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ABSTRACT

DEEP LEARNING BASED REAL-TIME SEQUENTIAL FACIAL
EXPRESSION ANALYSIS USING GEOMETRIC FEATURES

In this thesis, macro and micro facial expression sequences from various datasets
are trained using neural networks to classify them in one of the basic emotions. In
macro expression experiments, for each frame of the sequences facial landmarks are ex-
tracted using MediaPipe FaceMesh solution and geometric features using both spatial
and temporal information based on these landmarks are created. To classify the features,
ConvLSTM2D followed by multilayer perceptron blocks are used. In order to achieve
real time classification performance, all algorithms are implemented compatible to run
on GPU. The proposed method for macro expressions is tested with CK+, Oulu-CASIA
VIS, Oulu-CASIA NIR and MMI datasets. In micro expression experiments, apart from
geometric features also blendshape features provided by MediaPipe are used. In order
to improve classification performance, Phase-Based Video Motion Processing technique
is used to magnify subtle facial movements of micro expressions. Experiments are con-
ducted separately on same classification layers that consist of ConvLSTM1D followed by
multilayer perceptron blocks. The proposed method for micro expressions is tested with
SAMM and CASME II datasets. The datasets utilized in this study were accessed upon
signing corresponding license agreements. Each dataset is specifically designated for aca-
demic purposes and is made available under these agreements. Only data from subjects
who provided consent for their information to be used in publications was included in the
thesis. The license agreements for each dataset can be found in the appendices section.
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ÖZET

DERİN ÖĞRENME TABANLI GEOMETRİK ÖZELLİKLERİ
KULLANARAK GERÇEK ZAMANLI SIRALI YÜZ İFADESİ ANALİZİ

Bu tezde, çeşitli veri setlerinden makro ve mikro yüz ifadesi dizileri, temel duygu-
lardan birinde sınıflandırmak için sinir ağları kullanılarak eğitilmiştir. Makro ifade
deneylerinde, dizilerin her bir karesi için MediaPipe FaceMesh çözümü kullanılarak yüz
işaretleri çıkarılır ve bu noktalara dayalı olarak hem uzamsal hem de zamansal bilgiler kul-
lanılarak geometrik özellikler oluşturulur. Öznitelikleri sınıflandırmak için ConvLSTM2D
ve ardından çok katmanlı algılayıcı blokları kullanılır. Gerçek zamanlı sınıflandırma per-
formansı elde etmek için, tüm algoritmalar GPU üzerinde çalışacak şekilde uyarlanmıştır.
Makro ifadeler için önerilen yöntem CK+, Oulu-CASIA VIS, Oulu-CASIA NIR ve MMI
veri setleri ile test edilmiştir. Mikro ifade deneylerinde geometrik özelliklerin yanı sıra
MediaPipe tarafından sağlanan blendshape özellikleri de kullanılmaktadır. Sınıflandırma
performansını iyileştirmek için, mikro ifadelerin ince yüz hareketlerini büyütmek için
Faz Tabanlı Video Hareket İşleme tekniği kullanılır. Deneyler, ConvLSTM1D’yi takip
eden çok katmanlı algılayıcı bloklardan oluşan aynı sınıflandırma katmanları üzerinde
ayrı ayrı yürütülür. Mikro ifadeler için önerilen yöntem, SAMM ve CASME II veri setleri
ile test edilmiştir. Bu çalışmada kullanılan veri setlerine, ilgili lisans sözleşmelerinin
imzalanmasından sonra erişilmiştir. Her veri setinin akademik amaçlar için kullanmaya
uygunluğu sözleşmelerde belirtilmiş ve bu anlaşmalar kapsamında kullanmıştır. Tezde
sadece bilgilerinin yayınlarda kullanılmasına izin veren kişilerden elde edilen verilere yer
verilmiştir. Her veri seti için lisans sözleşmeleri ekler bölümünde bulunmaktadır.
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CHAPTER 1

INTRODUCTION

Humans possess the unique ability to communicate emotions through their facial
expressions, which are considered one of the most powerful, natural, and universal forms
of expression (Li and Deng, 2020). Connection between emotions and facial expression
was found in a collaborative study with Ekman, Levenson and Friesen. In that study it is
discovered that performing certain facial muscular actions generates emotion physiology
(Ekman, 1992b). In 1972, Ekman et al. conducted a review of prior research on the
interpretation of facial expressions in western cultures and discovered that all studies
found evidence of six basic emotions: happiness, surprise, fear, sadness, anger, and
disgust with a hint of contempt. They observed that in some cultures, fear and surprise
can be identical and hard to classify (Ekman, 1992a).

The analysis of facial expressions relies on the extraction of specific features,
typically categorized into two types of according to their feature representations: spatial
and spatio-temporal (Li and Deng, 2020). Spatial features represent information derived
from static images, like a single photo capturing a distinct facial expression that reveals
a specific emotion such as joy, anger, or surprise. On the other hand, spatio-temporal
features encapsulate data extracted from a series of images, akin to a video that sequences
a person’s emotional display over time. This method captures the dynamic progression
of facial movements, offering a comprehensive and nuanced insight into how a person’s
emotional state might evolve. For instance, it could trace the transition from surprise
to delight, or from calm to fury, which helps to track the temporal development and
complexity of emotions (Pantic and Patras, 2006).

The process of facial expression recognition task includes four main steps (Sharma,
Singh, and Gautam, 2019). The first of these is pre-processing, which includes detecting
the face within an image or a series of images. Once the face is detected, the process
advances to the second step: generating additional facial content, such as identifying
and mapping the facial landmarks. These landmarks, which include key features like
the eyes, nose, mouth, and contour of the face, provide a detailed facial structure that
becomes instrumental in the subsequent stage of feature extraction. The third step is
feature extraction, where the system isolates important attributes from the face using the
generated landmarks. This captures the unique aspects of each facial expression and
prepares the data for the final stage. In the concluding step, emotion classification, the
system interprets the extracted facial features, assigning them to specific emotional states,
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which could range from basic emotions like happiness, sadness, or anger, to more complex
emotional nuances (Xie et al., 2022).

There are three commonly used techniques in facial feature extraction that are
prevalent in the literature: geometric, appearance-based, and motion-based methods (Ku-
mari, Rajesh, and Pooja, 2015; Mollahosseini, Chan, and Mahoor, 2016). Appearance-
based methods, one of the foremost approaches, utilize a pixel-based approach to extract
facial features. State-of-the-art techniques often incorporate attributes such as pixel in-
tensities, Gabor filters, Local Binary Patterns (LBP), Local Phase Quantization (LPQ),
and Histogram of Oriented Gradients (HoG) to obtain information about the face (Molla-
hosseini, Chan, and Mahoor, 2016). Meanwhile, motion-based methods focus on charac-
teristics related to movement, such as shifts in position and shape. These alterations are
predominantly driven by the contractions and relaxations of facial muscles during emo-
tional expressions (Zhang and Tjondronegoro, 2011). Techniques in this domain might
involve optical flow, Motion History Images (MHI), and volume LBP to capture these
dynamic changes (Mollahosseini, Chan, and Mahoor, 2016).

In feature extraction perspective, Convolutional Neural Network (CNN) which is
widely used by deep learning frameworks also utilized as the most common methodology
to extract features for pixel centric approaches (Aloysius and Geetha, 2017). Geometric
features that are extracted with the help of landmarks are often mathematical attributes
like Euclidean distance, slope, angle and coordinates of landmarks (Álvarez et al., 2018;
Buhari et al., 2020; Khan, 2018; Qiu and Wan, 2019; Rohith Raj et al., 2020; Sharma,
Singh, and Gautam, 2019).

One of the key advantages of geometric features is their ease of computation, as
they require relatively less processing power compared to more complex feature extraction
methodologies such as CNNs. This results in faster processing of frames in a sequence,
making geometric features an attractive choice for real-time applications. Furthermore,
geometric features are highly robust to unwanted disruptions in the facial image, such as
variations in illumination, rotation, and misalignment. These disruptions can often con-
found conventional pixel-centric and motion-based features, leading to reduced accuracy
and reliability in facial expression recognition tasks. By contrast, geometric features are
able to circumvent such disruptions by focusing on the underlying structure of the face,
resulting in more accurate and reliable recognition of facial expressions.

Given the critical role of facial expressions in understanding emotions (Ekman,
1992b), the study of emotion is highly dependent on the measurement of facial expressions,
leading to the development of several observer-based systems. Among these systems, the
Facial Action Coding System (FACS) stands out as the most extensively used and rec-
ognized for its comprehensive methodology, psychometric rigor, and broad applicability

2



across diverse scenarios (Cohn, Ambadar, and Ekman, 2007). FACS is the most com-
monly utilized scheme for breaking down facial expressions into their individual muscle
movements, referred to as Action Units (AUs). FACS enables the description of any facial
expression as a combination of specific Action Units (AUs) seen in Figure 1.1, providing
a systematic approach for analyzing and understanding the complexities of facial expres-
sions. Ekman and Friesen initially proposed the FACS and later updated it in 2002 to
account for micro-expressions (Xie et al., 2022).

Macro-expressions are commonly observed during daily interactions. Typically,
lasting between 0.5 to 4 seconds, they manifest with noticeable visibility and intensity. In
contrast, micro-expressions are fleeting, existing for no longer than half a second and can
easily be overlooked without focused attention. This duration and intensity differentiate
these two types of expressions. Generally, macro-expressions present themselves with
higher visibility and intensity than micro-expressions, making them easier to recognize
(Xie et al., 2022). Micro-expressions, however, are brief and often involuntary facial
expressions. They commonly surface when individuals attempt to conceal their true
emotions, especially under high-stress situations. Their ephemeral and unconscious nature
makes them an important topic in understanding human emotion and its triggers. Figure 1.2
shows the difference between macro and micro expression when the emotion intensity at its
peak level. The study of micro-expressions and their role in nonverbal communication has
been explored by a range of disciplines, including psychology, sociology, neuroscience,
and computer vision. This interdisciplinary approach has led to a heightened awareness and
sensitivity to these subtle facial behaviors, enabling us to better understand comprehensive
human communication beyond spoken language (Xie et al., 2022).

The process of emotional expression in the face can be categorized into three
consecutive temporal phases: onset, apex and offset. Onset is the starting phase of
emotional expression, where the first hints of an emotion begin to surface. Next, the
emotional expression escalates to the apex phase. Here, the emotion is fully visible,
reaching its peak intensity. This is the stage where the emotion is most pronounced and
easily identifiable. The final phase is offset, characterized by a gradual relaxation of the
facial muscles post-apex. In this stage, the intensity of the emotional expression slowly
diminishes, signaling the end of the emotional display (Wu, Lin, and Wei, 2014).

1.1. Motivation

Facial expressions are a fundamental aspect of human communication and play a
crucial role in conveying emotions and facilitating social interaction. Recognizing and
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Figure 1.1: List of action units described in Facial Action Coding System (FACS) (Source:
Barrett et al., 2019)
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(a) (b)

Figure 1.2: Comparison of macro and micro expressions displaying happiness emotion at
their peak intensity. (a) Macro expression example taken from CK+ dataset
(Source: Lucey et al., 2010). (b) Micro expression example taken from
CASME II dataset (Source: Yan et al., 2014).

interpreting these expressions accurately is essential for a wide range of applications,
such as affective computing, human-robot interaction, and emotion recognition (Kumari,
Rajesh, and Pooja, 2015). However, accurate emotion recognition from facial expressions
is challenging due to various factors, such as complex pre-processing of images, variations
in illumination (Zhao et al., 2011), facial accessories, background noise, and differences
in skin color (Adyapady and Annappa, 2023). Additionally, most existing methods lack
of real-time processing speed. These challenges can significantly impact the accuracy and
reliability of facial expression recognition systems and limit their practical applicability.
Therefore, there is a need for a more robust and efficient approach to facial expression
recognition that can handle these challenges and predict emotions accurately in real-world
scenarios.

1.1.1. Contributions

This thesis proposes a novel approach to facial expression recognition and emotion
classification using geometric features extracted from facial landmarks. Our method
utilizes a faster and more efficient facial landmark extraction algorithm, resulting in a
significant reduction in pre-processing time. We introduce two separate studies focusing
on predicting emotions from macro and micro expressions. In the macro expression study,
we extract geometric features that capture changes of movement of facial muscles from
neutral to most intense emotion state(apex), enabling more accurate emotion recognition.
In the micro expression study, we extract subtle changes in facial muscle movements
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and use them to predict emotions with high precision. We evaluate our approach on
several benchmark datasets and show that it performs competitive accuracies compared
to state-of-the-art methods in terms of recognition accuracy and out-performs in terms of
processing speed.
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CHAPTER 2

REAL-TIME SEQUENTIAL MACRO EXPRESSION

RECOGNITION USING GEOMETRIC FEATURES

2.1. Introduction

In this chapter, we present real-time sequential macro expression recognition
method using geometric features extracted from facial landmarks. We begin with a
literature review of existing methods for macro facial expression recognition, with a
particular focus on geometric features. We then describe our methodology for real-time
sequential macro expression recognition, which includes facial landmark detection, feature
extraction, and classification using machine learning techniques. We present experimental
results and provide a comprehensive discussion regarding the performance of our approach
in terms of recognition accuracy, processing speed, and robustness in handling variations
in facial expression intensity. Finally, we conclude with a summary of our contributions
and future directions for research in this area.

2.2. Literature Review

In this study, we employed a landmark-based facial feature extraction approach,
deviating from the more commonly utilized appearance-based (pixel centric) methodology
prevalent in the literature. Here, several prominent landmark-based studies that have
contributed significantly to facial expression recognition are highlighted. Choi et al.
adopted sequential approach for representing facial features, employed facial landmarks
to calculate the distances between all points and deriving their differences for consecutive
frames, produced construct termed as Landmark Feature Maps (LFM). These LFMs were
normalized to a range 0-255, generating LFM images. The facial features for each LFM
were then extracted using a VGG13-based Convolutional Neural Network (CNN). The
final layer incorporated Long Short-Term Memory (LSTM) and Multilayer Perceptron
(MLP) for the classification (Choi and Song, 2020). Building on the LFM methodology,
Kim et al. proposed “squeezed LFM” designed to eliminate redundant duplicate data
within the LFM. They noted the inherent symmetry of LFMs about a diagonal axis,
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given that the distance from point x to point y mirrors that from point y to point x (Kim
et al., 2021). Apart from comparing distances between two points, alternate distance
feature approaches have been proposed. For instance, Raj et al. proposed identifying a
central point by calculating the mean of both axes, followed by determining the distance
of all points relative to this central point (Rohith Raj et al., 2020). Meanwhile, Alvarez
et al. fed a multilayer perceptron with two inputs: the first being the facial landmark
coordinates of a person showing an emotion, and the second being the distance between
this coordinates and the neutral state landmark coordinates of the same individual (Álvarez
et al., 2018). Similarly, Sharma et al. proposed raw landmark coordinates and certain
Euclidian distances that are manually picked as features (Sharma, Singh, and Gautam,
2019). Qui and Wan proposed to create an input vector by subtracting all landmark points
relative to their regional center points. They divided the face into four regions, each with
its own center point (Qiu and Wan, 2019). Beh et al. proposed six Euclidian distances
selected manually over eyebrow, eye and mouth regions of face. The ratios of these
distances to a reference distance were selected as features (Beh and Goh, 2019). Khan et
al. proposed all Euclidian distances of each pair of extracted landmarks and additionally
Euclidian distance of all landmarks relative to average point on the face to be used as
features (Khan, 2018). Buhari et al. proposed both Euclidian distances and slopes of
landmark pairs to be used as features. Facial regions were created based on Facial Action
Coding System proposed by Paul Ekman. Features extracted from full face landmarks and
landmarks belongs to created regions were experimented separately (Buhari et al., 2020).

In the literature mostly Dlib library’s pre-trained facial landmark detector is used
to extract facial landmarks (Álvarez et al., 2018; Beh and Goh, 2019; Buhari et al.,
2020; Rohith Raj et al., 2020). There are also several other algorithms like incremental
Parallel Cascade of Linear Regression (iPar–CLR) (Sharma, Singh, and Gautam, 2019)
and landmark detector of IntraFace software package (Khan, 2018). In the study by Choi et
al, facial landmark detection method which is called Supervision-by-Registration (SBR)
is used (Choi and Song, 2020). Also, some datasets like the Extended Cohn-Kanade
Dataset (CK+) comes with ready to use landmarks along with it which is tracked by an
Active Appearance Model algorithm (Lucey et al., 2010). In preprocessing perspective,
pixel centric approaches often require preprocessing before feeding image into neural
network. These can be face alignment, scaling, rotation, illumination and color fixes,
background and noise removal (Li and Deng, 2020). Landmark based approaches do
not require additional preprocessing as long as landmark detection algorithm can detect
required landmarks since all preprocessing is handled by the algorithm itself.

In this study MediaPipe Face Mesh is used to detect facial landmarks since it has an
impressive performance on GPUs and can deliver 478 landmarks in total that is higher than
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other landmark detection methods (Bazarevsky et al., 2019). To compare performance
of MediaPipe Face Mesh and another popular package dlib, average processing time
of both algorithms on a subject is measured. For each frame in the image sequence
of subject, Euclidean distance and angle features are calculated using extracted facial
landmark positions for selected landmark pairs. At neutral state calculated features are
taken as basis and the features from rest of the sequence are subtracted from basis features.
This approach is beneficial to reduce emotion intensity differences from person to person
and calibrating automatically to the neutral state of the person. We did not introduce any
preprocessing before using images from datasets, only raw images are used. Also, no data
augmentation is applied to increase subject count.

2.3. Methodology

2.3.1. Computational Setup

Our experiments are conducted in the environments with following specs: Ubuntu
OS, Intel i5-12600K CPU, 64 GB RAM, NVIDIA GeForce RTX 3060 12 GB GPU.
Training of the proposed framework and the preprocessing operations have functioned
using the Python programming language. We implemented our model in the Keras
backend of the TensorFlow 2.1 framework. The categorical cross-entropy loss function
and the Adam optimizer with default settings are used during the training. The batch size
and number of epochs are selected as 32 and 200.

2.3.2. Datasets

Given the focus of this study on the spatio-temporal features, only sequential
datasets are employed for the analysis. Figure 2.1 shows example images of subjects from
datasets and table 2.1 gives summary of used datasets.

The CK+ is a fully FACS-compatible dataset with 593 sequences captured from
123 subjects at 30 frames per second (FPS) with either 640x490 or 640x480 pixels
resolution. With the aid of two precisely synchronized Panasonic AG-7500 cameras,
the facial expressions of 210 individuals were meticulously captured and analyzed. The
participants, who ranged in age from 18 to 50, were predominantly female (69%) and of
Euro-American descent (81%), with Afro-American (13%) and other groups (6%) making
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Table 2.1: Summary of datasets used in macro expression experiments

Dataset Subject Sequence FPS Resolution Emotion EthnicityCount Count Count

CK+ 123 593 30 640x480 7
Euro-American (81%)
Afro-American (13%)

Other groups (6%)

Oulu-CASIA 80 2472 25 320x240 6 Finnish (~60%)
Chinese (~40%)

MMI 19 848 24 720x576 6
European

Asian
South American

up the remainder. Under the guidance of an experimenter, the subjects were directed to
execute a series of 23 facial expressions, which encompassed both individual action units
and various combinations thereof. Each sequence starts from a neutral state, ends at
the apex phase, and captures duration; hence frame count is different for each sequence.
The apex frame of each sequence is validated and labeled by emotion researchers with
reference to FACS Investigators Guide. The dataset consists of seven emotions, namely
anger, contempt, disgust, fear, happiness, sadness, and surprise (Kanade, Cohn, and Tian,
2000; Lucey et al., 2010). The Oulu-CASIA is a sequential dataset with two variations:
one is captured with visible light conditions (VIS), and the other one is captured with near-
infrared conditions (NIR). A total of 80 people between 23 and 58 years old participated,
and all expressions were captured at 25 FPS with an image resolution of 320×240 pixels.
The database is comprised of two distinct parts. The first segment was captured in February
2008 by the Machine Vision Group of the University of Oulu in Finland, featuring a total
of 50 subjects, a majority of whom were Finnish individuals. The second portion was
recorded in April 2009 in Beĳing by the National Laboratory of Pattern Recognition,
Chinese Academy of Sciences, and consisted of 30 subjects who were all of Chinese
descent. Participants were instructed to take a seat in front of the camera in an observation
room, with a distance of approximately 60 cm between their face and the camera. They
were then prompted to imitate a facial expression as demonstrated in a series of pictures.
Images with three different illumination conditions: weak, normal, and dark, are present
in the dataset. Each sequence starts from a neutral state and ends at the apex phase (Zhao
et al., 2011). The MMI Face Database is a complex source that contains both static and
sequential images captured at frontal and profile views of faces. Every video sequence in
the database was captured at a standard rate of 24 frames per second using a PAL camera.
The collection comprises roughly 30 profile-view and 750 dual-view facial expression
video sequences. These sequences differ in length, ranging from 40 to 520 frames, and
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(a) CK+ (b) Oulu-CASIA-NI

(c) Oulu-CASIA-VIS (d) MMI

Figure 2.1: Collage of images in datasets which are used in macro-expression experiments.
(a) Cohn-Kanade (CK+) dataset (Source: Lucey et al., 2010). (b) Oulu-CASIA
dataset Near Infrared (NI) variation (Source: Zhao et al., 2011). (c) Oulu-
CASIA dataset Visible Light (VIS) variation (Source: Zhao et al., 2011). (d)
MMI dataset, only subjects that have sequential data is used (Source: Pantic
et al., 2005).

portray one or multiple facial behavior patterns, starting with a neutral facial expression,
followed by an expressive one, and ending with another neutral expression. The database
features 19 distinct faces, belonging to both male and female students and research staff
members, with an ethnic background of either European, Asian, or South American. The
total number of female faces is 4400. The ages of the participants range from 19 to 62
years old. They were directed by a FACS coder on how to execute 79 different series of
expressions and were asked to include a brief neutral state at the beginning and end of
each expression. Onset apex and offset phases can be studied for this database (Pantic
et al., 2005; Valstar, Pantic, et al., 2010).
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2.3.3. Feature Creation Algorithm

Facial landmarks that we use in this paper provide a basis for deriving geometric
features. These landmarks should be accurately positioned, and detection should be fast
enough to achieve real-time performance for facial expression recognition tasks. For these
reasons, MediaPipe FaceMesh solution is used as a facial landmark detector. MediaPipe
FaceMesh is a facial landmark detection solution developed by Google’s MediaPipe team.
It uses machine learning to identify and track 478 facial landmarks on a person’s face,
including the eyes, eyebrows, nose, mouth, and jawline (Kartynnik et al., 2019). MediaPipe
utilizes a lightweight and very fast, 200-1000 FPS on mobile GPUs, face detector, which
is called BlazeFace (Bazarevsky et al., 2019). The face landmark model is a neural
network-based model that estimates 478 landmarks with 3D coordinates. It uses a single
camera output frame as an input to the model. This model is lightweight and applicable for
real-time tasks with 100-1000 FPS on mobile GPUs [25]. Attention mesh is an optional
step that applies attention to the eye, iris, and lip regions. As a result, estimated landmarks
are more accurate on these regions (Grishchenko et al., 2020).

The first step of the algorithm shown in Figure 2.2 is to calculate facial landmarks
of each camera frame. Camera frames are sequentially fed into FaceMesh algorithm, and
resulting landmark coordinates are stored to be processed by the feature creation algorithm
in the second step. Facial landmarks of the current frame and neutral frame are input to
the feature creation step. The feature creation algorithm generates all features belonging
to the current frame by calculating the Euclidean distance and angle of each landmark
pair for the current frame and neutral frame. Equations 2.1 and 2.2 show the calculation
of Euclidean distance and angle, respectively, for two landmark points, i and j. For each
landmark pair, the calculated distance and angle values of the current frame are subtracted
from the respective values of the neutral frame. Resulted values give the distance and
angle features of that landmark pair.

𝑑 =

√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2 (2.1)

𝜃 = arctan

(
𝑥𝑖 − 𝑥 𝑗

𝑦𝑖 − 𝑦 𝑗

)
(2.2)

By default, landmark pair count is calculated by finding number of two combi-
nations 𝐶 (𝑛, 2) for total number of facial landmarks 𝑛. This count can be reduced by
grouping facial landmarks and calculating two combinations inside each group and com-
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bining them. Grouping landmarks ensures that there will be no landmark pair that has two
landmark points belongs to two different groups.

𝐶 (𝑛, 2) > 𝑈𝑛𝑖𝑞𝑢𝑒(𝐶 (𝑎, 2) + 𝐶 (𝑏, 2) + 𝐶 (𝑐, 2) + 𝐶 (𝑑, 2) + 𝐶 (𝑒, 2))

where:

𝑛 = total landmark count
𝑎, 𝑏, 𝑐, 𝑑, 𝑒 = landmark counts for 5 different groups
𝑎, 𝑏, 𝑐, 𝑑, 𝑒 < 𝑛

In this study, landmark grouping based on facial action coding system is imple-
mented. This grouping is similar to the one presented in the paper by Buhari et. al. (Buhari
et al., 2020). Table 2.3 and 2.2 show the implemented categories and respective action
units (AU) that are represented by muscles residing at shown landmark positions. Action
units 1,2,3,4 and 5 are activated by facial muscles in eye and eyebrow regions so category
1 is created with landmark points on that regions. For action unit 6 eye and nose regions
are selected as category 2. For action units 7 and 9, category 3 is created that consists
eye, eyebrow and nose landmarks. For action units 12,14,15,16,23 and 26, category 4 is
created that consists nose, mouth and lower jaw landmarks. Lastly action unit 20 consists
landmarks present in eye nose and mouth regions and category 5 is created.

Table 2.2: Relation between emotion, action units and category mapping. Correlation
between action units and resulted emotion is proposed by (Source: Friesen, Ekman, et al.,
1983)

Emotion Action Units Required Categories
Anger 4, 5, 7, 23 cat 1, 3, 4
Contempt 12, 14 cat 4
Disgust 9, 15, 16 cat 3, 4
Fear 1, 2, 4, 5, 7, 20, 26 cat 1, 3, 4, 5
Happiness 6, 12 cat 2, 4
Sadness 1, 4, 15 cat 1, 4
Surprise 1, 2, 5, 26 cat 1, 4
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Table 2.3: Landmark grouping categories (Source: Buhari et al., 2020). Dividing facial
landmarks into meaningful categories reduces total landmark pair counts that will be
processed by feature creation algorithm.

Category Landmarks Region Action Units

cat 1

Left Eye
Left Eyebrow
Right Eye
Right Eyebrow

1, 2, 3, 4, 5

cat 2
Left Eye
Right Eye
Nose

6

cat 3

Left Eye
Left Eyebrow
Right Eye
Right Eyebrow
Nose

7, 9

cat 4
Nose
Mouth
Lower Jaw

12, 14, 15, 16, 23, 26

cat 5

Left Eye
Right Eye
Nose
Mouth

20
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Figure 2.2: Feature creation algorithm flow for macro-expression experiments. Sequential
camera frames are fed into MediaPipe FaceMesh Solution get extract facial
landmark positions. For each selected landmark pair, Euclidean distance and
angle 𝜃 features are calculated. Neutral frame features are taken as basis and
at each frame after neutral frame, calculated features are subtracted with basis
features. These two features are concatenated to create feature vector. Images
of the subject are taken from CK+ dataset (Source: Lucey et al., 2010)
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2.3.4. Classification Algorithm

In a study by Alvarez et al., it is concluded that for facial emotion recognition
tasks, Multilayer Perceptron is the classifier that achieves the highest accuracy compared
to SVM, Naïve Bayes, Decision Tree, Random Forest, and AdaBoost (Álvarez et al., 2018).

In this study, Multilayer Perceptron is selected as a classifier. Figure 2.3 shows the
classification part of the proposed method after features are created.

Figure 2.3: Classification algorithm for macro-expression experiments. First 𝑁 − 1, 𝐴
shaped array that holds feature vectors for whole sequence is scaled using
standard scaler. Scaled 1D data is converted to image format that will be feed
into ConvLSTM2D block. Output of ConvLSTM2D block is flattened and
data is classified using multi-layer perceptron layers. Where, 𝑛: frame count,
𝑒: emotion count, 𝑎: feature count, 𝑏: ceil(sqrt(a))

To extract information from temporal domain ConvLSTM is used. ConvLSTM is a
type of neural network architecture that combines convolutional layers with LSTM (Long
Short-Term Memory) layers. It is commonly used for sequence prediction tasks, such as
video and image sequence processing, where both spatial and temporal dependencies need
to be modeled.

In ConvLSTM, the input data is processed by convolutional layers to capture spatial
features, and then the output of the convolutional layers is passed to LSTM layers, which
capture temporal dependencies. The LSTM layers maintain an internal state that enables
them to capture long-term dependencies in the sequence (Shi et al., 2015).

After features are created and stored in 𝑁 −1, 𝐴 shaped array where 𝑁 is the frame
count and A is the total feature count, data should be scaled before classification. Standard
scaler is used for this purpose.

Standard scaling is a preprocessing step in machine learning that scales the data
so that each feature has zero mean and unit variance. This is important because many
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algorithms assume that the data is normally distributed with zero mean and unit variance.
Standard scaling can be applied to both training and test data and is particularly useful when
dealing with features with different scales or units (Raju et al., 2020). It is implemented in
many popular machine learning libraries, such as Scikit-learn in Python (Pedregosa et al.,
2011).

𝑧 =
𝑥 − 𝑢

𝑠
(2.3)

where:

𝑢 = mean of the training samples
𝑠 = standard deviation of the training samples

Scaled 1D features are converted to image format which makes them 2D and
an extra channel dimension is added to hold color information. Resulted scaled and
converted feature vector is fed into ConvLSTM2D block with a kernel size 1, 1 and filter
size 8. Output of the ConvLSTM2D is flattened and dense layers of 2048 and 1024 neurons
respectively are used in multi-layer perceptron. Final classification layer has neuron count
which is equal to emotion count to be classified and softmax activation function is used.

In the process of our study, we incorporated the use of Convolutional Long Short-
Term Memory (ConvLSTM2D) networks, a variant of the traditional LSTM networks
that are specially designed to handle spatiotemporal data. LSTM networks are a special
kind of Recurrent Neural Networks (RNN) that have feedback connections, allowing them
to process sequences of data (Hochreiter and Schmidhuber, 1997). They are capable
of learning long-term dependencies, which makes them particularly effective for many
sequential data tasks. The ConvLSTM is a type of LSTM that has convolutional structure
in both the input-to-state and state-to-state transitions (Shi et al., 2015). This makes
it uniquely suited to handle two-dimensional spatial data over time. Each unit of a
ConvLSTM2D network maintains a cell state and multiple gating units, including an input
gate, a forget gate, and an output gate, which control the flow of information into and
out of the cell. The convolution operation is applied in the state transition and the gate
activations, which allows the ConvLSTM2D to effectively capture the spatial dependencies
in the data. The operations utilized within LSTM are reconfigured for ConvLSTM, as
indicated in equations 2.4-2.8 below: in this context, the symbols ”∗” and ”𝑜” correspond
to the convolution operation and the Hadamard product, respectively. "x" stands for the
input vector, which is the data that the network is receiving at a given time step. "h"
stands for the hidden state vector, which represents the internal state of the network at
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Figure 2.4: Inner structure of ConvLSTM cell

a given time step. It serves as the memory of the network, allowing it to keep track
of relevant information from previous time steps and make predictions based on that
information. "c" stands for cell state which allow the network to selectively remember
or forget information based on its relevance to the current task. Figure 2.4 shows inner
structure of ConvLSTM cell. The ConvLSTM2D network has proven to be effective in
a wide range of applications, particularly those involving spatiotemporal data, such as
video processing, weather forecasting, and traffic prediction (Di et al., 2019; Shi et al.,
2015; Tariq, Lee, and Woo, 2020) The use of ConvLSTM2D in facial expression analysis
allowed us to effectively capture the spatial and temporal dependencies in our data and
provide valuable insights into the problem.

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑥𝑡 +𝑊ℎ𝑖 ∗ ℎ𝑡−1 +𝑊𝑐𝑖 ◦ 𝑐𝑡−1 + 𝑏𝑖) (2.4)

𝑓𝑡 = 𝜎(𝑊𝑥 𝑓 ∗ 𝑥𝑡 +𝑊ℎ 𝑓 ∗ ℎ𝑡−1 +𝑊𝑐 𝑓 ◦ 𝑐𝑡−1 + 𝑏 𝑓 ) (2.5)

𝑐𝑡 = 𝑓𝑡 ◦ 𝑐𝑡−1 + 𝑖𝑡 ◦ tanh(𝑊𝑥𝑐 ∗ 𝑥𝑡 +𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐) (2.6)
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𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑥𝑡 +𝑊ℎ𝑜 ∗ ℎ𝑡−1 +𝑊𝑐𝑜 ◦ 𝑐𝑡 + 𝑏𝑜) (2.7)

ℎ𝑡 = 𝑜𝑡 ◦ tanh(𝑐𝑡) (2.8)

2.4. Results and Discussion

In order to implement facial expression analysis methods in real-world scenarios,
they need to satisfy several criteria. Among these, processing time emerges as a crucial
consideration for real-time applications. The cumulative time required for preprocessing,
feature creation, and classification stages should not surpass the interval between two con-
secutive frames captured by the camera. Moreover, models that incorporate the temporal
dynamics of facial features can yield more robust models compared to those that rely solely
on spatial features. Relying solely on a single static moment may lead to misinterpre-
tations, particularly when a person’s neutral state closely resembles a specific emotional
expression. Facial expressions are dynamic in nature and continuously change over time.
Thus, analyzing the entire sequence of expressions is more appropriate. This enables us
to examine the onset, apex, and offset phases of emotion within the temporal domain,
facilitating accurate detection and labeling of the entire sequence with the corresponding
emotional tag. This approach is more precise and can provide valuable insights into the
dynamics of facial expressions. In our study, we adopt a sequential approach to facial emo-
tion recognition tasks, an advancement over traditional static methods. Our technique is
designed to compare and differentiate all features of frames within an expression sequence
from their respective neutral states. This methodology provides an automatic calibration
to each subject’s baseline, thereby enhancing the method’s accuracy and reliability.

Apex is the most intense moment that an emotion can be observed in the face. In
order to detect facial macro expression in real-time, determining the apex region is critical
since the accuracy of prediction is higher than in other regions. In Figure 2.5 it can be
observed that by tracking the mean value of distance features of frames, onset, apex, and
offset regions can be detected. The distance feature is created by subtracting the Euclidean
distance of landmark pairs for the current frame and neutral frame. Since coordinates of
landmarks are expressed as pixels, the value shows pixel difference from the neutral state.
In the figure, frame number 10 corresponds to the second image and can be considered as
starting point of the apex phase. Frame number 40 corresponds to the fifth image and can
be considered as the ending point of the apex phase.
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Figure 2.5: Tracking mean value of Euclidean distance features of frames. Y axis shows
pixel difference from neutral state, x axis shows frame number starting from
onset (frame number 0) till offset. Images below plot shows actual images that
these features are extracted. Frames number in between 0 to 10 corresponds
to onset phase, 10 to 40 corresponds to apex phase and after 40 offset phase
starts. Images of the subject are taken from MMI dataset (Source: Pantic
et al., 2005)

2.4.1. Experiments with Datasets Individually

In order to validate our model, 5-Fold cross validation is implemented to find
average accuracies for CK+, Oulu-CASIA NIR & VIS and MMI datasets. Different
experiments are conducted to expose correlation between accuracy and the number of
facial landmarks, along with the number of created features. To find out the relation
between accuracy and the number of facial landmarks, three different preset landmark
counts are defined as 61, 122, and 250. Those landmarks seen in Figure 2.6 are selected
manually from 478 landmarks of FaceMesh output. Landmarks are selected based on
facial muscle locations on the face according to action units (AU). Main action units that
are used to recognize emotions located on eye, eyebrow, mouth, nose, and chin regions on
the face. To find out the relation between accuracy and the number of created features, a
feature selection algorithm based on FACS by Buhari et al. (Buhari et al., 2020) is utilized
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to reduce the number of generated features. So, in total six experiments are conducted for
each dataset.

(a) 61 points (b) 122 points (c) 250 points

Figure 2.6: Selected facial landmark sets to be used in macro-expression experiments. 61,
122 and 250 landmark points are selected manually from 478 facial landmark.

In Figure 2.7, box plots of accuracies for every dataset are shown. For each plot,
results for all six experiments, respectively 61, 122, and 250 points landmarks with AU
grouping and without any grouping, are visible. The box plots display the mean accuracy
values of all five folds, indicated by a red dashed line. The minimum and maximum values
excluding outliers are represented by grey lines below and above the boxes, as well as grey
dots if they are outliers. It can be deduced from conducted experiments that grouping facial
landmarks based on FACS usually offers better results since it acts as a feature selection
method that selects prominent features among all. Also, it can be stated that increasing
landmark counts does not significantly increase the accuracies, and sometimes it even has
negative effects like it is observed in the MMI dataset. The CK+ dataset achieved its
highest mean accuracy of 93% in experiment 250 landmarks with AU grouping. For the
MMI dataset, the highest mean accuracy of 68% was recorded in experiment 61 landmarks
without grouping. In the case of the Oulu-CASIA VIS dataset, the results showed that
experiment 250 landmarks without grouping had the highest mean accuracy of 79%.
However, the Oulu-CASIA NIR experiment yielded slightly lower results compared to the
VIS version. The experiment with 250 landmarks and AU grouping had the highest mean
accuracy of 77%.

It’s helpful to use confusion matrices to better understand how accurately emotions
are predicted and which emotions are often confused with others. In Figure 2.8, it can
be observed that for CK+ dataset, contempt is commonly confused with fear and sadness,
while fear is often confused with surprise and sadness for the MMI and Oulu-CASIA NIR
datasets. In contrast, sadness is the most difficult emotion to predict accurately for the
Oulu-CASIA VIS dataset. Furthermore, happiness and surprise emotions tend to have the
highest prediction accuracy across all datasets.

Table 2.4 presents the processing times for creating features in all six experiments.
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(a) CK+ boxplot (b) MMI boxplot

(c) Oulu-CASIA VIS boxplot (d) Oulu-CASIA NIR boxplot

Figure 2.7: Accuracy box-plots of datasets used in macro-expression experiments. Results
for all six experiments that are combinations of 61, 122, 250 point landmarks
with AU grouping and without any grouping. Red dashed line shows mean
value of accuracy for 5-fold cross validation.
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(a) CK+ conf matrix (b) MMI conf matrix

(c) Oulu-CASIA VIS conf matrix (d) Oulu-CASIA NIR conf matrix

Figure 2.8: Confusion matrices of datasets used in macro-expression experiments. Results
are created with average values of 5-fold cross validation.

It’s worth noting that using a GPU to create features is 12 times faster than using a CPU
with our hardware setup. The fastest processing time recorded is 0.45ms, which was
achieved by creating features for 61 landmarks with AU grouping.

We used MediaPipe’s FaceMesh solution to extract facial landmarks, which has
superior performance on GPUs, making it suitable for real-time tasks. The time required
to extract all landmarks with our hardware setup is measured as 5.6 ms, regardless of the
landmark count used in the experiment. This is significantly faster than dlib’s landmark
detection algorithm, which takes 100 ms to process. In the second phase, the time taken
to create features depends on selected landmark point pairs. Table 2.4 provides the
measured time to create features for different landmark point counts and categories. For
61 landmark points with AU grouping, the total processing time, from capturing camera
frames to creating all features for each frame, is 6.05 ms on Nvidia RTX 3060 with
8.6 compute capability. This value indicates that the method can support approximately
165 fps video processing in real-time. This means that the system can analyze video
frames at a high speed, allowing for efficient and timely recognition of facial expressions.
Additionally, the method was evaluated using the Oulu-CASIA dataset, which consists of

23



Table 2.4: Comparison of processing times to create features for GPU and CPU execution.
Full means using all landmark pairs and AU means using selected landmark pairs based
on FACS based method.

61 LM 122 LM 250 LM

Full AU Full AU Full AU

GPU (ms) 0.65 0.45 2.60 1.65 11.01 8.08
CPU (ms) 7.74 5.17 31.13 21.53 130.67 91.20

frames captured under both visible light (VIS) and near-infrared light (NIR) conditions.
This evaluation aimed to demonstrate the robustness of the method across different ambient
light conditions without the need for additional preprocessing. By successfully classifying
facial expressions under varying lighting conditions, the method proves its versatility and
suitability for real-world applications.

Table 2.5: Comparison of accuracy of different methods in the literature which use only
geometric features

Paper Accuracy(%)
CK+ Oulu-CASIA MMI

(Jung et al., 2015) 92.35 74.17 59.02
(Choi and Song, 2020) 92.60 - -
(Qiu and Wan, 2019) 92.00 - -

(Rohith Raj et al., 2020) 89.00 - -
(Álvarez et al., 2018) 89.00 - -
Proposed method 93.00 79.00 68.00

The accuracies of other geometric-based methods in the literature, which operate
on the datasets used in this study, are presented in Table 2.5. While there are not many
geometric-based methods that have been tested on the Oulu-CASIA and MMI datasets,
our proposed method surpasses the performance of the mentioned methods in terms of
recognition accuracy.

2.4.2. Composite Dataset Experiments

In this section, a single composite dataset is created by merging multiple datasets,
and experiments are conducted using this composite dataset. The first experiment involves
training the proposed method on three datasets and validating it on a fourth dataset that

24



is not included in the composite dataset. The second experiment combines all the macro
datasets and performs internal validation using a 5-fold cross-validation approach. The
third experiment utilizes the composite dataset trained in the first experiment and validates
it on micro expression datasets.

In the first experiment, the CK+, Oulu-CASIA NI, and Oulu-CASIA VIS datasets
are combined by considering only six basic emotions: anger, disgust, fear, happiness,
sadness, and surprise, which are common to all datasets. Emotions such as contempt and
others are removed to enable the merging of the datasets into a single composite dataset.
The composite dataset consists of the following sequence counts for each emotion: anger
(205), disgust (219), fear (185), happiness (229), sadness (188), and surprise (243). The
resulting dataset is then trained using the proposed method and validated using the MMI
dataset, which is not included in the composite dataset. The test accuracy of the composite
dataset is achieved as 81.30% using 5-fold cross-validation. The validation accuracy on
the MMI dataset is achieved as 69.70%, which is slightly higher than the value (68%)
obtained during the individual training of the MMI dataset.

In the second experiment, all datasets, including CK+, Oulu-CASIA NI, Oulu-
CASIA VIS, and MMI, are combined to create a composite dataset. This composite
dataset comprises 476 sequences for anger, 500 sequences for disgust, 426 sequences
for fear, 540 sequences for happiness, 440 sequences for sadness, and 566 sequences
for surprise emotions. The model is validated using a 5-fold cross-validation approach,
resulting in an accuracy of 82.10%.

In the third experiment, the model trained in first experiment is used to predict
features created using micro expression dataset SAMM. It is observed that using original
SAMM dataset without applying PBVM processing, 15.70% accuracy is achieved and for
SAMM with PBVM applied this value raised to 23.96%.

Based on the composite dataset experiments, it can be concluded that our model
learns informative features that are not only specific to the dataset but also generic, allowing
its application to other macro expressions that were not included in the training. However,
it is important to note that the model trained with macro expressions is not suitable for
accurate predictions of micro expressions. Although there is an approximate 8% increase
in accuracy when the micro expressions are magnified using PBVM processing, the model
still falls short in accurately predicting micro expressions. Therefore, it is evident that
there are significant differences between macro and micro expressions that require distinct
modeling approaches.
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2.4.3. Real-time Implementation

For the real-time implementation of the proposed method, a specific modification
is introduced to simplify the classification algorithm and address potential frame count
mismatches between the trained model and the video being predicted. In this modification,
only the last value of the convlstm block is used, which carries the most informative feature
representation of the entire sequence. The last value of the convlstm block corresponds
to the difference between the euclidean distance and slope features extracted from the
apex frame and their corresponding features from the neutral frame. By utilizing this
single value, the complexity of the classification algorithm is significantly reduced. To
prepare the feature for classification, it is scaled using standard scaler. Once the feature is
scaled, it is directly fed into the multi-layer perceptron (MLP) block for further processing
and classification. By employing this modification, the real-time implementation of the
proposed method becomes more efficient and streamlined. It allows for a simplified
classification algorithm that focuses on the most informative feature representation while
mitigating potential frame count mismatches between the trained model and the video
being predicted.

Model is trained with the composite dataset that is created for first experiment of
section 2.4.1. Due to the modification explained in previous paragraph, only neutral and
apex frames are used to create feature vector. Validation accuracy is calculated as 80%
which is slightly less than full sequential method proposed in section 2.3.3. After the
training, model and scaler are saved as an h5 file. Pretrained model is used to predict the
emotion class of validation data while prefitted scaler is used to scale features of validation
data.

To validate the real-time performance of the model, a specific video is selected that
displays happiness macro expression and starts with a neutral state. This video is sourced
from the MMI dataset and was not included in the training phase of the model. To conduct
the validation, a test script is created. The script reads the video and considers the first
frame as the neutral frame. The facial landmarks in each subsequent frame are extracted
using MediaPipe Face Landmarker. From these landmarks, the Euclidean distances and
slopes are calculated. These calculated distances and slopes are then subtracted from their
corresponding neutral state values, which were stored in a variable beforehand, resulting
in a feature vector for each frame. The feature vectors are first scaled using a pre-fitted
scaler, ensuring they are in a suitable format for classification. The pretrained model is
then used to predict the emotion class for each frame based on the scaled feature vector.
The results of this real-time validation process can be observed in Figure 2.9.
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Figure 2.9: Real time prediction results. First frame is taken in between neutral and
onset phases. Second frame shows onset phase where facial expression is
started. Third frame shows apex phase where emotion is predicted with
99.97% accuracy. Image sequence is taken from MMI dataset (Source: Pantic
et al., 2005)
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The real-time prediction results show the progression of emotion throughout the
frames of the video. In the first frame, which is captured between the neutral and onset
phases, the facial expression is not yet fully developed. In the second frame, the onset
phase is observed, indicating the beginning of the facial expression. The model detects
the changes in facial landmarks and starts to recognize the emerging emotion. In the third
frame, the apex phase is reached, where the emotion is fully expressed. The model predicts
the emotion with a high accuracy of 99.97%. This indicates that the model successfully
captures the features and patterns specific to the expressed emotion, leading to a very
accurate prediction.

2.5. Conclusion

In this study, we proposed a deep learning based sequential macro-expression
recognition method by detecting facial landmarks using MediaPipe’s FaceMesh solution
which is significantly faster than the popular dlib facial landmark detection algorithm.
While creating geometric features from facial landmarks we considered the difference of
Euclidean distance and angle features with respect to neutral state of subjects. Unlike
emotion recognition using a static snapshot of a subject, this approach provides auto
calibration to the baseline of subjects which is changing from person to person. Also, it
is shown that by tracking mean value of difference of distance features over time, onset,
apex and offset phases of an emotion can be detected. In our experiments we observed
that increasing landmark count does not necessarily improve accuracy and sometimes
it can have negative effects. Experiments with FACS based landmark grouping method
show that selecting useful features using a feature reduction algorithm often increases
classification accuracy. With the proposed method we achieved competitive mean accuracy
values among the landmark based methods in the literature using 5-fold cross validation
technique. We tested the proposed method with CK+, Oulu-CASIA VIS & NIR and
MMI datasets and achieved following accuracy results respectively; 93%, 79%, 77%,
68%. Composite dataset experiments involved merging multiple datasets to observe the
generalization of the proposed model. The real-time implementation of the model was
validated using a video displaying happiness emotion, achieving a remarkable prediction
accuracy of 99.97%. These results demonstrate the model’s ability to generalize across
datasets and accurately predict emotions in real-time scenarios.

Despite the advancements, achieving a robust, accurate, and real-time solution
for facial expression recognition remains an ongoing challenge. Given the escalating
prevalence of human-computer interaction, it is foreseeable that many applications across

28



diverse areas will require capabilities to detect human emotions. To be viable for real-
world adoption, the proposed system must not only be fast but also resilient against various
challenges, including changes in illumination, face rotation, facial accessories, and other
potential distortion factors. Our study paves the way for continued exploration in this
field, contributing to the pursuit of a versatile, precise, and user-adaptive solution for
facial expression recognition.
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CHAPTER 3

SEQUENTIAL MICRO EXPRESSION RECOGNITION

USING GEOMETRIC FEATURES

3.1. Introduction

In this chapter, we present sequential micro expression recognition method using
geometric features extracted from facial landmarks. We begin with a literature review
of existing methods for micro facial expression recognition, with a particular focus on
geometric features. We then describe our methodology for sequential micro expression
recognition, which includes facial landmark detection, feature extraction, and classifica-
tion using machine learning techniques. We present experimental results and a detailed
discussion of our approach’s performance in terms of recognition accuracy, speed. Finally,
we conclude with a summary of our contributions and future directions for research in this
area.

3.2. Literature Review

The table 3.1 provides a comparison of facial micro expression recognition models
experimented on two datasets, SAMM and CASME II. The table includes methods from
five different papers and our proposed method, each with its own landmark detection
method and feature type. The accuracy of each model is reported for both datasets if
available.

In the first paper by Choi et al. (Choi and Song, 2020), the landmark detection
method proposed by Dong et al. (Dong et al., 2018) was employed to create landmark
points and Euclidean Distance was used as feature type. This study adopted a sequential
approach to represent facial features, using facial landmarks to calculate the distances
between all points and derive their differences for consecutive frames, producing construct
termed as Landmark Feature Maps (LFM). These LFMs were normalized to a range of
0-255, resulting in LFM images. A VGG13-based Convolutional Neural Network (CNN)
was then used to extract facial features for each LFM, with the final layer incorporating
Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) for classification
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Table 3.1: Comparison of accuracy of different methods in the literature for micro-
expression recognition which use only geometric features

Paper Landmark Feature Type Accuracy(%)

Detection Method SAMM CASME II

(Choi and Song, 2020) (Dong et al., 2018) Distance - 73.98

(Buhari et al., 2020) Dlib Distance & Slope 87.33 75.04

(Beh and Goh, 2019) Dlib Ratio of Distances - 82.00

(Buhari et al., 2022) Dlib Landmark Based 94.72 94.78Facial Graph

(Xia et al., 2019) (Xia et al., 2016) STRCN-G 78.60 80.30

Proposed method MediaPipe Distance 84.21 92.94Face Landmarker

(Choi and Song, 2020). The accuracy for SAMM is not reported, while the accuracy for
CASME II is 73.98%. In the second paper by Buhari et al.(Buhari et al., 2020) the Dlib
landmark detection method was used to create Euclidean distance and slope features of
static image. For a static image, features extracted from full face landmarks and landmarks
belongs to regions which are created based on Facial Action Coding System proposed by
Paul Ekman, were experimented seperately. Features were normalized and classified using
SVM classifier (Buhari et al., 2020). The accuracy achieved was 87.33% for SAMM and
75.04% for CASME II. Beh et al. (Beh and Goh, 2019) used Dlib landmark detection
method and Ratio of Distances as the feature type. First, face alignment was applied to
ensure that the eyes were horizontally aligned, the size of the detected face was consistent
across frames and the position of the face was centered in the video frame. Then 12
landmark pairs were selected manually and ratios of euclidean distances for selected
landmark pairs were calculated. Also in order to reduce effect of jittering, thresholding
was applied to the calculated features, only features above neutral state plus threshold
value were used. Although the accuracy for SAMM is not reported, the model achieved
82% accuracy on the CASME II dataset. In the fourth paper by Buhari et al. (Buhari
et al., 2022), the Dlib landmark detection method was used with Landmark Based Facial
Graph as the feature type. First, a magnification vector consisting of integer values that
represent the pixel point changes between the onset-frame and the apex-frame was created.
This vector was then amplified using an integer scalar value. Finally, the magnified pixel
change vector was added to neutral frame landmark position to obtain new apex frame
landmarks with exaggerated landmark positions. Using these enhanced facial landmark
positions, facial graph features were created to be trained with SVM. This model achieved
the highest accuracy among all models on both datasets, with 94.72% accuracy for SAMM
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and 94.78% accuracy for CASME II. The fifth paper by Xia et al. (Xia et al., 2019) used
ASM landmark detection method proposed by Xia et al. (Xia et al., 2016) and STRCN-G
as the feature type. The ASM face model was employed to portray the facial geometry
shape, and the Procrustes analysis technique was applied to align the points of this shape.
Once the alignment was completed, small changes in geometric shape were determined
and these alterations in facial geometry were utilized as features for the Adaboost model
training (Xia et al., 2019). The accuracy achieved was 78.60% for SAMM and 80.30%
for CASME II.

3.3. Methodology

3.3.1. Computational Setup

Our experiments are conducted in the environments with following specs: Ubuntu
OS, Intel i5-12600K CPU, 64 GB RAM, NVIDIA GeForce RTX 3060 12 GB GPU.
Training of the proposed framework and the preprocessing operations have functioned
using the Python programming language. We implemented our model in the Keras
backend of the TensorFlow 2.1 framework. The categorical cross-entropy loss function
and the Adam optimizer with default settings are used during the training. The batch size
and number of epochs are selected as 32 and 200.

3.3.2. Datasets

Given the focus of this study on the spatio-temporal features, only sequential micro
expression datasets are employed for the analysis. Figure 3.1 shows example images of
subjects from the used datasets.

SAMM (Spontaneous Action, Multimodal, and Micro-expression) is a dataset that
is commonly used for facial expression recognition research. The SAMM dataset in-
cludes 159 videos of 32 participants who were selected from the Manchester Metropolitan
University, with a total duration of approximately 6 hours. On average, their age was
33.24 years. The participants belonged to various ethnic backgrounds, including 17 White
British, three Chinese, two Arab, two Malay, and one each from African, Afro-Caribbean,
Black British, White British/Arab, Indian, Nepalese, Pakistani, and Spanish backgrounds.
The gender distribution was evenly split, with 16 male and 16 female participants. The
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(a) SAMM (b) CASME II

Figure 3.1: Collage of images in datasets which are used in micro-expression experiments.
(a) SAMM dataset (Source: Davison et al., 2016). (b) CASME II dataset
(Source: Yan et al., 2014).

videos were captured at 200 frames per second and at a resolution of 2040 1088 pixels. The
dataset includes a variety of spontaneous facial expressions, including micro-expressions
which are particularly challenging to detect and classify. The sequences in the SAMM
dataset are annotated with frame-level labels indicating the onset, apex and offset times of
each facial expression and detected emotion label of the overall sequence (Davison et al.,
2016; Davison, Merghani, and Yap, 2018).

CASME II (Chinese Academy of Sciences Micro-expression) is another dataset
that is commonly used for research on micro-expression recognition. The CASME II
dataset includes 247 video clips from 26 participants with a mean age of 22.03 years and
a total duration of approximately 30 minutes. The videos were captured at 200 frames per
second and at a resolution of 640 x 480 pixels. The dataset includes a variety of micro-
expressions. The sequences in the CASME II dataset are annotated with frame-level labels
indicating the onset, apex and offset times of each facial expression and detected emotion
label of the overall sequence (Yan et al., 2014).

3.3.3. Feature Creation Algorithm

The detection and classification of micro expressions pose greater challenges com-
pared to macro expressions due to their brief duration and subtle intensity. Consequently, it
became necessary to modify the methodology by introducing Phase-Based Video Motion
(PBVM) Processing. This technique enhances the visibility of micro facial expressions,
allowing for improved analysis and interpretation.
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(a) Original Apex Frame (b) PBVM Applied Apex Frame

Figure 3.2: PBVM is applied for subject 006_1_2 in SAMM dataset. Subject demonstrates
anger emotion and Brow Lowerer (AU 4) movement is enhanced using PBVM.
Image of the subject is taken from SAMM dataset (Source: Davison et al.,
2016)

In the experiments involving macro expressions, a subtraction operation was per-
formed between the Euclidean distance features of each subject and their corresponding
neutral state value. This approach yielded superior accuracy when compared to directly
using the raw features for each frame individually. However, when dealing with micro-
expressions, even with the application of PBVM processing, it was observed that there
was insufficient change in the positions of facial landmarks. Despite the fact that PBVM
processing amplifies the motion of the expression, making it potentially visible to the
observer as depicted in Figure 3.2, it does not have a significant effect on the positions
of facial landmarks. One possible explanation for this phenomenon is the presence of
jittering in the landmark positions. During the calculation of landmarks for each sequen-
tial image, a small amount of jittering occurs, resulting in a shift in the positions of the
landmarks compared to the previous consecutive image. Consequently, subtracting the
Euclidean distance features from their corresponding neutral state did not yield promis-
ing results in terms of accuracy for micro-expression recognition. Hence, in the case of
micro-expressions, only the raw features extracted from individual frames are employed.
Figure 3.3 illustrates the algorithm flow for generating features from a single image. This
flow is applied to the entire sequence of images, and the resulting features are appended
to an array, which is then fed into the ConvLSTM1D block for further processing.

MediaPipe Face Mesh solution that is used in macro-expression experiments was
upgraded in May 2023 to a new solution named as “Face Landmarker”. In this new version

34



Figure 3.3: The algorithm flow for micro-expression experiments involves preprocessing
each frame and feeding it into MediaPipe Face Landmarker to gather facial
landmark positions and blendshape scores. Out of all the facial landmark
positions, 61 are selected and Euclidean distance features are created from
them. Informative blendshape scores are selected and blendshape features are
created from them. These Euclidean distance features and blendshape features
are then used as input for classification model. Image of the subject is taken
from SAMM dataset (Source: Davison et al., 2016)

apart from facial landmark position a new feature called blendshape scores was introduced.
Blendshapes are widely used in the digital production industry to create realistic facial
animations (Anjyo, 2018). Each blendshape feature represents a specific facial expression
or muscle action, linear weighted sum of these features creates blendshape model of the
real subject (Anjyo, 2018).

Blendshape model inside Face Landmarker solution uses 146 landmarks, a subset
of the 478 landmarks generated by FaceMesh model. Output of the blendshape model
comprises 52 blendshape scores, represented as floating-point values within the range [0,
1] (Grishchenko et al., 2022). Predicted blendshapes can be seen in Table 3.2. Some of the
predicted blendshapes are not helpful and can be misleading about emotion recognition
such as eyeBlink, eyeLook and tongueOut features since these features are not related with
any action units defined in FACS coding. So, all 11 features belonging to these groups are
ignored and not included in further layers.
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Table 3.2: List of predicted blendshapes

List of Predicted Blendshapes

browDownLeft eyeLookInRight mouthClose mouthRollLower
browDownRight eyeLookOutLeft mouthDimpleLeft mouthRollUpper
browInnerUp eyeLookOutRight mouthDimpleRight mouthShrugLower
browOuterUpLeft eyeLookUpLeft mouthFrownLeft mouthShrugUpper
browOuterUpRight eyeLookUpRight mouthFrownRight mouthSmileLeft
cheekPuff eyeSquintLeft mouthFunnel mouthSmileRight
cheekSquintLeft eyeSquintRight mouthLeft mouthStretchLeft
cheekSquintRight eyeWideLeft mouthLowerDownLeft mouthStretchRight
eyeBlinkLeft eyeWideRight mouthLowerDownRight mouthUpperUpLeft
eyeBlinkRight jawForward mouthPressLeft mouthUpperUpRight
eyeLookDownLeft jawLeft mouthPressRight noseSneerLeft
eyeLookDownRight jawOpen mouthPucker noseSneerRight
eyeLookInLeft jawRight mouthRight tongueOut

3.3.3.1. Phase-Based Video Motion Processing

The main idea behind Phase-Based Video Motion (PBVM) Processing is to analyze
the phase information of video frames to detect and track motion. PBVM processing
operates by first decomposing the video frames into their respective phase and magnitude
components using a complex steerable pyramid. The phase component represents the local
orientation of the image patterns, while the magnitude component reflects the strength of
the patterns (Wadhwa et al., 2013).

After the decomposition, PBVM processing calculates the phase difference be-
tween consecutive frames to obtain the motion information. By using the phase difference,
PBVM processing can detect motion even when the magnitude component is small, such
as in regions with low contrast or texture. Additionally, PBVM processing can track both
rigid and non-rigid motion, which is useful in applications such as video surveillance
and motion analysis (Wadhwa et al., 2013). Figure 3.4 shows algorithm flow of PBVM
processing.

One of the advantages of PBVM processing is its robustness to noise and occlu-
sions. Since it operates on the phase component, which is less sensitive to noise and
clutter, PBVM processing can still detect motion even when the magnitude component is
heavily corrupted. Furthermore, PBVM processing can handle partial occlusions, where
only a portion of the moving object is visible, by tracking the motion of the visible portion
and propagating it to the occluded regions (Wadhwa et al., 2013).

The Python implementation of Phase-Based Video Motion Processing method
is done in the article ‘Learning-based Video Motion Magnification’ by Oh et al. with
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Figure 3.4: PBVM method involves analyzing local phase signals over time in differ-
ent spatial scales and orientations using complex steerable pyramids. The
amplitude of local wavelets is separated from their phase, and the phases are
temporally filtered independently at each location, orientation, and scale. Spa-
tial smoothing can be applied to increase the phase signal-to-noise ratio, which
improves the results. The temporally-bandpassed phases are then amplified or
attenuated, and the video is reconstructed (Source: Wadhwa et al., 2013)

a name ‘temporal filtering based processing’ (Oh et al., 2018). In our study we used
this implementation to generate motion magnified images. Required inputs for temporal
filtering based processing are amplification factor, low cut-off frequency, high cut-off
frequency, sampling rate of video and filter type. There are 3 different filter types available
first one is the FIR filter design using the window method, second one is Nth-order digital
Butterworth filter and third one is difference of IIR which designs two lowpass filter for
given low and high cutoff frequencies and creates band pass IIR filter (Oh et al., 2018).

Since the SAMM and CASME II datasets are captured at 200 frames per second,
sampling rate variable is set to 200 for both datasets. For the filter type difference of
IIR, a low cut-off frequency of 0.001 and a high cut-off frequency of 0.002 are chosen.
Amplification factor is selected as 40. The selection of the amplification factor and
cut-off frequencies is based on empirical considerations, aiming to achieve adequate
magnification while avoiding excessive blurring of the image. These values are determined
through experimentation to strike a balance between enhancing the desired features and
maintaining visual clarity.

Selecting low and high cut-off frequencies for filter requires knowledge about
motion to be magnified. If bandpass filter is selected too wide there can be unwanted mag-
nification that corrupts the image. If it is selected too narrow, desired motion frequencies
can be missed.
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To avoid magnification and excessive blurring of unrelated parts of the image, a
region of interest (ROI) capturing only the face region was introduced as seen in Figure 3.5.
Phase-Based Video Motion Processing was applied to this ROI only. For the detection
of the ROI, important facial landmarks from the original image were extracted using
MediaPipe’s Face Landmarker. The landmarks were selected from the eye, eyebrow,
mouth, nose, and jaw regions of the face. After the landmark positions were obtained, a
bounding box was drawn around the face region using OpenCV’s ’boundingRect’ function.

Figure 3.6 and 3.7 show blendshape scores of subject 006_1_2 that is seen in
Figure 3.2 before and after PBVM processing is applied. Since the subject demonstrates
action unit 4 which is brow lowerer movement, it can be observed that browDownLeft and
browDownRight feature scores are increased after PBVM processing is applied.

Figure 3.5: ROI extraction using facial landmarks and minimum bounding rectangle func-
tion of OpenCV. Image of the subject is taken from SAMM dataset (Source:
Davison et al., 2016)
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Figure 3.6: Mediapipe blendshape scores for original apex frame of the subject seen in
Figure 3.2 (a)
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Figure 3.7: Mediapipe blendshape scores for PBVM applied apex frame of the subject
seen in Figure 3.2 (b)
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3.3.4. Classification Algorithm

Classification layers for micro-expression experiments consist of a ConvLSTM1D
layer followed by multi-layer perceptron block which has 5 dense layers with sizes 4096,
2048, 2048, 1024, 1024 and finally a dense layer with softmax activation function as it is
seen in figure 3.8.

Figure 3.8: Classification algorithm for micro-expression experiments. First (𝑛, 𝑎) shaped
array that holds feature vectors for whole sequence is scaled using quantile
transformer. Scaled 1D data is fed into ConvLSTM1D block. Output of Con-
vLSTM1D block is flatten and data is classified using multi-layer perceptron
layers. Where, 𝑛: frame count, 𝑒: emotion count, 𝑎: feature count

Before classifying extracted features they are scaled using quantile transformation.
Quantile transformation is a data transformation technique used in machine learning to
map the probability distribution of a given dataset to a uniform or a normal distribution.
It is a non-linear transformation, which means that it does not preserve the rank or order
of the original data. (Pedregosa et al., 2011)

The quantile transformer works by estimating the cumulative distribution function
(CDF) of the input data and then mapping it to a standard normal distribution (with a
mean of 0 and a standard deviation of 1) or a uniform distribution (with values between 0
and 1). This transformation is useful for various machine learning tasks where the input
features are expected to have a specific distribution, such as in linear regression or neural
network models. (Pedregosa et al., 2011)

One of the primary advantages of the quantile transformer is that for a given
feature, this transformation tends to spread out the most frequent values. It also reduces
the impact of (marginal) outliers. It is also useful in cases where the input data has a
nonlinear relationship with the target variable. (Pedregosa et al., 2011)
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In scikit-learn, a popular Python machine learning library, the QuantileTransformer
class can be used to perform the quantile transformation on the input data. (Pedregosa
et al., 2011)

3.4. Results and Discussion

In Table 3.3, accuracies for all conducted experiments of micro-expression recog-
nition is shown. Leave One Subject Out Cross Validation (LOSOCV) technique is used
to validate proposed model. Four different experiments were conducted for each dataset,
consisting of combinations of whether PBVM was applied or not, and whether Blend-
shape scores or Euclidean distance were used as the feature type. The results indicate
that applying PBVM generally leads to a slight increase in accuracy, with one exception
being the experiment conducted on the CASME II dataset using Euclidean distance fea-
tures, where the accuracy did not change. Furthermore, the findings reveal that Euclidean
distance features outperformed Blendshape score features, resulting in 3% to 5% more
accurate predictions. Additionally, the processing times for creating Blendshape score
and Euclidean distance features after an image is fed into the MediaPipe framework were
measured as 17.8 ms and 20.9 ms respectively.

Table 3.3: Accuracy table for micro-expression experiments

Dataset PBVM Feature Type Accuracy (LOSOCV)
SAMM Yes Blendshape Score 79.69%
SAMM No Blendshape Score 77.44%
CASME II Yes Blendshape Score 89.10%
CASME II No Blendshape Score 87.82%
SAMM Yes Euclidean Distance 84.21%
SAMM No Euclidean Distance 80.45%
CASME II Yes Euclidean Distance 92.94%
CASME II No Euclidean Distance 92.94%

Confusion matrices for SAMM and CASME II datasets can be visible in Figure
3.9, from these figures it can be observed that, classification accuracy of some emotions
like fear and sadness gives poor results. The reason for that is the unbalanced distribution
of number of subjects per emotion in datasets. In Figure 3.10, the bar plot of number of
subjects per emotion is shown. Also, for SAMM dataset most of the wrong predictions by
the model are confused with anger since the highest percentage of training data consist of
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(a) SAMM (b) CASME II

Figure 3.9: Confusion matrices for micro-expression experiments using Euclidean dis-
tance features.

(a) SAMM (b) CASME II

Figure 3.10: Emotions and number of subjects mapping

anger emotion. For CASME II dataset this dominant emotion is disgust.

3.5. Conclusion

In this study, we proposed a deep learning based sequential micro-expression
recognition method by detecting facial landmarks using MediaPipe’s Face Landmarker
solution which is significantly faster than the popular Dlib facial landmark detection
algorithm. We used Euclidean distances and blendshape scores as geometric features.
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Since positional change of facial muscles are subtle, we applied PBVM processing in
order to magnify landmark position change. It was observed that, even tough PBVM
processing magnifies the motion of expression it does not have significant effect on changes
of landmark positions. With the proposed method we achieved competitive mean accuracy
values among the landmark based methods in the literature using leave one subject out
cross validation technique. We tested the proposed method with SAMM and CASME II
datasets and achieved following maximum accuracy results respectively; 84.21%, 92.94%.
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CHAPTER 4

CONCLUSION

In this thesis, we conducted two research to recognize emotions from macro and
micro facial expressions. These two types of expressions require different perspectives
for analysis due to their distinct characteristics. However, the proposed methods for
both studies share some common properties. First common property is that only facial
geometric features are used and they are created based on facial landmarks. To extract
facial landmarks of a face in real-time we have used MediaPipe’s FaceMesh, also as
known as Face Landmarker solution in newer versions, which is significantly faster than
the popular Dlib facial landmark detection algorithm. Second common property is that
to have temporal information of a facial expression, unlike using a static snapshot of a
person’s face, sequential images from neutral till apex are used.

For macro expression study, to create geometrical features from facial landmarks
we considered the difference of Euclidean distance of landmark pairs and angles with
respect to neutral state of subjects. This approach provides auto calibration to the baseline
of subjects which is changing from person to person. Also, it is shown that by tracking
mean value of difference of distance features along the time, onset, apex and offset phases
of an emotion can be detected. In our experiments we observed that increasing landmark
count does not necessarily improve accuracy and sometimes it can have negative effects.
Experiments with FACS based landmark grouping method show that selecting useful
features using a feature reduction algorithm often increases classification accuracy. With
the proposed method we achieved competitive mean accuracy values among the landmark
based methods in the literature using 5-fold cross validation technique. We tested the
proposed method with CK+, Oulu-CASIA VIS & NIR and MMI datasets and achieved
following maximum accuracy results respectively; 93%, 79%, 77%, 68%.

In the study of micro expressions, where the duration of expressions is very short
and their intensity is relatively weak compared to macro expressions, we applied PBVM
processing to the image sequences to enhance the visibility of facial micro expressions.
In addition to utilizing facial landmark positions to create Euclidean distance features, we
also conducted a separate experiment using blendshape scores provided by MediaPipe’s
Face Landmarker. In total, we conducted four experiments per dataset: one with PBVM
processing applied, one without PBVM processing, one using Euclidean distance features,
and one using blendshape score features. Throughout our experiments, we observed
that the effect of PBVM processing on facial landmark positions may not be significant
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enough, depending on the dataset. Moreover, we found that Euclidean distance features
yielded higher accuracy compared to blendshape scores, although the processing time to
create them was longer compared to processing blendshapes. To evaluate the proposed
method, we tested it on the SAMM and CASME II datasets using the Leave One Subject
Out Cross Validation (LOSOCV) technique. The maximum accuracy results achieved for
each dataset were 84.21% and 92.94% respectively, demonstrating the effectiveness of our
approach in accurately recognizing micro expressions.

For facial expression recognition, finding accurate, robust and real-time solution
still remains as a challenge. With increasing human-computer interaction, it is not hard
to predict that many applications from different areas will desire to detect emotion of a
human. Proposed system should be fast enough and robust against different illumination
variations, rotation of face, facial accessories and any other distortion factors to be able to
adopted by commercial applications.
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