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In this note, we study the evaluations of Euler sums via trigonometric series. It
is a commonly believed conjecture that for an even weight greater than seven,
Euler sums cannot be evaluated in terms of the special values of the Riemann
zeta function. For an even weight, we reduce the evaluations of Euler sums into
the evaluations of double series and integrals of products of Clausen functions.
We also re-evaluate Euler sums of odd weight using a new method based on
trigonometric series.
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1. INTRODUCTION

Given an integer p ≥ 1, for each integer n ≥ 1 the sum

H(p)
n =

n∑
k=1

1

kp

is called a generalized harmonic number of order p. The generalized harmonic
numbers of order 1 are just the classical harmonic numbers denoted by hn.

When p ≥ 2, the sequence (H
(p)
n )n is the sequence of partial sums of the special

value ζ(p) of the Riemann zeta function, where the Riemann zeta function is
defined by

ζ(s) =

∞∑
n=1

1

ns

for ℜ(s) > 1.
Euler showed that the special values of the harmonic zeta function

H(1, s) =
∞∑
n=1

hn
ns

can be computed in terms of the special values of the Riemann zeta function.
More precisely, he proved that

(1.1) H(1,m) =
1

2
(m+ 2)ζ(m+ 1)− 1

2

m−1∑
k=2

ζ(k)ζ(m+ 1− k)

MATH. REPORTS 25(75) (2023), 3, 381–412

doi: 10.59277/mrar.2023.25.75.3.381

http://dx.doi.org/10.59277/mrar.2023.25.75.3.381
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for all integers m ≥ 2, where the sum over k is meant to be zero when m = 2.
Euler sums are series of the form

H(p, q) =

∞∑
n=1

H
(p)
n

nq

for integers p ≥ 1 and q > 1. For an Euler sum H(p, q), the integer w = p+ q
is called its weight.

Note that when we say an Euler sum H(p, q) can be evaluated in terms
of the special values of the Riemann zeta function, we mean that H(p, q) is an
element of the ring

Ω = Q[ζ(k) : k ≥ 2]
generated by Q and all special zeta values. Note also that a typical element of
Ω is of the form p(ζ(k1), ζ(k2), ..., ζ(kn)) for some positive integers k1, k2, ..., kn
and for some polynomial p(x1, x2, ..., xn) in the polynomial ringQ[x1, x2, ..., xn].

For p > 1, it can be seen that we have the following reciprocity relation:

(1.2) H(p, q) +H(q, p) = ζ(p)ζ(q) + ζ(p+ q).

Hence, if H(p, q) (p > 1) can be evaluated in terms of the special values of
the Riemann zeta function, then so can H(q, p). In particular, if p = q > 1,
then H(p, q) = H(p, p) can be computed in terms of the special values of the
Riemann zeta function. It is also known that

H(2, 4) = ζ(3)2 − 1

3
ζ(6).

For an odd weight w = p+ q, the evaluation of H(p, q) was attempted by
Euler, and he anticipated that H(p, q) can be computed in terms of the special
values of the Riemann zeta function. There was a gap in Euler’s approach, and
it was Nielsen who first gave the complete proof of this in [8]. Later on, the
evaluations of Euler sums for an odd weight were studied again, and we refer the
reader to [2, 7]. Generalizations of Euler sums are called multiple zeta values,
and they have applications to physics, see [11]. Moreover, a generalization of
the evaluations of Euler sums for an odd weight to multiple zeta values can be
found in [10].

For an even weight w, we do not know much about Euler sums when p > 1
and p ̸= q except the cases H(2, 4) and H(4, 2). Moreover, it is widely believed
that for an even weight w ≥ 8, Euler sums of weight w cannot be evaluated in
terms of the special values of the Riemann zeta function. However, this is still
an open conjecture.

For each integer m ≥ 1, the polylogarithm function Lim(z) is defined by

Lim(z) =
∞∑
n=1

zn

nm
.
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Note that for m ≥ 2, Lim(z) is well-defined for all complex numbers z such
that |z| ≤ 1 and for m = 1, Lim(z) is well-defined for all complex numbers z
such that |z| ≤ 1 and z ̸= 1. Given m ≥ 1, according to the parity of m, we
name either one of the real and imaginary parts of Lim(eit) by Slm(t) and the
other one by Clm(t). Precisely, we define

Slm(t) =


∞∑
n=1

cos(nt)

nm
if m is even

∞∑
n=1

sin(nt)

nm
if m is odd

and Clm(t) =


∞∑
n=1

sin(nt)

nm
if m is even

∞∑
n=1

cos(nt)

nm
if m is odd.

The functions Slm(t) and Clm(t) are called Clausen functions. The evalua-
tions of Clm(t) in terms of well-known functions are not known when m ≥ 2.
However, Slm(t) can be evaluated. In particular (see [1]), for all integersm ≥ 1,

(1.3) Slm(t) =
m∑
j=0

Qπm−jtj

where by Qv we mean an element of {qv : q ∈ Q}. Here, we give the Clausen
polynomials Slm(t) from m = 1 to m = 4 explicitly as follows:

Sl1(t) =
π

2
− t

2
, Sl2(t) =

π2

6
− πt

2
+
t2

4
, Sl3(t) =

π2t

6
− πt2

4
+
t3

12
,

Sl4(t) =
π4

90
− π2t2

12
+
πt3

12
− t4

48
.

For positive integers a, b, c, let

CL(a, b, c) =
1

π

∫ 2π

0
taClb(t)Clc(t) dt.

Our first result is the following and it states that for an even weight w,
the evaluations of Euler sums are related to the evaluations of the integrals
CL(a, b, c). Thus, Euler sums of even weight have integral representations in
terms of trigonometric series up to zeta values.

Theorem 1.1. i. Let p, q > 1 be two odd integers. Then H(p, q) can be
evaluated in terms of the special values of the Riemann zeta function and the
integrals of the form CL(a, b, c) where a is even, a < q and b+ c = p+ 1.

ii. Let p, q > 1 be two even integers such that at least one of them is 2.
Then H(p, q) can be evaluated in terms of the special values of the Riemann
zeta function and the integrals of the form CL(a, 2, 2) where a is even and
a < q.

In the same case, alternatively, H(p, q) can be evaluated in terms of
the special values of the Riemann zeta function and the integrals of the form
CL(a, 2, 1) where 3 ≤ a < q and a is odd.
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For natural numbers a, b, c, let

ω(a, b, c) =
∞∑

m=1

∞∑
n=1

1

namb(n+m)c

be the double series. It is also called Tornheim double series or harmonic
double series as it was first studied by Tornheim [9]. It is known that (see
[6]) the double series ω(a, b, c) converges if and only if a + c > 1, b + c > 1
and a + b + c > 2. The evaluations of ω(a, b, c) are related to the evaluations
of Euler sums and for this we direct the reader to [3] and [4]. Our second
theorem states that CL(a, b, c) can be computed in terms of the special values
of the Riemann zeta function and double series. In particular, it relates the
evaluations of Euler sums to the evaluations of double series.

Theorem 1.2. Let a, b, c be positive integers such that a is even, b and
c have the same parity and b + c ≥ 4. Then the integral CL(a, b, c) can be
evaluated in terms of the special values of the Riemann zeta function and double
series.

In particular, if p, q > 1 are two integers such that either both p and q are
odd or both p and q are even and at least one of them is 2, then H(p, q) can
be evaluated in terms of the special values of the Riemann zeta function and
double series.

In light of Theorem 1.1 and Theorem 1.2, when we consider the class of
Euler sums, the class of double series and the class of integrals of the form
CL(a, b, c), we observe that the computations of elements of these three classes
have related difficulty.

The following theorem concerns the termwise integrability of certain
trigonometric series and it plays an important role in the proofs of the theorems
presented in this note. It is also of independent interest.

Theorem 1.3. Let (an)n be a sequence of real numbers such that (an)n
is monotonically decreasing to 0 and the series

∞∑
n=1

an
n

converges. Then for every integer m ≥ 0, both series
∞∑
n=1

ant
m sin(nt) and

∞∑
n=1

ant
m cos(nt)

can be integrated termwise over the interval [0, 2π].

Our fourth theorem gives new evaluations of Euler sums based on trigono-
metric series. Note that the following result was already obtained using many
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different approaches as we mentioned before. However, our technique is differ-
ent from them.

Theorem 1.4. Let p, q > 1 be two integers. Then H(p, q) can be eval-
uated in terms of the special values of the Riemann zeta function when the
weight w = p+ q is odd, or p = q, or (p, q) = (2, 4), or (p, q) = (4, 2).

Short overview of the paper: In Section 2, we prove several lemmas
that we use in the proofs of our Theorems. In Section 3, we prove Theorem
1.3. In Section 4, we prove Theorem 1.1. In Section 5, we prove Theorem 1.2.
We also prove Corollary 5.1 where we recompute the Euler sum H(2, 4) and
we compute the integrals CL(2, 2, 2) and CL(3, 2, 1) in terms of the special
values of the Riemann zeta function using our approach. In Section 6, we
prove Theorem 1.4. In Section 7, we prove Corollary 7.1 using Theorem 1.1
and Theorem 1.2 and we also prove Corollary 7.2.

2. PRELIMINARIES

Recall the following two lemmas from [1]. In the first lemma, certain
generating functions related to generalized harmonic numbers are evaluated
in terms of polylogarithmic values. In the second one, we obtain two Fourier
series expansions arising from the first lemma.

Lemma 2.1 ([1, Lemma 1]). For p ≥ 3 odd and complex number z with
|z| ≤ 1 and z ̸= 1, we have

∞∑
n=1

H
(p)
n

n
zn = Lip+1(z) +

p−1
2∑

k=0

(−1)kakLip−k(z)Lik+1(z),

where ak = 1 for 0 ≤ k ≤ p− 3

2
and a p−1

2
=

1

2
. Moreover, we have

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
zn = 3Li3(z) + Li2(z)Li1(z)

for |z| ≤ 1 and z ̸= 1.

Lemma 2.2 ([1, Lemma 2]). For p ≥ 3 odd and 0 < t < 2π, we have

∞∑
n=1

H
(p)
n

n
sin(nt)

= Clp+1(t) +

p−1
2∑

k=0

(−1)kak
(
Slp−k(t)Clk+1(t) + Slk+1(t)Clp−k(t)

)
,
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where ak = 1 for 0 ≤ k ≤ p− 3

2
and a p−1

2
=

1

2
. Moreover, for 0 < t < 2π, we

have

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
cos(nt) = 3Cl3(t) + Sl2(t)Cl1(t)− Cl2(t)Sl1(t).

In the following two lemmas, we extract some new Fourier series expan-
sions from Lemma 2.1. Note that, the next lemma gives an analogous result
of the previous lemma.

Lemma 2.3. For p ≥ 3 odd and 0 < t < 2π, we have

∞∑
n=1

H
(p)
n

n
cos(nt) = Slp+1(t) +

p−1
2∑

k=0

ak
(
Clp−k(t)Clk+1(t)− Slk+1(t)Slp−k(t)

)
,

where ak = 1 for 0 ≤ k ≤ p− 3

2
and a p−1

2
=

1

2
. Moreover, for 0 < t < 2π, we

have

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
sin(nt) = 3Sl3(t) + Sl2(t)Sl1(t) + Cl2(t)Cl1(t).

Proof. By equating the real parts of both sides of the equality which is
obtained by taking z = eit for 0 < t < 2π in the first part of Lemma 2.1, we
get

∞∑
n=1

H
(p)
n

n
cos(nt) = Slp+1(t) + Clp(t)Cl1(t)− Slp(t)Sl1(t)(2.1)

+
1

2

(
Cl2p+1

2

(t)− Sl2p+1
2

(t)
)

+

p−3
2∑

k=1
k:odd

(−1)k
(
Slp−k(t)Slk+1(t)− Clp−k(t)Clk+1(t)

)

+

p−3
2∑

k=1
k:even

(−1)k
(
Clp−k(t)Clk+1(t)− Slp−k(t)Slk+1(t)

)
and the first equation of the lemma directly follows from Equation (2.1).

The second equation in this lemma comes when we compare the imaginary
parts of both sides of the second equation in Lemma 2.1 for z = eit and
0 < t < 2π.
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Lemma 2.4. For all 0 ≤ t ≤ 2π,

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
cos(nt) = 3Sl4(t) +

1

2
Sl2(t)Sl2(t)−

1

2
Cl2(t)Cl2(t).

Proof. As stated in Lemma 2.1, we have

(2.2)
∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
zn = 3Li3(z) + Li2(z)Li1(z)

for |z| ≤ 1 and z ̸= 1. By dividing both sides of (2.2) by z and then integrating
with respect to z, we get

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
zn = 3

∫
Li3(z)

z
dz +

∫
Li2(z)

Li1(z)

z
dz.

However, for all m ≥ 1, ∫
Lim(z)

z
dz = Lim+1(z).

Then, using integration by parts, we obtain that

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
zn = 3Li4(z) +

1

2
Li2(z)Li2(z)(2.3)

for all z with |z| ≤ 1. When we compare the real parts of both sides of (2.3)
by taking z = eit for 0 ≤ t ≤ 2π, the result follows.

3. PROOF OF THEOREM 1.3

Let us first consider the series

(3.1)

∞∑
n=1

an sin(nt).

For all k ≥ 1,

k∑
n=1

sin(nt) =
sin
(
kt
2

)
sin
(
(k+1)t

2

)
sin
(
t
2

) .

Hence given δ > 0 arbitrarily small, the sequence(
k∑

n=1

sin(nt)

)
k
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of partial sums is uniformly bounded by the reciprocal 1/ sin(δ/2) on the closed
interval [δ, 2π−δ]. Then since the real sequence (an)n is monotonically decreas-
ing to 0, it follows from Dirichlet test for uniform convergence that the series
(3.1) is uniformly convergent on [δ, 2π − δ]. Consequently, given any integer
m ≥ 0, the series

∞∑
n=1

ant
m sin(nt)

is uniformly convergent, hence termwise integrable on [δ, 2π− δ], that is to say∫ 2π−δ

δ

∞∑
n=1

ant
m sin(nt) dt =

∞∑
n=1

an

∫ 2π−δ

δ
tm sin(nt) dt.

Given δ ∈ R and n,m, k ∈ Z such that n is positive andm is non-negative,
if k ≥ 1 with m+ 2− 2k ≥ 0, we define

f(n,m,k)(δ)

= (−1)k
m!

(m+ 2− 2k)!

[
(2π − δ)m+2−2k cos(n(2π − δ))− δm+2−2k cos(nδ)

]
and if k ≥ 1 with m+ 1− 2k ≥ 0, we define

g(n,m,k)(δ)

= (−1)k−1 m!
(m+1−2k)!

[
(2π − δ)m+1−2k sin(n(2π − δ))− δm+1−2k sin(nδ)

]
.

Note that if m+ 2− 2k > 0, then for all n,

f(n,m,k)(0) = (−1)k
m!(2π)m+2−2k

(m+ 2− 2k)!
.

On the other hand, g(n,m,k)(0) = 0 for all n and for all k with m+ 1− 2k ≥ 0.
If δ > 0 is small enough,

(3.2)

∫ 2π−δ

δ
sin(nt) dt =

1

n
[cos(nδ)− cos(n(2π − δ))] =

f(n,0,1)(δ)

n

and by partial integration

(3.3)

∫ 2π−δ

δ
t sin(nt) dt =

f(n,1,1)(δ)

n
+
g(n,1,1)(δ)

n2
.

If m ≥ 2, we get the following reduction formula using integration by parts:∫ 2π−δ

δ
tm sin(nt) dt

=
f(n,m,1)(δ)

n
+
g(n,m,1)(δ)

n2
− m.(m− 1)

n2

∫ 2π−δ

δ
tm−2 sin(nt) dt.
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So, if m ≥ 2, using successive integration by parts, after finitely many steps
we obtain

(3.4)

∫ 2π−δ

δ
tm sin(nt) dt =

[m+2
2

]∑
k=1

f(n,m,k)(δ)

n2k−1
+

[m+1
2

]∑
k=1

g(n,m,k)(δ)

n2k
.

Note that Equations (3.2) and (3.3) show that Equation (3.4) holds whenm = 0
and m = 1 as well, if the second sum over k is taken to be zero when m = 0.

If the integers m ≥ 0 and k ≥ 1 are fixed, then as functions of the
variable δ, the families of functions {f(n,m,k)}n and {g(n,m,k)}n are continuous
and uniformly bounded on [0, 2π]. Then since

∞∑
n=1

an
n
<∞

it follows from Weirstrass M-test that the series

(3.5)
∞∑
n=1

an
n2k−1

f(n,m,k)(δ) and
∞∑
n=1

an
n2k

g(n,m,k)(δ)

are uniformly convergent on [0, 2π]. Hence each series in (3.5) defines a con-
tinuous function of δ on [0, 2π] and for all m ≥ 0,∫ 2π

0

∞∑
n=1

ant
m sin(nt) dt(3.6)

= lim
δ→0+

∫ 2π−δ

δ

∞∑
n=1

ant
m sin(nt) dt

= lim
δ→0+

∞∑
n=1

an

∫ 2π−δ

δ
tm sin(nt) dt

= lim
δ→0+

[m+2
2

]∑
k=1

∞∑
n=1

an
n2k−1

f(n,m,k)(δ) + lim
δ→0+

[m+1
2

]∑
k=1

∞∑
n=1

an
n2k

g(n,m,k)(δ)

=

[m+2
2 ]∑

k=1

lim
δ→0+

∞∑
n=1

an
n2k−1

f(n,m,k)(δ) +

[m+1
2

]∑
k=1

lim
δ→0+

∞∑
n=1

an
n2k

g(n,m,k)(δ)

=

[m+2
2

]∑
k=1

∞∑
n=1

an
n2k−1

f(n,m,k)(0) +

[m+1
2

]∑
k=1

∞∑
n=1

an
n2k

g(n,m,k)(0)

=

∞∑
n=1

an

[m+2
2

]∑
k=1

f(n,m,k)(0)

n2k−1
.
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Then if m = 0, by Equation (3.6) we get∫ 2π

0

∞∑
n=1

an sin(nt) dt =
∞∑
n=1

an
f(n,0,1)(0)

n
= 0

where ∞∑
n=1

an

∫ 2π

0
sin(nt) dt = 0

as well. Therefore, integration and summation can be interchanged when m =

0. Now let m ≥ 1. If m is odd, then

[
m+ 2

2

]
=

[
m+ 1

2

]
and if m is even,

f(n,m,[m+2
2 ])(0) = 0.

Then, continuing from Equation (3.6) and using the formula

(3.7)

∫ 2π

0
tm sin(nt) dt =

[m+1
2 ]∑

k=1

(−1)k
m!(2π)m+2−2k

(m+ 2− 2k)!n2k−1

which comes from successive integration by parts for all m ≥ 1, we finally get∫ 2π

0

∞∑
n=1

ant
m sin(nt) dt =

∞∑
n=1

an

[m+2
2

]∑
k=1

f(n,m,k)(0)

n2k−1

=
∞∑
n=1

an

[m+1
2

]∑
k=1

f(n,m,k)(0)

n2k−1

=

∞∑
n=1

an

[m+1
2

]∑
k=1

(−1)k
m!(2π)m+2−2k

(m+ 2− 2k)!n2k−1

=

∞∑
n=1

∫ 2π

0
ant

m sin(nt) dt.

Secondly, we consider the series

(3.8)
∞∑
n=1

an cos(nt).

Since

k∑
n=1

cos(nt) =
sin
(
kt
2

)
cos
(
(k+1)t

2

)
sin
(
t
2

)
for all k ≥ 1, the sequence (

k∑
n=1

cos(nt)

)
k
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of partial sums is uniformly bounded on the interval [δ, 2π−δ] for all δ > 0, but
arbitrarily small. Then by Dirichlet test the series (3.8) is uniformly convergent
on [δ, 2π − δ] and given any integer m ≥ 0, the series

∞∑
n=1

ant
m cos(nt)

is uniformly convergent, hence termwise integrable on [δ, 2π− δ], that is to say∫ 2π−δ

δ

∞∑
n=1

ant
m cos(nt) dt =

∞∑
n=1

an

∫ 2π−δ

δ
tm cos(nt) dt.

However, for all m ≥ 0,∫ 2π−δ

δ
tm cos(nt) dt =

[m+2
2

]∑
k=1

F(n,m,k)(δ)

n2k−1
+

[m+1
2

]∑
k=1

G(n,m,k)(δ)

n2k

where

F(n,m,k)(δ)

= (−1)k−1 m!
(m+2−2k)!

[
(2π − δ)m+2−2k sin(n(2π − δ))− δm+2−2k sin(nδ)

]
for m+ 2− 2k ≥ 0 and

G(n,m,k)(δ)

= (−1)k−1 m!
(m+1−2k)!

[
(2π − δ)m+1−2k cos(n(2π − δ))− δm+1−2k cos(nδ)

]
for m+ 1− 2k ≥ 0 and the second sum over k is taken to be zero for m = 0.
Following similar steps as in Equation (3.6), for all m ≥ 0, we get∫ 2π

0

∞∑
n=1

ant
m cos(nt) dt =

∞∑
n=1

an

[m+1
2

]∑
k=1

G(n,m,k)(0)

n2k
.(3.9)

We get from Equation (3.9) that if m = 0,∫ 2π

0

∞∑
n=1

an cos(nt) dt = 0

where
∞∑
n=1

an

∫ 2π

0
cos(nt) dt = 0

as well and if m = 1, we get∫ 2π

0

∞∑
n=1

ant cos(nt) dt =

∞∑
n=1

an
G(n,1,1)(0)

n2
= 0
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where
∞∑
n=1

an

∫ 2π

0
t cos(nt) dt = 0

as well by integration by parts. Now let m ≥ 2. If m is even, then [m+1
2 ] = [m2 ]

and if m is odd, then
G(n,m,[m+1

2
])(0) = 0.

Then, using the equation

(3.10)

∫ 2π

0
tm cos(nt) dt =

[m
2
]∑

k=1

(−1)k−1 m!(2π)m+1−2k

(m+ 1− 2k)!n2k

which holds for every integer m ≥ 2 and continuing from Equation (3.9), we
get ∫ 2π

0

∞∑
n=1

ant
m cos(nt) dt =

∞∑
n=1

an

[m+1
2

]∑
k=1

G(n,m,k)(0)

n2k

=

∞∑
n=1

an

[m
2
]∑

k=1

G(n,m,k)(0)

n2k

=
∞∑
n=1

an

[m
2
]∑

k=1

(−1)k−1 m!(2π)m+1−2k

(m+ 1− 2k)!n2k

=
∞∑
n=1

∫ 2π

0
ant

m cos(nt) dt

as desired.

4. PROOF OF THEOREM 1.1

Let us first assume that both p and q are odd. Let q = 2r + 1. Let us
multiply both sides of the first equation in Lemma 2.3 by t2r to get

(4.1)
∞∑
n=1

H
(p)
n

n
t2r cos(nt)

= t2rSlp+1(t)−

p−1
2∑

k=0

akt
2rSlk+1(t)Slp−k(t) +

p−1
2∑

k=0

akt
2rClp−k(t)Clk+1(t),

where ak = 1 for 0 ≤ k ≤ p− 3

2
and a p−1

2
=

1

2
, and then integrate both sides

of the above equation over [0, 2π].
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Consider the real sequence whose nth term is

bn =
H

(p)
n

n
.

Since

0 < bn <
hn
n
<

1 + log n

n
and bn − bn+1 =

H
(p)
n − n

(n+1)p

n(n+ 1)
> 0

for all n, the sequence (bn)n decreases monotonically to 0. Moreover, the series

∞∑
n=1

bn
n

=

∞∑
n=1

H
(p)
n

n2
= H(p, 2)

is convergent. Hence, Theorem 1.3 applies to the sequence (bn)n and using
Theorem 1.3 and Equation (3.10), we get∫ 2π

0

∞∑
n=1

H
(p)
n

n
t2r cos(nt) dt =

∞∑
n=1

H
(p)
n

n

∫ 2π

0
t2r cosnt dt

=
∞∑
n=1

H
(p)
n

n

r∑
k=1

(−1)k−1 (2r)!(2π)2r+1−2k

(2r + 1− 2k)!n2k

=
r∑

k=1

Qπ2r+1−2kH(p, 2k + 1).(4.2)

Note that for any non-negative integers a, b, c,

∫ 2π

0
taSlb(t) dt =

∫ 2π

0
ta

b∑
i=0

Qπb−iti dt =

b∑
i=0

Qπb−i

∫ 2π

0
ta+i dt = Qπa+b+1

(4.3)

and since

Slb(t)Slc(t) =
b∑

i=0

Qπb−iti
c∑

j=0

Qπc−jtj =

b+c∑
k=0

Qπb+c−ktk

we have ∫ 2π

0
taSlb(t)Slc(t) dt = Qπa+b+c+1.(4.4)

In particular, ∫ 2π

0
t2rSlp+1(t) dt = Qπp+q+1(4.5)



394 Ş. Ç. Çelik and H. Göral 14

and

(4.6)

∫ 2π

0

p−1
2∑

k=0

akt
2rSlk+1(t)Slp−k(t) dt = Qπp+q+1.

Hence by combining Equations (4.2), (4.5) and (4.6) via Equation (4.1), we get

r∑
k=1

Qπ2r+1−2kH(p, 2k + 1) = Qπp+q+1 +

p−1
2∑

k=0

Q
∫ 2π

0
t2rClp−k(t)Clk+1(t) dt.

When we divide both sides of the previous equation by π and substitute 6ζ(2)
for π2, we get

r∑
k=1

Qζ(2)r−kH(p, 2k + 1) = Qζ(2)
p+q
2 +

p−1
2∑

k=0

QCL(2r, p− k, k + 1).(4.7)

In order to prove the theorem in case both p and q = 2r + 1 are odd and
p, q > 1, we fix p and proceed by induction on r. If r = 1, by Equation (4.7)

H(p, 3) = Qζ(2)
p+3
2 +

p−1
2∑

k=0

QCL(2, p− k, k + 1).

Hence, H(p, 3) can be evaluated in terms of ζ(2) and the integrals of the form
CL(2, b, c) where b+ c = p+ 1. Now assume the theorem holds for all k such
that 1 ≤ k < r. By Equation (4.7),

H(p, 2r+1) = Qζ(2)
p+2r+1

2 −
r−1∑
k=1

Qζ(2)r−kH(p, 2k+1)+

p−1
2∑

k=0

QCL(2r, p−k, k+1).

However, by the induction hypothesis, for any 1 ≤ k < r, the sum H(p, 2k+1)
can be evaluated in terms of the special values of ζ(s) and the integrals of the
form CL(a, b, c) where a is even, a < 2k + 1 and b + c = p + 1. Then the
theorem follows for H(p, 2r + 1) by the last equation.

In case both p and q are even such that at least one of them is 2, by
reciprocity it is enough to prove the result when p = 2. If p = q = 2, then by
reciprocity

H(2, 2) =
1

2

[
ζ(2)2 + ζ(4)

]
.

So let p = 2 and q = 2r+2 where r ≥ 1. We multiply both sides of the equation

given in Lemma 2.4 by
1

π
t2r and then integrate them over the interval [0, 2π]

to get
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(4.8)
1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
t2r cos(nt) dt

=
3

π

∫ 2π

0
t2rSl4(t) dt+

1

2π

∫ 2π

0
t2rSl2(t)Sl2(t) dt−

1

2
CL(2r, 2, 2).

Since the trigonometric series appearing on the left-hand side of Equation (4.8)
is uniformly convergent on [0, 2π],

1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
t2r cos(nt) dt(4.9)

=
1

π

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)∫ 2π

0
t2r cos(nt) dt

=
1

π

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

) r∑
k=1

(−1)k−1 (2r)!(2π)2r+1−2k

(2r + 1− 2k)!n2k

=
1

π

r∑
k=1

(
Qπ2r+1−2kH(2, 2k + 2) +Qπ2r+1−2kH(1, 2k + 3)

)
.

On the other hand,∫ 2π

0
t2rSl4(t) dt = Qπ2r+5 and

∫ 2π

0
t2rSl2(t)Sl2(t) dt = Qπ2r+5

by Equations (4.3) and (4.4). Hence,
r∑

k=1

Qπ2r−2kH(2, 2k + 2) =

r∑
j=1

Qπ2r−2jH(1, 2j + 3) +Qπ2r+4 − 1

2
CL(2r, 2, 2)

and by substituting 6ζ(2) for π2, we obtain that
(4.10)
r∑

k=1

Qζ(2)r−kH(2, 2k+2) =

r∑
j=1

Qζ(2)r−jH(1, 2j+3)+Qζ(2)r+2−1

2
CL(2r, 2, 2).

We will now prove the theorem for p = 2 and q = 2r+2 by induction on r ≥ 1.
If r = 1, by Equation (4.10)

H(2, 4) = QH(1, 5) +Qζ(2)3 +QCL(2, 2, 2)
and since H(1, 5) ∈ Ω by Equation (1.1), the result is valid for r = 1. For
the inductive step, assume that H(2, 2k + 2) can be evaluated in terms of the
special zeta values and the integrals of the form CL(a, 2, 2) where a is even
and a < 2k + 2 for all 1 ≤ k < r. Then since

H(2, 2r + 2) =

r−1∑
k=1

Qζ(2)r−kH(2, 2k + 2) +

r∑
k=1

Qζ(2)r−kH(1, 2k + 3)
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+Qζ(2)r+2 +QCL(2r, 2, 2)

by Equation (4.10) and H(1, 2k + 3) ∈ Ω for all k = 1, ..., r by Equation (1.1),
the result follows for r from the induction assumption, and we are done.

To obtain the alternative result in the same case, we multiply both sides
of the second equation in Lemma 2.3 by t2r+1 and then integrate them over
the interval [0, 2π] to get

(4.11)

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
t2r+1 sin(nt) dt

= 3

∫ 2π

0
t2r+1Sl3(t) dt+

∫ 2π

0
t2r+1Sl2(t)Sl1(t) dt+

∫ 2π

0
t2r+1Cl2(t)Cl1(t) dt.

Since the sequences (
H

(2)
n

n

)
n

and

(
2hn
n2

)
n

are both monotonically decreasing to zero and the series

∞∑
n=1

H
(2)
n

n2
and

∞∑
n=1

2hn
n3

are both convergent, Theorem 1.3 applies to the trigonometric series appearing
on the left-hand side of Equation (4.11). So, we get∫ 2π

0

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
t2r+1 sin(nt)(4.12)

=

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)∫ 2π

0
t2r+1 sin(nt) dt

=
∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

) r+1∑
k=1

(−1)k
(2r + 1)!(2π)2r+3−2k

(2r + 3− 2k)!n2k−1

=

r+1∑
k=1

(
Qπ2r+3−2kH(2, 2k) +Qπ2r+3−2kH(1, 2k + 1)

)
.

On the other hand,∫ 2π

0
t2r+1Sl3(t) dt = Qπ2r+5 and

∫ 2π

0
t2r+1Sl2(t)Sl1(t) dt = Qπ2r+5

by Equations (4.3) and (4.4). Hence

r+1∑
k=1

Qπ2r+3−2kH(2, 2k)
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=

r+1∑
k=1

Qπ2r+3−2kH(1, 2k + 1) +Qπ2r+5 +

∫ 2π

0
t2r+1Cl2(t)Cl1(t) dt.

By dividing both sides of the previous equation by π and substituting 6ζ(2)
for π2, we get

r+1∑
k=1

Qζ(2)r+1−kH(2, 2k)(4.13)

=

r+1∑
k=1

Qζ(2)r+1−kH(1, 2k + 1) +Qζ(2)r+2 + CL(2r + 1, 2, 1).

We will now prove the alternative result for p = 2 and q = 2r+2 by induction
on r ≥ 1. If r = 1, by Equation (4.13)

H(2, 4) = Qζ(2)H(2, 2) +Qζ(2)H(1, 3) +QH(1, 5) +Qζ(2)3 +QCL(3, 2, 1).

Then since H(2, 2) ∈ Ω by reciprocity and the Euler sums H(1, 3), H(1, 5) ∈ Ω
by Equation (1.1), the result is valid for r = 1. For the inductive step, assume
that for all 1 ≤ k < r, the Euler sum H(2, 2k + 2) can be evaluated in terms
of the special values of ζ(s) and the integrals of the form CL(a, 2, 1) where a
is odd and a < 2k + 2. Then since

H(2, 2r + 2) =
r∑

k=1

Qζ(2)r+1−kH(2, 2k) +
r+1∑
k=1

Qζ(2)r+1−kH(1, 2k + 1)

+Qζ(2)r+2 +QCL(2r + 1, 2, 1)

by Equation (4.13) and H(1, 2k + 1) ∈ Ω for all k = 1, ..., r + 1 by Equation
(1.1), the result also follows for r by the induction hypothesis.

5. PROOF OF THEOREM 1.2 AND COROLLARY 5.1

5.1. Proof of Theorem 1.2:

Let a, b, c be positive integers such that a is even, b and c have the same
parity and b+ c ≥ 4.

If b, c are both even, since the series Clb(t) and Clc(t) are bounded and
uniformly convergent,

CL(a, b, c) =
1

π

∫ 2π

0
ta

∞∑
m=1

sin(mt)

mb

∞∑
n=1

sin(nt)

nc
dt

=
1

π

∞∑
m=1

∞∑
n=1

1

ncmb

∫ 2π

0
ta sin(mt) sin(nt) dt.
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Similarly, if b, c > 1 are both odd, the series Clb(t) and Clc(t) are bounded and
uniformly convergent so that

CL(a, b, c) =
1

π

∫ 2π

0
ta

∞∑
m=1

cos(mt)

mb

∞∑
n=1

cos(nt)

nc
dt

=
1

π

∞∑
m=1

∞∑
n=1

1

ncmb

∫ 2π

0
ta cos(mt) cos(nt) dt.

Now let b ≥ 3 be odd. Given an integer m ≥ 1 fixed, since

(5.1) cos(mt) cos(nt) =
cos((m+ n)t) + cos((m− n)t)

2
we have

∞∑
n=1

ta
cos(mt)

mb

cos(nt)

n
=

∞∑
n=1

ta cos((m+ n)t)

2mbn
+

∞∑
n=1

ta cos((m− n)t)

2mbn

and by reindexing the last two series above we get

(5.2)
∞∑
n=1

ta
cos(mt)

mb

cos(nt)

n

=

∞∑
n=m+1

ta cos(nt)

2mb(n−m)
+

m∑
n=1

ta cos((m− n)t)

2mbn
+

∞∑
n=1

ta cos(nt)

2mb(n+m)
.

It follows from Theorem 1.3 that both series
∞∑

n=m+1

ta cos(nt)

2mb(n−m)
and

∞∑
n=1

ta cos(nt)

2mb(n+m)

are termwise integrable on [0, 2π], so is the series
∞∑
n=1

ta
cos(mt)

mb

cos(nt)

n

by Equation (5.2). Consequently, given any integer N ≥ 1, the series

ta
N∑

m=1

cos(mt)

mb

∞∑
n=1

cos(nt)

n

is termwise integrable on [0, 2π] and∫ 2π

0
ta

∞∑
m=1

cos(mt)

mb

∞∑
n=1

cos(nt)

n
dt

=

∫ 2π

0
ta

N∑
m=1

cos(mt)

mb

∞∑
n=1

cos(nt)

n
dt
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+

∫ 2π

0
ta

∞∑
m=N+1

cos(mt)

mb

∞∑
n=1

cos(nt)

n
dt

=
N∑

m=1

∞∑
n=1

∫ 2π

0
ta
cos(mt)

mb

cos(nt)

n
dt+Oa

(
1

N2

)
,

as ∞∑
m=N+1

cos(mt)

mb
= O

( ∞∑
m=N+1

1

m3

)
= O

(
1

N2

)
and Cl1(t) is absolutely integrable on [0, 2π]. Then letting N tend to infinity
in the last equation, for b ≥ 3 odd, we get

CL(a, b, 1) =
1

π

∫ 2π

0
ta

∞∑
m=1

cos(mt)

mb

∞∑
n=1

cos(nt)

n
dt

=
1

π

∞∑
m=1

∞∑
n=1

1

nmb

∫ 2π

0
ta cos(mt) cos(nt) dt.

Now since

sin(mt) sin(nt) =
cos((m− n)t)− cos((m+ n)t)

2
we have∫ 2π

0
ta sin(mt) sin(nt) dt =

1

2

∫ 2π

0
ta cos((m−n)t) dt−1

2

∫ 2π

0
ta cos((m+n)t) dt.

Hence, if b and c are both even,

CL(a, b, c) =
1

π

∞∑
m=1

∞∑
n=1

1

ncmb

∫ 2π

0
ta sin(mt) sin(nt) dt

=
1

2π

∞∑
m=1

∞∑
n=1

1

ncmb

∫ 2π

0
ta cos((m− n)t) dt

− 1

2π

∞∑
m=1

∞∑
n=1

1

ncmb

∫ 2π

0
ta cos((m+ n)t) dt.

However,
∞∑

m=1

∞∑
n=1

1

ncmb

∫ 2π

0
ta cos((m+ n)t) dt(5.3)

=
∞∑

m=1

∞∑
n=1

1

ncmb

a
2∑

k=1

(−1)k−1 a!(2π)a+1−2k

(a+ 1− 2k)!(m+ n)2k

=

a
2∑

k=1

(−1)k−1 a!(2π)
a+1−2k

(a+ 1− 2k)!
ω(c, b, 2k)
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whereas
(5.4)

∞∑
m,n=1
m=n

1

ncmb

∫ 2π

0
ta cos((m− n)t) dt =

∞∑
m=1

1

mb+c

∫ 2π

0
ta dt =

(2π)a+1

a+ 1
ζ(b+ c)

and
∞∑

m,n=1
m>n

1

ncmb

∫ 2π

0
ta cos((m− n)t) dt(5.5)

=

∞∑
m,n=1
m>n

1

ncmb

a
2∑

k=1

(−1)k−1 a!(2π)a+1−2k

(a+ 1− 2k)!(m− n)2k

=

a
2∑

k=1

(−1)k−1 a!(2π)
a+1−2k

(a+ 1− 2k)!

∞∑
n=1

∞∑
m=n+1

1

ncmb(m− n)2k

=

a
2∑

k=1

(−1)k−1 a!(2π)
a+1−2k

(a+ 1− 2k)!

∞∑
n=1

∞∑
l=1

1

l2knc(n+ l)b

=

a
2∑

k=1

(−1)k−1 a!(2π)
a+1−2k

(a+ 1− 2k)!
ω(2k, c, b)

and similarly
(5.6)

∞∑
m,n=1
m<n

1

ncmb

∫ 2π

0
ta cos((m− n)t) dt =

a
2∑

k=1

(−1)k−1 a!(2π)
a+1−2k

(a+ 1− 2k)!
ω(2k, b, c).

Therefore, if b and c are both even, we have

CL(a, b, c)(5.7)

=
(2π)a

a+ 1
ζ(b+ c)

+

a
2∑

k=1

(−1)k−1 a!(2π)a−2k

(a+ 1− 2k)!
[ω(2k, b, c) + ω(2k, c, b)− ω(c, b, 2k)]

= Qζ(2)
a
2 ζ(b+ c)

+

a
2∑

k=1

Qζ(2)
a
2
−k [ω(2k, b, c) + ω(2k, c, b)− ω(c, b, 2k)] .
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On the other hand by Equation (5.1),∫ 2π

0
ta cos(mt) cos(nt) dt =

1

2

∫ 2π

0
ta cos((m+n)t) dt+

1

2

∫ 2π

0
ta cos((m−n)t) dt.

So, if b, c are both odd and at least one of them is different from 1, by making
use of equations (5.3), (5.4), (5.5) and (5.6) we obtain that

CL(a, b, c)(5.8)

=
1

π

∫ 2π

0
ta

∞∑
m=1

cos(mt)

mb

∞∑
n=1

cos(nt)

nc
dt

=
1

π

∞∑
m=1

∞∑
n=1

1

mbnc

∫ 2π

0
ta cos(mt) cos(nt) dt

=
1

2π

∞∑
m=1

∞∑
n=1

1

mbnc

∫ 2π

0
ta cos((m+ n)t) dt

+
1

2π

∞∑
m=1

∞∑
n=1

1

mbnc

∫ 2π

0
ta cos((m− n)t) dt

=
(2π)a

a+ 1
ζ(b+ c)

+

a
2∑

k=1

(−1)k−1 a!(2π)a−2k

(a+ 1− 2k)!
[ω(2k, b, c) + ω(2k, c, b) + ω(c, b, 2k)]

= Qζ(2)
a
2 ζ(b+ c)

+

a
2∑

k=1

Qζ(2)
a
2
−k [ω(2k, b, c) + ω(2k, c, b) + ω(c, b, 2k)]

as desired. The result of the theorem on Euler sums H(p, q) directly follows
from Theorem 1.1 and Equations (5.7), (5.8). So, we are done with the proof
of Theorem 1.2.

We next recompute the Euler sum H(2, 4) and evaluate the integrals
CL(2, 2, 2) and CL(3, 2, 1) in terms of the special values of the Riemann zeta
function using our approach. For the computation of H(2, 4), we compute the
double series ω(2, 2, 2) and for the computation of the double series ω(2, 2, 2),
we use some arguments of [3]. We give the following proof in full details as it
reflects the idea of Theorem 7.1.

Corollary 5.1. We have the following evaluations:

i. H(2, 4) = ζ(3)2 − 1

3
ζ(6).
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ii. CL(2, 2, 2) =
44

3
ζ(6).

iii. CL(3, 2, 1) = −22ζ(6).

Proof. (i) Taking r = 1 in Equation (4.8), we have

1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
t2 cos(nt) dt(5.9)

=
3

π

∫ 2π

0
t2Sl4(t) dt+

1

2π

∫ 2π

0
t2Sl2(t)Sl2(t) dt−

1

2
CL(2, 2, 2).

Taking r = 1 in Equation (4.9), we also have

1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
t2 cos(nt) dt = 8H(1, 5) + 4H(2, 4).(5.10)

On the other hand,
(5.11)
3

π

∫ 2π

0
t2Sl4(t) dt =

3

π

∫ 2π

0
t2
(
π4

90
− π2t2

12
+
πt3

12
− t4

48

)
dt =

12

945
π6 = 12ζ(6)

and
(5.12)

1

2π

∫ 2π

0
t2Sl2(t)Sl2(t) dt =

1

2π

∫ 2π

0
t2
(
π2

6
− πt

2
+
t2

4

)2

dt =
8

945
π6 = 8ζ(6)

by direct computation. Taking a = b = c = 2 in Equation (5.7), we get

(5.13) −1

2
CL(2, 2, 2) = −4π2

6
ζ(4)− ω(2, 2, 2) = −4ζ(2)ζ(4)− ω(2, 2, 2).

In order to compute the double series ω(2, 2, 2), for every integer p > 1 and
x > 0 we define the function fp(x) by

fp(x) =
∞∑
n=1

1

np(n+ x)
.

It is well-known that

f1(x) =
1

x
(ψ(x+ 1) + γ),

where ψ is the digamma function and γ is Euler’s constant. Then,

f2(x) =
∞∑
n=1

1

n2(n+ x)
=

∞∑
n=1

x+ n− n

n2x(n+ x)
=

∞∑
n=1

1

n2x
−

∞∑
n=1

1

nx(n+ x)

=
1

x
(ζ(2)− f1(x)) =

1

x
ζ(2)− 1

x2
(ψ(x+ 1) + γ).
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Therefore,

d

dx

(
−

∞∑
n=1

1

n2(n+ x)

)
=

d

dx

(
−1

x
ζ(2) +

1

x2
(ψ(x+ 1) + γ)

)
so that

∞∑
n=1

1

n2(n+ x)2
=

1

x2
ζ(2)− 2

x3
(ψ(x+ 1) + γ) +

1

x2
ψ′(x+ 1).

Then since

ψ(m+ 1) + γ = hm and ψ′(m+ 1) = ζ(2)−H(2)
m

for every positive integer m, we get

ω(2, 2, 2) =

∞∑
m=1

1

m2

∞∑
n=1

1

n2(n+m)2
(5.14)

=
∞∑

m=1

1

m2

(
1

m2
ζ(2)− 2

m3
hm +

1

m2
(ζ(2)−H(2)

m )

)
= 2ζ(2)ζ(4)− 2H(1, 5)−H(2, 4).

Now combining Equation (5.10), (5.11), (5.12), (5.13) and (5.14) via Equation
(5.9), we get

(5.15) 6H(1, 5) + 3H(2, 4) = 20ζ(6)− 6ζ(2)ζ(4).

By Equation (1.1),

(5.16) H(1, 5) =
7

2
ζ(6)− ζ(2)ζ(4)− 1

2
ζ(3)2.

Hence substituting Equation (5.16) in Equation (5.15), we get

(5.17) H(2, 4) = ζ(3)2 − 1

3
ζ(6).

(ii) Equations (5.14), (5.16) and (5.17) give ω(2, 2, 2) in terms of the
special values of the Riemann zeta function by

(5.18) ω(2, 2, 2) = 4ζ(2)ζ(4)− 20

3
ζ(6).

Then from Equations (5.13) and (5.18), it follows that

CL(2, 2, 2) = 8ζ(2)ζ(4) + 2ω(2, 2, 2) = 16ζ(2)ζ(4)− 40

3
ζ(6) =

44

3
ζ(6).

(iii) Taking r = 1 in Equation (4.11), we get

CL(3, 2, 1) =
1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
t3 sin(nt) dt(5.19)
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− 3

π

∫ 2π

0
t3Sl3(t) dt−

1

π

∫ 2π

0
t3Sl2(t)Sl1(t) dt.

Taking r = 1 in Equation (4.12) gives that

1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
t3 sin(nt) dt

= −16π2H(1, 3) + 24H(1, 5)− 8π2H(2, 2) + 12H(2, 4).

When we write the Euler sums H(1, 3), H(1, 5), H(2, 2) and H(2, 4) in the
last equation in terms of the special values of the Riemann zeta function using
Equations (1.1), (1.2) and (5.17), we get

(5.20)
1

π

∫ 2π

0

∞∑
n=1

(
H

(2)
n

n
+

2hn
n2

)
t3 sin(nt) dt = −319ζ(6).

On the other hand,
(5.21)
3

π

∫ 2π

0
t3Sl3(t) dt =

3

π

∫ 2π

0
t3
(
π2t

6
− πt2

4
+
t3

12

)
dt = − 8

35
π6 = −216ζ(6)

and

1

π

∫ 2π

0
t3Sl2(t)Sl1(t) dt =

1

π

∫ 2π

0
t3
(
π2

6
− πt

2
+
t2

4

)(
π

2
− t

2

)
dt(5.22)

= − 3

35
π6 = −81ζ(6).

Hence by combining Equations (5.19), (5.20), (5.21) and (5.22), we get

CL(3, 2, 1) = −22ζ(6).

as desired.

6. PROOF OF THEOREM 1.4

In case p = q, the reciprocity relation (1.2) gives H(p, q) = H(p, p) di-
rectly in terms of the special values of the Riemann zeta function as

H(p, p) =
1

2

[
ζ(p)2 + ζ(2p)

]
.

By Corollary 5.1, the theorem holds for (p, q) = (2, 4). If p ̸= q and the theorem
holds for H(p, q), then by reciprocity it also holds for H(q, p) as

H(q, p) = ζ(p)ζ(q) + ζ(p+ q)−H(p, q).

Hence the theorem also holds for (p, q) = (4, 2) and it remains to prove the
theorem when p is odd and q is even.
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So, assume p ≥ 3 is odd and q = 2r + 2 is even. Multiplying both sides
of the first equation of Lemma 2.2 by t2r+1, we have

(6.1)

∞∑
n=1

H
(p)
n

n
t2r+1 sin(nt)

= t2r+1Clp+1(t) +

p−1
2∑

k=0

(−1)kakt
2r+1

(
Slp−k(t)Clk+1(t) + Slk+1(t)Clp−k(t)

)
,

where ak = 1 for 0 ≤ k ≤ p− 3

2
and a p−1

2
=

1

2
. We will now integrate both

sides of Equation (6.1) from 0 to 2π and equate them. Let us begin with the
left-hand side. By making use of Theorem 1.3 and Equation (3.7), we get∫ 2π

0

∞∑
n=1

H
(p)
n

n
t2r+1 sin(nt) dt =

∞∑
n=1

H
(p)
n

n

∫ 2π

0
t2r+1 sin(nt) dt(6.2)

=
∞∑
n=1

H
(p)
n

n

r+1∑
k=1

(−1)k
(2r + 1)!(2π)2r+3−2k

(2r + 3− 2k)!n2k−1

=

r+1∑
k=1

Qπ2r+3−2kH(p, 2k).

When we integrate the right-hand side of Equation (6.1), we encounter integrals∫ 2π

0
t2r+1Clp+1(t) dt and

∫ 2π

0
t2r+1Sla(t)Clb(t) dt

where a and b are positive integers with a + b = p + 1. Note that if b > 1
is an integer, then Theorem 1.3 clearly applies to the sequence (bn)n, where
bn = 1/nb so that tmClb(t) is termwise integrable on [0, 2π] for every non-
negative integer m. So,∫ 2π

0
t2r+1Clp+1(t) dt =

∞∑
n=1

1

np+1

∫ 2π

0
t2r+1 sin(nt) dt(6.3)

=

∞∑
n=1

1

np+1

r+1∑
k=1

(−1)k
(2r + 1)!(2π)2r+3−2k

(2r + 3− 2k)!n2k−1

=

r+1∑
k=1

Qπ2r+3−2kζ(p+ 2k).

Now let us compute integrals of the form∫ 2π

0
t2r+1Sla(t)Clb(t) dt
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where a and b are positive integers such that a + b = p + 1 is even. In case a
and b are both even,

Sla(t) =

a∑
j=0

Qπa−jtj and Clb(t) =

∞∑
n=1

sin(nt)

nb

and ∫ 2π

0
t2r+1Sla(t)Clb(t) dt(6.4)

=

a∑
j=0

Qπa−j

∫ 2π

0
t2r+j+1Clb(t) dt

=

a∑
j=0

Qπa−j
∞∑
n=1

1

nb

∫ 2π

0
t2r+j+1 sin(nt) dt

=
a∑

j=0

Qπa−j
∞∑
n=1

1

nb

[ 2r+j+2
2

]∑
k=1

(−1)k
(2r + j + 1)!(2π)2r+j+3−2k

(2r + j + 3− 2k)!n2k−1

=
a∑

j=0

r+1+[ j
2
]∑

k=1

Qπ2r+a+3−2kζ(b− 1 + 2k)

=

r+1+a
2∑

k=1

Qπ2r+a+3−2kζ(b− 1 + 2k).

In case a and b are both odd,

Clb(t) =
∞∑
n=1

cos(nt)

nb

and using Equation (3.10) we similarly get

(6.5)

∫ 2π

0
t2r+1Sla(t)Clb(t) dt =

r+a+1
2∑

k=1

Qπ2r+a+2−2kζ(b+ 2k).

Now combining equations (6.2), (6.3), (6.4) and (6.5), we get

r+1∑
k=1

Qπ2r+3−2kH(p, 2k) =

r+1∑
k=1

Qπ2r+3−2kζ(p+ 2k)

+

p−1
2∑

k=0
k:even

r+ p+1−k
2∑

i=1

Qπ2r+p+2−2i−kζ(1 + 2i+ k)
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+

p−1
2∑

k=0
k:even

r+1+ k
2∑

i=1

Qπ2r+3−2i+kζ(p+ 2i− k)

+

p−1
2∑

k=0
k:odd

r+1+ p−k
2∑

i=1

Qπ2r+p+3−2i−kζ(2i+ k)

+

p−1
2∑

k=0
k:odd

r+1+ k+1
2∑

i=1

Qπ2r+4−2i+kζ(p− 1 + 2i− k).

Dividing both sides of the above equation by π and substituting 6ζ(2) for π2,
we get

r+1∑
k=1

Qζ(2)r+1−kH(p, 2k) =
r+1∑
k=1

Qζ(p+ 2k)ζ(2)r+1−k(6.6)

+

p−1
2∑

k=0
k:even

r+ p−k+1
2∑

i=1

Qζ(1 + 2i+ k)ζ(2)r−i+ p−k+1
2

+

p−1
2∑

k=0
k:even

r+1+ k
2∑

i=1

Qζ(p+ 2i− k)ζ(2)r−i+ k+2
2

+

p−1
2∑

k=0
k:odd

r+1+ p−k
2∑

i=1

Qζ(2i+ k)ζ(2)r−i+ p−k+2
2

+

p−1
2∑

k=0
k:odd

r+1+ k+1
2∑

i=1

Qζ(p− 1 + 2i− k)ζ(2)r−i+ k+3
2

where the right-hand side is always in terms of special Riemann zeta values for
all integers r ≥ 0.

Now to prove the theorem for all odd p ≥ 3 and even q = 2r + 2, we fix
p and proceed by induction on r. For r = 0, the left-hand side of Equation
(6.6) is a non-zero rational multiple of H(p, 2), hence H(p, 2) can be evaluated
in terms of the special values of the Riemann zeta function. For the inductive
step, assume the theorem holds for all non-negative integers s < r. By Equation
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(6.6),

(6.7) H(p, 2r + 2) = −
r∑

k=1

Qζ(2)r+1−kH(p, 2k) + RHS

where RHS stands for the right-hand side of Equation (6.6). By the induction
hypothesis, H(p, 2k) can be evaluated in terms of special zeta values for all
1 ≤ k ≤ r, so can H(p, 2r + 2) by Equation (6.7).

7. SOME COROLLARIES

Our first corollary states that for an even weight w, if some Euler sums
of even weight up to a certain weight can be evaluated in terms of the special
values of the Riemann zeta function, then all Euler sums of even weight up to
that weight can be evaluated in terms of the special values of the Riemann zeta
function. In other words, if the conjecture on Euler sums of even weight that we
mentioned before is true for some H(p, q) with an even weight w = p+ q ≥ 8,
then there is another pair (p1, q1) where p1 + q1 ≤ w, p1 /∈ {p, q} and the
conjecture also holds for H(p1, q1). The following result may also follow from
what Euler did, and for rigorous proofs for Euler’s results, we direct the reader
to [5].

Corollary 7.1. Let w ≥ 8 be an even integer. For any even integer ρ
with 8 ≤ ρ ≤ w, suppose that

|{H(p, q) : p+ q = ρ}| − |{H(p, q) ∈ Ω : p+ q = ρ}| ≤ 2,

where Ω = Q [ζ(k) : k ≥ 2]. Then, H(p, q) ∈ Ω for all p, q such that p + q is
even and p+ q ≤ w.

Proof. Let r ≥ 2. By Equations (4.8) and (4.9),

1

π

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

) r∑
k=1

(−1)k−1 (2r)!(2π)2r+1−2k

(2r + 1− 2k)!n2k
= Qπ2r+4 − 1

2
CL(2r, 2, 2).

Denote a typical element of the ring Ω = Q [ζ(k) : k ≥ 2] by ZVi (zeta value)
for some i. Note that πh ∈ Ω for any even integer h ≥ 0. Then since π2r+4 ∈ Ω
and H(1,m) ∈ Ω for every integer m > 1, we get

(7.1) (−1)r−12(2r)!H(2, 2r+2)+
1

π

r−1∑
k=2

(−1)k−1 (2r)!(2π)
2r+1−2k

(2r + 1− 2k)!
H(2, 2+ 2k)

= ZV1 −
1

2
CL(2r, 2, 2).
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By Equation (5.7),

CL(2r, 2, 2) = ZV2 + (−1)r−1(2r)! [2ω(2r, 2, 2)− ω(2, 2, 2r)](7.2)

+

r−1∑
k=1

(−1)k−1 (2r)!(2π)
2r−2k

(2r + 1− 2k)!
[2ω(2k, 2, 2)− ω(2, 2, 2k)] .

By [3, Corollary 2.4] and Equation (1.1),

ω(a, b, c) = ZV3 +
(−1)a−1

(a− 1)!

c−1∑
k=1

(a+ c− k − 2)!

(c− k − 1)!
H(k + 1, a+ b+ c− (k + 1)).

This means that ω(a, b, c) can be evaluated in terms of the special values of
the Riemann zeta function and Euler sums of weight a+ b+ c. Hence,

(7.3) ω(2r, 2, 2) = ZV4 −H(2, 2r + 2)

and
(7.4)

ω(2, 2, 2r) = ZV5− (2r−1)H(2, 2r+2)−
2r−1∑
k=2

(2r−k)H(k+1, 2r+4− (k+1)).

Combining Equations (7.1), (7.2), (7.3) and (7.4), we get

(−1)r−12(2r)!H(2, 2r+2)+
1

π

r−1∑
k=2

(−1)k−1 (2r)!(2π)
2r+1−2k

(2r + 1− 2k)!
H(2, 2+2k)(7.5)

= ZV6 + (−1)r
(2r)!

2
(2r − 3)H(2, 2r + 2)

+
1

2
(−1)r(2r)!

2r−1∑
k=2

(2r − k)H(k + 1, 2r + 4− (k + 1))

− 1

2

r−1∑
k=1

(−1)k−1 (2r)!(2π)
2r−2k

(2r + 1− 2k)!
[2ω(2k, 2, 2)− ω(2, 2, 2k)] .

Observe that the coefficients of H(2, 2r + 2) on opposite sides of the above
equation have opposite signs, so they cannot cancel each other.

Now we proceed by induction on weight w = 2r + 4. If we take r = 2 in
Equation (7.5), one sees that

−48H(2, 6) = ZV7 + 12H(2, 6) + 24H(3, 5).

This yields that H(2, 6) ∈ Ω if and only if H(3, 5) ∈ Ω. So, by reciprocity
of Euler sums (1.2), we have the assertion for w = 8. Suppose the theorem
holds for w − 2 = 2r + 2 ≥ 8. We will show that it also holds for w = 2r + 4.
So, we suppose that for any even integer ρ with 8 ≤ ρ ≤ w, at most two of
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H(p, q) such that p + q = ρ is not in Q [ζ(k) : k ≥ 2]. Then by the induction
hypothesis all Euler sums H(p, q) of weight ≤ w− 2 are in Ω. Note also that if
H(p, q) ∈ Ω, then πhH(p, q) ∈ Ω for any even h ≥ 0. Then by Equation (7.5),
we arrive at the equality

(7.6) αrH(2, 2r+2) = ZV8+
1

2
(−1)r(2r)!

2r−1∑
k=2

(2r−k)H(k+1, 2r+4−(k+1))

for some non-zero integer αr. In the last equation, only Euler sums H(p, q) of
weight w with p ≤ 2r occur and their coefficients are non-zero.

If allH(p, q) of weight w with p ≤ 2r are in Ω possibly except forH(2, 2r+
2) and H(2r + 2, 2), since H(2r + 2, 2) does not occur on Equation (7.6) and
αr ̸= 0, we get that H(2, 2r + 2) ∈ Ω by Equation (7.6). By reciprocity,
H(2r+2, 2) ∈ Ω as well. The same idea applies if all H(p, q) of weight w with
p ≤ 2r are in Ω possibly except for H(3, 2r+1) and H(2r+1, 3). Now suppose
that all H(p, q) of weight w with p ≤ 2r are in Ω possibly except for H(p, q)
and H(q, p) where 4 ≤ p ≤ 2r. Observe that both H(p, q) and H(q, p) occur in
Equation (7.6) with non-zero distinct coefficients, say α, β. Then by Equation
(7.6), αH(p, q) + βH(q, p) is in Ω and by reciprocity, H(p, q) +H(q, p) is also
in Ω. This yields that both H(p, q) and H(q, p) are in Ω. Hence, if for any
even integer ρ with 8 ≤ ρ ≤ w, at most two Euler sums of weight ρ are not in
Ω, then actually all Euler sums of even weight ≤ w are in Ω.

For instance, if we take w to be 8, then we see that H(2, 6) is not in Ω if
and only if H(3, 5) is not in Ω. For w = 10, we obtain that if H(2, 8) is not in
Ω, then at least one of H(2, 6), H(4, 6) and H(3, 7) is also not in Ω. Similarly,
if H(4, 6) is not in Ω, then at least one of H(2, 6), H(2, 8) and H(3, 7) is also
not in Ω; and if H(3, 7) is not in Ω, then at least one of H(2, 6), H(2, 8) and
H(4, 6) is also not in Ω.

The Catalan constant is defined by the series

G =

∞∑
n=1

(−1)n−1 1

(2n− 1)2
.

It is still not known whether G is rational or not. However, it is commonly
believed that G is even transcendental.

Our second corollary states that if G is algebraic then we obtain a new
transcendental number related to the generalized harmonic series.

Corollary 7.2. Either the Catalan constant G is transcendental or at
least one of the series

∞∑
n=1

(−1)n
H

(2)
2n

n2
,

∞∑
n=1

(−1)n
h2n
n3
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is transcendental.

Proof. Take t =
π

2
in Lemma 2.4. Note that cos

(nπ
2

)
= (−1)

n
2 if n is

even and zero otherwise. Thus,

∞∑
n=1

(
H

(2)
n

n2
+

2hn
n3

)
cos
(nπ

2

)
=

1

4

∞∑
n=1

(−1)n

(
H

(2)
2n

n2
+
h2n
n3

)
.

On the other hand,

3Sl4

(π
2

)
= 3

[
π4

90
− π2

12

(π
2

)2
+

π

12

(π
2

)3
− 1

48

(π
2

)4]
= − 7

3840
π4,

1

2
Sl2

(π
2

)
Sl2

(π
2

)
=

1

2

(
π2

6
− π2

4
+
π2

16

)2

=
1

4608
π4

and

−1

2
Cl2

(π
2

)
Cl2

(π
2

)
= −1

2
G2

as
G = Cl2

(π
2

)
.

Hence,

1

4

∞∑
n=1

(−1)n

(
H

(2)
2n

n2
+
h2n
n3

)
= qπ4 − 1

2
G2

for some non-zero rational number q and since π is transcendental, we obtain
the corollary.
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Istanbul Bilgi University

Faculty of Engineering and Natural Sciences
Department of Mathematics

Istanbul, Turkey
sermin.celik@bilgi.edu.tr

Haydar Göral
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