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ABSTRACT 

A MUTATION-BASED APPROACH TO ALLEVIATE THE CLASS 
IMBALANCE PROBLEM IN SOFTWARE DEFECT PREDICTION 

Highly imbalanced training datasets considerably degrade the performance of 

software defect predictors. Software Defect Prediction (SDP) datasets have a general 

problem, which is class imbalance. Therefore, a variety of methods have been developed 

to alleviate Class Imbalance Problem (CIP). However, these classical methods, like data-

sampling, balance datasets without connecting any relation with SDP. Over-sampling 

techniques generate synthetic minor class instances, which generalize a small number of 

minor class instances and result in less diverse instances, whereas under-sampling 

techniques eliminate major class instances, resulting in significant information loss. In 

this study, we present an approach that uses software mutations to balance software 

repositories. Mutation-based Approach (MBA) injects mutants into defect-free instances, 

causing them to transform into defective instances. In this way, MBA balances datasets 

with diverse data produced by mutation operators, and there is no loss on instances as in 

under-sampling.  

For recall scores, almost all rebalancing methods outperformed Baseline in Inter-

release Defect Prediction (IRDP) scenario but only MBA significantly outperformed 

Baseline in Cross-project Defect Prediction (CPDP) scenario. The performance increase 

in recall resulted in the production of more false alarms. We can not generalize that MBA 

outperforms Baseline and the five over-sampling strategies in terms of AUC scores. In 

terms of recall values, the MBA performed better in CPDP than IRDP. 

For both IRDP and CPDP scenarios, there were significant and positive 

correlations between SMC (the change percentage of software measures) and recall, and 

SMC and false alarm but there was no significant correlation between SMC and AUC. 

 



 

 

 v 

ÖZET 

YAZILIM HATA TAHMİNİNDE SINIF DENGESİZLİK PROBLEMİNİ 
AZALTMAK İÇİN MUTASYON TABANLI BİR YAKLAŞIM 

Yüksek düzeyde dengesiz eğitim veri kümeleri, yazılım hatası tahmin edicilerinin 

performansını önemli ölçüde düşürür. Yazılım Hata Tahmini (SDP) veri kümelerinde 

genel olarak bulunan problem sınıf dengesizliğidir. Bu nedenle, Sınıf Dengesizliği 

Probleminin (CIP) getirdiği zorluğu hafifletmek için çeşitli yöntemler geliştirilmiştir. 

Bununla birlikte, veri örnekleme gibi klasik yöntemler, veri kümelerini SDP ile bir 

bağlantı kurmadan dengeler. Aşırı örnekleme teknikleri, az sayıda küçük sınıf örneğini 

genelleştiren ve daha az çeşitli örneklerle sonuçlanan sentetik küçük sınıf örnekleri 

üretirken, yetersiz örnekleme teknikleri, önemli bilgi kaybına neden olan büyük sınıf 

örneklerini ortadan kaldırır. Bu çalışmada, yazılım depolarını dengelemek için yazılım 

mutasyonlarını kullanan bir yaklaşım sunduk. Mutasyon Tabanlı Yaklaşım (MBA), 

mutantları hatasız örneklere enjekte ederek hatalı örneklere dönüşmelerine neden olur. 

Bu şekilde MBA, veri kümelerini mutasyon operatörleri tarafından üretilen çeşitli 

verilerle dengeler ve düşük örneklemede olduğu gibi örneklerde kayıp olmaz.  

Duyarlılık (recall) puanlarına göre, Çapraz Versiyon Hata Tahmini (IRDP) 

senaryosu için hemen hemen tüm yeniden dengeleme yöntemleri Baseline’dan daha iyi 

bir performans gösterirken yalnızca MBA, Çapraz Proje Hata Tahmini (CPDP) 

senaryosunda Baseline’dan daha iyi bir performans gösterdi. Duyarlılık puanlarındaki 

performans artışı daha fazla yanlış alarm üretilmesiyle sonuçlandı. AUC puanlarına göre 

MBA’nın Baseline’den ve beş aşırı örnekleme yönteminden daha iyi performans 

gösterdiğini genelleyemeyiz. Duyarlılık değerleri açısından; MBA, IRDP senaryosunda 

CPDP senaryosundan daha iyi performans gösterdi. 

Hem CPDP senaryosunda hem de IRDP senaryosunda, SMC (yazılım 

ölçülerindeki değişim yüzdesi) ile duyarlılık, ve SMC ile yanlış alarm aralarında anlamlı 

ve pozitif bir korelasyon mevcuttur ama SMC ile AUC arasında anlamlı ve pozitif bir 

korelasyon mevcut değildir. 
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CHAPTER 1. 

INTRODUCTION 

Software quality assurance is the process of observing the software development 

process in order to achieve the expected software quality at the lowest possible cost. 

Formal code inspections, code reviews, software testing, and Software Defect Prediction 

(SDP) may all be used to improve quality (Rathore and Kumar 2019). In software 

engineering, identifying buggy code sections is a crucial task to enable the development 

of better-quality software. Decreasing the number of defects or locating some of the 

defective components before testing and production pipelines may lead to significant 

resource saving. Hence, it would be possible to utilize an organization’s resources, 

increasing its profit. The potential use of SDP models to identify defective software 

modules from the beginning of the software development life cycle has generated a lot of 

interest over the past 20 years (Rathore and Kumar 2019). Previously, studies on SDP 

used a variety of Machine Learning (ML) techniques to predict buggy software modules. 

According to the findings of these studies, the techniques did not perform as well as 

expected, and the suitability of the techniques has been another research topic for SDP 

(Catal 2011). SDP models had an accuracy of between 70% and 85% but produced more 

false alarms (Venkata et al. 2006; Elish and Elish 2008; Guo et al. 2003). One of the main 

problems related to SDP is Class Imbalance Problem (CIP), which causes biased SDP 

models (Menzies et al. 2010). Data sampling techniques are commonly used to solve the 

CIP (Bennin et al. 2018). Generally, data sampling approaches are weak at increasing 

data variety in nature (Chawla et al., 2002; Han Hui and Wang, 2005; H. He et al., 2008). 

SDP models built with less diverse data perform poorly. In this study, we proposed a 

Mutation-based Approach (MBA) to alleviate CIP in SDP by injecting software mutants 

into defect-free modules, which are generally the majority of software prediction datasets. 

As a result, we were able to balance SDP datasets with highly diverse transformed 

defective instances, potentially improving SDP model performance. 
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1.1. Software Defect Prediction 

SDP aims to predict software blocks with defects. SDP process is modeled in 

Figure 1. Firstly, software attributes are required for the prediction process in order to 

create an ML model or do statistical analysis. These attributes are extracted from a 

software repository. Software attributes are features such as lines of code, the number of 

people who contributed to the project, images of code blocks, etc. Software attributes are 

used to build prediction models. We can identify whether any new software blocks are 

defective using the prediction model.  

 

 

 

Figure 1. SDP Process (Source: Giray et al., 2023) 
 

 

As a software attribute, software measures are commonly used features in SDP. 

Software measures are numerical values used to assess the quality of a code partition 

quantitatively. In the literature, software measures are studied in two groups: product 

measures and process measures. 

Product measures are attributes of a software repository that are extracted from 

source codes. These attributes identify a snapshot of the project. Source code is inspected 

from the perspective of some features like lines of code, complexity, functional 

aggregation, inheritance, etc. (Subramanyam and Krishnan 2003; Nagappan, Ball, and 

Zeller 2006; Gyimothy, Ferenc, and Siket 2005). Product measures are different from 

process measures in that they do not include information about the history of 

development. 

Process measures are attributes extracted from historical information about 

projects. Process measures can be derived from a source code management system. For 

instance, the number of code additions and deletions, the number of different developers, 

the number of modified lines, etc. (Nagappan and Ball 2005; Moser, Pedrycz, and Succi 

2008; Hassan 2009). 
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SDP is divided into three types of scenarios: within-release (intra-release) defect 

prediction, inter-release (cross-release) defect prediction, and cross-project SDP (Rathore 

and Kumar 2019). 

Within-release defect prediction (WRDP) refers to a scenario of prediction in 

which training and testing datasets belong to a specific version of a project. The same 

release is used for model building and performance evaluation. 

 

 

 

Figure 2. WRDP process 
 

 

Inter-release defect prediction (IRDP) refers to a scenario of prediction in 

which the training dataset is chosen from previous releases of a project and the testing 

dataset is taken from a version of the project released after the one used for the training 

dataset. 
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Figure 3. IRDP process 
 

 

Cross-project defect prediction (CPDP) refers to a scenario of prediction in 

which the training dataset is created from different software projects and the testing data 

is created from different projects used for the training dataset. 
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Figure 4. CPDP process 
 

 

As shown in Figure 2, Figure 3, and Figure 4, for all scenarios, the SDP model is 

the most important component of the SDP process because all efforts are made to make 

better predictions, and choosing the right prediction technique is critical to building a 

better SDP model. Prediction techniques can be categorized as Supervised, Semi-

supervised, and Unsupervised. Supervised techniques require a dataset with all instances 

labeled. The model draws boundaries or defines prediction methodologies with respect to 

the labels of training instances, and any new testing instances are assigned the label of 

the training instances to which they are most similar. Supervised techniques are 

investigated under two groups, which are classification and regression. Classification is 

the term used to describe a procedure whose output is a category. Regression is the name 

of the procedure when the result is a continuous variable. For the SDP, if a technique 

answers whether a software block is defective or not, it is classification; if it responds to 

how many defects are in a software block, it is regression. Unsupervised techniques do 

not need a labeled dataset. Unsupervised techniques group dataset instances with respect 

to the features. Semi-supervised techniques combine a small set of labeled instances with 
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many unlabeled instances for model building. A model is first built using a small, labeled 

set, and then unlabeled data is labeled using this model. All instances are used to build a 

new model that produces better outcomes. In most studies, researchers prefer to use 

supervised techniques for SDP because supervised techniques perform better than other 

techniques. Many prediction techniques have the fundamental problem of assuming that 

all classes in a dataset are equally balanced (Weiss and Provost 2001; Yoon and Kwek 

2007). Therefore, prediction models that are trained with imbalanced datasets usually 

produce inaccurate results (Provost 2008). As a result, CIP is widely acknowledged as 

one of the main reasons why SDP algorithms underperform (Hall et al. 2012; Arisholm, 

Briand, and Johannessen 2010).  

1.2. Class Imbalance Problem 

CIP indicates an unbalanced distribution of a dataset. Major classes refer to those 

that have more instances than other classes, and minor classes refer to those that have 

fewer instances than other classes. In SDP, most of the dataset has CIP, and generally, 

the major class is defect-free whereas the minor class is not (Sayyad Shirabad and 

Menzies 2005). The prediction techniques commonly fail to identify the minority 

defective components when predicting the occurrence of software defects if the major 

class is non-defective. ML models are biased when they are built with an imbalanced 

dataset. Menzies et al. highlighted that the performances of prediction techniques can be 

enhanced by using data sampling techniques, as software defect datasets are extremely 

prone to the CIP (Menzies et al. 2007). In the literature, many methods have been studied 

to solve CIP. These approaches are evaluated in the subsections on over-sampling and 

under-sampling, which are covered in Section 1.3.  

1.3. Sampling Approaches for Class Imbalance Problem 

Data sampling is the process of producing or reducing some of the instances of a 

class in a dataset. As shown in Figure 5, there are two types of sampling: under-sampling 

and over-sampling. Under-sampling methods eliminate samples, while over-sampling 

methods add samples in the reverse way of under-sampling.  
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Figure 5. Differences between under-sampling and over-sampling (Source: Robles 
Velasco et al., 2021) 

 

 

Sampling is a very common method to solve CIP in SDP (Bennin et al. 2018). 

There are many sampling approaches. Each technique has a different feature and serves 

a different purpose. These techniques are used to organize the data distribution. The 

organization of data distribution is important, but so is the quality of the instances. In the 

following sub-sections, we discussed some of the most commonly used sampling 

methods in SDP, which are stated in Table 1. 

 

 

Table 1. Sampling techniques for SDP 

Under-sampling Over-sampling 

Near-Miss (NM) Synthetic Over-sampling Technique 

(SMOTE) 

Instance Hardness Threshold (IHT) Borderline-SMOTE 

Cluster Centroids (CC) Support Vector Machines (SVM) 

SMOTE 

Random Under-sampling (RUS) SMOTE Nominal 

 Random Over-sampling (ROS) 



 

 8 

1.3.1. Under-Sampling 

Under-sampling approaches delete instances belonging to major classes from the 

dataset until the class distribution is fixed to alleviate CIP. Under-sampling causes 

reduced information. In the literature, many under-sampling techniques have been 

proposed. Random Under-sampling technique selects a major sample and deletes it until 

the class distribution is fixed. ROS can not manage which data sample is deleted. It's 

possible that a more representative data sample is removed, and crucial data is lost in the 

dataset. Under-sampling methods differ in terms of the selection of instances to be 

deleted. Preserving valuable data for learning is very important. Zhang and Mani present 

Near Miss Under-sampling algorithm that uses K-nearest neighbors’ algorithm to select 

major instances to delete with respect to their distance to minor class instances (J. Zhang 

and Mani 2003). Smith, Martinez, and Giraud-Carrier provide an algorithm called 

Instance Hardness Threshold in which a classifier is trained on the original dataset, and 

the major class instances with low probabilities are deleted (Smith, Martinez, and Giraud-

Carrier 2014). Cluster Centroids algorithm was proposed by Yen and Lee as a method for 

under-sampling the majority class by replacing a cluster of majority instances with the 

cluster centroid of a K-Means algorithm (Yen and Lee 2006).  

1.3.2. Over-Sampling 

Over-sampling creates new instances that belong to minor classes in the dataset 

until the class distribution is fixed to balance the dataset. Generating new instances from 

a small number of samples causes overfitting which may result in poorer prediction 

performance. In the literature, many over-sampling techniques have been proposed. Over-

sampling methods differ in terms of instance generation logic. Strengthening class 

boundaries, reducing over-fitting, and improving discriminating were all subjects that 

were taken into consideration to improve the effectiveness of over sampling strategies 

(Johnson and Khoshgoftaar 2019). Random Over-sampling (ROS) technique randomly 

selects a minor sample and clones it until the class distribution is fixed. This approach 

creates samples that are identical to one another, and the ML model starts to overfit 

specific samples (Van Hulse, Khoshgoftaar, and Napolitano 2007). Synthetic Over-
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sampling Technique (SMOTE) was introduced by Chawla et al. (Bowyer et al. 2011). 

SMOTE generates new minor class instances by interpolating minor instances and their 

nearest minor class neighbors. SMOTE method has several variants, such as Borderline-

SMOTE (Han Hui and Wang, 2005), which applies SMOTE with borderline samples; 

Support Vector Machines (SVM) SMOTE (Nguyen, Cooper, and Kamei 2011), which 

applies SMOTE with samples detected with SVM; and SMOTE Nominal (Bowyer et al. 

2011), which expects that the data being resampled only contains categorical features. 

1.4. Problem Statement 

To solve the CIP in SDP, several sampling methods have been used. We discussed 

some of the sampling methods in section 1.3. The main difficulty with the sampling 

strategies is creating a balanced dataset with the proper instances to train better defect 

predictors. Software measures are accepted by sampling methods as a collection of 

numbers with no explanation of what these numbers mean. These methods balance 

datasets by using these numbers without connecting any relation with SDP. Even if the 

numbers come from a different domain, the sampling methods produce the same results. 

This situation can be interpreted as sampling methods being general-purpose methods 

that can be applied to any problem. Lack of domain knowledge, on the other hand, reduces 

the performance of ML models. Because of that, rather than using over-sampling 

techniques to alleviate CIP, we injected software mutants into defect-free code instances. 

Therefore, instead of over-sampling for defective classes by using these techniques, we 

try to create a domain-specific rebalancing method by adding real faults to the dataset. 

We used software mutation tools to generate real faults. As described in chapter 3, 

software mutation tools are typically used to improve software testing suites, but we used 

them to solve CIP in SDP. Since MBA is specific to the SDP domain, we predict that it 

can improve the performance of ML models. MBA transforms defect-free instances into 

defective instances by using software mutation operators different from sampling 

methods, as shown in Figure 9, and CIP is solved by injecting mutants into the defect-

free instances as detailed in chapter 3. In order to observe the impact of MBA on software 

measures, we also calculated the change percentages of software measures (SMC) for 

datasets, and we detailed SMC in section 5.3.  
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1.5. Objective and Research Questions 

The primary objective of this study is to propose an effective approach to alleviate 

CIP in SDP. 

The research questions of this thesis work are:  

RQ1: Does the proposed MBA improve performance over existing over-sampling 

approaches and Baseline on IRDP? 

RQ2: Does the proposed MBA improve performance over existing over-sampling 

approaches and Baseline on CPDP? 

RQ3: How does the change percentage of software measures (SMC) affect 

performance of MBA on IRDP? 

RQ4: How does the change percentage of software measures (SMC) affect 

performance of MBA on CPDP? 

1.6. Research Approach 

The methodological approach consists of three stages: 

• Literature review, which includes literature surveys about SDP and CIP in 

SDP, such as SDP scenarios, used techniques to build models, used software 

measures, suitable performance measures for SDP, and applications. 

• Development of rebalancing techniques, which includes the commonly used 

five over-sampling techniques in the literature, MBA, and Baseline. 

• Comparison of rebalancing techniques, which includes three experimental 

designs (detailed in section 4.6), and statistical analysis of performance 

measures (detailed in section 4.7). 

A graphical representation of the methodological approach is shown in Figure 6. 
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Figure 6. Methodological approach 
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1.7. Overview 

The thesis consists of 6 main chapters in addition to appendices, Organization of 

the chapters follows as: 

• Chapter 1 consists of the introduction, which includes background 

information, the motivation of the study, and a methodological approach that 

explains the steps on which this thesis was founded. 

• Chapter 2 provides a literature review about SDP. Because class imbalance is 

a widespread issue with SDP datasets, the research's primary aim has shifted 

from improving SDP models to balancing the SDP datasets. 

• Chapter 3 presents MBA and a mutation tool (Major), as well as the operations 

of the mutation tool and how a dataset is balanced with MBA. 

• Chapter 4 focuses on the experimental design of our study, which includes 

dataset preparation, software measure calculation, data preprocessing, 

hyperparameter tuning of ML methods, performance measures, and 

performance comparison of rebalancing techniques.  

• Chapter 5 covered the performance evaluation results of rebalancing 

techniques, the stability of MBA, and threats to validity. 

• In Chapter 6, contributions and the future work of our study are given. 
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CHAPTER 2. 

LITERATURE REVIEW 

Munson and Khoshgoftaar suggested utilizing prediction models to help in 

finding program defects after noticing using simple discriminant analysis that there is a 

significant helpful association between software defects and software complexity 

measures during development (Munson and Khoshgoftaar 1992). Many conventional 

classification techniques, such as tree-based techniques (Menzies, Greenwald, and Frank 

2007; Guo et al. 2004; Song et al. 2011), analogy-based strategies (Taghi M. 

Khoshgoftaar and Seliya 2003; Emam et al. 2001), neural networks (Quah and Thwin 

2003; T. M. Khoshgoftaar et al. 1997), and Bayes methods (Bouguila, Wang, and Ben 

Hamza 2008; Turhan and Bener 2009), have been used in SDP. Random Forest (RF) has 

been suggested in some of the studies because it is simple, quick to train, and more 

resilient (Monden et al. 2013; Lessmann et al. 2008).  

The performance of Naïve Bayes (NB) with a log-filtering preprocessor was 

empirically demonstrated to be better compared to that of tree-based learning methods by 

Menzies et al. (Menzies, Greenwald, et al., 2007). They also asserted that the choice of 

learning method is significantly more crucial than the selection of the data subset to be 

used for learning. Nevertheless, with a large-scale empirical study, Lessmann et al. 

(Lessmann et al. 2008) came to an inconsistent conclusion, suggesting that the 

significance of a particular learning technique may be less than the dataset used for 

training, as Menzies et al. (Menzies, Greenwald, and Frank 2007) previously stated, and 

that there were no significant differences between 17 classification techniques. Moreover, 

Song et al. (Song et al. 2011) proposed a more comprehensive and trustworthy study for 

SDP in response to Menzies et al.’s (Menzies, Greenwald, and Frank 2007) argument that 

the study may be biased. Many researchers stated the success of ML techniques such as 

SVM (Kumar et al. 2018), DT (Y. Zhang et al. 2018), and neural networks (Miholca, 

Czibula, and Czibula 2018) in SDP (Özakıncı and Tarhan 2018; Goyal and Bhatia 2020; 

Erturk and Sezer 2015; Rathore and Kumar 2019). The primary objective of previous 

studies has been to improve the performance of SDP. These studies have considered a 

variety of methodologies, such as model enhancement, making use of powerful feature 
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selection, proposing preprocessing methods, and suggesting different measures. 

However, all these studies resulted in suboptimal solutions. 

The success of SDP models worsens when the dataset is imbalanced (Haixiang et 

al. 2017; Galar et al. 2012; L. Chen et al. 2018). Data resampling techniques have been 

used to alleviate CIP. There are alternatives to resampling, such as setting weights to the 

cost of the classes to reduce misclassification costs (Sun et al. 2007; Pazzani et al. 1994; 

Domingos 1999), and adoption of ensemble methods (Wong, Leung, and Ling 2013; 

Laradji, Alshayeb, and Ghouti 2015). Resampling is becoming more and more popular 

because it is simple to separate from the prediction model and easy to see the impacts on 

prediction performance. Researchers are focused on improving the selection of instances 

to be removed (Tsai et al. 2019; Vuttipittayamongkol and Elyan 2020; Rao and Reddy 

2020; Goyal 2022) and to be used to generate new instances (Qu et al., 2022; Rekha G. 

and Shailaja, 2022) for under-sampling and over-sampling, respectively. Resampling 

outperforms other methods, considering recent studies (Bennin et al. 2018). We 

concentrated on resampling methods, and we provided a review of various resampling 

studies in section 1.3. We found MBA is more comparable with over-sampling methods 

because MBA increases defective instances as in over-sampling methods. According to 

several studies, over-sampling is preferred to under-sampling (Shanab et al. 2012; García, 

Sánchez, and Mollineda 2012; Japkowicz and Stephen 2002). Under-sampling eliminates 

some of the instances and causes information loss, so the SDP model does not include the 

necessary instances to make better predictions. Thus, we considered only over-sampling 

methods in our study. 
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CHAPTER 3. 

PROPOSED APPROACH 

In this chapter, we have presented the proposed approach, which is a mutation-

based solution for CIP in SDP. We explained how software mutation, which is generally 

used for software mutation testing, is used for CIP in SDP. 

Software mutation is created by injecting artificial faults. These faults, or mutants, 

are used to evaluate testing methodologies such as fault-finding methods, input value 

generation models, and oracle solutions (Just, Schweiggert, and Kapfhammer 2011). In 

this study, we used software mutants to balance imbalanced datasets in SDP. As shown 

in Figure 7, we applied software mutants to some of the parts of the defect-free code 

blocks. In this way, the number of defective instances increased while the number of 

defect-free instances decreased.  

 

 

 

Figure 7. MBA for CIP 
 

 

Mutants are produced by a tool or framework using mutation operators, which 

define the type of mutation, such as changing arithmetic or logical operators, modifying 

conditional operators, or deleting statements (Just et al. 2014). The performance of 
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mutation is commonly studied and compared with hand-seeded defects and real defects 

(Andrews, Briand, and Labiche 2005; Just et al. 2014; Namin and Kakarla 2011). The 

selection of mutation operators is very critical because increasing the similarity of 

mutants with real-life bugs supports the validity of the testing system.  

3.1. Choice of Mutation Tool 

 Numerous tools and frameworks have been proposed for mutation testing, such 

as Jumble, MuJava, Javalanche, and Major (Just, Schweiggert, and Kapfhammer 2011). 

Mutation tools differ with respect to their execution time, the number of available 

mutation operators, flexibility, and the degree of automation (Just, Schweiggert, and 

Kapfhammer 2011). In the literature, the following set of mutation operators are 

recommended: constant replacement, operator replacement, branch condition 

modification, and statement deletion (Jia and Harman 2011; Just, Kapfhammer, and 

Schweiggert 2012; Siami Namin, Andrews, and Murdoch 2008; Offutt et al. 1996). We 

decided to use Major as a mutation tool that covers all suggested mutation operators. 

Major is integrated into the compiler and does not require any other framework, so it is 

easy to use. Also, Major generates mutated source codes. We can manage the number of 

mutations and mutation variety with the source codes of mutations. We used the following 

mutation operator set listed in Table 2, which is generated by Major.  
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Table 2. Mutation operators implemented in Major 

Mutation operator Example 

AOR (Arithmetic Operator Replacement) 𝑎 + 𝑏 → 𝑎 − 𝑏 

LOR (Logical Operator Replacement) 𝑎ˆ𝑏 → 𝑎|𝑏 

COR (Conditional Operator 

Replacement) 

𝑎||𝑏 → 𝑎&&𝑏 

SOR (Shift Operator Replacement) 𝑎 ≫ 𝑏 → 𝑎 ≪ 𝑏 

ORU (Operator Replacement Unary) −𝑎 → ~𝑎 

EVR (Expression Value Replacement) 

Replaces an expression with a default 

value. 

𝑟𝑒𝑡𝑢𝑟𝑛	𝑎	 → 𝑟𝑒𝑡𝑢𝑟𝑛	0 

𝑖𝑛𝑡	𝑎 = 𝑏 → 𝑎 = 0 

LVR (Literal Value Replacement) 

Replaces a literal value with a default 

value: 

- A numerical literal is replaced 

with a positive number, a negative 

number, and zero. 

- A boolean literal is replaced with 

its logical complement. 

- A String literal is replaced with 

the empty String. 

0 → 1 

1 → −1 

1 → 0 

𝑡𝑟𝑢𝑒 → 𝑓𝑎𝑙𝑠𝑒 

𝑓𝑎𝑙𝑠𝑒 → 𝑡𝑟𝑢𝑒 

"𝐻𝑒𝑙𝑙𝑜" → "" 

STD (Statement Deletion) 

Deletes a single statement: 

- return statement 

- break statement 

- continue statement 

- method call 

- assignment 

- pre/post increment 

- pre/post decrement 

𝑟𝑒𝑡𝑢𝑟𝑛	𝑎 →< 𝑛𝑜	𝑜𝑝 > 

𝑏𝑟𝑒𝑎𝑘 →< 𝑛𝑜	𝑜𝑝 > 

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 →< 𝑛𝑜	𝑜𝑝 > 

𝑓𝑜𝑜(𝑎, 𝑏) →< 𝑛𝑜	𝑜𝑝 > 

𝑎 = 𝑏 →< 𝑛𝑜	𝑜𝑝 > 

++ 𝑎 →< 𝑛𝑜	𝑜𝑝 > 

−− 𝑎 →< 𝑛𝑜	𝑜𝑝 > 
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3.2. Balancing Software Repository with Mutants 

We used Major mutation testing tool to increase the number of defects. Major lists 

multiple mutation operators for a statement. The number of mutants in a file is dependent 

on the number and type of mutants that Major can apply to the file. We applied mutations 

starting from the top of the listed mutation operators. We excluded some of the mutation 

operators for some of the files because some of the mutants caused compilation failures. 

A failed compilation is not suitable for our study because we produce necessary attributes 

from compiled object codes. Just et al. removed some of the tests that cause compilation 

errors because they could not include failed cases (Just et al., 2014). 

Since SDP is performed at the file level in our study, every prediction can be used 

to determine whether a certain file is defective or not. We transformed some of the defect-

free files into defective files by injecting mutants to balance the software repository. We 

started to balancing process presented in Figure 8 by calculating all possible mutants for 

every file in the repository. And then, we excluded some of the mutants that cause 

compilation errors. We generated new source code files with mutants for some of the 

defect-free files. Regarding the order of Major's mutant insertion and the number of files 

required to balance the repository, we chose the defect-free files. As a result, the 

balancing process is completed. The SDP process in MBA differs from that depicted in 

Figure 1. The task of balancing the dataset was moved ahead of attribute extraction 

because mutants were directly applied to source codes.  

 

 

 

Figure 8. Balancing process with mutants 
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CHAPTER 4. 

EXPERIMENTAL DESIGN 

The experiment setups were shaped by the research questions. We need to observe 

the performance difference between Baseline, existing over-sampling approaches, and 

MBA. Keeping the original dataset for Baseline, data-sampling for over-sampling 

methods, and mutant injection for MBA are the three different situations for our 

experimental setup. As we stated in section 3.2, the mutant injection process must be done 

before software measures calculations. For over-sampling approaches, data-sampling is 

done after the data preprocessing stage. The difference between MBA and over-sampling 

approaches resulted in different experiment setups, and Baseline experiment setup has no 

step for balancing, so three experiment setups are proposed in our study. We carried out 

our research for two separate SDP scenarios, IRDP and CPDP. Because the nature of the 

training and testing datasets differentiates the IRDP scenario from the CPDP scenario, 

we performed three distinct experimental designs twice. 

There are six main parts of the experimental setups, which are software repository 

preparation, software measures calculation, data preprocessing, ML hyperparameter 

tuning, performance evaluation of the ML models, and performance comparison, as 

shown in Figure 9.  

 

 

 

Figure 9. Experimentation process 
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Below, we described the stages of experimental design in detail. We discussed 

our actions to increase the validity of our study. We chose commonly used software 

repositories, over-sampling, data preprocessing, and ML techniques. We used statistical 

tests to determine the statistical significance of the performance comparison.  

4.1. Dataset 

The software engineering research community frequently uses a collection of 

datasets to build models for SDP (Sayyad Shirabad and Menzies 2005). Also, as we 

pointed out in section 1.1, supervised learning needs a training set to build an ML model. 

Several datasets, some of which are listed in Table 3, are publicly available (Ferenc et al. 

2018). We defined the following criteria to select our training and testing datasets:  

1. The source code must be publicly available because our solution includes 

software mutation, and we must be able to compile mutated source codes. 

2. We need to know which part of the code is defective. 

3. Defect labels must be available and associated with the relevant code 

elements. 

 

 

Table 3. Public datasets for SDP 

Dataset Source 

PROMISE (Sayyad Shirabad and Menzies 2005) 

Eclipse Bug Dataset (Zimmermann, Premraj, and Zeller 2007) 

Bug Prediction Dataset (D’Ambros, Lanza, and Robbes 2010) 

Bugcatchers Bug Dataset (Hall et al. 2014) 

GitHub Bug Dataset (Tóth Zoltán and Gyimesi, 2016) 

 

 

PROMISE is one of the largest datasets for SDP. One of the main datasets in the 

PROMISE was given by Jurezcko and Madeyski (Jureczko and Madeyski 2010). There 

are lots of popular projects in the dataset, such as Ant, Camel, Forrest, Ivy, JEdit, Log4j, 

Lucene, PBeans, Synapse, Velocity, Xalan and Xerces. The advantage of choosing well-
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known projects is that it is possible to find lots of available resources which are highly 

needed while compiling and deciding the dependencies of the projects. It is the main 

reason why we chose PROMISE to increase the validity of our study. The modules of 

these projects, which were developed in Java, were subjected to 20 static software 

measures. Defective modules are labeled with the total number of defects contained in 

the module, while non-defective modules are labeled with zero. Source codes for datasets 

are publicly available.  

We had to be sure that the source codes that were used to create PROMISE and 

the publicly available versions that we used to apply for MBA were the same, but Ferenc 

et al. stated that some of the modules in the source code do not match the published 

modules by Jureczko (Ferenc et al. 2018). Therefore, we could not include all the versions 

of projects. We decided to include or exclude projects with respect to the reasons in Table 

4. 

 

 

Table 4. Selected projects and versions in our dataset 

Project Included Versions Explanation 

Ant 1.3, 1.4, 1.5, 1.6, 1.7 All versions included. 

Camel - Suitable dependencies not found. 

Ckjm - In Jureczko's dataset, there is a file that 

does not exist in the source code (Ferenc 

et al. 2018). 

Forrest - Source code contains two distinct filees 

that appear twice (Ferenc et al. 2018). 

Ivy - Suitable dependencies not found. 

JEdit 3.2.1, 4.0, 4.1, 4.2, 4.3 All versions included. 

Log4j - There is a contribs directory containing 

the source code of various contributors. It 

is unknown which files Jureczko has 

included (Ferenc et al. 2018). 

Lucene 2.0, 2.2, 2.4 All versions included. 

  (Cont. on next page) 



 

 22 

Table 4. (cont.)   

PBeans 1.0, 2.0 All versions included. 

Poi 1.5, 2.0RC1, 2.5.1, 3.0 All versions included. 

Synapse 1.0, 1.1, 1.2 All versions included. 

Velocity 1.4, 1.5, 1.6.1 All versions included. 

Xalan 2.6, 2.7 2.4 and 2.5 are not included because 

suitable dependencies not found. 

Xerces 1.2, 1.3 1.4 is not included because the number of 

publicly available source code files does 

not match up to the number shared by 

Jureczko (Ferenc et al. 2018). 

 

 

As we stated in section 1.1, training datasets play an important role in an SDP 

scenario. WRDP is not possible for MBA because we inject mutations into the software 

repository before calculating the software measures, and even if we choose testing 

samples from non-mutated samples, the software measures are affected by mutation 

because correlated files may have mutations. As a result, we can not evaluate MBA 

applied models without a proper testing dataset. There are two scenarios available: IRDP 

and CPDP.  

For IRDP, we trained our models on the project versions that have at least one 

newer version for testing, so the latest versions available are not training dataset 

candidates. We only considered increasing the defect ratio because of the nature of the 

MBA and over-sampling methods. We listed the defect ratios of the projects in Table 5. 

Because some of the projects had a defect ratio of more than 50%, we were unable to use 

all of the available software repositories for training datasets. For testing datasets, there 

is no defect ratio restriction.  
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Table 5. Defect ratios of the projects 

Project Version Defect Ratio (%) 

Ant 1.3 15.87 

Ant 1.4 22.47 

Ant 1.5 10.92 

Ant 1.6 26.14 

Ant 1.7 22.28 

JEdit 3.2.1 33.09 

JEdit 4.0 24.51 

JEdit 4.1 25.32 

JEdit 4.2 13.08 

JEdit 4.3 2.24 

Lucene 2.0 46.67 

Lucene 2.2 58.3 

Lucene 2.4 59.71 

PBeans 1.0 76.92 

PBeans 2.0 19.61 

Poi 1.5 59.49 

Poi 2.0RC1 11.78 

Poi 2.5.1 64.42 

Poi 3.0 63.57 

Synapse 1.0 10.19 

Synapse 1.1 27.03 

Synapse 1.2 33.59 

Velocity 1.4 75.0 

Velocity 1.5 66.36 

Velocity 1.6.1 34.06 

Xalan 2.6 46.44 

Xalan 2.7 98.79 

Xerces 1.2 16.14 

Xerces 1.3 15.23 
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While adding mutants to projects, some of the files do not contain any elements 

that the Major mutation operator can change. We could only increase the defect ratio of 

Synapse 1.0 from 10.19% to 26.11% because the mutation operators we used did not 

allow us to increase the number of mutated files. We excluded Synapse 1.0 because its 

mutated defect ratio was significantly lower than 50%. 

For CPDP, we used all project versions as a testing dataset. We trained our models 

on all versions of the projects that remained in the testing dataset, ensuring that no 

versions of the same project were included in both the testing and training datasets. We 

included every project stated in Table 5, although we did not include some of the dataset 

versions with defect ratios greater than 50% in the training dataset. 

Finally, as shown in Table 6, we could use 27 dataset pairs for our IRDP 

experiments, which included 22 versions of seven PROMISE projects. We could use 29 

dataset pairs for our CPDP experiments, which included 29 versions of nine PROMISE 

projects. 

 

 

Table 6. Training and testing dataset pairs used in experiments 

Training → Testing Datasets for IRDP 

Scenario 

Training → Testing Datasets for CRDP 

Scenario 

Ant 1.3 → 1.4, 1.5, 1.6, 1.7 

Ant 1.4 → 1.5, 1.6, 1.7 

Ant 1.5 → 1.6, 1.7 

Ant 1.6 → 1.7 

JEdit 3.2.1, 4.0, 4.1, 4.2, 4.3 + Lucene 2.0 

+ pBeans 2.0 + Poi 2.0RC1 + Synapse 1.1, 

1.2 + Velocity 1.6.1 + Xalan 2.6 + Xerces 

1.2, 1.3 → Ant 1.3, 1.4, 1.5, 1.6, 1.7 

JEdit 3.2.1 → 4.0, 4.1, 4.2, 4.3 

JEdit 4.0 → 4.1, 4.2, 4.3 

JEdit 4.1 → 4.2, 4.3 

JEdit 4.2 → 4.3 

Ant 1.3, 1.4, 1.5, 1.6, 1.7 + Lucene 2.0 + 

pBeans 2.0 + Poi 2.0RC1 + Synapse 1.1, 

1.2 + Velocity 1.6.1 + Xalan 2.6 + Xerces 

1.2, 1.3 → JEdit 3.2.1, 4.0, 4.1, 4.2, 4.3 

Lucene 2.0 → 2.2, 2.4 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + pBeans 2.0 + Poi 2.0RC1 + 

Synapse 1.1, 1.2 + Velocity 1.6.1 + Xalan 

2.6 + Xerces 1.2, 1.3 → Lucene 2.0, 2.2, 

2.4 

 (Cont. on next page) 
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Table 6. (cont.)  

 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + Lucene 2.0 + Poi 2.0RC1 + 

Synapse 1.1, 1.2 + Velocity 1.6.1 + Xalan 

2.6 + Xerces 1.2, 1.3 → pBeans 1.0, 2.0 

Poi 2.0RC1 → 2.5.1, 3.0 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 + 

Synapse 1.1, 1.2 + Velocity 1.6.1 + Xalan 

2.6 + Xerces 1.2, 1.3 → Poi 1.5, 2.0RC1, 

2.5.1, 3.0 

Synapse 1.1 → 1.2 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 + 

Poi 2.0RC1 + Velocity 1.6.1 + Xalan 2.6 + 

Xerces 1.2, 1.3 → Synapse 1.0, 1.1, 1.2 

 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 + 

Poi 2.0RC1 + Synapse 1.1, 1.2 + Xalan 2.6 

+ Xerces 1.2, 1.3 → Velocity 1.4, 1.5, 1.6.1 

Xalan 2.6 → 2.7 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 + 

Poi 2.0RC1 + Synapse 1.1, 1.2 + Velocity 

1.6.1 + Xerces 1.2, 1.3 → Xalan 2.6, 2.7 

Xerces 1.2 → 1.3 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0, 

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 + 

Poi 2.0RC1 + Synapse 1.1, 1.2 + Xalan 2.6 

+ Velocity 1.6.1 → Xerces 1.2, 1.3 

 

 

We went over the first stage of our experimentation. The software measures 

calculation process was introduced in section 4.2, which follows the software repository 

selection process. In contrast to MBA, the mutant injection process is carried out before 

software measures calculations, as detailed in section 3.2.  
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4.2. Software Measures Calculation 

As we mentioned in section 1.1, we need to represent source code in a suitable 

format to feed an SDP model. Several researchers used software measures to predict 

defect-prone code as an input to SDP models as attributes. The majority of the researchers 

do not concentrate on the measure calculation process. They used calculated measures 

from previous studies. Jureczko shared a software measures dataset that is mostly used 

by researchers studying SDP (Jureczko and Spinellis 2010). Jureczko used an extended 

version of Chidamber and Kemerer Java Metrics (ckjm-extended) for the calculation of 

measures (Spinellis 2005). Ckjm-extended is a tool that calculates 20 size and structure 

software measures by processing the object code of compiled Java files (Jureczko and 

Spinellis 2010). The program calculates measures for each files listed in Table 7. 

 

 

Table 7. Software measures definitions (Source: Jureczko & Spinellis, 2010) 

Measure  Definition Source 

Weighted 

methods 

per class 

(WMC)  

The value of the WMC is equal to the number of 

methods in the class (assuming unity weights for all 

methods).  

(Chidamber 

and 

Kemerer 

1994) 

Depth of 

Inherit- 

ance Tree 

(DIT)  

The DIT measure provides for each class a measure of 

the inheritance levels from the object hierarchy top.  

(Chidamber 

and 

Kemerer 

1994) 

Number of 

Children 

(NOC)  

The NOC measure simply measures the number of 

immediate descendants of the class.  

(Chidamber 

and 

Kemerer 

1994) 

(Cont. on next page) 
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Table 7. (cont.) 

Coupling 

between 

object 

classes 

(CBO)  

The CBO measure represents the number of classes 

coupled to a given class (efferent couplings and afferent 

couplings). These couplings can occur through method 

calls, field accesses, inheritance, method arguments, 

return types, and exceptions.  

(Chidamber 

and 

Kemerer 

1994) 

Response 

for a Class 

(RFC)  

 

The RFC measures the number of different methods that 

can be executed when an object of that class receives a 

message. Ideally, we would want to find for each method 

of the class, the methods that class will call, and repeat 

this for each called method, calculating what is called the 

transitive closure of the method call graph. This process 

can however be both expensive and quite inaccurate. 

Ckjm calculates a rough approximation to the response 

set by simply inspecting method calls within the class 

method bodies. The value of RFC is the sum of number 

of methods called within the class method bodies and the 

number of class methods. This simplification was also 

used in the Chidamber and Kemerer's description of the 

measure (Chidamber and Kemerer 1994).  

(Chidamber 

and 

Kemerer 

1994) 

Lack of 

cohesion in 

methods 

(LCOM)  

 

The LCOM measure counts the sets of methods in a class 

that are not related through the sharing of some of the 

class fields. The original definition of this measure 

(which is the one used in ckjm) considers all pairs of 

class methods. In some of these pairs both methods 

access at least one common field of the class, while in 

other pairs the two methods do not share any common 

field accesses. The lack of cohesion in methods is then 

calculated by subtracting from the number of method 

pairs that do not share a field access the number of 

method pairs that do.  

(Chidamber 

and 

Kemerer 

1994) 

(Cont. on next page) 
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Table 7. (cont.) 

Lack of 

cohesion in 

methods 

(LCOM3)  

 

𝐿𝐶𝑂𝑀3 =
(1𝑎 ∑ 𝜇(𝐴!"

!#$ )) − 𝑚
1 −𝑚 	

𝑚: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑡ℎ𝑜𝑑𝑠	𝑖𝑛	𝑎	𝑐𝑙𝑎𝑠𝑠	

𝑎: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠	𝑖𝑛	𝑎	𝑐𝑙𝑎𝑠𝑠	

𝜇P𝐴!Q: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑡ℎ𝑜𝑑𝑠	𝑡ℎ𝑎𝑡	𝑎𝑐𝑐𝑒𝑠𝑠	𝑡ℎ𝑒	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	𝐴 

(Henderson

-Sellers 

1995) 

Afferent 

couplings 

(Ca)  

The Ca measure represents the number of classes that 

depend upon the measured class.  

(Martin 

1994) 

Efferent 

couplings 

(Ce)  

The Ce measure represents the number of classes that the 

measured class is depended upon.  

(Martin 

1994) 

Number of 

Public 

Methods 

(NPM)  

The NPM measure simply counts all the methods in a 

class that are declared as public. The measure is known 

also as Class Interface Size (CIS).  

(Bansiya 

and Davis 

2002) 

Data 

Access 

Metric 

(DAM)  

 

This measure is the ratio of the number of private 

(protected) attributes to the total number of attributes 

declared in the class.  

(Bansiya 

and Davis 

2002) 

Measure of 

Aggregatio

n (MOA)  

 

The MAO measures the extent of the part-whole 

relationship, realized by using attributes. The measure is 

a count of the number of class fields whose types are 

user defined classes.  

(Bansiya 

and Davis 

2002) 

Measure of 

Functional 

Abstraction 

(MFA)  

This measure is the ratio of the number of methods 

inherited by a class to the total number of methods 

accessible by the member methods of the class. The 

constructors and the java.lang.Object (as parent) are 

ignored.  

(Bansiya 

and Davis 

2002) 

(Cont. on next page) 
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Table 7. (cont.) 

Cohesion 

Among 

Methods of 

Class 

(CAM)  

 

This measure computes the relatedness among methods 

of a class based upon the parameter list of the methods. 

The measure is computed using the summation of 

number of different types of method parameters in every 

method di- vided by a multiplication of number of 

different method parameter types in whole class and 

number of methods.  

(Bansiya 

and Davis 

2002) 

Inheritance 

Coupling 

(IC)  

 

This measure provides the number of parent classes to 

which a given class is coupled. A class is coupled to its 

parent class if one of its inherited methods functionally 

dependent on the new or redefined methods in the class. 

A class is coupled to its parent class if one of the 

following conditions is satisfied: 

• One of its inherited methods uses an attribute that 

is defined in a new/redefined method. 

• One of its inherited methods calls a redefined 

method. 

• One of its inherited methods is called by a 

redefined method and uses a parameter that is 

defined in the redefined method.  

(Tang, 

Kao, and 

Chen 1999) 

Coupling 

Between 

Methods 

(CBM)  

The CBM measures the total number of new/redefined 

methods to which all the inherited methods are coupled. 

There is a coupling when at least one of the given in the 

IC measure definition conditions is held.  

(Tang, 

Kao, and 

Chen 1999) 

Average 

Method 

Complexity 

(AMC)  

The AMC measures the average method size for each 

class. Size of a method is equal to the number of Java 

binary codes in the method.  

(Tang, 

Kao, and 

Chen 1999) 

(Cont. on next page) 
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Table 7. (cont.) 

Maximum 

McCabe's 

cyclomatic 

complexity 

(MAX CC)  

 

CC is equal to number of different paths in a method 

(function) plus one. The cyclomatic complexity is 

defined as:  

𝐶𝐶 = 𝐸 − 𝑁 + 𝑃	

𝐸: 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑑𝑔𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ	

𝑁: 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ	

𝑃: 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

CC is the only method size measure. The constructed 

models make the class size predictions. Therefore, the 

measure had to be converted to a class size measure. 

Two measures has been derived:  

• MAX(CC) - the greatest value of CC among 

methods of the investigated class. 

• AVG(CC) - the arithmetic mean of the CC value 

in the investigated class.  

(McCabe 

1976) 

Average 

McCabe's 

cyclomatic 

complexity 

(AVG CC) 

Lines of 

Code 

(LOC) 

The LOC measure based on Java binary code. It is the 

sum of number of fields, number of methods and number 

of instructions in every method of the investigated class. 

 

 

 

We can not use pre-calculated software measures because we apply mutations to 

source code, and the software measures calculation process comes after compilation as 

we mentioned in section 3.2. Therefore, we need to recalculate software measures after 

balancing the dataset with MBA. We chose ckjm-extended to work with the most studied 

measures and we were able to compare our software measures with other studies to 

determine the validity of our study. In this way, we supported the reliability of MBA. In 

the study by Jureczko, which shared a software measures database, they extended the 

PROMISE (software repository dataset) with some other private repositories. Software 

measures from private repositories are not useful for the MBA because we can not reach 

the source codes. We validated our results with the public software repositories. To 

increase the reliability of our study, we determined the causes of the differences in our 

software measures calculation and Jureczko's. We could not produce the same software 
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measures values as in Jureczko’s study. Ferenc et al. mentioned that some tool and 

environment versions are not clearly defined in Jureczko’s study (Ferenc et al. 2018). 

They attempted to match their software measures calculation with the software measures 

dataset shared by Jureczko, but they were unable to do so, as we were. We had to guess 

the following variables while calculating software measures: 

1. Versions of dependencies in software repositories 

2. Java versions of the compilation of software repositories and their 

dependencies 

3. Version of ckjm-extended 

4. Java version to run ckjm-extended 

Jureczko did not mention which versions of software repositories, dependencies, 

and the Java SDK were used. Jureczko most likely calculated software measures using 

pre-compiled object codes from software repositories; thus, we selected dependencies 

and Java SDK versions to conduct several trials to obtain the same software measures as 

the pre-compiled object codes. Each software repository was compiled using a specific 

version of the Java SDK. 

We have tried some of the possible combinations of variables to get the software 

measures calculated by Jureczko. For the ckjm-extended version, we tried three versions 

of ckjm-extended which are 2.1, 2.2, and 2.3. We compared software measures published 

by Jureczko and calculated in our experiment on Ant 1.3 for the three ckjm-extended 

versions and we plotted the number of different software measures for each software 

measure type. The ckjm-extended 2.2 gave us the closest results both as shown in Figure 

10, Figure 11, and Figure 12 and in the literature (Ferenc et al. 2018). 
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Figure 10. Comparison of software measures presented in Jureczko’s study and 
calculated in our experiment with ckjm-extended 2.1 on ant 1.3 

 

 

 

Figure 11. Comparison of software measures presented in Jureczko’s study and 
calculated in our experiment with ckjm-extended 2.2 on ant 1.3 
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Figure 12. Comparison of software measures presented in Jureczko’s study and 
calculated in our experiment with ckjm-extended 2.3 on ant 1.3 

 

 

When we consider the measures “DIT”, “MFA”, “IC”, “CBM” and “CC” that do 

not match, we noticed that these measures are about the inheritance hierarchy of the code. 

In the documentation of ckjm-extended, by default, Java SDK packages are not 

considered while calculating the software measures. They also include a flag to optionally 

enable Java SDK packages. During the inspection of the source code, we realized that 

ckjm-extended uses a framework called BCEL for these calculations. BCEL tracks the 

inheritance of objects with Java SDK objects if the related object inherits any Java SDK 

object. The problem here is the Java SDK version used for software measures calculation. 

We could produce differences only by changing the version of Java SDK that used to run 

ckjm-extended; some of the inheritance-dependent measures changed. It clearly seems 

that ckjm-extended considers Java SDK packages by default. Also, our results are parallel 

to this claim, as shown in Figure 13 below. 
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Figure 13. Comparison of software measures calculated by Java SDK 1.6 and calculated 
by Java SDK 1.7 with ckjm-extended 2.2 on ant 1.3 

 

 

On the other hand, in terms of backward compatibility, we considered that a 

project should be compatible with other Java SDK versions. Since the differences in 

software measures presented by Jureczko and calculated by us are unrelated to the 

software repository, which is the dataset, we accept these differences as environmental 

differences and do not expect them to affect an instance's defectiveness. Another problem 

is that BCEL could not find some of the objects with the Java 1.8 SDK. We generate the 

results with different Java SDK versions, which are 1.6, 1.7, and 1.8. We compared the 

generated results with Jureczko’s, but there is not a clear difference to select a better 

version of the Java SDK. Also, 1.5 and lower versions of the Java SDK are not compatible 

with ckjm-extended 2.2. There are two options to continue: Java SDK 1.6 and Java SDK 

1.7. Most of the projects in PROMISE dataset were released before Java SDK 1.6 was 

released. Java SDK 1.6 will be more compatible with projects. We chose Java SDK 1.6 

to run ckjm-extended 2.2. We went over the software measures calculation process in 

great detail. In section 4.3, we introduced the third stage, data preprocessing. 
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4.3. Data Preprocessing 

Distinctions in scale across input data could make the problem being modeled 

more challenging. When numerical input parameters are scaled to a normal range, the 

performance of many ML algorithms increases (Brownlee 2020). Normalization scales 

each input variable to a value between 0 and 1 (Bharati, Podder, and Hossain Mondal 

2020). We applied the MinMax scaler to normalize values as in the literature (Kumar, 

Rath, and Sureka 2017). We want features that have the same effect on the model. 

𝑥% =
𝑥 − 𝑥&'(

𝑥&") − 𝑥&'(
	 (4.1) 

In the equation above, 𝑥 denotes the original value of a feature of an instance, 

𝑥&'( is minimum value and 𝑥&") is maximum value of the feature in all instances in the 

dataset. 𝑥% gives us the normalized value of 𝑥. In our dataset, we have 20 features for 

input data. Table 8 contains 4 Ant 1.3 instances. It appears that there are large scale 

differences between features, and normalization is required for our study. Before building 

ML models in our study, we applied the MinMax scaler to each data instance, and then 

we tuned the hyperparameters of ML methods, as detailed in section 4.4. 

 

 

Table 8. Software measures of four instances of Ant 1.3 
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11 2 0 7 15 13 5 3 11 .75 97 1 3 .20 .22 0 0 7.3 1 1 

8 3 0 4 41 10 0 4 8 .80 236 1 0 .84 .87 1 1 27.8 14 2.75 

5 1 0 4 20 0 0 4 4 .33 144 1 1 0 .90 0 0 27.2 5 2.40 

3 2 0 8 18 3 1 7 2 1 132 0 0 .92 .50 0 0 42 1 1 
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4.4. Hyperparameter Tuning 

Hyperparameters are the parameters that are used to configure a model to 

minimize the loss function, and exploring the best combination of hyperparameters is 

called as hyperparameter tuning (L. Yang and Shami 2020). In the literature, some of the 

commonly used hyperparameter tuning techniques are Grid Search, Random Search, 

Gradient-based Optimization, Bayesian Optimization, Multi-fidelity Optimization, 

Genetic Algorithm. Every technique has weaknesses and strengths. Grid Search is a 

simple method that tries all combinations of defined parameters. Evaluating every defined 

combination is a very time-consuming process, so parameter space selection is very 

important. Random Search evaluates randomly selected hyperparameters. Random search 

works like Grid Search but the selection of hyperparameter combinations is done 

randomly, so it does not guarantee any stability. It can hit a better hyperparameter 

combination than Grid Search. The number of trials increases the success of Random 

Search. Gradient-based Optimization only works for continuous hyperparameters. 

Gradient-based Optimization evaluates a parameter, which is generally given by an 

analyst. Gradient-based Optimization searches for near values of the parameter with a 

step that is also generally given by the analyst. Gradient-based Optimization converges 

on a local maximum and stops with a performance criterion. Bayesian Optimization is an 

iterative algorithm that determines the next hyperparameter configuration (L. Yang and 

Shami 2020). Bayesian Optimization is generally used for problems whose evaluation 

takes longer (L. Yang and Shami 2020). Bayesian Optimization has two steps: surrogate 

model and acquisition function. A surrogate model fits all currently observed points into 

the objective function. An acquisition function selects the best subset of a dataset to make 

a surrogate model more representative. Bayesian Optimization builds a surrogate model 

and iteratively does three steps until an initially set iteration count is reached. First, it 

detects optimal hyperparameter values on the surrogate model. Applies these 

hyperparameters to the real objective function to evaluate them and updates the surrogate 

model with respect to new results. Bayesian Optimization needs fewer resources than 

Grid Search and Random Search but does not cover hyperparameter ranges as much as 

Grid Search. Multi-fidelity Optimization combines low-fidelity and high-fidelity. Low-

fidelity means evaluating hyperparameters on a small subset of a dataset. High-fidelity 

means evaluating hyperparameters on a large subset of a dataset. Low-fidelity has a lower 
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cost but poorer performance than high-fidelity. Multi-fidelity selects hyperparameters by 

applying high-fidelity to well-performed low-fidelity cases (L. Yang and Shami 2020). 

Genetic Algorithm simulates a survival race on hyperparameters. Each chromosome 

represents a hyperparameter, and every chromosome has several genes. Genetic 

Algorithm applies crossing-over and mutations to randomly initialized individuals, and 

new individuals are generated. New individuals are evaluated, and worse performing 

individuals are eliminated. Genetic Algorithm continues this process until the termination 

condition is met. 

In the SDP, Grid search and Random search are used in several studies (Bennin 

et al. 2018; Li et al. 2020; Bahaweres et al. 2020). As we mentioned, Grid search is a 

good choice when the hyperparameter search space is defined in optimum ranges. We 

decided to use Grid search in our study because Hyperparameter Tuning problem is 

studied for many ML algorithm hyperparameters and their ranges in SDP on many 

datasets. We considered previous studies and decided on feasible search spaces for our 

Hyperparameter Tuning setup. Even though Grid Search is not good at reducing 

unnecessary evaluations, we have enough computational power to cover all evaluations. 

As a result, the likelihood of missing well hyperparameter setting is reduced. Grid search 

runs all possible combinations (cartesian product) of the set of parameters and selects the 

best parameters with respect to an evaluation function. Parameter selection is essential 

for Grid Search. It is also the only input for this method. We select parameters in Table 9 

below. We get the parameters from three studies with respect to the ML method (Bennin 

et al. 2018; Bahaweres et al. 2020; Li et al. 2020). 

 

 

Table 9. Tuned hyperparameters for ML models 

Method Parameter Range 

K-Nearest Neighbor 

(KNN) 

n_neighbours {1, 3, 5, 7, 9, 11, 13, 15} 

 

Random Forest (RF) n_estimaators [10, 100] step:10 

criterion {‘gini’, ‘entropy’} 

max_features {‘None’, ‘sqrt’, ‘log2’} 

(Cont. on next page) 
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Table 7. (cont.) 

SVM kernel {‘rbf’, ‘linear’, ‘poly’, ‘sigmoid’} 

degree [0, 3] step: 1 

coef() [0, 3] step: 1 

gamma {‘scale’, ‘auto’} 

Naïve Bayes (NB) - - 

Decision Tree (DT) criterion {‘gini’, ‘entropy’, ‘log_loss’} 

max_features {‘auto’, ‘sqrt’, ‘log2’} 

max_depth [5, 10] step: 1 

 

4.5. Performance Measure 

The commonly used performance measures in SDP are AUC (Area Under the 

Curve), F-measure (F1), recall, precision, false alarm, g-measure, and balance (Moussa 

and Sarro 2022). There is no agreement on which performance measures should be used 

to evaluate an ML method (Seliya, Khoshgoftaar, and Van Hulse 2009). Selecting 

appropriate performance measures is very important, especially in SDP because CIP 

makes assessing ML models harder. If we do not measure its performance using the 

proper measurement method, we can not find the right model. For instance, if we select 

accuracy as the performance measure for an imbalanced dataset, predictions will be 

biased toward the major class because using accuracy as the performance measure means 

maximizing the number of true predictions over total predictions. Assume that the minor 

class ratio is 10%. For such a scenario, predicting all instances as major class results in 

90% accuracy, which is a very high score, but the model fails to identify any minor 

classes. This is unacceptable from the point of view of SDP because the main concern is 

detecting defective instances.  

The base for measuring performance in a binary classification problem is 

confusion matrix because four performance measures that are also used to calculate other 

measures are calculated from confusion matrix. True Positive (TP), False Negative (FN), 

False Positive (FP) and True Negative (TN) measures are calculated from confusion 

matrix. Confusion Matrix shows the number of predicted and actual classes of instances 

as in Table 10. 
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Table 10. Confusion Matrix for Binary Classification (Source: Moussa & Sarro, 2022) 

 

Actual Value 

Predicted Value 

Defective Non-Defective 

Defective True Positive (TP) False Negative (FN) 

Non-Defective False Positive (FP) True Negative (TN) 

 

 

Other than the measures defined in the confusion matrix, there are some measures 

developed in the literature for assessing the performance of ML models from various 

perspectives. CIP is the most important topic to consider when selecting an performance 

evaluation measure because it is present in the majority of the dataset. We considered the 

most commonly used measures in SDP, which are AUC, F1, recall, precision, FPR, g-

measure, and balance.  

Recall shows the probability of classifying defective instances correctly. Precision 

shows how well the model classifies instances as defective while misclassifying non-

defective instances. For SDP, accurately classifying faulty modules is important, but on 

the other hand, classifying non-defective instances accurately is a very important task 

because non-defective instances mostly belong to the major class. 

G-measure is the geometric mean between precision and recall, and F1 calculates 

the harmonic mean of precision and recall. From class imbalance perspective, g-measure 

and F1 provide more honest evaluation results for SDP models.  

Balance measures the distance between FPR and recall. When FPR is equal to the 

recall, balance gets its higher value, which is 1. The importance of the balance between 

FPR and recall shows that the success of the classification of defective instances does not 

come from classifying instances most likely as defective. 

Receiver Operator Characteristic (ROC) curve visualizes the relation between TP 

and FN. In a ROC curve, one axis represents True Positive Rate (TPR), and the other one 

represents False Positive Rate (FPR). Using rates of TP and FP together makes 

assessment fair for imbalanced datasets. When we plot this graph, we get a curve. The 

area under the curve (AUC) gives us an ideal performance measure for SDP problem. We 

summarized the seven commonly used performance measures in SDP in Table 11. 
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Table 11. The definition of the performance measures (Source: Moussa & Sarro, 2022) 

Performance Measure Definition 

AUC Area under the Receiver Operating 

Characteristic Curve 

Recall or pd (TPR) 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

F-measure (F1) 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

False Alarm or pf (FPR) 𝐹𝑃
𝐹𝑃 + 𝑇𝑁 

G-measure 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × (1 − 𝐹𝑃𝑅)
𝑅𝑒𝑐𝑎𝑙𝑙 + (1 − 𝐹𝑃𝑅)  

Balance 
1 −

^(0 − 𝐹𝑃𝑅)* + (1 − 𝑅𝑒𝑐𝑎𝑙𝑙)*

√2
 

 

 

We chose AUC, pd and pf measures for evaluation of our models because they 

are the most commonly used performance measure for SDP, and AUC works well for 

imbalanced datasets, as we need in our problem. Lower pf values and higher AUC and 

pd values indicate better predictors. Since precision and F1 are unstable for evaluating 

models trained using imbalance datasets (Menzies et al. 2007), we did not include them. 

Performance evaluation is the last stage of the experimental design before comparing the 

performances of the experiments. We summarized three experimental designs in section 

4.6. 

4.6. Summary of Experimental Designs 

In this chapter, we explained our experimental design in detail. In this section, we 

were interested in demonstrating the overall steps of each of the three experimental 

designs. The performance comparison stage is excluded from these designs because it 
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employs statistical analysis techniques that require the aggregated results of all 

experiments, as detailed in section 4.7.  

4.6.1. Baseline Experimental Design 

We followed the steps in Figure 14 for each dataset. First, as shown in Table 6, 

we prepared training and testing software repositories. For both training and testing 

datasets, we calculated software measures and preprocessed them with the MinMax 

scaler. The training dataset is divided into two parts: 20% for validation and 80% for 

training. Because we employed 5-fold stratified cross validation, the defect ratio was 

preserved across all folds. We chose the best-performing model's parameter as optimal 

and developed the prediction model with the optimal parameter. Finally, we ran the 

prediction model against the testing dataset and calculated its performance. 

 

 

 

Figure 14. Baseline experimental design 
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4.6.2. Over-sampling-based Experimental Design 

We followed the steps in Figure 15 for each dataset. First, as shown in Table 6, 

we prepared training and testing software repositories. For both training and testing 

datasets, we calculated software measures and preprocessed them with the MinMax 

scaler. We resampled the training dataset with over-sampling methods. The training 

dataset is divided into two parts: 20% for validation and 80% for training. Because we 

employed 5-fold stratified cross validation, the defect ratio was preserved across all folds. 

We chose the best-performing model's parameter as optimal and developed the prediction 

model with the optimal parameter. Finally, we ran the prediction model against the testing 

dataset and calculated its performance. 

 

 

 

Figure 15. Over-sampling-based experimental design 
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4.6.3. Mutation-based Experimental Design 

We followed the steps in Figure 16 for each dataset. First, as shown in Table 6, 

we prepared training and testing software repositories as we discussed in chapter 3. We 

injected mutants into the training software repository. For both training and testing 

datasets, we calculated software measures and preprocessed them with the MinMax 

scaler. The training dataset is divided into two parts: 20% for validation and 80% for 

training. Because we employed 5-fold stratified cross validation, the defect ratio was 

preserved across all folds. We chose the best-performing model's parameter as optimal 

and developed the prediction model with the optimal parameter. Finally, we ran the 

prediction model against the testing dataset and calculated its performance. 

 

 

 

Figure 16. Mutation-based experimental design 
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4.7. Performance Comparison 

To statistically evaluate and compare MBA to the other over-sampling techniques 

and Baseline, we selected one-way repeated measures ANOVA to determine whether the 

means of the performance measure values of the seven groups are different. We decided 

to use a parametric test because parametric tests are more powerful than non-parametric 

tests if the sample is normally distributed (Pappas and DePuy 2004). One-way repeated 

measures ANOVA has two preconditions, which are normality and sphericity. To test 

normality, we used Z-scores of skewness and kurtosis attributes. To check normality, we 

checked skewness and kurtosis values. These values must be between -1.96 and +1.96 for 

𝛼 = 0.05. To check sphericity, we applied Mauchly’s test of sphericity. The significance 

value of Mauchly’s test must be greater than 0.05 for the samples that satisfy sphericity. 

If these tests failed, we decided to use Friedman test, which is the non-parametric 

alternative to the one-way repeated measures ANOVA. If the Friedman test shows that 

there is a statistically significant difference in performance measure values depending on 

the type of over-sampling methods, MBA, and Baseline, we decided to use Wilcoxon 

signed-rank tests on the groups of two between the seven methods. To quantitatively 

analyze and compare MBA to the baseline and the other five over-sampling approaches, 

we employed win-tie-loss statistics, which have been used in earlier research studies 

(Bennin et al. 2018). The performance values of two predictors were compared using the 

Wilcoxon signed-rank test, and if the performance distributions were not statistically 

different, the "ties" counter was increased by one. If there were a statistically significant 

difference between two predictions, the counters for "wins" and "losses" were increased 

by one. To compute Friedman and Wilcoxon signed-rank tests, we used the SciPy Python 

library (Virtanen et al. 2020). To compute the sphericity and normality tests, we used the 

Pingouin Python library (Vallat 2018). Because every analysis failed the sphericity and 

normality tests, we did not employ any tool to compute the one-way repeated measures 

ANOVA. 
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CHAPTER 5. 

RESULTS AND DISCUSSION 

In this chapter, we presented the results of Baseline, MBA, and each over-

sampling technique on the ML methods and compared the performances of MBA with 

over-sampling techniques and Baseline. We discussed the results of our study. We 

provided a critical analysis of the results that were obtained. 

 

RQ1: Does the proposed MBA improve performance over existing over-sampling 

approaches and Baseline on IRDP? MBA and over-sampling techniques have better 

recall values than Baseline, but Baseline has the lowest false alarm values, and there was 

no significant difference between the AUC values of rebalancing techniques, so we can 

not conclude that MBA outperforms over-sampling techniques and Baseline. 

RQ2: Does the proposed MBA improve performance over existing over-sampling 

approaches and Baseline on CPDP? Only MBA consistently outperformed Baseline for 

recall values, but Baseline has the lowest false alarm values, and there was no significant 

difference between the AUC values of rebalancing techniques, so we can not conclude 

that MBA outperforms over-sampling techniques and Baseline. 

RQ3: How does the change percentage of software measures (SMC) affect 

performance of MBA on IRDP? SMC and recall and SMC and false alarm showed a 

significantly positive association, whereas SMC and AUC had no significant correlation, 

so we can not draw the conclusion that performance improved as datasets became more 

balanced.   

RQ4: How does the change percentage of software measures (SMC) affect 

performance of MBA on CPDP? SMC and recall and SMC and false alarm showed a 

significantly positive association, whereas SMC and AUC had no significant correlation, 

so we can not draw the conclusion that performance improved as datasets became more 

balanced. 
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5.1. Performance Evaluation of Rebalancing Methods for IRDP 

Scenario 

For the IRDP scenario, we created 945 SDP models using five ML algorithms, 

seven rebalancing methods (Baseline, MBA, and five over-sampling techniques), and 27 

training and testing dataset pairs, as shown in Table 6. 

The quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA, 

and five over-sampling methods for each ML algorithm are shown in Figure 17. The 

quartile bounds represent the 25th and 75th percentiles, respectively, and the solid dots 

represent the median values. Higher median values show higher AUC and pd measure 

performance, while lower median values indicate better pf measure performance. MBA 

and over-sampling techniques did not significantly improve AUC values for all ML 

algorithms, as shown in the top lane of Figure 17. Rebalancing method and ML algorithm 

pairs have AUC values around 0.6. MBA and five over-sampling techniques improved 

the recall (pd) measure compared to the Baseline. According to Figure 17, in the middle 

lane, MBA beat the Baseline and other five over-sampling techniques for all ML 

algorithms. MBA and over-sampling techniques, on the other hand, created more false 

alarms (pf) than the Baseline (bottom lane of Figure 17). In most cases, MBA had the 

worst pf value. 

Figure 18 shows Wilcoxon signed-rank test win-tie-loss comparisons of MBA to 

the Baseline and five over-sampling techniques. Except for the SMOTE Nominal and NB 

pairs, MBA did not increase IRDP performance using the AUC measure. MBA reduced 

AUC values in five cases (shown with orange dots). In terms of pd, MBA yielded 

statistically significantly better results (23 wins, green dots, and 7 ties, blue dots). Instead 

of increasing pd values, MBA decreased pf values in 26 of 30 cases (four of which 

resulted in ties). In terms of pd and pf performance, MBA outperformed "SMOTE & NB" 

and "SMOTE Nominal & SVM" pairs, as well as tied pf values. 



 

 

47 

 

 

 

Figure 17. IRDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA, over-sampling techniques per each ML 
algorithm



 

 48 

 

 

Figure 18. IRDP Scenario: Wilcoxon test win-tie-loss comparison of MBA vs. Baseline, 
SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, SVM SMOTE across all 

datasets per each ML algorithm and performance measures (AUC, pd, and pf) 
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We used the Wilcoxon signed-rank test to compare AUC, recall, and pf values to 

find the best performing combination of rebalancing method and ML algorithm. Table 12 

displays win-tie-loss values sorted by the difference between wins and losses. Due to 

space constraints, we give the top and bottom ten performers for each performance 

measure. 

MBA and over-sampling methods provide some improvement in terms of AUC 

performance measure, as the Baseline combined with ML algorithms is listed in the 

bottom half of Table 12 (Baseline with RF 20th, NB 24th, KNN 28th, DT 34th, SVM 

35th). The first seven positions are occupied by SMOTE, Borderline-SMOTE, and SVM 

SMOTE. NB appears to be the best performing ML algorithm, with five positions in the 

top ten. MBA, paired with NB, was ranked ninth. In terms of AUC values, we can not 

find a dominant sampling method and ML algorithm pair. Even the RF and SMOTE 

combination improved AUC values in 16 cases but not in 18. In terms of recall 

performance, MBA combined with SVM and KNN beat the over-sampling and ML 

algorithm pairs, with wins-losses scores of 32 and 28 out of 34 comparisons, respectively. 

MBA was ranked in the top ten when combined with RF and DT, although with 

substantially lower wins-losses scores of 18 and nine, respectively. SMOTE and 

Borderline-SMOTE were the other sampling methods seen in the top ranks. MBA and 

over-sampling techniques often underperform compared to Baseline in terms of the pf 

performance measure. SVM, RF, NB, and KNN algorithms trained on identical datasets 

provided much fewer false alarms, with 34, 31, 24, and 24 wins-losses scores out of 34, 

respectively. MBA, when paired with KNN and SVM, produced the most false alarms, 

with -32 and -31 wins-losses values, respectively
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Table 12. IRDP Scenario: Rankings for performance measures in terms of wins (W), losses (L), wins-losses (W-L), and ties (T) 

 AUC pd pf 

# ML  Sampl. Tech. W L W-L T ML  Sampl. Tech. W L W-L T ML  Sampl. Tech. W L W-L T 
1 RF SMOTE 16 0 16 18 SVM MBA 32 0 32 2 SVM Baseline 34 0 34 0 
2 NB B-SMOTE 15 0 15 19 KNN MBA 28 0 28 6 RF Baseline 32 1 31 1 
3 SVM B-SMOTE 14 0 14 20 KNN SMOTE 21 1 20 12 NB Baseline 25 1 24 8 
4 RF B-SMOTE 12 0 12 22 RF MBA 19 1 18 14 KNN Baseline 26 2 24 6 
5 NB SVM SMOTE 12 0 12 22 KNN B-SMOTE 18 0 18 16 RF ROS 26 2 24 6 
6 RF SVM SMOTE 12 0 12 22 SVM SMOTE 18 2 16 14 RF SMOTE Nom 24 2 22 8 
7 NB SMOTE 11 0 11 23 SVM B-SMOTE 17 2 15 15 RF SVM-SMOTE 23 3 20 8 
8 NB ROS 11 0 11 23 KNN SVM SMOTE 14 3 11 17 DT Baseline 21 3 18 10 
9 NB MBA 10 0 10 24 NB B-SMOTE 11 1 10 22 NB ROS 20 3 17 11 
10 SVM SVM SMOTE 10 0 10 24 DT MBA 11 2 9 21 RF SMOTE 19 6 13 9 
. . . . . . . . . . . . . . . . . . . 
26 DT MBA 0 10 -10 24 DT ROS 4 13 -9 17 KNN SVM-SMOTE 6 17 -11 11 
27 DT ROS 0 11 -11 23 NB ROS 3 13 -10 18 SVM SMOTE 3 15 -12 16 
28 KNN Baseline 1 14 -13 19 DT SMOTE Nom 2 18 -16 14 SVM SMOTE Nom 1 17 -16 16 
29 KNN SMOTE Nom 0 16 -16 18 NB Baseline 1 18 -17 15 NB SMOTE Nom 0 19 -19 15 
30 SVM SMOTE Nom 0 16 -16 18 RF ROS 2 22 -20 10 KNN B-SMOTE 2 24 -22 8 
31 KNN MBA 0 17 -17 17 RF SMOTE Nom 2 22 -20 10 DT MBA 2 25 -23 7 
32 NB SMOTE Nom 0 18 -18 16 DT Baseline 1 26 -25 7 RF MBA 2 25 -23 7 
33 DT SMOTE Nom 0 20 -20 14 KNN Baseline 1 27 -26 6 KNN SMOTE 2 25 -23 7 
34 DT Baseline 0 21 -21 13 RF Baseline 1 28 -27 5 SVM MBA 0 31 -31 3 
35 SVM Baseline 0 23 -23 11 SVM Baseline 0 34 -34 0 KNN MBA 0 32 -32 2 
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Table 13. IRDP Scenario: Median values for AUC, pd, and pf for each dataset 

 Project Baseline SMOTE 
B-

SMOTE 

SVM 

SMOTE 

SMOTE 

Nom 
ROS MBA 

AUC 

Ant 0.56 0.61 0.61 0.61 0.58 0.60 0.61 

jEdit 0.68 0.69 0.71 0.68 0.67 0.69 0.63 

Lucene 0.58 0.53 0.51 0.53 0.49 0.52 0.59 

Poi 0.52 0.53 0.51 0.53 0.49 0.52 0.69 

Synapse 0.61 0.60 0.59 0.60 0.58 0.61 0.51 

Xalan 0.66 0.67 0.66 0.68 0.68 0.69 0.65 

Xerces 0.54 0.55 0.56 0.53 0.51 0.54 0.63 

 

pd 

Ant 0.18 0.44 0.42 0.36 0.39 0.35 0.63 

jEdit 0.48 0.63 0.68 0.61 0.60 0.61 0.64 

Lucene 0.34 0.42 0.45 0.44 0.47 0.40 0.35 

Poi 0.09 0.34 0.25 0.19 0.12 0.25 0.60 

Synapse 0.28 0.41 0.41 0.42 0.35 0.44 0.50 

Xalan 0.32 0.36 0.46 0.37 0.37 0.38 0.37 

Xerces 0.20 0.39 0.32 0.26 0.22 0.29 0.61 

 

pf 

Ant 0.06 0.19 0.15 0.16 0.15 0.15 0.43 

jEdit 0.14 0.26 0.29 0.24 0.27 0.24 0.39 

Lucene 0.18 0.22 0.21 0.23 0.25 0.16 0.18 

Poi 0.02 0.20 0.18 0.15 0.14 0.19 0.18 

Synapse 0.11 0.23 0.24 0.16 0.21 0.24 0.52 

Xalan 0.00 0.00 0.09 0.00 0.00 0.00 0.00 

Xerces 0.09 0.34 0.17 0.19 0.17 0.32 0.38 
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Table 13 shows the medians of AUC, pd, and pf for each dataset in the IRDP 

scenario. MBA improved AUC values for the Lucene, Poi, and Xerces datasets and 

performed similarly to SMOTE, Borderline-SMOTE, and SVM SMOTE for the Ant 

dataset. MBA outperformed pd on the Ant, Poi, Synapse, and Xerces datasets. Except for 

the Lucene dataset, MBA and over-sampling techniques provided more false alarms than 

the Baseline. ROS reduced false alarms for Lucene significantly. The Xalan false alarm 

rate is 0% because the only testing dataset, Xalan 2.7, has a defect ratio of 99% (see Table 

5), and hence none of the models produced a false signal. MBA outperformed the other 

sample methods on the Poi dataset, significantly improving AUC and pd values while 

providing as few false alarms as possible. 

5.2. Performance Evaluation of Rebalancing Methods for CPDP 

Scenario 

For the CPDP scenario, we created 1015 SDP models using five ML algorithms, 

seven rebalancing techniques (Baseline, MBA, and five over-sampling techniques), and 

29 training and testing dataset pairs, as shown in Table 6. 

The quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA, 

and over-sampling methods for each ML algorithm are shown in Figure 19. MBA and 

over-sampling techniques did not significantly increase AUC values for all ML 

algorithms, similar to the IRDP scenario (see Figure 19's top lane). Seven rebalancing 

techniques and ML algorithm pairs have AUC values around 0.6. Only MBA produced 

more false alarms against the Baseline (bottom lane of Figure 19) but improved pd values 

for all ML methods (middle lane of Figure 19).
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Figure 19. CPDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA, over-sampling techniques per each 
ML algorithm
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 Figure 20 uses Wilcoxon signed-rank test win-tie-loss comparisons to show how 

the MBA performed when compared to the Baseline and five over-sampling techniques. 

MBA performed better than SVM SMOTE when DT, RF, and SVM algorithms were 

combined. AUC value for the MBA and NB pair decreased compared to Baseline. In 

general, MBA did not increase AUC when compared to Baseline and five over-sampling 

techniques. MBA resulted in a decrease in AUC values in five instances (denoted by 

orange dots). MBA yielded statistically significantly better outcomes in terms of pd (27 

wins, green dots, and 3 ties, blue dots) than Baseline and five over-sampling methods. In 

28 out of 30 cases (one tie and one loss), MBA worsened pf values at the expense of 

higher pd values. In terms of three performance measures, MBA outperformed “SVM 

SMOTE & DT” by improving AUC with tied pd and pf values and “SVM SMOTE & 

RF” with better AUC and pf, and tied pd. 
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Figure 20. CPDP Scenario: Wilcoxon test win-tie-loss comparison of MBA vs. 
Baseline, SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, SVM SMOTE across 

all datasets per each ML algorithm and performance measures (AUC, pd, and pf) 
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In terms of AUC, pd, and pf performance measures, Table 14 displays the top and 

worst performing combinations of rebalancing techniques and ML algorithms. Wilcoxon 

signed-rank test was used to calculate win-tie-loss results, which were then displayed in 

descending order by the difference between wins and losses. Due to space restrictions, 

we only provide the top and lowest 10 performers for each performance measure. 

None of the ML algorithm and sampling method combinations dominated in terms 

of the AUC measure. Despite being ranked as the top performers, SVM and RF combined 

with SMOTE and Borderline SMOTE were unable to outperform more than half of the 

other combinations (18 wins and 16 ties for SVM; 16 wins and 18 ties for RF). In terms 

of AUC, MBA was unable to perform well (MBA combined with SVM 16th, RF 17th, 

KNN 18th, and NB 19th). With two wins, 18 losses, and 14 ties, MBA together with DF 

underperformed. MBA paired with NB, RF, SVM, KNN, and DT placed between third 

and seventh, respectively, in the recall measure. The values for the wins-losses out of 34 

range from 30 to 21. The combination of RF and SVM SMOTE scored the best in terms 

of recall but had the worst AUC and pf values. MBA's relatively good recall values were 

at the cost of worsened pf values.
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Table 14. CPDP Scenario: Rankings for performance measures in terms of wins (W), losses (L), wins-losses (W-L), and ties (T) 

 AUC pd pf 

# ML  Sampl. Tech. W L W-L T ML  Sampl. Tech. W L W-L T ML  Sampl. Tech. W L W-L T 
1 SVM SMOTE 18 0 18 16 RF SVM SMOTE 31 0 31 3 RF ROS 34 0 34 0 
2 SVM B-SMOTE 18 0 18 16 NB Baseline 30 0 30 4 RF SMOTE Nom 31 1 30 2 
3 RF SMOTE 16 0 16 18 NB MBA 30 0 30 4 NB ROS 27 1 26 6 
4 RF B-SMOTE 16 0 16 18 RF MBA 30 0 30 4 NB SMOTE 26 2 24 6 
5 SVM ROS 15 0 15 19 SVM MBA 30 1 29 3 SVM Baseline 25 2 23 7 
6 NB SMOTE 13 0 13 21 KNN MBA 26 5 21 3 RF B-SMOTE 25 2 23 7 
7 NB SMOTE Nom 13 0 13 21 DT MBA 26 5 21 3 RF SMOTE 24 2 22 8 
8 RF ROS 12 0 12 22 SVM B-SMOTE 20 5 15 9 NB B-SMOTE 25 4 21 5 
9 KNN Baseline 11 0 11 23 DT SVM SMOTE 19 5 14 10 SVM SMOTE Nom 22 3 19 9 
10 NB Baseline 11 0 11 23 SVM SMOTE 15 8 7 11 DT SMOTE Nom 20 4 16 10 
. . . . . . . . . . . . . . . . . . . 
26 KNN SMOTE 4 13 -9 17 KNN ROS 4 19 -15 11 KNN SMOTE 8 20 -12 6 
27 KNN ROS 3 16 -13 15 RF SMOTE 3 18 -15 13 SVM SVM SMOTE 7 21 -14 6 
28 DT ROS 2 15 -13 17 RF B-SMOTE 3 18 -15 13 KNN MBA 6 26 -20 2 
29 KNN SMOTE Nom 2 16 -14 16 SVM SMOTE Nom 2 20 -18 12 NB Baseline 3 27 -24 4 
30 KNN SVM-SMOTE 2 16 -14 16 SVM Baseline 2 21 -19 11 DT MBA 2 28 -26 4 
31 DT MBA 2 18 -16 14 NB ROS 2 22 -20 10 SVM MBA 1 28 -27 5 
32 DT SMOTE Nom 2 25 -23 7 KNN SVM SMOTE 2 23 -21 9 DT  SVM SMOTE 1 28 -27 5 
33 SVM SVM SMOTE 2 27 -25 5 DT SMOTE Nom 0 28 -28 6 NB MBA 1 29 -28 4 
34 DT SVM SMOTE 0 33 -33 1 RF ROS 0 32 -32 2 RF MBA 1 30 -29 3 
35 RF SVM SMOTE 0 33 -33 1 RF SMOTE Nom 0 32 -32 2 RF SVM SMOTE 0 34 -34 0 
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Table 15. CPDP Scenario: Median values for AUC, pd, and pf for each dataset 

 Project Baseline SMOTE 
B-

SMOTE 

SVM 

SMOTE 

SMOTE 

Nom 
ROS MBA 

AUC 

Ant 0.66 0.67 0.62 0.58 0.63 0.65 0.58 

jEdit 0.67 0.67 0.67 0.57 0.62 0.63 0.63 

Lucene 0.61 0.58 0.58 0.53 0.56 0.59 0.56 

pBeans 0.54 0.60 0.64 0.52 0.59 0.63 0.59 

Poi 0.59 0.54 0.55 0.52 0.52 0.54 0.60 

Synapse 0.62 0.65 0.66 0.58 0.63 0.65 0.58 

Velocity 0.56 0.56 0.56 0.52 0.54 0.56 0.57 

Xalan 0.56 0.57 0.59 0.51 0.56 0.58 0.67 

Xerces 0.54 0.55 0.58 0.55 0.55 0.54 0.54 

 

pd 

Ant 0.72 0.69 0.65 0.69 0.59 0.60 0.83 

jEdit 0.53 0.55 0.59 0.58 0.49 0.45 0.70 

Lucene 0.46 0.33 0.37 0.33 0.32 0.31 0.72 

pBeans 0.50 0.48 0.45 0.70 0.30 0.43 0.70 

Poi 0.48 0.31 0.35 0.39 0.27 0.35 0.79 

Synapse 0.65 0.67 0.69 0.73 0.55 0.62 0.90 

Velocity 0.42 0.34 0.36 0.35 0.22 0.28 0.62 

Xalan 0.29 0.30 0.31 0.39 0.21 0.21 0.64 

Xerces 0.34 0.32 0.34 0.30 0.26 0.29 0.53 

 

pf 

Ant 0.40 0.41 0.43 0.52 0.31 0.36 0.63 

jEdit 0.22 0.22 0.26 0.40 0.24 0.21 0.45 

Lucene 0.26 0.17 0.22 0.33 0.18 0.16 0.56 

pBeans 0.33 0.29 0.30 0.47 0.04 0.27 0.46 

Poi 0.31 0.20 0.25 0.28 0.19 0.27 0.54 

Synapse 0.38 0.39 0.37 0.52 0.31 0.35 0.69 

Velocity 0.34 0.22 0.25 0.37 0.14 0.18 0.53 

Xalan 0.09 0.09 0.04 0.28 0.09 0.02 0.32 

Xerces 0.27 0.20 0.16 0.22 0.22 0.17 0.39 
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AUC, pd, and pf median values for each dataset for the CPDP scenario are listed 

in Table 15. AUC values for the Poi, Velocity, and Xalan datasets were improved using 

MBA. The most effective method for pBeans, Synapse, and Xerces was B-SMOTE. 

SMOTE and B-SMOTE displayed the same performance as Baseline for the jEdit dataset. 

No rebalancing method raised the AUC value over the baseline. MBA fared better than 

all other strategies for all datasets in terms of the pd measure, with the exception of a tie 

for the pBeans dataset. With the exception of Xerces, SMOTE Nominal and ROS 

generated the fewest false alarms across all datasets. B-SMOTE produced the best median 

value for Xerces. For all datasets, MBA generated the most false alarms. 

5.3. Stability of MBA for IRDP Scenario 

To assess the stability of MBA for IRDP scenario, we investigated software 

measure changes and performance changes when datasets are balanced. Additionally, to 

test if balancing a dataset with a 50% defect ratio is the right approach, as described in 

the literature, we injected mutants with 30%, 40%, and 50% steps. In this way, we were 

able to see the trend of performance change with respect to defect ratio change. We 

provided the number of changed software measures and the number of new defects by 

MBA for each dataset in Appendix B to illustrate the impact of MBA on software 

measures. We investigated the impact of increasing the number of mutants on the 

performance of SDP models in Appendix A to show how MBA performed in detail. For 

the IRDP scenario, we created 400 SDP models using five ML algorithms, four different 

defect levels (Baseline, MBA 0.3, MBA 0.4, and MBA 0.5), and 20 training and testing 

dataset pairs. For IRDP scenario, there are 27 dataset pairs, as shown in Table 6 but we 

could not include seven dataset pairs (JEdit 3.2.1 → 4.0, 4.1, 4.2, 4.3, Lucene 2.0 → 2.2, 

2.4, Xalan 2.6 → 2.7) because their training datasets (JEdit 3.2.1, Lucene 2.0, Xalan 2.6) 

have a defect ratio more than 30%. The quartile plots of performance measures (AUC, 

pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm are 

shown in Figure 21. For 48 of 100 cases (20 dataset pairs x 5 ML algorithms), each 

increase in defect ratio resulted in higher recall values. The median recall values are 0.39, 

0.46, and 0.63 for 30%, 40%, and 50% defect ratios, respectively (see Figure 21's middle 

lane). For 63 of 100 cases, each increase in defect ratio resulted in higher false alarm 

values. The median false alarm values are 0.14, 0.23, and 0.41 for 30%, 40%, and 50% 
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defect ratios, respectively (see Figure 21's bottom lane). In general, we can observe that 

increasing defect ratio with MBA increased both recall and false alarm values. For 11 of 

100 cases, each increase in defect ratio resulted in higher AUC values. The median AUC 

values are 0.62, 0.62, and 0.61 for 30%, 40%, and 50% defect ratios, respectively (see 

Figure 21's top lane). 
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Figure 21. IRDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each 
ML algorithm 
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We also investigated the impact of changing software measures on prediction 

performance of SDP models. For each training dataset, we calculated the change of 

software measures between Baseline and three different defect levels (MBA 0.3, MBA 

0.4, and MBA 0.5) and normalized them to enable proper analysis. The change percentage 

of software measures (SMC) is calculated using the formula below to compare two 

datasets: 

𝑆𝑀𝐶	(%) =
∑ ∑ P𝑀',!Q,

!#$
-
'#$

𝑓 × 𝑠 × 100 (5.1) 

where 𝑓 is the number of files in a dataset, 𝑠 is the number of performance 

measures which is 20 (see Table 7) in our study, 𝑀',! is 1 if 𝑖./ file of 𝑗./ software measure 

differs from Baseline, otherwise 0. The scatter plots of performance measures (AUC, pd, 

and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm are shown in Figure 

22. To check the correlation between SMC and performance measures, we decided to 

calculate Pearson correlation coefficient if normality is not violated otherwise, we chose 

Kendall’s Tau correlation coefficient which is non-parametric alternative of Pearson 

correlation test. 10 of 15 ML algorithm and performance measure pairs satisfied 

normality but SMC violated (the same SMC is used for all cases), so we used Kendall’s 

Tau correlation coefficients to show the relation between performance measures and 

SMC for all ML algorithms (KNN, NB, DT, RF, and SVM) as shown in Table 16. Low 

and insignificant correlation values of less than 0.09% were observed for AUC. SMC and 

the other performance measures (pd and pf) were positively and significantly correlated 

for all ML techniques. However, a positive and significant correlation for pf measure 

indicates that increasing SMC causes producing more false alarms which is undesirable 

for better performance. The software measures' change has little impact on NB, DT, and 

RF because they are the most resistant to SMC. 
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Table 16. IRDP Scenario: Kendall's Tau correlation analysis between SMC and each 
performance measure per each ML algorithm 

  Software Measure Change 

Performance Measure ML Method 
SMC 

Correlation Significance (p=0.05) 

AUC 

 

KNN -0.02 0.85 

NB 0.01 0.89 

DT 0.08 0.35 

RF -0.07 0.46 

SVM -0.03 0.72 

pd KNN 0.39 0.00 

NB 0.24 0.01 

DT 0.28 0.00 

RF 0.18 0.04 

SVM 0.46 0.00 

pf KNN 0.50 0.00 

NB 0.25 0.00 

DT 0.29 0.00 

RF 0.36 0.00 

SVM 0.51 0.00 
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Figure 22. IRDP Scenario: The scatter plots of performance measures (AUC, pd, and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML 
algorithm
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5.4. Stability of MBA for CPDP Scenario 

To assess the stability of MBA for CPDP scenario, we investigated software 

measure changes and performance changes when datasets are balanced. Additionally, to 

test if balancing a dataset with a 50% defect ratio is the right approach, as described in 

the literature, we injected mutants with 30%, 40%, and 50% steps. In this way, we were 

able to see the trend of performance change with respect to defect ratio change. We 

provided the number of changed software measures and the number of new defects by 

MBA for each dataset in Appendix D to illustrate the impact of MBA on software 

measures. We investigated the impact of increasing the number of mutants on the 

performance of SDP models in Appendix C to show how MBA performed in detail. For 

the CPDP scenario, we created 1540 SDP models using five ML algorithms, four different 

defect levels (Baseline, MBA 0.3, MBA 0.4, and MBA 0.5), and 77 training and testing 

dataset pairs. There are 29 dataset pairs for the CPDP scenario, but we were unable to 

build the training datasets as shown in Table 6 since some of the training datasets (JEdit 

3.2.1, Lucene 2.0, Xalan 2.6) have a defect ratio more than 30%. All of these three 

projects' versions might be used as a testing dataset because we did not utilize them in a 

training dataset. For all of the resting training datasets, it led to a drop of three training 

datasets but an increase of eight testing datasets, so in total 77 training and testing dataset 

pairs are created as shown in Appendix C. The quartile plots of performance measures 

(AUC, pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm 

are shown in Figure 23. For 192 of 385 cases (77 dataset pairs x 5 ML algorithms), each 

increase in defect ratio resulted in higher recall values. The median recall values are 0.34, 

0.48, and 0.55 for 30%, 40%, and 50% defect ratios, respectively (see Figure 23's middle 

lane). For 203 of 385 cases, each increase in defect ratio resulted in higher false alarm 

values. The median false alarm values are 0.23, 0.34, and 0.43 for 30%, 40%, and 50% 

defect ratios, respectively (see Figure 23's bottom lane). In general, we can observe that 

increasing defect ratio with MBA increased both recall and false alarm values. For 24 of 

385 cases, each increase in defect ratio resulted in higher AUC values. The median AUC 

values are 0.56, 0.58, and 0.56 for 30%, 40%, and 50% defect ratios, respectively (see 

Figure 23's top lane).  
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Figure 23. CPDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each 
ML algorithm
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We also investigated the impact of changing software measures on prediction 

performance of SDP models. For each training dataset, we calculated the change of 

software measures between Baseline and three different defect levels (MBA 0.3, MBA 

0.4, and MBA 0.5) and normalized them to enable proper analysis. The scatter plots of 

performance measures (AUC, pd, and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each 

ML algorithm are shown in Figure 24. To check the correlation between SMC and 

performance measures, we decided to calculate Pearson correlation coefficient if 

normality is not violated otherwise, we chose Kendall’s Tau correlation coefficient which 

is non-parametric alternative of Pearson correlation test. 4 of 15 ML algorithm and 

performance measure pairs satisfied normality but SMC violated (the same SMC is used 

for all cases), so we used Kendall’s Tau correlation coefficients to show the relation 

between performance measures and SMC for all ML algorithms (KNN, NB, DT, RF, and 

SVM) as shown in Table 177. Low correlation values of less than 0.11% were observed 

for AUC. On a rare occasion did the SMC have significant negative correlation with AUC 

for DT. SMC and the other performance measures (pd and pf) were positively and 

significantly correlated for all ML techniques. However, a positive and significant 

correlation for pf measure indicates that increasing SMC causes producing more false 

alarms which is undesirable for better performance. The software measures' change has 

little impact on NB because it is the most resistant to SMC. The software measures' 

change has remarkable impact on DT and RF different than IRDP scenario. 
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Table 17. CPDP Scenario: Kendall's Tau correlation analysis between SMC and each 

performance measure per each ML algorithm 

  Software Measure Change 

Performance Measure ML Method 
SMC 

Correlation Significance (p=0.05) 

AUC 

 

KNN -0.02 0.67 

NB 0.04 0.43 

DT -0.10 0.02 

RF 0.03 0.52 

SVM 0.10 0.10 

pd KNN 0.35 0.00 

NB 0.13 0.00 

DT 0.30 0.00 

RF 0.44 0.00 

SVM 0.69 0.00 

pf KNN 0.44 0.00 

NB 0.18 0.00 

DT 0.36 0.00 

RF 0.48 0.00 

SVM 0.71 0.00 
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Figure 24. CPDP Scenario: The scatter plots of performance measures (AUC, pd, and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML 
algorithm
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5.5. General Discussion 

The optimal predictor should have a high probability of finding a defect 

(pd/recall) and produce few false alarms (pf). According to earlier studies, this ideal 

condition is extremely uncommon (Menzies, Greenwald, and Frank 2007). High 

detection probabilities can be achieved at the expense of more false alarms (Menzies, 

Greenwald, and Frank 2007; Turhan et al. 2009). A comprehensive meta-analysis 

confirms the difficulty of achieving high recall results without reducing precision 

(Hosseini, Turhan, and Gunarathna 2019). However, they found that when the factors 

affecting performance are addressed, CPDP techniques can reach comparable predictive 

performance to WRDP (Hosseini, Turhan, and Gunarathna 2019). In our trials, we 

encountered identical results for the IRDP and CPDP scenarios. Only MBA consistently 

beat the Baseline in the CPDP scenario, despite the fact that nearly all rebalancing 

approaches increased recall compared to Baseline in the IRDP scenario. According to 

reports in the literature, the increase in false alarms for both scenarios was caused by the 

improvement in recall (Hosseini, Turhan, and Gunarathna 2019; Menzies, Greenwald, 

and Frank 2007; Turhan et al. 2009). Only three datasets—Lucene, Poi, and Xerces for 

the IRDP scenario and Poi, Velocity, and Xalan for the CPDP scenario—were used by 

MBA to get the best AUC values for each scenario. Therefore, we can not draw the 

conclusion that an MBA always raises AUC. The median AUC values range between 

0.53 and 0.90 for the CPDP scenario and 0.35 - 0.63 for the IRDP scenario, indicating 

that the recall values for the CPDP scenario were greater than the ones for IRDP. 

We had to understand how MBA affected software measures in our experiment 

because we used software measures to build SDP models. In order to achieve this, we 

counted the number of datasets affected by mutation for each software measure. All 

training datasets mentioned in Table 6 had their RFC, LOC, AMC, MAX CC, and AVG 

CC measures modified. In the majority of datasets (eight to twelve), LCOM, LCOM3, 

CBO, CA, CE, CBM, and IC measures were influenced. In a small number of datasets 

(two to four), WMC, DAM, MFA, and CAM indicators were impacted. DIT, NOC, NPM, 

and MOA measures were unaffected by the mutation operators described in Table 2 for 

any dataset. As each software measure's contribution to SDP may differ depending on the 

project (Esteves et al. 2020). Software measures that were left unchanged or that were not 
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changed sufficiently may have degraded MBA's performance. For instance, CAM and 

WMC measures, which were impacted by mutations for three and four datasets 

respectively, were reported as effective predictors of defects (Al Dallal and Briand 2010; 

Radjenović et al. 2013). LOC, AMC, DAM, RFC, and NPM are mentioned as important 

features for SDP (Esteves et al. 2020). Mutations had no effect on NPM and had an impact 

on DAM for only two datasets. In order to have an impact on WMC, it is worthwhile to 

expand the collection of mutation operators to include mutation operators such as 

overriding and overloading method deletion (Ma and Offutt 2005). Other mutation 

operators, such as the access modifier change operator for NPM, can be used to affect 

unchanged software measures (Ma and Offutt 2005). Additionally, measures that have 

been shown to be successful for SDP in the literature, including Similarity-based Class 

Cohesion (Al Dallal and Briand 2010), can be included in the software measure suite. We 

examined the correlation between the number of defects in a file and performance 

measures (AUC, pd, and pf) to see how the number of defects in a file affected the 

performance of SDP models. No performance measure is statistically significantly 

correlated with the quantity of defects in a file, as per Kendall’s Tau correlation test. On 

the performance of SDP models, the change percentage of software measures (SMC) 

contributes more than the quantity of defects. In other words, the quality of the mutation 

is more important than the amount. 

We can not conclude that increasing the defect ratio with MBA increases 

performance, as mentioned in many other studies (Bennin et al., 2018). One of the biggest 

problems for MBA is locating the exact defect or defects at the same time and getting the 

right software measures changed for the right dataset. In some cases, more mutant 

addition causes a decrease in the performance of SDP models for some of the ML 

methods. We examined these examples and found that the software measures had not 

changed enough. Since the ML process only understands measures, this is equivalent to 

converting labels to defective without mutant addition. For instance, Synapse 1.1 has a 

significant number of changes only on RFC, LOC, and AMC and its performance 

decreased when the defect ratio increased. On the other hand, Xerces 1.2 has a significant 

number of changes to RFC, LCOM, LCOM3, LOC, CBM, AMC, MAX CC, and AVG 

CC and its performance increased when the defect ratio increased. Also, two SDP models 

of Poi 2.0RC1 have an increase in both recall and AUC values of 0.5 defect ratio. When 

we inspected the number of changed software measures, we noticed that there were a 

notable number of CBM changes. Because all training datasets share similar projects with 
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one another, the CPDP scenario did not see the same variation in software measures 

change as the IRDP scenario. Since SDP models use software measures as predictors of 

defects, the performance of MBA depends on how much mutants impact software 

measures. With the set of mutation operators used in this study, we are not able to 

conclude that MBA constantly improves defect prediction performance as training 

datasets are more balanced. Therefore, we propose to investigate a better set of mutation 

operators that lead to more meaningful changes in software measures to improve 

prediction performance. 

Due to the need to execute a test suite on each mutation, mutation testing is seen 

as expensive (Jahangirova and Tonella 2020). MBA consists solely of applying mutation 

operators to source code, as seen in Figure 9 and Figure 16. A test suite's execution and 

accessibility are unimportant to MBA. As a result, we contrasted how long it took to apply 

mutation operators to balancing via sampling techniques. A personal computer running 

the Ubuntu 18.04 LTS operating system and one physical Intel Core i7-10875H processor 

running at 2.30 GHz with eight cores and sixteen threads was used to carry out the 

experiment. Over-sampling techniques required no more than 1 msec per dataset. On 

Xalan 2.6, however, mutating a dataset took an average of 0.89 seconds and as long as 

1.9 seconds. Since an SDP model is only trained after prediction performance has 

significantly declined, the additional time required for mutation is therefore negligible. 

Furthermore, the mutation procedure adds only 1-2 seconds of time to the model 

construction process for each dataset. Although this time cost depends on the tool used 

for the mutation, we do not expect a significant increase as a result of the tool change. 

The significance of repeatability and replication of ML studies in software 

engineering research was highlighted by the fact that several researchers do not publish 

their artifacts, such as source code, datasets, parameters used to develop models, and other 

information for reproducing experiments (Giray et al. 2023; Liu et al. 2021). Due to the 

unavailability of (1) project source codes, (2) project dependencies, (3) the Java SDK 

version used to build source codes, and (4) the details of the software measure extraction 

tool (in 
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our experiment, the version of the ckjm-extended tool and the Java version to run ckjm-

extended), we encountered several problems. We were able to acquire the source codes 

and dependencies for the projects listed in Table 4 as a result of these problems. We 

performed many evaluations to determine the ideal Java SDK version and the ideal 

version of ckjm-extended (versions 2.1, 2.2, and 2.3 were used in the evaluations), as 

detailed in section 4.2. We could reproduce the measures MFA, IC, CBM, MAX CC, and 

AVG CC with some minor differences reported by (Jureczko and Madeyski 2010). We 

publish all artifacts and information publicly to clear the way for solving the problem of 

reproducibility and replication. 

The wide variety of performance measures provided in the research presents 

another challenge in utilizing the SDP literature that already exists (Y. Yang et al. 2022). 

Multiple-number assessment criteria make it more difficult to evaluate ML models (Ng 

2019). Therefore, using a suitable number of measures rather than a single-number 

evaluation measure is recommended whenever that is not practicable. Unfortunately, 

researchers have not come to an agreement on a standard set of performance measures 

for evaluating SDP models (Giray et al. 2023). To evaluate different aspects of the 

models, we used three performance measures. We were able to compare our findings with 

certain research that accurately reported performance measures. To address this issue, we 

publish the values for a variety of performance measures that were obtained throughout 

the experiment in the online repository1. 

Despite the challenges with SDP, there is a lot of interest in defect predictors 

because alternative testing approaches are more expensive and time-consuming. Out of 

395 practitioners, more than 90% said that they would be willing to embrace SDP models 

(Wan et al. 2020). Interest in SDP models and calls for further research have been 

reported in the literature (Zimmermann et al. 2009; Lewis et al. 2013). Therefore, we 

think that MBA may have additional advantages for creating better predictors. The 

prospective MBA enhancement opportunities are detailed in chapter 6 and reserved for 

future investigation.  
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5.6. Threats to Validity  

The data that are used to produce our experimental results is a threat to validity because 

there are some differences between our software measure dataset and other studies, as we 

discussed and stated the possible reasons in section 4.2. We must exclude some of the 

projects of PROMISE dataset as we discussed in section 4.1. All the projects used were 

from the PROMISE repository and were heavily utilized in numerous defect prediction 

studies. Because we used a limited number of repositories as datasets, our findings might 

not be appropriate for all software projects. 

  The collection of software measures we utilized to create SDP models is one of 

the potential threats to our results. Our findings can not be generalized to different 

software measures in general. Static code measures appear to perform well, according to 

earlier research (Menzies et al. 2010). However, it might be beneficial to add measures 

to the measure suite that have been shown to be useful in the literature, such as Similarity-

based Class Cohesion (Al Dallal and Briand 2010). Additionally, as we discussed in 

section 5.3, variety and combinations of mutants are important for MBA.  

The ML methods that we used in our setup are another threat to validity. In our 

study, we only used five different ML methods. We could not validate our results with 

many other algorithms because of time limitations, but we chose the five ML methods 

with respect to popularity and success in SDP. Data science is a very large and dynamic 

field with many different algorithms. State-of-the-art approaches, in particular, are built 

with deep learning models, but deep learning models require a large number of instances 

in training datasets (Giray et al. 2023). Because the dataset in our study was limited, we 

did not use deep learning techniques. 

We randomly divided the training datasets into training (80%) and validation 

(20%) sets as part of the ML model training process. We used a five-fold cross-validation 

procedure and presented the average findings to lessen the impact of this random split. 

The selection of hyperparameters during model training presents another threat. We 

utilized grid search to optimize a pool of hyperparameters that we had chosen from the 

literature, as given in Table 9. This is justified by the fact that meta-heuristic methods can 

assist in computing the ideal values and that random selection of hyperparameters may 

result in lower prediction performance (N. Zhang et al. 2022). 
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The variety of over-sampling methods that we used in our analysis is a threat to 

validity. We used five different over-sampling methods with MBA and Baseline in our 

experiments. Even if we choose these methods with respect to popularity in SDP, there 

are other sampling strategies that we did not include. Therefore, we could not validate 

our results with many other over-sampling algorithms because of space and time 

limitations. 
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CHAPTER 6. 

CONCLUSION AND FUTURE WORK 

 The high degree of class imbalance in most real-world defect datasets makes 

resampling techniques necessary to alleviate CIP. Synthetic minority data instances are 

produced to balance the distribution between minority and majority class samples in over-

sampling techniques. It has been stated that these synthetic approaches improve 

prediction performance, but they occasionally produce duplicate or inaccurate data 

instances. Additionally, these over-sampling techniques are domain-agnostic, so the only 

source is the instances that are minor in the dataset. Therefore, new instances must be 

similar to the minor instances, which already have less diversity. Exploiting these 

challenges, we proposed an alternative approach that transforms major class instances 

into minor class instances with software mutants. Our motivation is balancing the class 

ratio in the dataset with synthetic mutants and strengthening minor class instance 

diversity from different than current over-sampling techniques.  

We empirically evaluated MBA by comparing it to five other over-sampling 

approaches (SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, and SVM SMOTE) 

and Baseline using five ML methods (KNN, NB, DT, RF, and SVM). We used 13 and 19 

imbalanced datasets, whose minor class is defective, for IRDP and CPDP scenarios, 

respectively. In total, 945 and 1015 different experiment instances were produced for 

IRDP and CPDP scenarios respectively. In the IRDP scenario, almost all rebalancing 

techniques increased recall compared to Baseline; however, in the CPDP scenario, only 

MBA consistently outperformed the Baseline. According to reports in the literature, the 

improvement in recall resulted in the production of more false alarms (Menzies, 

Greenwald, and Frank 2007; Turhan et al. 2009; Hosseini, Turhan, and Gunarathna 2019). 

Only three datasets—Lucene, Poi, and Xerces for the IRDP scenario and Poi, Velocity, 

and Xalan for the CPDP scenario—were used by MBA to get the best AUC values for 

each scenario. Therefore, we can not draw the conclusion that an MBA always improves 

AUC. The median AUC values range between 0.53 and 0.90 for the CPDP scenario and 

0.35 - 0.63 for the IRDP scenario, indicating that the recall values for the CPDP scenario 

were greater than those for IRDP. 
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In terms of Wilcoxon signed-rank tests, our experimental results show that: 

• For recall scores, almost all rebalancing methods outperformed Baseline in Inter-

release Defect Prediction (IRDP) scenario but only MBA significantly 

outperformed Baseline in Cross-project Defect Prediction (CPDP) scenario. 

• As stated in literature, the performance increase in recall resulted in the production 

of more false alarms for both scenarios. 

• Only three datasets—Lucene, Poi, and Xerces for the IRDP scenario and Poi, 

Velocity, and Xalan for the CPDP scenario— used by MBA resulted in the best 

AUC values, so we can not generalize that MBA outperforms Baseline and the 

five over-sampling strategies in terms of AUC scores. 

• In terms of recall values, the MBA performed better in CPDP than IRDP; 

specifically, the CPDP scenario's range for median recall values is between 0.53 

and 0.90, whereas the IRDP scenario's range is between 0.35 and 0.63.  

We also investigated the correlation between the change percentage of software measures 

(SMC) and performance measures. For both IRDP and CPDP scenarios, in terms of 

Kendall’s Tau correlation analysis, our results show that: 

• There was a significant and positive correlation between SMC and recall. 

• There was also a significant and positive correlation between SMC and false 

alarm. 

• On the other hand, there was no significant correlation between SMC and AUC. 

• NB is the less impacted ML method from software measure changes by MBA. 

We see the following areas of future investigation for ourselves and other possible 

researchers based on the limitations and threats to the validity of our study: 

• To increase prediction performance, the set of mutation operators can be 

expanded to simulate a greater variety of software defects. Overriding, 

overloading, method deletion, and access modifier change operators are examples 

of additional mutation operators (Ma and Offutt 2005). 

• With the use of datasets created using several programming languages, this 

experiment can be repeated. These programming languages must provide a 

mutation tool, such as Python's MutPy (Hałas 2011). 

• Additional software measures, such as Similarity-based Class Cohesion, can be 

added to the existing collection of software measures (Al Dallal and Briand 2010). 
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• Source code can be represented by other schemes, such as AST (Liang et al. 2019) 

or image (J. Chen et al. 2020). 

• Researching the effectiveness of MBA for small-scale and large-scale projects can 

be another interesting direction (Majumder, Mody, and Menzies 2022). 
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 APPENDIX A. 

IRDP SCENARIO: AUC, PD AND PF VALUES OF 

BASELINE AND DIFFERENT DEFECT LEVELS (0.3, 0.4, 

AND 0.5 DEFECT RATIO) OF MBA FOR EACH DATASET 
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Figure A.1. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (1/4) 
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Figure A.2. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (2/4) 
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Figure A.3. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (3/4) 
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Figure A.4. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (4/4) 
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 APPENDIX B. 

IRDP SCENARIO: NUMBER OF CHANGED MEASURES 

ON DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 

DEFECT RATIO) OF MBA FOR EACH DATASET 
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Figure B.1. Number of changed measures on different defect levels (0.3, 0.4, and 0.5 
defect ratio) of MBA for each dataset (1/2) 
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Figure B.2. Number of changed measures on different defect levels (0.3, 0.4, and 0.5 
defect ratio) of MBA for each dataset (2/2) 
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 APPENDIX C. 

CPDP SCENARIO: NUMBER OF CHANGED MEASURES 

ON DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 

DEFECT RATIO) OF MBA FOR EACH DATASET 
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Figure C.1. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (1/16) 
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Figure C.2. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (2/16) 



 

 

 

103 

 

Figure C.3. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (3/16) 
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Figure C.4. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (4/16) 
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Figure C.5. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (5/16) 
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Figure C.6. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (6/16) 
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Figure C.7. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (7/16) 
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Figure C.8. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (8/16) 
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Figure C.9. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and 
0.5 defect ratio) of MBA for each dataset (9/16) 
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Figure C.10. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (10/16) 
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Figure C.11. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (11/16) 
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Figure C.12. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (12/16) 
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Figure C.13. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (13/16) 
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Figure C.14. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (14/16) 
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Figure C.15. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (15/16) 
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Figure C.16. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, 
and 0.5 defect ratio) of MBA for each dataset (16/16) 



 

 

 

117 

 APPENDIX D. 

CPDP SCENARIO: NUMBER OF CHANGED MEASURES 

ON DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 

DEFECT RATIO) OF MBA FOR EACH DATASET 
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Figure D.1. Number of changed measures on different defect levels (0.3, 0.4, and 0.5 
defect ratio) of MBA for each dataset (1/2) 
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Figure D.2. Number of changed measures on different defect levels (0.3, 0.4, and 0.5 
defect ratio) of MBA for each dataset (2/2) 


