

PERFORMANCE-RELIABILITY TRADEOFF

ANALYSIS FOR SAFETY-CRITICAL SYSTEMS

WITH GPUS

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Yağızcan SEZGİN

December 2023

İZMİR

We approve the thesis of Yağızcan SEZGİN

Examining Committee Members:

Professor Dr. Cüneyt Fehmi BAZLAMAÇCI

Department of Computer Engineering, İzmir Institute of Technology

Assistant Professor Dr. Deniz ÖZSOYELLER

Department of Computer Engineering, Yaşar University

Assistant Professor Dr. Işıl ÖZ

Department of Computer Engineering, İzmir Institute of Technology

8 December 2023

Assistant Professor Dr. Işıl ÖZ

Supervisor, Department of Computer Engineering

İzmir Institute of Technology

_____________________________ _____________________________

Professor Dr. Cüneyt Fehmi BAZLAMAÇCI Professor Dr. Mehtap EANES

Head of the Department of Dean of the Graduate School of

Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my thesis advisor, Assistant

Professor Işıl Öz, for her endless patience and her efforts to motivate me. I extend my

heartfelt thanks to TTTech Auto Turkey for the provisioning of the NVIDIA Jetson

Xavier NX Developer Kit, a crucial element that significantly enhanced the outcome of

my thesis. I want to convey my deepest appreciation to my mother who remained a

constant source of support and guidance during moments of hopelessness and

consideration of giving up.

 iv

ABSTRACT

PERFORMANCE-RELIABILITY TRADEOFF ANALYSIS FOR

SAFETY-CRITICAL SYSTEMS WITH GPUS

 GPUs were mostly used for image processing purposes when they were first

introduced. These applications can be considered non-critical, and they were not given

sufficient importance for reliability. Due to the evolving nature of GPUs, they offer highly

parallelized architecture and provide extremely powerful computation, they become one

of the most crucial parts of the systems that have complex applications in safety-critical

domains such as automotive and space to fulfill the high computational demand. In this

thesis, we evaluate the performance and reliability tradeoff in the safety-critical domain.

 We propose software-based redundancy schemes with different spheres of

replications on the GPU4S benchmark in the safety-critical domain. Our proposal

includes profiling the baseline application without any redundancy, applying fault

injection using NVBitFI and changing implementation manually according to proposed

redundancy schemes, measuring performance metrics such as execution time, memory

copy operations, and power consumption on the real hardware that is widely used on

target domain instead of using well-known GPU simulators to see actual performance.

 We reveal that our proposed redundancy schemes are managed to eliminate all the

soft errors in the cases if we apply full redundancy for single-kernel benchmarks, for the

reliability evaluation with the cost of performance degradation, depending on the

application. We show that most soft errors can be eliminated using partial redundancy for

complex applications, with a small performance impact.

 v

ÖZET

GÜVENLİK KRİTİK SİSTEMLERDE GPU KULLANIMININ PERFORMANS VE

GÜVENİRLİK AÇISINDAN DEĞERLENDİRİLMESİ

GPU’lar ilk kez tanıtıldığında çoğunlukla görüntü işleme amaçlı kullanılmıştır.

Bu uygulamalar genellikle kritik olmayan olarak kabul edilebilir ve güvenilirlik için

yeterli önem verilmemiştir. GPU’ların evrilen doğası nedeniyle yüksek seviyede paralel

mimarinin kullanılabilmesi ve son derecede güçlü hesaplama imkanı sağlaması nedeniyle

otomotiv ve uzay gibi güvenliğin kritik olduğu alanlarda karmaşık uygulamalara sahip

sistemlerin vazgeçilmez bir parçası haline gelmiştir ve alanlarda yüksek hesaplama gücü

isteğini karşılayabilmek için kullanılmaktadır. Bu tezde, güvenlik kritik alanlardaki

performans ve güvenirlik arasındaki dengeyi ve birbiri arasındaki ilişkiyi

değerlendiriyoruz.

 Güvenlik kritik alanda kullanılan GPU4S performans göstergesini kullanarak

farklı replikasyonlar ile yazılım tabanlı yedekleme yaklaşımları öneriyoruz. Önerimiz,

uygulamaların orijinal ve yedekleme olmayan hallerinin profil edilmesini, NVBitFI

aracını kullanarak hata enjekte edilmesini ve önerilen yedekleme uygulamalarının

yazılım implementasyonuna elle uygulamasını, ardından da hafıza ve yürütülme

zamanları, güç tüketimi gibi performans ölçütlerinin hedef alanda yaygın bir şekilde

kullanılan bir donanım üzerinde ölçümlenmesini öneriyoruz.

 Önerdiğimiz yöntemlerin tek üniteye sahip uygulamalarda eğer tamamen

yedekleme uygularsak geçici hataların hepsinin performans düşüşüyle beraber

giderilebildiğini ortaya koyduk. Karmaşık ünitelere sahip uygulamalarda ise kısmi

yedekleme uygulamanın birçok hatanın giderilmesinde ufak bir performans etkisiyle

mümkün olabileceğini ortaya koyduk.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

LIST OF LISTINGS ... x

CHAPTER 1. INTRODUCTION ... 1

1.1. Contribution of Thesis ... 2

1.2. Organization of Thesis ... 2

CHAPTER 2. BACKGROUND AND MOTIVATION ... 3

2.1. GPU Architecture and Programming Model ... 3

2.2. Error Vulnerability in GPUs .. 5

2.3 Fault Injection Methods .. 6

CHAPTER 3. RELATED WORKS .. 8

3.1. Software-Based Redundancy ... 8

3.2. Fault Injection .. 10

3.3. Power Modeling and Reliability Evaluation .. 12

CHAPTER 4. PROPOSED SOLUTION .. 14

4.1. Fault Injection and Reliability Evaluation ... 14

4.2. Metrics Profiling .. 16

4.3. Power Measurement .. 17

4.4. Redundancy Implementation ... 18

4.4.1. Full Redundancy for Single-Kernel Benchmarks 21

4.4.1.1. Serial Triple Redundancy .. 21

4.4.1.1.a. Serial Triple Redundancy for Output Data Multiplied 22

4.4.1.1.b. Serial Triple Redundancy for Input/Output Data Multiplied 23

4.4.1.2. Stream-Based Triple Redundancy ... 24

4.4.1.2.a. Stream-Based Triple Redundancy for Output Data Multiplied 24

4.4.1.2.b. Stream-Based Triple Redundancy for Input/Output Data Multiplied 26

4.4.1.3. Redundant-Multithread-Based Redundancy .. 27

4.4.2. Partial Redundancy for Multiple-Kernel Benchmarks 30

CHAPTER 5. EXPERIMENTAL RESULTS .. 31

 vii

5.1. Experimental Setup .. 31

5.2. Experimental Results ... 34

5.2.1. Single-Kernel Benchmark Results .. 34

5.2.2. Complex Benchmark Results .. 41

CHAPTER 6. CONCLUSION AND FUTURE WORKS .. 46

6.1. Future Works ... 46

REFERENCES ... 47

 viii

LIST OF FIGURES

Figure Page

Figure 2.1. CUDA Thread, Block and Grid Architecture ... 4

Figure 2.2. CUDA Execution Workflow (Alcaide et al. 2021) .. 5

Figure 2.3. Error Classification (Mukherjee 2011) ... 6

Figure 4.1. NVBitFI Profiling and Transient Fault Injection Procedure (Tsai et al. 2021)

 .. 15

Figure 4.2. jtop utility ... 18

Figure 4.3. Rail Names and Descriptions ... 18

Figure 5.1. NVIDIA Board Block Diagram (NVIDIA Technical Blog. 2019) 31

Figure 5.2. Fault Injection Results for convolution_2D_bench 35

Figure 5.3. Normalized Performance Results for convolution_2D_bench 36

Figure 5.4. Fault Injection Results for matrix_multiplication_bench 36

Figure 5.5. Normalized Performance Results for matrix_multiplication_bench 37

Figure 5.6. Fault Injection Results for max_pooling_bench .. 37

Figure 5.7. Normalized Performance Results for max_pooling_bench 38

Figure 5.8. Fault Injection Results for relu_bench ... 38

Figure 5.9. Normalized Performance Results for relu_bench .. 39

Figure 5.10. Fault Injection Results for wavelet_transform ... 39

Figure 5.11. Normalized Performance Results for wavelet_transform 40

Figure 5.12. Kernel Execution Times for cifar_10 ... 42

Figure 5.13. SDC Rates for cifar_10 .. 43

Figure 5.14. Fault Injection Results for cifar_10 .. 43

Figure 5.15. Normalized Performance Results for cifar_10 ... 44

Figure 5.16. Tradeoff Analysis for cifar_10 ... 45

 ix

LIST OF TABLES

Table Page

Table 2.1. CUDA Terminology .. 3

Table 4.1. Outcome Classification (Tsai et al. 2021) ... 16

Table 4.2. Profiling Metrics and Descriptions (NVIDIA Profiler User’s Guide 2023).. 17

Table 5.1. NVIDIA Jetson Xavier NX Properties .. 32

Table 5.2. Benchmark Applications and Domains ... 33

Table 5.3. Single-Kernel Benchmark Experiment Cases ... 34

Table 5.4. Metrics Profiling for Single-Kernel Benchmarks .. 35

Table 5.5. Execution Cases for cifar_10 ... 42

 x

LIST OF LISTINGS

Listing Page

Listing 4.1. Baseline Implementation without Redundancy ... 19

Listing 4.2. Majority Voting ... 21

Listing 4.3. Serial Triple Redundancy for Output Data Multiplied 23

Listing 4.4. Serial Triple Redundancy for Input/Output Data Multiplied 24

Listing 4.5. Stream-Based Triple Redundancy for Output Data Multiplied 25

Listing 4.6. Stream-Based Triple Redundancy for Input/Output Data Multiplied 27

Listing 4.7. Original ThreadID – X and Y Calculation .. 28

Listing 4.8. Modified ThreadID – Y Calculation for Thread-Based Redundant

Multithreading .. 28

Listing 4.9. Modified ThreadID – X Calculation for Thread-Based Redundant

Multithreading .. 28

Listing 4.10. Modified ThreadID – Y Calculation for Block-Based Redundant

Multithreading .. 28

Listing 4.11. Modified ThreadID – X Calculation for Block-Based Redundant

Multithreading .. 28

Listing 4.12. Original Kernel Signature .. 28

Listing 4.13. Modified Kernel Signature for Redundant Multithreading 28

Listing 4.14. Modified Output Direction for Thread-Based Redundant Multithreading 29

Listing 4.15. Modified Output Direction for Block-Based Redundant Multithreading . 30

Listing 5.1. Benchmark Build Options ... 33

Listing 5.2. CUDA Event Time Measurement ... 33

1

CHAPTER 1

INTRODUCTION

As the demand for high computational power continues to increase with each

passing day, the use of hardware accelerators with high computational power has become

necessary to meet these demands. GPUs are most often preferred among other hardware

accelerators because they provide cost-effectiveness, versatility for usage on different

applications, wide community support, and continuous improvement by vendors.

Initially, GPUs were mainly used with image processing applications but after a while,

they became one of the crucial components of other domains such as automotive and

aerospace (Fickenscher et al. 2017; Kastensmidt and Rech 2016).

Safety-critical systems can be defined as systems where any malfunction or failure

may cause severe damage, injury, or even death. These systems are defined as the results

that could lead to unacceptable consequences (Knight 2002). Due to the seriousness of

the consequences, hardware and software development, and design procedures also need

to be evaluated mindfully to avoid any undesired result (Douglass 1998). Each industry

such as automotive, space, and medical devices defines its standard for safety. Although

there are sectoral differences, all of them are concerned with parameters such as real-time

performance, reliability, power consumption, and determinism. Safety cases for

automotive domain patterns and models have been published previously (Wagner et al.

2010; Palin and Habli 2010). Reliability can be provided by offering various levels of

redundancy such as hardware and software-based solutions, error detection and correction

mechanisms, temperature and power consumption monitoring, and on-board diagnostic

mechanisms to detect failures on time (Portet et al. 2020).

Redundancy is one of the key concerns in safety-critical systems when designing

applications in mission-critical domains such as autonomous driving or space applications

to ensure reliability. GPUs are vulnerable to soft errors because of reduced supply

voltages to optimize power consumption, intensive parallelism, where running thousands

of threads may increase the likelihood of at least one thread being error-prone, and the

high density of memory cells and transistors, which may affect the vulnerability of

electrical noise and radiation.

 2

Each redundancy technique costs increased execution time, and power

consumption which needs to be considered on safety-critical systems. In this thesis, we

present several redundancy schemes with different spheres of replication and evaluate

performance and reliability tradeoffs under different cases.

1.1. Contribution of Thesis

We propose software-based redundancy techniques for CUDA kernels to

eliminate silent data corruption in safety-critical domain applications. We apply different

redundancy schemes with spheres of replication like input and output multiplication and

evaluate the best redundancy techniques for single-kernel benchmarks. We consider

different CUDA features like stream-based execution to benefit from highly parallel

architecture for decreasing the redundant execution effort. After evaluating of best

redundancy technique in single-kernel benchmarks for considering elapsed time for

memory copy operations and kernel execution, as well as power consumption, we

implement the best technique over complex benchmark applications that include more

than one kernel. We apply these techniques under partial redundancy to aim to reduce

silent data corruption as much as possible with minimal overhead by finding the most

error-vulnerable kernel after evaluating the fault injection results for complex

benchmarks.

1.2. Organization of Thesis

Chapter 2 provides background information about GPU architecture and CUDA

programming model, a soft-error vulnerability in GPUs, and fault injection models.

Chapter 3 gives literature research for related works in software-based redundancy, fault

injection, and power measurement. Chapter 4 shows our proposed software-based

redundancy techniques and evaluation of performance and reliability. Chapter 5 presents

experimental results. Chapter 6 discusses the conclusion and future work.

 3

CHAPTER 2

BACKGROUND AND MOTIVATION

2.1. GPU Architecture and Programming Model

GPUs have been used in graphical processing applications previously, but their

use is becoming increasingly common in areas requiring high computing power due to

their Single Instruction Multiple Data (SIMD) execution model structure which makes

use of data parallelism (Aamodt et al. 2018). GPU terminology may vary among

semiconductor companies and programming models such as Compute Unified Device

Architecture (CUDA) and Open Computing Language (OpenCL). In this thesis, since the

development and hardware environment are selected from NVIDIA GPU, further

explanations will use CUDA terminology given in Table 2.1 only.

Table 2.1. CUDA Terminology

Terminology Definition

thread Execution unit

block Group of threads

grid Group of blocks

streaming multiprocessor Computational Grouping

warp Set of 32 threads

The GPU consists of several Streaming Multiprocessors (SM), and how many

vary depending on the architecture and hardware. Each SM may include more than one

Streaming Processor (SP) and comprises a warp scheduler, registers, and shared memory

(Perez-Cerrolaza et al. 2022). The function which is executed on SMs is called the kernel.

Register visibility is restricted to threads, so it is not visible from other threads. Shared

memory is accessible to all threads within the same block, and it is the fastest memory

element among all GPU architecture, but due to its size limitation, it is not always possible

 4

to fully utilize and benefit from implementation. L1 cache is shared among the same SM,

so all the blocks within the SM can access the L1 cache, but shared memory is not

accessible among blocks. SM is responsible for scheduling by groups of threads instead

of individual scheduling using a warp scheduler. A thread is the smallest execution unit

and multiples of threads create blocks. The grid consists of an array of thread blocks.

Blocks and grids may have one, two, or three dimensions according to requirements on

demand. For example, 1D convolution, image processing, and 3D simulations like

volumetric data processing may fit one, two, and three dimensions, respectively. Grid

configuration, number of blocks, and threads per block parameters are initialized by the

user before kernel execution.

Figure 2.1. CUDA Thread, Block and Grid Architecture

Each warp includes 32 threads, and the same instruction is executed on threads

that are in the same warp using the Single Instruction Multiple Thread (SIMT) concept.

Warp divergence is widely discussed in performance-related improvement in CUDA

development since it may cause threads to follow different execution paths and result in

inefficient execution of threads due to conditional execution blocks in code (Kirk and

Hwu 2016).

CPU (host) and GPU (device) have different memory regions, necessary memory

allocations should be performed before the execution of the kernel on the device. Later,

starting from the NVIDIA Pascal GPU architecture, Unified Memory is introduced which

is a common memory address space and accessible among CPU and GPU. Data sharing

between threads within the same block can be done by using shared memory which is

extremely fast on-chip memory. Threads in different blocks can communicate with each

 5

other using global memory, atomic operations, or synchronization techniques like

memory barriers.

In Figure 2.2, typical CUDA application execution workflow starts with preparing

the input data on the host device, and allocation of necessary memory on device ①, since

the host and device have separate memory spaces, data should be transferred from host to

device ②. After transferring it, the kernel is ready to be launched on the device ③.

Processed output is copied back from the device to the host after the calculation finishes

on kernel ④. Finally, the buffer is deallocated to device memory ⑤. (Alcaide et al.

2021).

Figure 2.2. CUDA Execution Workflow (Alcaide et al. 2021)

2.2. Error Vulnerability in GPUs

Error vulnerability has become an important issue in reliability analysis in GPUs

because reducing transistor sizes, increasing the number of transistors, and reducing

supply voltages to optimize power consumption makes GPUs more error-prone. Errors

can be classified as transient, permanent, and intermittent in general. Permanent faults are

irreversible hardware errors that can be caused by increasing environmental temperatures

higher than the thermal protection threshold (Defour and Petit 2013). Intermittent faults

can happen sporadically in unpredictable intervals. Transient faults, affect the execution

temporarily which may induce a single bit-flip in computer hardware that can be triggered

by thermal neutrons, cosmic rays, or electrical noise (Mukherjee 2011). To see the

undesired effect of faulty bit-flip, it should be read somewhere during execution and there

 6

should be no error detection and correction mechanism such as an error correction code

(ECC).

Figure 2.3. Error Classification (Mukherjee 2011)

Soft errors may cause silent data corruption (SDC) or detected unrecoverable

errors (DUE) if they occur in a memory location or register. SDC is the most critical

concern point since program execution finishes successfully without any error, but output

might be different than expected which is undetectable if the system doesn't have any

mechanism such as ECC, triple redundant execution, or redundant multithreading with

majority voting. In this thesis, we evaluate the performance, reliability, and error

resilience of our proposed redundancy techniques under simulation-based fault injection

to evaluate soft-error vulnerability.

2.3. Fault Injection Methods

Reliability evaluations on GPUs are mostly performed with fault injection

methods such as execution and hardware-based, simulation and software-based,

execution and software-based methods (Perez-Cerrolaza et al. 2022). For execution and

hardware-based fault injection experiments, the neutron-beam technique is widely used.

A neutron source is used to generate a beam of neutrons which are uncharged subatomic

particles that can penetrate through hardware components and are mostly used in

 7

aerospace and nuclear areas to evaluate reliability. It can be helpful to use combined

approaches with architectural fault injection and neutron beam experiments to have a

better understanding of the vulnerability of GPUs (Previlon et al. 2017). Harsing the

system limits such as voltage, temperature, and operating frequency can accelerate the

aging of devices which results in more sensitivity to intermittent errors. The effects of

running hardware at high temperatures have been evaluated previously (Defour and Petit

2013).

Fault injection techniques such as neutron beam and pushing the environmental

limits such as operating frequency, temperature, and voltage might permanently damage

the device which is costly and prevents researchers from trying with several cases until

gathering new hardware, it may significantly increase the experimental time and effort.

Due to this fact, using fault injection tools is advantageous since most of the tools provide

configuration of fault injection models such as single bit-flip, double bit-flip, random

value, and zero value injection. There are available fault injection tools in literature such

as Hauberk (Yim et al. 2011), GPU-Qin (Fang et al. 2014), LLFI-GPU (Li et al. 2016),

SASSIFI (Hari et al. 2017) and NVBitFI (Tsai et al. 2021). In this thesis, we select

NVBitFI as a fault injection tool since it supports our target hardware, which is based on

Volta architecture, it does not require any source code modification and faster operation

compared to previously published tools.

 8

CHAPTER 3

RELATED WORKS

 In this chapter, we show the related works that have been studied by other

researchers lately because performance and reliability evaluation is becoming one of the

hot topics in this field parallel to the wide usage of GPUs. We divide this chapter into

three sections: software-based redundancy, fault injection, and power modeling with

reliability evaluation.

3.1. Software-Based Redundancy

 Redundancy techniques can be applied in several ways such as hardware and

architecture, compiler, or software-based techniques. In this thesis, we are only

interested the software-based redundancy techniques like serial, stream, or redundant-

multithreading and we show the related works in this field.

Alcaide et al. (2019) offer a software-only diverse redundancy scheme by

executing two independent kernel calls with duplicated input data and assigning each

kernel execution to a different CUDA stream. Execution output is compared on a safety-

compliant microcontroller which provides Dual Core LockStep (DCLS) cores. Kernels

are classified considering their behavior for concurrency as short, heavy, and friendly

kernels. Classification of kernels is used to understand the diverse redundancy nature of

staggered execution. They offered solutions for any kernel according to classification to

guarantee achieving diverse redundancy.

Mazzocchetti et al. (2022) provide a SafeSoftDR library to ensure diverse

redundancy to avoid common cause failure which is required by safety-critical tasks to

ensure reliability. It aims to take responsibility for redundant execution of processing,

duplication of input and output, also comparison of calculated output.

Wadden et al. (2014) present redundant multithreading (RMT) on OpenCL

kernels using automatic compiler transformations that convert GPGPU kernels to have

RMT versions. The paper shows performance and power evaluations of several RMT

schemes such as Intra-Group RMT, Intra-Group RMT + Local Data Share, and Inter-

 9

Group RMT. They show that compiler-based RMT has significantly variable costs and

not only individual components but also several workload properties are responsible for

RMT performance.

Mahmoud et al. (2018) implement software-managed instruction duplication

(SInRG) for GPU kernel, which is an already explored technique for CPUs, but the

authors state that it has never been investigated for GPU before until the paper is written.

Since most kernels underutilize the GPU workloads, it prompts authors to work in this

field. SInRG is implemented on NVIDIA’s production compiler by creating original and

shadow register spaces for original and duplicated instructions and shows the duplication

overhead is 69%.

Dimitrov, Mantor, and Zhou (2009) propose three different software-based

approaches for redundancy. The first approach, R-Naïve executes the GPU kernel twice

to ensure temporal redundancy, on the other side spatial redundancy is achieved by

copying input and output streams for each execution. Rearranging the input data for cases

such as matrix multiplication and using a different input stream compared to the original

stream may improve the reliability which is complex and not applicable for all

applications. R-Thread approach utilized idle thread blocks to provide redundancy by

using the number of thread blocks twice compared to the original execution and executing

the same operations on redundant thread blocks. The r-scatter approach is based on

instruction-level parallelism. All the proposed solutions are evaluated on six different

applications, and it is shown that the result of each approach is application and hardware-

dependent.

Oliveira et al. (2014) perform fault injection using radiation experiments with

three different duplications with comparison (DWC) techniques: Spatial, E-O Spatial

(Even-Odd Spatial), and Time. DWC can be achieved with either block, thread, or

execution duplication but block duplication is selected because of implementation

simplicity. Authors show that DWC may improve reliability since data is processed at

least twice, but still room for SDC improvement because of shared resources. It is shown

that the reliability of the DWC technique can be improved together with input data

duplication in the Spatial case. According to the measurement result, DWC creates

overhead ranging from 90% for Time to 151% for Spatial.

 10

3.2. Fault Injection

 Fault injection is a well-known and widely used technique for reliability

evaluation and researchers interested in evaluating error resilience of the benchmarks

and work on both physical injection like neutron-beam based experiments, or using fault

injection tools which offer a variety of options to inject the fault such as single bit flip

or random value injection in one register.

Previlon et al. (2020) propose Spoti-FI to accelerate fault injection campaigns via

resilience groups. They create resilience groups by using the clustering method just using

the profiling data which is captured during the single execution of the program. During

the study, only the single-bit flip fault model is evaluated. The accuracy of the Spoti-FI

method for reliability is measured using 10K injections as a baseline, via leveraging

resilience groups. By using the proposed method, 1317 injections are performed for each

application instance on average, and comparison between 10K injections shows that

Spoti-FI average error is 1.42% on masked outcomes, 0.88% on DUE outcomes, and

3.92% on SDC outcomes. As a result, they managed to reduce the time to complete the

fault injection experiment from 42 days to 5.5 days.

Topçu and Öz (2023) propose regression and classification-based prediction

framework soft error vulnerability experiments because fault injection takes so much time

to evaluate most of the time. Performance evaluation is done on 23 different applications

which are obtained from Rodinia and Polymark benchmarks. Fault-injection experiments

are done using cuda-gdb based tool and collect only masked, SDC, and crash results. For

simulation, GPGPU-Sim is used, and metric collection is done using the NVIDIA Nsight

tool. The proposed solution has 95.91% for masked faults, 88.46% for SDC, and 85.71%

for crash rate prediction accuracy.

Defour and Petit (2013) evaluate intermittent errors vulnerability of IC aging

because of high temperature on NVIDIA Tesla architecture. In frequency scaling

experiments, temperature is increased up to the Thermal Shutdown Protection (TSP) point

and observed frequency scaling shows that it is reversible and sets it back to its previous

value after the temperature is set lower than TSP. On each newer generation of GPU, the

TSP point gets lower indicating that the aging problem is taken seriously by chip

manufacturers. For temperature experiments, they set the temperature to 160◦C for

NVIDIA Tesla C870 and observed permanent failure of one of the chips after the eleventh

 11

day. The same experiment is done with setting the temperature to 170◦C and they observe

vectorial and scalar errors on the MAD kernel and did not observe any error on the register

bank.

Tselonis and Gizopoulos (2016) present the GUFI (GPGPU-sim Fault Injector)

framework that works over the well-known open-source GPU simulator GPGPU-sim.

GUFI injects an error into microarchitecture units such as GPU register files, instruction

buffer, shared memory, and SIMT stack to measure the Architectural Vulnerability Factor

(AVF). AVF is the ratio of the number of fault injections leading to failure and the total

number of injections. They discuss error rate differences for fault injection experiments

between PTX and SASS instruction sets and show that the proposed framework can be

used in the early stages of development to evaluate the performance and reliability of

hardware by architects and programmers.

Hari et al. (2017) introduce SASSIFI which is a compiler-based fault injection

framework based on an assembly-level SASSI injection mechanism that puts injection at

the final phase of SASS code generation by the compiler. SASSIFI is capable of injecting

errors in GPU condition code registers, general-purpose registers, GPU memory

addresses, and register indices and can be used by several types of studies such as bit-

flips into register files and error injections into the output of instructions. SASSIFI

workflow starts with the profiling of applications, selection of error injection sites and the

last step is to inject the errors and evaluation of injection results. Tool can be used with

several architectures, not only limited to a single microarchitecture.

Tsai et al. (2021) introduce the NVBitFI dynamic fault injection tool which is

based on NVBit and does not require any source code of the target program to be used on

injection. It was stated that a fault injection tool based on cuda-gdb also does not require

any source code but cuda-gdb is not intended to be used for fault experiments, it is a

debugger and initially not designed for fault injection applications. NVBitFI is built on

top of the NVIDIA Binary Instrumentation Tool (NVBit) and supports a wide range of

GPU architectures including the Turing and Volta. It works with pre-compiled binaries

and works faster than SASSIFI (Hari et al. 2017) since it uses single chosen dynamic

kernel whereas SASSIFI uses all dynamic kernels.

Vallero, Gizopoulos, and Di Carlo (2017) present SIFI (Southern Islands Fault

Injector) to evaluate soft errors for AMD GPU by experimenting proposed framework

over 14 different GPGPU applications and using Architectural Correct Execution (ACE)

analysis and fault injection. It is built on top of the Multi2Sim simulator (Ubal et al. 2007).

 12

They evaluate local memory, vector register file, and scalar register file vulnerability and

show that fault injection experiment is more accurate than ACE analysis with the cost of

simulation time increase, but ACE offers fast evaluation with low accuracy.

Öz and Karadaş (2022) present a regional fault injection framework based on a

cuda-gdb debugging tool for the evaluation of soft error vulnerability. The proposed

framework includes configuration setup, profiling, fault map generation, fault injection,

and collection of results phases. In the configuration setup, the user defines parameters

for executable name, arguments, and fault injection information. In the profiling phase,

necessary information is collected by using the cuda-gdb debugger tool. In fault map

generation, it determines the locations and timing of fault which is specified for

corruption of data in the register file. In the fault injection phase, it inserts a breakpoint

on the interested line of code and flips the bit, then stores it back in a register file. In the

last phase, the collection of results is done considering SDC, Masked, and Crash output

of injection.

3.3. Power Modeling and Reliability Evaluation

In this section, we show the related works for power modeling, measurement, and

reliability evaluation methods since our performance evaluation metrics include power

measurement and reliability evaluation under fault injection.

Nie et al. (2017) evaluate the GPU single-bit error (SBE) for selecting features

such as temperature, power consumption, memory utilization, node location, and

application execution time on large-scale computer systems and propose a tool to predict

several SBE occurrences using neural network techniques. According to measurement

results, they achieve higher than 0.69 precision and recall scores for three different neural

networks.

 Burtscher, Zecena, and Zong (2014) show that using a k20 build-in sensor for

power consumption measurement may lead to multiple anomalies such as power

consumption may be more than twice when doubling the kernel execution, and power

sampling frequency varies when the time goes. They present a proper methodology for

measuring instantaneous power and energy consumption.

Aslan and Yilmazer-Metin (2022) propose a true power and energy measurement

tool based on built-in sensors using NVIDIA Jetson TX2 GPU and CUDA environment.

 13

They first apply and validate the previous work which is done by power measurement on

a k20 built-in sensor (Burtscher, Zecena, and Zong 2014). However, they observe sharp

spikes on power measurement graphics and proposed a way to observe a square-shaped

power consumption graph by collecting power values every 14 milliseconds periodically,

applying a 9-point moving average filter to get a non-sharp power profile with 0.04%

difference between measured and corrected values.

 14

CHAPTER 4

PROPOSED SOLUTION

In this thesis, we explore the reliability and performance analysis of GPU kernels

under different spheres of replication for input and output data under various redundancy

schemes. We first start with collecting the performance metrics on the original version of

the benchmark with selected applications to understand the behavior of each application

whether memory or compute bound by collecting various metrics such as achieved

occupancy, multiprocessor activity, warp execution efficiency, shared memory

efficiency, global memory load efficiency and L2 cache utilization. After gathering the

information about benchmark characteristics, we evaluate the soft-error vulnerability of

these benchmarks under a single-bit flip fault injection model using the NVBitFI tool and

collect masked SDC and DUE rates for each of them. We apply different redundancy

schemes perform fault injection experiments collect metrics again and evaluate soft-error

vulnerability and performance metrics such as kernel execution time, power consumption,

memory copy operations from host to device, and vice versa.

4.1. Fault Injection and Reliability Evaluation

In this thesis, reliability evaluation is performed using a simulation based NVBitFI

(NVIDIA Binary Instruction Tool Fault Injector) (Tsai et al. 2021) fault injection tool to

evaluate masked, SDC, program crash rates, and resilience of benchmark applications

under different redundancy schemes with different spheres of replications. NVBitFI is a

state-of-the-art dynamic fault injection tool which is released by NVIDIA and based on

NVBit (NVIDIA Binary Instrumentation Tool). It supports a wide range of NVIDIA GPU

architecture including recent ones like Volta and Turing, since the target NVIDIA Jetson

Xavier NX board is powered GPU with Volta architecture, we selected this fault injection

tool because of suitability. The tool does not require any source code access, so makes it

easier to use in complex benchmark applications.

 15

Figure 4.1. NVBitFI Profiling and Transient Fault Injection Procedure (Tsai et al. 2021)

NVBitFI mainly supports the transient fault model that happens in the compute

pipeline of the memory read subsystem (Tsai et al. 2021). In the transient fault

configuration file, each parameter can be specified such as type of instructions (FP64 and

FP32 arithmetic, read from memory, write to registers only, no destination registers, write

to general purpose and predicate registers) and bit-flip model (single bit, two adjacent

bits, a random value, write value 0), kernel name, kernel count, instruction count,

destination register and bit pattern value. It also supports a permanent fault model that

affects all the threads in the same SM and hardware lane and only requires SM ID,

hardware lane ID, XOR bit mask, and opcode ID as injection parameters. In this thesis,

we select a transient fault model with instructions that write to general-purpose registers

and single-bit flip as a bit-error pattern.

Execution flow for the transient fault injection procedure given in Figure 4.1,

starts with target program profiling by dynamically attaching profiler.so file into

execution to set eligible injection points. Profiling is the phase that includes

instrumentation of each dynamic instruction which may take a while to finish, so to

 16

overcome this, exact and approximate profiling is introduced. The approximate approach

only profiles the first invocation of every static kernel and counts dynamic instructions

according to that and assumes the rest of the instances will have the same instruction

count. In the thesis, exact profiling is used since time overhead is not considered. In the

second step, it selects single-injection parameters and then injects the error by changing

the target program’s binary and finally compares the execution of the altered fault-

injected program with the original target application, named golden output in

terminology. Output classification is performed according to possible outcomes given in

Table 4.1.

Table 4.1. Outcome Classification (Tsai et al. 2021)

SDC Standard output is different

The output file is different

DUE Timeout, indicating a hang (Monitor detection)

Process crash (OS detection)

Non-zero exit status (Application detection)

Application-specific check failed

Masked No difference detected

Potential DUE (SDC or Masked) with CUDA error

(SDC or Masked) with dmesg error

4.2. Metrics Profiling

Benchmark application profiling is performed using the nvprof build-in tool

(NVIDIA Profiler User’s Guide. 2023) which is provided by NVIDIA to profile CUDA

kernels to collect information such as execution time for kernel and memory copy

operations, global and shared memory usage, cache and streaming multiprocessor usage.

We collect 6 different metrics given in Table 4.2. to understand CUDA kernel

behavior and identify whether compute or memory bound. We use sm_efficiency and

achieved_occupancy metrics to decide if the kernel is compute-bound. In general, if

sm_efficiency is greater than 90%, the kernel can be evaluated as compute bound. For the

 17

memory-bound evaluation, gld_efficiency is used, and a 90% threshold can be also

applied for this metric. We evaluate sm_efficiency to understand if we utilize GPU’s

computational resources well. A lower sm_efficiency value usually means that utilization

is not enough to take advantage of overall resources which leaves room for further

performance improvement in such cases.

Table 4.2. Profiling Metrics and Descriptions (NVIDIA Profiler User’s Guide 2023)

Metric Description

achieved_occupancy The ratio of the average active warps per active cycle to the

maximum number of warps supported on a multiprocessor

sm_efficiency The percentage of time at least one warp is active on a specific

multiprocessor

warp_execution_efficiency The ratio of the average active threads per warp to the maximum

number of threads per warp supported on a multiprocessor

shared_efficiency The ratio of requested shared memory throughput to required

shared memory throughput expressed as a percentage

gld_efficiency The ratio of the requested global memory load throughput to the

required global memory load throughput is expressed as a

percentage.

l2_utilization The utilization level of the L2 cache relative to the peak utilization

on a scale of 0 to 10

4.3. Power Measurement

Power consumption is a significant performance parameter because safety-critical

systems often work with limited power resources; each reliability improvement has a

tradeoff over power, so it needs to be considered carefully. In this thesis, GPU memory

usage and power consumption metrics are collected by reading the sysfs node on each 20

ms periodically. There are available packages such as jetson-stats and jtop (NVIDIA

Developer’s Guide, Jetson Stats. 2023) for monitoring and controlling NVIDIA Jetson

products. Jtop uses a sysfs node to collect information from the power monitor chip.

jetson-stats and jtop utility uses the same sources to collect information, jtop gives it a

visual way.

 18

Figure 4.2. jtop utility

Power consumption is measured by using the maximum average power

consumption value that is collected during execution and subtracted from the value just

collected right before the execution. This measurement was made 100 times, and the

average was taken for each case. It is not possible to collect GPU or kernel-specific power

consumption, but the total CPU + GPU combined power rail. Since our benchmarks have

both CPU and GPU parts to be executed, it is meaningful to collect both CPU and GPU

power usage. The Jetson Xavier NX module has one INA3221 power monitor IC at I2C

address 0x40. The sysfs nodes to read for rail names, voltage, current, power, and

instantaneous and average current limits are given in Figure 4.3.

Figure 4.3. Rail Names and Descriptions

4.4. Redundancy Implementation

We implement kernel-based triple redundancy with a majority voting function for

each case under different spheres of replication for input and output and evaluate serial,

 19

stream-based and redundant multithreading techniques' effects on performance and

reliability. Typical CUDA program source code is given in Listing 4.1, so we consider

this as base implementation without any redundancy, and all the proposed techniques will

be added to this baseline. In literature, redundancy implementation mostly starts with

doubling the execution units, but in this case, we only manage to detect failure, but we

demand to create a fail-operational mechanism. In fail-operational systems, even if the

system execution is malformed because of an error, the operation will continue by using

redundant systems, which will be crucial for safety-critical systems like autonomous

driving (Kohn et al. 2015). In fail-safe systems, in case of an error system will detect the

error in fault-tolerant time which may depend on the architecture and requirements, the

system will immediately switch to a safe state by resetting the hardware, changing the

system mode, closing communication buses, or similar.

// Input and output data on the host

float *h_Input, *h_Output;

// Input and output data allocation declaration

float *d_Input, *d_Output;

// Input and output data allocation on the device

cudaMalloc(d_Input, data_size * sizeof(float));

cudaMalloc(d_Output, data_size * sizeof(float));

// Transfer data from host to device

cudaMemcpy(d_Input, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

// Grid and block size configuration

dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);

dim3 dimGrid(GRID_SIZE_X, GRID_SIZE_Y);

// Kernel execution

kernel<<dimGrid,dimBlock>>(d_Input, d_Output, data_size);

// Transfer data from device to host

cudaMemcpy(h_Output, d_Output, data_size * sizeof(float), cudaMemcpyDeviceToHost);

Listing 4.1. Baseline Implementation without Redundancy

 20

In our assumption, since we are injecting one single-bit flip error using a fault

injection tool during each execution, only one of the redundant copies will be affected by

the error, resulting in SDC. The majority voting function is responsible for finding two

identical copies of the input array out of three, returning one of them to be used for further

execution assuming only one error may happen during fault injection. If there are no

identical arrays found, the findIdenticalArray() function returns a null pointer and the

caller prints “None of the arrays are identical!” log on a standard error which may be

evaluated as a difference between the golden output, so results with SDC. We

intentionally put majority voting calculations on the CPU side, since most of the CPUs

that are used in safety-critical domains include dual-core lockstep execution in CPUs.

After calculation on the GPU device, redundant outputs are transferred from the device

to the host and perform majority voting over it.

int areArraysIdentical(float *arr1, float *arr2, unsigned int N)

{

 for (unsigned int i = 0; i < N; i++)

 {

 if (fabs(arr1[i] - arr2[i]) > 1e-4)

 {

 return 0; // Arrays are not identical

 }

 }

 return 1; // Arrays are identical

}

float* findIdenticalArray(float *arr1, float *arr2, float *arr3, int N)

{

 if (areArraysIdentical(arr1, arr2, N) || areArraysIdentical(arr2, arr3, N))

 {

 return arr2; // Return the identical array (arr2 in this case)

 }

 else if (areArraysIdentical(arr1, arr3, N))

 {

 return arr1;

 }

 return NULL; // No identical arrays found

}

 21

float *majorityVotingResult = findIdenticalArray(h_Output, h_Output_redundant_1,

h_Output_redundant_2, size);

if (NULL == majorityVotingResult)

{

 fprintf(stderr, "None of arrays are identical!\n");

}

else

{

 h_Result = majorityVotingResult;

}

// h_Result will be used for the data validation step on the CPU.

Listing 4.2. Majority Voting

4.4.1. Full Redundancy for Single-Kernel Benchmarks

 In this case, we implement redundancy on benchmarks that have a single CUDA

kernel only, since we aim to implement full redundancy, instead of dealing with complex

benchmarks that might include several kernels that are hard to adapt redundantly, our first

step is to deal benchmarks that have a single kernel to understand the behavior of

proposed redundant schemes, after evaluating the most suitable redundancy operation

considering performance and reliability, we applied this into complex benchmarks

partially to mitigate SDC rate.

4.4.1.1. Serial Triple Redundancy

 In this case, we implement a redundancy case by serially executing each kernel

three times in a row, including declaration replication, memory allocation on the device,

transferring redundant outputs from device to host, performing majority voting, and

finding one of the identical copies to be used for output validation. The sphere of

replication defines the granularity level of redundancy to decide which part of the system

multiplied, either kernel, input, or output. Each sphere of replication brings performance

overhead and re-design costs (Portet et al. 2020). In the first case, we redundantly increase

 22

output copies and let kernel executions use the same input only, producing different

outputs for each execution. In the second case, we include both input and output

multiplication for a sphere of replication.

4.4.1.1.a. Serial Triple Redundancy for Output Data Multiplied

 In this case, we present serial triple execution for redundancy by just multiplying

the output, all the kernels are using the same input source but produce different outputs

that will be used by majority voting to detect error-free output.

// Input and output data on the host

float *h_Input, *h_Output, *h_Output_redundant_1, *h_Output_redundant_2;

// Input and output data allocation declaration

float *d_Input, *d_Output, *d_Output_redundant_1, *d_Output_redundant_2;

// Input and output data allocation on the device

cudaMalloc(d_Input, data_size * sizeof(float));

cudaMalloc(d_Output, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_1, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_2, data_size * sizeof(float));

// Transfer data from host to device

cudaMemcpy(d_Input, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

// Grid and block size configuration

dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);

dim3 dimGrid(GRID_SIZE_X, GRID_SIZE_Y);

// Kernel execution

kernel<<dimGrid,dimBlock>>(d_Input, d_Output, data_size);

kernel<<dimGrid,dimBlock>>(d_Input, d_Output_redundant_1, data_size);

kernel<<dimGrid,dimBlock>>(d_Input, d_Output_redundant_2, data_size);

// Transfer data from device to host

cudaMemcpy(h_Output, d_Output, data_size * sizeof(float), cudaMemcpyDeviceToHost);

 23

cudaMemcpy(h_Output_redundant_1, d_Output_redundant_1, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_2, d_Output_redundant_2, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

// Majority voting

Listing 4.3. Serial Triple Redundancy for Output Data Multiplied

4.4.1.1.b. Serial Triple Redundancy for Input/Output Data Multiplied

In this case, input multiplication is added in addition to output to observe the

behavior of our redundancy schemes if kernels will use a common input source. Using

common input resources might affect the cache utilization in a good manner according to

our assumptions, so it is expected to see a reduction in execution time.

// Input and output data on the host

float *h_Input, *h_Output, *h_Output_redundant_1, *h_Output_redundant_2;

// Input and output data allocation declaration

float *d_Input, *d_Input_redundant_1, *d_Input_redundant_2, *d_Output, *d_Output_redundant_1,

*d_Output_redundant_2;

// Input and output data allocation on the device

cudaMalloc(d_Input, data_size * sizeof(float));

cudaMalloc(d_Input_redundant_1, data_size * sizeof(float));

cudaMalloc(d_Input_redundant_2, data_size * sizeof(float));

cudaMalloc(d_Output, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_1, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_2, data_size * sizeof(float));

// Transfer data from host to device

cudaMemcpy(d_Input, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_Input_redundant_1, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_Input_redundant_2, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

// Grid and block size configuration

dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);

dim3 dimGrid(GRID_SIZE_X, GRID_SIZE_Y);

 24

// Kernel execution

kernel<<dimGrid,dimBlock>>(d_Input, d_Output, data_size);

kernel<<dimGrid,dimBlock>>(d_Input_redundant_1, d_Output_redundant_1, data_size);

kernel<<dimGrid,dimBlock>>(d_Input_redundant_2, d_Output_redundant_2, data_size);

// Transfer data from device to host

cudaMemcpy(h_Output, d_Output, data_size * sizeof(float), cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_1, d_Output_redundant_1, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_2, d_Output_redundant_2, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

// Majority voting

Listing 4.4. Serial Triple Redundancy for Input/Output Data Multiplied

4.4.1.2. Stream-Based Triple Redundancy

CUDA streams are introduced to handle independent kernel executions in parallel

by assigning each kernel to a different stream. In the serial redundant execution case,

since we serially execute the kernels, we don’t get the benefit of the highly parallel

architecture of GPU, so it is expected to see a reduction in the execution time of kernels

by overlapping the kernel executions. In this case, in addition to the baseline of

implementation, we create three different CUDA streams before the kernel execution

assign each redundant execution to different streams, and evaluate both input and

input/output multiplied cases.

4.4.1.2.a. Stream-Based Triple Redundancy for Output Data Multiplied

 In this case, we present a triple redundancy scheme by assigning each kernel

execution to different CUDA streams to get the benefit of parallelization. Each

redundant kernel uses the same input source but produces different outputs.

// Input and output data on the host

float *h_Input, *h_Output, *h_Output_redundant_1, *h_Output_redundant_2;

 25

// Input and output data allocation declaration

float *d_Input, *d_Output, *d_Output_redundant_1, *d_Output_redundant_2;

// Input and output data allocation on the device

cudaMalloc(d_Input, data_size * sizeof(float));

cudaMalloc(d_Output, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_1, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_2, data_size * sizeof(float));

// Transfer data from host to device

cudaMemcpy(d_Input, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

// Grid and block size configuration

dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);

dim3 dimGrid(GRID_SIZE_X, GRID_SIZE_Y);

// Stream create

cudaStream_t stream[3];

cudaStreamCreate(&stream[0]);

cudaStreamCreate(&stream[1]);

cudaStreamCreate(&stream[2]);

// Kernel execution

kernel<<dimGrid,dimBlock, 0, stream[0]>>(d_Input, d_Output, data_size);

kernel<<dimGrid,dimBlock, 0, stream[1]>>(d_Input, d_Output_redundant_1, data_size);

kernel<<dimGrid,dimBlock, 0, stream[2]>>(d_Input, d_Output_redundant_2, data_size);

// Transfer data from device to host

cudaMemcpy(h_Output, d_Output, data_size * sizeof(float), cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_1, d_Output_redundant_1, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_2, d_Output_redundant_2, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

// Majority voting

Listing 4.5. Stream-Based Triple Redundancy for Output Data Multiplied

 26

4.4.1.2.b. Stream-Based Triple Redundancy for Input/Output Data

Multiplied

 In addition to the implementation of stream-based triple redundancy for output

data multiplied, we add input multiplication to observe the effects on the usage of

different input resources.

// Input and output data on the host

float *h_Input, *h_Output, *h_Output_redundant_1, *h_Output_redundant_2;

// Input and output data allocation declaration

float *d_Input, *d_Input_redundant_1, *d_Input_redundant_2, *d_Output, *d_Output_redundant_1,

*d_Output_redundant_2;

// Input and output data allocation on the device

cudaMalloc(d_Input, data_size * sizeof(float));

cudaMalloc(d_Input_redundant_1, data_size * sizeof(float));

cudaMalloc(d_Input_redundant_2, data_size * sizeof(float));

cudaMalloc(d_Output, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_1, data_size * sizeof(float));

cudaMalloc(d_Output_redundant_2, data_size * sizeof(float));

// Transfer data from host to device

cudaMemcpy(d_Input, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_Input_redundant_1, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_Input_redundant_2, h_Input, data_size * sizeof(float), cudaMemcpyHostToDevice);

// Grid and block size configuration

dim3 dimBlock(BLOCK_SIZE_X, BLOCK_SIZE_Y);

dim3 dimGrid(GRID_SIZE_X, GRID_SIZE_Y);

// Stream create

cudaStream_t stream[3];

cudaStreamCreate(&stream[0]);

cudaStreamCreate(&stream[1]);

cudaStreamCreate(&stream[2]);

// Kernel execution

 27

kernel<<dimGrid,dimBlock, 0, stream[0]>>(d_Input, d_Output, data_size);

kernel<<dimGrid,dimBlock, 0, stream[1]>>(d_Input_redundant_1, d_Output_redundant_1, data_size);

kernel<<dimGrid,dimBlock, 0, stream[2]>>(d_Input_redundant_2, d_Output_redundant_2, data_size);

// Transfer data from device to host

cudaMemcpy(h_Output, d_Output, data_size * sizeof(float), cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_1, d_Output_redundant_1, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

cudaMemcpy(h_Output_redundant_2, d_Output_redundant_2, data_size * sizeof(float),

cudaMemcpyDeviceToHost);

// Majority voting

Listing 4.6. Stream-Based Triple Redundancy for Input/Output Data Multiplied

4.4.1.3. Redundant-Multithread-Based Redundancy

Kernel multiplication-based redundancy techniques improve the reliability of the

system using serial, stream-based with different spheres of replication without requiring

any huge effort on code implementation. However, it is shown that it may increase the

cost of launch overhead. (Zhan et al. 2019). Multiple kernel execution-based redundancy

techniques may not benefit from the highly parallel nature of GPU hardware, which might

leave an open door for further improvement even if CUDA streams are used, since stream

creation may cause additional overhead. The redundant multithread-based approach aims

at the idea of multiplying the number of threads according to the level of redundancy, so

each redundant thread will be responsible for the same calculation redundantly to increase

the reliability of the overall system. This approach can be done in several ways, either

multiplying the number of threads in blocks while keeping the threads per block the same

or multiplying the number of threads inside blocks while keeping the number of blocks

the same. Since grid or block configurations are multi-dimensional, it can be done either

using the X or Y axis. We evaluate both X and Y-axis threads and block multiplication-

based redundancy with different spheres of replication like input only or both input and

output multiplied. Without any redundant version, thread ID calculation in the X and Y

axis is performed as given in Listing 4.7.

 28

unsigned int threadIdX = blockIdx.x * blockDim.x + threadIdx.x;

unsigned int threadIdY = blockIdx.y * blockDim.y + threadIdx.y;

Listing 4.7. Original ThreadID – X and Y Calculation

For the thread-based multiplication, since we have 3x threads compared to the

original version, thread ID calculation is replaced with Listing 4.8 and 4.9 for Y and X-

axis-based schemes, respectively.

unsigned int threadIdY = blockIdx.y * BLOCK_SIZE_Y + (threadIdx.y % BLOCK_SIZE_Y);

Listing 4.8. Modified ThreadID – Y Calculation for Thread-Based Redundant

Multithreading

unsigned int threadIdX = blockIdx.x * BLOCK_SIZE_X + (threadIdx.x % BLOCK_SIZE_X);

Listing 4.9. Modified ThreadID – X Calculation for Thread-Based Redundant

Multithreading

unsigned int threadIdY = (blockIdx.y % GRID_SIZE_Y) * blockDim.y + threadIdx.y;

Listing 4.10. Modified ThreadID – Y Calculation for Block-Based Redundant

Multithreading

unsigned int threadIdX = (blockIdx.x % GRID_SIZE_X) * blockDim.x + threadIdx.x;

Listing 4.11. Modified ThreadID – X Calculation for Block-Based Redundant

Multithreading

In ThreadID calculation, BLOCK_SIZE_X and BLOCK_SIZE_Y are the initial

block size, and GRID_SIZE_X and GRID_SIZE_Y are the initial grid size in a version

without redundancy depending on the X and Y axis, respectively. Thread ID manipulation

is performed differently, so if X-axis-based redundancy is used, only threadIdX is altered,

the same rule will also apply to threadIdY. Redundant threads are dealing with the same

computation, but the result will be stored on different output. The signature of the kernel

in a version without redundancy is given in Listing 4.12 which needs to be replaced with

Listing 4.13 in the RMT scheme.

__global__ kernel(d_Input, d_Output, data_size)

Listing 4.12. Original Kernel Signature

The original kernel signature is changed to store redundant calculations in

different outputs with the following:

__global__ kernel(d_Input, d_Output, d_Output_redundant_1, d_Output_redundant_2, data_size)

Listing 4.13. Modified Kernel Signature for Redundant Multithreading

 29

Since each redundant thread will produce a different output, the result calculation

in the kernel is changed to handle more than one output according to the thread or block

index. If a thread-based RMT scheme is selected, output redirection is performed

according to Listing 4.14.

int thread_index = threadIdx.y; // Use threadIdx.y for Y-axis thread-based redundancy

int thread_index = threadIdx.x; // Use threadIdx.x for X-axis thread-based redundancy

// Replace BLOCK_SIZE with BLOCK_SIZE_X or BLOCK_SIZE_Y depending on axis selection

// Use X-axis => BLOCK_SIZE_X

// Use Y-axis => BLOCK_SIZE_Y

if (thread_index < BLOCK_SIZE)

{

 d_Output[idx] = result;

}

else if (thread_index < (BLOCK_SIZE * 2))

{

 d_Output_redundant_1[idx] = result;

}

else

{

 d_Output_redundant_2[idx] = result;

}

Listing 4.14. Modified Output Direction for Thread-Based Redundant Multithreading

For block-based RMT output direction, changes in Listing 4.15 are performed.

int block_index = blockIdx.y; // Use blockIdx.y for Y-axis block-based redundancy

int block_index = blockIdx.x; // Use blockIdx.x for X-axis block-based redundancy

// Replace GRID_SIZE with GRID_SIZE_X or GRID_SIZE_Y depending on axis selection

// Use X-axis => GRID_SIZE_X

// Use Y-axis => GRID_SIZE_Y

if (block_index < GRID_SIZE)

{

 d_Output[idx] = result;

 30

}

else if (block_index < (GRID_SIZE * 2))

{

 d_Output_redundant_1[idx] = result;

}

else

{

 d_Output_redundant_2[idx] = result;

}

Listing 4.15. Modified Output Direction for Block-Based Redundant Multithreading

4.4.2. Partial Redundancy for Multiple-Kernel Benchmarks

Most of the safety-critical applications may include more than one kernel since it

includes several operations together. We first evaluate our proposed redundancy schemes

with single-kernel benchmarks due to ease of applicability. For the complex applications,

instead of applying redundancy for each kernel, we propose partial redundancy for one

or more kernels inside complex applications to reduce the SDC rate as much as possible

by selecting most SDC-vulnerable kernels after evaluating the soft error vulnerability of

overall complex benchmark. We propose to apply redundant multithreading with thread

and block multiplication-based redundancy methods for both the X and Y axes based,

then evaluate the performance and reliability of the proposed techniques.

 31

CHAPTER 5

EXPERIMENTAL RESULTS

 In this chapter, we provide experimental setup details including selected hardware

and benchmark, compilation parameters, and discuss the experimental results including

execution time, memory copy operations, soft-error vulnerability, and performance

metrics.

5.1. Experimental Setup

Reliability and performance tradeoff analysis is crucial in resource-limited and

safety-critical systems, due to this fact we select the NVIDIA Jetson Xavier NX

Developer Kit board given in Figure 5.1 which provides up to 21 TOPS of compute

performance powered with NVIDIA Volta architecture with 384 NVIDIA CUDA cores

given in Table 5.1, 48 Tensor core and 2 NVDLA (NVIDIA Deep Learning Accelerator),

combined with 8GB of LPDDR4x RAM. For the target developer kit, the operating

system version is selected as Jetpack 4.6.1 [L4T 32.7.1] which is provided by NVIDIA

and built on top of the Ubuntu distribution. We compile our applications with CUDA 10.2

and use the nvcc compiler which is provided inside the CUDA toolchain.

Figure 5.1. NVIDIA Board Block Diagram (NVIDIA Technical Blog. 2019)

 32

Table 5.1. NVIDIA Jetson Xavier NX Properties

NVIDIA Jetson Xavier NX

CUDA Capability Major/Minor version number 7.2

Total amount of global memory 7765 MBytes (8142626816 bytes)

Multiprocessors 6

CUDA Cores/Multiprocessors 64

GPU Max Clock rate 1109 MHz (1.11 GHz)

Memory Clock rate 1109 MHz

Memory Bus Width 256-bit

L2 Cache Size 524288 bytes

Total number of registers available per block 65536

Maximum number of threads per multiprocessor 2048

Maximum number of threads per block 1024

The max dimension size of a thread block (x,y,z) (1024, 1024, 64)

Max dimension size of a grid size (x,y,z) (2147483647, 65535, 65535)

We use GPU4S (GPU for Space) benchmark suite (Kosmidis et al. 2019) for

performance and reliability evaluations on the proposed framework, selecting 5 different

applications (convolution_2D_bench, matrix_multiplication_bench, relu_bench,

wavelet_transform, max_pooling) which have one CUDA kernel only, and one complex

application (cifar_10) that include several kernels to evaluate serial, stream-based and

redundant multithreading schemes. GPU4S is intended to be used by space applications

but it would be a good candidate for safety-critical domains since it is like computation

algorithms in applications and can be used for reliability evaluations (Perez-Cerrolaza et

al. 2022).

 33

Table 5.2. Benchmark Applications and Domains

Domain Application Definition

Convolution Kernel convolution_2D_bench Matrix Convolution

Matrix Computation matrix_multiplication_bench Matrix Multiplication

Neural Network relu_bench Rectified Linear Unit

Discrete Wavelet Transform wavelet_transform Wavelet Transform

Neural Network max_pooling Pooling Operation

Neural Network cifar_10 Complex Application

 For the benchmark compilation, according to GPU4s documentation, the user

should provide the block size using a square of the size that is provided, so the

recommended values are 4, 8, 16, and 32. We selected block size as 16, and data type as

float and used the command given in Listing 5.1 to build each application.

Listing 5.1. Benchmark Build Options

make CUDA DATATYPE=float BLOCKSIZE=16

For execution and memory operations time evaluation, we use CUDA events to

measure by placing them at the beginning and end of the unit (Listing 5.2).

Listing 5.2. CUDA Event Time Measurement

cudaEvent_t start_memory_copy_device;

cudaEvent_t stop_memory_copy_device;

cudaEvent_t start_memory_copy_host;

cudaEvent_t stop_memory_copy_host;

cudaEvent_t start_kernel_execution;

cudaEvent_t stop_kernel_execution;

cudaEventRecord(start_memory_copy_device);

// Memory copy from host to device

cudaEventRecord(stop_memory_copy_device);

cudaEventRecord(start_kernel_execution);

// Kernel execution

cudaEventRecord(stop_kernel_execution);

cudaEventRecord(start_memory_copy_host);

// Memory copy from device to host

 34

cudaEventRecord(stop_memory_copy_host);

5.2. Experimental Results

 For the evaluation of performance and reliability, before applying any of the

redundancy techniques with different spheres of replication, we first start with baseline

implementation of selected benchmark applications to analyze characteristics of

execution and resilience of soft-error vulnerabilities by performing profiling using nvprof

and fault injection with NVBitFI tool. For the fault injection model, we use a single bit-

flip as one bit-flip in one register in one thread model and select several injections as

10000.

 For the full redundancy techniques, we only use single-kernel benchmarks for

evaluation since complex benchmarks might include several kernels that need to be

redundantly executed, causing significant performance overhead. Due to this, instead of

applying for full redundancy, according to fault injection results, we select the two most

error-vulnerable and one least kernel and apply block and thread multiplication-based

redundant multithreading. We intentionally do not add original execution results for

normalized comparisons since the baseline unit is always one.

5.2.1. Single-Kernel Benchmark Results

 For the comparison convenience, we use different cases that match with offered

redundancy techniques and spheres of replication.

Table 5.3. Single-Kernel Benchmark Experiment Cases

Case 1 Original execution, without any redundancy

Case 2 Serial triple redundancy, input, and output multiplied

Case 3 Serial triple redundancy, output multiplied

Case 4 Stream-based triple redundancy, input and output multiplied

Case 5 Stream-based triple redundancy, output multiplied

Case 6 Redundant multithreading, thread Y-axis-based multiplication

Case 7 Redundant multithreading, thread X-axis-based multiplication

Case 8 Redundant multithreading, block Y-axis-based multiplication

Case 9 Redundant multithreading, block X-axis-based multiplication

 35

 According to nvprof measurement results, for all the kernels

warp_execution_efficiency and shared_efficiency metrics are measured as the same

value, so we exclude these metrics from the table. For all the kernels,

warp_execution_efficiency is measured as 100.00%, if this is less than 100% then the

kernel has either thread divergence or the kernel was not launched with a multiple of 32

threads per block. For the shared_efficiency metric, measured as 0.00% which means that

none of the kernels are using shared memory.

Table 5.4. Metrics Profiling for Single-Kernel Benchmarks

 achieved_occupancy sm_efficiency gld_efficiency l2_utilization

convolution_2D_bench 0.887312 94.57% 21.01% Low (1)

max_pooling_bench 0.915331 97.74% 25.00% Low (2)

matrix_multiplication_bench 0.93599 98.96% 13.24% Low (1)

wavelet_transform 0.124184 15.22% 42.43% Low (1)

relu_bench 0.84969 98.88% 25.00% Low (3)

Figure 5.2. Fault Injection Results for convolution_2D_bench

 36

Figure 5.3. Normalized Performance Results for convolution_2D_bench

Figure 5.4. Fault Injection Results for matrix_multiplication_bench

 37

Figure 5.5. Normalized Performance Results for matrix_multiplication_bench

Figure 5.6. Fault Injection Results for max_pooling_bench

 38

Figure 5.7. Normalized Performance Results for max_pooling_bench

Figure 5.8. Fault Injection Results for relu_bench

 39

Figure 5.9. Normalized Performance Results for relu_bench

Figure 5.10. Fault Injection Results for wavelet_transform

 40

Figure 5.11. Normalized Performance Results for wavelet_transform

 For all the cases in single-benchmark applications, we eliminate the SDCs by

offering triple redundancy with proposed techniques and spheres of replication. Since

triple redundancy and majority voting aim to eliminate SDCs, according to measurement

results this target is achieved.

For memory copy between host to device, it takes less than 3 times probably

because of buffering effect compared to baseline for cases 2 and 4 where input is

multiplied, almost 2.5 times for both convolution_2D_bench (Figure 5.3),

matrix_multiplication_bench (Figure 5.5), max_pooling_bench (Figure 5.7), relu_bench

(Figure 5.9), 2 times for wavelet_transform (Figure 5.11). Even if the triple replication of

input, it is observed that the copy operation does not take 3 times, which can be interpreted

as using triple replication would be advantageous.

For serial triple execution in cases 2 and 3, kernel execution takes almost 3 times

for convolution_2D_bench (Figure 5.3), matrix_multiplication_bench (Figure 5.5), 2.5

times for max_pooling_bench (Figure 5.7), slightly higher than 2 times for relu_bench

(Figure 5.9) and wavelet_transform (Figure 5.11). In serial execution, it is not possible to

get the benefit of the highly parallel architecture of GPUs, so utilization of all resources

is possible using redundancy techniques like stream and RMT-based multithreading. For

convolution_2D_bench (Figure 5.3), due to CUDA stream creation overhead, kernel

execution times are slightly higher than RMT cases, but compared to serial execution

both stream and RMT-based cases offer dramatic improvement. For

 41

matrix_multiplication_bench (Figure 5.5), kernel execution time slightly increases more

than 3 times for stream and RMT-based cases. In all cases except

matrix_multiplication_bench kernel, RMT offers the best performance among all

redundancy techniques, after this stream-based offers better performance compared to

serial execution but due to stream creation overhead, RMT offers better performance than

stream-based.

For memory copy between the device and to host, since all the techniques include

output multiplication, measured time is consistent among cases for the same kernel.

Except for matrix_multiplication_bench (Figure 5.5), overhead is less than 3 times and

even better for relu_bench (Figure 5.9), which is almost 1.5 times compared to the

baseline.

For power measurement, it is not possible to measure GPU kernel power

consumption individually, so both CPU and GPU power consumption are measured

which includes both measurements of CPU operations such as scheduling, context

switching, GPU kernel offloading, and memory operations. Proposed redundancy

techniques are performed on the GPU side except for majority voting for evaluation of

error-free output on the CPU side. In both kernels and cases, power consumption never

reaches 2 times compared to baseline, we evaluate this result as CPU operations consume

more power than GPU operations even if we apply triple redundancy with different

techniques and spheres of replications.

5.2.2. Complex Benchmark Results

In the cifar_10 complex benchmark, we only evaluate redundant multithreading-

based redundancy since according to our evaluation results on single-kernel benchmarks,

it offers the best performance for all the cases. We first start with the fault injection and

analyze the most and least error-vulnerable kernels considering the SDC rate and measure

execution times for each kernel to understand if there is a correlation between them. After

evaluating most and least error-vulnerable kernels, we apply both block and thread-based

RMT with X and Y axes.

 42

Table 5.5. Execution Cases for cifar_10

Case 1 Original execution, without any redundancy

Case 2 RMT Y-Axis Thread Based, matrix_multiplication kernel

Case 3 RMT X-Axis Thread Based, matrix_multiplication kernel

Case 4 RMT Y-Axis Block Based, matrix_multiplication kernel

Case 5 RMT X-Axis Block Based, matrix_multiplication kernel

Case 6 RMT Y-Axis Thread Based, matrix_multiplication and covolution_kernel kernels

Case 7 RMT X-Axis Thread Based, matrix_multiplication and covolution_kernel kernels

Case 8 RMT Y-Axis Block Based, matrix_multiplication and covolution_kernel kernels

Case 9 RMT Y-Axis Block Based, matrix_multiplication and covolution_kernel kernels

Case 10 RMT Y-Axis Thread Based, softmax_kernel kernel

Case 11 RMT X-Axis Thread Based, softmax_kernel kernel

Case 12 RMT Y-Axis Block Based, softmax_kernel kernel

Case 13 RMT X-Axis Block Based, softmax_kernel kernel

Figure 5.12. Kernel Execution Times for cifar_10

 43

Figure 5.13. SDC Rates for cifar_10

Figure 5.14. Fault Injection Results for cifar_10

 44

Figure 5.15. Normalized Performance Results for cifar_10

We first start with the measurement of execution times for each kernel inside

cifar_10 applications to evaluate if there is a correlation between SDC rates and longer

execution time. In Figure 5.13, matrix_multiplication_kernel and covolution_kernel are

the most error-vulnerable kernels in terms of SDC, and according to Figure 5.12, we show

that a longer kernel execution time (Figure 5.12) can increase the SDC rate. In Figure

5.14, cases 2,3,4 and 5 only consider the most error-vulnerable kernel,

matrix_multiplication_kernel to check if we can eliminate the majority of SDC by

applying partial redundancy for only one kernel, for the following cases 6,7,8 and 9

evaluate the two most error-vulnerable kernel, matrix_multiplication_kernel and

covolution_kernel and observed that most of the SDCs are masked just applying RMT

based redundancy with these kernels, with very small performance overhead, less than

1.4 times compared to baseline for each performance metrics. For cases 10,11,12 and 13,

we target the least error-vulnerable softmax_kernel kernel, to observe results on applying

for redundancy, our initial assumption is to observe minimal SDC reduction with little

performance impact. According to measurement results, our initial assumptions are

consistent since almost no change in performance metrics, but also did not achieve an

SDC improvement, so applying redundancy is a completely pointless effort.

 45

Figure 5.16. Tradeoff Analysis for cifar_10

 In Figure 5.16, when partial redundancy is applied to the two most error-

vulnerable kernels, we achieved eliminate 85% of SDCs with a cost of +20% of kernel

execution time, +15% of power consumption, and +35% of memory copy time.

According to these results, we show that a significant amount of SDCs can be eliminated

with a small cost of overhead on runtime for complex benchmark applications by applying

the software-based redundancy techniques that we offered.

 46

CHAPTER 6

CONCLUSION AND FUTURE WORKS

 In this thesis, we present several redundancy schemes with different spheres of

replication units to evaluate the performance and reliability of our selected safety-critical

domain benchmark. We first evaluate the performance and reliability of our redundancy

techniques on single-kernel benchmarks and decide the best technique considering

performance. We reveal that redundant multithreading is the best redundancy technique

among all others since serial execution does not fully utilize the parallel architecture of

GPUs, and stream creation may cause additional overhead. After that, we apply redundant

multithreading on complex benchmarks partially for some kernels considering most and

least error-vulnerable ones and show that most of the silent data corruptions can be

eliminated with a small overhead.

6.1. Future Works

 In this thesis, we propose different redundancy schemes but apply all the changes

in source code and perform metrics profiling and fault injection manually on benchmarks.

Instead of dealing the things manually, an automatized tool that profiles applications first

to understand kernel behavior, performs fault injection to show the most-error vulnerable

kernels, applies redundancy schemes with automatic implementation change, and collects

performance metrics is the complete way of offering redundancy in safety-critical

domain. In our selected benchmark, most of the applications are compute-bound and we

did not evaluate memory-bound applications performance and reliability analysis in

detail. We only used the same input arguments for execution of each benchmark and did

not change it, so did not observe the effects of parameters such as matrix size. Several

different benchmarks can be selected instead of dealing with only one would be better for

understanding application-specific behavior. For the different spheres of replication, we

aim to observe cache utilization in case of common input usage, but only the l2_utilization

metric is collected and elapsed memory copy operation between host to device is used for

evaluation, which can be extended with different parameters.

 47

REFERENCES

Aamodt, Tor M., Wilson Wai Lun Fung, Timothy G. Rogers, and Margaret Martonosi.

General-Purpose Graphics Processor Architectures. Morgan & Claypool

Publishers, 2018.

Alcaide, Sergi, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella. "Software-only

diverse redundancy on GPUs for autonomous driving platforms." In 2019 IEEE

25th International Symposium on On-Line Testing and Robust System Design

(IOLTS), 90-96. IEEE, 2019.

Alcaide, Sergi, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella. "High-integrity

GPU designs for critical real-time automotive systems." In 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 824-829. IEEE,

March 2019.

Alcaide, Sergi, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella. "Achieving

Diverse Redundancy for GPU Kernels." IEEE Transactions on Emerging Topics

in Computing 10, no. 2 (2021): 618-634.

Aslan, Büşra, and Ayse Yilmazer-Metin. "A Study on Power and Energy Measurement

of NVIDIA Jetson Embedded GPUs Using Built-in Sensor." In 2022 7th

International Conference on Computer Science and Engineering (UBMK), pp. 1-

6. IEEE, 2022.

Burtscher, Martin, Ivan Zecena, and Ziliang Zong. "Measuring GPU power with the K20

built-in sensor." In Proceedings of Workshop on General Purpose Processing

Using GPUs, pp. 28-36. 2014.

Defour, David, and Eric Petit. "GPUburn: A system to test and mitigate GPU hardware

failures." In 2013 International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS), pp. 263-270. IEEE, 2013.

Dimitrov, Martin, Mike Mantor, and Huiyang Zhou. "Understanding software approaches

for GPGPU reliability." In Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, pp. 94-104. 2009.

 48

Douglass, Powel. "Safety-critical systems design." Electronic engineering 70, no. 862

(1998): 45-6.

Mazzocchetti, Fabio, Sergi Alcaide, Francisco Bas, Pedro Benedicte, Guillem Cabo, Feng

Chang, Francisco Fuentes, and Jaume Abella. "SafeSoftDR: a library to enable

software-based diverse redundancy for safety-critical tasks." arXiv preprint

arXiv:2210.00833 (2022).

Fang, Bo, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi. "GPU-Qin:

A methodology for evaluating the error resilience of GPGPU applications." In

2014 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pp. 221-230. IEEE, 2014.

Fickenscher, Jörg, Sebastian Reinhart, Frank Hannig, Jürgen Teich, and Mohamed

Essayed Bouzouraa. "Convoy tracking for ADAS on embedded GPUs." In 2017

IEEE Intelligent Vehicles Symposium (IV), pp. 959-965. IEEE, 2017.

Hari, Siva Kumar Sastry, Timothy Tsai, Mark Stephenson, Stephen W. Keckler, and Joel

Emer. "Sassifi: An architecture-level fault injection tool for gpu application

resilience evaluation." In 2017 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pp. 249-258. IEEE, 2017.

Kastensmidt, Fernanda, and Paolo Rech. "FPGAs and parallel architectures for aerospace

applications." Soft Errors and Fault-Tolerant Design (2016).

Kirk, David B., and W. Hwu Wen-Mei. Programming massively parallel processors: a

hands-on approach. Morgan kaufmann, 2016.

Knight, John C. "Safety critical systems: challenges and directions." In Proceedings of

the 24th international conference on software engineering, pp. 547-550. 2002.

Kohn, Andre, Michael Käßmeyer, Rolf Schneider, Andre Roger, Claus Stellwag, and

Andreas Herkersdorf. "Fail-operational in safety-related automotive multi-core

systems." In 10th IEEE International Symposium on Industrial Embedded

Systems (SIES), pp. 1-4. IEEE, 2015.

 49

Kosmidis, Leonidas, Jérôme Lachaize, Jaume Abella, Olivier Notebaert, Francisco J.

Cazorla, and David Steenari. "GPU4S: Embedded GPUs in space." In 2019 22nd

Euromicro Conference on Digital System Design (DSD), pp. 399-405. IEEE,

2019.

Li, Guanpeng, Karthik Pattabiraman, Chen-Yang Cher, and Pradip Bose. "Understanding

error propagation in GPGPU applications." In SC'16: Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, pp. 240-251. IEEE, 2016.

Mahmoud, Abdulrahman, Siva Kumar Sastry Hari, Michael B. Sullivan, Timothy Tsai,

and Stephen W. Keckler. "Optimizing software-directed instruction replication

for gpu error detection." In SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 842-854. IEEE, 2018.

Mukherjee, Shubu. Architecture design for soft errors. Morgan Kaufmann, 2011.

Nie, Bin, Ji Xue, Saurabh Gupta, Christian Engelmann, Evgenia Smirni, and Devesh

Tiwari. "Characterizing temperature, power, and soft-error behaviors in data

center systems: Insights, challenges, and opportunities." In 2017 IEEE 25th

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), pp. 22-31. IEEE, 2017.

NVIDIA Developer’s Guide Jetson Stats. Accessed November 8, 2023.

https://developer.nvidia.com/embedded/community/jetson-projects/jetson_stats

NVIDIA Profiler User’s Guide. Accessed November 8, 2023.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

NVIDIA Technical Blog, Introducing Jetson Xavier NX, the World’s Smallest AI

Supercomputer. Accessed November 8, 2023.

https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-

supercomputer/

Oliveira, Daniel AG, Paolo Rech, Heather M. Quinn, Thomas D. Fairbanks, Laura

Monroe, Sarah E. Michalak, Christine Anderson-Cook, Philippe OA Navaux, and

 50

Luigi Carro. "Modern GPUs radiation sensitivity evaluation and mitigation

through duplication with comparison." IEEE Transactions on Nuclear Science 61,

no. 6 (2014): 3115-3122.

Öz, Işıl, and Ömer Faruk Karadaş. "Regional soft error vulnerability and error

propagation analysis for GPGPU applications." The Journal of Supercomputing

78, no. 3 (2022): 4095-4130.

Palin, Robert, and Ibrahim Habli. "Assurance of automotive safety–a safety case

approach." In Computer Safety, Reliability, and Security: 29th International

Conference, SAFECOMP 2010, Vienna, Austria, September 14-17, 2010.

Proceedings 29, pp. 82-96. Springer Berlin Heidelberg, 2010.

Perez-Cerrolaza, Jon, Jaume Abella, Leonidas Kosmidis, Alejandro J. Calderon,

Francisco Cazorla, and Jose Luis Flores. "GPU devices for safety-critical systems:

A survey." ACM Computing Surveys 55, no. 7 (2022): 1-37.

Portet, Sergi Alcaide, Leonidas Kosmidis, Carles Hernandez, and Jaume Abella.

"Software-only triple diverse redundancy on GPUs for autonomous driving

platforms." In 2020 50th Annual IEEE-IFIP International Conference on

Dependable Systems and Networks-Supplemental Volume (DSN-S), pp. 82-88.

IEEE, 2020.

Previlon, Fritz G., Babatunde Egbantan, Devesh Tiwari, Paolo Rech, and David R. Kaeli.

"Combining architectural fault-injection and neutron beam testing approaches

toward better understanding of GPU soft-error resilience." In 2017 IEEE 60th

International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 898-

901. IEEE, 2017.

Previlon, Fritz, Charu Kalra, Devesh Tiwari, and David Kaeli. "Characterizing and

exploiting soft error vulnerability phase behavior in gpu applications." IEEE

Transactions on Dependable and Secure Computing 19, no. 1 (2020): 288-300.

Topçu, Burak, and Işıl Öz. "Soft error vulnerability prediction of GPGPU applications."

The Journal of Supercomputing 79, no. 6 (2023): 6965-6990.

 51

Tsai, Timothy, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa, and Stephen W.

Keckler. "Nvbitfi: Dynamic fault injection for gpus." In 2021 51st Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), pp. 284-291. IEEE, 2021.

Tselonis, Sotiris, and Dimitris Gizopoulos. "GUFI: A framework for GPUs reliability

assessment." In 2016 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 90-100. IEEE, 2016.

Ubal, Rafael, Julio Sahuquillo, Salvador Petit, and Pedro Lopez. "Multi2sim: A

simulation framework to evaluate multicore-multithreaded processors." In 19th

International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD'07), pp. 62-68. IEEE, 2007.

Vallero, Alessandro, Dimitris Gizopoulos, and Stefano Di Carlo. "SIFI: AMD southern

islands GPU microarchitectural level fault injector." In 2017 IEEE 23rd

International Symposium on On-Line Testing and Robust System Design (IOLTS),

pp. 138-144. IEEE, 2017.

Wadden, Jack, Alexander Lyashevsky, Sudhanva Gurumurthi, Vilas Sridharan, and

Kevin Skadron. "Real-world design and evaluation of compiler-managed GPU

redundant multithreading." ACM SIGARCH Computer Architecture News 42, no.

3 (2014): 73-84.

Wagner, Stefan, Bernhard Schätz, Stefan Puchner, and Peter Kock. "A case study on

safety cases in the automotive domain: Modules, patterns, and models." In 2010

IEEE 21st International Symposium on Software Reliability Engineering, pp. 269-

278. IEEE, 2010.

Yim, Keun Soo, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk, and

Ravishankar Iyer. "Hauberk: Lightweight silent data corruption error detector for

gpgpu." In 2011 IEEE International Parallel & Distributed Processing

Symposium, pp. 287-300. IEEE, 2011.

