Jaguste,2016) 

 

  

In this study, the inferred drum switch pulses are used for predictive feed-forward 

control and when the drum switch occurs HCGO circulating flow is decreased 

aggressively to provide the stabilization of the HCGO draw temperature. Figure 1.18 

shows that HCGO draw temperature profile control with APC. Due to Figure 1.18, by the 

quick manipulation of the HCGO circulating flow, HCGO draw temperature is increased. 

 

 

 

Figure 1.18.  HCGO Draw Temperature Control with APC (Jaguste, 2016) 
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When the drum switch occur before APC is implemented, LCGO product was 

condensed and this cause reducing effect on the LCGO tray level in the main fractionator 

column. To prevent the loss of tray level, LCGO draw flow is manipulated by APC. Since 

drum switch and preheating pulses are used as inputs, tray level stabilization is provided 

by feed forward control with APC. Figure 1.19 shows that after APC is implemented , 

quick manipulation of the LCGO draw flow caused LCGO tray level stabilization. 

 

 

 

Figure 1.19.  LCGO Tray Level Control with APC (Jaguste, 2016)  

 

 

1.10. The aim of this thesis 

 

 

The aim of this thesis is to design an advanced process control system for the 

delayed coker unit in SOCAR STAR Refinery, Izmir. In the delayed coker unit main 

fractionator column, there are disturbance effects in the column because of the drum 

switch and preheating steps. Therefore, standard deviation of the valuable LCGO product 

FBP quality is high even in the steady state operation. In this thesis study, it is aimed to 

decrease the standard deviation of the valuable product LCGO FBP Quality between 

LCGO FBP planning order and laboratory results in the steady state operation with the 

constrained MPC controller. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

In the literature, there is a limited number of studies about the DCU APC 

applications. However, there are several APC studies about other refinery and 

petrochemical units, as discussed below. In this chapter of the thesis study, different APC 

applications are represented from the literature for refinery units in industry. The 

implementation of Advanced Process Control (APC) leads to a decrease in standard 

deviation of the control variables, enabling the process variable to move closer to its 

specified target with optimal control effort. Consequently, APC maximizes the yield of 

the more valuable product. This is achieved by incorporating plant and process economics 

considerations while staying within the specified limits, ultimately optimizing the overall 

production process. In the study which includes a method for estimating the reduction in 

the standard deviation of control variables for the Delayed Coker Unit's main fractionator 

column as a case study to investigate and quantify the effects of proposed method on the 

control variables within the system (Kedia et al., 2019). Methods of their study includes 

following steps; data-collection and analysis (pre-APC data/ base-case identification), 

process modelling, disturbance characterization/ modelling, controller design and 

Simulation parts. In the data collection and analysis section, the researchers collected data 

from DCS history system including pre-advanced process control (APC) data and 

performed an initial assessment of the base case to identify the existing control system's 

characteristics. Process modeling section represents the dynamics response of the 

Delayed Coker Unit's main fractionator column. These models likely helped them 

understand how the process responds to different inputs and disturbances.  MATLAB 

System Identification Toolbox is used and process is modelled as multiple-input multiple-

output (MIMO) model with each input and output as first order plus time delay (FOPTD) 

model. Disturbance Characterization/Modeling of their study involved characterizing and 

modeling disturbances that affect the system. This step likely aimed to understand how 

external factors affects the main fractionator column and its control variables. 
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In the controller design section, the researchers designed controllers, likely 

Advanced Process Controllers (APCs), to optimize the performance of the main 

fractionator column. This step involved creating control strategies and tuning parameters. 

The study is simulated to evaluate the performance of the designed controllers within the 

context of the main fractionator column, providing a platform to assess how the APCs 

affected control variables and reduced standard deviations. Disturbances are 

characterized using ramp like signal shown in Figure 2.1 This approach is particularly 

suitable for addressing dynamic systems where signals transition or shift in a step-like 

manner at discrete time intervals. 

 

 

 

Figure 2.1. Ramp like Variation (Kedia et al., 2019)  

 

 

MATLAB, MPC Toolbox is used to design the controllers.  In the MPC toolbox, 

MV’s, CV’s & DV’s variables are determined, and sampling period is selected. Tuning 

parameters of the controllers are MPC prediction horizon (p), control horizon (m), control 

interval (∆t), weight on MV’s (Γ𝑢), rate weight on MV’s (ΓΔ𝑢), weight on CV’s (Γ𝑦). 

Prediction horizon (p) defines how far into the future the controller looks when making 

control decisions and it is set due to the maximum settling time of the process. 

Additionally, control horizon is selected as 1/4th or 1/5th of the prediction horizon and It 

represents how many steps into the future the controller plans control actions. It is often 

chosen based on the desired control aggressiveness. In their study, LCGO and HCGO 

draw temperature values are controlled as control variables by disturbance 
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characterization. In the study ramp like signal is used to characterized disturbances using 

real plant data and characterized disturbance data (Kedia et al., 2019). 

Figure 2.2 and 2.3 show that ramp like signals for actual and characterized 

disturbances including drum switch and preheating steps respectively, for AB and CD 

drum pairs. Obtained results are very similar to each other compared to the actual and the 

characterized signals.  

 

 

 

Figure 2.2. Drum Switch Events as a Ramp like Signal (Kedia et al., 2019) 

 

 

 

Figure 2.3. Preheating Characterization by Ramp Like Signal (Kedia et al., 2019) 
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In this study, Main fractionator top temperature is characterized as a function of 

ramp like, mean & standard deviation. Due to Figure 2.4, the researchers have likely 

observed that when a preheating step is concluded, the top temperature of the main 

fractionator exhibits a decreasing trend since; the temperature of the preheated drum is 

not sufficiently high to sustain the cracking reactions required for the desired processes. 

 

 

 

Figure 2.4. Characterized Main fractionator (MF) top temperature (Kedia et al., 2019)  

 

 

In this study as controlled variable (CV), LCGO and HCGO draw temperatures 

are determined. By implementing feedforward control, the researchers aim to stabilize the 

LCGO and HCGO draw temperatures, ensuring that these critical process variables 

remain within the desired operating range and that the product quality meets the required 

specifications. This approach helps enhance the overall control performance and product 

consistency in the studied process. Before APC is implemented, standard deviation of the 

LCGO and HCGO draw temperatures are shown in Table 2.1.  

 

 

Table 2.1. Standard Deviation of Control Variables Before APC (Kedia et al., 2019) 

Standard Deviation Pre-APC 

CV1- LCGO Draw Temperature 1.7343 

CV2- HCGO Draw Temperature 2.2839 
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After APC is implemented, the standard deviation of the LCGO and HCGO draw 

temperatures are reduced by disturbance characterization and shown in Table 2.2. 

 

 

Table 2.2. Standard Deviation of Control Variables After APC (Kedia et al., 2019) 

Standard Deviation Post-APC 

 Actual Plant Data Disturbance Characterization % Error 

CV1 1.261 1.17 7.24 

CV2 1.438 1.36 5.44 

 

 

In another study, it is studied an industrial application of model predictive control 

for Crude Distillation unit of TÜPRAŞ refinery, Izmit (Kemaloğlu et al., 2009).The 

primary objective of the MPC controller was to regulate the heating of crude oil through 

a series of process flows, furnace heating, and a distillation column equipped with product 

strippers. Figure 2.5 shows the process drawing of atmospheric crude distillation column. 

The crude oil is initially heated using hot streams within the unit before and after the 

desalting operation. This preheating is crucial for optimizing the distillation process. 

There are two parallel furnaces in operation, which heat the crude oil to temperatures 

typically ranging between 320-350 ºC. These furnaces play a pivotal role in elevating the 

temperature of the incoming crude oil. The heated crude oil from the furnaces is directed 

into the distillation column. Inside the column, the crude oil is separated into various 

products based on their boiling points. The main products are kerosene, light diesel, and 

heavy diesel, each extracted at different heights in the column. At the top of the distillation 

column, there is a mixture of LPG (liquefied petroleum gas), light straight run naphtha, 

and heavy straight-run products. This mixture is then directed to a naphtha splitter 

column, where LPG and light naphtha are separated from heavy naphtha. The liquid 

product from the naphtha splitter upstream is further processed in the debutanizer column. 

In this column, the liquid product is separated into light naphtha and LPG, two valuable 

products. The bottom product residue is fed to vacuum distillation column. This column 

operates at reduced pressures, allowing for the separation of additional products from the 

residue. 

 

 



 

39 
 

 

Figure 2.5. Characterized Main fractionator (MF) top temperature (Kemaloğlu et al.,              

                     2009) 

 

 

In the design of the controllers, Shell Multivariable Optimizing Controller, 

SMOCPro is used to implement predictive controller in TUPRAS Izmit Refinery Crude 

Unit8. In the controller design section of the APC totally,  28 manipulated variables are 

determined, preheat section includes 17 MV and crude distillation column section 

includes 11 MV including feed flow controllers, furnace coil flow controllers and 

distillation column pressure, temperature and flow controllers. There are 3 disturbance 

variables as amount of total feed and inlet flow rates to two furnaces are selected. There 

are 15 controlled variables from the crude distillation part and four controlled variables 

are in preheat section of the unit. Control variables are quality inferential which are 

created by statistical regression of empirical data heavy naphtha, light diesel and heavy 

diesel 95% distillation points and kerosene flash point qualities , unit constrains and 

economic variables. Empirical data were obtained by applying test to the manipulated 

variables. According to the change in manipulated variables, column dynamics were 

changed and settled, and laboratory results were obtained and quality inferential were 
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modelled using RQE Pro, a software in the Process Control Technology Package (PCTP) 

of Shell Global Solutions International BV. After the inferential was created, to design 

APC, response tests were started. During the response tests, it is important to get clear 

responses in the control variables test data. For each of the 28 manipulated variables, tests 

were carried out separately in sequence, groups of six to eight steps were made in each. 

The sequence was repeated afterwards, obtaining a test data of sixteen to twenty moves 

for each variable. In the dynamic modelling part, the step test data were analyzed and 

mathematically fit to obtain predictive process model using Shell Multivariable 

Optimizing Controller, SMOCPro is used to implement predictive controller. Similar to 

what is used in most advanced process control algorithms; SMOC algorithm also follows 

a reference trajectory by the future outputs on the prediction horizon and penalizes the 

control effort on the control horizon. General objective function of the controller can be 

written as; 

𝑚𝑖𝑛 = ∑ |�̂�(𝑛 + 𝑖) − 𝑟(𝑛 + 𝑖)|2𝑃
𝑖=1 𝑤1 + ∑ |∆𝑢(𝑛 + 𝑖 − 1)|2𝐶

𝑗=1 𝑤2                       Eqn 5. 

‘u’ represents inputs, ‘y’ is used to define outputs and the superscript ^ represents the 

predicted values. Δu is the input variation and r is the reference trajectory of the outputs. 

In this optimization problem, the first term is used to minimize the error resulting from 

the difference between predicted outputs and reference trajectory during prediction 

horizon, P. The second term is the difference of control actions taken at each time step 

during control horizon, C. Weighting matrices 𝑤1and 𝑤2 are positive definite matrices, 

with different magnitudes for all MV’s and CV’s.   

Economic Variables 

 Determining the APC object is important to provide benefit from the project. 

That’s why the economic function was defined as follows: 

 Minimizing column top temperature, column pressure and stripping steam ratio to 

the feed. 

 Maximizing heavy diesel pump around duty, product draws to stripper level 

constraints and furnace heater duties. 

 Maximizing the amount of heavy diesel by letting heavier cuts into heavy diesel 

and leaning to high limit. 

 Maximizing the amount of kerosene by letting heavy naphtha into kerosene and 

approaching to low limit.  
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According to the APC commissioning results, The Naphtha yield decreased and 

kerosene yield for a five weeks period of pre-commissioning and four weeks period of 

post-commissioning of the controller with the almost same crude density. 

 

 

 

Figure 2.6. Change in the naphtha yield before and after commissioning (Kemaloğlu et 

                   al., 2009) 

 

 

Kerosene flash point is decreased by increasing naphtha yield in the kerosene. 

Figure 2.7 shows the kerosene flash point decreasing after APC applied. 

 

 

 

Figure 2.7. Change in kerosene flash point before and after commissioning (Kemaloğlu 

                  et al., 2009) 
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In another study, MPC model of the butane-butylene distillation column  was 

studied, and Figure 2.8 shows the block diagram including  L ( reflux flowrate), B (bottom 

product flowrate), F ( feed flowrate), 𝑥𝐹( concentration of light components in feed),𝑥𝐷 

(concentration of light components in distillate), 𝑥𝐵  (concentration of light components 

in bottom product). Flowrates L and B are the manipulated variables, while variables F 

and 𝑥𝐹 are the disturbances. 

 

 

 

Figure 2.8. Block diagram of butane-butylene distillation column (Nicolae et al., 2019) 

 

 

In Petrobrazi refinery, by using MATLAB the four inputs were modified and the 

transfer functions for each input and output variable of the process were identified and 

are presented in Table 2.3. 

 

 

Table 2.3. The transfer functions for each input – output (Nicolae et al., 2019) 

 𝑋𝐷 𝑋𝐵 

L 0.246

400𝑠2 + 40𝑠 + 1
𝑒−10𝑠 −

0.529

1190𝑠2 + 99𝑠 + 1
𝑒−15𝑠 

B 0.13

440𝑠2 + 51𝑠 + 1
𝑒−10𝑠 

1.3578

89𝑠 + 1
𝑒−10𝑠 

F 
−

0.446

418𝑠2 + 49𝑠 + 1
𝑒−14𝑠 −

0.6728

1853𝑠2 + 126𝑠 + 1
𝑒−13𝑠 

𝑋𝐹 0.296

494𝑠2 + 51𝑠 + 1
𝑒−13𝑠 

2.4896

2272𝑠2 + 103𝑠 + 1
𝑒−15𝑠 
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Figure 2.9 shows the MPC control system for the butane-butylene distillation 

column. In the MPC design L and B are the manipulated variables and outputs are 𝑥𝐷, 

and 𝑥𝐵. 

 

 

 

Figure 2.9. MPC control system for butane-butylene distillation column (Nicolae et al., 

                  2019) 

 

 

According to the control system MPC model 1, set points of the manipulated 

variables were changed separately and the response of the control variables were 

obtained. Figure 2.10 shows the 𝑥𝐷 and 𝑥𝐵 step change graph. The tuning parameters for 

the MPC controller are: sample time=0.4; prediction horizon=170; control horizon=2.  
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Figure 2.10. Step change in 𝑥𝐷 and 𝑥𝐵 (Nicolae et al., 2019) 

 

 According to the step change in 𝑥𝐷 and 𝑥𝐵, obtaining response for B and L 

shown in Figure 2.11. 

 

 

Figure 2.11. Time evolution of L and B for the 𝑥𝐷  and 𝑥𝐵 set-point change (Nicolae et  

                         al., 2019) 

 

 

From Figure 2.11 it can be observed that the MPC controller brings the controlled 

variables (𝑥𝐷 and 𝑥𝐵) at the set-point values, without overshoot or oscillations, with a 

transient time smaller than the one of the process. In addition, the process interactions are 

successfully handled, the influences on the crossed channels (L-𝑥𝐵 and B-𝑥𝐷) being very 

small. 
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Disturbance Effect on Controlled Variables 

Figure 2.12 shows the disturbance F effect on the control variables 𝑥𝐷 and 𝑥𝐵. 

 

 

 

Figure 2.12. Time evolution of 𝑥𝐷  and  𝑥𝐵 as step change of disturbance F (Nicolae et 

                     al., 2019) 

 

 

 

Figure 2.13. Time evolution of 𝑥𝐷 and 𝑥𝐵 as step change of disturbance 𝑥𝐹 (Nicolae et  

                     al., 2019) 
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In order to improve the system’s response to disturbances changes a new MPC 

controller is designed based on a process model, which uses the transfer functions on all 

process channels, including disturbances – outputs channels. The block diagram of the 

control system is presented in Figure 2.14. In this structure, the two disturbances (F 

and 𝑥𝐹) are measured. 

 

 

 

Figure 2.14. Block diagram of the MPC Controller 2-based control system ( Nicolae et    

                     al., 2019) 

 

 

 

Figure 2.15. Time evolution of 𝑥𝐷  and 𝑥𝐵 as step change of disturbance F (Nicolae et 

                    al., 2019)  
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Figure 2.16. Time evolution of 𝑥𝐷  and 𝑥𝐵 as step change of disturbance 𝑥𝐹  (Nicolae et   

                    al., 2019)  

 

 

As it can be observed from Figures 2.15-2.16, the MPC Controller-2 compensates 

the effect of the disturbances on the outputs with much better results than in the case when 

the MPC Controller-1 which does not include a model of the process on the disturbances 

on outputs.  In another study which is Optimizing Diesel Production Using Advanced 

Process Control and Dynamic Simulation,  an application that shows the advantages of 

combining APC strategies and Dynamic simulation for optimizing a Diesel blending 

system in a large Brazilian refinery (Garcia et al., 2014). Figure 2.17 shows the Diesel 

Blending system in Brazilian Refinery. 



 

48 
 

 

Figure 2.17. The Diesel Blending System (Garcia et al., 2014)  

 

 

The feed of the naphtha splitter column comes from the Stabilizer Column of the 

Crude Distillation Unit. Figure 2.18 shows the naphtha splitter column. 

 

 

 

Figure 2.18. Naphtha Splitter (Garcia et al., 2014)  

 

 

 The control of the sensitive plate temperature in the Splitter column is achieved 

by regulating the heat exchange between medium-pressure steam and the column's side 
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reflux. This control mechanism ensures that the temperature at the sensitive plate remains 

within the desired range, contributing to the overall efficiency and performance of the 

column. In this process, the top reflux of the Splitter column is primarily composed of the 

Light Naphtha obtained from the top separator vessel. Any excess Light Naphtha that is 

not required for the process is exported as Petrochemical Naphtha, which may have 

different economic values and applications. On the other hand, the column's bottom flow 

consists of Heavy Naphtha. The Heavy Naphtha stream is added to the Diesel blending 

system. This decision is based on the economic considerations related to the value of the 

products. Diesel typically has a higher economic value when compared to Naphtha. 

Therefore, the economic yields are optimized by directing a portion of the Heavy Naphtha 

stream to the Diesel blending system. APC is designed by DMC (Dynamic Matrix 

Control) algorithm and matrix is shown in Table 2.4 (Garcia et al., 2014). The Splitter’s 

APC manipulates the economic related variables including the processed feed, the 

medium pressure steam consumption and the reflux flow. The CVs represent the 

operational constraints, i.e., the PID controller’s output signals and the inferential 

variables: The Heavy Naphtha’s flash point, the Heavy Naphtha / T5% ratio (RQT5) and 

the reflux ratio (RR), which are used to evaluate the column’s split quality. T5% refers to 

the distillation temperature in which 5% of the total volume of Naphtha is recovered from 

the gaseous state and it is directly related to the Naphtha’s initial boiling point. 

 

 

Table 2.4. MV-CV Matrix for Naphtha Splitter (Garcia et al., 2014) 

 

 

 

Figure 2.19 shows the increase of the daily-average Heavy Naphtha flow and the 

six-month average line before after the APC commissioning. Before the APC project, the 
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Splitter’s temperature was controlled to a fixed set-point, which represented a hard 

constraint for the operational optimization. The more flexible APC’s band control 

strategy, in counterpart to the regulatory target control, adds up one more degree of 

freedom, which is used to maximize the processed feed. 

 

 

 

Figure 2.19. Heavy Naphtha flow before and after APC (Garcia et al., 2014) 

 

 

2.1. Summary of Literature Search 

 

 

According to the literature search, there are not many works available about the 

APC studies in DCU unit main fractionator column. However, there are APC studies 

about the different refinery units. As shown in the represented literature studies, process 

models and controller designs are done using MATLAB MPC toolbox, Shell 

Multivariable Optimizing Controller (SMOCPro) and DMC (Dynamic Matrix Control) 

algorithm. APC applications provide following benefits; product quality stabilization, 

process optimization implying higher throughput, improved product yields, energy 

conservation, improved operations reliability, and reduced operator actions. 
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CHAPTER 3 

 

 

MATERIALS AND METHODS 

 

 

APC case is studied in main fractionator column of Delayed Coker Unit (DCU) 

at SOCAR Izmir Refinery. In this study, the Honeywell RMPCT controls the LCGO final 

boiling point quality. To determine APC control for controlling LCGO FBP quality, the 

following methods were applied. 

 

 

3.1. Determination of APC control Matrix for product quality 

 

 

In this step, advanced process control strategy is determined. In manual operation, 

operators are changing LCGO product drawing flow to control the FBP product quality. 

Therefore, APC will manipulate the LCGO product drawing flow to control LCGO FBP 

quality. 

 

 

3.2. Conduct the Pre-Step Test and Main Test 

 

 

Pre-step test is important to provide time to steady state for control variable. 

(LCGO FBP quality) and data for initial model identification. During the test, it is 

required to have for each MV 8-15 step changes (Qin et al.,2003). MV steps are changed 

one by one while the other MV values keep constant. Figure 3.1 shows the step test 

procedure. After the MV step changes are applied, time to steady state is determined for 

CV. 
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Figure 3.1. Step Test Procedure (Mariéthoz et al., 2012)  

 

 

Additionally, to determine process response for CV, PBRS (Pseudo Binary 

Random Sequence) type step test is applied. In this test method, MV’s steps are changed 

simultaneously, and CV response are obtained. Below Figure 3.2 shows, the PBRS type 

step change for the dynamic test. 

 

 

 

Figure 3.2. PBRS type step test (Mariéthoz et al., 2012)  

 

 

3.3. Identification of Process Models 

 

 

System identification is an approach that empowers people to generate 

mathematical representations of a dynamic system by utilizing collected data. Achieving 
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this is done by refining the parameters within a given model until its output aligns with 

the observed or measured output. Model sets or model structures comprise a variety of 

models defined by adjustable parameters. The task of parameter estimation entails 

discovering the most suitable values for these parameters. The core challenge in system 

identification lies in not only selecting an appropriate model structure but also acquiring 

precise numerical values for its parameters. Parametric identification methods are 

methodologies used to estimate parameters within predetermined model structures. In 

essence, they involve a numerical search process to pinpoint the numerical values of these 

parameters that yield the closest match between the model's simulated or predicted output 

and the measured data. Non-parametric identification methods are procedures designed 

to estimate the behavior of a model without the requirement of a predefined parametric 

model set. Common non-parametric techniques encompass correlation analysis, used to 

gauge a system's impulse response, and spectral analysis, employed to assess a system's 

frequency response. In traditional Model Predictive Control (MPC) identification, the 

initial step involves the use of a Multi-Input Multi-Output (MIMO) Finite Impulse 

Response (FIR) model to estimate system parameters. This estimation is typically 

performed using the least-squares method. However, it is common for this approach to 

yield models with step responses that exhibit non-smooth behavior. To address this issue 

and improve the model's performance, model reduction or smoothing techniques are 

applied. These techniques are employed to transform the initial model into one that 

produces smoother step responses, enhancing its suitability for control and prediction 

tasks. Numerous common models and methods are frequently encountered for system 

identification. 

 

 

3.3.1. ARX (Autoregressive with external input) Model 

 

 

Also referred to as the least-squares model, the ARX model incorporates 

autoregressive and exogenous input terms to describe a system's behavior. It is a widely 

used choice for modeling dynamic systems. Parametric models have two purpose, model 

order reduction and the removal of variance present in models obtained from raw data. 

When working with standard low-order ARX (AutoRegressive with eXternal input) 
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models, because of the biased estimates ARX models often provide inadequate results. 

However, the prefiltered form utilized in the APC identifier addresses this issue by 

automatically emphasizing the fit at low frequencies. As a result, it yields high-quality 

models that accurately capture system dynamics and minimize estimation bias. General 

ARX model structure is given in below equation where the prime symbol (') represents a 

prefiltered value. Additionally, 'n' and ’d’ refer to the order and delay of the sub process, 

respectively. 

𝑃(𝑧)𝑦′(𝑡) = 𝐵(𝑧)𝑢′(𝑡 − 𝑑) + 𝑒(𝑡)                                                                         Eqn 6. 

ARX Model Transfer Function is given as below equation3; 

𝑇(𝑧) =
(𝑏1𝑧−1+𝑏2𝑧−2+⋯+𝑏𝑛𝑧−𝑛)𝑧−𝑑

1+𝑝1𝑧−1+⋯+𝑝𝑛𝑧−𝑛                                                                              Eqn 7. 

 

 

3.3.2. OE (Output Error) Model 

 

 

The OE model centers on capturing the output behavior of a system in response 

to input signals. Its objective is to minimize the error between the model's predicted output 

and the actual measurements (Lahiri, 2017). 

General OE Model is given in below equation; 

𝑤𝑡 + 𝑓1𝑤𝑡−1 + 𝑓2𝑤𝑡−2 + ⋯ + 𝑓𝑛𝑤𝑡−𝑛                                                            Eqn 8. 

           = 𝑏1𝑢𝑡−1−𝑑 + 𝑏2𝑢𝑡−2−𝑑 + ⋯ + 𝑏𝑛𝑢𝑡−𝑛−𝑑  

            𝑦𝑡 = 𝑤𝑡 + 𝑒𝑡                

          𝑦(𝑡) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑡 − 𝑑) + 𝑒(𝑡)                                                                          Eqn 9.                           

According to the equation, it is shown that in the regression matrix does not 

include the output variable 'y'. Obtained transfer function equation is shown in below 

equation. 
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𝑇(𝑧) =
(𝑏1𝑧−1+𝑏2𝑧−2+⋯+𝑏𝑛𝑧−𝑛)𝑧−𝑑

1+𝑓1𝑧−1+⋯+𝑓𝑛𝑧−𝑛
                                                                             Eqn 10.                           

Although the output error model has the advantageous as quality of being 

unbiased even without prefiltering, it comes with the requirement that the estimation 

parameters must appear in the regression matrix. Consequently, this leads to a nonlinear 

estimation problem. This nonlinearity implies that solving for the output error model 

demands more computational effort compared to solving for the ARX model. The 

increased complexity in estimation makes the output error solution computationally more 

demanding. 

 

 

3.3.3. ARMAX Model 

 

                                                                                 

Expanding upon the ARX model, the ARMAX (Auto-Regressive Moving 

Average with external input) model introduces a moving average component. It considers 

past output values in addition to input and output error terms. 

 

 

3.3.4. State Space Models 

 

 

State-space models are widely used representations of dynamical models. They 

describe a linear difference relationship between inputs and outputs, similar to the ARX 

(Autoregressive with external input) model. However, state-space models are organized 

in a way that simplifies the expressions, typically using only one delay in the equations. 

This rearrangement makes state-space models a concise and often more intuitive way to 

represent the dynamics of a system. State Space expression is given in below equation 

where x (t) is the vector of state variables and the model order is the dimension of vector. 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡)                                                                        Eqn 11. 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡)   
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3.3.5. Box-Jenkins Model 

 

 

This modeling methodology, known as the Box-Jenkins approach, involves a 

systematic procedure for identifying, estimating, and validating time series models. It 

typically incorporates autoregressive (AR), moving average (MA), and differencing 

components, rendering it suitable for modeling complex time series data. These models 

and methods offer a diverse array of tools for modeling and comprehending the behavior 

of dynamic systems. The selection of a specific model or method hinges on the unique 

characteristics of the system being studied and the objectives of the identification process. 

In literature, it is common to categorize ARX, OE, ARMAX, and Box-Jenkins models as 

parametric models. These models are considered parametric because they have specific 

mathematical structures with adjustable parameters, and their form is defined based on 

certain assumptions about the underlying system dynamics. Conversely, the FIR model 

is typically referred to as a nonparametric model. This classification is because the FIR 

model does not assume a specific mathematical structure with adjustable parameters to 

describe the system. Instead, it represents the system's response solely as a weighted linear 

combination of past input values, making it more flexible and less constrained by 

predefined model structures. In both FIR (Finite Impulse Response) and ARX 

(AutoRegressive with external input) models, the error term is linear in the model 

parameters. This linear relationship between the error and parameters is a significant 

advantage because it allows for the use of linear least-squares methods in parameter 

estimation. Linear least-squares methods are numerically straightforward and reliable, 

making them practical for estimating the model parameters. This property contributes to 

the popularity of FIR models in industrial identification. The simplicity and reliability of 

linear least-squares methods make the estimation process more accessible and well suited 

for practical applications, where robustness and ease of implementation are often crucial 

considerations. Indeed, different MPC (Model Predictive Control) vendors approach the 

model-building procedure with their unique styles and techniques. Each MPC technology 

provided by different vendors may come with its own set of identification techniques and 

choices of models available in their software as shown in Table 8. These distinctions can 

significantly affect how engineers and users perform system identification and control. 

For instance, as you mentioned, DMC Plus offers two types of modeling choices FIR 
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(Finite Impulse Response) and subspace identification providing users with options to 

select the modeling approach that best suits their specific needs and system 

characteristics. The diversity in identification techniques and model choices among MPC 

vendors reflects the adaptability and customization potential of these systems. Users can 

choose the vendor and software that aligns most effectively with their control objectives 

and the particular dynamics of the processes they are managing. This variety allows 

tailored solutions to address a wide range of industrial and control system requirements. 

It is evident that RMPCT uses both FIR (Finite Impulse Response) and prediction error 

method (PEM)-based modeling approaches as part of its system identification 

capabilities. This means that users of RMPCT have the flexibility to choose between these 

two modeling techniques when identifying and characterizing the dynamics of the system 

they wish to control. As mentioned earlier, different vendors and software providers in 

the field of Model Predictive Control (MPC) offer various identification techniques and 

models in their software packages. The choice of identification method often depends on 

the specific requirements and characteristics of the system being controlled and the 

preferences of the users or engineers working with the software. In this study, Honeywell 

Profit Suit Engineering Studio, Finite Impulse Response (FIR) model RMPCT (Robust 

Multivariable Predictive Control Technology) algorithm is used for process output 

predictions. FIR model algorithm can be used in robust predictive control. In industrial 

APC applications, mostly FIR algorithm is used since, error is linear in the parameters 

and linear least square method can be used for parameter predictions (Zhu et al., 2004) . 

RMPCT is the industrial model predictive control technology produced by Honeywell 

and has following properties; Graphical interface , economic and quadratic programming 

objective function, identification technologies considering prediction error methods (Qin 

et al., 2003). 

 

 

Table 3.1. Companies and products included in Linear MPC technology (Qin et al., 2003)             

Company Product Name Description 

 

Adersa 

HIECON Hierarchical constrains 

control 

PFC Predictive functional 

control 

                                                                                              (cont. on the next page)                                                                                                                                                



 

58 
 

Table 3.1. (cont.) 

 

Aspen Tech 

DMC-plus Dynamic matrix control 

package 

DMC-plus model Identification package 

Honeywell RMPCT Robust model 

predictive control 

technology 

Shell Global Solutions SMOC-IIa Shell multivariable 

optimizing control 

Invensys Connoisseur Control and 

identification package 

 

 

 

In RMPCT, there is a funnel control in order to keep the CV values within the 

control limits. It gives advantage to control CV values within a certain range. Funnel 

control is shown in Figure 3.3. In the Figure 3.3, it is shown that, until the CV value is 

within the hard limits to solve the control problem there is a high MV movement. After 

the CV value is kept in the control limits, there is minimum MV movement. 

 

 

 

Figure 3.3. RMPCT Funnel Control Strategy (Lahiri, 2017)  

 

 

Below Figure 3.4 shows the funnel, reference trajectory, control zone and set point 

of the CV. When the CV value is in the outside of the control horizon, MV set point will 

change by RMCT to keep the CV value within the control zone (Qin et al., 2003). Shaded 

areas show violations. 



 

59 
 

 

Figure 3.4. Options for specifying future CV behavior (Qin et al., 2003)  

 

 

The slop of the funnel shows the ratio between the desired time to keep the CV 

within the control zone to open-loop response time called as performance ratio. 

Performance ratio is the one of the tuning parameters for RMPCT, lower performance 

ratio means faster control to keep the CV value in the range. In the RMPCT model, a 

prediction horizon shows future value of the CV. When the prediction horizon is long, it 

is better to observe the MV moves effects. Figure 3.5 shows the Prediction horizon for 

RMPCT. 

 

 

 

Figure 3.5. Prediction horizon (Qin et al., 2003)   
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3.3.6 FIR Model (Finite Impulse Response) 

 

 

This model characterizes a system by expressing it as a linear combination of its 

input signals with a finite number of past input values. It is distinguished by its finite 

impulse response, indicating that it doesn't rely on feedback (Lahiri, 2017). When 

properly formulated and applied, the FIR (Finite Impulse Response) approach can indeed 

be an exceptionally effective estimator in system identification. The FIR model, with its 

simplicity and flexibility, is often used as a foundation for various identification and 

control techniques. One notable example is the APC (Advanced Process Control) 

identifier, which leverages the FIR model as its fundamental structure. The FIR model, 

which characterizes a system as a linear combination of past input values, has advantages 

in capturing short-term dynamics and transient behaviors. Its effectiveness can be further 

enhanced through appropriate model formulation and parameter estimation techniques. 

This adaptability and effectiveness make the FIR approach a valuable tool in system 

identification and control, particularly when dealing with processes that exhibit rapid 

changes or short-term dynamics. In the below expression which is the positional form of 

the FIR (Finite Impulse Response) model impose inherent limitations on the structure of 

the model. Each sub-model element, denoted as (i, j), is free to accommodate as many 

coefficients as needed to effectively capture and replicate the observed response of the 

system.  

(𝑝0
𝑖,1𝑢𝑡

1 + 𝑝1
𝑖,1𝑢𝑡−1

1 + 𝑝2
𝑖,1𝑢𝑡−2

1 + ⋯ + (𝑝𝑛1
𝑖,1𝑢𝑡−𝑛1

1 ) + (𝑝0
𝑖,2𝑢𝑡

2 + 𝑝1
𝑖,2𝑢𝑡−1

2   

+ 𝑝2
𝑖,2𝑢𝑡−2

2 + ⋯ + (𝑝𝑛2
𝑖,2𝑢𝑡−𝑛2

2 ) + ⋯ + (𝑝0
𝑖,𝑚𝑢𝑡

𝑚 + 𝑝1
𝑖,𝑚𝑢𝑡−1

𝑚        

+ 𝑝2
𝑖,𝑚𝑢𝑡−2

𝑚 + ⋯ + (𝑝𝑛𝑚
𝑖,𝑚𝑢𝑡−𝑛𝑚

𝑚 ) 

                                                                                                                                             

Eqn 12.                                                                                                                              

Where, p is the value of the impulse response and the coefficient of the FIR filter, y is the 

output signal and x is the input signal in the equation. This inherent adaptability is a 

valuable feature of the FIR model. It allows engineers and analysts to fine-tune the 

model's complexity to match the specific characteristics and dynamics of the system they 

are working with. By adjusting the number of coefficients within each sub-model, they 

can achieve an optimal balance between model accuracy and computational efficiency, 

ensuring that the model accurately represents the behavior of the observed system. 
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3.4. Model Validation 

 

 

In traditional Model Predictive Control (MPC) identification, the validation and 

selection of models are typically carried out based on a combination of process 

knowledge, the tuning of model gains, and the comparison of simulated Controlled 

Variables (CVs) with their actual measurements. This process involves the following 

steps, process knowledge; domain experts provide insights into the expected behavior of 

the system and guide the identification process. This knowledge helps in defining the 

initial model structure and selecting appropriate parameters. Gain tuning, adjustments to 

model gains, such as proportional, integral, and derivative terms (PID tuning), are 

performed to ensure that the model's response closely matches the desired control 

objectives. This step is crucial for achieving effective control. Model fits, the identified 

model is simulated, and the simulated CVs are compared with the measured CVs from 

the real system. Good model fits are indicative of a well-identified model that accurately 

represents the system's dynamics. Validation, the identified model's performance is 

rigorously validated using various techniques. This validation process ensures that the 

model not only fits the data but also generalizes well to different operating conditions and 

remains robust in the face of disturbances. By combining process knowledge, gain tuning, 

and careful evaluation of model fits and validation results, traditional MPC identification 

aims to develop models that reliably represent the system and enable effective control. In 

the context of model validation, several assessments are conducted on full-order models, 

considering various metrics and statistical measures. Confidence Limits, these are used 

to assess the level of confidence in the model's predictions. Confidence limits provide a 

range within which the actual system behavior is expected to fall, given the model's 

uncertainty. Noise Bounds, noise bounds help determine the level of noise or uncertainty 

present in the measured data and its impact on the model's accuracy. Null Hypothesis 

Tests are employed to evaluate whether the model's predictions statistically match the 

observed data. They assess the hypothesis that there is no significant difference between 

the model's output and the actual measurements. Step Response Sensitivities, this metric 

examines how sensitive the model's step response is to small perturbations or changes in 

the model parameters. It helps in understanding the model's stability and robustness. 

Based on the results of these assessments, full-order models are automatically ranked, 
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typically on a scale from 1 to 5, with 1 indicating excellent agreement with the observed 

data and 5 implying that the model is essentially useless for its intended purpose. These 

model rankings can be employed to automatically determine whether corresponding 

reduced-order models should be nullified or not. This feature, often user-selectable, helps 

in making informed decisions about model reduction and selection, ensuring that only the 

most reliable models are used for control and prediction purposes.  

 

 

3.5. Offline Simulation and Tuning 

 

 

After the final models are selected and implemented, it is required to test dynamic 

response offline simulations, we collaborate with the operations department to define 

varying upper and lower limits for Manipulated Variables (MV) and Controlled Variables 

(CV). Additionally, we configure different tuning parameters for the controller to 

optimize its real-time performance between the MV and CV with offline simulation in 

Honeywell RMPCT. Offline simulation requires following steps including setting up the 

simulator in Honeywell RMPCT and determination of simulation case study. Figure 3.6 

shows the advanced tuning parameters for MV, CV parameters and optimization. 

 

 

 

Figure 3.6. Advanced Process Control Tuning Parameters (Lahiri, 2017)  
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

In this thesis, APC is studied in the main fractionator column of the Delayed Coker 

Unit (DCU) at Star Refinery. This chapter includes applied methodology and obtained 

results to design APC in fractionator column. LCGO Final Boiling Point and LCGO T95 

quality is controlled by APC by using commercial Honeywell RMPCT application. 

 

 

4.1. Determination of APC Control Matrix for Product Quality 

 

 

Before creating an MPC (Model Predictive Control) application for a specific 

process, it is crucial for the control engineer to acquire a thorough comprehension of the 

process. This includes understanding its relevant limitations, how it generates profits, and 

identifying opportunities for increasing profitability. In this stage, Manipulated Variables 

(MVs), Controlled Variables (CVs), and Disturbance Variables (DVs) are determined. 

Additionally, constraints and limitations of the plant is evaluated and MPC opportunities 

are determined to increase profitability. The success of the MPC controller is significantly 

influenced by how well these functional designs are developed. In the main fractionator 

column of the DCU unit, since drum switch and preheating steps are done in every 10-12 

hours, it effects the LCGO product qualities because of the disturbance effect. In Figure 

4.1, HCGO tray temperature trend including 2 days data is shown to see disturbance effect 

of drum switch and preheating steps on the column temperature profile. In Figure 4.1, 

yellow points represent the points that preheating occurs and orange points represents the 

points that drum switch step is occurred. Additionally, sections marked as transparent 

represents the steady state operation areas.  According to the control strategy, APC will 

be studied in the steady state areas of the operation to stabilize the LCGO quality. Because 
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of the disturbance effect of the drum switch and preheating steps, it is hard to control 

LCGO product qualities with the APC. 

 

 

 

Figure 4.1. Change of the HCGO tray temperature as a function of time 

 

 

According to the base layer control of the column, LCGO product T95 and FBP 

is controlled by changing set point of the LCGO draw flow controller by operators. 

Therefore, APC will manipulate the set point of the LCGO draw flow controller to control 

the LCGO T95 and LCGO FBP qualities as control variables. In terms of the profit scope, 

since LCGO is added to the diesel pool, APC aim is to maximize LCGO T95 and LCGO 

FBP control variables by increasing LCGO draw flow to increase the diesel production. 

Addionally, APC is aimed to decrease standart deviation between laboratory result and 

planning order for LCGO product qualities. Table 4.1 shows the control matrix for LCGO 

quality control with APC and expectational response of the MV change on the CV values. 

 

 

Table 4.1. Control Matrix for LCGO Quality Control 

 LCGO T95 Soft Sensor LCGO FBP Soft Sensor 

 CV1 (°C) CV2 (°C) 

LCGO Draw Flow (Sm3/h)  

Positive response 

 

Positive response 
MV1 
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4.2. Applied Step-Test 

 

 

Since the control matrix is determined for LCGO product quality, step test is 

applied to determine the time to steady state representing settling time of the MV change 

response for CV. In Figure 4.2, 4 days step test trend is shown. 

 

 

 

Figure 4.2. Step Test Trends for 4 days 

 

 

4.3. Model Identification 

 

 

After the step test is completed, 4 days test data is imported from the Honeywell 

RMPCT program and model identification was done with FIR algorithm in Honeywell 

RMPCT. Model identification is conducted by utilizing the process data gathered during 

the plant step test. Essentially, this involves the establishment of a relationship between 

Manipulated Variables (MV) and Controlled Variables (CV) for each specific pair. 

Linear model identification 
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The model parameter estimation approaches in the MPC products are mainly 

based on minimizing the following least-squares criterion (Lahiri, 2017),  

𝐽 = ∑ (𝑦𝑘 − 𝑦𝑘
𝑚)2𝐿

𝑘=1                                                                                                  Eqn 13. 

In the case of a Finite Impulse Response (FIR) model, the estimated settling time 

serves as the model order. According to the Honeywell RMPCT results, FIR analysis 

response results are obtained for different trial settings including settling time estimation 

as below Figure 4.3, 

 

 

 

Figure 4.3. Honeywell RMPCT FIR Analysis for different trial settings  

 

 

After the FIR analysis, step responses generated using FIR coefficients can exhibit 

significant variability or high variance. To decrease the model variance parametric fit is 

applied. The main objective of fitting a parametric model is primarily to decrease model 

variance. In addition to this, parametric models offer the advantage of having the 

minimum number of model parameters necessary to accurately represent the system’s 

dynamic behavior. FIR step response parametric fit methods are Laplace Transform and 
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ARX. ARX Parametric Fit often produce biased estimates, but when using the prefiltered 

form in the APC (Advanced Process Control) identifier, it automatically gives more 

weight to the low-frequency fit, resulting in higher-quality models. Based on the ARX 

method, obtaining transfer function of the model is obtained in the below form; where, n 

is order of the model and d is the delay time of the process. 

 

𝑇(𝑧) =
(𝑏1𝑧−1+𝑏2𝑧−2+⋯+𝑏𝑛𝑧−𝑛)𝑧−𝑑

1+𝑝1𝑧−1+⋯+𝑝𝑛𝑧−𝑛                                                                    Eqn 14. 

According to Laplace Domain Parametric Model method, transfer function can be 

obtained in the Laplace domain and obtaining transfer function is in the below form; 

𝑇(𝑠) =
𝑘(𝜏𝑠+1)𝑒−𝑑𝑠

𝑠(𝜏1𝑠+1)(𝜏2𝑠+1)
                                                                                 Eqn 15. 

Both ARX and Laplace Domain Parametric model method is applied in 

Honeywell RMPCT.  Figure 4.4 and Figure 4.5 shows the obtaining Laplace domain 

parametric model transfer function results between LCGO Draw Flow- LCGO T95 and 

LCGO Draw Flow-LCGO FBP, respectively. According to the results, first order model 

without dead time is obtained for both LCGO T95 and FBP model with LCGO draw flow 

change.  

 

 

 

Figure 4.4. Model Transfer Function for LCGO Draw Flow- LCGO T95 
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Figure 4.5. Model Transfer Function for LCGO Draw Flow- LCGO FBP 

 

 

4.4. Model Validation 

 

 

In the traditional process of MPC identification, model validation and selection 

are typically conducted by drawing upon process knowledge. This involves a particular 

emphasis on factors such as gains and an evaluation of the extent to which simulated 

Controlled Variables (CVs) align with their actual measured values. According to the 

obtaining models, model validation results are shown in Figure 4.6. Model validation 

results for LCGO T95 and LCGO FBP is rank 2 and 3 respectively, which represents the 

models are useful for control. Additionally, based on the process knowledge since, 

obtained process gains and settling time is logical; models are selected as final model. 
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Figure 4.6. Honeywell RMPCT Model Validation Results 

 

 

4.5. Offline Controller Simulation and Tuning 

 

 

After the final models are selected and MPC is implemented, it is important to test 

model quality. Prior to implementing the controller in an actual process plant, it is crucial 

to understand its performance in a real-time scenario while in offline mode. Offline 

controller simulation entails running the controller on a separate offline computer to 

observe the dynamic responses between Manipulated Variables (MV) and Controlled 

Variables (CV) of the process. In the offline simulation, some cases are studied to analysis 

APC model performance. 

 

 

 4.5.1. MV tuning Parameter- MV weight 

 

 

Manipulated Variable (MV) movement weights serve the purpose of either 

encouraging or discouraging controller actions on specific variables. When the objective 

is to minimize the movement of a particular MV, or to prevent it from moving unless 

necessary, a movement weight is applied. This movement weight essentially penalizes 
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the MV's movement and influences the controller's decision regarding alternative MV 

adjustments. In Honeywell RMPCT, effect of MV weight is simulated when the LCGO 

T95 and LCGO FBP values are below the low limit values. After the change of MV 

weight value from 1 to 0.2, that shown with 2nd hairline in Figure 4.7, MV change 

movement is increased and slop of the MV change is increased because greater values for 

the movement weight reduce the inclination to utilize a specific manipulated variable 

(MV) when there are an adequate number of degrees of freedom within the control 

system. 

 

 

 

Figure 4.7. MV weight tuning parameter effect on MV Control 

 

 

4.5.2. CV Tuning Parameter-EU Give up 

 

 

Controlled Variable (CV) give-up values are determined based on the priority of 

adhering to CV constraints. When the give-up value is smaller, it indicates a higher 

importance placed on keeping that particular CV within its constraints. Consequently, the 

controller will make more effort to minimize the error associated with that CV. Give-up 

values are relative to each other, meaning they establish a hierarchy of importance among 

the CVs, guiding the controller's actions to prioritize the most critical CVs when 

minimizing errors and optimizing control. In Honeywell RMPCT, CV EU give up 
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parameter is simulated. To investigate the effect of CV EU Give up, for CV1 LCGO T95 

Soft Sensor low and high hard limits, narrow limits are given, for CV2 LCGO FBP Soft 

Sensor value low and high hard limits, large limits are given as shown in Figure 4.8. 

 

 

 

Figure 4.8. Honeywell RMPCT Interface- Simulation for CV EU Give Up 

 

 

Additionally, CV low and high EU give up values for LCGO T95 and LCGO FBP 

CV’s, are given 0 and 1 ,respectively. Since, the LCGO T95 current value is close to high 

limit value and high EU give up value is given as zero, although LCGO FBP current value 

is out of the limits, MV movement is very less. In Figure 4.9 MV 1 (LCGO Draw Flow) 

value is increased from 99 Sm3/h to 99.005 Sm3/h since, the LCGO T95 value is reached 

to the high limit value as 355.01°C. 
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Figure 4.9. CV EU giveup tuning parameter effect on CV Control 

 

 

4.5.3. Optimization Parameter-Linear Objective Function 

 

 

In MPC applications, keeping all variables within their limits cannot use all the 

degrees of freedom in controller. Even when there are more Controlled Variables (CVs) 

than Manipulated Variables (MVs), there can still be surplus degrees of freedom, 

particularly if certain CVs have variable ranges instead of fixed set points, which is a 

common situation. Control engineers can make use of these extra degrees of freedom by 

formulating an objective function that guides the controller in optimizing specific aspects 

of the process in addition to its primary control tasks. Control objective function is shown 

as below equation; 

∑ 𝑝𝑖𝐶𝑖 𝑉𝑖 + ∑ 𝑞𝑖2(𝐶𝑉𝑖 − 𝐶𝑉0𝑖)
2

𝑖 + ∑ 𝑝𝑗𝑀𝑗 𝑉𝑖𝑗 + ∑ 𝑞𝑗2(𝑀𝑉𝑗 − 𝑀𝑉0𝑗)2
𝑖                  Eqn 16.                                                                                                                  

𝑝𝑖 and 𝑝𝑗  represent linear objective function for CV and MV, respectively. 𝑞𝑖  and 𝑞𝑗 

parameters represent quadratic objective function for CV and MV, respectively. To 

transform the objective function into a maximization problem instead of a minimization 

problem, you can multiply each term by -1. This is because minimizing the negative of 

something is equivalent to maximizing it. Therefore, the controller's objective is to 

minimize the negated objective function (maximize the original objective function) while 
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ensuring that all Controlled Variables (CVs) remain within specified limits or at their set 

points, and all Manipulated Variables (MVs) stay within their designated limits. 

 

 

4.5.4. Optimization Parameter-Optimization Horizon 

 

 

The optimization horizon defines the timeframe within which the controller is 

required to bring the objective function to its optimal value. Importantly, this horizon is 

established independently of the error correction horizons associated with the Controlled 

Variables (CVs). 

 

 

4.5.5. Optimization Parameter-Optimization Speed Factor 

 

 

Optimization speed factor default value is 1 which, shows optimization horizon 

approximately six times the CV overall response time. If optimization speed factor is set 

to zero, it effectively disables the optimizer, rendering the objective function ineffective. 

In this state, both the CV and MV objective coefficients no longer influence the process's 

direction, meaning that the controller will not actively optimize the process according to 

the defined objectives. To investigate the linear objective function and optimizer speed 

factor tuning parameter effect on objective function, simulation is done. Figure 4.10 

shows the Honeywell RMPCT interface for optimization simulation. Linear objective 

function values are given as -1 since, objective is to maximize CV1 and CV2.  
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Figure 4.10. Honeywell RMPCT Interface-Simulation for Optimization 

 

 

At the beginning of the simulation, in the first region Optimization speed factor is 

given as 0.1, and after that in the second region it is increased to 1. Obtained simulation 

trend is shown in Figure 4.11. When optimization speed factor is increased, MV 

movement is increased in order to maximize CV1 and CV2 variables. 

 

 

 

Figure 4.11. Optimization Speed Factor and Linear Objective Function  

 

22:15:00 20 Sep 23 22:45:00 20 Sep 23 
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4.5.6. Stabilizing Effect of MPC 

 

 

In most cases, variations in process parameters can be characterized by their 

average (mean) value and standard deviation (a measure of variability). In Model 

Predictive Control (MPC), it is common practice to aim at reducing the standard deviation 

by approximately 50 percent. This reduction allows operators to adjust the average value 

closer to its predefined limit by shifting the set point, all while maintaining a relatively 

constant or even reduced risk of temporary violations of process constraints. In other 

words, MPC helps improve process stability by minimizing variability, enabling more 

precise control around set point values. The restrictions encompass quality requirements, 

restrictions on equipment design, and limitations on valve positions, safety boundaries, 

and restrictions enforced by interlock systems. The most cost-effective operation of the 

process occurs when it operates very close to these constraints and is only occasionally 

exceeded. The acceptable frequency of exceeding these limits is determined based on 

experiences, the consequences of exceeding them, and the significance of the parameter 

in question and its impact on economic factors. The stabilizing effect of MPC (Model 

Predictive Control) enables a shift in the average operating point closer to the operational 

limit. In this assumption, the operating point is adjusted in a manner that maintains the 

same frequency of violations as observed before the implementation of MPC, which is 

considered a satisfactory level of process operation. The economic impact of this shift 

toward the operational limit is then calculated to determine the benefits derived from the 

implementation of MPC. Based on experience, MPC (Model Predictive Control) 

generally results in a reduction in the standard deviation, typically ranging from 40 to 70 

percent. However, the extent of this reduction depends on various factors, including the 

specific process being controlled and the effectiveness of the implementation team, the 

accuracy of the control model, and other relevant factors. Assuming that the frequency of 

violations remains the same both before and after MPC implementation, mathematical 

description of the benefit is shown as below equation; 

Shift in average operating point = β(σbefore − σafter) = βxσbeforexa                Eqn 17. 

where, σbefore is the standard deviation of the process variable before MPC 

implementation, σafter is the standard deviation of the process variable after MPC 
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implementation, α is the fractional reduction in standard deviation due to MPC. In thesis 

study, LCGO FBP laboratory results are recorded and analysis for  before and after APC 

implementation. Only the sections for which the product quality maximization target was 

given by the planning team were taken from the laboratory results. Standard deviation 

analysis was performed for data covering the period of 2020-2022 using Delayed Coker 

Unit data in SOCAR. Obtained results are shown in below Table 4.2.  

 

 

Table 4.2.  LCGO FBP Laboratory Standard Deviation Results 

APC  

On/Off 

Laboratory Results-

Standard Deviation 

Average Δ1 
(Instruction –Lab)*  

Average Δ2  
(Instruction-Lab)** 

OFF 10.0 8.0 6.2 

ON 7.0 7.0 4 

 

Average Δ1 (Planning Order –Lab)* : Average deviation of laboratory values below the 

maximum instruction from the maximum instruction. 

Average Δ2 (Planning Order –Lab)** : Average deviation of laboratory values above the 

maximum instruction from the maximum instruction 

 

 

Improvement in LCGO FBP laboratory results standard deviation values  are 

shown in Figure 4.12 when the APC is On and Off.  The commissioning of APC in 

September 2021 has clearly resulted in stabilization in the LCGO FBP samples. The 

standard deviation has decreased, and values that were previously above and below the 

set instructions have been brought closer to the instructions, leading to a narrowing. 
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Figure 4.12. LCGO FBP Standard Deviation Improvement with APC 

 

 

According to the obtained result, standard deviation of the LCGO FBP quality is 

decreased which is similar to one of the literature study shown in Chapter 2. 

 

 

4.6. Closed Loop Control with SIMO MPC in MATLAB  

 

 

In the thesis study, the MPC controller is also designed with  MATLAB MPC 

Toolbox and Simulink (see in APPENDIX A). Plant model is design as single input and 

multi output model (SIMO).The plant is modelled as first order model without dead time 

with input and outputs. Since the plant is continuous time model, the controller 

automatically converted to discrete time state space model for prediction using sample 

time (ts). A state-space model describes a system by employing a set of first-order 

differential or difference equations. These equations incorporate inputs, outputs, and state 

variables to represent the system's dynamics. State-space models are a versatile and 

widely used framework in control theory and system analysis for characterizing the 
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behavior of dynamic systems. According to simulation results in matlab, obtained discrete 

time state space function for 1 second sample time is as following equation assuming 

there is no disturbance added to measured output; 

𝑝𝑙𝑎𝑛𝑡 = 

𝐴 = [
0.8247 0

0 0.9047
], 𝐵 = [

0.7367
0.3235

], 𝐶 = [
0.1927 0

0 0.1001
], 𝐷 = [

0
0

] 

MPC controller sample time is taken as 1 second. Prediction horizon is generally 

selected based on the maximum settling time and control horizon is selected as  1/4th  or 

1/5th of the prediction horizon. Additionally, controller is used default weight value for 

MV as 0 and MV rate as 0.1, for CV1 weight which is for LCGO T95 is taken as 1 and 

LCGO FBP it is taken as 0 .  APC  hard limits are also given for both MV and CV 

variables. According to closed loop simulation for obtained MPC controller, MV-CV 

response trend is shown in Figure 4.13.  

 

 

 

Figure 4.13. Matlab MPC Toolbox MV-CV Closed Loop Response Trend 

 

 

Figure 4.13 shows that, since the LCGO T95 quality is reach its high hard limit in 

a few seconds, LCGO Draw flow is decreasing in order not to exceed LCGO T95 

reference value. In the MPC tuning part, control horizon and prediction horizon 

parameters are changed in order to observe the effect on input and output response. Figure 

4.14 shows the input and output response trend when the MPC controller sample time is 
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taken as 1 second, prediction horizon and control horizon is taken as 60 steps and 3 moves, 

respectively. 

 

 

 

Figure 4.14. MV-CV Response Trend for Control Horizon:3, Prediction Horizon:60 

 

 

Figure 4.15 shows the input and output response trend when the MPC controller 

sample time is taken as 1 second, prediction horizon and control horizon is taken as 60 

steps and 12 moves, respectively.  

 

 

 

Figure 4.15. MV-CV Response Trend for Control Horizon:12, Prediction Horizon:60 
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In the Figures 4.14 and 4.15, it is shown that, when the control horizon parameter 

is increased from 3 to 12 with the same prediction horizon value as 60, the number of MV 

movements increased and faster response is obtained for the outputs. Figure 4.16 shows 

the input and output response trend when the MPC controller sample time is taken as 1 

second, prediction horizon and control horizon is taken as 30 steps and 2 moves, 

respectively. 

 

 

 

Figure 4.16. MV-CV Response Trend for Control Horizon:2, Prediction Horizon:30 

 

 

Figure 4.17 shows the input and output response trend when the MPC controller 

sample time is taken as 1 second, prediction horizon and control horizon is taken as 60 

steps and 2 moves, respectively. 
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Figure 4.17. MV-CV Response Trend for Control Horizon:2, Prediction Horizon:60 

 

 

Prediction horizon refers to the number of future time intervals over which the 

controller predicts the system's behavior while optimizing its manipulated variables 

(MVs) at each control interval. Therefore, longer prediction horizon causes slower 

dynamics between MV and CV. In the Figures 4.16 and 4.17, it is shown that when the 

prediction horizon value is increased from 30 to 60 with the same control horizon value 

as 2, slower CV response is obtained. Prediction horizon should be long enough to 

increase ability for future prediction. According to the tuning part of the MPC controller, 

control horizon and prediction horizon is selected as 12 and 60 respectively,  since faster 

response is obtained. For the state space models, it is important to assess controllability 

and observability of the derived models. If the state-space model is not observable or 

controllable, implementing Model Predictive Control (MPC) in the system becomes 

challenging or infeasible. The system is controllable if the below matrix has rank value 

which is equal to number of states in the state space model. 

Controllability =  [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴1−𝑛𝐵] = [
0.7367 0.6076
0.3235 0.2927

] = 𝑅𝑎𝑛𝑘 2  

The system is observable if the states are known from output of the model and the 

rank is equal to the number of states. Observability of the derived model is calculated 

using below equation; 
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Observability =  [𝐶 𝐶𝐴 𝐴2𝐶 … 𝐴1−𝑛𝐶] = [

0.1917                 0
   0                0.1001
  0.1589                0
  0                0.0906

] = 𝑅𝑎𝑛𝑘 2  

According to the observability and controllability of the derived model, rank 

values are equal to the number of state in the space model and model can be implement. 

Rank values that obtained by using matlab about the model controllability and 

observability is similar to model validation results that obtained by using Honeywell 

RMPCT. 

 

 

4.7. Summary of the Results 

 

 

In this thesis, an APC system is designed to control one of the most valuable  

products of the Delayed Coker Unit which is LCGO FBP quality. To design the APC 

system, the following methods are applied including functional design to determine 

control matrix, step test planning and application, process model identification and 

validation using FIR algorithm in Honeywell RMPCT, offline APC simulation and 

tuning. In the modelling section of the thesis, 4 days step test data is used and the points 

when the drum switch and preheating steps are occurred as disturbance effect, are 

removed as outlier. According to the obtained data, model identification is done using 

FIR algorithm and first order models are obtained for LCGO T95 and LCGO FBP 

qualities without dead time. Model validation is done and the gain of the model is 

investigated. Advanced tuning parameters are studied using offline simulation of the APC 

controller.  Matlab MPC toolbox and Simulink is used to create MPC controller and 

model is created with the state space model identification. Additionally, control horizon 

and prediction horizon tuning parameters are changed in the model to determine the better 

MV and CV response. Standard deviation of the LCGO FBP quality laboratory results 

are compared for before APC and after APC regions. According to obtained results, when 

the APC is on standard deviation of the LCGO FBP quality results are decreased 3℃. 
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CHAPTER 5 

 

 

                                CONCLUSION 

 

 

In this thesis, a real refinery case is studied to design an advanced process control 

system in the Delayed Coker Unit of Star Refinery in Izmir. The objective of the APC is 

to provide the stabilization of the valuable product qualities, closing the controlled 

variables through the economically optimum zone. In this thesis, the main objective is to 

decrease the LCGO FBP quality standard deviation in steady state operation after the 

disturbance effects .  Functional design is done to provide control matrix and step test is 

applied for LCGO FBP quality in main fractionator column. According to obtained step 

test data, Honeywell RMPCT application is used to obtain the model between MV and 

CV variables. Model identification is applied using FIR algorithm based on characterizes 

a system as a linear combination of past input values. Obtained models are implemented 

in the main fractionator column of the Delayed Coker unit. Additionally, Matlab MPC 

toolbox and Simulink is used to create MPC controller and model is created with the state 

space model identification. Control horizon and prediction horizon tuning parameters are 

changed in the model to determine the better MV and CV response.  According to 

obtained results, standard deviation for the LCGO FBP quality results are compared 

before and after APC implementation. It is shown that when the APC is turned on, the 

standard deviation of the LCGO product FBP quality is decreased by 3 ℃. Additionally, 

operator actions to the LCGO product draw flow controller set point is decreased since, 

the set-point of the LCGO draw flow controller  is  controlled by the APC considering 

both LCGO T95 and LCGO FBP quality soft sensor values.   
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APPENDIX A 

 

 

MPC Controller Design in Matlab Simulink 

 

 

 

Figure A.1. MPC Controller Design in Matlab Simulink 

 

 

          Matlab Code- Command Window 

 

 

s = tf('s') 

h11 = 0.81*(1/(5.91*s+1)); 

h21 = 0.34*(1/(9.99*s+1)); 

s = 

  s 

Continuous-time transfer function. 

>> H = [h11; h21] 

H = 

  From input to output. 
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          0.81 

   1:  ---------- 

       5.91 s + 1 

          0.34 

   2:  ---------- 

       9.99 s + 1 

Continuous-time transfer function. 

>> plantTF = tf([h11; h21]) 

plantTF = 

  From input to output... 

          0.81 

   1:  ---------- 

       5.91 s + 1 

  

          0.34 

   2:  ---------- 

       9.99 s + 1 

Continuous-time transfer function. 

>> Ts = 1;                %sample time 

mpcobj = mpc(plantTF,Ts,10,3);   %% create MPC controller object with sample time 

 

%% specify weights 

mpc1.Weights.MV = 0; 

mpc1.Weights.MVRate = 0.1; 

mpc1.Weights.OV = [1 0]; 

mpc1.Weights.ECR = 100000; 

 

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000. 

-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 

0.10000. 

-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000. 

   for output(s) y1 and zero weight for output(s) y2  

%% specify prediction horizon 

mpc1.PredictionHorizon = 10; 

%% specify control horizon 

mpc1.ControlHorizon = 3; 
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%% specify nominal values for inputs and outputs 

mpc1.Model.Nominal.U = 98; 

mpc1.Model.Nominal.Y = [359;369]; 

%% specify constraints for MV and MV Rate 

mpc1.MV(1).Min = 98; 

mpc1.MV(1).Max = 120; 

mpc1.MV(1).RateMin = -2; 

mpc1.MV(1).RateMax = 2; 

%% specify constraints for OV 

mpc1.OV(1).Min = 350; 

mpc1.OV(1).Max = 360; 

mpc1.OV(2).Min = 360; 

mpc1.OV(2).Max = 370; 

 

>> mpcobj.MV = struct('Min',0,'Max',30,'RateMin',-10,'RateMax',10); 

Tstop = 30;                               % simulation time 

Nf = round(Tstop/Ts);             % number of simulation steps 

 

r=[ones(Nf,1);ones(Nf,1)];  

sim(mpcobj,Nf,[r,r]);              %simulation 

-->Converting the "Model.Plant" property to state-space. 

-->Converting model to discrete time. 

-->Assuming output disturbance added to measured output channel #1 is integrated 

white noise. 

-->Assuming output disturbance added to measured output channel #2 is integrated 

white noise. 

-->The "Model.Noise" property is empty. Assuming white noise on each measured 

output. 

%Controllability Analysis of the MPC controller 

A = [0.8247,0;0,0.9047]; 

B = [0.7367;0.3235]; 

C = [0.1927,0;0,0.1001]; 

D = [0;0]; 

sys = ss(A,B,C,D); 

>> Co = ctrb(sys); 

>> Co = ctrb(sys) 

Co = 

    0.7367    0.6076 
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    0.3235    0.2927 

>> rank(Co) 

ans = 

  2 

%observability analysis for MPC model 

A = [0.8247,0;0,0.9047]; 

B = [0.7367;0.3235]; 

C = [0.1927,0;0,0.1001]; 

D = [0;0]; 

>> sys = ss(A,B,C,D); 

>> Ob = obsv(sys) 

Ob = 

    0.1927         0 

         0    0.1001 

    0.1589         0 

         0    0.0906 

>> rank(Ob) 

ans =  2 

 

 


