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ABSTRACT

CONTINUUM DAMAGE MECHANICS BASED MODELLING OF
LAMINATED FIBER REINFORCED COMPOSITES

Multiscale modeling, which merges the worlds of macro- and micromechanics, is
establishing itself as a viable alternative to experimental procedures in the characterization
of the mechanical behavior of complex materials. Advanced composite materials are a
perfect field for the application of such modeling concepts. This thesis focuses on failure
mechanics of fiber reinforced composites and addresses the modeling of failure processes
at both micro- and macro-scales. First, a novel damage-plasticity model is developed
and implemented within finite element software Abaqus as a user defined element. It
is verified that the model gives mesh objective results, and the model is calibrated with
experimental stress-strain curves from the literature. Representative volume elements
(RVEs) based micro-mechanical models are constructed where damage-plasticity model
and cohesive surfaces are employed to capture failure in matrix and matrix-fiber interface,
respectively. A sufficiently large number of RVE analysis results are used to generate
discrete failure envelopes. These failure envelopes are compared with continuous ones
resulting from Puck’s criteria. Furthermore, the influence of microstructural imperfections
is investigated systematically, and an extended version of Puck’s criteria is assessed from a
micro-mechanical perspective as well. In the last part of the thesis, a macroscopic model is
proposed which combines Puck’s criteria with localizing implicit gradient damage model.
It is shown that the model provides consistent results such that the failure angle obtained
at material point and the orientation of the emerging macroscopic damage band match

provided that sufficiently small internal length scale parameter is used.
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OZET

FIBERLE GUCLENDIRILMIS COK KATMANLI KIRILMANIN
HASAR MEKANIGI ILE INCELENMESI

Cok o6lcekli modelleme, mikromekanik ve makromekanik 6lgekleri birlestirmekte-
dir. Bu sebeple, kompleks malzemelerin 6zelliklerinin belirlenmesinde deneysel prosediir-
lere iyi bir alternatif olmaktadir. Kompozit malzemenin modellenmesi ¢cok dlcekli mod-
elleme konsepti i¢cin uygun bir alandir. Bu tez, fiberle giiclendirilmis kompozitlerin kirilma
mekanigine hem mikro 6lgekte hem de makro 6lcekte yogunlagmaktadir. 1k olarak mikro
Olcekli modellerde kullanilmak {izere hasar-plastisite modeli gelistirilmis ve sonlu ele-
manlar programi Abaqus’e kullanict elemant olarak entegre edilmistir. Modelin agdan
bagimsiz sonuglar verdigi gosterilmis ve model parametreleri literatiirden elde edilen
farklr ylikleme durumlarindaki deneysel stres-gerinim egrileri ile kalibre edilmistir. Tem-
sili hacim elemanlar1 (THE) kullanilarak mikromekanik modeller olusturulmustur. Bu
modellerde hasar-plastisite modeli ve yapiskan kontak yiizeyleri, epoksi ve epoksi-fiber
araylizlerindeki hasari takip etmek icin kullanilmistir. Cok sayida THE analizi yapilmis ve
bunlarin sonuclariyla kesikli kirilma zarflar1 olusturulmustur. Bu kirilma zarflar1 Puck’in
kirilma teorisinden elde edilen siirekli kirilma zarflar1 ile karsilagtirilmistir. Ayrica, mikro
Olcekteki kusurlarin, 6rnegin epoksi-fiber ayrigsmasi gibi, etkisi sistematik bir sekilde
incelenmis ve Puck’in gelistirilmis kirilma teorisinin mikromekanik oOlcekteki basarisi
arastinlmistir. Tezin son kisminda makromekanik 6lcege gecilmistir. Bu kisimda, Puck’in
kirilma teorisini ve lokalize olan ortiik gradyant hasar yaklasimini birlestirerek kompoz-
itlerin ilerleyici kirilma analizi yapabilecek bir model olusturulmustur. Model Abaqus’e
kullanici elemani olarak entegre edilmistir ve modelin basarist literatiirden alinan tek ek-
senli sikistirma testi ile arastirilmistir. Modelin malzeme noktalarinda tahmin ettigi kirilma
acilar1 ve makro Olcekte goriilen hasar dagiliminin tutarlt oldugu anlagilmistir. Bu tutar-
lil1g1 saglamak i¢in eleman boyutunun ve i¢sel uzunluk 6l¢eginin uygun secilmesi gerektigi

goriilmiistiir.
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CHAPTER 1

INTRODUCTION

Unidirectionally fiber reinforced composites have superior material properties,
such as lightweightness, higher specific stiffness and strength over metal and metal alloys.
Therefore, such composites have started to replace metal and metal alloys in primary
structure assemblies (Deuschle and Puck, 2013; Reinoso et al., 2017) and are being used
in a wide range of structural components, such as aerospace and aeronautical components,
rotor blades in wind-energy systems, and automotive components. Under service loads,
composite components are subjected to complicated 3D stress states (Deuschle and Puck,
2013). Therefore, reliable and efficient failure prediction under general 3D stress state is
essential for the safe design of unidirectional composite components. For this purpose,
over the years a number of failure criterion have been proposed.

Definition of a universal failure criteria for unidirectional composites has been
a long standing challenge. Through years different failure criteria, mostly based on
experimental data (Hashin, 1980; Puck, 1998) or dependent on empirical parameters
(Azzi and Tsai, 1965; Tsai and Wu, 1971), have been proposed. To asses the predictive
capabilities of these failure criteria and provide recommendations for academics and
designers, two world wide failure exercises (WWZFEs) were carried out (Kaddour and
Hinton, 2012; Soden et al., 2004). In both WWFEs, failure criteria are compared and
ranked based on their failure load and mode predictions. It was explicitly mentioned that
none of the failure criteria are free of shortcomings (Kaddour and Hinton, 2012; Soden
etal., 2004). Improvement of failure criterion requires extensive experimental verification.
Unfortunately full experimental characterization under a wide spectrum of stress states
is costly and more importantly it is not always possible to impose boundary conditions
that would lead to the desired stress state due to difficulties associated with experimental
limitations such as multi-axial loading issues and specimen geometries, (Deuschle and
Puck, 2013). As far as use of failure criterion in design practice is concerned, typically
satisfaction of criteria at a material point within the component/specimen is considered
to be the total failure of the specimen neglecting all the remaining capacity. In case of
laminated composites, neglected capacity may reach to significant levels. In fact it is the

aim of this thesis to at least partially address two issues, namely,



* Assessment and characterization of failure criteria through computational micro me-

chanical modeling and,

* Progressive failure analysis through continuum damage mechanics

by developing and employing suitable computational modeling techniques.

As far as the first issue is concerned, computational micro-mechanical models
provide an alternative perspective for analysis of heterogeneous materials. Instead of try-
ing to predict homogenized response of the composite, micro-mechanical models resolve
each phase and possibly interfaces of the heterogeneous microstructure in combination
with dedicated constitutive models for different phases and interfaces. More precisely,
so-called representative volume elements (RVEs), which have similar statistical character-
istics in terms of geometrical features such as volume fractions and phase geometries, to
real material microstructure are constructed and discretized typically by the finite element
method under appropriate boundary conditions. For each phase, experimentally cali-
brated constitutive models are employed and the RVE is analyzed under different loading
conditions from which macroscopic response is extracted through homogenization. Pro-
vided that statistical representativeness is ensured and the employed constitutive models
are experimentally calibrated, the RVE based analysis of material response yield reliable
results. Since all material testing is done virtually, a very wide spectrum of stress states
can be realized on RVE and discrete failure envelopes can be constructed. Furthermore
microstructural imperfections stemming from manufacturing process chain of composites,
e.g. micro-voids, matrix-fiber interface debonding can be introduced into RVE models
easily, (Ashouri Vajari et al., 2014; Jiang et al., 2019).

Regarding progressive failure analysis, among different alternatives, continuum
damage mechanics has been extensively used primarily due to its clear theoretical basis and
easy-to-implement structure. However as realized soon after its use in combination with
finite element method, continuum damage mechanics leads to mesh dependent solution
which converges to a non-physical limiting case. Therefore since then there has been
a number of remedies to circumvent so-called pathological mesh dependency problem
(BaZant and Oh, 1983; Peerlings et al., 1998; Voyiadjis et al., 2001, 2010). A highly
effective and satisfactory remedy which has not been fully explored yet, was proposed by
Poh and his co-workers, (Poh and Sun, 2017). So exploring the use of so-called localizing
implicit gradient damage (LIGD) model in combination with an effective failure criteria,
e.g., Puck’s failure criteria, could be a valuable addition to the set of tools that can be used

for progressive analysis of composites.



Referring back to the first issue, in this thesis, in Chapter 2, in order to describe
the mechanical response of matrix material, a plasticity model with tension-compression
yield strength asymmetry is extended with LIGD based damage model and implemented
in commercial finite element program Abaqus through user element (UEL) subroutine
(Systemes, 2013). Due to its non-local and coupled nature, the solution requires a three-
field element formulation which is embedded in a monolithic implicit solution algorithm.
The model is calibrated with experimental measurements before it is used in micro-
mechanical models. In Chapter 3, statistically representative elements are constructed
which employs the model presented in Chapter 2 for the matrix in combination with an
elastic response for the fibers and damaging cohesive contact surfaces (interfaces) between
the matrix and fibers. Different RVEs and different fiber distributions are first analyzed
to assess the statistical representativeness of the RVEs. Following that, a sufficiently
large number of RVE analysis under various load combinations are conducted and their
results are used to construct discrete failure loci in different stress spaces. In fact here
the ultimate goal is to assess the predictive capabilities of Puck’ failure criteria, which is
considered to be one of the most reliable failure criteria in both WWFEs (Kaddour and
Hinton, 2012; Soden et al., 2004). In addition to comparison between discrete failure
loci and Puck’s continuous envelopes, the influence of imperfections along matrix-fiber
interfaces are investigated systematically.

Switching from micro to macro-scale, in Chapter 4, the focus has been shifted to
a model that embeds Puck’s criteria within continuum damage mechanics. First a self-
contained presentation of Puck’s criteria is given including an effective search technique
to identify the failure plane and angle which is central to Puck’s criteria. Afterwards
again LIGD formulation is exploited and exposure factors associated with Puck’s criteria
are used as the indicator of damage initiation and evolution. The resulting formulation is
tested with a challenging compression test which fails with an inclined macroscopic failure
surface. It is considered to be challenging because progressive failure analysis tools from
which macroscopically observed failure orientations emerge naturally has been missing.
It is shown that the proposed damage mechanics model predicts inclined macroscopic
failure bands successfully that are also consistent with the predictions of Puck’s criteria at
material point.

The thesis is closed with major findings and merits of the current study and some

comments on potential future research directions that can be pursued.



CHAPTER 2

DAMAGE-PLASTICITY MODEL FOR THE MATRIX

PHASE

2.1. Introduction

The accurate prediction of the failure mechanism of uni-directional composites
has been a long-standing challenge, and it is quite a complex task. There exists large
number of failure criteria (Tsai and Wu, 1971, Hashin, 1980, Puck, 1998, Maimi et al.,
2007). However, as demonstrated in both world wide failure exercise (WWEFE) I and II
(Kaddour and Hinton, 2013; Soden et al., 2004), they are not fully adequate to capture
the experimental response of the composites under complex stress states. Instead of
focusing on macroscopic behaviour and corresponding failure criteria, understanding the
underlying micro-mechanical response could be an important step to circumvent problems
associated with macroscopic failure criteria and might even contribute to improve the
prediction capabilities of existing failure criterion. Uni-Directional composites consist of
fiber, matrix, and fiber-matrix interfaces/interactions. The strain capacity of fiber and fiber-
matrix interactions is limited, and they do not show significant non-linearity. However,
until complete failure, plastic strains develop within the matrix phase and significant non-
linearity is observed, (Fiedler et al., 2001; Melro et al., 2013a, 2013b). Furthermore, the
response of matrix is quite different under tension and compression loads. To accurately
capture the response of the Uni-Directional composites, a model that takes into account
plasticity and tension-compression asymmetry is necessary. Furthermore to describe
failure, the model should be extended with a reliable and objective failure modeling
technique.

To address these issues, in this chapter, a plasticity model which provides all the
previously mentioned properties of matrix material is extended with a mesh objective
damage formulation and implemented within the commercial Finite Element software
Abaqus. The objectiveness of the damage model is demonstrated and the parameters of

the model are calibrated with the aid of reported experimental results.



2.2. Plasticity Model

The matrix material in uni-directional composites is pressure-dependent, shows
significant non-linearity under the influence of shear load (Fiedler et al., 2001; Melro
et al., 2013a), and has tension-compression asymmetry. Since it has a great impact on
the accurate prediction of the failure mechanism of Uni-Directional composites, there is
a vast literature for the modeling of matrix material (Totry et al., 2008; Van Der Meer,
2016). In light of the literature, it is observed that the standard non-linear material models
(such as Mohr-Coulomb or Drucker-Prager) are inadequate for representing the behavior
of matrix in uni-directional composites (Ghorbel, 2008; Melro et al., 2013a).

The yield surface used in this thesis is the paraboloidal yield criterion proposed
by Tschoegl (Tschoegl, 1971) which captures the tension-compression asymmetry. The

explicit form of yield surface of Tschoegl is given as,
¢(o) =6Jy+ 21 (0 — 07) — 200y (2.1)

where /7 and Jo are the first invariant of the stress tensor and the second invariant of the
deviatoric stress tensor, respectively. Furthermore, o, and oy are the yield stresses for
tension and compression, respectively. Furthermore, with the aid of 2/; (o, — 07) term
both pressure dependency and tension-compression asymmetry is taken into account. If
the same hardening curves are assigned to o, and oy, pressure dependency and tension-
compression asymmetry vanish. Consequently, Equation (2.1) reduces to the standard
Von Mises yield condition. The schematic view of the yield locus in principal stress space
is presented in Figure 2.5.

In the next section integration algorithm and its implementation within a finite
element context is going to be elaborated. Afterwards, incorporation of damage is going

to be detailed.

2.2.1. Integration Algorithm and Implementation of the Plasticity Model

Implementation of material model is carried out regarding small deformation

theory (de Souza Neto et al., 2008). Thence, total strain is decomposed into elastic and
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Figure 2.1. Yield locus for the plasticity model

plastic parts as,

P (2.2)

e=¢g°
where, &, £¢! and &” are total strain, elastic strain and plastic strain, respectively.

Since the problem is going to be solved incremental-iterative way by using the
Newton-Raphson method, in a time discretized setting the quantities associated with time
t, are known. Furthermore, due to strain driven nature of the solution algorithm, the total
strain &,,41 associated with 7,1 is known as well. However, it is not known that if & causes
only elastic deformation or elasto-plastic deformation within the step. Thence, to capture
the evolution of &¢/ and &” the elastic predictor plastic corrector return mapping algorithm
(Simo, 1999) is used. Therefore, the implementation of the plasticity model begins with
the trial step where the response is assumed to be elastic. In the trial step, it is assumed
that there is no evolution of plastic strain, and therefore plastic strain tensor (&?) is not

updated and trial stress tensor (0" is computed as follows,
ol =C: (g1 - £D) (2.3)

where subscripts "n” and "n + 1”7 denote previous and current steps (increments), respec-

tively. Then &, and o'rtl’+1 are total strain tensor and trial stress tensor at current step,

respectively. Furthermore, &% is a plastic strain tensor from the previous step. Finally, C¢



is the fourth order elasticity tensor and is defined as,
el sym 2
C =2G 1™ + (K - §G) I®I 2.4)

where G and K are the shear and the bulk modulus of material, respectively. Furthermore,
I and 7°Y™ are second-order identity tensor and fourth-order symmetric identity tensor,
respectively. In indicial notation, 7Y™ is expressed as,
sym 1

6ij'kl = 5 (5ik5jl + 5i15jk) (25)
Once the activation function (yield criteria) in Equation (2.1) takes non-negative values
(exceeds elastic domain) then the initial assumption of elastic response becomes invalid.
Therefore, plastic strain tensor in the current step (85 +1) must be updated. Consequently,

the incremental plastic strain tensor (Ag?) must be computed. Therefore Equation (2.3)

is revised as,
1
o1 = C (8n+1 - 85+1) (2.6)

where plastic strain tensor in the current step can be can be written as,

p
n+l

g’ =&l +Ag? 2.7)

A non-associative plastic flow rule is utilized due to plastic compressibility and

following plastic potential,
g = 3J2 +ap” (2.8)

is used to determine the ‘direction’ of the incremental plastic flow. In Equation (2.9) « is

material property, which controls plastic volumetric flow and described in terms of plastic

9 1-2v,
2 14vp,

Poisson’s ratio, (vp), asa = . Furthermore, p term in Equation (2.9) is hydrostatic

pressure and defined as p = %I 1. For the evolution of plastic strain, the flow rule,

is used, where 7y is the time derivative of plastic multiplier and N is the direction of plastic



flow. vy has to be consistent with Karush-Kuhn-Tucker conditions expressed as
720, ¢<0; y6=0 (2.10)

which simply reflects that increment in plastic flow must be non-negative and yield con-
ditions can not be violated. In Equation (2.9) the evolution of plastic strain is defined in
continuous manner. By employing backward Euler scheme, the incremental form Equation

(2.9) is defined as,
Ae? = Ay N1 (2.11)

where, A term designates increment in related quantities and N is the direction of plastic
flow. The incremental plastic strain tensor, (Ag?) in Equation (2.11) then takes the

following form,
» 2
Al = y,41 (3841 + §a/ (I1) 1 1 (2.12)

where, y,1 is the unknown plastic multiplier; and S,4; is the deviatoric part of the stress
tensor.

The incremental equivalent plastic strain, Asgq is defined as
Aeb, = VKAgP : Ag? (2.13)

which is going to be used to quantify the hardening curves. In Equation (2.13), k is
based on plastic Poisson’s ratio and defined as k = 1/(1 + 2 VIQ,), which reflects the plastic
compressibility of the model, (Van Der Meer, 2016).

Experimentally obtained separate hardening curves for tension and compression
are used. To construct continuous curves from these discrete data points, exponential
polynomials are fitted to experimental results of Fiedler (Fiedler et al., 2001). Unlike most
of the literature (Melro et al., 2013a; Sun et al., 2019; Van Der Meer, 2016) different
equivalent plastic strains are used to construct those polynomials. In other words, to
construct tensile and compressive hardening curves, tensile equivalent plastic strain, sf;' ,

and compressive equivalent plastic strain, 8561_ , are used, respectively. Finally, o and o



are defined as functions of (2;) , and (&£, in the following exponential form,

Oc =d¢ eXP(bc (851;)”_,_1) +Cc eXp(dC (8€;)n+1)

(2.14)
o = a; exp(bt (qu_)nﬂ) T eXP(dt (qu_)nﬂ)

where a, b, ¢ and d are fitting parameters to obtain a similar response to experimental
results (positive integers) (Arefi et al., 2018); t and ¢ denote tension and compression,
respectively. In Figure 2.2 fitted curve and Fiedler’s experimental curves (Fiedler et al.,

2001) are presented.
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Figure 2.2. Plastic strain versus yield strength curves, experimental measurements of
(Fiedler et al., 2001) and fitted curves are shown together.

Referring back to stress update algorithm and determination of y,.1, an important
issue is going to be the determination of yield strength under arbitrary stress/strain states.
This requires the determination of sf; and sfq_ from the plastic strain tensor at t,,1. For
this purpose, incremental equivalent plastic strain, Asé'q is described in spectral form such
that each eigenvalue of As’e’q is designated as (Asfq)l. fori = 1,3 which allows the the

following expressions,

Nely =k D (Aely)] if (Asf,), > 0 2.15)
Aeb, =k Z (As‘é’q)i2 if (Agl,), <0 (2.16)

for incremental tensile equivalent plastic strain and incremental compressive equivalent

plastic strain. Once Aeé]; and As’e’q_ are computed, total tensile equivalent plastic strain



and total compressive equivalent plastic strain are obtained simply by,

()1 = (613), + 061 o
(8eq )1 = (824), + Doy
Due to non-linear relation between current yield strength and incremental plastic strain
tensor, the determination of Ay is a non-linear problem and requires a specific solution
algorithm at material/integration point.

To demonstrate solution process and the steps of implementation, an arbitrary
material point between (pseudo-)time increments ¢, and 41 is investigated, (Bonet and
Wood, 2008; Borja, 2013; de Souza Neto et al., 2008). Since the values of variables at
time ¢, are known, with strain increment Ag, the numerical algorithm must yield updated
variables at the end of the increment #,.1. The updated stress tensor at the end of the
increment ?,.1 is given by,

Ops1 =07 —C 2 A&P

n+l

2.18
=o' —C: (Ae - A&P) 19

n+l

The last term in Equation (2.18) can also be denoted as the plastic corrector. The trial stress
can be computed by freezing the plastic strain and assuming all of the strain increment is

elastic. Then, the trial stress is expressed as follows,

ol =0, +C: Ae (2.19)

n+l =

Total incremental strain Ag in Equation (2.19) can be split into deviatoric and volumetric

tr

parts (Agy, Ae,). Consequently, deviatoric trial stress tensor, (Sn 1

), trial pressure (P, ),

tr

" ) can be written as,

and total trial stress tensor (0'

Sur1” = Sn +2G (A&q)ns1 = 2G (€a)ns1
Ptr+1 = p;r +kAgy = k(&y)n+1 (2.20)

n

tr _ tr tr
Opi1 = Spa + Pn+11

Inserting Equation (2.12) into Equation (2.18) yields,

+1

2
Ons1 = 0y =~ 6GAYSps1 — §K6¥A7(11)n+11 (2.21)

10



The stress tensor in Equation (2.21) can be split into deviatoric and volumetric parts as

follows,

Sp+1 = tr+1 - 6GAYSp

n

Str

n+l

1+6GAy

2
Puil = Pyt — Fhykal (2.22)
tr

P
1+ 2kaAy

It is known that during plastic flow, the yield function, ¢ (o), has to be zero. Since the
proposed stress update algortihm has an implicit structure, by enforcing Equation (2.1) to

be zero, the only unknown Ay can be determined. To do so, a simple Newton-Raphson

9¢
oAy

structure of the local Newton-Raphson procedure at material point level is presented in

Scheme can be used. In Newton-Raphson scheme must be computed. The algorithmic
Algorithm 1.

Once Ay is available, total plastic strain at 7,41 and in turn stress tensor 0,41 can
be computed. Finite element level equilibrium equations are also solved implicitly by the

Newton-Raphson method. A stress update algorithm shall supply the material tangent

0041

stiffness which is basically 5 -

and can be calculated by a lengthy derivation process
using the chain rule, please see Appendix for the steps of its derivation. The general
structure of the stress update algorithm is given in Algorithm 2.

Before closing this section, it is important to note that very rarely, local Newton-
Raphson Algorithm may converge to non-positive y values (Van Der Meer, 2016). Since
v 1s ever increasing positive quantity, it is not possible for y to take negative values. In
such cases, a less accurate bi-section method is used. Consequently, positive y values are

obtained.

2.3. Incorporation of Failure

Previously mentioned plasticity models tends to yield indefinitely increasing stress
values. Suchresponse is physically unrealistic and failure has to be taken into account. This
incorporation can be realized by using fracture mechanics based approaches or continuum
damage mechanics based approaches. In case of fracture mechanics based approaches,

a discontinuity must be included into the kinematics. Consequently, with formation
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Algorithm 1 Local Newton Raphson Algorithm

WHILE DIFF>TOL and iternum < itermax
e Calculate Ag?, Asfq, 855,”” and ¢, with respect to y

e Update stresses o7, 07
0
e Compute 0—¢

0
L4 Update Ys Ynext = Yeur — _¢

dy
IFy,ex: < 0.0
¢ Go to bi-section algorithm.
ELSE
o Using ., calculate Ae?, A&l s’e’(}”ﬂ and ¢,
e DIFF = Onext — bcur
e iternum = iternum + 1
ENDIF
ENDWHILE

Algorithm 2 Implementation of Elasto-Plastic Material Model

e Read Solution Dependent Variables (SDV)
e Read Material Properties (PROPS)
Elastic Predictor

e Update Strain

e Compute trial stress (o)

e Compute yield function (¢" ;)

IF¢” . <0

n+1l
e Material Tangent « C¢

oo — ol
e SDV,,1 <« SDV,

ELSE

Plastic Corrector

e Compute y,+1 by local Newton Raphson

IF’)/,H_l <0

Use bi-section algorithm

ENDIF

e Update Plastic strain

e Update Stress

e Compute and Update Consistent Tangent Modulus C¢” (Please see Appendix)
e Update SDV

ENDIF

12



of multiple cracks or with the coalescence of cracks computational cost of the fracture
mechanics based models increase dramatically. On the other hand, continuum damage
mechanics based approaches can be embedded into current finite element frameworks
rather easily. Therefore, in this study continuum damage mechanics based approach is
used.

In continuum damage mechanics, the effect of cracks are reflected by means of
a damage variable D takes the initial value of zero and grows until unity with further
loading and evolution of damage at the material point. Therefore in its simplest form,
stress response is obtained by (1 — D) o where o is the undamaged elastic response of the
material. Although its simple conceptual form, continuum damage mechanics in its local
form results in non-physical response. To demonstrate this, a uni-axial tension specimen
with a varying cross-section is discretized by a number of different element sizes as shown
in Figure 2.3. Assuming a stress based damage initiation criteria, the initiation of damage
is expected in the narrowest section (in this case in the element with the smallest cross-
section) and deformation localizes within a single element upon further loading. The total
energy dissipation is controlled by the critical element size and upon mesh refinement
diminishing dissipation values are obtained, please see the force-displacement graphs
shown in Figure 2.3. In the limit of further mesh refinement, this simple example suggests
that dissipation would approach to zero. Since damage corresponds to a cracking process
and creation of new surfaces, the dissipated energy cannot be zero. This problem is
called as pathological mesh dependency problems, (Geers et al., 2000). Crack Bandwidth
Approach (BaZant and Oh, 1983), integral type non-local models (Voyiadjis et al., 2001,
2010) and Gradient Enhanced Models (Jirasek, 1998, Geers et al., 2000) are some of the
remedies for the pathological mesh dependency problem. Even the mesh dependency
problems may be solved with those models, there are still some inconsistencies about the
initiation and the distribution of the damage (Sarkar et al., 2019). An effective remedy
to both mesh dependency problems and inconsistencies about damage distribution is
proposed by Poh (Poh and Sun, 2017) and called as Localizing Implicit Gradient Damage
Model (LIGD) due to its resemblance to conventional implicit gradient damage (CIGD)
method.

Both CIGD and LIGD resolves mesh dependency problem by introducing a phys-
ical averaging domain, which does not depend on the discretization, namely, the internal
length scale /., (Poh and Sun, 2017). This introduces a non-locality to the response and

solves the mesh dependency problem effectively by acting as a localizer limiter. The
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Figure 2.3. Material response changes significantly with mesh refinement.

domain size controlled by /. is called as interaction domain and in case of CIGD, it stays
constant throughout the localization process. However, as seen from Figure 2.4, such
interaction domain reduces due to weakening of interactions between micro-cracks and

material failure is localized to a narrower zone as compared to initial interaction domain.

kTTT#T?“ Mf’”ﬁpk “TT‘M‘M“

L.

Interaction
Domain

Microcracks Microcr&k/cmsure Macrocrack

YYYYYYY YYVY YV Y VY YYYYYYYY

Figure 2.4. Schematic presentation formation of macrocrack from diffused network of mi-
crocracks with decreasing non-local interaction domain as damage progresses

-

Since this change in the interaction domain is disregarded, some inconsistencies
exist in CIGD for the initiation and evolution of damage (Poh and Sun, 2017). In the study
of Poh (Poh and Sun, 2017; Sarkaretal., 2022), such inconsistencies are solved by changing
the constant nature of the internal length scale which is consistently done by introducing
interactions between micro and macro processes. The resulting damage formulation is
called as Localizing Implicit Gradient Damage (LIGD) model. Borrowing some ideas
from higher order continuum theories, LIGD formulation results in a framework that is

thermodynamically consistent for elasticity coupled with damage. The distribution of

14



non-local equivalent strain is governed by the following equation
E—e=V- (g ZEVé) (2.23)

which is obtained by following the Coleman-Noll procedure. In Equation 2.23, g is the

interaction function that depends on damage and the following form

¢ = (1= R)exp (1D) + R — exp (=)

2.24
1 —exp(-n) @24

has been successfully used where, n and R are model properties reflecting the nature of
the interactions as damage grows. n describes the reduction rate in interaction. Also, the
other parameter R, is called the residual interaction parameter. It is worthy to note that
when interaction function is set to unity, CIGD model is recovered, (Sarkar et al., 2019).
Referring back to plasticity, it is plausible to expect that with physical damage
mechanisms taking place at the micro level, the yield strength of material would drop.
Therefore a shrinkage in yield surface could be a viable way of accounting for damage. In
this thesis, the effect of damage is described by reducing the yield surface which was also
used for both J2 type plasticity and crystal plasticity models, (Engelen et al., 2003). To
give an insight, in Figure 2.5 yield loci with and without damage are presented. In Figure
2.5 blue surface represents the undamaged yield surface and red surface represents the

damaged one. Since a distinction between tensile and compressive response is considered,

250
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Figure 2.5. Elastic domain for undamaged (blue) and damaged (red) material.

two damage variables, namely D' and D€ are introduced. Therefore, current yield strength
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values oy and o are obtained from the initial undamaged ones ¢; and o as,

o =(1-D") oy
(2.25)
g.=(1-D) 0

The initiation and evolution of damage is proportional with plastic deformation. Therefore
itis reasonable to link evolution of damage variables to equivalent plastic strains. However,
to avoid mesh dependency problems, non-local equivalent plastic strain fields éé’; and éé’q_
for tension and compression are introduced, respectively. Adapting the LIGD formulation
directly, the distribution of non-local equivalent plastic strain fields are governed by the

following Helmholtz type equations,

&y =V (g 12Vely) = f (o) ety

B ) B B (2.26)
sy =V (g 2ValyT) = £ (o) e
and complemented by Neumann type boundary conditions,
vel, T n=0
(2.27)

Ve, *n=0

where n is the outward normal vector of the boundary. As seen from Equation (2.26) f (o)
term is used as multiplier for local damage driving terms. In case of tensile tri-axiality
an acceleration in damage evolution is expected. On the contrary, in case of compressive
tri-axiality evolution of damage must be hindered (Asp et al., 1996; Chevalier et al., 2016;
Fiedler et al., 2001; Nguyen et al., 2016). In order to capture these effects in a continuum

setting, f (o) is introduced and defined as,

flo)=1+ (ﬂ) (2.28)

|||

where o is the hydrostatic stress, i.e. oy = 1/3 (0 + 0y + 0;). Norm of the stress

tensor ||o|| is used to normalize and convert it in a non-dimensional form.
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2.4. Implementation of the Damage-Plasticity Model

The presented damage-plasticity model involves solution of three coupled differ-

ential equations which are

V-oc=0
gty ~V- (gl?-Véé’zf) =f(o) ey’ (2.29)

8y =V (9129l ) = f (o) ety

which are complemented with boundary conditions. Weak forms of these equations are
obtained by employing weighted residual technique. A monolithic solution algorithm is
preferred and a user element is developed that is integrated in finite element solver Abaqus.
An 8-noded element with brick topology is developed that has 5 degrees of freedom per
node. The first three degree of freedoms are related to the displacements in x-, y- and
z-directions, respectively. The fourth and fifth degree of freedoms are related to tension
non-local solution variable, (éf:;' ), and compression non-local solution variable, (éfq_ ),
respectively. The implemented user element is similar to Abaqus’ Coupled Temperature
displacement elements (C3DS8T).

Since post-processing module of Abaqus does not support user elements, Abaqus’
C3DST elements are used as ‘host’ elements for post-processing purposes. The mesh is
dublicated such that C3D8T elements and user elements share the same coordinates and
connectivity. During the analysis User Elements’ integration point data are copied to a
Common Block. Afterward, using Abaqus UVARM (user defined variable) subroutine,
data in Common Block is copied to Abaqus C3DS8T elements so that the results of User
Elements can be viewed in Abaqus post-processor. Since the resulting coupled partially
differential equations are solved by Newton-Rapahson method, internal force columns
resulting from the weak form and consistent tangent operators resulting from the consistent
linearization are presented in Appendix. Algorithmic details of the stress update and User

Element Implementation are given in Algorithm 3 and Algorithm 4, respectively.
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Algorithm 3 Stress Update Algorithm

e Read History Variables Material properties
e Check for damage initiation & evolution
IFk" | > Ky~

e Check for damage evolution

e Update Damages

ELSE

DY Dy

ENDIF

e Calculate trial values

e Update o7

e Calculate @

IF @, <0.0

o (Jns1 ()5;1

80—n+1 60—n+1 68f7q a0-n+1

e Update element tangent:

ELSE

e Compute Ay

e Update local equivalent plastic strain &
e Update Plastic strain &,

— b 9 — b
aKn+1 a8n+1 aKn+1 aspn_,_l

eq
p

pl+

e Compute positive local plastic strain (eeq wtl

) and negative local plastic strain (85 ;’,_n +1)

e Update Stress

pl+ pl—
(90'n+1 (90',14_1 80—n+1 aseq aseq (90',14_1
e Update element tangent: o R , , ,
oel" oel" 0gps1 08441 08441 63pn+1

eq, n+l eq, n+1

ENDIF

2.5. Assessment of the Model

Before using the material model in micro-mechanical analysis, the material prop-
erties are calibrated through experimental results of Fiedler (Fiedler et al., 2001) and
compared with the predictions of the model proposed by Melro (Melro et al., 2013a).
For this purpose, firstly the mesh objectivity of the model and effectiveness of LIGD
formulation is investigated. Afterward, the response of material model is calibrated by
using uni-axial tension and uni-axial compression test results. Once good correlation
with experimental results is obtained, then without changing any material parameter, the

prediction capabilities of the material model is investigated by considering a torsion test.
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Algorithm 4 Abaqus Element Implementation

Loop over integration points:
e Calculate element matrices: N, B, N, B, Jacobian
e Transform Nodal values to integration points
e Call stress update algorithm
e Update history variables
e Copy integration point data from User Elements to Dummy Element
e Compute Internal Force Column (Please see Appendix)
e Compute Element Stiffness Matrix (Please see Appendix)

2.5.1. Mesh Objectivity of the Model

To present the mesh objectivity of the material model implementation, the speci-
men in Figure 2.6 (Fiedler et al., 2001) is discretized with different element sizes of 0.250,
0.350 and 0.500 mm which are designated as fine mesh, medium mesh and coarse mesh,
respectively. To reduce the computational costs % of the model is used and symmetry
boundary conditions are applied (Figure 2.7) and uni-axial tensile displacement is applied
as shown in Figure 2.7. Upon completion of the analysis, displacement versus reaction
force diagram for each discretization are gathered and compared in Figure 2.8. As far as
reaction force-displacement response is concerned, this curve confirms that the results are

mesh objective.

0.40 mm

- T =

I~ —— R

25 mm

Figure 2.6. Dimensions of the specimen

In Figure 2.9, the distribution of tension damage at the end of the analysis for
each discretization is presented. Even thought the mesh sizes are different, the damage
localizes into similar volumes in each discretization. This volume is described by the
internal length scale parameter (Please check Section 2.3); and does not depend on the
discretization of the model. Hence, with the implementation the mesh objectivity of the
damage distribution is provided.

As a consequence of the constant nature of the internal length scale parameter,
damage zone artificially widens in CIGD model. In Figure 2.10 and Figure 2.11, damage
distributions obtained by LIGD and CIGD at different instants are presented, respectively.

As seen from Figure 2.11, in case of CIGD the damage zone tends to artificially widens
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Figure 2.7. Boundary conditions of the specimen
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Figure 2.8. Displacement vs. Reaction Force diagrams for coarse (0.500 mm), medium
(0.375 mm) and fine (0.250 mm) mesh models

Figure 2.9. Distribution of damage for the mesh sizes of 0.500, 0.375 and 0.250 mm

with further deformations. However, in the case of LIGD model damage zone localizes
into a narrow band (Figure 2.10). Hence, with the material model implementation the

artificial widening of damage zone is prevented.
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Figure 2.10. Step-by-step evolution of damage for LIGD Model
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Figure 2.11. Step-by-step evolution of damage for CIGD Model

2.5.2. Calibration of the Model

For the purpose of model calibration, experimental results of Fiedler (Fiedler et al.,
2001) are used. Firstly uni-axial tension specimen presented in Figure 2.6 is modeled. To
reduce the computational cost symmetry boundary conditions are applied; and % of the
specimen is modeled. The boundary conditions and the discretization of the model are
presented in Figure 2.7. The material properties used throughout the verification process
are presented in Table 2.1.

—eq

The distribution of non-local tension equivalent plastic strain, £/*, and tension

e
damage, D™, at the end of the analysis are presented in Figure 2.12 a];d Figure 2.13,
respectively. Failure pattern obtained from uni-axil tension test of Fiedler’s work (Fiedler
et al., 2001) is also presented in Figure 2.14. By comparing those figures, it is observed
that the implementation predicts failure pattern accurately.

The averaged strain stress diagrams from the material model implementation and

Fiedler’s experimental study are compared in Figure 2.15. As seen from Figure 2.15, in
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Table 2.1. Material properties

E (MPa) | v vy, BB |n|R K K7
3760 0330395 |7 |1]0.005]25x1072|15%x1072
NT11 b
+7.805e-01 _l_

+7.154e-01
+6.504e-01
+5.854e-01
+5.203e-01
+4.553e-01
+3.903e-01

+1.301e-01
+6.508e-02
+4.628e-05

Figure 2.12. Distribution of non-local positive equivalent plastic strain
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Figure 2.13. Distribution of tension damage

Figure 2.14. Experimental result from Fiedler (Fiedler et al., 2001)

both cases significant amount of non-linearity is observed. Furthermore, curves for each
study are almost coincident up to the softening point. In Fiedler’s study an abrupt failure is
obtained without any softening. However, in the implementation exponential softening is
observed. Nevertheless, with the implementation typical response characteristic of epoxy
material is captured (Fiedler et al., 2001; Melro et al., 2013b; Van Der Meer, 2016).

To investigate the accuracy of the material model implementation under uni-axial
compression load, the cube specimen in Figure 2.16 is modeled, and analyzed. The
dimensions of the specimen are presented in Figure 2.16a. To reduce the computational
cost symmetry boundary conditions are applied, and % of the specimen is modeled (Figure
2.16b). Similar to experimental study (Fiedler et al., 2001), the displacement is applied
by means of a rigid plate. For this purpose a rigid plate is placed on top of the specimen

(Figure 2.16b). Afterward an interaction between specimen and the rigid plate is defined.
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Figure 2.15. Strain vs. Stress curve for tension specimens

Finally, displacement is applied to rigid plate; and analysis is conducted. The configuration

of the numerical model is presented in Figure 2.16b.

Rigid Plate

10.50

YSYMM

(a) Dimensions of the specimen (b) Boundary conditions of the specimen

Figure 2.16. Dimensions and Boundary Condition details for compression specimen

The distribution of the compression non-local equivalent plastic strain and the
distribution of the compression damage at the end of the analysis are presented in Figure
2.17 and Figure 2.18, respectively. As seen from Figure 2.17 and Figure 2.18, both the
distribution of the compression non-local equivalent plastic strain and the distribution of
the damage are localized into a band with an inclination. Typical epoxy resins fail with
the formation of localized shear bands (Fiedler et al., 2001; Melro et al., 2013a). In
Figure 2.18 such localized shear band is observed. From this perspective, the damage
distribution predictions from the implementation is accurate; and in a good agreement
with experimental studies (Fiedler et al., 2001).

In Figure 2.19, strain vs. stress diagrams from the current model and the exper-

imental results from Fiedler (Fiedler et al., 2001) are compared. As seen from Figure
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Figure 2.18. Distribution of the compression damage D~

2.19 significant non-linearity is observed for the compression loading. Actually, almost
a plateau of perfect plasticity is obtained after the initiation of the non-linear behavior.
In Fiedler’s experimental study an abrupt failure is achieved with very large strain value
around 70% (Fiedler et al., 2001). Since the implementation is based on small strain
theory, such large strain levels are not within the scope of the model. In the current model,
failure is initiated when the compressive non-local equivalent plastic strain value reaches
to 0.15. Total strain-stress response for the implementation is presented in Figure 2.19. As
seen from the Figure 2.19, curves from the implementation and the experimental results
are coincident until the strain value of 0.25. However, after this point two curves start to
deviate. It is worthy to note that the predictions of the current model covers a larger strain
range as compared to the model proposed by Melro. Furthermore, the ultimate goal is
to employ this model in micro-mechanical models (please see next Chapter) which have
almost always a heterogeneous stress state and which fails under combined state of stress
at much lower strain levels.

To investigate the shear response of the implementation, a torsion specimen (Fiedler
et al., 2001) is modeled. In this model, displacement are applied by means of coupling
constraints. For this purpose coupling constraints between face and reference point are
defined (Figure 2.20a). Afterward, rotation about Y axis is applied to those reference

points. The dimensions and boundary conditions of the specimen are presented in Figure
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Figure 2.20. Dimensions and Boundary Conditions details for torsion specimen

In Figure 2.21 the distribution of the tension damage at the end of the analysis is

presented. As seen from the figure damage is accumulated in the middle section of the

specimen and have an inclination of approximately 45°.

In Figure 2.22, strain stress diagrams for the torsion specimen and experimental

study of Fiedler (Fiedler et al., 2001) are presented. By investigating Figure 2.22, it is

also observed that up to the very large strain values of around 0.50 both curves are almost

overlapping. The presented model captures the experimental behaviour very closely.
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Figure 2.22. Strain vs. Stress curve for torsion specimens

2.6. Results and Discussion

In this chapter, a plasticity model is implemented and afterwards extended by
using the Localizing Implicit Gradient Damage formulation. The extended framework is
implemented in commercial Finite Element software Abaqus. For this purpose an eight
noded brick element is implemented to Abaqus through User Element (UEL) subroutine.
After the implementation of user element is completed, firstly the mesh objectivity of
model is verified. Afterward, the artificial widening of damage band is investigated. For
this purpose, same tension specimen is analyzed by LIGD and CIGD formulations. After

comparing the damage distribution for each analysis (Figure 2.10 and Figure 2.11), it is
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concluded that artificial widening of damage problem is almost completely avoided with
LIGD model.

Once the mesh objectivity of the implementation is proved, calibration of the model
parameters is considered to be the next task. For this purpose, tension and compression
test data are used for calibration and torsion test results are used for validation. In other
words, the identified set of parameters by means of tension and compression test results are
fixed and the torsion test results are reproduced numerically. From the comparison, it is
concluded that the model can be considered very good for tension and shear tests. In case
of compression, very large strains are reached before failure in experiments. However,
as mentioned before, in case of complex stress states (which are typically observed in
micromechanical models), the failure occurs at much lower strain levels. Therefore the

presented model is sufficient for the purpose of next chapter.
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CHAPTER 3

COMPUTATIONAL MICRO-MECHANICAL MODELING

3.1. Introduction

Due to their heterogeneous micro-structure, failure mechanics of FRP composites
is rich in failure modes that are controlled primarily by complex stress state at micro-
structural level. Furthermore, manufacturing process chain of composites made them
vulnerable to emergence of manufacturing defects, e.g., micro-voids and imperfect matrix-
fiber interfaces, (Ashouri Vajari et al., 2014). Therefore determination of failure envelopes
particularly under complex stress states with inherent uncertainties is a challenging task.
To this end, a number of phenomenological failure criteria have been proposed and used for
design purposes, (Azzi and Tsai, 1965; Davila et al., 2005; Hashin, 1980; Puck, 1998; Tsai
and Wu, 1971). To assess the predictive capabilities of these models, world-wide-failure
exercises (WWFE) (Kaddour and Hinton, 2013; Soden et al., 2004), have been conducted
which provided a reference on the performance of different criteria and particularly their
weaknesses. However, it is worthy to note that physical response of the test specimen
under certain stress states could not have been investigated due to experimental difficulties
associated with the imposition of required boundary conditions. This in turn implies
that by physical testing it is not possible to cover the whole spectrum of stress states and
validate failure envelopes under arbitrary loading conditions. To address this shortcoming,
computational micro-mechanical modeling has been used successfully in a number of
studies, see for example (Herraez et al., 2015; Naya et al., 2017; Romanowicz, 2014;
Sun, Meng, et al., 2018) and arises as a promising tool that can effectively be used to
complement physical testing. However, for this purpose, reliable and calibrated material
models for different phases and interfaces are essential. Computational micro-mechanical
modeling framework provides flexibility regarding the imposition of boundary conditions
and also allows one to incorporate micro-structural imperfections in a controlled manner.

To this end, in this chapter, three-dimensional representative volume element
(RVE) based micro-mechanical models are constructed and analyzed. RVE models con-

sist of matrix, fibers embedded in matrix and fiber-matrix interfaces. Plasticity-damage
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model presented in Chapter 2 is used for the matrix phase and meanwhile the fibers are
assumed to stay within the elastic range. For the failure of matrix-fiber interfaces, cohesive
contact surfaces technique available in Abaqus are used due to their flexibility and robust
performance even under compressive tractions and closure of cracks/openings. Two RVEs
of different sizes are used and a sufficient number of analysis are conducted to construct
failure envelopes which are compared with corresponding curves of the Puck’s criteria. A
systematic analysis on the influence of matrix-fiber interface imperfections is carried out as
well in order to find the threshold above which failure envelopes become insensitive to any
further imperfections. Apart from the resulting discrete failure envelopes, RVE analysis
have also been used to investigate the significance and consistency of phenomenological
parameters of Puck’s model such as n,,; which was introduced in the extended version
(Knops, 2008) to capture the influence of out-of-plane normal stress on failure envelope.

In the next section, constitutive models for fiber phase and matrix-fiber interfaces
are introduced separately. Thereafter general lay-out of RVE analysis framework including
the imposition of boundary conditions at RVE level and extraction of mascroscopic stress
response, is presented. Analysis results and comparison of discrete failure criteria are
presented in the same section including a critical assessment. Significance of these results
are reiterated in the conclusion and outlook section including some pointers for future

research directions.

3.2. Computational Micro-mechanical Model

Micro-mechanical models are very instrumental to investigate the influence of
different micro-structural parameters on macroscopic properties. In combination with
physically based, calibrated models for individual phases and interfaces, micro-mechanical
models are very flexible to realize multi-axial stress states, which may require sophisticated
set-ups and control systems in case of physical experimentation. Furthermore, such models
are also very valuable to assess the capabilities and limitations of commonly used failure
criteria.

Geometrically, a statistically representative (in terms of fiber shape, fiber volume
fraction and distribution) and computationally feasible domain is in fact the essence of
the micro-mechanical modeling approach. Determination of the size of the so-called
representative volume elements (RVESs) is a delicate task and typically requires a number

of analysis with increasing RVE sizes. Furthermore, boundary conditions imposed on the
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Figure 3.1. Left: RVE-I which is 25um X 25um, Right: RVE-II which is 50um X 50um.
Both RVEs have identical thickness of 0.75 um.

RVE is also decisive in this matter.

3.2.1. Representative Volume Element (RVE) Generation

Two different prismatic RVEs with constant out-of-plane dimension of 0.75 um
are used in this study. As shown in Figure 3.1, in plane dimensions of the two RVEs
are 25um X 25um and 50um X 50um, respectively. In both RVEs, fiber volume fraction
is almost 60 %. The sizes, fiber volume fraction and fiber distribution of the smaller
RVE (RVE-I) is based on Melro’s study (Melro et al., 2013b). RVEs consist of randomly
distributed (Melro et al., 2008) circular fibers with constant diameter of 5um (Canal et al.,
2009; Melro et al., 2013b; Totry et al., 2008).

Most of the macroscopic failure criteria designate fiber direction as 1, and trans-
verse directions as 2 and 3 axis (Catalanotti et al., 2013; Puck, 1998), respectively. Thence,
throughout the chapter fiber direction (Z axis in Figure 3.1) is also labeled as 1, and in-
plane directions (X and Y axis in Figure 3.1) are denoted as 2 and 3 axis, respectively. A
closer look at fiber distribution, particularly the ones cut by the edges, reveals that geo-
metric periodicity in both directions are enforced, please see Figure 3.2. In other words,
fibers cut by the boundaries of RVE complete each other.

Deformation process at any macroscopic point is driven by the macroscopic strain
tensor €y. It is to be noted that each RVE is in fact associated with a macroscopic
material point. Therefore macroscopic deformation measure €3, has to be imposed on

the underlying micro-level computational domain. Among various alternatives, periodic
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Figure 3.2. Geometric periodicity of Representative Volume Elements

boundary conditions (PBCs) which essentially impose periodicity on the fluctuation field,
are used over the RVE. By means of the macroscopic strain tensor, &)1, the displacements
are applied to the nodes of the RVE. For the rest of the discussion, positive X, positive
Y and positive Z faces in Figure 3.3 are denoted by /,n and p, respectively. Similarly,
negative counterparts are denoted by k,m and g, respectively. Then the displacement

relation between nodes only on faces is defined as follows,
w=u+epls; u,=utep i wy=u, el 3.1
where the vectors 11, 15 and 13 are defined as,
L =Xy -Xy; b=Xy-Xy; 3=X5-X; (3.2)

In Equation 3.1, matrix-column notation is used and vectors vectors 11, 15 and 13 are written

as columns. To complete the imposition of PBCs, the relation between corner nodes (Black

Y
Z 4 . e8

Figure 3.3. Node (left) and edge (right) numbering of RVE model
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dots in Figure 3.3) must be defined. Since u; is prescribed, the displacement of corner

nodes 2, 4 and 5 are defined as follows,
u :8M 12; 114=8M 11; U5 :8M 13; (3.3)
and the displacement at remaining corner nodes are defined as,

us =u2+uWy; Ug=ug+uj

(3.4)
U7y =ug+uUz; Ug =U5+ U4
Finally, the displacement relations between edges are written as,
Uel = Ue3 +U5; Ue2 = Ue3 + U4+ Us5; Upq = Ue3 + Uy
Ueg = U7 +U5;  UeG = Ue5 +Us;  Ueg = Ues + U (3.5)

Ue1) = Ues + U4 +U2; Uell = Ue7 +U2; Uel2 = Ue7 +U4 + U5

Constraint equations are used to impose these periodicity conditions, (Yuan and Fish,
2008). To this end, it is ensured that there are matching nodes on the opposite surfaces
e.g., left-right, top-bottom and front-back surfaces, of RVE at the matching coordinates.
By varying the components of €, various in-plane deformation modes are imposed on
the RVE. Upon completion of the analysis, macroscopic stress tensor o is obtained as the

volume average of microscopic stress distribution as,

oy = / o dV (3.6)
Vv

which holds due to Hill-Mandel condition of homogenization theory, (Nemat-Nasser,
1999).

Itis important to note that PBCs put restrictions on the set of probable orientation of
microscopic localization band and therefore under PBCs, the orientation of the resulting
microscopic localization band might not be representative of the physically observed
ones, particularly under multi-axial stress/strain states, (Coenen, Kouznetsova, Bosco, and
Geers, 2012; Coenen, Kouznetsova, and Geers, 2012; Hofman et al., 2023). However,
until the onset of localization within the RVE, peak load capacity is reached and therefore
this information can be conveniently used to construct computationally obtained failure

envelope.
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3.3. Constitutive Models

In the RVEs, three different constituents, namely, fiber, matrix and fiber-matrix
interactions, are considered. Hence, three different material models are used. In the

following paragraphs constitutive models for each material is briefly explained.

3.3.1. Fiber Response

Failure of fibers, especially under the influence of longitudinal compressive load, i.
e. fiber kinking, is not the central issue in this study. However, it is known that modeling of
fiber failure has been a long standing problem and requires special modeling frameworks
(Naya et al., 2017; Poulios and Niordson, 2016; Romanowicz, 2014).

If the loading is dominated by in-plane deformations, damage and final failure
spread over matrix and matrix-fiber interactions. Thence, for loading scenarios where
longitudinal (parallel to fiber) directions component is weak, it is convenient to assume
that fibers stay within elastic limits. Therefore, linear elasticity at small strains is used for

fibers. Consequently, the stress tensor, o, is defined as,
o=C f&f (37)

where, C is fourth order elasticity tensor and ” : 7 denote double contraction. To
construct C two elasticity constant, Young’s Modulus (E ¢) and Poisson’s ratio (v), are
used where subscript f refers to fiber phase. The values of Ey and v are 74 GPa and
0.20, respectively. Those values are extracted from World Wide Failure Exercise’s input

data (Kaddour and Hinton, 2013).

3.3.2. Matrix Response

Damage-plasticity mode presented in Chapter 2 is used for the matrix along with
the parameters identified in Section 2.5.2. For the sake of completeness, calibrated material

properties for the matrix phase are presented in Table 3.1.
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Table 3.1. Material properties

E (MPa) | v vy BT B | n" | R KF k7| e
3760 0331039 |5 |7 |1 0.005 | 0.025 | 0.15 | 0.001

3.3.3. Matrix-Fiber Interaction

The matrix-fiber interaction is modeled using cohesive contact. For this purpose
a surface-to-surface contact between matrix and fibers are defined. The response of
the cohesive contact is controlled by bi-linear traction-separation law upon the initiation
of damage. The traction vector, £, consists of two shear components ¢, f;, and normal
component #,, respectively. Similarly, the separation (opening) vector, 8, also consists of
two shear d;, 0; and a normal 6, component. In this work, the coupling between shear
and normal separation is dropped, (Melro et al., 2013b; Wan et al., 2020). Furthermore,
same values are assigned to stiffness values in two shear directions, K and K,,,. There is
a wide range for K,,,, values in literature. Thence, following (J. F. Chen et al., 2014), for

K, is set to 105 MPa. Therefore the elastic behavior of cohesive contact is defined as,

th K., O 0|10,
tS = O Kss 0 (55 (3.8)
tt 0 O Ktt 61‘

The initiation of damage is based on the following quadratic stress criteria,

2 2 2
<t,> t, t

+|=] +[=]| =1 3.9

( o ) (ts) (t,O) 59

where <> is Macaulay brackets, which returns the value in brackets if it is positive,

and returns zero otherwise. Furthermore, t,?, tg, t? represent the peak stress values of
normal stress when separation is purely normal to the interface, and purely in the first
and second shear directions, respectively. As an outcome of the Macaulay brackets only
tensile traction initiates damage. After the initiation of damage the initial traction stress,
1Y, is reduced by means of the damage parameter. The damage variable monotonically
increases from 0 (in the absence of any damage) to 1.0 (at the final failure) and the traction
drops linearly upon damage initiation as shown in Figure 3.4. An effective separation

defined in terms of separation components as 8,7y = /02 + 62 + 62 is used to describe

damage evolution. Representing the effective separation at damage initiation by 68 i1 and
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Figure 3.4. Traction separation law for contact

max

the maximum effective separation reached ¢ the following linear damage evolution

eff’
law,
Sepp (Mm% =69 )
D = eff fr (3.10)
gmax (5f _ 50 )
eff “eff eff

is used in this work. The effective separation at complete failure is defined in terms of
critical mixed-mode fracture energy G ¢ and effective traction at damage initiation tef Fpas
Ocff = ifﬂ Critical mixed-mode energy G¢ is based on the work of Benzeggagh and

ef
Kenane (Benzeggagh and Kenane, 1996) and is given as,

(3.11)

G nf
Ge = GE +(G€ = GE) (—)

Gr

where Gs = G¢ + G¢ and Gr = GS + G¢. Mode-mixity is controlled by the model
parameter 77 and critical fracture energy in normal mode and orthogonal shear modes are
designated by G$, G¢ and G, respectively. The parameters for the cohesive contact used

in RVE analysis is summarized in Table 3.2.

3.4. Abaqus Implementation & Work Flow

RVE models consist of matrix, fiber, and matrix-fiber interactions. Python scripts
are generated to create each geometric part and assign contact between fiber and matrix.
Furthermore, with this script, as long as locations of fibers are prescribed, the whole model
is generated, and geometric periodicity is provided. Once the model is generated using
the first Python script, periodic boundary conditions are imposed by means of constraint

equations tying periodic surface pairs. Since the total number of constraint equations is
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Table 3.2. Interaction properties

Property Value

Kon 105 MPa

K 105 MPa

Ky 105 MPa

10 50 MPa

1Y 70 MPa

0 70 MPa

G¢ 2 x 1073J /mm?
G¢ 6 x 1073J /mm?
G¢ 6 x 1073J /mm?

quite large, another Python script is developed to apply PBC. To construct discrete failure
loci large number of RVE analysis have to be conducted. Thence, a third Python script
is defined to impose different in-plane loading states by varying the macroscopic strain
tensor. With these three scripts, the model is generated in Abaqus CAE. For the next phase
of model generation, the Abaqus input file is modified. Thence, a fourth Python script
is used to add user elements in the model. Finally, upon completion of RVE analysis,
homogenized stress tensor is computed through the volume integral given by Equation
(3.6). Thence, the last Python script simply computes the homogenized stress through a
numerical integration over user elements and the stress components extracted from each

integration point.
3.5. RVE Response under Basic Deformation Modes

As mentioned in Section 3.2.1, by varying the macroscopic strain tensor, &yy,
different load combinations can be applied to RVE model and different stress states can
be realized. To investigate the performance of RVE model under the influence of basic
deformation modes, three different macroscopic loading mode are realized by tuning
the components of &y7. These basic modes correspond to macroscopic uni-axial tension,
macroscopic in-plane shear and an almost macroscopic uni-axial compression stress states,
respectively. Since the ratio of shear to compression ratio in the third model is %0, that
model is denoted as almost uni-axial compression load. Element size of the RVE model
is sufficiently small, (0.0005 mm), and based on a mesh convergence study. Furthermore,

to increase stability of the computation, viscosity parameter of 2 x 10~ is used which is
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still much smaller than the default value, i.e., one tenth of Abaqus’ suggested value.

In Figure 3.5, the distribution of matrix damage at the end of the analysis for basic
macroscopic deformation modes are presented. It must be mentioned that, to prevent
numerical instabilities the maximum value for damage is limited to 0.99. Failure of
cohesive surfaces are clearly visible for uni-axial tension and in-plane shear models. For
the in-plane shear load and uni-axial compression the maximum damage value is observed
in small volumes. On the contrary to that, for the case of uni-axial tension load the

maximum damage is distributed over a band.
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Figure 3.5. Left: Bulk tensile damage distribution under macroscopic uni-axial tension
in X-direction, Middle: Bulk tensile damage distribution under macroscopic
in-plane shear, Right: Bulk compressive damage distribution under almost
uni-axial macroscopic compression in Y-direction.

Macroscopic strain-macroscopic stress components of RVE model can be obtained
through Equation (3.6). Such components for uni-axial tension and bi-axial tension (in a
macroscopic sense) are presented in Figure 3.6. Peak stress values in those macroscopic
strain and macroscopic stress diagrams are key ingredients to construct discrete failure
envelopes. It must also be mentioned that due to heterogeneous nature of RVE models,
both uni-axial and bi-axial macroscopic strain states result in shear stress response as well

(Figure 3.6).

3.6. Effect of Boundary Conditions on Non-local Quantities

There are two different boundary condition options for non-local equivalent plastic
strain fields. In the first option natural boundary conditions, 1. e. Véﬁ’;]“’_) n =0
is imposed on the boundaries of the RVE model (Melro et al., 2013b; Sarkar et al.,
2019). However, in the second option, similar to the periodicity of the displacement

field, periodicity of non-local equivalent plastic strain fields (left-to-right, top-to-bottom
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Figure 3.6. Left: Macroscopic strain (uni-axial tension) versus macroscopic stress compo-
nents, Right: Macroscopic strain (bi-axial tension) versus macroscopic stress
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Figure 3.7. Comparison of the boundary conditions on non-local equivalent plastic strain
fields.

and front-to-back faces of RVE model) are enforced by using constraint equations. The
resulting macroscopic strain - macroscopic stress diagrams for both options are presented
in Figure 3.7. As seen from the graphs, there is a slight different between curves after
peak stress values. Since, only peak stress values are used for the construction of discrete
failure loci, the first option, i.e. natural boundary conditions, are chosen in this study.
Furthermore, with the choice of natural boundary conditions the number of constraint
equations in model is reduced significantly. As mentioned in Section 3.4, for RVE
generation, discretization, imposition of periodic boundary conditions and evaluation of
macroscopic stress tensor, a set of Python scripts are generated and all the work-flow is

automatized.

3.7. Influence of Fiber Distribution and RVE size

Macroscopic stress curves obtained through homogenization are key ingredient for
constructing discrete failure locus. Peak stress value for specific macroscopic stress curve
is considered to be the onset of failure. Furthermore, by marking peak stress values on

relevant plane of stress space discrete failure locus can be constructed. In other words,
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by marking peak stress values of sufficient number of RVE analysis on relevant plane
of stress space discrete failure locus can be constructed. Such discrete failure locus is
considered to be a reliable way to evaluate the predictive capabilities of phenomenological
failure criteria. Furthermore, by imposing some level of uncertainty into RVE model and
constructing failure locus statistical analysis of RVE may be carried out (Wongsto and Li,

2005; Yu et al., 2015).

Figure 3.8. RVE-I with two different fiber distributions (designated as RVE-I-D-A and
RVE-I-D-B; fiber volume fractions are identical) (Melro et al., 2013b)

As far as properties associated with RVE geometry are concerned, the size of RVE,
fiber volume fraction and the distribution of fibers are very important. Furthermore, those
parameters may influence the resulting RVE response significantly. In this thesis, fiber
volume fraction of approximately 60% is used since this fiber volume fraction is widely
used in literature (Canal et al., 2009; Melro et al., 2013b; Totry et al., 2008). To address
the effects of fiber distribution, two different fiber distributions with RVE-I (Figure 3.1)
are generated. Distributions are designated as RVE-I-D-A and RVE-I-D-B (Figure 3.8).
To construct failure loci for each RVE model, various load combinations are applied and
peak stress values are obtained through an automated work-flow. These peak stress values
are marked in o — To3 stress space. Consequently, discrete failure loci for each fiber
distribution is constructed. Discrete failure loci for each distribution is compared in Figure
3.9. As seen from the figure, both RVE models yield very close results for tensile o half
of the stress plane. However, for negative half of o stress plane, a few analysis results
drift from main trend. The reason of such drift may be the slightly premature failure of
matrix due to localization of deformation within narrow bands between fibers, under the
influence of large compressive and axial stress states.

To investigate the effects of RVE dimensions, RVE-II model is used (Figure 3.10).
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Figure 3.10. RVE-II (Melro et al., 2013b)

RVE-II model is analyzed under the influence of various in-plane loads similar to RVE-I
model. In Figure 3.11 failure envelopes obtained from RVE-I and RVE-II are compared
which supports that RVE-I and RVE-II results are quite close. Furthermore, in Figure
3.12 curves are fitted to RVE-I-D-A, RVE-I-D-B and RVE-II results. As seen from the
fitted curves, the results are indeed very close. From Figure 3.11 and Figure 3.12 it is
understood that both the dimensions of RVE-I-D-A and the corresponding fiber distribution
are adequate to represent the response of RVE. Therefore, for the rest of the study RVE-
I-D-A is used. Furthermore, for the sake of simplicity RVE-I-D-A model is denoted as
RVE-I in the rest of this chapter.
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Figure 3.11. Failure loci from RVE analysis with various distributions and sizes.
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Figure 3.12. Failure loci from RVE analysis with various distributions and sizes.

3.8. Comparison with Macroscopic Failure Criteria

As mentioned in the introduction of this Chapter, statistically representative com-
putational micro-mechanical models with calibrated constitutive models can be used to
assess the capacities of macroscopic (or phenomenological) failure criterion. Since Puck’s
Failure Criteria outperforms many of the phenomenological models in both world wide
failure exercise I and II (Kaddour and Hinton, 2012; Soden et al., 2004), particular atten-
tion is paid to Puck’s Failure Criteria. Furthermore, Puck’s Failure Criteria provides not
only a quantitative prediction of the failure stress but also the mode of failure (Deuschle
and Puck, 2013). Such feature is missing in many of the commonly used failure criteria,
(Azzi and Tsai, 1965; Tsai and Wu, 1971). Puck’s failure criteria is going to be discussed in
more detail in the next Chapter. To construct failure envelope of Puck’s criteria, strengths
and inclination parameters are required. Strength values are taken from WWEFE input pa-
rameters (Kaddour and Hinton, 2012) and inclination parameters are taken from Deuschle
and Puck, 2013, respectively. These values are summarized in Table 3.3. In table 3.3,

Y',Y¢ and So3 denote transverse tension, transverse compression and through-thickness
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shear strengths, respectively. A sufficiently large number of RVE analysis are conducted
on RVE-I by varying the components of macroscopic strain tensor &,. Resulting failure
macroscopic (homogenized) stress components are used to construct the discrete failure

loci.

Table 3.3. Material properties

P [P [Py [ PGy [ ¥ (MPa) [ Y° (MPa) | Sy (MPa)
0.35 ] 0.30 | 0.25 | 0.30 | 45 145 40

Discrete failure loci from RVE analysis and continuous failure loci obtained from
Puck’s Failure Criteria for stress planes of 09723, 0203 and 027112 are compared in Figure
3.13, Figure 3.14 and Figure 3.15, respectively. As seen from these figures, RVE results
and Puck’s Failure Criteria results are generally in good agreement. However, for the
predictions for o123 stress plane (Figure 3.13), there is discrepancy between results, par-
ticularly for tensile o9 dominated region. From RVE analysis, particularly for tensile stress
dominated points, it is observed that the stiffness value of contact surfaces have a great
influence on the resulting failure initiation. As mentioned previously material properties
are calibrated through the experimental study of Fiedler (Fiedler et al., 2001). However,
stiffness values for contact surfaces are taken from (J. F. Chen et al., 2014). Generally,
the stiffness values for contact surfaces could not measured directly and typically use of
sufficiently large value, which provides load redistribution, is recommended. Further-
more, there is a large range of stiffness values ranging in between 10° Mpa to 10° Mpa
in literature (J. F. Chen et al., 2014; Melro et al., 2013b; Palizvan et al., 2020; Sun et al.,
2019). In the context of this study, stiffness values for contact surfaces seem to be ‘fitting
parameters’. Furthermore, since the characterization of interfaces including stiftness val-
ues is quite complex task, prediction of contact stiffness values does not have a simple or
practical solution. Inconsistencies regarding the stiffness values for contact surfaces may
be solved by explicit modeling the interphase regions around fibers (Sun, Guo, et al., 2018;
Sun, Meng, et al., 2018; Sun et al., 2019; Zhang et al., 2018). If the interphase region
around fibers has different properties from matrix then the influence of contact stiffness
over results may cease. However, since the element size for such interphase regions are
very small, the computational costs of RVE analysis may increase drastically with the
addition of interface regions. Unfortunately, due to limited computational power, in this

study interface regions are not introduced around the fibers.
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Figure 3.13. Discrete failure points and Puck’s envelope within o — 793 plane
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Figure 3.14. Discrete failure points and Puck’s envelope within o — o3 plane

3.9. Influence of Microscopic Imperfections

Computational micro-mechanics model can be effectively used to investigate the
effects of micro-structural imperfections (Ashouri Vajari et al., 2014; Palizvan et al., 2020;
Skovsgaard and Jensen, 2018; Zhang et al., 2018). In this study, the effects of interface
imperfections at matrix fiber interactions are considered. Such imperfections may result
from air pockets entrapped at matrix fiber interfaces. By halving the initial strength values
of cohesive surfaces, i.e. 12, t?, t?, such imperfections are introduced. To investigate the
effects of the fraction of imperfect interfaces, various fractions of imperfect interfaces are
used. The percentage of imperfect interface starts from 10% and increased up to 100%.
For all fractions, imperfect interfaces are chosen randomly and to investigate the effects
of the distribution of imperfect interfaces two different distributions are generated. It
must be mentioned that percentages reflect the fraction of imperfect interfaces not the
degree of imperfection. In Figure 3.16 distribution of imperfect interfaces for fractions
of 10, 20 and 40% are presented. Using the RVE models in Figure 3.16 the effects of the
distribution of imperfect interfaces are investigated. In Figure 3.17, comparison of intact
model, imperfect interface model and continuous failure locus for Puck’s Failure Criteria
for imperfect interface fractions of 10,20 and 40% are compared. As seen from figure,

as long as the same fraction of imperfect interfaces are introduced, RVE models yield
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Figure 3.15. Discrete failure points and Puck’s envelope within o — 712 plane

very close results. Thence, it is understood that the reduction in discrete failure locus
for imperfect interface models is a function of the fraction of imperfect interface, not the

location of imperfect interface.

Figure 3.16. Distribution of imperfect interfaces (I. I.)

In Figure 3.18 discrete failure loci from intact RVE, RVEs with imperfect interface
fractions of 10%, 20% and 40% and continuous failure locus from Puck’s Failure Criteria
are compared. As seen from figure, for 10% and 20% imperfect interface fractions similar
drops are obtained. However, for the case of 40% imperfect interface fraction there is
a significant drop in peak stress values, i.e. discrete failure locus shrinks significantly.
Similarly in Figure 3.19, discrete failure loci from intact RVE, RVEs with imperfect
interface fractions of 50%, 60% and 100% and continuous failure locus from Puck’s Failure
Criteria are compared. As seen from Figure 3.19, models with imperfect interface fraction

larger than 40% yield very close results. In Figure 3.20 fitted curves to discrete failure
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Figure 3.17. 0%, 10%, 20% and 40% imperfect interface failure loci are compared

loci for intact RVE model and RVE models with various imperfect interface fractions are
presented. From the figure it is observed that on the tension dominated part, (+o% half),
above 40% of imperfect interfaces fraction, discrete failure loci become insensitive to any
increment in imperfect interface fraction. On the compression dominated part, (—o» half),
insensitivity to the fraction of imperfect interface starts between fraction values of 40% and
50%. The reason of insensitivity to imperfect interface may be explained by the existence
of imperfect interface chains from one side to opposite side of RVE, please see Figure
3.16. Due to imperfect interface chains, stress is distributed within the matrix material.
Consequently, the response of RVE after 40% of imperfect interface is dominated by matrix
material. Therefore, the effect of imperfect interfaces after 40% become insignificant. It
has to be noted that drops in uni-axial compression, in-plane shear and uni-axial tension

strength values for 40% of imperfect interface are 17%, 35% and 46%, respectively.
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Figure 3.18. 0%, 10%, 20% and 40% imperfect interface failure loci are compared.
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Figure 3.19. 50%, 60% and 100% imperfect interface failure loci are compared.
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Figure 3.20. Curves fitted to increasing imperfect interface failure points compared.
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3.10. Effect of Longitudinal Normal Stress

In original version of Puck’s Failure Criteria (Puck, 1998) the effects of normal
stresses parallel to fiber direction, o7, over Inter Fiber Failure are neglected. However,
under the influence of normal stresses parallel to fiber direction, due to local imperfections
or statistical nature of fiber strengths (Yu et al., 2015), premature failure of fibers may
be observed. Such failures may cause local damage in lamina. Hence, separation of
matrix-fiber interfaces or initiation of matrix damage may be formed (Knops, 2008).
These mechanisms are introduced in Puck’s Failure Criteria utilizing weakening factor,
nw1 (Knops, 2008; Puck et al., 2002). Weakening factor is used to modify exposure factor

associated with Inter Fiber Failure as follows,

+,—
o EJIFF

= (3.12)
EIFF Tl

where, fiber exposure factor, i.e. o7, based computation of 7,,1 is presented in Knops,
2008. To investigate the effects of o1 various RVE models under the influence of out-of-
plane loads are constructed. By setting the corresponding components in £ stress state
with out-of-plane tension load is constructed. This process is repeated for various normal
tension loads. Consequently, upon homogenization discrete failure locus for each load
combination is generated. In Figure 3.21, discrete failure loci for each normal stress state is
compared with modified Puck’s Failure criteria for various 7,1 values. From Figure 3.21
it is observed that for the tension side of failure loci, failure points are almost insensitive to
out-of-plane tension loads. However, for compression side there is a significant reduction
in failure stress values. Although extended version of Puck’s criteria allows for different
weakening factors for tension and compression sides, it is worthy to note that on the tension
side a weakening factor doesn’t seem to be necessary. The reduction in the capacity for
compression side may be explained with the contractile strains, which are formed due
to out-of-plane load, in matrix. When, contractile strains are combined with in-plane
compression stress matrix damage may initiate early. Hence, the stress capacity of RVE
model may reduce for compression side of failure locus. On the tensile side, an opposite
effect may be expected. However, due to limited tensile strain capacity of matrix material,

this effect is not observed.
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Figure 3.21. Discrete failure points with increasing out-of-plane tensile loading.

3.11. Results and Discussion

In this chapter computational micro-mechanics is used to evaluate the predictive
capabilities of Puck’s Failure Criteria for long fiber reinforced polymers. Main findings

of this chapter can be summarized as follows,

* Even though at some points there exists deviation between RVE results and Puck’s
Failure Criteria, discrete failure loci and failure loci regarding Puck’s Failure Criteria
are generally in good agreement. Since, there is not any universally accepted difference
margin, it is hard to asses quantitative agreement between Puck’s and RVE’s results.
Deviations for uni-axial compressive load dominated regions may be related to pre-
mature failure of thin volume of matrix material which is between fibers within RVE.
Furthermore, deviation for tension dominated regions, stiffness of cohesive surfaces
have great influence. By introducing interphase regions at matrix-fiber interfaces the
effects of stiffness of cohesive surfaces may reduce. However, such modeling strategy

may increase computational costs drastically.

* As expected matrix-fiber imperfections cause shrinkage in discrete failure loci. For this
RVE modeling, it is observed that the shrinkage is function of the fraction of imperfect
interfaces, not the distribution of imperfect interfaces. However, after some fraction
of imperfect interfaces discrete failure loci become insensitive to any increment in the
fraction of imperfect interfaces. For tension and compression dominated stress planes

those threshold imperfect interfaces fractions are 40% and 60%, respectively.

* The effects of out-of-plane loading is investigated to a limited extend. By varying tensile

out-of-plane loading, series of RVE analysis are conducted. RVE analysis results are
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compared with failure loci of modified Puck’s Failure Criteria for various n,,; values.
From those analysis it is observed that, out-of-plane tensile loads cause reduction in
compressive (in-plane) capacity, and do not influence failure initiation loads for tensile
(in-plane) capacity. To the best of the author’s knowledge this has not reported elsewhere

and has not investigated from a micro-mechanical perspective.
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CHAPTER 4

MACROSCOPIC MODELING OF FAILURE IN

UNI-DIRECTIONAL COMPOSITES

4.1. Introduction

Fiber reinforced composites (FRC) have started to replace conventional (engineer-
ing) materials in many engineering fields. These advances are made possible by the
progress in manufacturing techniques and reliable predictive failure models.

Among various choices, as proved by World Wide Failure Exercise (WWEFE) I and
IL, Puck’s criteria predicts the failure of uni-directional composites both under 2D and 3D
stress states, (Kaddour and Hinton, 2013; Soden et al., 2004). Furthermore, the agreement
between Puck’s criteria and micromechanically constructed failure envelopes presented
in the previous chapter is noteworthy. As far as failure analysis is concerned, typically
failure initiation within a ply is considered as the complete failure of the component which
ignores the remaining capacity which may reach to non-negligible levels in case of multi-
ply components. Therefore progressive failure analysis might be necessary to assess the
post-peak response of composites. In fact, in this chapter, for the purpose of developing
a tool suitable for progressive failure analysis, Puck’s failure criteria is combined with
a continuum damage mechanics. More precisely, Puck’s criteria and localizing implicit
gradient damage model is fused so that complete stress-strain can be predicted. In addition
to that, an important challenge that has to be overcome is to achieve consistency between the
failure angle predicted at material point and the orientation of the emerging macroscopic
damage band. This chapter first focuses on Puck’s failure criteria in detail. Afterwards,
integration of Puck’s criteria both in a local damage formulation and gradient based
treatment are discussed. Computational implementation is briefly summarized and the

model is assessed by means two different problems from the literature.
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Figure 4.1. Micro-structure of uni-directional conposite

4.2. Puck’s Failure Criteria

One of the major features of Puck’s failure criteria is the fact that failure of fibers
and matrix are treated separately by means of so called Fiber Failure (FF) and Inter Fiber
Failure (IFF) criterion. Furthermore for both phases, tension and compression stress states
are treated separately as well. IFF takes places on a special plane which is denoted as the
action plane. Since all of the stresses contributing to IFF and strength terms related to
IFF are computed on this plane, identification of the action place has great importance.
In what follows, firstly the stress and strength terms used in Puck’s Failure Criteria are
briefly discussed. Afterwards, the concept of action plane is explained followed by details
of the treatment of Inter Fiber Failure and Fiber Failure, respectively.

In Figure 4.1, typical micro-structure of uni-directional composite is shown where
axis x1 denotes to fiber direction and directions which are transverse to fiber direction
are denoted as axis xo and x3, respectively. In the sequel, two shear stress components
(t.1 and 7,) and one normal stress o, are going to be used frequently. Here 7, , and 7
denote through thickness shear stress (i.e. out-of-plane shear stress) and in-plane shear
stress, respectively. As a result of transverse isotropy, the resultant of the normal stresses
transverse to fiber direction (o3 and o3) are equal. In Puck’s criteria, the term ‘stressing’
is introduced to reflect the effect of stresses (o1, 02, 073, T12, T13, T23) through o, -stressing,
7, s -stressing and, 7, -stressing. Stresses and different stressing states are presented in
Figure 4.2.

In any failure criteria, strength terms are essential to assess the state at any material
point. For example, Tsai-Hill (Azzi and Tsai, 1965) and Tsai-Wu (Tsai and Wu, 1971)
criterion use strength terms R,, R, and R,, which correspond to strengths obtained
under the corresponding stressing state. Hence, these values are the maximum limits

which, the material point can resist and; they do not indicate the type of failure, e.g. inter
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Figure 4.2. Designation of stressing (Knops, 2008)

fiber or fiber, shear failure or tensile failure. Measured strength values act as anchor point
in analytic curves, in other words they have no physical meaning. On the contrary, Puck’s
Failure Criteria gives information about the type and location of failure explicitly.
Following Mohr’s hypothesis, Puck claims that failure occurs on the specific plane
for which he introduces and uses the action plane concept, (Puck, 1998). Any plane on
which the resultant of stresses cause stressing is called as an action plane, see Figure 4.3.
In principle there are infinitely many action planes and to define a specific one, axis triad
X1, X2 and X3 is rotated about X7 axis by an angle 6, which results in the new coordinate

system and the associated action plane, see Figure 4.3.

Figure 4.3. Action Plane (Deuschle and Puck, 2013)

In action plane, X, axis denotes action plane’s normal, X,; denotes axis transverse
fiber direction and X,,; denotes axis parallel to fiber direction. o, 7,; and 7,1 are acting
on the action plane where o, is normal stress and, 7,; & 7,1 are shear stress transverse
to fiber direction (through thickness direction) and shear stress parallel to fiber direction,
respectively. Thus, o, is similar to o, 7, is similar to 7, , and 7, is similar to 7.

Subscript n denotes all the stresses acting on the same action plane. Whereas, subscripts
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1 and ¢ denote parallel to fiber direction and transverse to fiber direction, respectively.

The resistance of the action plane is basically denoted by (R4). To be precise,

At,Ac

failure resistance of an action plane against O'i’c , Tor and 7,1 are denoted as R """,

R%, and Rf”, respectively. Please note that, the superscripts ¢ and ¢ denote tension and
compression, respectively. The difference between the material strength (resistance against
up to failure at any point within the sample) and resistance of the action plane (maximum
bearable stress resultant causing failure on the action plane ) has to be emphasized here.
If failure occurs on the action plane, then that action plane is denoted as failure plane.
To calculate the failure resistance of action plane, it must be known whether the failure
occurs in that action plane or not. Details of the calculation of failure resistance of action
planes are given in Section 4.2.1.

In Puck’s Failure Criteria, there are three stresses o, 7,; and 7,,; acting on the
action plane. From micro-mechanical point of view, the behavior under the influence of

shear stresses 7,,; and 7, are different. Once the stresses 7,,; and 7,1 are used separately in

the analysis, they can be combined into one shear stress 7,y as

Tow =\ () + (1a1)? (4.1)

where subscript n denotes action plane and subscript ¥ denotes the angle between 7,
and 7,1. By this simplification, on the action plane one shear and one normal stress are
obtained.

Since, Puck’s Failure Criteria is based on the concept of action plane, for general
3D state of stress there is infinitely many number of action planes which are potentially
failure plane. Among all those action planes, the one with the highest risk of failure is
denoted as the failure plane and; the angle of the failure plane is denoted as the failure
angle, designated as 07,. Thus, to carry out failure analysis, action plane has to be
identified.

To calculate the risk of failure, the stress vector oo = {07, Ty, 7,1} on the action
plane has to be stretched by a factor. By this scaling, stress vector reaches the stress values
which would cause failure on that action plane. That factor is called as stretch factor, and
designated as f;. On the action planes without any stress or only compressive normal
stress (o), fs takes value of co, which causes numerical problems. To overcome such
issues, reciprocal value of f;, so-called exposure factor, fg, is used. Exposure factor ( fr)
increases linearly with applied stress, and it is the direct measure for the risk of failure

on the action plane. The action plane with the highest fr is obtained by calculating fr
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for large number of planes, see Figure 4.4. This search for the largest fr is one of the
drawbacks of Puck model, and increases computational cost significantly. There are a
number of methods for calculating the largest value of fg in (Schirmaier et al., 2014;
Thomson et al., 2017; Wiegand et al., 2008). In this thesis, Extended Golden Section
Search (EGSS) Algorithm is used to reduce the computational costs. In fact EGSS is
an optimization algorithm and its details and the way it is implemented are presented in

previous sections.

Figure 4.4. Angle Search (Knops, 2008)

4.2.1. Inter Fiber Failure

Since failure analysis is performed on the action plane, applied stresses must

be transformed to action plane’s local coordinate system. To do that, the following

transformation
_02-
0,(0) cos(6)? sin(6)? 0 0 2cos(0) cos(0) | | o3
Tt (0) | = |—cos(0) sin(0) cos(0) sin(0) 0 0 cos(0)? —sin(0)?| |r2| (4.2)
T,1(0) 0 0 cos(0) sin(0) 0 Ti3
_T23_

is used. If applied stress causes only tensile o7 on any plane, then the failure occurs
at the plane with the largest o). Such behavior is called as intrinsically brittle behavior
(Paul, 1960). Due to intrinsically brittle nature of unidirectional composites, under such

circumstances, material’s strength (R') equals to failure resistance of the action plane
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(th), ie.,
R =R} (4.3)

In case of 7, |, embedded fibers force failure to occur in a fiber parallel to action
plane. Then the action plane of 7, has the largest 7, ;. Thus, failure occurs in the action
plane of 7 . This yields,

Ry, =R" (4.4)

In case of pure 7, stressing, rather than it’s action plane, failure occurs in an
oblique plane. Thus, calculating failure resistance of the action plane (R‘f”) is quite
difficult. R4 is calculated by imposing ¢, which causes failure at a failure angle of
0rp = £53° due to 7, ;. Although the largest 7., is obtained when 6 = 45°, the presence
of o, at the same plane impedes failure (Knops, 2008). Then, with the reduced value of
o, failure occurs at an angle of § ~ +53°. Since RY | is calculated by imposing o, to
calibrate the strength value, an inclination parameter (p< ) is introduced by which R% |

is calculated as,

RA = —+ (4.5)

== i

Longitudinal Shear Transverse Compression

Figure 4.5. Type of stress and related failure plane (Grey areas are failure planes)

By using action plane stresses (O'f,’c, Tots Tnl), and related action plane strengths

( R fz,c, Rﬂ 1 Rf”) a 3D surface that envelopes all admissible stresses can be constructed.
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This 3D surface is called as Master Fracture Body (MFB) (Figure 4.6) (Knops, 2008). As
a result of different behavior under the influence of o7 and ¢, MFB consists of two parts

joining at o, = 0 plane, 7,,-7,1 plane (Puck et al., 2002).

Figure 4.6. Master Fracture Body (Knops, 2008)

Since both 7,; and 7,1 acts on the same fiber-parallel action plane, related action

plane strengths R% , Ri‘” must be similar. Thus, Puck assumed simple elliptical failure

criterion for combined 7,,-7,1 stress state (7,y), when o, = 0. A failure ellipse is defined

2 2 5
Ty Tal ( Tot )
= + =1foro, =0 (4.6)
(wa) (RA ) R,

Ll

at the plane corresponding to o, = 0. To calculate fg, stress vector on the action plane is
stretched. The direction of the stress vector does not change when it is stretched (Knops,
2008). Thus, the extension of stress vector takes place in the longitudinal sections. Hence,
after fixing the cross section at o, = 0, longitudinal sections are employed for constructing
the rest of MFB. As a result of this simplification, the computational cost of the calculation
of fr is reduced substantially (Knops, 2008).

It 1s experimentally observed (Deuschle and Kroplin, 2012) that in-plane shear
stress combinations (02-721) causes failure in their action plane (i.e. failure angle 67, = 0).
This is valid for all positive range of o and negative range with the limit of —0.4R¢ . Thus,
for the range of —0.4R{ < o9 < +00, it is observed that o, = 09; 7,1 = T21; Ty = 0. That
means, all the failures are placed on the 7,,, = 0 plane, see Figure 4.6. For the positive range
of o, failure envelope is described by an ellipse. Ellipse cuts o, axis perpendicularly at

0
"= 03at=RY,

R%!, and cuts 7,1 axis with the declining slope of see Figure 4.6. On

o
the other hand, for the negative range of o, parabolic contour lines are used to describe
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the failure envelope. This completes the general form of MFB construction for a constant
Y value.

For positive 0,,, MFB looks like a culotte with utmost point on the o, axis at
o, = Rf’ and 1,9 = 0. For negative o, values, MFB looks like an open, slightly widening
tunnel. This corresponds to the fact that, o, can never cause failure alone, e.g. some
amount of 7,y is always necessary for failure initiation. In the light of previous discussions,

MEB is described by the following ellipse equation,

2 2
Thy Oy ()
+c1—— +c9 (—) =1foro, >0 “4.7)
(qu;) RYY RYY

for positive o, values, and for negative values of o;,,, MFB is described by means of

parabola with the following equation,

2
(””) +coy=1foro, <0 4.8)

The ellipse in Equation 4.7 has the anchor points R4’ on o, axis and in\P on the

T, axis.

From geometric relations it is observed that 7,,; = T,y cos (V) and 7,1 = Ty sin ('P).

Then by using those relations with Equation 4.6 yields the following,

2

2 P)\?  [sin ()
RA :(COS( ) + 4.9)
(#2) R, R

Even though the ellipse crosses o, axis perpendicularly, as experimentally observed it must
cross T,y with a certain inclination (Puck et al., 2002). Therefore, so-called inclination

parameter pﬁ_q, is introduced,

= (4.10)

(aTnT)e”"P” —p' g if T > 0.
ptﬂ,, if 7,9 < 0.

Iy o,=0
Parabola for describing MFB starts at anchor points of 03, = 0 and 7,y = inq, and
its inclination parameters may be slightly different from ellipse’s inclination parameters.

Therefore another inclination parameter p‘ , is introduced to describe the slope at 07, = 0
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as,

= 4.11)

(aTan)parabola _pi\}” if Ty > 0.
on=0 pi\y, if Tp < 0.

doy,

It is worthy to note that these inclination parameters need to be identified experimentally.

Finally by using inclinations and anchor points ¢, c1 and c3 are calculated and the following

results
C
c= QP% (4.12)
RJ_‘P
c RAt
¢ =2t (4.13)
RJ_‘P
c RAt
cy = —QPH;‘ = (4.14)
RJ_\P

are obtained. If inclination angle (W) is 90°, which corresponds to longitudinal section
of MFB where only (o, 7,1) are acting, then p’ﬂ, and p‘ , are denoted as ptL” and pi”,
respectively. Similarly, if ¥ is 90°, p’ , and p<, becomes p’ | and p¢,, respectively.

Some recommended values for pin, pi”, p | and p¢ | are given in Table 4.1.

Py Py Pl P
CFRP | 030 025 0.20t0 0.25
GERP | 0.35 030 0.25 to 0.30

Table 4.1. Recommended inclination parameters (Puck and Schiirmann, 2002)

By using the specific inclination parameter values at ¥ = 90° and ¥ = 0°, Puck

proposed the following interpolation procedure to define piﬁl,

tc t,c

t,c

’ p

p% = pj\l cos? (W) + —:” sin? (V) (4.15)
RA, R4, R

Ll
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for arbitrary ¥ values where,

2
cos? (¥) = 27—”’ 5 (4.16)
Ty + T2
.2 _ T
Sin (\P) =5 3 (417)
T+ T

MEB is completely defined by Equations 4.6, 4.7 and 4.8. Since the failure criteria is met
when the right hand sides of these equations reached to unity, they described the failure
state. Stated differently, whenever one of Equations 4.6, 4.7, 4.8 is satisfied by the stress
components, failure is reached. As mentioned previously, stress exposure factor fg, can
be conveniently used to assess the failure risk at a material point. However in combination
with Equations 4.6, 4.7, 4.8, the determination of fg is not straightforward. The failure
criteria expressed by these equations and stress exposure factor only coincide if the failure
criteria is homogeneous in the first degree with respect to stress. Only in this special case,
Equations 4.6, 4.7, 4.8 can be used as a direct measure of failure risk (Knops, 2008). In
case of homogeneous in the first degree functions, the factor a can be factored out when
the independent variables (e.g., stress components) of the function are all scaled by «.
This fits well to the concept of stress exposure factor, which reflects the required scaling
factor to reach failure and requires a function of homogeneous in the first degree. It can be
shown that, if linear (L) and quadratic (Q) terms are present in the failure criteria, stress

exposure factor fr can be written as (Knops, 2008),

fE:%(ZL+\/ZL2+4ZQ) (4.18)

Therefore combining Equation 4.18 and Equations 4.6, 4.7, 4.8, stress exposure factors

for Puck’s Inter Fiber Failure for tension and compression are defined as,

2 2 2
1P T (0 Tp1 (6
Searr(0) = (W_R%)””(e)] +( RI/E )) +( RlA( )) +
R7 IR Ly 1y (4.19)
t
p%crn(H) foro, >0
1Y
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9 2 . 2
fE_,]FF(e) = (Tm(a)) + (Tnl(g)) + (pﬂlo'n(@)) +

A A A
Ry, RJ_|| Ry (4.20)
pc
%O'n(é’) for o, < 0
¥
where,
pc pl‘,c pt’c
LY Pl o2y iy (4.21)
R’y Ry, R i
Obviously failure angle 6, is the one which satisfies,
Te1rF(0rp) = max (fg,1rr(6)) (4.22)

The search of failure angle is a computationally demanding task that has to be repeated
at every material point during analysis. The simplest approach is based on scanning the
interval [-90°  90°] by means of a small incremental value (e.g. with an increment of 1°
in Deuschle’s work (Deuschle and Puck, 2013) and 0.1° in Reinoso’s work (Reinoso et al.,
2017)) and for each value calculating the exposure factor. Instead of testing each action
plane and finding the largest exposure factor, an optimization method can be employed.

Golden Section Search Method (GSSM) is one of the available optimization meth-
ods to reduce the computational cost of Puck’s Failure Model (Vinicius et al., 2018; Wang
etal., 2018). The Golden Section Search, which is maximization/minimization technique,
can be applied to functions, where an extreme is known to exist within the given range.
In GSSM, by evaluating the function in triples of points, the search range is successively
narrowed. The distances between these points form golden ratios from where the method’s
name originates.

Referring to Figure 4.7, if the maximum is searched within the range [0, 62], then

the third point #3 is computed by,

b 1++v5 02 — 61
== 05 =6 4.23
il 5 = 03=0r+ —— (4.23)
which is folllowed by the calculation of the additional point, 64,
b
/I (4.24)
a c
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Figure 4.7. Schematic form of Golden Section Search

Equation 4.24 guarantees that 63 is symmetric to 4 in the original search range. Then,
by comparing f (63) and f (64) new search range is chosen. If f (63) > f (64), then new
range is chosen as [61, 64] range. Otherwise, new range is chosen as [03, 02 ] range. This
search continues until the difference between the outer points becomes tolerably small.
The amount of the term tolerably small is decided with respect to expected accuracy of
failure angle, 0.

Even though, the Golden Section Search method quickly brackets the maximum of
the given function, large number of iterations are required to obtain the accurate value of
the maximum (i.e. 67,). To overcome this drawback, as proposed by Wiegand (Wiegand
et al., 2008), a curve interpolation technique called as Inverse Parabolic Interpolation is
combined with Golden Section Search Method. The new method is denoted as Extended
Golden Section Search Method (EGSSM).

In Extended Golden Section Search Method, initially Golden Section Search is
employed to bracket the maximum sufficiently close. Afterwards, a parabola is fit by
using point triples (61, 62, 83) to find the maximum value of function, f (6 fp). The 6,

term, where function becomes maximum is computed from,

9. =g, 1002 01)° (f (62) = f (63)) (82 = 03)° (f (82) — f (61))
TP =270 (09— 61) (f (B2) — £ (63)) (B2 — 63) (f (62) — [ (61))

(4.25)

Since in the Puck’s Failure Model the failure angle is in the range of (-90° < 6, < 90°),
in this thesis, EGSSM is used to find the maximum exposure factors, ( fg, e JEr F) By
this methodology numerical efficiency of the implementation is improved significantly.

Algorithmic structure of EGSSS is presented in Algorithm 5.
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Algorithm 5 Extended Golden Section Search Algorithm
e Define tolerance and initial values
e Compute a, b, ¢ and 63 by Equation (4.23)
e Compute ¢ and 64 by Equation (4.24)
WHILE |DIFF| >TOL
IEf (64) > f (63)
91 — 93
ELSE
92 — 94
ENDIF
Compute a, b, ¢, 03 and 64 by Equation (4.23) and (4.24)
DIFF « (65 — 64)
ENDWHILE
e Compute 6, by Equation (4.25)

4.2.2. Extension of Puck’s Model

As more experimental results have become available, shortcomings of the original
Puck’s criteria have been detected and a number of improvements have been introduced.
Influence of normal stress along fiber direction on IFF and inclusion of stresses which
act on parallel-to-fiber planes but not on fracture plane were considered to be the most
significant ones, (Knops, 2008). In the original version, in accordance with Mohr’s
hypothesis, it was assumed that normal stresses parallel to fiber direction o, does not
influence the inter fiber fracture (IFF), i.e., matrix damage and failure. However, under
normal stresses along fiber direction, premature failure of fibers might take place due to
statistical nature of fiber strength and local imperfections. These failures might in turn
cause local damage in the lamina in the form of debonding of matrix-fiber interfaces
and alteration of damage evolution in the matrix, (Knops, 2008). These mechanisms are
introduced in the extended version of Puck’s model through a weakening factor n,,1 that is
used to modify stress exposure factor associated with IFF; (J. F. Chen et al., 2014; Knops,

2008). More precisely, the reduction in fracture resistance is taken into account by,

+,—
o EJIFF

= (4.26)
EIFF Tl

which increases the exposure factor since n,,; < 1.0. In (Knops, 2008), a procedure
that utilizes experimental results and two additional fitting parameters, is introduced to
determine weakening factor. It is important to note that, this extension does not influence

the identification of 67, and can be conducted as before neglecting normal stress along
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the fiber direction, (Knops, 2008).

4.2.3. Fiber Failure

In his first publication, Puck assumed unidirectional laminate as homogenized
material, and he used the maximum stress criteria for fiber failure. As a result of this
assumption, the effects of transverse stresses were not included. Thus, using such failure
criteria may yield unrealistic and unreliable results in case of 3D stress states. The

maximum stress based fiber failure criteria defined as follows,

o1 .
Y3 1f0'1>0
R,

fEFF = 3
g1 .
Y 1f0'1<0
R,

Due to Poisson’s effects, transverse stresses (0o, 073) influence the strain in fiber direction.
Thus different stress states occur in the fiber direction under the influence of uni-axial
and combined stresses. By taking this effect into account, Puck modified his fiber failure
criteria such that the effects of transverse stresses are considered as well. It is observed
that, the stress in the fibers is higher than the stress in matrix. This causes in-homogeneous
distribution of stress. To include the effect of in-homogeneity in the stress distribution,
Puck introduced the stress magnification factor m s with the values of 1.1 for Carbon
Fiber Reinforced Polymers (CFRP) and 1.3 for Glass Fiber Reinforced Polymers (GFRP).

Then, the strain in the fibers due to combined state of stress is defined as,

_ O Vius
Eyf Eif

e1f meyr (02 + 03) 4.27)

where,

Ve _ Vil
E.p Ey

E1f = &1 (4.29)

(4.28)
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Following that, longitudinal stress in fibers is defined as,

o1f = E||f81 + VLMo f (09 + 03) with, (4.30)
o1V
81=———(0’2+0’3) (4.31)
£y Ey
Ry = Eir R (4.32)
E|

If longitudinal strain €1 is combined with the elastic law of UD lamina (Equation 4.32)
and the fiber stress o7 ¢ is replaced by the failure strength of fiber R s, the following Fiber

Failure condition

+ 1 E)
JEFF= = (70 | vame g (o2 + 03) (4.33)
I Il
_ 1 E)
fE,FF = ? o1 — (Ve — VJ_”mO-fE_ (0‘2 +0'3) (4.34)
™ s

is obtained.

4.3. Modeling Framework and Incorporation of Damage

In conventional analysis, the initiation of failure i.e., fulfillment of the failure
criteria, is considered to be the complete failure at a material and typically also the
complete failure of the structural component. This in turn implies that the potential
capacity of a component after failure initiation is neglected. However, this capacity could
reach to non-negligible levels particularly for multi-ply composite components. In this
section, continuum damage mechanics along with Puck’s failure criteria is going to be
used as the main framework to address the complete stress-strain response of a component

at lamina level.

4.3.1. Incorporation of Damage

The focus is on matrix failure since a large fraction of observed failures are con-
trolled primarily by matrix failure. Since Puck’s model distinguishes between compressive
and tensile failure IFF, two different damage variables associated with tension (D}) and

compression (D), ) are going to be specified. In combination with these damage variables,
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effective stress concept is used to define the stress at a material point as,
og=07+(1-D,)(1-D,) (4.35)

Where, o and 0, are elastic stress tensors, i.e. stress response without any damage,
for fiber and matrix, respectively. Since any damage in fibers is disregarded, there is no
damage term for o  in Equation 4.35. For the computations of o r and 7, elastic stiffness
tensor C is decoupled into é_f and C,,, such that C = é’_f +C,,. For the computation of C

elastic stiffness tensor for orthotropic materials

Cii Ci2 Ci3 O
Cap Co2 Co3 0
C31 Cs2 C33 0
0 0 0 Cya O
0 0 0 0 Cs5 O
0 0 0 0 0 Cegg

o O O

™
Il
o o o o

(4.36)

is used. The explicit form of these coeflicients are given as,

C11 = E1(1 - va3v3a)Y

Cag = Eo(1 = v13v31)Y

Cs3 = E3(1 —viava1)Y

Ci2 = E1(va1 +v31v23) Y = Ea(vi2 + v3avi3) Y
Ci3 = E1(vs31 +va1vs2) Y = E3(vi3 + viava3) Y
Caz = E2(v32 + v12v31) Y = E3(va3 + va1v13)Y
C14=G12,C55 = G13,Cs5 = Ga3

Co1 = C12,C31 = C13,C32 = Co3
1

1 = vi2va1 — v32v23 — v31V13 — 2V21V32V13

Y =
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C rand ém are extracted from C fas

- 0 Ci2 Ciz 0 0 0 -C11 0000 0-
Cy1 Coa Co3 O 0 0 0 00O0O0O
é - C31 C3a C33 O 0 0 ; éf _ 0 00 O0O0O 437)
0 0 0 Cya O 0 0 00 O0O00O0
0 0 0 0 G5 O 0 000O0O
0 0 0 0 0 Ces 0 00O0O0O

which simply means that the normal contribution related to fibers is decoupled from matrix
response. Hence, matrix damage is applied to only matrix related parts.

At this point, it is convenient to recall that for Puck’s failure criteria fg:l_F P are the
indicators of failure risk at a material point. Therefore, it is reasonable to relate damage
initiation and evolution to fg:l_F - For this purpose, history variables r;g, jppand ry o are
introduced. These variables in fact the largest exposure factors ever reached at a material

point. They are formally defined as,

rEpF = Mmax (fE,IFF (T)) T=I
(4.38)

TEIFF = Max (fE_,IFF (T)) T<t

Where 7 is time-like parameter used to parametrize the loading. Damage initiation and

evolution can be conveniently described by adopting exponential laws,

+

r. .
Dy =1- " (1 —a’ +a'exp (_:8+ (rfg IFF ~ ritzit)))
YEJIFF 7
g (4.39)
D, =1-—"— (1 —a +a exp (—IB_ (”E,IFF = Tinit
PEJIFF
Where r} . and r; .. are initiation thresholds and both set to unity. It is important to realize

that in this form the description is local and can be implemented in Abaqus as a user
defined material model through UMAT subroutine (Systemes, 2013). In fact, algorithmic
structure of the local version is concisely presented in Algorithm 6.

Even-though such implementations seem very attractive, unless some precautions
are taken, they are prone to mesh dependency problems, (Dean et al., 2020; Peerlings
et al., 1998; Reinoso et al., 2017). To illustrate pathological mesh dependency, tension
hole specimen shown in Figure 4.8, is analyzed by using the local damage mechanics

summarized in this sub-section. In Figure 4.8, total reaction versus displacement graphs
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Algorithm 6 Implementation of Puck’s Failure Criteria in local sense

e Update Internal Variables
e Compute Cand 7.
e Construct ém, éf, oyand oy,
Compute Fiber exposure factors.
IF No Matrix Damage has been initiated yet
> Compute 6,
> Compute Action plane stresses
> Compute Matrix Exposure Factors
ELSE
> Use 67, from previous step
> Compute Action plane stresses
> Compute Matrix Exposure Factors
ENDIF
e Compute Damages
e Update Stress tensor
e Compute Material stiffness tensor
e Store History variables

are presented for four different element sizes, e.g. 1.0,1.5,3.0 and 4.0 mm. As the

element sizes decreases, the total dissipation which is proportional with the area under the

force-displacement curve, decreases and there is clearly no tendency of convergence.
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Figure 4.8. Left: Dimensions of open hole tension specimen; Right: Force-displacement
response for four different elment sizes

A practical remedy to resolve pathological mesh dependency problem was pro-
posed by Bazant (Bazant and Oh, 1983) and is known as the crack band approach. In
this method, dissipation characteristics are correlated with the element size used to solve
the specific problem under consideration. The implementation of the method is rather
straight forward and solves the mesh dependency problem observed in force-displacement
graphs. However, crack band method yields crack/damage bands which are aligned with

the specific mesh used. In Figure 4.9, predicted band directions with two different meshes
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are shown. It is important to emphasize that these responses correspond to the same
physical problem, which are supposed to be very close in terms of predicted crack/damage

bands.

SDv4 sbv4

(Avg: 75%) (Avg: ng/&)) 00
+1.000e+00 +1.000e+
+9.167e-01 13187e01
+8.333e-01 1833301
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+5.833e-01 +5.000e-01
+5.000e-01 +4.167e-01
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+3.333e-01 +2.500e-01
+2.500e-01 +1.667e-01
+1.667e-01 +8.333e-02
+8.333e-02 +0.000e+00
+0.000e+00

Figure 4.9. Crack patterns due to mesh alignments

In the next section, localizing implicit gradient damage formulation is going to be
used which alleviates the mesh dependency observed both in force-displacement response

and crack/damage band orientation predictions.

4.4. Localizing Implicit Gradient Damage Based Treatment

As stated in Section 4.3.1, failure initiation in Pcuk’s criteria are described by
non-dimensional exposure factors. Therefore it is reasonable to link damage initiation and
evolution to these factors. Furthermore, in order to suppress mesh dependency, non-local
exposure factors, ( fg IFF and fb? IF F) , are introduced which are the key field variables in
the description of damage evolution. To set-up a consistent framework, first non-local
threshold values flt“, 1 and 7 ;e are introduced. These threshold values take the initial
value of one; and their evolution is described by the corresponding non-local exposure
factors. Once the related non-local exposure factor exceeds value of one, the corresponding
non-local threshold values takes that value. For that purpose, the following Karush Kuhn

Tucker (KKT) conditions

0

-t O —+ it + —t
Fe1rF 2 O3 fE pp =T grr < OTg pp (fE,IFF - rE,IFF) .

Pe1rr 2 05 fgpr = Tegrr < 0Tg pp (fE,IFF - rE,[FF) =0
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are used. By the KKT conditions in Equation (4.40) each non-local threshold value, fzﬂ’ IFF

and 7

.17 are forced to be largest of related non-local exposure factor, fg, rrrand f e,

Hence the largest values of fg 1 and fE" ;pp are utilized for the initiation and evolution
of each damage term.

As opposed to local formulations, in gradient type formulations, non-local fields,
in the current context non-local exposure factors for tension fg ;pp and for compression,
fi ;pp appear as new fields, i.e. variables, in the problem formulation. As shown by
Poh (Poh and Sun, 2017), localizing implicit gradient damage formulation results in the

following partial differential equations

fE,IFF -V (g (D+) Z?-V (fE,IFF)) - fE,IFF =0

(4.41)
fE_,IFF -V (8 (D7) 12V (.fE_,IFF)) ~ fearr =0

governing the distribution of non-local fields, where g is damage dependent interaction
function and /. is the internal length scale controlling the extent of non-locality. It is
important to emphasize that Equations 4.41 are derived in a consistent manner by using
higher-order continuum mechanics arguments and thermo-dynamically consistent. For
each PDE standard Neumann type Boundary Conditions presented in Equation (4.42) are

used.

v (fg,IFF) -n=0

(4.42)
v (fE,IFF) -n=0

Interaction function initially takes value of one and with further evolution in related damage
value takes very small values (Poh and Sun, 2017) . Furthermore, for an arbitrary damage

of D, the interaction function can be described as follows,

. (1-R)exp (D) + R—exp(-n)

4.43
1 —exp(-n) (443)

where 7 and R are model parameters which describe the rate of reduction in g and the
residual value of g once related damage variable reaches unity, respectively. It is also
worth mentioning that if the value of one is assigned to R, then Conventional Implicit
Gradient Damage model is retrieved. In the thesis R value of 0.005 is used (Poh and Sun,
2017; Sarkar et al., 2019). It must also be mentioned that for both PDEs in Equation

(4.41), the same g function with different damage variables are used.
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4.5. Finite Element Implementation

In a geometrically linear setting, as long as no body force is applied, the static

equilibrium of a deformable body is described by,
V.o=0 (4.44)

As mentioned in Section 4.4, to achieve mesh objective results non-local counterparts of
damage driving quantities must be computed. For this purpose, the PDEs in Equation
(4.41) must also be solved. Thence to implement Localizing Implicit Gradient Damage
model based version of Puck’s criteria three PDEs in Equations (4.41) and (4.44) must be
solved simultaneously.

For this purpose a user element is implemented within commercial Finite Element
software Abaqus. The user elementis eight noded and fully integrated brick element, which
is very similar to Abaqus coupled temperature displacement element, C3D8T (Systemes,
2013). In user element implementation each node has five degrees of freedoms. First three
degree of freedoms of user element are related to displacement in x, y and z directions.
Whereas fourth and fifth degree of freedoms are related to non-local matrix tension
exposure factor and non-local matrix compression exposure factor, respectively. To be
able to use Abaqus post-processor, dummy element concept is used. For this purpose, on
top of Abaqus C3DS8T elements user elements are placed. Elastic response is used for
dummy elements along with very small material properties (e.g. E = 1.0E712,v = 0.0),
so that their effect on the resulting response is negligible. Basically, user elements and
Abaqus Elements share the same geometry and connectivity. During the analysis the
integration point data is copied from User Elements to a common block and written to the
output database file of Abaqus by means of user defined variable (UVARM) subroutine.
These results are accessible by Abaqus for post-processing purposes.

In Abaqus implementation, three coupled PDEs presented in Equations (4.41) and
(4.44) are solved simultaneously. For temporal discretization, Backward Euler Algorithm
is used. Hence an implicit solution scheme is utilized. For such solution schemes
Abaqus uses Newton Raphson Solution Algorithm. To achieve quadratic convergence
Newton Raphson Solution Algorithms requires consistent linearization of the weak forms
with respect to solution (primary) variables. Upon discretization, the weak form of the

governing differential equations lead to ‘nodal force’ balance equations designated by
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fo, f E, ypp and f EIFF respectively. Linearization of these force columns in the direction
of incremental displacement and non-local variables lead to the unsymmetrical tangent
stiffness matrix, K.;. The derivation of the weak forms, and the generation of element
tangent stiffness tensors are presented in Appendix.

The key components of the implementation can be split into two parts. The steps
that have to be followed at material point level to obtain stress response and material tangent
operators, i.e., so-called stress update algorithm at integration point level, are presented

in Algorithm 7. Integration point algorithm is called within an element routine and the

Algorithm 7 Stress update algorithm at integration point level
e [L.oad Material Properties and Internal Variables

e [.oad non-local variables

e Update Thresholds and Damages

e Compute Elastic Stresses

IF(7% 1 == 1.00) and (7% ;e == 1.00)
> e Use Extended Golden Section Search Algorithm to compute 6, 0, 7,1 and 7
> e Compute Local Exposure factors fg’ e ad fp e
ELSE
> e Use 6, from previous step to compute 0, 7,1 and 7,
> e Compute Local Exposure factors fg’ rrr and [ g
ENDIF

e Update Stress tensor

doc dD* oD~ Of ofz
e Compute Tangent Terms, —0, — EITE and —£LEE
08 0fg pp Ofgpr 08 de

e Update Internal Variables

corresponding element level computations are given in Algorithm 8. The performance of

the formulation and the implemented element are assessed in the following section.

4.6. Assessment of the Model

In this section, firstly the mesh objectivity of the implementation is going to be
investigated by means of a tension specimen. The same specimen is going to be used to
highlight the significance of LIGD formulation by comparing the results obtained by LIGD
and CIGD formulations. Finally, using dog bone shaped compression specimen, predictive
capabilities of the model is tested particularly for damage band orientation prediction.
Inclination parameters of 0.35, 0.30, 0.25 and 0.30 are assigned to piL, Pl pi” and pi”,

respectively. Strength and material properties are taken from Reinoso’s study (Reinoso
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Algorithm 8 Algorithmic steps of element level computations
Loop over integration points

> Calculate element matrices: N, B, N, B, Jacobian

> Transform Nodal values to integration points

> Call stress update algorithm (Algorithm 7)

> Update history variables

> Copy integration point data from User Elements to Dummy Element
> Compute Internal Force Column (Please see Appendix)

> Compute Element Stiffness Matrix (Please see Appendix)

End of loop over integration points

et al., 2017), and summarized in Table 4.2.

Table 4.2. Material properties for uni-directional composite

E11 (GPa) E22, E33 (GPa) G12, G13 (GPa) RS_ (MPa) Rﬂ_ (MPa) RJ_” (MPa)
139.7 12.9 6.9 253 44.54 106.8

Due to lack of experimental results on single ply specimens, a quantitative com-
parison could not be done and weakening factor associated with normal stress along the

fiber direction is not taken into account, i.e., n,,1 = 1.0.
4.6.1. Tension Specimen

To present the mesh objectivity of the implementation open hole tension specimen
in Figure 4.10 is analyzed. To reduce the computation cost, % of the specimen is modeled
and symmetry boundary conditions are applied (Figure 4.10). To investigate the mesh
objectivity, while keeping all other parameters same, open hole tension specimen is dis-
cretized with three different mesh densities under displacement applied along Y-direction,
please see Figure 4.10. Displacement versus Reaction Force diagrams for three different
mesh densities are presented in Figure 4.11. Force-displacement graphs are very close
and almost coincident for medium and fine meshes. This result supports that the current
formulation yields mesh convergent results.

By using Conventional Localizing Implicit Gradient Damage (CIGD) model, sim-
ilar Displacement vs. Reaction Force diagrams may be obtained (Engelen et al., 2003;
Peerlings et al., 2004). However, the localization zone obtained CIGD model may artif-
ically widen although it should be limited to the initial band width, (Sarkar et al., 2019,

2021). Furthermore, in CIGD based models, there are some inconsistencies in damage
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Figure 4.10. Dimensions and Boundary Conditions of Tension Specimen
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Figure 4.11. Displacement vs. Reaction Force Diagrams for different mesh sizes

initiation direction and distribution reported by different authors, e.g., (Poh and Sun, 2017;
Wosatko, 2021, 2022).

To investigate the artificial widening issue, tension specimen in Figure 4.10 is
discretized with the element size of 0.25 mm and internal length scale parameter, /., is
chosen to be 0.50 mm. Afterward, specimen is analyzed with CIGD and LIGD based
solution algorithms. In Figure 4.12 and Figure 4.13, step-by-step evolution of the dis-
tribution of matrix tension damage for CIGD and LIGD based algorithms are presented,
respectively. For both cases damage is initiated at the same location. However, in the case
of CIGD version, damage zone tend to diffuse with further deformations. Unlike CIGD,
in the case of LIGD version damage localizes into a smaller volume, and this volume does
not change with further deformations. Furthermore, the length of the volume in which
damage is localizes almost the same as the internal length scale parameter (Figure 4.13).
Therefore, it is understood that with the LIGD based implementation of Puck’s failure
criteria artificially widening of damage zone is prevented. Hence, physically accurate

predictions matrix tension damage distribution is obtained.
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Figure 4.12. Evolution of matrix tension damage for CIGD
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Figure 4.13. Evolution of matrix tension damage for LIGD

4.6.2. Compression Specimen

Experimental studies suggest that uni-directional composites fail with an angle
of 53° under the influence of uni-axial transverse compression load (Cuntze and Freund,
2004; Kaddour and Hinton, 2013; Reinoso et al., 2017). Furthermore, at material point,
Puck’s Failure Criteria predicts failure angle, 6y,, approximately 53° for Inter Fiber
Failure under the influence of transverse uni-axial compression load (Puck et al., 2002).
Therefore, transverse uni-axial compressive analysis is a good candidate to assess the
predictive capabilities of the model and the implementation. It is worthy to note that crack
band type regularization techniques are not successful in capturing the correct failure
angle at specimen level.

Thence, in this section following Knops (Knops, 2008) a dog bone shaped specimen
is modeled. The dimensions of the specimen is presented in Figure 4.14. As presented
in Figure 4.14, specimen is fixed at one and and transverse uni-axial compressive load is
applied from the other end. The fibers are parallel to 1(e;) direction and therefore the

depicted loading leads to transverse compression in the specimen.
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Figure 4.14. Dimensions and Boundary Conditions of Specimen (Knops, 2008)

Depending on a set of preliminary analysis, it was realized that one of the key
parameters controlling the damage distribution is the internal length scale /... To investigate
this aspect systematically, six different /. values are considered. More precisely, dog bone
specimen 1is discretized by element size of 0.05 mm and while keeping other material
properties the same [, sizes of (0.10,0.15,0.25,0.500, 1.000 and 2.000 mm.) are used.
The corresponding damage distributions are shown in Figure 4.15. As seen from Figure
4.15, a sufficiently small /. value is essential to capture an inclined damage band similar to
experimental results. For /. values larger or equal to 0.50 mm damage diffuses into larger
volume. Consequently, physically unrealistic results are obtained with such large /.. values.
Particularly for /. value less than or equal to 0.25 mm, the resulting damage localization
band has an inclination of approximately 53°. It is worthy to note that Puck’s criteria
predicts a failure angle of 53° at material point under transverse loading. In Figure 4.16,
experimental results from Knops (Knops, 2008) and distribution of compression damage
obtained with the current implementation are presented. As seen from the figure in both
cases the distribution of damage has an inclination approximately 53°. Furthermore,
Knops’ experimental results are in good agreement with the numerical results with small
[, values of 0.10,0.15 and 0.25 mm, see Figure 4.15.

To investigate the effects of element size and define the minimum element size to
[ ratio, dog bone shaped specimen in Figure 4.14 is discretized with two different element
sizes of (0.05,0.10 mm ). Thence, while keeping other material properties the same uni-
axial transverse compression load is applied to each discretization. The distribution of the
compression damage for each discretization are presented in Figure 4.17. As seen from

thid figure, for both discretization the distribution of compression damage is quite similar
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Figure 4.15. Distribution of compression damage with varying /. values

and have an inclination approximately 53°. Thence, it is understood that for this specific
example, the minimum element size to /. ratio to achieve physically realistic results should

be at equal or smaller than one.

4.7. Conclusions

In this chapter, Puck’s criteria is embedded in a damage mechanics framework that
resolves mesh related problems.The resulting gradient based formulation is implemented
in finite element software Abaqus through User Element. To reduce the computational
cost of the search of the failure plane, Extended Golden Section Search Algorithm is used.
Through the study Fiber Failure is disregarded and Inter Fiber Failure is considered.

After proving mesh objectivity and suppression of artifical widening, a challenging
compression test from literature is used to assess the capacity of the model. As seen from
Figure 4.15 and Figure 4.16, as long as appropriate /. values are used, model prediction
are in a very good qualitative agreement with experimental results. As mentioned also in
main text, achieving such a consistency between material point failure angle and specimen

level damage band orientation has not been reported by a continuum damage mechanics
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CHAPTER 5

CONCLUSION AND OUTLOOK

The point of departure for this thesis was to contribute to two major issues in
computational modeling of failure in fiber reinforced composites. In a nutshell, the first
issue can be summarized as complementing physical testing by computational micro-
mechanical modeling and the second one is progressive analysis of failure at macro scale
through a combination of Puck’s failure criteria and continuum damage mechanics. To
address these issues a number of developments and a large number of analysis have been
realized.

In Chapter 2, to be employed as material model for the matrix phase, a plasticity
model with tension-compression asymmetry is extended with a mesh objective damage
mechanics formulation and implemented in Abaqus as a user defined element. The model
is calibrated with experimental results and succesfully captures the failure mode without
artificial widening. However the model has to improved if it is going to be used to model
components made of matrix material (epoxy) only. The formulation is limited to small
strains whereas the strain levels under compression tests on epoxy specimens reach to very
large values. On the other hand, due to heterogeneous stress state developing within the
RVE and failure mostly due to tensile and/or shear stress zones, damage-plasticity model
can be used for RVE type micromechanical models.

In Chapter 3, the focus was on computational micromechanical modeling where
damage-plasticity model is combined with cohesive contact surfaces used to capture
interface failure are embedded in RVE type micro-mechanical models. Sufficiently large
number of analysis were conducted to construct discrete failure envelope and compared
with continuous failure envelopes associated with Puck’s failure criteria. Additionally,
a specific type of microstructural imperfection is taken into account and its influence
is analyzed in a systematic manner and the main findings are given in Chapter 3. A
lower cost alternative could be the use of generalized cell type models which incorporate
plasticity and damage (Voyiadjis and Deliktas, 1997). In Chapter 3 the focus was on
in plane failure excluding out-of-plane loading and failure scenarious especially under
compressive loading that might lead to fiber kinking type failure. Unfortunately, solving

such problems within implicit framework turns out to be a very challenging problem
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numerically and typically requires robust arc-length type solvers. Due to existence of
multiple fibers and heterogeneous nature of RVE response, existing arc-length solvers do
not always give convergent results with arbitrary RVE configurations. Development and
implementation of more general arclength solvers is a research problem on its own, see
for example (Ozdemir, 2019). Furthermore, to investigate the response of RVE models
under the influence of out-plane compressive loads explicit frameworks (Sun, Meng, et
al., 2018; Sun et al., 2019) may also be considered in future studies. Imperfections
located at matrix-fiber interfaces are not the only type of micro-structural imperfections
remaining from manufacturing processes. Micro-voids within the matrix and combination
of different imperfection types can be considered in future studies as well.

In Chapter 4, the focus was shifted towards macroscopic modeling and progressive
failure analysis where Puck’s criteria and localizing implicit gradient damage formulation
are combined under continuum damage mechanics framework.The number of modeling
studies focusing on compressive failure is limited since capturing macroscopic failure ori-
entations that are consistent with failure angles emerging at material point, in this specific
case 67, of Puck’s model. The proposed formulation is implemented in Abaqus again as
a user element and tested with compression tests. It is shown that resulting macroscopic
failure surfaces are in agreement with the microscopic failure angle predictions provided
that the internal length scale is sufficiently small. Qualitative agreement between the
model and experiments is also noteworthy. For the purpose of quantitative comparison
with experiments the model has to be extended so that different ply orientations can be
taken into account. This is relatively straight forward to realize as compared to fiber
failure under compression along the fiber direction which needs some further theoretical
elaboration.

There is growing interest in data science and associated techniques not only in
computer science but also in almost all engineering disciplines. As far as composite
mechanics and failure is concrned, RVE micro-mechanical analysis may used to generate
datasets for machine learning applications. Those datasets can also be used to generate
Deep Neural Networks that predict the response of uni-directional composites under
influence of various loading schemes. Furthermore, datasets are provided by RVE analysis
can be exploited by machine learning based approaches to predict mechanical response of
composites. There is a vast and growing literature for such applications (J. Chen et al.,
2021; Guo et al., 2021; Shah et al., 2022; Wan et al., 2023; Ye et al., 2019). Thence,

using RVE to generate datasets for various model configurations and generating machine
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learning models to predict to response of uni-directional composites may be considered

in future studies.
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APPENDIX A

User Element Implementation

sect:UEL To implement eight nodded fully integrated linear three-dimensional
brick elements (C3D8), firstly, the weak form of the linear moment balance equation is

expressed.

A.1. The Weak Form of the Linear Momentum Balance Equation

pv =divo + pb
divo +pb =0 (A.1)

The linear momentum equation (Equation (A.1)) is complemented with boundary con-
ditions given in Equation (A.2). To the purpose of the derivation of the weak form, a
special test function 7, which takes the value of zero at displacement boundary condi-
tions (on 6B,, n = 0) is introduced. Furthermore, instead of satisfying Equation (A.1)

pointwise, equation is satisfied by in an integral sense (Equation (A.3))

u=1uondB,

t=tondB, (A.2)

/ (div(o) + pb)ndV =0 (A.3)
1%

If Equation (A.3) is expanded, then Equation (A.4) is obtained.

/ div(o)dV + / pbndV =0 (A.4)
\% \%
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The term div (o) in Equation (A.4) can be written in an alternative form as follows,

divio)=V(on): 1 (A.S5)
O+
_ oin; Si (A.6)
oxy,
aO'[J' 6nj
=|——-n; ii—— | 0;i A.
0Xk77]+0'JXk)5] (A7)
607{] 67]]'
_ aO'jk 0 A9

Equation (A.9) can be written in close form as follows,
div(on) =ndiv(oc)+Vnp: o (A.10)
Hence, the term div(o) can be expressed as follows.
div(om) =div(on)-Vn: o (A.11)
Once Equation (A.11) is put into Equation (A.4), the following equation is obtained.
/Vdiv (om)dV - /VVn codV + /VpbndV =0 (A.12)

The term, fv div (om) dV in Equation (A.12) can be transformed into area integral by

using divergence theorem as follows,

/div (om) dV:/ (om) ndA
\%4 oB

in index notation,

(O'I]) ndA = / O'iji]ji’lidA (A13)

:/O'J-,-nmjdA
:/ tndA
OB

One of the first assumptions of 7 is that, n takes value of zero on displacement boundary

OB

Finally, in matrix form,
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conditions. Hence the term Equation /63 tndA in (A.13)is changed and takes the following

form.

/ tndA = / tndA (A.14)
OB 0B,

Replacing the term of /v div (om) dV in Equation (A.12) with the Equation (A.14), yields
the weak form of the Equation (A.1).

/a‘ : VndV:/pbndV—/ tndA (A.15)
% % 5B,

Since there is no special assumption is made for the derivation of Equation (A.15), it ap-
plies to general problems such as in-elastic materials Bathe, 1996, non-associated loading

implicit gradient formulations, etc.

To complete the derivation, the term Vi must be investigated. To do so, the concept
of variation must be employed. Variation of the derivative of a quantity in the direction of
n. The Greek letter ”6” is used for the variation. The variation of Vu in the direction of

special function 7 is defined as follows,

D (Va) [n] = 5 (¥ (u+ en) | cg

oVu =Vn (A.16)

With the aid of Equation (A.16), the term o : Vi in Equation (A.15) takes the following

form,
o:Vnp=0:6Vu (A.17)

It is known that, o is symmetric. The é¢Vu in Equation (A.17) can be splitted into

symmetric and skew-symmetric parts as follows,
1 r\ 1 T
oVu = 55 (Vu + (Vu) ) + 56 (Vu - (Vu) ) (A.18)

It is also known that the multiplication of symmetric and skew-symmetric parts is zero.
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Therefore, the result of Equation (A.17) can be expressed as,

1
og:0Vu=0: 56 (Vu + (Vu)T)

=0 :0¢ (A.19)

Where the term, d¢ is the virtual strain. Finally, the weak form of the Equation (A.1) takes

/a':és:/pbl]dV—/ tndA (A.20)
14 14 5B,

Equation (A.20) is known as Principle of Virtual Work Bathe, 1996. Furthermore, the left

the following form

hand side of Equation (A.20) is the virtual work done by internal forces and the right hand

side of Equation (A.20) is the virtual work done by external forces.
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APPENDIX B

Derivation of the Weak Forms of Gradient Enhanced Models

B.1. Conventional Implicit Gradient Damage Model

With introducing 7 (a special function), the weak form of the Conventional implicit

gradient damage model can be expressed in integral sense as follows,
/V (8_peq ~ 2V2g,%9 — 8[e,q) ndv
/ (£,%ndV) - / (12v2enav ) - / (e57naV) (B.1)
v 14 v
The term V2§;qn in Equation (B.1) can be expressed in an alternative way as follows,

V. (Veyin) = V2e 'y + Ve,V
Ve, in =V - (Ve)n) — Ve, Vp (B.2)

With the aid of Equation (B.2), Equation (B.1) can be expressed as follows,
/ g,ndv - I2 / V. (VeyndV) +12 / ve,! - Vndv - / endV=0  (B.3)
1% 1% % %
Using the Divergence Theorem yields,
/ g, nav — I / (Veyn) - ndA +12 / Ve, - Vndv - / gndv =0  (B4)
14 5B 14 14

Using the boundary condition of Véf,qn = ( is given, Equation (B.4) takes the following

form,

/ gxlndv + 12 / Ve - Vndv - / gyndV =0 (B.5)
14 Vv Vv

Finally Equation (B.5) is the weak form of the Equation (B.1).
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B.2. Localizing Implicit Gradient Damage Model

To obtained the weak form, the following partial differential equation (Eq. B.6)

must be solved with the boundary conditions given in Eq. B.7.

o (glfvéggﬁ ) A (B.6)

vel, " n=0 (B.7)

With introducing n (a special function), the weak form of the Conventional implicit

gradient damage (Eq. B.6) model can be expressed in integral sense as follows,

/8eq ndV - ng/V2 (8™ )ndV—/seq ndV =0 (B.8)
v v
Where, V2 (% +’_) 1 can be expressed as,

V2 (el ") = V. (Vel, ") Vel "y (B.9)

Once Eq. B.9 is implemented to Eq. B.8 the following is obtained.

/eeq ndV - ng‘/(Vefjf’_) ndB+glf/V8§;1+’_VndV—/seq ndV =0
v B v v

(B.10)

Since the term (Véf;é +’_) n in Eq. B.10 is zero, the weak form of the Localizing

implicit gradient damage model takes the following form,

/ gindv + gl / vel, " TVndv - / el ndv =0 (B.11)
\% % |4

Eq. B.11 is the weak form of Eq. B.6
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B.3. Localizing Implicit Gradient Damage Model for Puck’s Criteria

To obtained the weak form, the following partial differential equation (Eq. B.12)

must be solved with the boundary conditions given in Eq. B.13.

e =V 82V Fiee) = fpr =0 (B.12)

Vg n=0 (B.13)

With introducing 7 (a special function), the weak form of the Conventional implicit

gradient damage (Eq. B.12) model can be expressed in integral sense as follows,
/Vfg:I_FFndV - gl? /V v? (fg:I_FF) ndv — [/fg:;FFndV =0 (B.14)
Where, V2 (fE;FF) n can be expressed as,
v? (fgl_FF) n=V- (Vfgl_FF) - Vfg:I_FFVn (B.15)
Once Eq. B.15 is implemented to Eq. B.14 the following is obtained.

/V ferendV — gl /B (V fg;;FF) ndB + gl? /V Vi VndV - /V frndV =0

(B.16)

Since the term (V fgl_F F) n in Eq. B.16 is zero, the weak form of the Localizing

implicit gradient damage model for Puck’s failure criteria takes the following form,

/V fErppmdV + gl /V VfrerVndV - /V FepndV =0 (B.17)

Eq. B.17 is the weak form of Eq. B.12
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APPENDIX C

Linearization of the Weak Form of Localizing Implicit

Gradient Damage Model

/ (Vet) (n) av + g2 / (Ber7) (B) av - / NTF ()&t =0

7| [ (8) (wegp ) aveesz [ (57) (Begp) av - [ W75 (@egr| =0

(C.1)

(C2)

The terms in [| must be zero. Then using Gauss quadrature internal force in typical

integration point can be described as,
W,-gp]\_fT (]\_/é;’l_) detJ + gl?w,-ngT (Eé;}_) detJ — w,-gp]\_fo (o) g;’[_det.l =0

In a matrix form above equation can be described as follows,

S el
Where,

T = Wi NT (Né;’l‘) det

I+I" = gl?w,-ngT (Eé;’[) det]

5= wigpNT f (o) 8;’1_detJ

Of course, the internal force columns regarding o is defined as,
f= / Bloav
Which can be discretized and computed numerically as follows,

f= W,-g,,BTUdetJ

(C.3)

(C4)

(C.5)
(C.6)

(C.7)

(C.8)

(C.9)
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To achieve the quadratic convergence rate, Abaqus uses Newton Raphson solution algo-
rithm. Therefore tangent terms must be calculated. To do so both internal force columns
must be linearized. Internal force columns regarding stress and non-local solutions are

denoted as r¢ and r® *, respectively.

rd=f (C.10)
r = ff+ i - 1 (C.11)
r=fr+fu-Io (C.12)

‘Which can be described in the matrix form as follows,

[ 574 ard ord |
oa.  9& o ||di| |drf
oret  orett  oret”

57 — - dét| = |dret (C.13)
8rg‘ grg‘ grg‘ dé= dré=
| Ju oet 0og= |
0d 0d 0d oret oret oret ore- ore ore~
Where r r il r r r i ’ and r — are denoted as K,

ou’ 0&t’ 9g=" Ou ’ ode*’ 0&~’ Ou = Ot &
Kue+, Kye—, Ket ys Ke+ g+, Kot - Ke- 4, Ke- ¢+ and K- o- respectively. By linearizing rd,

r¢* and r¢~, those K terms can be computed. First linearization of stress residual can be

evaluated as follows,

ord ord ord
d _ N ~ e
dr? = 5 du+aé+da++ 8é‘d£ (C.14)
0w, BT odet] 0w, BT odet] Ow;o, BT odet]
_ Wigp AO' e . Wigp AO' e Jet s Wigp Aa e e C.15)
ou 0&* 0é~
=K, dit + K, e+de™ + K, .-dé™ (C.16)

Now, K, K-+ and K,,.- terms can be computed as follows

9
K = wl-ngTa—o:BdetJ (C.17)
E
Jo -
T
K+ = Wing gBdel‘J (C.18)
oo _
Ko = w,-ngTa—?-_BdetJ (C.19)
E

Where (7) and (") terms denote non-local element functions and nodal quantities, respec-
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tively. Linearization of non-local residual can be evaluated as follows,

_ 9 (f1++f;}+f5)dﬁ a (f1++f;}+fD)dA++ a (ff + fi;+ fp)

dret dé~  (C.20
’ di ’ dér ¢ 9é- ¢ 20
= Korydit + Kgr v dét + Ko p-dé™ (C.21)
Where, K+, and Kz+.+ and K.+.- can be computed as follows,
_ Gef,q
Ke+y = wl-gmeBdetJ (C.22)
ofy aof oft
Kgror = Ir, i _9Tp (C.23)
oet  Oet  Oet
aff ofy dfp
Kotg- = — + — — — C.24
e o~ Oe~  Ode~ ( )
Where,
off _
af 08 o7 ,~. o
> é’ = w[gpﬁl?BT (B&) detJ + gl?wig, BT Bdet] (C.26)
ofp _ ag;‘f _
i wigpNTgNdetJ (C.27)
dg 0g 0D Ok _
=———N C.28
0¢ 0D dk & ( )
Similarly,
olfi +f+fn olfi +f+fr o\fr+f,+1n
dré= = (fl fAu fD)dﬁ 4 (fl {11 fD)dé+ + (fl Jju fD)dé— (C.29)
ou 0&" 0&~

= Koy dii + Ko g+ de* + K- - de~ (C.30)

Where, K-, and K-+ and K.-.- can be computed as follows,

_ﬁsfc’]—
K.-, = W[gpN?Bdel’J (C.31
of; of, Of,
Ky o = f’ + ff’— fP (C.32)
oet Odet Oet
aff ofu dlp
Ke-o- = — — - — .
£ e~ " de~ Ode~ (€33)
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APPENDIX D

Linearization of the Weak Form of Localizing Implicit

Gradient Damage Model For Puck’s Failure Criteria

/(NfE,’I_FF)(_ﬁ) dV+gl?-/ (Efg;;FF) (B) dV—/Nng;;FF:o D.1)
a [/ (NT) (Nfg;,‘FF) dv +gl; / (BT) (BfE:;FF) dv - / Nngj,‘FF] -0 (D2)

The terms in [| must be zero. Then using Gauss quadrature internal force in typical

integration point can be described as,
WigpNT (N ) det] + gl2wigy BT (B 1) detd = wigyNT £ det] =0 (D.3)

In a matrix form above equation can be described as follows,

S+~ ST =0 (D4)
Where,
77 = wigpNT (N fi ) det (D.5)
I+I,_ = gl?wingT (Efgl_FF) detJ (D.6)
Iy~ = wWigpN' frppdet] (D.7)

Of course, the internal force columns regarding o is defined as,

f= / Bloav (D.8)
Which can be discretized and computed numerically as follows,

f =wig,B odet] (D.9)
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To achieve the quadratic convergence rate, Abaqus uses Newton Raphson solution algo-
rithm. Therefore tangent terms must be calculated. To do so both internal force columns
must be linearized. Internal force columns regarding stress and non-local solutions are

denoted as r¢ and r® *, respectively.

ri=f (D.10)
=+ - 1 (D.11)
r=fr +fu-Jto (D.12)

‘Which can be described in the matrix form as follows,

[ ord ord ord
u  0ff pp Ofg pr dit dr?
ore* ore* oret .
— — — dft | =|dret (D.13)
u  0ff pp Ofg pr EIFE
ore” ore” ore~ de"IFF dré~
I du afE,IFF afE_,IFF_
ord  ort ard  orer oret oret  or¢~  ore ore”
Where , and are

du 6fE,IFF afE_,IFF du afEJFF 6fE_,IFF du afE,IFF afE_,IFF
denoted as K,,;,, Kuf+, Kuf—, Kf+u, Kf+f+, Kf+f—, Kf—u, Kf—f+ and Kf—f— respectively. By

linearizing rd, re* and r¢-, those K terms can be computed. First linearization of stress

residual can be evaluated as follows,

L L ord .

drd = o0 di+ — de,IFF + de IFF (D14)
) oft - .

E.IFF E.IFF
ﬁw,-ngTUdetJ R aw,-ngT(TdetJ - 8w,-ngTo-dgtj .
B o dit + ot dfgirr+ — dfgpr (D.15)
afE,IFF afE,IFF
= Kuudii + Ky ped 7 pp + Kup-dfg pp (D.16)

Now, K, K, r+ and K, y- terms can be computed as follows

d
K = w,-ngTa—o:BdetJ (D.17)
u
0 _
Kuf+ = WigpB' ———Bdet] (D.18)
E.IFF
0 _
K = WigpB' ——— Bdet] (D.19)
0 EIFF
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Where (7) and (") terms denote non-local element functions and nodal quantities,

respectively. Linearization of non-local residual can be evaluated as follows,

of;f+fH+f1" off+fHh+ . o(ff+ 1+ .
drét = (f] 6Ji11 fD) % dii + (f] A+f11 fD) X d fo 1rr ++ (fl A_fll fD) deE—JFF
“ Ofg 1rF Tearr
(D.20)
:Kf+u><d’2+Kf+f+deEJFF‘FKf*f‘ deE_,IFF (D.21)
Where, K¢+, and K 7+ ¢+ and K ¢+ ¢~ can be computed as follows,
_ O
Ky = wigpN ———BdetJ (D.22)
OfE 1rF
off af; aofy
Kpefur = A+f1 + Af” - A+fD (D.23)
fgirr  Ofeirr  OSEirr
of; af; af}
Kf+f— = A_fl + A{‘“ — A_fD (D24)
girr  Ofpirr  Ogirr
Similarly,
olff +1,+/p olff +/f;,+ . o(ff +/;,+ .
dré- (f1 afA” fD)dﬂ+ (f1 A+f11 fD)de,1FF++ (f1 A_f11 fD)de,IFF
“ g 1rF O 1rF
(D.25)
= Kpeudii + Kf+f+dfg,IFF + Ky g de_,IFF (D.26)
Where, K-, and K - y+ and K - p- can be computed as follows,
_ O¢
Ky = WigyN———BdetJ (D.27)
g 1rF
of; ofy; af,
Kf-p+ = Af’ + A+f” - A+fD (D.28)
girr  Ofeirr  OTEirr
of; ofy a1,
Ky =—2 Sl o (D.29)

grrr Oeirr 9firr
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