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ABSTRACT

ENTANGLEMENT AND TOPOLOGICAL PHENOMENA IN 
QUANTUM WALKS

Quantum walk, a counterpart of classical random walk, is widely used in the 
development of quantum algorithms and the modelling of physical systems. Since it has a 
simple and powerful mathematical structure, its implementation in physical systems 
serves to solve complex problems.

In one-dimensional space, we investigated the topological properties of the simple 
quantum walk, and under which conditions the simple quantum walk possesses 
winding numbers. Then, we introduced the split-step quantum walk in a two-
dimensional space and numerically obtained Chern number phase diagram of each 
band as a function of rotation parameters. Subsequently, we introduced and studied the 
quantum walk protocols governed by two coins in a two-dimensional space. We first 
explored the entanglement and topological properties of a quantum walk protocol 
governed by a single non-local two-coin operator followed by translations along two 
spatial directions each governed by a different coin. We deduced that the motion reduces 
to one-dimensional motion in two spatial directions in decoupled coin subspaces. 
Then, we studied the split-step quantum walk protocols, where each step is comprised 
of local coin operations, followed by translations, non-local coin operations, and 
translations again. In these protocols, each step involves two translations along two 
spatial directions, and translations along a given spatial direction were either governed by 
the same coin or alternating coins. We also explored three different non-local coin 
operations, where a collective rotation takes place in a coin space conditioned on the 
state of the other coin’s state along the same direction or perpendicular direction. 
We identified the effective Hamiltonian of the system and determined its eigenstates 
which are comprised of four bands in the Brillouin zone. For all the protocols we 
have introduced, we studied the coin-coin entanglement and topological properties as a 
function of coin rotation parameters.
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ÖZET

KUANTUM YÜRÜYÜŞLERDE DOLANIKLIK VE TOPOLOJİK 
OLGULAR

Klasik rastgele yürüyüşünün bir analojisi olarak tanımlanan kuantum yürüyüşü, 
kuantum algoritmalarının geliştirilmesinde ve fiziksel sistemlerin modellenmesinde sıkça 
kullanılmaktadır. Basit ve güçlü matematiksel yapısından dolayı fiziksel sistemlere 
uyarlaması kompleks problemlerin çözümüne yardımcı olur.

Bir boyutlu uzayda, basit kuantum yürüyüşünün topolojik özelliklerini ve hangi 
şartlar altında dolanım sayılarına sahip olduğunu inceledik. Daha sonra iki boyutlu 
uzayda bölünmüş-adımlı kuantum yürüyüşünü tanıttık ve her bir bandın Chern sayısı faz 
diyagramını döndürme parametrelerine göre nümerik olarak elde ettik. Ardından iki 
boyutlu bir uzayda iki kuantum parası tarafından yönetilen kuantum yürüyüş 
protokollerini tanıttık. İlk olarak, bir tane yerel olmayan(kolektif) kuantum parası 
döndürme operatöründen ve her bir yönü farklı kuantum paraları tarafından yönetilmiş 
öteleme operatöründen oluşan kuantum yürüyüşünün dolanıklık ve topolojik özelliklerini 
inceledik. Kuantum yürüyüşünün ayrıklaşmış kuantum alt uzayında bir boyutlu kuantum 
yürüyüşlerine indirgendiği sonucuna ulaştık. Daha sonra, her bir adımın sırasıyla yerel 
kuantum parası operatörlerinden, öteleme operatörlerinden, yerel olmayan kuantum 
parası operatöründen ve tekrar öteleme operatöründen oluşan bölünmüş-adımlı kuantum 
yürüyüş protokollerini inceledik. Bu protokollerde, her bir adım iki uzamsal yön boyunca 
iki öteleme ve aynı kuantum parası veya farklı kuantum parası tarafından yönetilen belirli 
bir uzamsal yön boyuncaki ötelemeleri içerir. Aynı zamanda, aynı veya dikey yön 
boyunca bir diğer kuantum parasının durumuna bağlı olarak kuantum parası uzayında 
uygulanan üç farklı yerel olmayan(kolektif) kuantum parası operatörlerini inceledik. 
Sistemlerin efektif Hamiltonyen’ini tanımladık ve Brillouin bölgesinde dört banttan 
oluşan özdurumlarını belirledik. Tanımladığımız bütün protokoller için kuantum para-
kuantum para dolanıklığını ve topolojik özellikleri döndürme açılarına bağlı olarak 
inceledik.
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CHAPTER 1

Introduction

A classical random walk describes a random process in a mathematical space.
Firstly, it is introduced by K. Pearson in order to find the probability of the walker’s
position after 𝑁 steps on a line(Pearson, 1905). Classical random walk is a powerful tool to
model and understand the behavior of complex systems due to its mathematical structure.
The rigorous, formal, and the most precise explanation of random walk is given by F.
Spitzer as a graduate textbook for researchers(Spitzer, 1964). The most famous example
of random walk in physics is called the Brownian motion, explained by A. Einstein in
1905(Einstein, 1905). In equilibrium gas or liquid, the Brownian motion is based on the
modelling of moving particles that are regarded as classical. Speaking of the Brownian
motion, the term diffusion is quite related to random walk from a classical perspective.
In the continuous limit, the random walk exhibits the dynamics of macroscopic diffusion.
This situation means that the probability of the walker’s position after large 𝑁 steps forms
a Gaussian distribution around the starting position of the walker, as in a diffusion process.
From computer science perspective, random walk lead to the development of search
algorithms by its implemented mathematical structure. The most known algorithm based
on a random walk is the PageRank algorithm which seeks the importance of webpages by
walking randomly among them(Page et al., 1999). The key idea beyond the algorithm is
that the importance of a webpage can be understood by the number of pages linking to it.

Quantum walks, an analogy of classical random walks, are built on the principles of
quantum mechanics and have applications in many fields today. The discrete-time quantum
walk was first introduced in 1993 by Y. Aharonov, L. Davidovich, and N. Zagury(Aharonov
et al., 1993).In quantum walks, unlike classical random walks, the walker is represented by
a quantum state which consists of position and spin degree of freedom. Since interference
effects exist in quantum walks, the probability of distribution of the walker does not
approach a limit, unlike classical random walks(Kempe, 2003). There are two types of
quantum walks: discrete-time quantum walks and continuous-time quantum walks. In
discrete-time quantum walks on a lattice, each step of the walker consists of a coin-flip
operator that is applied to the coin space and followed by a translation operator that depends
on the walker’s spin. The continuous-time quantum walk, first introduced by Farhi and
Gutman in 1998, can be defined by the walker’s evolution on a graph without requiring
a coin-flip operator(Farhi and Gutmann, 1998). In physics, applications of quantum
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walk mostly appear in the modelling and development of quantum algorithms. The first
quantum algorithms, which are based on the discrete-time quantum walk, are introduced
by D. Aharonov et al. and A. Ambainis et al.(Aharonov et al., 2001)(Ambainis et al.,
2001). Aharonov et al. in 2001 show that the discrete-time quantum walk on a general
graph can be at most polynomially faster than the classical random walk. In the work
of Ambainis et al. in 2001, the authors observed several remarkable differences between
quantum walk on a one-dimensional lattice and classical random walk. Following this,
Shenvi et al. developed a quantum algorithm for search problems by using discrete-time
quantum walk on a hypercube(Shenvi et al., 2003). In addition, Childs et al. constructed
a graph and showed that the continuous-time quantum walk can be faster exponentially
than classical random walk(Childs et al., 2003). J. Kempe showed that the hitting time,
a fundamental concept in Markov chain theory, is exponentially faster in discrete-time
quantum walk than in classical point of view(Kempe, 2005). In addition, both discrete
and continuous quantum walks are the interest of research to develop universal quantum
computation which defines the capacity of quantum computers to perform on arbitrary
quantum systems. Separately from quantum walks, the quantum factorizing algorithm,
introduced by P. Shor in 1994, is an effective algorithm that is faster than classical
algorithms significantly(Shor, 1994). There are models to describe quantum computation,
such as quantum circuit model, topological quantum computation, and measurement-
based quantum computing. For instance, Hadamard gate is used in quantum circuit model
to create the superposition between qubits. The other gates used in quantum circuit
model are Pauli gates, phase gates, controlled gates, swap gates, Toffoli gate, and Fredkin
gate. Lovett et al. showed quantum computation on discrete quantum walks(Lovett
et al., 2010). From the perspective of physical realization, quantum walk experiments are
performed using different physical systems since quantum walk cannot be restricted to
specific fields(Kitagawa, 2012). One of the most known quantum walk experiments was
performed with cold atoms on a line by Karski et al.(Karski et al., 2009). In the experiment,
two hyperfine states of Cesium(Cs) atom were considered as spin degrees of freedom, and
resonant microwave radiation was used as a spin rotation operator. The spin-dependent
shift operator was implemented by continuous control of the trap polarization. The
observation of quantum walk was performed up to 10 steps in the experiment. Following
this, a discrete-time quantum walk experiment was implemented with single photons in
space by Broome et al. in 2010(Broome et al., 2010). In this experiment, the spin degree
of freedom was represented as the vertical and the horizontal polarization of the photon.
Half-wave plates were used as a spin rotation operator. The spin-dependent shift operator
was implemented by a birefringent calcite beam displacer. The experiment was held up
to 6 steps.

Before explaining the topological aspect of quantum walks, it is essential to clarify
the term topological phase in physics. The topological phase refers to quantized physical
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properties and robustness against perturbations of physical systems since it cannot be
defined by local parameters. The studies on topological phases have been gained an
interest in condensed matter physics since the discovery of quantized Hall effect, which
exhibits quantization of conductance in a two-dimensional electron gas in the existence of
a strong magnetic field, by von Klitzing(Klitzing et al., 1980). With the discovery of the
quantized Hall effect, topological phases have led to the invention of new materials called
topological insulators(Koenig et al., 2007)(Hsieh et al., 2009).

Topological phases in the quantum walk were first introduced by T. Kitagawa, M.
Rudner, E. Berg, and E. Demler in 2010(Kitagawa et al., 2010). The authors showed that
stroboscopic realization of the effective Hamiltonian of the system exhibits robust topolog-
ical edge states against smooth changes in rotation parameter 𝜃. In addition to edge states,
topological characterization of one-dimensional and two-dimensional quantum walks are
revealed on a triangular lattice(Kitagawa et al., 2010). The first physical realization of
topological phenomena in split-step quantum walks was observed with single photons
generated by spontaneous parametric down conversion(Kitagawa et al., 2012). The exper-
iment was held up to seven steps and unveiled the topological edge states by using different
winding number boundaries on the lattice. In addition, the study of non-hermitian systems
with parity-time symmetry by L. Xiao et al. implemented experimentally the edge states
in the quantum walk by using single photons by temporally alternating photon losses(Xiao
et al., 2017). The organization of the thesis is as follows:

In Chapter 1, the mathematical structure of discrete-time quantum walk is defined
and investigated the probability distribution of Hadamard quantum walk to understand the
behaviour of quantum walk compared to classical random walk. Then, a simple quantum
walk governed by a coin is introduced to unveil the topological integer of the system in a
one-dimensional lattice. Followed by the simple quantum walk, split-step quantum walk
governed by a coin is defined in two-dimensional lattice and then, the definition of Chern
number of the system is described and unveiled by using numerical method.

In Chapter 2, the simple quantum walk governed by two coins is introduced and
discussed Chern number of the system on a two-dimensional lattice. Then, three different
split-step quantum walks governed by two coins are defined by engineering appropriate
unitary coin and translation operators in a two-dimensional space. Chern number phase
diagram of each split-step quantum walk is obtained and discussed. Then, coin-coin
entanglement of each quantum walk governed by two coins is obtained in momentum
space.
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1.1 Discrete-time Quantum Walk

Now, a simple example of a discrete-quantum walk can be studied by constructing
mathematical and physical requirements. For a discrete-time quantum walk, Hilbert space
is composed of position and coin space H = H𝑝 ⊗ H𝐶 . The position and coin space can
be employed as | 𝑗⟩𝑝 ∈ H𝑝 ( 𝑗 = −∞, ...,∞) and |𝑐𝑜𝑖𝑛⟩ ∈ H𝑐 (in computational basis:
|𝑐𝑜𝑖𝑛⟩ ∈ {|0⟩ , |1⟩}), respectively. In general, the position state starts at the origin such
that | 𝑗⟩𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = |0⟩𝑝. The coin state can be described in a computational basis such that
|𝑐𝑜𝑖𝑛⟩ = 𝛼0 |0⟩𝑐 +𝛼1 |1⟩𝑐, |𝛼0 |2 + |𝛼1 |2 = 1. For a general coin-flip operator can be chosen
as a Hadamard coin operator,

𝐻 =
1
√
2
( |0⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨0| − |1⟩ ⟨1|) (1.1)

Followed by Hadamard operator, a spin-dependent translation operator can be defined on
a line the following way,

𝑆 =
∑︁
𝑗

( | 𝑗 + 1⟩ ⟨ 𝑗 | ⊗ |0⟩𝐶 ⟨0| + | 𝑗 − 1⟩ ⟨ 𝑗 | ⊗ |1⟩𝐶 ⟨1|) (1.2)

Then, an initial state in composed Hilbert space can be defined as the following;

|𝜓(𝑡 = 0)⟩ = |0⟩𝑝 ⊗ |𝑐𝑜𝑖𝑛⟩ (1.3)

The evolution of the initial state is governed by the evolution operator of the system

𝑈 = 𝑆(𝐼 ⊗ 𝐻) (1.4)
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The evolution of the initial state after 𝑡 steps can be denoted as below;

|𝜓(𝑡)⟩ = 𝑈𝑡 |𝜓(𝑡 = 0)⟩ (1.5)

By applying Hadamard operation on |0⟩ and |1⟩ respectively, one may extrapolate that

𝐻 |0⟩ = 1
√
2
( |0⟩ + |1⟩) (1.6)

𝐻 |1⟩ = 1
√
2
( |0⟩ − |1⟩) (1.7)

As a result from above, Hadamard operator creates an equally weighted superposition states
for a chosen |0⟩ , |1⟩ states initially. Followed by the Hadamard operation, spin-dependent
translation operators applied on position states of the walker given by,

𝑆 |0⟩ ⊗ | 𝑗⟩ = |0⟩ ⊗ | 𝑗 + 1⟩ (1.8)

𝑆 |1⟩ ⊗ | 𝑗⟩ = |1⟩ ⊗ | 𝑗 − 1⟩ (1.9)
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Figure 1.1: Hadamard Quantum walk of 100 steps on a line for the initial state;|1⟩𝐶 ⊗ |0⟩𝑝.
(Venegas-Andraca, 2012)
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Figure 1.2: Hadamard Quantum walk of 100 steps on a line for the initial state;|0⟩𝐶 ⊗ |0⟩𝑝.
(Venegas-Andraca, 2012)

Figures 1.1-1.2 refer to the probability distribution of Hadamard’s discrete-quantum
walk of 100 steps for different initial states. Asymmetry stems from the choice of the
initial state, as shown in the above figures.

1.2 Simple Topological Quantum Walk In a One-Dimensional Space

Topological invariants of quantum walk protocols can be unveiled by using proto-
cols in the seminal paper written by T. Kitagawa in 2012 (Kitagawa, 2012). In a discrete
quantum walk, a quantum coin is subjected to uniter operators, such as rotation around
some axis and translation through the lattice. Considering an infinite lattice from 𝑗 = −∞
to 𝑗 = ∞, a discrete quantum walk protocol can be written as follows:

𝐶𝑦 (𝜃) = 𝑒−𝑖𝜃𝜎𝑦/2 (1.10)
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The operator (1.10) makes a rotation the amount of 𝜃 around 𝑦− axis on the quantum coin
and creates a superposition state. Then, the spin-dependent translation operator is applied
to the quantum coin as below:

𝑆 =

∞∑︁
𝑗=−∞

{| 𝑗 + 1⟩ ⟨ 𝑗 | ⊗ |0⟩ ⟨0| + | 𝑗 − 1⟩ ⟨ 𝑗 | ⊗ |1⟩ ⟨1|} (1.11)

As seen from (1.11), the direction in which the quantum coin moves depends on
its spin. The translational operator in momentum space can be represented as,

𝑆 =

∫ 𝜋

−𝜋
𝑑𝑘𝑒−𝑖𝑘𝜎𝑧 ⊗ |𝑘⟩ ⟨𝑘 | (1.12)

It is an essential realization of topological phases in momentum-space since spin infor-
mation of the coin is embedded in 𝜎𝑧 basis (Kitagawa, 2012). Followed by the translation
operator, the one-step evolution operator, 𝑈 = 𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝛿𝑇 , can be denoted as follows,

𝑈 = 𝑆𝐶𝑦 (𝜃) (1.13)

Then, the stroboscopic realization of effective Hamiltonian can be written by setting
𝛿𝑇 = 1,

𝐻𝑒 𝑓 𝑓 =

∫ 𝜋

−𝜋
𝑑𝑘 (𝜖 (𝑘)n(𝑘).𝜎) ⊗ |𝑘⟩ ⟨𝑘 | (1.14)

In closed form of Eq. (1.14), 𝜖 (𝑘) and 𝑛(𝑘) represent the quasi-energy of the system
and polarization of the eigenstates, respectively. The explicit form of one-step evolution
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operator in momentum space is,

𝑈 =

∫
𝐹𝐵𝑍

(
𝑒−𝑖𝑘 cos 𝜃

2 −𝑒−𝑖𝑘 sin 𝜃
2

𝑒𝑖𝑘 sin 𝜃
2 𝑒𝑖𝑘 cos 𝜃

2

)
𝑑𝑘 ⊗ |𝑘⟩ ⟨𝑘 | (1.15)

To unveil the topological phase of the simple quantum walk, polarization vectors of the
eigenstates, n(k), can be found from the explicit form of the evolution operator. The matrix
notation of the effective Hamiltonian will be,

𝐻𝑒 𝑓 𝑓 =

∫
𝐹𝐵𝑍

(
𝜖 (𝑘)𝑛𝑧 𝜖 (𝑘) (𝑛𝑥 − 𝑖𝑛𝑦)

𝜖 (𝑘) (𝑛𝑥 + 𝑖𝑛𝑦) −𝜖 (𝑘)𝑛𝑧

)
𝑑𝑘 ⊗ |𝑘⟩ ⟨𝑘 | (1.16)

By using 𝑈 = 𝑒−𝑖𝐻𝑒 𝑓 𝑓 , the evolution operator in terms of 𝜖 (𝑘) and n(𝑘) can be written as,

𝑈 =

∫
𝐹𝐵𝑍

(
cos(𝜖 (𝑘)) − 𝑖 sin(𝜖 (𝑘))𝑛𝑧 −𝑖 sin(𝜖 (𝑘)) (𝑛𝑥 + 𝑖𝑛𝑦)
−𝑖 sin(𝜖 (𝑘)) (𝑛𝑥 − 𝑖𝑛𝑦) cos(𝜖 (𝑘)) + 𝑖 sin(𝜖 (𝑘))𝑛𝑧

)
𝑑𝑘 ⊗ |𝑘⟩ ⟨𝑘 | (1.17)

Quasi-energy and polarization vectors of the system can be found by equalizing each
element of operators in (1.15) and (1.17),

𝜖 (𝑘) = arccos

(
cos

𝜃

2
cos(𝑘)

)
(1.18)

®𝑛 =
1

sin 𝜖 (𝑘)

(
− sin

𝜃

2
sin 𝑘, sin

𝜃

2
cos 𝑘, cos

𝜃

2
sin 𝑘

)
(1.19)
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(b) Rotation angle 𝜃 = 0

Figure 1.3: Quasi-energy spectrum of the simple quantum walk in interval 𝑘 ∈ [−𝜋, 𝜋]
for chosen rotation parameter. In (b) eigenstates of the system are ill-defined since gap
closes at 𝜃 = 0, 2𝜋.

Figure 1.3 corresponds to the quasi-energy spectrum of the simple quantum walk.
In (a), the winding number of the quantum walk exists for 𝜃 = 𝜋

4 , whereas in (b) does not
exist since the gap is closing for 𝜃 = 0.

The polarization vector ®n is a representation of eigenstates on Bloch sphere with
a rotation parameter 𝜃. It is essential to find out an axis on Bloch sphere such that
®n(𝑘). ®A(𝜃) = 0 at each point 𝑘 since the topological phase, winding number, corresponds
to turning number of ®n(𝑘). Then, for a chosen axis ®A(𝜃) =

(
cos 𝜃

2 , 0, sin
𝜃
2

)
, the scalar

product of ®n(𝑘). ®A(𝜃) equals zero for all 𝑘 points. Now, the winding number of the simple
quantum walk can be calculated in first Brillouin zone as the following,

𝜔 =
1

2𝜋

∫ 𝜋

−𝜋
®n(𝑘).

(
𝑑®n(𝑘) × ®A(𝜃)

)
(1.20)
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Figure 1.4: Winding number of the simple quantum walk with rotation parameter 𝜃

between −4𝜋 ≤ 𝜃 ≤ 4𝜋 is plotted in first Brillouin zone. As seen in the figure, winding
number is indefinite for 𝜃 = ±2𝜋𝑛, 𝑛 ∈ 𝑁 due to gap is closing.

Figure 1.4 is the phase diagram of simple quantum walk in one-dimensional lattice.
Since the system corresponds to a two-band effective Hamiltonian, the winding number
of each eigenstate is plotted for rotation parameter 𝜃. As seen from, the winding number
of the system takes just an integer of 1 and −1 except angles corresponding to boundaries.

Another way to deduce the winding number of the system is to analyze the behavior
of polarization vector ®n(𝑘) at lattice points 𝑘 = 0 and 𝑘 = 𝜋. The key point of the
existence of winding number is directly related to the trajectory of ®n(𝑘) on Bloch sphere
(Wang et al., 2020). At lattice points 𝑘 = 0 and 𝑘 = 𝜋, ®n(0) = 1

sin 𝜖 (0)
(
0, sin 𝜃

2 , 0
)

and
®n(𝜋) = 1

sin 𝜖 (𝜋)
(
0,− sin 𝜃

2 , 0
)

can be used to find out the form of trajectory.

®n(0).®n(𝜋) = 1

sin 𝜖 (0) sin 𝜖 (𝜋)

(
− sin2

𝜃

2

)
(1.21)

®n(0).®n(𝜋) = −
sin2 𝜃

2

sin2 𝜃
2

= −1 < 0 (1.22)

11



The result in Eq. (1.22) shows that vector ®n(𝑘) forms a closed circle on Bloch sphere.
Since the sign of ®n(0).®n(𝜋) is negative, the direction of ®n(0) and ®n(𝜋) anti-parallel which
means ®n(𝜋) does not return to the initial point(Wang et al., 2020). Therefore, the winding
number of a chosen eigenstate is either integer of 1 or −1 in the studied simple quantum
walk protocol.

1.3 Chern Number

Chern number plays an essential role in physics, particularly in the study of topo-
logical phases of matter. Chern number does not change under continuous and smooth
transformations of underlying Hamiltonian. It is used to characterize the topology of the
system. In physics, the quantization of Hall conductance was first introduced by Klitzing
et al.(Klitzing et al., 1980). Followed by the experiment of Klitzing et al., the quantization
was associated with Chern Number(Thouless et al., 1982). The quantum Hall conductance
is an integer multiple of the fundamental constant 𝑒2

ℎ
where 𝑒 is the charge of the electron,

and ℎ is Planck’s constant. Chern number of the system can be calculated by using both
polarization vectors and eigenstates of the Hamiltonian. In terms of polarization vectors,
the calculation method of Chern number is based on the total area mapping from the first
Brillouin zone to Bloch sphere such that the two-dimensional Brillouin zone corresponds
to a torus that has periodic boundaries, and the number of area wrapping on Bloch sphere
gives Chern number of the system(Kitagawa, 2012).

𝐶 =
1

4𝜋

∬
𝐹𝐵𝑍

n.

(
𝜕n

𝜕𝑘𝑥
− 𝜕n

𝜕𝑘𝑦

)
𝑑𝑘𝑥𝑑𝑘𝑦 (1.23)

where n = (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) and |n| = 1. Eq. (1.23) does not explicitly indicate which energy
band of the effective Hamiltonian is associated with Chern number, since polarization
vectors contain information of both eigenstates. Therefore, one may use eigenstates of
effective Hamiltonian to obtain Chern number of each band. By defining eigenstates
|𝜓𝑛 (k)⟩ = 𝑒𝑖r.k |𝜙𝑛 (k)⟩, Chern number of the 𝑛th band is given by;

𝐶𝑛 =
1

2𝜋

∬
𝐹𝐵𝑍

(
𝜕𝐴𝑘𝑦

𝜕𝑘𝑥
−
𝜕𝐴𝑘𝑥

𝜕𝑘𝑦

)
𝑑𝑘𝑥𝑑𝑘𝑦 (1.24)
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Here, 𝐴𝑘𝑥 and 𝐴𝑘𝑦 correspond to Berry connection, an analogy of vector potential.

𝐴𝑘𝑥 =𝑖 ⟨𝜙𝑛 (k) |
𝜕

𝜕𝑘𝑥
|𝜙𝑛 (k)⟩

𝐴𝑘𝑦 =𝑖 ⟨𝜙𝑛 (k) |
𝜕

𝜕𝑘𝑦
|𝜙𝑛 (k)⟩

(1.25)

T. Fukui et al. introduced an efficient method of numerical calculation of Chern number by
discretizing the Brillouin zone using a grid in momentum space(Fukui et al., 2005). The
implementation of the method in our non-degenerate systems can be denoted as follows:

1. Discretization of two-dimensional Brillouin zone:

𝑘𝛼 =(𝑘𝑥 , 𝑘𝑦)

(𝑘𝑥 , 𝑘𝑦) =
(
2𝜋𝛼1
𝑁1

,
2𝜋𝛼2
𝑞𝑁2

) (1.26)

where 𝛼1, 𝛼2 = (1, 2, ..., 𝑁1𝑁2). 𝑁1, 𝑁2 correspond to grid size of the unit cell, and 𝑞 is
the positive integer.

2. The infinitesimal displacement along 𝑘𝑥 and 𝑘𝑦 directions:

1̂ =
2𝜋

𝑁1
(1, 0) −→ 𝑘𝑥

2̂ =
2𝜋

𝑞𝑁2
(0, 1) −→ 𝑘𝑦

(1.27)
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3. Definition of Link variable along 𝑘𝑥 and 𝑘𝑦 directions:

𝑈1(𝑘𝛼) =
〈
𝜙(𝑘𝛼)

��𝜙(𝑘𝛼 + 1̂)
〉��〈𝜙(𝑘𝛼)��𝜙(𝑘𝛼 + 1̂)
〉�� −→ 𝑘𝑥 (1.28)

𝑈2(𝑘𝛼) =
〈
𝜙(𝑘𝛼)

��𝜙(𝑘𝛼 + 2̂)
〉��〈𝜙(𝑘𝛼)��𝜙(𝑘𝛼 + 2̂)
〉�� −→ 𝑘𝑦 (1.29)

where 𝜙(𝑘𝛼) corresponds to the Bloch function of the eigenstate underlying Hamiltonian.

4. Definition of the field strength which corresponds to Berry curvature for a unit
cell in Brillouin zone:

𝐹12(𝑘𝛼) ≡ ln
(
𝑈1(𝑘𝛼)𝑈2(𝑘𝛼 + 1̂)𝑈1(𝑘𝛼 + 2̂)−1𝑈2(𝑘𝛼)−1

)
(1.30)

5. The computation of Chern number in a two-dimensional discretized Brillouin
zone:

𝐶 =
1

2𝜋𝑖

∑︁
𝑘𝛼

𝐹12(𝑘𝛼) (1.31)

The numerical method provides an efficient method to avoid arbitrary gauge phases
that add to eigenstates of the Hamiltonian on a two-dimensional lattice. The numerical
method of Chern number is implemented to discrete quantum walk protocols to obtain a
phase diagram of each band.
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1.4 Split-Step Topological Quantum Walk In a Two-Dimensional Space

Split-step quantum walks are composed of multiple translations and rotation op-
erators which depend on different rotation angles in a lattice (Kitagawa, 2012). Split-step
quantum walk protocol can be defined as the following
1. First, coin tosses around the y-axis with parameter 𝜃1;

𝐶 (𝜃1) = 𝑒−𝑖𝜃1𝜎𝑦/2 (1.32)

2. The conditional shift of spin up and spin down along the x and y axes;

𝑆1 =
∑︁
𝑥,𝑦

( |𝑥 + 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |0⟩ ⟨0| + |𝑥 − 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |1⟩ ⟨1|) (1.33)

3. Coin tosses around the y-axis by parameter 𝜃2;

𝐶 (𝜃2) = 𝑒−𝑖𝜃2𝜎𝑦/2 (1.34)

4. The conditional shift of spin up and spin down along the y-axis;

𝑆2 =
∑︁
𝑥,𝑦

( |𝑥, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |0⟩ ⟨0| + |𝑥, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |1⟩ ⟨1|) (1.35)
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5. Coin tosses around the y-axis by parameter 𝜃1;

𝐶 (𝜃1) = 𝑒−𝑖𝜃1𝜎𝑦/2 (1.36)

6. Spin-dependent translation along the x-axis;

𝑆3 =
∑︁
𝑥,𝑦

( |𝑥 + 1, 𝑦⟩ ⟨𝑥, 𝑦 | ⊗ |0⟩ ⟨0| + |𝑥 − 1, 𝑦⟩ ⟨𝑥, 𝑦 | ⊗ |1⟩ ⟨1|) (1.37)

The evolution operator of the system becomes,

𝑈 (𝜃1, 𝜃2) = 𝑆3𝐶 (𝜃1)𝑆2𝐶 (𝜃2)𝑆1𝐶 (𝜃1) (1.38)

The translation operators 𝑆1, 𝑆2, and 𝑆3 can be written in momentum space the following
way,

𝑆1 =

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
𝑑𝑘𝑥𝑑𝑘𝑦𝑒

−𝑖(𝑘𝑥+𝑘𝑦)𝜎𝑧 ⊗
��𝑘𝑥 , 𝑘𝑦〉 〈

𝑘𝑥 , 𝑘𝑦
�� (1.39)

𝑆2 =

∫ 𝜋

−𝜋
𝑑𝑘𝑦𝑒

−𝑖𝑘𝑦𝜎𝑧 ⊗
��𝑘𝑦〉 〈

𝑘𝑦
�� (1.40)

𝑆3 =

∫ 𝜋

−𝜋
𝑑𝑘𝑥𝑒

−𝑖𝑘𝑥𝜎𝑧 ⊗ |𝑘𝑥⟩ ⟨𝑘𝑥 | (1.41)
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Then, we introduce the matrix elements of the evolution operator in momentum space,
explicitly;

𝑈 =

∬
𝐹𝐵𝑍

(
𝑈11 𝑈12

𝑈21 𝑈22

)
𝑑𝑘𝑥𝑑𝑘𝑦 ⊗

��𝑘𝑥 , 𝑘𝑦〉 〈
𝑘𝑥 , 𝑘𝑦

�� (1.42)

𝑈11 = 𝑒−𝑖𝑘𝑥
(
cos

𝜃2

2
(cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos 𝜃1 − 𝑖 sin

(
𝑘𝑥 + 2𝑘𝑦

)
) − cos(𝑘𝑥) sin

𝜃2

2
sin 𝜃1

)
𝑈12 = −𝑒−𝑖𝑘𝑥

(
sin

𝜃2

2
(cos(𝑘𝑥) cos 𝜃1 + 𝑖 sin(𝑘𝑥)) + cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos

𝜃2

2
sin 𝜃1

)
𝑈21 = 𝑒𝑖𝑘𝑥

(
sin

𝜃2

2
(cos(𝑘𝑥) cos 𝜃1 − sin(𝑘𝑥)) + cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos

𝜃2

2
sin 𝜃1

)
𝑈22 = 𝑒𝑖𝑘𝑥

(
cos

𝜃2

2
(cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos 𝜃1 + 𝑖 sin

(
𝑘𝑥 + 2𝑘𝑦

)
) − cos(𝑘𝑥) sin

𝜃2

2
sin 𝜃1

)
(1.43)

Then,

𝑈 =

∬
𝐹𝐵𝑍

𝑑𝑘𝑥𝑑𝑘𝑦𝑈𝑘𝑥 ,𝑘𝑦 ⊗
��𝑘𝑥 , 𝑘𝑦〉 〈

𝑘𝑥 , 𝑘𝑦
�� (1.44)

where 𝑈𝑘𝑥 ,𝑘𝑦 can be defined the following,

𝑈𝑘𝑥 ,𝑘𝑦 =

(
cos(𝜖 (𝑘)) − 𝑖 sin(𝜖 (𝑘))𝑛𝑧 −𝑖 sin(𝜖 (𝑘)) (𝑛𝑥 + 𝑖𝑛𝑦)
−𝑖 sin(𝜖 (𝑘)) (𝑛𝑥 − 𝑖𝑛𝑦) cos(𝜖 (𝑘)) + 𝑖 sin(𝜖 (𝑘))𝑛𝑧

)
(1.45)
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By Equalizing the matrix elements of (1.42) and (1.45), one gets the polarization vectors
and eigen-energy function of the effective Hamiltonian as below,

𝜖 (𝑘𝑥 , 𝑘𝑦) = arccos

(
cos(𝑘𝑥) cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos

𝜃2

2
cos 𝜃1 − cos

𝜃2

2
sin(𝑘𝑥) sin

(
𝑘𝑥 + 2𝑘𝑦

)
− cos2(𝑘𝑥) sin

𝜃2

2
sin 𝜃1

) (1.46)

𝑛𝑥 =
1

sin(𝜖)

(
sin(2𝑘𝑥) sin

𝜃2

2
sin2

𝜃1

2
− cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos

𝜃2

2
sin(𝑘𝑥) sin 𝜃1)

)
(1.47)

𝑛𝑦 =
1

sin(𝜖)

( (
cos2(𝑘𝑥) cos 𝜃1 + sin2(𝑘𝑥)

)
sin

𝜃2

2

+ cos(𝑘𝑥) cos
(
𝑘𝑥 + 2𝑘𝑦

)
cos

𝜃2

2
sin 𝜃1

) (1.48)

𝑛𝑧 =
1

2 sin(𝜖)

(
2 cos

𝜃2

2

(
cos

(
𝑘𝑥 + 2𝑘𝑦

)
cos 𝜃1 sin(𝑘𝑥) + cos(𝑘𝑥) sin

(
𝑘𝑥 + 2𝑘𝑦

) )
− sin(2𝑘𝑥) sin

𝜃2

2
sin 𝜃1

) (1.49)

where n =

√︃
𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧 = 1. Now, the quasi-energy spectrum of the split-step quantum

walk can be investigated for various rotation parameters 𝜃1, 𝜃2.
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(a) Rotation angles 𝜃1 = 𝜋
3 ,𝜃2 = 3𝜋

4 (b) Rotation angles 𝜃1 = 𝜋
2 ,𝜃2 = 𝜋

11

Figure 1.5: The quasi-energy spectrum of two-dimensional split-step quantum walk for
given rotation parameters 𝜃1, and 𝜃2 in first Brillouin zone (𝑘𝑥 , 𝑘𝑦) ∈ [−𝜋/2, 𝜋/2]. In
(a) Chern number of each band is zero, however in (b) Chern number of the system
corresponds to an integer of −1, and 1.

(a) Rotation angles 𝜃1 = −2𝜋,𝜃2 = 2𝜋 (b) Rotation angles 𝜃1 = −2𝜋,𝜃2 = 𝜋

Figure 1.6: The quasi-energy spectrum of two-dimensional split-step quantum walk for
given rotation parameters 𝜃1, and 𝜃2 in first Brillouin zone (𝑘𝑥 , 𝑘𝑦) ∈ [−𝜋/2, 𝜋/2]. In (a)
Chern numbers are undefined for given rotation parameters 𝜃1, 𝜃2.

Figures 1.5-1.6 represent the quasi-energy spectrum of split-step quantum walk
in a two-dimensional lattice. The rotation parameters determine Chern number of the
system.

Eq. (1.31) can be employed in order to investigate and analyze broadly Chern
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number of the system with respect to rotation parameters 𝜃1, and 𝜃2.

The Chern Number Phase Diagram of Ground State 
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(a) Phase diagram of ground
state for (𝜃1, 𝜃2) ∈ [−2𝜋, 2𝜋]

The Chern Number Phase Diagram of Excited State
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(b) Phase diagram of excited
state for (𝜃1, 𝜃2) ∈ [−2𝜋, 2𝜋]

Figure 1.7: Numerical calculation of Chern number phase diagram of both eigenstates
is plotted for rotation angles 𝜃1, 𝜃2. Chern number of split-step quantum walk in a two-
dimensional lattice is associated with the integers of −1,0, and 1.

Figure (1.7) refers to Chern number phase diagram of the split-step quantum walk.
In the figure, the navy blue colour corresponds to an integer of −1, while the red claret
colour corresponds to an integer of 1. The green colour refers to Chern number being zero
at rotation parameters. It is clear that

∑
𝑛 𝐶𝑛 = 0 except boundaries of the diagram.

In this chapter, basic preliminaries and topological aspects of quantum walks have
been introduced by defining simple and split-step quantum walk protocols. To obtain
topological integers, the winding number of the simple quantum walk protocol and Chern
number of the two-dimensional split-step quantum walk have been calculated analytically
and numerically, respectively. It is essential to realize that the winding number appears in
a one-dimensional lattice while Chern number appears in a two-dimensional lattice. Since
quantum walks are widely used in quantum algorithms, topological quantum walks can
lead to the development of topological quantum algorithms.
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CHAPTER 2

Two-Coin Topological Quantum Walk In a Two-Dimensional

Space

In this chapter, we extended the quantum walks protocols by adding one more
coin. We consider quantum walks on a two-dimensional lattice governed by two coins.
In general, the engineered quantum walks are composed of local coin operations followed
by a collective two-coin operation. Local coin operations are characterized by some
rotation angle in a two-state coin space, and a non-local coin operation is a rotation
in each coin space dependent on the state of the other coin. Followed by the coin
operation, a displacement is made in two Cartesian directions depending on the state of
the corresponding coin. The effective Hamiltonian of the system corresponds to a four-
band system. The quasi-energy spectrum of the effective Hamiltonian for different rotation
operators indicates how Chern numbers of the system are associated with the eigenstates
of the system. Chern numbers of the systems are calculated by using Fukui’s efficient
algorithm on discretized Brillouin zone (Fukui et al., 2005).

2.1 Simple Quantum Walk with Two Coins

The two-coin quantum walk consists of a rotation operator and a conditional shift
operator. Then, two quantum coins are labelled by Alice and Bob. Alice and Bob toss the
coins respectively,

H = H𝐴 ⊗ H𝐵 (2.1)
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The following collective(non-local) coin operator makes the quantum coins entangled;

𝐶𝐴𝐵 = 𝑒−𝑖𝜃𝜎
(𝐴)
𝑥 ⊗𝜎 (𝐵)

𝑥 /2 (2.2)

As an example, if the spin of the initial coin is |0⟩𝐴 |0⟩𝐵, the final state becomes after the
coin operation as below;

𝐶𝐴𝐵 |0⟩𝐴 |0⟩𝐵 = cos(𝜃/2) |00⟩𝐴𝐵 − 𝑖 sin(𝜃/2) |11⟩𝐴𝐵 (2.3)

Since the final state is not separable after the rotation operation, it is called an entangled
state. The conditional shift operators in two-dimensional space are considered as ;

𝑆𝐴𝑥𝐵𝑦
=

∑︁
𝑥,𝑦

|𝑥 + 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |00⟩𝐴𝐵 ⟨00|𝐴𝐵 + |𝑥 + 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |01⟩𝐴𝐵 ⟨01|𝐴𝐵

+ |𝑥 − 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |10⟩𝐴𝐵 ⟨10|𝐴𝐵 + |𝑥 − 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |11⟩𝐴𝐵 ⟨11|𝐴𝐵 (2.4)

The translation operator in (2.4) can be factorized into one-dimension along 𝑥 and 𝑦

directions the following,

𝑆𝐴𝑥𝐵𝑦
= 𝑆𝐴𝑥

⊗ 𝑆𝐵𝑦
(2.5)

According to the translation operator 𝑆 in (2.4), the walker is conditionally translated
diagonally along a two-dimensional space. The evolution operator of the system is 𝑈 =

𝑒−𝑖𝐻𝑒 𝑓 𝑓 𝛿𝑇 , then for 𝛿𝑇 = 1 , one-step quantum walk becomes;

𝑈 = 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵 (2.6)
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Eigen-energies of the 𝐻𝑒 𝑓 𝑓 define up to 2𝜋
𝑇

, then it is considered that 𝐻𝑒 𝑓 𝑓 exhibits
stroboscopic feature for 𝛿𝑇 = 1 over the first Brillouin zone. The topological effects
of quantum walks are observed in momentum space since the walk operator in (2.6) has
translational symmetry in position space. Thus, the translation operator can be represented
diagonally in momentum space ;

𝑆𝐴𝑥𝐵𝑦
=

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
𝑑𝑘𝑥𝑑𝑘𝑦

(
𝑒−𝑖𝑘𝑥𝜎

(𝐴)
𝑧 ⊗ 𝑒−𝑖𝑘𝑦𝜎

(𝐵)
𝑧

)
⊗

��𝑘𝑥 , 𝑘𝑦〉 〈
𝑘𝑥 , 𝑘𝑦

�� (2.7)

Then, the walk operator is expressed in the Brillouin zone,

𝑈 =

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋
𝑑𝑘𝑥𝑑𝑘𝑦𝑈𝑘𝑥 ,𝑘𝑦 ⊗

��𝑘𝑥 , 𝑘𝑦〉 〈
𝑘𝑥 , 𝑘𝑦

�� (2.8)

As seen from (2.7), the spin information of the coins is encoded in 𝜎𝑧 basis. The explicit
form of 𝑈𝑘𝑥 ,𝑘𝑦 is ;

𝑈𝑘𝑥 ,𝑘𝑦 =


𝑒−𝑖(𝑘𝑥+𝑘𝑦) cos

(
𝜃
2

)
0 0 −𝑖𝑒−𝑖(𝑘𝑥+𝑘𝑦) sin

(
𝜃
2

)
0 𝑒−𝑖(𝑘𝑥−𝑘𝑦) cos

(
𝜃
2

)
−𝑖𝑒−𝑖(𝑘𝑥−𝑘𝑦) sin

(
𝜃
2

)
0

0 −𝑖𝑒−𝑖(−𝑘𝑥+𝑘𝑦) sin
(
𝜃
2

)
𝑒−𝑖(−𝑘𝑥+𝑘𝑦) cos

(
𝜃
2

)
0

−𝑖𝑒−𝑖(−𝑘𝑥−𝑘𝑦) sin
(
𝜃
2

)
0 0 𝑒−𝑖(−𝑘𝑥−𝑘𝑦) cos

(
𝜃
2

)

(2.9)

The evolution matrix of the quantum walk can be represented in different coordinates by
making appropriate transformations on the first Brillouin zone. Coordinate transformation
can be defined as 𝑘𝑥±𝑘𝑦√

2
= 𝑘±, then the evolution operator becomes in the new coordinate
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as below;

𝑈𝑘+,𝑘− =


𝑒−𝑖

√
2𝑘+ cos

(
𝜃
2

)
0 0 −𝑖𝑒−𝑖

√
2𝑘+ sin

(
𝜃
2

)
0 𝑒−𝑖

√
2𝑘− cos

(
𝜃
2

)
−𝑖𝑒−𝑖

√
2𝑘− sin

(
𝜃
2

)
0

0 −𝑖𝑒𝑖
√
2𝑘− sin

(
𝜃
2

)
𝑒𝑖
√
2𝑘− cos

(
𝜃
2

)
0

−𝑖𝑒𝑖
√
2𝑘+ sin

(
𝜃
2

)
0 0 𝑒𝑖

√
2𝑘+ cos

(
𝜃
2

)

(2.10)

It is understood from (2.10), the quantum walk does not propagate in two dimensions
since the eigenbasis of coin operators do not move together in 𝑘+ and 𝑘− directions. The
bases |00⟩ , |11⟩ move along the 𝑘+ direction, and the other bases |01⟩ , |10⟩ moves along
the 𝑘− direction. Therefore, the evolution operator does not possess a Chern number
over first Brillouin zone since the quantum walks decompose into two different quantum
walks as 𝑈 = 𝑈

′ ⊕ 𝑈
′′ . However, the winding number of the system can be defined for a

decomposed quantum walk since each of them propagates on 𝑘+, and 𝑘− lines separately.
As expected from the form of the evolution operator in (2.6), the band spectrum of the
quantum walk exhibits degeneracy for various rotation parameter 𝜃. By changing the
order of the eigenbasis in matrix𝑈, one may find out evolution operators of the decoupled
quantum walk the following,

𝑈
′
=

∫ 𝜋

−𝜋
𝑑𝑘+

(
𝑒−𝑖

√
2𝑘+ cos

(
𝜃
2

)
−𝑖𝑒−𝑖

√
2𝑘+ sin

(
𝜃
2

)
−𝑖𝑒𝑖

√
2𝑘+ sin

(
𝜃
2

)
𝑒𝑖
√
2𝑘+ cos

(
𝜃
2

) )
⊗ |𝑘+⟩ ⟨𝑘+ | (2.11)

𝑈
′′
=

∫ 𝜋

−𝜋
𝑑𝑘−

(
𝑒−𝑖

√
2𝑘− cos

(
𝜃
2

)
−𝑖𝑒−𝑖

√
2𝑘− sin

(
𝜃
2

)
−𝑖𝑒𝑖

√
2𝑘− sin

(
𝜃
2

)
𝑒𝑖
√
2𝑘− cos

(
𝜃
2

) )
⊗ |𝑘−⟩ ⟨𝑘− | (2.12)
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(a) Rotation angle 𝜃 = 𝜋
2 (b) Rotation angle 𝜃 = 𝜋

4

(c) Rotation angle 𝜃 = 𝜋
7 (d) Rotation angle 𝜃 = 𝜋

Figure 2.1: The band spectrum of effective Hamiltonian for various rotation angles 𝜃 in
first Brillouin zone 𝑘𝑥,𝑦 ∈ [−𝜋, 𝜋]. The system exhibits a degeneracy at each rotation
parameter 𝜃.

Figure 2.1 shows that the decoupling of the simple quantum walk occurs for chosen
rotation parameters. Since the quantum walk does not propagate in two-dimensional the
Brillouin zone, Chern numbers of each band are undefined.

The winding number of each decoupled quantum walk can be calculated by using
Eq. (1.20) since the quantum walk operator in (2.6) is effectively separated into one-
dimensional quantum walks in position space.

25



2.2 Split-Step Quantum Walks with Two Coins

Table 2.1: The studied split-step quantum walk protocols. Each protocol consists of
different non-local coin operators and translation operators.

Protocol List
Protocol
Number

Quantum Walk Operator Non-Local Operators Local Coin Operators

Model 1 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵𝑆𝐵𝑥

𝐶𝐵𝑆𝐴𝑦
𝐶𝐴 𝐶𝐴𝐵 = 𝑒−𝑖𝜃3𝜎

(𝐴)
𝑥 ⊗𝜎 (𝐵)

𝑥 /2 𝐶𝐴 = 𝑒−𝑖𝜃1𝜎
(𝐴)
𝑥 /2

𝐶𝐵 = 𝑒−𝑖𝜃2𝜎
(𝐵)
𝑥 /2

Model 2 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵𝑆𝐵𝑦

𝐶𝐵𝑆𝐴𝑥
𝐶𝐴 𝐶𝐴𝐵 = 𝑒−𝑖𝜃3𝜎

(𝐴)
𝑦 ⊗𝜎 (𝐵)

𝑦 /2 𝐶𝐴 = 𝑒−𝑖𝜃1𝜎
(𝐴)
𝑥 /2

𝐶𝐵 = 𝑒−𝑖𝜃2𝜎
(𝐵)
𝑥 /2

Model 3 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵𝑆𝐵𝑥

𝐶𝐵𝑆𝐴𝑦
𝐶𝐴 𝐶𝐴𝐵 = 𝑒−𝑖𝜃3𝜎

(𝐴)
𝑧 ⊗𝜎 (𝐵)

𝑦 /2 𝐶𝐴 = 𝑒−𝑖𝜃1𝜎
(𝐴)
𝑥 /2

𝐶𝐵 = 𝑒−𝑖𝜃2𝜎
(𝐵)
𝑥 /2

The split-step quantum walks are composed of three simple quantum walks. The
study of split-step quantum walks provides the observation of topological effects on the first
Brillouin Zone. Unlike the simple quantum walk in (2.6), decoupling of the eigenbasis does
not occur in split-step quantum walk. The lattice constant of the quantum walk corresponds
to 2 unit cell in the two-dimensional lattice, since the translation operators are applied
on the walker along the 𝑥, 𝑦-directions more than once. In momentum representation,
periodicity of the effective Hamiltonian is 𝜋

2 and first Brillouin zone defines a torus with
boundaries 𝑘𝑥 , 𝑘𝑦 ∈ [− 𝜋

2 ,
𝜋
2 ]. Boundaries of the first Brillouin zone are vital since the

calculation of Chern number over the first Brillouin zone is based on the turning number
of the eigenstates of the effective Hamiltonian.

2.2.1 The First Split-Step Quantum Walk Protocol

The following unitary operators define our first split-step quantum walk in the
Hilbert space,
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1. Alice tosses the first coin around x-axis;

𝐶𝐴 = 𝑒−𝑖𝜃1𝜎
(𝐴)
𝑥 /2 (2.13)

2. The conditional shift operator is defined on the walker along the y-axis;

𝑆𝐴𝑦
=

∑︁
𝑦

{|𝑦 + 1⟩ ⟨𝑦 | ⊗ |0⟩𝐴 ⟨0|𝐴 + |𝑦 − 1⟩ ⟨𝑦 | ⊗ |1⟩𝐴 ⟨1|𝐴} (2.14)

3. Bob tosses the second coin around x-axis;

𝐶𝐵 = 𝑒−𝑖𝜃2𝜎
(𝐵)
𝑥 /2 (2.15)

4. After the coin tossing, the shift operator along the x-axis is;

𝑆𝐵𝑥
=

∑︁
𝑥

{|𝑥 + 1⟩ ⟨𝑥 | ⊗ |0⟩𝐵 ⟨0|𝐵 + |𝑥 − 1⟩ ⟨𝑥 | ⊗ |1⟩𝐵 ⟨1|𝐵} (2.16)

5. A non-local(collective) coin operator is introduced along the 𝑥 direction;

𝐶𝐴𝐵 = 𝑒−𝑖𝜃3𝜎
(𝐴)
𝑥 ⊗𝜎 (𝐵)

𝑥 /2 (2.17)
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6. Followed by the non-local coin operation, a displacement is made in two Cartesian
directions;

𝑆𝐴𝑥𝐵𝑦
=

∑︁
𝑥,𝑦

|𝑥 + 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |00⟩𝐴𝐵 ⟨00|𝐴𝐵 + |𝑥 + 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |01⟩𝐴𝐵 ⟨01|𝐴𝐵

+ |𝑥 − 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |10⟩𝐴𝐵 ⟨10|𝐴𝐵 + |𝑥 − 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |11⟩𝐴𝐵 ⟨11|𝐴𝐵 (2.18)

The first split-step quantum walk protocol can be denoted as ;

𝑈 (1) = 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵𝑆𝐵𝑥

𝐶𝐵𝑆𝐴𝑦
𝐶𝐴 (2.19)

Chern numbers of split-step quantum walks are numerically calculated by using Eq. (1.31).
For the protocol 𝑈 (1) , eigenstates and quasi-energies of the effective Hamiltonian can be
represented the following,

𝑈 (1) =

∫ 𝜋
2

− 𝜋
2

∫ 𝜋
2

− 𝜋
2

𝑒−𝑖𝜖𝑛 (𝑘𝑥 ,𝑘𝑦)
��𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)〉 〈

𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)
�� 𝑑𝑘𝑥𝑑𝑘𝑦 ⊗ ��𝑘𝑥 , 𝑘𝑦〉 〈

𝑘𝑥 , 𝑘𝑦
�� (2.20)
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(a) Rotation angles 𝜃1 = 𝜋
4 ,𝜃2 = 2𝜋

3 ,𝜃3 = 3𝜋
7 (b) Rotation angles 𝜃1 = 𝜋

4 ,𝜃2 = 𝜋
5 ,𝜃3 = 𝜋

2

(c) Rotation angles 𝜃1 = −𝜋
3 , 𝜃2 = −𝜋

5 , 𝜃3 = −3𝜋
4 (d) Rotation angles 𝜃1 = 𝜋

7 ,𝜃2 = 3𝜋
5 ,𝜃3 = 𝜋

3

Figure 2.2: The quasi-energy spectrum of the first split-step quantum walk protocol for
various rotation angles 𝜃1,𝜃2, and 𝜃3 in the first Brillouin zone 𝑘𝑥,𝑦 ∈ [−𝜋/2, 𝜋/2].

Figure 2.2 represents the quasi-energy spectrum of the first split-step quantum
walk protocol with different rotation parameters. As seen in the figure, the eigenstates of
the effective Hamiltonian are well-defined for given rotation parameters. Thus, the system
possesses Chern number over the first Brillouin zone.
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(a) Rotation angle 𝜃3 =
𝜋
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(b) Rotation angle 𝜃3 =
𝜋
4

Figure 2.3: Chern number phase diagram of the first split-step quantum walk protocol is
plotted for the ground state and the third excited state in the interval of 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋].
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(a) Rotation angle 𝜃3 =
𝜋
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(b) Rotation angle 𝜃3 =
𝜋
4

Figure 2.4: Chern number phase diagram of the first split-step quantum walk protocol is
plotted for the first excited state and the second excited state in the interval of 𝜃1, 𝜃2 ∈
[−𝜋, 𝜋].

Figures 2.3-2.4 contain Chern number phase diagram of each band with constant
rotation parameter 𝜃3, and indicate how Chern numbers change with respect to rotation
parameters 𝜃1, 𝜃2. As seen from the figures, each band is mostly characterized by integers
of −2, 0, 2. The colours aqua, green, and orange correspond to integers of −2, 0, 2,
respectively.
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Figure 2.5: Summation of Chern number phase diagrams of all bands with constant
rotation parameter 𝜃3 = 𝜋

4 is plotted in interval of 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋] .

Figure 2.5 refers to the summation of Chern number phase diagrams of all bands
with respect to rotation parameters 𝜃1, 𝜃2 and indicates boundaries of the protocol at some
rotation parameters.

∑
𝑛 𝐶𝑛 = 0 corresponds to the green colour in the phase diagram.

2.2.2 The Second Split-Step Quantum Walk Protocol

The second split-step quantum protocol in this chapter can be denoted by using
the following unitary operators that describe coin rotations and translation over the two-
dimensional lattice. The main difference from the first model is that coins dictated the
motion the direction of one Cartesian coordinate and non-local rotation is made of y-
directions.
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1. Alice tosses the first coin along the x-axis;

𝐶𝐴 = 𝑒−𝑖𝜃1𝜎
(𝐴)
𝑥 /2 (2.21)

2. The conditional shift operator is defined on the walker along the x-axis;

𝑆𝐴𝑥
=

∑︁
𝑥

( |𝑥 + 1⟩ ⟨𝑥 | ⊗ |0⟩𝐴 ⟨0|𝐴 + |𝑥 − 1⟩ ⟨𝑥 | ⊗ |1⟩𝐴 ⟨1|𝐴) (2.22)

3. Bob tosses the coin along the x-axis;

𝐶𝐵 = 𝑒−𝑖𝜃2𝜎
(𝐵)
𝑥 /2 (2.23)

4. After the coin tossing, the shift operator along the y-axis is;

𝑆𝐵𝑦
=

∑︁
𝑦

( |𝑦 + 1⟩ ⟨𝑦 | ⊗ |0⟩𝐵 ⟨0|𝐵 + |𝑦 − 1⟩ ⟨𝑦 | ⊗ |1⟩𝐵 ⟨1|𝐵) (2.24)

5. A non-local(collective) coin operator is introduced along the 𝑦 direction;

𝐶𝐴𝐵 = 𝑒−𝑖𝜃3𝜎
(𝐴)
𝑦 ⊗𝜎 (𝐵)

𝑦 /2 (2.25)
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6. Followed by the non-local coin operation, a displacement is made in two Cartesian
directions;

𝑆𝐴𝑥𝐵𝑦
=

∑︁
𝑥,𝑦

|𝑥 + 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |00⟩𝐴𝐵 ⟨00|𝐴𝐵 + |𝑥 + 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |01⟩𝐴𝐵 ⟨01|𝐴𝐵

+ |𝑥 − 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |10⟩𝐴𝐵 ⟨10|𝐴𝐵 + |𝑥 − 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |11⟩𝐴𝐵 ⟨11|𝐴𝐵 (2.26)

As seen in the split-step quantum walk protocols above, displacements corresponding to
coin’s spin state are made in the same direction. The one-step split-step quantum walk
protocol can be represented as the following,

𝑈 (2) = 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵𝑆𝐵𝑦

𝐶𝐵𝑆𝐴𝑥
𝐶𝐴 (2.27)

𝑈 (2) =

∫ 𝜋
2

− 𝜋
2

∫ 𝜋
2

− 𝜋
2

𝑒−𝑖𝜖𝑛 (𝑘𝑥 ,𝑘𝑦)
��𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)〉 〈

𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)
�� 𝑑𝑘𝑥𝑑𝑘𝑦 ⊗ ��𝑘𝑥 , 𝑘𝑦〉 〈

𝑘𝑥 , 𝑘𝑦
�� (2.28)

Chern number phase diagram of the protocol can be found by using Eq. (1.31) which
describes the numerical calculation of Chern number on discretized first Brillouin zone.
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(a) Rotation angles 𝜃1 = 3𝜋
2 ,𝜃2 = 𝜋,𝜃3 = 𝜋

7 (b) Rotation angles 𝜃1 = 𝜋
2 ,𝜃2 = 3𝜋

5 ,𝜃3 = 𝜋
4

(c) Rotation angles 𝜃1 = 3𝜋
2 , 𝜃2 = 𝜋

2 , 𝜃3 = 𝜋
7 (d) Rotation angles 𝜃1 = 2𝜋

7 ,𝜃2 = 𝜋
5 ,𝜃3 = 3𝜋

11

Figure 2.6: The quasi-energy spectrum of the second split-step quantum walk protocol for
various rotation angles 𝜃1,𝜃2, and 𝜃3 in first Brillouin zone 𝑘𝑥,𝑦 ∈ [−𝜋/2, 𝜋/2].

Figure 2.6 represents the quasi-energy spectrum of the protocol and shows that
Chern numbers are zero for each band for various rotation parameters 𝜃1, 𝜃2, and 𝜃3.
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(a) Rotation angle 𝜃3 =
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(b) Rotation angle 𝜃3 =
𝜋
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Figure 2.7: Chern number phase diagram of the second split-step quantum walk protocol
is obtained with constant rotation parameter 𝜃3 for the ground state and the first excited
state in the interval of 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋].
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(b) Rotation angle 𝜃3 =
𝜋
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Figure 2.8: Chern number phase diagram of the second split-step quantum walk protocol
is obtained with constant rotation parameter 𝜃3 for the second excited state and the third
excited state in the interval of 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋].

Figures 2.7-2.8 correspond to Chern number phase diagram and clearly indicate
that each band is characterized by integer of 0 for constant rotation parameter 𝜃3 except
boundaries of the systems.

35



- 0

2

-

0

1

-4

-3

-2

-1

0

1

2

3

Figure 2.9: Summation of Chern number phase diagrams of all bands with constant
rotation parameter 𝜃3 = 𝜋

4 is plotted in the interval of 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋] .

Figure 2.9 refers to the summation of Chern numbers of all bands with constant
rotation parameter 𝜃3 and indicates that the second split-step quantum walk protocol
exhibits trivial topology except boundaries. The green colour corresponds to

∑
𝑛 𝐶𝑛 = 0.

2.2.3 The Third Split-Step Quantum Walk Protocol

This protocol is introduced by choosing the rotation direction of the non-local
operator along the 𝑧 and 𝑦 directions, respectively. It can be defined step by step as in the
other protocols,
1. Alice tosses the coin in the direction of 𝑥,

𝐶𝐴 = 𝑒−𝑖𝜃1𝜎
(𝐴)
𝑥 /2 (2.29)
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2. The spin-dependent shift operator is introduced,

𝑆𝐴𝑦
=

∑︁
𝑦

( |𝑦 + 1⟩ ⟨𝑦 | ⊗ |0⟩𝐴 ⟨0|𝐴 + |𝑦 − 1⟩ ⟨𝑦 | ⊗ |1⟩𝐴 ⟨1|𝐴) (2.30)

3. Bob tosses the coin in the direction 𝑥,

𝐶𝐵 = 𝑒−𝑖𝜃2𝜎
(𝐵)
𝑥 /2 (2.31)

4. After the coin tossing, the shift operator along the 𝑦- axis is;

𝑆𝐵𝑥
=

∑︁
𝑥

( |𝑥 + 1⟩ ⟨𝑥 | ⊗ |0⟩𝐵 ⟨0|𝐵 + |𝑥 − 1⟩ ⟨𝑥 | ⊗ |1⟩𝐵 ⟨1|𝐵) (2.32)

5. Non-local(collective) coin operator in the directions of 𝑧 and 𝑦 is introduced the
following;

𝐶𝐴𝐵 = 𝑒−𝑖𝜃3𝜎
(𝐴)
𝑧 ⊗𝜎 (𝐵)

𝑦 /2 (2.33)

6. Followed by the non-local coin operator, a displacement is made in two Cartesian
directions;

𝑆𝐴𝑥𝐵𝑦
=

∑︁
𝑥,𝑦

|𝑥 + 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |00⟩𝐴𝐵 ⟨00|𝐴𝐵 + |𝑥 + 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |01⟩𝐴𝐵 ⟨01|𝐴𝐵

+ |𝑥 − 1, 𝑦 + 1⟩ ⟨𝑥, 𝑦 | ⊗ |10⟩𝐴𝐵 ⟨10|𝐴𝐵 + |𝑥 − 1, 𝑦 − 1⟩ ⟨𝑥, 𝑦 | ⊗ |11⟩𝐴𝐵 ⟨11|𝐴𝐵 (2.34)
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The evolution operator of the protocol is then,

𝑈 (3) = 𝑆𝐴𝑥𝐵𝑦
𝐶𝐴𝐵𝑆𝐵𝑥

𝐶𝐵𝑆𝐴𝑦
𝐶𝐴 (2.35)

𝑈 (3) =

∫ 𝜋
2

− 𝜋
2

∫ 𝜋
2

− 𝜋
2

𝑒−𝑖𝜖𝑛 (𝑘𝑥 ,𝑘𝑦)
��𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)〉 〈

𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)
�� 𝑑𝑘𝑥𝑑𝑘𝑦 ⊗ ��𝑘𝑥 , 𝑘𝑦〉 〈

𝑘𝑥 , 𝑘𝑦
�� (2.36)

The numerical analysis of the third split-step quantum walk can be obtained to implement
the topological properties of the system.

(a) Rotation angles 𝜃1 = 3𝜋
4 ,𝜃2 = 𝜋

11 ,𝜃3 = 𝜋
5 (b) Rotation angles 𝜃1 = 𝜋

4 ,𝜃2 = 𝜋
7 ,𝜃3 = 𝜋

(c) Rotation angles 𝜃1 = 3𝜋
4 , 𝜃2 = 𝜋

7 , 𝜃3 = 𝜋
4 (d) Rotation angles 𝜃1 = 2𝜋

5 ,𝜃2 = −𝜋
3 ,𝜃3 = 𝜋

2

Figure 2.10: The quasi-energy spectrum of the third split-step quantum walk protocol for
various rotation angles 𝜃1,𝜃2, and 𝜃3 in first Brillouin zone 𝑘𝑥,𝑦 ∈ [−𝜋/2, 𝜋/2].
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Figure 2.10 indicates the quasi-energy spectrum of the third-split step quantum
walk protocol and associates each band with Chern number. In (b), Chern numbers are
undefined, since there are bands touching at these rotation parameters. We are keeping in
mind that the numerical method is valid for non-degenerate systems.
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Figure 2.11: Chern number phase diagram of the third split-step quantum walk protocol
is plotted for the ground state and the third excited state in the interval 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋].
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Figure 2.12: Chern number phase diagram of the third split-step quantum walk protocol is
plotted for the first excited state and the second excited state in the interval 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋].
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Figures 2.11-2.12 shows how Chern number of each quasi-energy band with con-
stant rotation parameter 𝜃3 is associated with respect to parameters 𝜃1, 𝜃2. Chern number
phase diagrams are more consistent than the phase diagrams of the first split-step quantum
walk protocol. The protocol with constant rotation parameter 𝜃3 is mostly characterized
with the integers of −2,−1, 0, 1, 2.
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Figure 2.13: Summation of Chern number phase diagrams of all bands with constant
rotation parameter 𝜃3 = 𝜋

4 is obtained in the interval of 𝜃1, 𝜃2 ∈ [−𝜋, 𝜋] .

As expected from above Figures 2.11-2.12, Figure 2.13 has a clear interpretation of
the summation of Chern number phase diagram of each band. Except for the boundaries,
it is seen clearly that

∑
𝑛 𝐶𝑛 = 0.
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2.3 Coin-Coin Entanglement of Topological Quantum Walks

This section investigates coin-coin entanglement of the quantum walk protocols
governed by two coins since each protocol exhibits different topological properties in
momentum space. Entanglement is an essential property of quantum physics that does
not occur in classical physics. Entanglement emerges when particles are correlated in
such a way the state of the whole system cannot be described independently of the state
of each particle. In a bipartite system, the entanglement is measured by von Neumann
entropy which provides the amount of entanglement(von Neumann, 1955). Since coins
are entangled by non-local coin operators in our protocols, the state of one coin cannot be
known independently of the other coin. For a given quantum walk protocol,

𝑈 (𝑛) =

∫ 𝜋
2

− 𝜋
2

∫ 𝜋
2

− 𝜋
2

𝑒−𝑖𝜖𝑛 (𝑘𝑥 ,𝑘𝑦)
��𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)〉 〈

𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)
�� 𝑑𝑘𝑥𝑑𝑘𝑦 ⊗ ��𝑘𝑥 , 𝑘𝑦〉 〈

𝑘𝑥 , 𝑘𝑦
�� (2.37)

where 𝑛 corresponds to the band index. The spinor part of the eigenstates in Eq. (2.37)
can be used to deduce coin-coin entanglement of the protocols. To obtain coin-coin
entanglement for a particular state of the evolution operator, one may use the density
matrix of the current state.

𝜌
(𝑛)
𝐴𝐵

=
��𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)〉 〈

𝜙𝑛 (𝑘𝑥 , 𝑘𝑦)
�� (2.38)

Then, partial trace operator is introduced to obtain the reduced density matrix of each coin
the following way,

𝜌
(𝑛)
𝐴

=Tr𝐵 (𝜌(𝑛)𝐴𝐵
)

𝜌
(𝑛)
𝐵

=Tr𝐴 (𝜌(𝑛)𝐴𝐵
)

(2.39)
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Since the eigenstates of the evolution operator correspond to a pure entangled state, the
entropy of entanglement can be obtained for each coin A and B the following,

𝑆(𝑛) (𝐴) = − Tr
(
𝜌
(𝑛)
𝐴

log2(𝜌
(𝑛)
𝐴
)
)

𝑆(𝑛) (𝐵) = − Tr
(
𝜌
(𝑛)
𝐵

log2(𝜌
(𝑛)
𝐵
)
) (2.40)

It is obvious that 𝑆(𝑛) (𝐴) = 𝑆(𝑛) (𝐵). Thus, it is sufficient to obtain and analyze only one
coin’s entropy of entanglement in momentum space.
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Figure 2.14: The entropy of entanglement of coin A for the simple quantum walk protocol
governed by two coins at given rotation parameter 𝜃 = 𝜋

2 is obtained in the interval of
(𝑘𝑥 , 𝑘𝑦) ∈ [−𝜋, 𝜋].
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Figure 2.14 corresponds to the entropy of entanglement of the quantum walk
protocol studied in section 2.1 and indicates how decoupling occurs for eigenstates of the
system. Since the quantum walk is effectively separated into one-dimensional walks in
position space, Chern numbers are undefined. Also, the entropies of entanglement are
maximized along the diagonal points since the walker is dictated to translate along 𝑥, 𝑦

directions diagonally.
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(c) 𝜃1 = 𝜋
3 , 𝜃2 = 𝜋

2 ,𝜃3 = 𝜋
4

Entropy of Entanglement of Coin A - eigenstate #3

- /2 0 /2

k
x

- /2

0

/2

k
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 𝜃1 = 𝜋
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Figure 2.15: The entropy of entanglement of coin A for the first split-step quantum walk
protocol in the interval of (𝑘𝑥 , 𝑘𝑦) ∈ [−𝜋/2, 𝜋/2] .

Figure 2.15 represents the entropy of entanglement of the first split-step quantum
walk protocol studied in section 2.2.1 for various rotation parameters. In (a,b), the entropy
of entanglement is maximized along the diagonal points of (𝑘𝑥 , 𝑘𝑦). However, in (c,d),
the entropy of entanglement is nearly the maximum at each point of (𝑘𝑥 , 𝑘𝑦) except
boundary points and (0, 0) points. At these rotation parameters, Chern number of each
band corresponds to 𝐶1 = 0, 𝐶2 = 2, 𝐶3 = −2, and 𝐶4 = 0.

43



Entropy of Entanglement of Coin A - eigenstate #1

- /2 0 /2

k
x

- /2

0

/2

k
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(a) 𝜃1 = 𝜋
4 , 𝜃2 = 𝜋

5 ,𝜃3 = 𝜋
4

Entropy of Entanglement of Coin A - eigenstate #4

- /2 0 /2

k
x

- /2

0

/2

k
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b) 𝜃1 = 𝜋
4 , 𝜃2 = 𝜋

5 ,𝜃3 = 𝜋
4

Entropy of Entanglement of Coin A - eigenstate #2

- /2 0 /2

k
x

- /2

0

/2

k
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(c) 𝜃1 = 𝜋
4 , 𝜃2 = 𝜋

5 ,𝜃3 = 𝜋
4

Entropy of Entanglement of Coin A - eigenstate #3

- /2 0 /2

k
x

- /2

0

/2

k
y

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(d) 𝜃1 = 𝜋
4 , 𝜃2 = 𝜋

5 ,𝜃3 = 𝜋
4

Figure 2.16: The entropy of entanglement of coin A for the second split-step quantum
walk protocol in the interval of (𝑘𝑥 , 𝑘𝑦) ∈ [−𝜋/2, 𝜋/2].

Figure 2.16 comprises the entropy of entanglement of the second-split step protocol
studied in Section 2.2.2 and shows how the entropy of entanglement of the coins is related
to rotation parameters. In this protocol, the entropy of entanglement is maximized along
the diagonal points of (𝑘𝑥 , 𝑘𝑦) similar to Figure 2.14, although the decoupling does not
occur. As seen from Figures 2.7-2.8, Chern numbers are zero for each band.
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Figure 2.17: The entropy of entanglement of coin A for the third split-step quantum walk
protocol in the interval of (𝑘𝑥 , 𝑘𝑦) ∈ [−𝜋/2, 𝜋/2].

Figure 2.17 refers to the entropy of entanglement of the third split-step protocol
studied in Section 2.2.3 and implies how coins are correlated at given rotation parameters.
Unlike the other protocols, the distribution of the entropy of entanglement is not maximized
to a specific direction along (𝑘𝑥 , 𝑘𝑦) points at given rotation parameters. Chern number
of each band corresponds to 𝐶1 = 1, 𝐶2 = −1, 𝐶3 = 1, and 𝐶4 = −1 at these rotation
parameters.
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CHAPTER 3

CONCLUSION

In this thesis, we extended the quantum walks by adding one more coin and then,
investigated their topological and coin-coin entanglement properties. We first defined a
simple quantum walk governed by a single non-local(collective) two-coin operator and
followed by a translation operator along two spatial directions. In this protocol, we
concluded that the walk operator is reduced effectively into one-dimensional quantum
walks due to the decoupling of the eigenbasis of the coin’s subspace. Therefore, the
simple protocol can possess the winding numbers instead of Chern numbers. Then we
introduced and studied the split-step quantum walk protocols governed by two coins in a
two-dimensional space. In these split-step protocols, we did not encounter a decoupling,
since local quantum walks effectively broke the spatial symmetry. In the first split-step
protocol, we obtained Chern number phase diagram with constant rotation parameter
𝜃3 = 𝜋

4 and deduced that the protocol is mostly characterized by integers of −2, 0, 2 as a
function of 𝜃1,𝜃2. The second split-step protocol, unlike the first protocol, exhibited trivial
topology for constant rotation parameter 𝜃3 = 𝜋

4 and its Chern number phase diagram
is obtained with respect to 𝜃1, 𝜃2 parameters. The third split-step protocol has been
introduced in a similar fashion, but the difference in its non-local coin operation gave rise
to more different topological properties than the first protocol. We have concluded that the
third protocol with constant rotation parameter 𝜃3 = 𝜋

4 is mostly characterized by integers
of −2,−1, 0, 1, 2 as a function of rotation parameters 𝜃1, 𝜃2. Then, we obtained the coin-
coin entanglement of each quantum walk protocol with respect to rotation parameters.
The coin-coin entanglement in the simple quantum walk is mostly maximized in diagonal
directions of lattice points. The decoupling of the simple walk into one-dimensional
quantum walks can be the reason for this maximization along the diagonal directions.
The coin-coin entanglement in the first split-step protocols is widely different among
the current eigenstates. At given rotation parameters, the entropy of entanglement of
coin A at the first excited state and at the second excited state is effectively maximized,
except for boundaries of the Brillouin zone and (0, 0) point. Chern numbers associated
with these current eigenstates are integers of 𝐶1 = 0, 𝐶2 = 2, 𝐶3 = −2, and 𝐶4 = 0.
Then, we obtained the coin-coin entanglement of the second split-step quantum walk
protocol(trivial topology) at given rotation parameters and associated that the reason for
diagonal maximization of the entropy of entanglement can stem from the conditional
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translation operators along the same direction governed by each different coin. We lastly
investigated the entropy of entanglement of the third split-step quantum walk protocol at
given rotation parameters. The coin-coin entanglement of the third protocol indicated that
the maximization of the entropy of entanglement in a specific direction does not occur
at given rotation parameters. Chern numbers associated with given rotation parameters
correspond to 𝐶1 = 1, 𝐶2 = −1,𝐶3 = 1, and 𝐶4 = −1.
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