
Received 14 September 2023, accepted 2 October 2023, date of publication 10 October 2023, date of current version 25 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3323591

Link Prediction for Completing Graphical
Software Models Using Neural Networks
ONUR LEBLEBICI 1, TUGKAN TUGLULAR 1, (Member, IEEE),
AND FEVZI BELLI 1,2, (Member, IEEE)
1Department of Computer Engineering, İzmir Institute of Technology, 35430 İzmir, Turkey
2Department of Computer Science, Electrical Engineering and Mathematics, University of Paderborn, 33098 Paderborn, Germany

Corresponding author: Tugkan Tuglular (tugkantuglular@iyte.edu.tr)

ABSTRACT Deficiencies and inconsistencies introduced during the modeling of software systems may
result in high costs and negatively impact the quality of all developments performed using these models.
Therefore, developing more accurate models will aid software architects in developing software systems that
match and exceed expectations. This paper proposes a graph neural network (GNN) method for predicting
missing connections, or links, in graphical models, which are widely employed in modeling software
systems. The proposed method utilizes graphs as allegedly incomplete, primitive graphical models of the
system under consideration (SUC) as input and proposes links between its elements through the following
steps: (i) transform the models into graph-structured data and extract features from the nodes, (ii) train the
GNN model, and (iii) evaluate the performance of the trained model. Two GNN models based on SEAL and
DeepLinker are evaluated using three performance metrics, namely cross-entropy loss, area under curve, and
accuracy. Event sequence graphs (ESGs) are used as an example of applying the approach to an event-based
behavioral modeling technique. Examining the results of experiments conducted on various datasets and
variations of GNN reveals that missing connections between events in an ESG can be predicted even with
relatively small datasets generated from ESG models.

INDEX TERMS Event-based modeling, graph neural networks, link prediction.

I. INTRODUCTION
In the analysis and design phase of software development,
a thorough understanding of user requirements is crucial
[1], [2]. The models developed during the phase of analysis
and design impact the whole software development lifecycle
[3], [4]. The degree of alignment between business process
models and software system models should be high [5].
Engineers may be unable to reduce this complexity using
conventional software modeling techniques. Therefore, it is
important to predict and recommend interactions between
software components, such as classes, events, and user
interactions (UI) elements, in modeling. From the software
engineering perspective, deciding how to make component
and user interactions is error-prone and, therefore, requires
considerable effort, as these interactions may semantically
represent relationships, such as ‘‘follows’’ [6]. Instead of
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placing the entire burden on the software engineer, engineers
can be assisted in modeling [7], [8], so that the interaction
among the components, the user, and the system in a soft-
ware system can be modeled with some recommendations.
In this paper, when we mention software models, we mean
interactive or event-based software models, but not logical or
structural software models.

There are many different models and tools used in
software modeling [9], [10]. Most of these models are
graph-based, and there is a well-established theory of graph
transformations [11], which has several system modeling and
software engineering applications [12], [13]. For instance,
in the setting of co-evolution of models and meta-models,
Taentzer et al. [14] defined co-evolution rules using graph
transformations. By using a set of graph transformations,
they made sure that models conformed to a meta-model and
met the constraints that had been imposed on them. Another
example is the Henshin toolset [15], which uses of graph
transformations to support model migration and evolution.
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The motivation for this work is to help software engineers
during interactive or event-based graphical modeling of
the software under consideration. The proactive exploration
for absent artifacts inside software models is a strategic
endeavor aimed at safeguarding the quality, functionality,
security, and maintainability of the software. The utilization
of this approach aids in the optimization of the software
development process, resulting in cost reduction and the
eventual delivery of a software that is more resilient and
dependable. The quality of a software system is directly
related to how accurately it’s been modeled. A complete and
detailed model helps ensure that the final system meets the
desired standards of functionality, performance, and security.
Moreover, the early identification of missing elements can
result in time and resource savings, hence mitigating the
necessity for significant modifications or repairs during the
latter stages of the development process.

The proposed approach should prevent or reduce missing
links in these graphical models and quality of the models
will be increased. Since these models are used for designing,
coding, and testing in the software development processes
later, any deficiencies and errors that may occur in this
process can result in very high costs. Quality of modeling
directly affects the quality of the software.

The missing links in the graphical models this paper
considers may stem from impairments in the following
situations and processes:

• Depending on the project size, several software devel-
opment teams may work simultaneously. They should
manage this kind of variety to create complete and con-
sistent specifications. Deficiencies and inconsistencies
in the modeling step can cause missing links in the
graphical models.

• In addition to deficiencies and inconsistencies, ambigu-
ities and unstated assumptions can also be the reason
for missing links in the graphical models. Since require-
ments/specifications can be interpreted in multiple
ways, ambiguities can cause the models to have missing
links. Unstated assumptions are implicit expectations
not mentioned in the requirements/specifications but
assumed to be understood. If not understood, there can
be missing links in the graphical models.

• Novel techniques support the design and modeling
process. The GUI Ripping, for example, enables auto-
matically creating a model of the GUI of an application
under test from its executable binary code [16]. Such
automatically generated models have to be handled
with particular caution. Therefore, numerous attempts
are necessary that deliver several models on a trial
basis [17]. In this case, also, there will be a variety of
impairments that should be managed to create complete
and consistent specifications.

Missing links in the graphical models, such as missing
requirements and specifications, signify the presence of
ambiguities, inconsistencies, and incompleteness [18]. The
origins of these issues can be attributed to miscommunication

or misconceptions between stakeholders and developers.
If developers or analysts lack familiarity with the par-
ticular domain, there is a risk of missing specifications.
Large and complex software projects are more prone to
omitting specific details. In dynamic environments char-
acterized by frequent changes, it is possible for specific
requirements/specifications to be overlooked or forgotten
[19], [20], [21].
The prediction of missing links in graphical software

models is an integral part of the process of discovering miss-
ing requirements and specifications. Commonly accepted
methodologies for identifying these absent specifications
including employing organized techniques to collect needs
from relevant stakeholders, conducting thorough reviews and
inspections of use cases or user stories, examining models
and diagrams, and utilizing prototyping techniques [1], [22].
These procedures are carried out manually rather than being
automated [23], [24].

This paper is based on the thesis titled ‘‘Application
of Graph Neural Networks on Software Modeling’’ [25].
The proposed approach selects modeling graphical user
interface (GUI) for an application-oriented representation and
discusses how to compensate for deficiencies in a GUImodel.
These deficiencies can be considered as the mutants of the
original graphical software models [26], where mutations
are defined as minor modifications to these models, such
as edge removal [27]. Mutation analysis is used to evaluate
the effectiveness of test suites [26], not to compensate for
deficiencies in a GUI model. Therefore, mutation analysis
differentiates from link prediction.

Most of today’s software applications use a graphical user
interface (GUI) as a front end to interact with the user
and other systems. In GUI software, interface components
form the visible GUI structure, and these components accept
sequences of user events, for example, mouse clicks and type-
in-text, that alter the state of the software. Thus, software
graphical user interfaces (GUIs) can bemodeled as sequences
of events of the GUI components [28], [29].

The graph-based modeling technique considered in this
work is Event Sequence Graphs (ESGs) [28]. The formal
structure of ESG, representing a directed graph, allows us to
use the terms and notions of Graph Theory and exploit its
results developed over many centuries. Event-based graphical
techniques serve as a prevalent approach for behavioral
modeling. An event, as an externally observable occurrence,
such as a user’s input or a system response, offers a lens
into distinct stages of the system under consideration’s (SUC)
activity.

Among the most widely recognized event-based graphical
techniques are those centered on event sequence graphs
(ESGs) [28] and event flow graphs (EFGs) [30]. Alter-
natively, state-based methodologies can be harnessed for
behavioral modeling, including finite-state automata (FSA)
[31] or statecharts [32], among others. Viewed as an FSA,
an ESG merges inputs and states into events, resulting
in a one-sorted graph with a singular type of element

VOLUME 11, 2023 115935



O. Leblebici et al.: Link Prediction for Completing Graphical Software Models Using Neural Networks

(circles). This can be seen as a simplification of a finite state
automaton’s state transition diagram (STD), based on [33].
Figure 1 visualizes both cases.
In ESGs, nodes (circles) symbolize events that define user

actions and system behavior, while arcs signify sequences
of these events. Consequently, ESGs direct their attention
towards events, bypassing explicit state processing. This
minimalist approach streamlines ESG learning and utiliza-
tion, enabling designers to sidestep errors in their models.
Importantly, a grasp of automata theory is unnecessary.
Additionally, owing to its directed graph nature, ESGs lend
themselves to efficient graph theory algorithms for analysis,
validation, and optimization [34]. Benefiting from its founda-
tion in automata theory, ESGs leverage the strengths of both
theories.

Moreover, ESG modeling facilitates negative testing
through complementation. By adding missing edges that
denote illegal user-system interactions, ESGs simplify the
identification of unexpected or undefined system responses.
In contrast, EFGs and Statecharts are multi-sorted, encom-
passing various graphical elements with distinct semantics.
This diversity hampers the direct application of graph theory
outcomes and the concept of complementation.

ESGs are a well-established formal graphical model
employed to represent the interactions inside a software
system. However, it is not uncommon for these graphical
models to exhibit missing links. Consequently, there arises a
necessity for the development of a link prediction technique
specifically tailored for graphical software models. The
objective of this study is to examine and provide solutions
for the research problems outlined below:

1) Apply, extend, if necessary, two state-of-the-art
machine/deep learning-based link prediction
approaches to ESGs. The objective of this extension
is to make these approaches applicable to ESGs.

2) Evaluate the efficacy of both methods by using the
existing ESG models.

Accordingly, this paper introduces an application of two
graph neural networks (GNNs), which predict missing links
between events defined in an ESG. For an ESG, a link means
a transition between two events. Experiments were performed
on four different datasets with two different customized GNN
models, namely Seal-ESG and DeepLniker-ESG, to predict
links that have not been existed before. The steps of the
process to find missing links between ESG nodes are as
follows:

1) Transform ESG models into graph-structured data and
extract features of the nodes,

2) Train the GNN model,
3) Evaluate the performance of the trained model.

The results of the experiments show that the two customized
GNNmodels can make recommendations on missing links or
edges of the graph-based system models.

Our contributions are summarized as follows.
1) We present an application of GNNs in aiding graphical

software modeling by predicting missing links.

2) We extend and customize two GNN models for
the above mentioned application and compare their
performances.

The outline of the paper is as follows. Section II provides
essential information about the terms and terminologies
used. Section III gives an overview of preliminary research
on link prediction using GNN. Section IV introduces and
explains the steps of the proposed approach, while Section V
presents the evaluations of different datasets and GNN
models using the proposed method. Section VI explores
related work, and the last section provides conclusions and
possible future work.

II. EVENT SEQUENCE GRAPHS
Event sequence graphs (ESGs) are used for modeling system
behavior [28]. ESGs might also be used to represent both
the planned (i.e., proper) and undesired (i.e., exceptional)
behavior of the system from the user’s perspective [28].
Using discrete event-based models, ESGs concentrate on
the externally visible behavior of computer-based systems
[35]. ESGs model the interconnections between user events,
environmental activities, and system reactions using an
event-based structure [35]. The whole collection of interac-
tions is derived from a series of ESGs, each representing
a potentially endless number of event sequences [35]. This
collection of event sequences is used to evaluate a computer
system’s intended and unintended behavior. The following
event sequence graph definitions are utilized throughout this
investigation. Figure 2 is an illustration of an event sequence
graph. The below definitions of even sequence graphs are
taken from [28] and [35].
Definition 1: An event sequence graph (ESG) is a directed

graph where V = ∅ is a finite set of nodes (vertices) and
E ⊆ VxV is a finite set of arcs (edges) and 4, 0 ⊆ V finite
sets of distinguished vertices with ξ ∈ 4, γ ∈ 0 called entry
nodes and exit nodes, respectively [28].

The entry and exit vertices of an ESG are marked by
applying the following convention: all ξ ∈ 4 are preceded
by a pseudo vertex ‘[’ /∈ V and all γ ∈ 0 are followed
by another pseudo vertex ‘]’ /∈ V [28]. The entry and exit
vertices which are demonstrated by ‘[’ and ‘]’ respectively,
are called pseudo vertices and they are not included in V [28].
The pseudo vertices are not included also in event sequences.

For the ESG given in Figure 2, the event set V = get
balance, select deposit, enter deposit amount, put money,
select withdraw, enter withdraw amount, take money, the
set of entry events 4 = get balance, select deposit, select
withdraw, the set of exit events 0 = get balance, put money,
take money and the edge set E = (get balance, select
deposit), (select deposit, enter deposit amount), (enter deposit
amount, put money), (get balance, select withdraw), (select
withdraw, enter withdraw amount), (enter withdraw amount,
take money), (put money, get balance), (take money, get
balance). E does not contain the edges from pseudo vertex
‘[’, and to pseudo vertex ‘]’.
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FIGURE 1. Finite-state automata as STD and ESG.

Definition 2: Let (V ,E) be an ESG. Then a sequence of
vertices < v0, . . . , vk > is called an event sequence (ES) if
the sequence is a walk on ESG [28].
Each edge of an ESG represents a legal event pair,

or simply, an event pair (EP). ES < vi, vk > of length 2 is
an EP [28]. select deposit - enter deposit amount - put money
is an ES of length 3 of the ESG in which given in Figure 2.
Definition 3: An ES < v0, . . . , vk > is called a complete

event sequence (CES), if v0 = ξ ∈ 4 is the entry and vk = γ

is the exit. A CES represents a test sequence [35].
A CES is also a test sequence, i.e., test case, of the ESG

and it is of the form ‘‘(initial) user inputs → (interim) system
responses → . . . → (final) system response’’ [6]. The ESG
that is demonstrated in Figure 2, has a CES get balance -
select withdraw - enter withdraw amount - take money which
represents a walk from the entry of the ESG to its exit.

III. GRAPH NEURAL NETWORKS FOR LINK PREDICTION
Graph Neural Networks, also known as GNNs, are a subset
of neural networks developed to handle data organized in the
form of graphs. Scarselli et al. [37] presented the concept
of GNN, which adapts neural networks for graphs. They
enhanced the Recurrent Neural Network (RNN) to apply to
different kinds of graphs, including directed and undirected
graphs, as well as cyclic and acyclic ones. Nevertheless, their
approach is only valid for static graphs; it is not applicable to
dynamic graphs. The strategy that has been suggested works
for each vertex, feeding the knowledge of adjacent vertices
into the recurrent neural network in a sequential fashion and
repeating this procedure until the model becomes steady.

The general purpose of graph neural networks is to
solve classification and regression problems of a graph that
have not been encountered before with a pre-trained model.
Graphs serve as a means of representing and illustrating
the connections and associations that exist between various
entities. In the context of a graphical software model,
it is common for nodes to symbolize events, while edges
are often used to denote links or interactions between
these events. GNNs have an ability to efficiently capture
and leverage complex networks’ intricate relationships and
associated information. A fundamental objective of GNNs
involves acquiring significant representations, also known as
embeddings, for the nodes inside a graph. Subsequently, these
representations can be employed for various tasks such as
node classification, i.e., assigning labels to nodes in a graph,

and link prediction, i.e., predicting the likelihood of a link (or
edge) formation between two nodes.

Message transfer is a fundamental concept in graph neural
networks. Each vertex in a graph communicates its state
to its adjacent vertices. At each iteration, neighboring state
information is passed to a function, either a sumor an average,
which modifies the vertex’s state information. A vertex’s
hop count indicates how many vertices it must commu-
nicate. Initial research utilized a technique where every
vertex repeatedly broadcasts its state to its neighbors. This
repeated broadcast aims to accomplish maximum stability.
However, significant computational overhead was incurred,
particularly in big graphs, without achieving the desired
accuracy.

The popularity of convolutional neural networks (CNNs)
[38] has experienced significant growth in recent years
due to its superior effectiveness compared to other neural
network approaches. CNNs process input data through filters
and subsequently downsample the results. The process of
sampling can be accomplished by the utilization of functions
such as average, minimum, or maximum. The application
of these filters to the vertices results in the generation of
sub-graphs for each individual vertex.

There are two types of graph convolutional neural
networks: spectral models that employ graph Fourier base
generalization [39] and spatial models that rely on message
passing [37]. RecGNN’s [37] message-passing technique is
combined with convolution in spatial-based models. Weights
are easily exchanged between locations and structures thanks
to the local nature of the graph convolutions performed
by these models. Spatial models are better than spectral
models not only in terms of performance but also in terms
of efficiency.

Zhang et al. [40] introduced the sort pooling technique,
which enables classical CNNs to work on graphs, and called
it the Deep Graph Convolutional Neural Network (DGCNN).
The original GCN has been substantially enhanced by
GraphSAGE [41]. This enhancement reduced computation
costs and enabled GCNs to work on dynamic graphs.
GraphSAGE enhances the representation of a vertex by an
aggregator function, which consumes a predefined number
of neighbors’ features, not all like in the original GCN.
Further improvements came from FastGCN [42] through the
sampling algorithm. It uses the crucial vertices as part of the
sample set instead of randomly selecting some number of
vertices. Also, a vertex’s important function for the receptive
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FIGURE 2. Simplified bank account ESG [36].

field is employed as a sample point across all layers rather
than the neighbors of the vertex itself.

Veličković et al. [43] applied a self-attention approach
to obtain the representation of a vertex through graph
attention networks (GATs). The GAT architecture takes
advantage of the model’s multi-head attention to enhance its
expressive power. The outcome is computed by averaging or
adding the numbers calculated for each separate attention.
In GAT’s view, all attentions carry the same significance.
Zhang et al. [44] improved this scheme by incorporating
weights for each attention and called it the Gated Attention
Network (GaAN) model. During aggregation, a GCN gives
neighboring vertices explicit non-parametric weight, whereas
a GAN learns the weights automatically through the neural
network.

The process of link prediction attempts to determine
whether or not there is a connection between the nodes
that are defined on the graph [45]. Heuristic methods are
currently utilized as one of the available strategies for link
prediction. This approach might be useful in a few particular
circumstances, but in general it has very poor performance.
A hypothetical link between two nodes can be estimated, for
instance, based on the number of neighbors that both nodes
share. Although this method is successful in predicting social
networks, it does not demonstrate any success when it comes
to forecasting intra-molecular bonds [46].

The SEAL framework [47] was one of the earliest and
most effective attempts to apply GCN to the link prediction
problem. The SEAL framework uses DGCNN to learn the
embedding features of sub-graphs extracted from networks
of connected nodes. The obtained model is then utilized to
predict links.

Gu et al. [48] modified Veličković et al.’s GAT model
[43] for link prediction. The original GAT model requires
a complete graph. Gu et al.’s mini-batch sampling-based
DeepLinker [48] uses neighborhoods. DeepLinker uses the
GraphSAGE architecture [41] with the exception of using
GAT instead of GCN. Using the neighbors’ attentions,
DeepLinker generates a representation for each node.

IV. PROPOSED METHOD
In this work, ESG models are considered as the specification
or design of software systems, and software systems are

developed or tested based on these. Creating better ESG
models will help software engineers to build better software
systems that meet user expectations. This work proposes a
method that finds missing links in ESGs. As in all software
modeling methods, including ESGs, the absent relationships
between the software model’s components naturally affect all
software development processes.

Developing machine learning (ML) or deep learning (DL)
models is a systematic process that involves multiple steps.
The workflow we used in our study for developing ML/DL
models is shown in Figure 3. In the Data Collection step, raw
data is gathered raw data relevant to the problem. Publicly
available datasets are usually favored. Data preprocessing and
feature engineering are performed in the Data Transformation
step to prepare data to feed to the selected models. A suitable
ML/DL algorithm based on the problem type is chosen in the
Model Training step, and an architecture is selected. Then,
the training data is fed into the model. In the Evaluation
of the Model Accuracy step, validation data is used to tune
hyperparameters and prevent overfitting. In the last step, the
model is validated on the unseen data. The ML/DL model’s
performance is monitored using loss, accuracy, and AUC
metrics. Similar ML/DL development workflows exist in
other application domains, such as in materials research [49]
and in cardiovascular disease research [50].

The application of each step of the workflow depicted in
Figure 3 to our problem is as follows. In the data collection
phase, a bank account [36], email [36], student attendance
[36], and reservation system [51] models are used. These
models are drawn by the Test Suite Designer (TSD) tool
employed in [51]. The TSD tool generates an XML file
with a mxe extension. The proposed data transformation
method reads a mxe file and transforms it to the graph data
that graph neural network models need. During the training
phase, GAT and GCN neural network models are used. Three
performance metrics, cross-entropy loss, area under curve,
and accuracy, are used to measure the performance of trained
models. In the following sections, details of each phase are
explained.

A. DATA COLLECTION
One of the most challenging processes while working on
neural networks is to find or create the data sets. For this
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FIGURE 3. The workflow used in this study for developing machine/deep learning models.

TABLE 1. Graph data details of dataset models.

purpose, previously prepared ESG models were used. The
models, i.e., data sets, used in this work are listed below and
the details of their graphical models are given in Table 1.

• Bank Account [36]: Operations on a bank account,
such as withdrawal, viewing balance, depositing
money, withdrawing money, and requesting interest, are
modeled.

• Email [36]: Application about preparing new messages,
viewing the mailbox, answering and forwarding mes-
sages, creating an address book, and creating auto
response messages features are modeled.

• Student Attendance [36]: An attendance/nonattendance
tracking application is modeled. In this model, there are
two different roles as student and teacher. Students can
enter and follow attendance information, and teachers
can organize and monitor classes on a calendar.

• ISELTA [51]: It is a model of an application that allows
users to edit and view their profiles, list hotels, and make
reservations.

B. DATA TRANSFORMATION
An essential part of the data transformation is embeddings
[52]. Neural network embeddings are helpful because they
can reduce categorical variables’ dimensionality and mean-
ingfully represent categories in the transformed space. This
work transforms each graph node into its low-dimensional
representations through node embeddings, which are used for
neural network inputs.

Many software systems we encounter are complex struc-
tures with many details. Regardless of their experience level,
people have an upper limit on their ability to analyze. Since
the complexity of software systems makes it impossible to
handle all aspects of the system by one person at once,
such systems must be designed in parts. Each sub-part to be
developed is dealt with and prepared separately by domain
experts and software engineers. Themodels created as a result
of these designs are relatively small. The graphs transformed
from these models are naturally small. As the number
of embedding vectors and elements within the embedding

vectors increases, the node’s representation space naturally
grows. Therefore, the designer should carefully select the
number of embedding vectors to represent small graphs prop-
erly. If the representation space to represent nodes on short
networks expands, the representation will not change from
high dimensionality to low dimensionality despite the use of
embedding. One of the fundamental functions of embeddings
is to transform a high-dimensional representation into a low-
dimensional one. This representation space must be far less
than the number of nodes in the graph.

Since ESGs are small graphs, it would be more appropriate
to represent the nodes belonging to Event Sequence Graphs
with a single embedding vector. In this context, the ‘‘Event
Type’’ embedding vector is chosen as the most suitable
for learning since the neural network best expresses the
patterns between nodes. A simple mapping operation can
transform from node names defined in an ESG to ‘‘Event
Type’’ embedding elements. For these reasons, ‘‘Event Type’’
embedding is used in this work. Clearly, embeddings can be
learned and reused in different models. However, embedding
vectors are generated manually in this work.

Determining a node’s feature, i.e., its ‘‘Event Type’’
embedding, is a manual process. It depends on the ESG
under consideration because different domains may require
different kinds of node names. The chosen names for the
evaluation are listed in Table 2. They are determined as
generic as possible for a regular application. The mapping
table for converting node names to event types, or features,
is listed in Table 2.
Files generated by TSD have a mxe extension and are

formed in XML notation. ESGs need to be flattened so
that they can be appropriately analyzed. A mxe model
parser tool is built to help with this task. This tool has
two Python functions implemented. The first function [53]
flattens cascaded ESGs, which are ESGs with sub-ESGs.
Once a flattened ESG has been obtained, the second function
[53] parses the mxe file to get the edges and vertices of the
flattened ESG.

For each mxe input file, the mxe parser application
generates three output files: nodes, edges, and mappings. The
node output file is tab-separated, and each line represents a
node and features of the node except the first line. The first
line represents the number of nodes and the number of node
features this graph contains. The edge output file is also tab-
separated, and the first line represents the number of edges
and the number of edge features defined for this graph. Other
lines are structured as follows, the first column is the source
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TABLE 2. Event type to node name mappings.

node identifier, and the second column is the target node
identifier for the edge. Other columns represent the features
of the edge if it exists. The node mapping output file shows
the mappings of nodes defined in ESG and the node identifier
generated by the mxe parser application.

C. MODEL TRAINING
1) SEAL-ESG
SEAL [47] is a specialized framework for link prediction.
With an innovative approach, we transform the link prediction
problem into a sub-graph classification problem. We extract
a surrounding sub-graph at an n-hop distance for each edge
and create negative samples containing faulty connections.
These generated sub-graphs and node feature matrix (which
includes k features for each node) are fed to a GNN for
classification. This way, node features and graph structure are
used during learning.

SEAL implementation consists of reading graph data and
node attributes from a file, loading them into a compressed
sparse column matrix, and sampling positive and negative
train/test links from a loaded matrix. If embedding learning
is enabled, node2vec [54] is used to create node information.
If the library runs on training mode (the default behavior),
then SEAL extracts its n-hop (via hop argument) for each
target link, encloses the subgraph, and creates its node
information matrix. SEAL uses a DGCNN [40] classification
model. SEAL transforms the link prediction problem into
a graph classification problem, and each subgraph (positive
and negative samples) generated by SEAL passes through
DGCNN for the classification task.

In DGCNN architecture [40], the Sort Pooling layer is
the key innovation, which differentiates it from other GCNs.
On traditional GCN, feature values of neighboring nodes are

summed up before passing them to CNN, but in DGCNN, the
Sort Pooling layer organizes node features in a solid order.
In this way, it makes it possible to keep more information
about different node features. The input of this layer is node
features and feature channels, and the output is sorted node
features and output channels of each feature.

Original SEAL implementation is extended and cus-
tomized as follows. Parameters of the DGCNN model are
hidden and cannot be tuned externally. The ability to adjust
the hyperparameters of a neural network is crucial and
therefore it is added. Some minor bugs are fixed, which
prevented the application from running on training data
format except mat file format. The application used to
printing training, validation, and test results on the screen.
Working in this way was challenging to evaluate results
between iterations. For this reason, all the results are now
written in a CSV formatted file at the end of each iteration.
The extended version of the SEAL is published to GitHub
as SEAL-ESG [55] and can be accessed publicly. Available
parameters of the SEAL-ESG implementation and their
explanations are given at [56]. If embeddings are enabled,
node2vec software is needed to run the application.

2) DeepLinker-ESG
DeepLinker [48] is an extension of GAT [43], which
specializes in link prediction. The input of a GAT is
the features of each node, and the output is the learned
features of each node produced by the GAT. A shared linear
transformation with a weight matrix applied to each node is
required to transform the input node features into a learned
output feature. A single-layer feed-forward neural network
(FFNN) with a weight vector called attention mechanism
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TABLE 3. Node name to node feature mappings.

is used to determine which neighbors of a node are more
important (softmax function is used for ranking).

DeepLinker creates a data set for a given graph by creating
positive (nodes with connections) and negative (nodes with
no connection) edge samples. The following operations are
performed for each of the node pairs in the data set; for
the current node pair (for example, 1 and 2), find the first
(3, 4) and second level (1, 2, 5) neighbors of each node.
DeepLinker uses fixed-sized neighborhood sampling for
optimum memory usage and then calculates the edge vector
representation of the node pair over their and their neighbor’s
initial features using GAT. After that, DeepLinker calculates
the Hadamard distance of the GAT output, an edge vector
representation of the node pair, and makes link predictions
via training a logistic regression function.

Original DeepLinker implementation is extended and
customized as follows. There was no parametric data input
support to work with other training data. A feature that can
load the outputs of the mxe parser application has been
added. Only GPU support was available, and we added CPU
support. Test evaluation metrics are calculated at the end of
each epoch. The application prints training, validation, and
test results on the screen. All the results are now written
in a CSV formatted file at the end of each iteration. The
extended version of the DeepLinker is published to GitHub
as DeepLinker-ESG [57] and can be accessed publicly.
Available parameters of the DeepLinker-ESG (also used for
GAT) implementation are given at [58].

3) SEAL-ESG AND DEEPLINKER-ESG PARAMETERS
Two different models are used in this step: SEAL-ESG
and DeepLinker-ESG. To run on isolated environments,
we created a Conda virtual environment (detailed information
can be reached at [59]) for each workspace. Before using
the virtual environments for SEAL-ESG, python version
should be set to 3.8 and for the DeepLinker-ESG to 2.7. The
tuned parameters of SEAL-ESG and DeepLinker-ESG used
in experiments are given in Table 3.

V. EVALUATION
SEAL-ESG and DeepLinker-ESG link prediction approaches
are performed on ESG models; Bank Account, Student
Attendance, Email, and ISELTA drawn by the TSD tool.
The studies were conducted to predict possible missing links

on a given ESG. In addition, results and discussion, threats
to validity are explained in this section. The experiment
steps can be listed as follows: preparing the environment,
determining node features and creating an embedding file
to find node features, parsing the files with mxe extension,
transforming them into files containing the edge and node
information of the graph, and training the model using
these output files. The experiments’ environment details,
including hardware configuration used, installed software,
Python libraries, and GitHub repositories, are listed at [60].

A. RESULTS
Parameter value tables for SEAL-ESG and DeepLinker-ESG
are given at [61] and [62], respectively. Each model’s first
five parameters (batch size, dropout, hidden units, learning
rate, and the number of epochs) are the same, typical for
many neural networks. The remaining parameters are hops
and sortpooling K parameters for SEAL-ESG and the number
of attentions and weight decay for DeepLinker-ESG. The
values of parameters used in each iteration for the training of
SEAL-ESG and DeepLinker-ESG models are listed at [61]
and [62], respectively.

For SEAL-ESG, batch size iterates among the values of 1,
10, 25, 50 (40 for the E-Mail data set) while dropout is held
at 0.5. Hidden units are 64 or 128. The learning rate iterates
among the values of 0.001, 0.0005, and 0.0001, while the
number of epochs is kept at 50. Hops are either 1 or 2, and
sortpooling K is kept at 0.6.

For DeepLinker-ESG, batch size is either 16 or 32, while
dropout is held at 0.5 and hidden units at 32. The learning rate
iterates among the values of 0.001, 0.0005, and 0.0001, while
the number of epochs is kept at 50. The number of attentions
is 2 or 8, and the weight decay is 0.001 or 0.0001.

All four datasets’ best-performed results of SEAL-ESG
iterations are listed in Table 4—performance of the
SEAL-ESG training for each iteration measured by loss,
accuracy, and AUC. Table 4 also gives the best-performed
iteration number, which is 5 for ISELTA, 2 for Student, 4 for
Bank, and 4 for E-mail data sets. ISELTA’s best performance
is loss with 0.306, acc with 0.875, and AUCwith 0.957, while
for Student, loss is 0.467, acc is 0.840, and AUC is 0.862.
Bank has best performance at 0.331 for loss, at 0.868 for
acc, and at 0.932 for AUC while E-mail’s best performance
is loss with 0.378, acc with 0.900, and AUC with 0.920.
Please note that NaN stands for ‘‘Not a valid Number’’,
a numerical overflow or underflow often referred to as
‘‘exploding gradients’’ and occurs due to extensive weight
updates during training [63]. The rest of the iteration results
are at [64].
All four datasets’ best-performed results of DeepLinker-

ESG iterations are listed in Table 5—performance of the
DeepLinker-ESG training for each iteration measured by
loss, accuracy, and AUC (only available for testing). Table 5
also gives the best-performed iteration number, which is
8 for all four data sets. ISELTA’s best performance is loss
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TABLE 4. SEAL-ESG best performed iteration results.

TABLE 5. DeepLinker-ESG best performed iteration results.

with 0.688, acc with 0.594, and AUC with 0.587, while for
Student, loss is 0.683, acc is 0.625, and AUC is 0.625. Bank
has best performance at 0.681 for loss, at 0.781 for acc, and at
0.703 for AUC while E-mail’s best performance is loss with
0.687, acc with 0.607, and AUC with 0.577. The rest of the
iteration results are at [65].

SEAL-ESG outperforms DeepLinker-ESG in all datasets.

B. DISCUSSION
The experiments are performed on the four datasets explained
above. Each of these ESG models has its specific domain,
and the components of these software models are observed to
contain particular patterns. It is considered that these patterns
can be revealed through graph neural networks, which are
specialized for graph-structured data. The experiments are
performed under these considerations.

We explain particular patterns with an example. For
instance, the simplified Bank Account ESG in Figure 2
has a pattern. After the ‘‘get balance’’ event, the user can
select an operation and needs to enter an amount related to
that operation. The upper half of the ESG has the ‘‘select
deposit’’-‘‘enter deposit amount’’ event sequence, and the
bottom half of the ESG has the ‘‘select withdraw’’-‘‘enter
withdraw amount’’ event sequence. There is a pattern of event
sequence such as ‘‘select [operation]’’-‘‘enter [operation]
amount’’ where [operation] can be considered as a variable.
This pattern is an observable pattern particular to the bank
account domain. Imagine that the link between ‘‘select
withdraw’’ and ‘‘enter withdraw amount’’ events (nodes) is
missing. For a human, it is immediately recognizable that
the link is missing. With this research, we aim to mimic
this human recognition with graph neural networks. When an
ESG is small, as in Figure 2, it is easy for humans to recognize
missing links. However, it can be challenging for humans
to recognize when the ESG is as big as ISELTA ESG, with
68 nodes and 249 edges (links). In this case, our approach
provides a solution.

First impressions of the experimental results are as follows:
SEAL-ESG uses DGCNN as a GNN model under the hood.
It converts the link existence problem into a sub-graph
classification problem by dividing a given graph into sub-
graphs (with samples created with negative and positive

neighbors for each node). It performed much better than
DeepLinker-ESG (which uses GAT as a GNN model), trying
to solve the link existence problem by learning the hidden
representations of nodes’ relations with their neighbors.

Before evaluating the experiments’ results, it is necessary
to briefly mention how the metrics are used in assessing the
results. The area under curve (AUC) can be considered the
summary of the model performance and gives classes within
the dataset for all classification thresholds. The wider the
area under the roc (receiver operating characteristic) curve,
the higher the model’s ability to distinguish classes. An AUC
value of 0.5 means random estimation. The closer this value
is to 1, the higher the model’s ability to differentiate between
classes. Acc (accuracy) is the primary performance metric
that expresses the number of observations made correctly
with respect to the model. Still, in most cases, it is not
sufficient to measure the model’s performance alone (for
example, where the distribution of the dataset between classes
is not balanced). Loss (cross-entropy) gives the difference
between the estimation made by the model and the actual
value. Classification results generated by a neural network
fall into [0,1] interval for each class. The neural network
model assigns a value between [0,1] for each class based on
the input values. The class with the highest value is taken as
the result of these assigned values. While the accuracy metric
evaluates the results as true or false, the loss metric measures
how far the model’s value for the correct class is from 1.

The performance outputs of the parameters used in
SEAL-ESG iterations are given in Figure 4. Regardless of
the datasets’ size, iterations 9, 21, and 29 show the worst
performance. As the dataset gets smaller, the performance
was negatively affected in all iterations between 17 and 32.
Looking at the effects of the hop parameter on performance,
we can say that for all the first-order neighbors of a
component belonging to a software model, the representation
is learned best by DGCNN. A significant case occurs in the
16th iteration, setting the batch size to the minimum value
of 1 and the learning rate to 0.001 (the most significant
learning rate used in experiments). Even though the model
overfits large datasets, a small positive effect is enhanced
on performance in small datasets. When the iterations with
the best results are examined, the performance is higher in
iterations 1, 2, 5, 8, 11, and 26 in large datasets, while
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FIGURE 4. DeepLinker-ESG performance effects of parameter changes on each iteration.
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FIGURE 5. SEAL-ESG performance effects of parameter changes on each iteration.
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iterations 3, 4, 7, 12, and 16 showed higher performance
in smaller iterations. Examining the findings reveals that
setting the batch size to 1 increases the probability of
overfitting. It is observed that changing the batch size
value and the learning rate values inversely increases the
performance. As the dataset grows, using a larger value
batch size and a lower learning rate positively affects the
performance.

When the parameters used in DeepLinker-ESG iterations
and the performance outputs of these parameters are com-
pared in Figure 5, performance is distributed around 0.5,
close to random estimation, even if the tunings are performed
by changing the parameters, it makes +−10% performance
changes. While the model was being trained, the distribution
of the dataset between negative and positive classes (negative
meaning no link and positive meaning there is a link between
nodes) was made equally. At the same time, we adjusted the
distribution within batches to be equal. As a result, it can be
thought that software models are relatively small models, and
there is not enough data for GAT to learn the relationships
between nodes. When the datasets used in the article where
the GAT model is used for link prediction are examined, it is
seen that large-scale graphs are used. For example, the CorA
dataset in the article [28] consists of 2708 nodes, 5429 edges,
and 1433 node features. On the other hand, ISELTA, the
largest dataset used in this work, has 68 nodes, 249 edges,
and one node feature.

Experiments on two different machine learning models
with four datasets have shown that one of the best ways to
understand how nodes are used in graphical software models
is to form a pattern with their neighboring nodes through
the sub-graphs (i.e., micro-models). This way, we obtained
successful results even with relatively small datasets.

SEAL-ESG results in better performance pre-
dicting missing links between ESG nodes than
DeepLinker-ESG.

The disadvantage of SEAL-ESG is that when a discon-
nected graph is given, it is impossible to make an edge
prediction from scratch (without any edge definition) since
it cannot generate sub-graphs for this graph.

C. EXAMPLES OF LINK PREDICTION
The link prediction examples for ISELTA-Specials ESG
given in Figure 6 are shown in Figure 7 and Figure 8.
A SEAL-ESG model is trained using the ISELTA dataset.
This trained model executes link prediction scenarios for the
nodes ‘‘edit Special’’ and ‘‘delete Special.’’ Green dotted
arrows are the new links predicted by the trained model that
is not defined in the original ESG.

For the ‘‘edit Special’’ node, link predictions and the
probabilities generated by the trained model are listed in
Table 6, given in Figure 7.

TABLE 6. Link predictions made by the trained model for ‘‘edit special’’
node.

TABLE 7. Link predictions made by the trained model for ‘‘delete special’’
node.

For the ‘‘delete Special’’ node, link predictions and the
probabilities generated by the trained model are also listed
in Table 7 shown in Figure 8.

The results suggested by the model can be evaluated as
follows. There are two new possible connection suggestions
for the ‘‘edit Special’’ node with probabilities of 79% and
73%. These suggestions should be taken into consideration by
the modeler. Besides, a suggestion with a probability value of
49% is presented for the connection between ‘‘edit Special’’
and ‘‘cancel’’ nodes. This suggestion may be thought of as
‘‘do not care,’’ The connection can be left as it is or removed
at the modeler’s discretion. For the ‘delete Special’ node,
it is seen that two new connections and one low-probability
connection are offered. The connection from ‘‘cancel’’ to
‘‘delete Special’’ has a probability value of 31%. It may be
considered to break this existing connection entirely.

Prediction of missing links in graphical software models
is a part of identifying missing requirements/specifications.
Industry-standard practices to identify and address these
missing specifications include structured requirements elic-
itation with stakeholders, analysis of use cases or user
stories through reviews and inspections, manual checking
models/diagrams, and prototyping. These practices are not
automated and are performed manually. Our approach
automatically predicts missing links and shows them with a
percentage. It means that the trained GNN model suggests a
possibility that that link is missing. The owner of ESG, either
a person or a team, may accept or reject the suggestion. When
we checked the results of our prediction approach, the ones
with high percentages made sense, and it is worthwhile to
consider them.

D. IMPLICATIONS
Predicting missing links in graphical software models can
have a range of implications. Since the fundamental objective
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FIGURE 6. Original ISELTA-Specials ESG.

FIGURE 7. ISELTA-Specials ESG ‘‘edit special’’ node qualitative link predictions.

FIGURE 8. ISELTA-Specials ESG ‘‘delete special’’ node qualitative link predictions.

of a software model is to represent some aspect of the
software, in the event of missing links, the model’s capacity
to offer a comprehensive and precise representation is
compromised, potentially resulting in misunderstandings or

misguided decisions. Those misunderstandings or misguided
decisions can result in software development with missing
features or functionalities. Conversely, software engineers
might also build redundant or unnecessary features or
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functionalities. Moreover, missing links might lead to
integrity and consistency issues, compromising the quality of
the software.

Both the validation and verification processes are depen-
dent on having accurate models. The absence of some
links can make these processes more difficult and lead to
inaccurate or insufficient testing. Since test generation is
automatic from ESG models, missing links will change test
sequences, which will have a direct impact on the quality
of the software. Furthermore, an incomplete model might
cause complications when it comes to maintenance. Without
a comprehensive understanding of the software, maintenance
tasks might become more laborious and prone to error.

Errors or omissions caused by missing links can result
in increased costs in terms of time and resources, as errors
may need to be resolved later in the development cycle.
Decisions, resource allocations, and approvals all rely on
reliable models. Stakeholders can be misled into making
poor decisions if critical links are missing. In cases where
contracts or legal agreements regulate software development,
an incomplete model could breach those requirements and
result in legal ramifications.

In conclusion, missing links in graphical software models
can cause many problems, from technical issues to financial
costs. It is crucial to ensure that models are as complete and
accurate as possible, are reviewed often, and are updated
when the system changes.

E. THREATS TO VALIDITY
Threats to validity are summarized under construct validity,
internal validity and external validity.

Construct Validity: Since the number datasets is four,
experiment results may not reasonably represent that missing
link prediction ability of SEAL-ESG and DeepLinker-EESG.

Internal Validity: Datasets are selected from different
domains and different sizes of software applications to make
the evaluations trustworthy. Two GNN models, which apply
to link prediction problems, are selected for experiments. The
performance of these models is measured with a different
set of parameter values. All the software applications are
modeled by ESG and drawn by TSD.

External Validity: It is unlikely to say that the proposed
method will work on different software modeling tools and
processes, even if it is possible. Considering a class diagram
modeled with UML notation, they are heterogenous directed
multigraphs, but ESGs are homogenous directed graphs.
The connection between classes has completely different
meanings in comparison with ESGs.

VI. RELATED WORK
The primary objective of this work is to identify and locate
absent components within graphical software models. One
potential strategy is the utilization of machine learning
techniques for link prediction in order to enhance the
completeness of graphical software models. Another strategy
involves the application of methods such as model mining

and model checking to infer missing components within
these models. The literature pertaining to each direction
are delineated in the subsequent sections. The suggested
methodology is evaluated against existing methodologies in
completing graphical software models.

A. MACHINE/DEEP LEARNING APPROACHES IN
COMPLETING GRAPHICAL SOFTWARE MODELS
The link prediction problem is a long-standing challenge
in modern information science, and algorithms based on
Markov chains, randomwalk processes, maximum likelihood
methods, and statistical models have been proposed [66].
Lately, machine learning and deep learning approaches [45],
[46], [47], [48] have taken their place. Although machine
learning and deep learning approaches have recently found
applications in link prediction, mainly in social networks
[67], [68], to the best of the authors’ knowledge, this work
is the first application of link prediction to graphical software
models.

Social networks are very large graphical models [67]
compared to graphical software models, which are small in
nature. For social networks, scalable methods or sampling
techniques are essential [68], whereas for graphical software
models, such methods and techniques are not necessary.
The evolution of link prediction via machine/deep learning
explained in Section III, two state-of-the-art techniques,
namely SEAL [47] and DeepLinker [48], that are suitable for
small graphical models, are applied to ESGs in this study.

SEAL uses sub-graphs, attributes, and embedding features
of the graph for link prediction. SEAL extracts sub-graphs
of related nodes, learns the features of these sub-graphs via
DGCNN [40] and uses the learned model for link prediction.
DeepLinker, on the other hand, uses fixed neighborhoods
on a mini-batch sampling strategy. DeepLinker shares a
similar architecture with GraphSAGE [41] with differences
in sampling strategy and using GAT [43] instead of GCN
[69]. The DeepLinker model creates a hidden representation
of each node using the attention mechanism shared by the
node’s neighbors.

SEAL-ESG results in better performance predicting miss-
ing links between ESG nodes than DeepLinker-ESG due
to the observations made in experiments that one of the
best ways to understand how nodes are used in graphical
software models is to form a pattern with their neighboring
nodes through the sub-graphs, i.e., micro-models. This way,
we obtained successful results even with relatively small
graphical models of software contrary to large graphical
models of social networks.

B. MODEL-BASED APPROACHES IN COMPLETING
GRAPHICAL SOFTWARE MODELS
One research direction in this focus is business process model
discovery. Rozinat and van der Aalst [70] used event logs to
conform to the process model. They proposed two dimen-
sions of conformance, namely fitness and appropriateness,
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to be checked by implementing a conformance checker within
the ProM Framework. Beschastnikh et al. [71] proposed
algorithms for inferring communicating finite state machine
models from traces of concurrent systems and algorithms to
prove them correct. Pecchia et al. [72] proposed an approach
that employs process mining to discover process models from
logs; then, it uses conformance checking to detect deviations
from the discovered models. They were able to quantify
the failure detection capability of conformance checking
despitemissing events and its accuracy for the processmodels
obtained from noisy logs [72].
Another research direction in predicting missing model

parts is model checking to findmissing properties of software
design models. Schäfer et al. [73] proposed an approach
to verify whether a set of UML state machines can realize
the interactions expressed by a UML collaboration. For this
purpose, they compiled state machines into a PROMELA
model and collaborations into sets of Büchi automata.
They utilized the SPIN model checker to verify the model
against the automata. Bentahar et al. [74] proposed a model
checking-based approach for composite web services where
the operational behavior is the model to be checked against
properties defined in the control behavior. The operational
behavior defines the composition functioning according to
the Web services’ business logic, and a control behavior
identifies the valid sequences of actions that the operational
behavior should follow [74]. These two behaviors are
formally defined using automata-based techniques and then
model-checked for missing properties [74].

In these two research directions, proposed solutions utilize
a different second model or a different software artifact to
find missing model parts. In our approach, we do not use
a different second model or a different software artifact but
instead utilize the same model to explore patterns and predict
missing model parts.

VII. CONCLUSION
Enterprise software applications are generally sophisticated.
Such systems can have many sub-systems and components
in them. The details of the software must be understood at
varying levels of specification and design. Typical software
modeling systems may not be able to reduce this complexity
for engineers. Predicting the connections between software
components has great importance in modeling. In soft-
ware engineering, deciding on and connecting components
requires significant effort. It is also error-prone. Instead of
putting all the workload on software engineers’ shoulders,
giving some recommendations can help engineers model
the composition and interaction of events, objects, and
components in a software system.

The proposed method aims to help software engineers
with software modeling. This work’s modeling technique
is ESG, which models the transition between GUI com-
ponents. This paper presents a method to find missing
links between components defined in ESG. Graph neural
network models are used to solve this problem. Selected

GNN models are graph convolutional neural networks and
graph attention neural networks. To find missing links
between nodes of an ESG model, we first transformed ESG
models into graph-structured data and extracted features
of the nodes. Then, we trained the GNN model and
evaluated the performance of the trained model. Through the
evaluation, we found the best hyperparameters for the best
performance.

Experiments are performed on four datasets with two
different GNN models, namely SEAL-ESG and DeepLink-
ESG. The results show that it is possible to make recommen-
dations on missing links or edges of the graph-based system
model. SEAL-ESG results in better performance predicting
missing links between ESG nodes than DeepLink-ESG.

This research is focused on ESG models to find missing
links between components. Four datasets are used in this
study. Diversifying datasets and evaluating their results in
larger datasets could be subject of future studies. There are
many software modeling tools and methods in the literature.
We plan to work on other methodologies used for software
modeling in the future. As another application area, our work
can increase the accuracy of models created automatically
with the ripping method. Another future work is to be
able to make missing link predictions with disconnected
ESGs. These predictions may be projected with the GNN
model, which learns the feature representation of these nodes
and performs link prediction by learning the relationships
between the hidden representation of the nodes, not the
edges.
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