

A MUTATION-BASED APPROACH TO
ALLEVIATE THE CLASS IMBALANCE PROBLEM

IN SOFTWARE DEFECT PREDICTION

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Dinçer GÜNER

June 2023
İZMİR

We approve the thesis of Dinçer GÜNER

Examining Committee Members:

Prof. Dr. Onur DEMİRÖRS
Department of Computer Engineering, Izmir Institute of Technology

Assoc. Prof. Dr. Tuğkan TUĞLULAR
Department of Computer Engineering, Izmir Institute of Technology

Prof. Dr. Geylani KARDAŞ
International Computer Institute, Ege University

 19 June 2023

_____________________________ _____________________________
Prof. Dr. Onur DEMİRÖRS Dr. Görkem GİRAY
Supervisor, Department of Computer Co-supervisor, Independent
Engineering Researcher
İzmir Institute of Technology

_____________________________ _____________________________
Prof. Dr. Cüneyt F. BAZLAMAÇCI Prof. Dr. Mehtap EANES
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

I would like to thank …

…my supervisor Prof. Dr. Onur Demirörs, not only for his experience and

excellent guidance but also for his continued trust and patience through my

master’s study.

…my co-supervisor Dr. Görkem Giray, for his support, valuable contributions,

and encouragement through this journey. He has been inspiring for me.

…my family for their endless support throughout my whole life.

 iv

ABSTRACT

A MUTATION-BASED APPROACH TO ALLEVIATE THE CLASS
IMBALANCE PROBLEM IN SOFTWARE DEFECT PREDICTION

Highly imbalanced training datasets considerably degrade the performance of

software defect predictors. Software Defect Prediction (SDP) datasets have a general

problem, which is class imbalance. Therefore, a variety of methods have been developed

to alleviate Class Imbalance Problem (CIP). However, these classical methods, like data-

sampling, balance datasets without connecting any relation with SDP. Over-sampling

techniques generate synthetic minor class instances, which generalize a small number of

minor class instances and result in less diverse instances, whereas under-sampling

techniques eliminate major class instances, resulting in significant information loss. In

this study, we present an approach that uses software mutations to balance software

repositories. Mutation-based Approach (MBA) injects mutants into defect-free instances,

causing them to transform into defective instances. In this way, MBA balances datasets

with diverse data produced by mutation operators, and there is no loss on instances as in

under-sampling.

For recall scores, almost all rebalancing methods outperformed Baseline in Inter-

release Defect Prediction (IRDP) scenario but only MBA significantly outperformed

Baseline in Cross-project Defect Prediction (CPDP) scenario. The performance increase

in recall resulted in the production of more false alarms. We can not generalize that MBA

outperforms Baseline and the five over-sampling strategies in terms of AUC scores. In

terms of recall values, the MBA performed better in CPDP than IRDP.

For both IRDP and CPDP scenarios, there were significant and positive

correlations between SMC (the change percentage of software measures) and recall, and

SMC and false alarm but there was no significant correlation between SMC and AUC.

 v

ÖZET

YAZILIM HATA TAHMİNİNDE SINIF DENGESİZLİK PROBLEMİNİ
AZALTMAK İÇİN MUTASYON TABANLI BİR YAKLAŞIM

Yüksek düzeyde dengesiz eğitim veri kümeleri, yazılım hatası tahmin edicilerinin

performansını önemli ölçüde düşürür. Yazılım Hata Tahmini (SDP) veri kümelerinde

genel olarak bulunan problem sınıf dengesizliğidir. Bu nedenle, Sınıf Dengesizliği

Probleminin (CIP) getirdiği zorluğu hafifletmek için çeşitli yöntemler geliştirilmiştir.

Bununla birlikte, veri örnekleme gibi klasik yöntemler, veri kümelerini SDP ile bir

bağlantı kurmadan dengeler. Aşırı örnekleme teknikleri, az sayıda küçük sınıf örneğini

genelleştiren ve daha az çeşitli örneklerle sonuçlanan sentetik küçük sınıf örnekleri

üretirken, yetersiz örnekleme teknikleri, önemli bilgi kaybına neden olan büyük sınıf

örneklerini ortadan kaldırır. Bu çalışmada, yazılım depolarını dengelemek için yazılım

mutasyonlarını kullanan bir yaklaşım sunduk. Mutasyon Tabanlı Yaklaşım (MBA),

mutantları hatasız örneklere enjekte ederek hatalı örneklere dönüşmelerine neden olur.

Bu şekilde MBA, veri kümelerini mutasyon operatörleri tarafından üretilen çeşitli

verilerle dengeler ve düşük örneklemede olduğu gibi örneklerde kayıp olmaz.

Duyarlılık (recall) puanlarına göre, Çapraz Versiyon Hata Tahmini (IRDP)

senaryosu için hemen hemen tüm yeniden dengeleme yöntemleri Baseline’dan daha iyi

bir performans gösterirken yalnızca MBA, Çapraz Proje Hata Tahmini (CPDP)

senaryosunda Baseline’dan daha iyi bir performans gösterdi. Duyarlılık puanlarındaki

performans artışı daha fazla yanlış alarm üretilmesiyle sonuçlandı. AUC puanlarına göre

MBA’nın Baseline’den ve beş aşırı örnekleme yönteminden daha iyi performans

gösterdiğini genelleyemeyiz. Duyarlılık değerleri açısından; MBA, IRDP senaryosunda

CPDP senaryosundan daha iyi performans gösterdi.

Hem CPDP senaryosunda hem de IRDP senaryosunda, SMC (yazılım

ölçülerindeki değişim yüzdesi) ile duyarlılık, ve SMC ile yanlış alarm aralarında anlamlı

ve pozitif bir korelasyon mevcuttur ama SMC ile AUC arasında anlamlı ve pozitif bir

korelasyon mevcut değildir.

 vi

TABLE OF CONTENTS

 LIST OF FIGURES .. viii

 LIST OF TABLES ... x

 CHAPTER 1. INTRODUCTION .. 1

1.1. Software Defect Prediction .. 2

1.2. Class Imbalance Problem .. 6

1.3. Sampling Approaches for Class Imbalance Problem 6

1.3.1. Under-Sampling .. 8

1.3.2. Over-Sampling .. 8

1.4. Problem Statement ... 9

1.5. Objective and Research Questions .. 10

1.6. Research Approach .. 10

1.7. Overview ... 12

 CHAPTER 2. LITERATURE REVIEW ... 13

 CHAPTER 3. PROPOSED APPROACH ... 15

3.1. Choice of Mutation Tool ... 16

3.2. Balancing Software Repository with Mutants 18

 CHAPTER 4. EXPERIMENTAL DESIGN .. 19

4.1. Dataset ... 20

4.2. Software Measures Calculation ... 26

4.3. Data Preprocessing .. 35

4.4. Hyperparameter Tuning ... 36

4.5. Performance Measure .. 38

4.6. Summary of Experimental Designs ... 40

 vii

4.6.1. Baseline Experimental Design .. 41

4.6.2. Over-sampling-based Experimental Design 42

4.6.3. Mutation-based Experimental Design ... 43

4.7. Performance Comparison .. 44

 CHAPTER 5. RESULTS AND DISCUSSION ... 45

5.1. Performance Evaluation of Rebalancing Methods for IRDP Scenario 46

5.2. Performance Evaluation of Rebalancing Methods for CPDP Scenario

 ... 52

5.3. Stability of MBA for IRDP Scenario .. 59

5.4. Stability of MBA for CPDP Scenario ... 65

5.5. General Discussion .. 70

5.6. Threats to Validity ... 74

 CHAPTER 6. CONCLUSION AND FUTURE WORK ... 76

 REFERENCES .. 79

 APPENDICES

 APPENDIX A. IRDP SCENARIO: AUC, PD AND PF VALUES OF BASELINE

AND DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 DEFECT

RATIO) OF MBA FOR EACH DATASET .. 92

 APPENDIX B. IRDP SCENARIO: NUMBER OF CHANGED MEASURES ON

DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 DEFECT

RATIO) OF MBA FOR EACH DATASET .. 97

 APPENDIX C. CPDP SCENARIO: NUMBER OF CHANGED MEASURES ON

DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 DEFECT

RATIO) OF MBA FOR EACH DATASET 100

 APPENDIX D. CPDP SCENARIO: NUMBER OF CHANGED MEASURES ON

DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5 DEFECT

RATIO) OF MBA FOR EACH DATASET 117

 viii

 LIST OF FIGURES

Figure Page

Figure 1. SDP Process (Source: Giray et al., 2023) .. 2

Figure 2. WRDP process .. 3

Figure 3. IRDP process ... 4

Figure 4. CPDP process .. 5

Figure 5. Differences between under-sampling and over-sampling (Source: Robles

Velasco et al., 2021) ... 7

Figure 6. Methodological approach .. 11

Figure 7. MBA for CIP ... 15

Figure 8. Balancing process with mutants .. 18

Figure 9. Experimentation process ... 19

Figure 10. Comparison of software measures presented in Jureczko’s study and calculated

in our experiment with ckjm-extended 2.1 on ant 1.3 32

Figure 11. Comparison of software measures presented in Jureczko’s study and calculated

in our experiment with ckjm-extended 2.2 on ant 1.3 32

Figure 12. Comparison of software measures presented in Jureczko’s study and calculated

in our experiment with ckjm-extended 2.3 on ant 1.3 33

Figure 13. Comparison of software measures calculated by Java SDK 1.6 and calculated

by Java SDK 1.7 with ckjm-extended 2.2 on ant 1.3 34

Figure 14. Baseline experimental design .. 41

Figure 15. Over-sampling-based experimental design ... 42

Figure 16. Mutation-based experimental design ... 43

Figure 17. IRDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for

Baseline, MBA, over-sampling techniques per each ML algorithm 47

Figure 18. IRDP Scenario: Wilcoxon test win-tie-loss comparison of MBA vs. Baseline,

SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, SVM SMOTE across

all datasets per each ML algorithm and performance measures (AUC, pd, and

pf) .. 48

Figure 19. CPDP Scenario: Quartile plots of performance measures (AUC, pd, and pf)

for Baseline, MBA, over-sampling techniques per each ML algorithm 53

 ix

Figure 20. CPDP Scenario: Wilcoxon test win-tie-loss comparison of MBA vs. Baseline,

SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, SVM SMOTE across

all datasets per each ML algorithm and performance measures (AUC, pd, and

pf) .. 55

Figure 21. IRDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for

Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm 61

Figure 22. IRDP Scenario: The scatter plots of performance measures (AUC, pd, and pf)

for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm 64

Figure 23. CPDP Scenario: Quartile plots of performance measures (AUC, pd, and pf)

for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm 66

Figure 24. CPDP Scenario: The scatter plots of performance measures (AUC, pd, and pf)

for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm 69

 x

 LIST OF TABLES

Table Page

Table 1. Sampling techniques for SDP ... 7

Table 2. Mutation operators implemented in Major ... 17

Table 3. Public datasets for SDP .. 20

Table 4. Selected projects and versions in our dataset ... 21

Table 5. Defect ratios of the projects .. 23

Table 6. Training and testing dataset pairs used in experiments 24

Table 7. Software measures definitions (Source: Jureczko & Spinellis, 2010) 26

Table 8. Software measures of four instances of Ant 1.3 ... 35

Table 9. Tuned hyperparameters for ML models ... 37

Table 10. Confusion Matrix for Binary Classification (Source: Moussa & Sarro, 2022)

 .. 39

Table 11. The definition of the performance measures (Source: Moussa & Sarro, 2022)

 .. 40

Table 12. IRDP Scenario: Rankings for performance measures in terms of wins (W),

losses (L), wins-losses (W-L), and ties (T) ... 50

Table 13. IRDP Scenario: Median values for AUC, pd, and pf for each dataset 51

Table 14. CPDP Scenario: Rankings for performance measures in terms of wins (W),

losses (L), wins-losses (W-L), and ties (T) ... 57

Table 15. CPDP Scenario: Median values for AUC, pd, and pf for each dataset 58

Table 16. IRDP Scenario: Kendall's Tau correlation analysis between SMC and each

performance measure per each ML algorithm .. 63

Table 17. CPDP Scenario: Kendall's Tau correlation analysis between SMC and each

performance measure per each ML algorithm .. 68

 1

CHAPTER 1.

INTRODUCTION

Software quality assurance is the process of observing the software development

process in order to achieve the expected software quality at the lowest possible cost.

Formal code inspections, code reviews, software testing, and Software Defect Prediction

(SDP) may all be used to improve quality (Rathore and Kumar 2019). In software

engineering, identifying buggy code sections is a crucial task to enable the development

of better-quality software. Decreasing the number of defects or locating some of the

defective components before testing and production pipelines may lead to significant

resource saving. Hence, it would be possible to utilize an organization’s resources,

increasing its profit. The potential use of SDP models to identify defective software

modules from the beginning of the software development life cycle has generated a lot of

interest over the past 20 years (Rathore and Kumar 2019). Previously, studies on SDP

used a variety of Machine Learning (ML) techniques to predict buggy software modules.

According to the findings of these studies, the techniques did not perform as well as

expected, and the suitability of the techniques has been another research topic for SDP

(Catal 2011). SDP models had an accuracy of between 70% and 85% but produced more

false alarms (Venkata et al. 2006; Elish and Elish 2008; Guo et al. 2003). One of the main

problems related to SDP is Class Imbalance Problem (CIP), which causes biased SDP

models (Menzies et al. 2010). Data sampling techniques are commonly used to solve the

CIP (Bennin et al. 2018). Generally, data sampling approaches are weak at increasing

data variety in nature (Chawla et al., 2002; Han Hui and Wang, 2005; H. He et al., 2008).

SDP models built with less diverse data perform poorly. In this study, we proposed a

Mutation-based Approach (MBA) to alleviate CIP in SDP by injecting software mutants

into defect-free modules, which are generally the majority of software prediction datasets.

As a result, we were able to balance SDP datasets with highly diverse transformed

defective instances, potentially improving SDP model performance.

 2

1.1. Software Defect Prediction

SDP aims to predict software blocks with defects. SDP process is modeled in

Figure 1. Firstly, software attributes are required for the prediction process in order to

create an ML model or do statistical analysis. These attributes are extracted from a

software repository. Software attributes are features such as lines of code, the number of

people who contributed to the project, images of code blocks, etc. Software attributes are

used to build prediction models. We can identify whether any new software blocks are

defective using the prediction model.

Figure 1. SDP Process (Source: Giray et al., 2023)

As a software attribute, software measures are commonly used features in SDP.

Software measures are numerical values used to assess the quality of a code partition

quantitatively. In the literature, software measures are studied in two groups: product

measures and process measures.

Product measures are attributes of a software repository that are extracted from

source codes. These attributes identify a snapshot of the project. Source code is inspected

from the perspective of some features like lines of code, complexity, functional

aggregation, inheritance, etc. (Subramanyam and Krishnan 2003; Nagappan, Ball, and

Zeller 2006; Gyimothy, Ferenc, and Siket 2005). Product measures are different from

process measures in that they do not include information about the history of

development.

Process measures are attributes extracted from historical information about

projects. Process measures can be derived from a source code management system. For

instance, the number of code additions and deletions, the number of different developers,

the number of modified lines, etc. (Nagappan and Ball 2005; Moser, Pedrycz, and Succi

2008; Hassan 2009).

 3

SDP is divided into three types of scenarios: within-release (intra-release) defect

prediction, inter-release (cross-release) defect prediction, and cross-project SDP (Rathore

and Kumar 2019).

Within-release defect prediction (WRDP) refers to a scenario of prediction in

which training and testing datasets belong to a specific version of a project. The same

release is used for model building and performance evaluation.

Figure 2. WRDP process

Inter-release defect prediction (IRDP) refers to a scenario of prediction in

which the training dataset is chosen from previous releases of a project and the testing

dataset is taken from a version of the project released after the one used for the training

dataset.

 4

Figure 3. IRDP process

Cross-project defect prediction (CPDP) refers to a scenario of prediction in

which the training dataset is created from different software projects and the testing data

is created from different projects used for the training dataset.

 5

Figure 4. CPDP process

As shown in Figure 2, Figure 3, and Figure 4, for all scenarios, the SDP model is

the most important component of the SDP process because all efforts are made to make

better predictions, and choosing the right prediction technique is critical to building a

better SDP model. Prediction techniques can be categorized as Supervised, Semi-

supervised, and Unsupervised. Supervised techniques require a dataset with all instances

labeled. The model draws boundaries or defines prediction methodologies with respect to

the labels of training instances, and any new testing instances are assigned the label of

the training instances to which they are most similar. Supervised techniques are

investigated under two groups, which are classification and regression. Classification is

the term used to describe a procedure whose output is a category. Regression is the name

of the procedure when the result is a continuous variable. For the SDP, if a technique

answers whether a software block is defective or not, it is classification; if it responds to

how many defects are in a software block, it is regression. Unsupervised techniques do

not need a labeled dataset. Unsupervised techniques group dataset instances with respect

to the features. Semi-supervised techniques combine a small set of labeled instances with

 6

many unlabeled instances for model building. A model is first built using a small, labeled

set, and then unlabeled data is labeled using this model. All instances are used to build a

new model that produces better outcomes. In most studies, researchers prefer to use

supervised techniques for SDP because supervised techniques perform better than other

techniques. Many prediction techniques have the fundamental problem of assuming that

all classes in a dataset are equally balanced (Weiss and Provost 2001; Yoon and Kwek

2007). Therefore, prediction models that are trained with imbalanced datasets usually

produce inaccurate results (Provost 2008). As a result, CIP is widely acknowledged as

one of the main reasons why SDP algorithms underperform (Hall et al. 2012; Arisholm,

Briand, and Johannessen 2010).

1.2. Class Imbalance Problem

CIP indicates an unbalanced distribution of a dataset. Major classes refer to those

that have more instances than other classes, and minor classes refer to those that have

fewer instances than other classes. In SDP, most of the dataset has CIP, and generally,

the major class is defect-free whereas the minor class is not (Sayyad Shirabad and

Menzies 2005). The prediction techniques commonly fail to identify the minority

defective components when predicting the occurrence of software defects if the major

class is non-defective. ML models are biased when they are built with an imbalanced

dataset. Menzies et al. highlighted that the performances of prediction techniques can be

enhanced by using data sampling techniques, as software defect datasets are extremely

prone to the CIP (Menzies et al. 2007). In the literature, many methods have been studied

to solve CIP. These approaches are evaluated in the subsections on over-sampling and

under-sampling, which are covered in Section 1.3.

1.3. Sampling Approaches for Class Imbalance Problem

Data sampling is the process of producing or reducing some of the instances of a

class in a dataset. As shown in Figure 5, there are two types of sampling: under-sampling

and over-sampling. Under-sampling methods eliminate samples, while over-sampling

methods add samples in the reverse way of under-sampling.

 7

Figure 5. Differences between under-sampling and over-sampling (Source: Robles
Velasco et al., 2021)

Sampling is a very common method to solve CIP in SDP (Bennin et al. 2018).

There are many sampling approaches. Each technique has a different feature and serves

a different purpose. These techniques are used to organize the data distribution. The

organization of data distribution is important, but so is the quality of the instances. In the

following sub-sections, we discussed some of the most commonly used sampling

methods in SDP, which are stated in Table 1.

Table 1. Sampling techniques for SDP

Under-sampling Over-sampling

Near-Miss (NM) Synthetic Over-sampling Technique

(SMOTE)

Instance Hardness Threshold (IHT) Borderline-SMOTE

Cluster Centroids (CC) Support Vector Machines (SVM)

SMOTE

Random Under-sampling (RUS) SMOTE Nominal

 Random Over-sampling (ROS)

 8

1.3.1. Under-Sampling

Under-sampling approaches delete instances belonging to major classes from the

dataset until the class distribution is fixed to alleviate CIP. Under-sampling causes

reduced information. In the literature, many under-sampling techniques have been

proposed. Random Under-sampling technique selects a major sample and deletes it until

the class distribution is fixed. ROS can not manage which data sample is deleted. It's

possible that a more representative data sample is removed, and crucial data is lost in the

dataset. Under-sampling methods differ in terms of the selection of instances to be

deleted. Preserving valuable data for learning is very important. Zhang and Mani present

Near Miss Under-sampling algorithm that uses K-nearest neighbors’ algorithm to select

major instances to delete with respect to their distance to minor class instances (J. Zhang

and Mani 2003). Smith, Martinez, and Giraud-Carrier provide an algorithm called

Instance Hardness Threshold in which a classifier is trained on the original dataset, and

the major class instances with low probabilities are deleted (Smith, Martinez, and Giraud-

Carrier 2014). Cluster Centroids algorithm was proposed by Yen and Lee as a method for

under-sampling the majority class by replacing a cluster of majority instances with the

cluster centroid of a K-Means algorithm (Yen and Lee 2006).

1.3.2. Over-Sampling

Over-sampling creates new instances that belong to minor classes in the dataset

until the class distribution is fixed to balance the dataset. Generating new instances from

a small number of samples causes overfitting which may result in poorer prediction

performance. In the literature, many over-sampling techniques have been proposed. Over-

sampling methods differ in terms of instance generation logic. Strengthening class

boundaries, reducing over-fitting, and improving discriminating were all subjects that

were taken into consideration to improve the effectiveness of over sampling strategies

(Johnson and Khoshgoftaar 2019). Random Over-sampling (ROS) technique randomly

selects a minor sample and clones it until the class distribution is fixed. This approach

creates samples that are identical to one another, and the ML model starts to overfit

specific samples (Van Hulse, Khoshgoftaar, and Napolitano 2007). Synthetic Over-

 9

sampling Technique (SMOTE) was introduced by Chawla et al. (Bowyer et al. 2011).

SMOTE generates new minor class instances by interpolating minor instances and their

nearest minor class neighbors. SMOTE method has several variants, such as Borderline-

SMOTE (Han Hui and Wang, 2005), which applies SMOTE with borderline samples;

Support Vector Machines (SVM) SMOTE (Nguyen, Cooper, and Kamei 2011), which

applies SMOTE with samples detected with SVM; and SMOTE Nominal (Bowyer et al.

2011), which expects that the data being resampled only contains categorical features.

1.4. Problem Statement

To solve the CIP in SDP, several sampling methods have been used. We discussed

some of the sampling methods in section 1.3. The main difficulty with the sampling

strategies is creating a balanced dataset with the proper instances to train better defect

predictors. Software measures are accepted by sampling methods as a collection of

numbers with no explanation of what these numbers mean. These methods balance

datasets by using these numbers without connecting any relation with SDP. Even if the

numbers come from a different domain, the sampling methods produce the same results.

This situation can be interpreted as sampling methods being general-purpose methods

that can be applied to any problem. Lack of domain knowledge, on the other hand, reduces

the performance of ML models. Because of that, rather than using over-sampling

techniques to alleviate CIP, we injected software mutants into defect-free code instances.

Therefore, instead of over-sampling for defective classes by using these techniques, we

try to create a domain-specific rebalancing method by adding real faults to the dataset.

We used software mutation tools to generate real faults. As described in chapter 3,

software mutation tools are typically used to improve software testing suites, but we used

them to solve CIP in SDP. Since MBA is specific to the SDP domain, we predict that it

can improve the performance of ML models. MBA transforms defect-free instances into

defective instances by using software mutation operators different from sampling

methods, as shown in Figure 9, and CIP is solved by injecting mutants into the defect-

free instances as detailed in chapter 3. In order to observe the impact of MBA on software

measures, we also calculated the change percentages of software measures (SMC) for

datasets, and we detailed SMC in section 5.3.

 10

1.5. Objective and Research Questions

The primary objective of this study is to propose an effective approach to alleviate

CIP in SDP.

The research questions of this thesis work are:

RQ1: Does the proposed MBA improve performance over existing over-sampling

approaches and Baseline on IRDP?

RQ2: Does the proposed MBA improve performance over existing over-sampling

approaches and Baseline on CPDP?

RQ3: How does the change percentage of software measures (SMC) affect

performance of MBA on IRDP?

RQ4: How does the change percentage of software measures (SMC) affect

performance of MBA on CPDP?

1.6. Research Approach

The methodological approach consists of three stages:

• Literature review, which includes literature surveys about SDP and CIP in

SDP, such as SDP scenarios, used techniques to build models, used software

measures, suitable performance measures for SDP, and applications.

• Development of rebalancing techniques, which includes the commonly used

five over-sampling techniques in the literature, MBA, and Baseline.

• Comparison of rebalancing techniques, which includes three experimental

designs (detailed in section 4.6), and statistical analysis of performance

measures (detailed in section 4.7).

A graphical representation of the methodological approach is shown in Figure 6.

 11

Figure 6. Methodological approach

 12

1.7. Overview

The thesis consists of 6 main chapters in addition to appendices, Organization of

the chapters follows as:

• Chapter 1 consists of the introduction, which includes background

information, the motivation of the study, and a methodological approach that

explains the steps on which this thesis was founded.

• Chapter 2 provides a literature review about SDP. Because class imbalance is

a widespread issue with SDP datasets, the research's primary aim has shifted

from improving SDP models to balancing the SDP datasets.

• Chapter 3 presents MBA and a mutation tool (Major), as well as the operations

of the mutation tool and how a dataset is balanced with MBA.

• Chapter 4 focuses on the experimental design of our study, which includes

dataset preparation, software measure calculation, data preprocessing,

hyperparameter tuning of ML methods, performance measures, and

performance comparison of rebalancing techniques.

• Chapter 5 covered the performance evaluation results of rebalancing

techniques, the stability of MBA, and threats to validity.

• In Chapter 6, contributions and the future work of our study are given.

 13

CHAPTER 2.

LITERATURE REVIEW

Munson and Khoshgoftaar suggested utilizing prediction models to help in

finding program defects after noticing using simple discriminant analysis that there is a

significant helpful association between software defects and software complexity

measures during development (Munson and Khoshgoftaar 1992). Many conventional

classification techniques, such as tree-based techniques (Menzies, Greenwald, and Frank

2007; Guo et al. 2004; Song et al. 2011), analogy-based strategies (Taghi M.

Khoshgoftaar and Seliya 2003; Emam et al. 2001), neural networks (Quah and Thwin

2003; T. M. Khoshgoftaar et al. 1997), and Bayes methods (Bouguila, Wang, and Ben

Hamza 2008; Turhan and Bener 2009), have been used in SDP. Random Forest (RF) has

been suggested in some of the studies because it is simple, quick to train, and more

resilient (Monden et al. 2013; Lessmann et al. 2008).

The performance of Naïve Bayes (NB) with a log-filtering preprocessor was

empirically demonstrated to be better compared to that of tree-based learning methods by

Menzies et al. (Menzies, Greenwald, et al., 2007). They also asserted that the choice of

learning method is significantly more crucial than the selection of the data subset to be

used for learning. Nevertheless, with a large-scale empirical study, Lessmann et al.

(Lessmann et al. 2008) came to an inconsistent conclusion, suggesting that the

significance of a particular learning technique may be less than the dataset used for

training, as Menzies et al. (Menzies, Greenwald, and Frank 2007) previously stated, and

that there were no significant differences between 17 classification techniques. Moreover,

Song et al. (Song et al. 2011) proposed a more comprehensive and trustworthy study for

SDP in response to Menzies et al.’s (Menzies, Greenwald, and Frank 2007) argument that

the study may be biased. Many researchers stated the success of ML techniques such as

SVM (Kumar et al. 2018), DT (Y. Zhang et al. 2018), and neural networks (Miholca,

Czibula, and Czibula 2018) in SDP (Özakıncı and Tarhan 2018; Goyal and Bhatia 2020;

Erturk and Sezer 2015; Rathore and Kumar 2019). The primary objective of previous

studies has been to improve the performance of SDP. These studies have considered a

variety of methodologies, such as model enhancement, making use of powerful feature

 14

selection, proposing preprocessing methods, and suggesting different measures.

However, all these studies resulted in suboptimal solutions.

The success of SDP models worsens when the dataset is imbalanced (Haixiang et

al. 2017; Galar et al. 2012; L. Chen et al. 2018). Data resampling techniques have been

used to alleviate CIP. There are alternatives to resampling, such as setting weights to the

cost of the classes to reduce misclassification costs (Sun et al. 2007; Pazzani et al. 1994;

Domingos 1999), and adoption of ensemble methods (Wong, Leung, and Ling 2013;

Laradji, Alshayeb, and Ghouti 2015). Resampling is becoming more and more popular

because it is simple to separate from the prediction model and easy to see the impacts on

prediction performance. Researchers are focused on improving the selection of instances

to be removed (Tsai et al. 2019; Vuttipittayamongkol and Elyan 2020; Rao and Reddy

2020; Goyal 2022) and to be used to generate new instances (Qu et al., 2022; Rekha G.

and Shailaja, 2022) for under-sampling and over-sampling, respectively. Resampling

outperforms other methods, considering recent studies (Bennin et al. 2018). We

concentrated on resampling methods, and we provided a review of various resampling

studies in section 1.3. We found MBA is more comparable with over-sampling methods

because MBA increases defective instances as in over-sampling methods. According to

several studies, over-sampling is preferred to under-sampling (Shanab et al. 2012; García,

Sánchez, and Mollineda 2012; Japkowicz and Stephen 2002). Under-sampling eliminates

some of the instances and causes information loss, so the SDP model does not include the

necessary instances to make better predictions. Thus, we considered only over-sampling

methods in our study.

 15

CHAPTER 3.

PROPOSED APPROACH

In this chapter, we have presented the proposed approach, which is a mutation-

based solution for CIP in SDP. We explained how software mutation, which is generally

used for software mutation testing, is used for CIP in SDP.

Software mutation is created by injecting artificial faults. These faults, or mutants,

are used to evaluate testing methodologies such as fault-finding methods, input value

generation models, and oracle solutions (Just, Schweiggert, and Kapfhammer 2011). In

this study, we used software mutants to balance imbalanced datasets in SDP. As shown

in Figure 7, we applied software mutants to some of the parts of the defect-free code

blocks. In this way, the number of defective instances increased while the number of

defect-free instances decreased.

Figure 7. MBA for CIP

Mutants are produced by a tool or framework using mutation operators, which

define the type of mutation, such as changing arithmetic or logical operators, modifying

conditional operators, or deleting statements (Just et al. 2014). The performance of

 16

mutation is commonly studied and compared with hand-seeded defects and real defects

(Andrews, Briand, and Labiche 2005; Just et al. 2014; Namin and Kakarla 2011). The

selection of mutation operators is very critical because increasing the similarity of

mutants with real-life bugs supports the validity of the testing system.

3.1. Choice of Mutation Tool

 Numerous tools and frameworks have been proposed for mutation testing, such

as Jumble, MuJava, Javalanche, and Major (Just, Schweiggert, and Kapfhammer 2011).

Mutation tools differ with respect to their execution time, the number of available

mutation operators, flexibility, and the degree of automation (Just, Schweiggert, and

Kapfhammer 2011). In the literature, the following set of mutation operators are

recommended: constant replacement, operator replacement, branch condition

modification, and statement deletion (Jia and Harman 2011; Just, Kapfhammer, and

Schweiggert 2012; Siami Namin, Andrews, and Murdoch 2008; Offutt et al. 1996). We

decided to use Major as a mutation tool that covers all suggested mutation operators.

Major is integrated into the compiler and does not require any other framework, so it is

easy to use. Also, Major generates mutated source codes. We can manage the number of

mutations and mutation variety with the source codes of mutations. We used the following

mutation operator set listed in Table 2, which is generated by Major.

 17

Table 2. Mutation operators implemented in Major

Mutation operator Example

AOR (Arithmetic Operator Replacement) 𝑎 + 𝑏 → 𝑎 − 𝑏

LOR (Logical Operator Replacement) 𝑎ˆ𝑏 → 𝑎|𝑏

COR (Conditional Operator

Replacement)

𝑎||𝑏 → 𝑎&&𝑏

SOR (Shift Operator Replacement) 𝑎 ≫ 𝑏 → 𝑎 ≪ 𝑏

ORU (Operator Replacement Unary) −𝑎 → ~𝑎

EVR (Expression Value Replacement)

Replaces an expression with a default

value.

𝑟𝑒𝑡𝑢𝑟𝑛	𝑎	 → 𝑟𝑒𝑡𝑢𝑟𝑛	0

𝑖𝑛𝑡	𝑎 = 𝑏 → 𝑎 = 0

LVR (Literal Value Replacement)

Replaces a literal value with a default

value:

- A numerical literal is replaced

with a positive number, a negative

number, and zero.

- A boolean literal is replaced with

its logical complement.

- A String literal is replaced with

the empty String.

0 → 1

1 → −1

1 → 0

𝑡𝑟𝑢𝑒 → 𝑓𝑎𝑙𝑠𝑒

𝑓𝑎𝑙𝑠𝑒 → 𝑡𝑟𝑢𝑒

"𝐻𝑒𝑙𝑙𝑜" → ""

STD (Statement Deletion)

Deletes a single statement:

- return statement

- break statement

- continue statement

- method call

- assignment

- pre/post increment

- pre/post decrement

𝑟𝑒𝑡𝑢𝑟𝑛	𝑎 →< 𝑛𝑜	𝑜𝑝 >

𝑏𝑟𝑒𝑎𝑘 →< 𝑛𝑜	𝑜𝑝 >

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 →< 𝑛𝑜	𝑜𝑝 >

𝑓𝑜𝑜(𝑎, 𝑏) →< 𝑛𝑜	𝑜𝑝 >

𝑎 = 𝑏 →< 𝑛𝑜	𝑜𝑝 >

++ 𝑎 →< 𝑛𝑜	𝑜𝑝 >

−− 𝑎 →< 𝑛𝑜	𝑜𝑝 >

 18

3.2. Balancing Software Repository with Mutants

We used Major mutation testing tool to increase the number of defects. Major lists

multiple mutation operators for a statement. The number of mutants in a file is dependent

on the number and type of mutants that Major can apply to the file. We applied mutations

starting from the top of the listed mutation operators. We excluded some of the mutation

operators for some of the files because some of the mutants caused compilation failures.

A failed compilation is not suitable for our study because we produce necessary attributes

from compiled object codes. Just et al. removed some of the tests that cause compilation

errors because they could not include failed cases (Just et al., 2014).

Since SDP is performed at the file level in our study, every prediction can be used

to determine whether a certain file is defective or not. We transformed some of the defect-

free files into defective files by injecting mutants to balance the software repository. We

started to balancing process presented in Figure 8 by calculating all possible mutants for

every file in the repository. And then, we excluded some of the mutants that cause

compilation errors. We generated new source code files with mutants for some of the

defect-free files. Regarding the order of Major's mutant insertion and the number of files

required to balance the repository, we chose the defect-free files. As a result, the

balancing process is completed. The SDP process in MBA differs from that depicted in

Figure 1. The task of balancing the dataset was moved ahead of attribute extraction

because mutants were directly applied to source codes.

Figure 8. Balancing process with mutants

 19

CHAPTER 4.

EXPERIMENTAL DESIGN

The experiment setups were shaped by the research questions. We need to observe

the performance difference between Baseline, existing over-sampling approaches, and

MBA. Keeping the original dataset for Baseline, data-sampling for over-sampling

methods, and mutant injection for MBA are the three different situations for our

experimental setup. As we stated in section 3.2, the mutant injection process must be done

before software measures calculations. For over-sampling approaches, data-sampling is

done after the data preprocessing stage. The difference between MBA and over-sampling

approaches resulted in different experiment setups, and Baseline experiment setup has no

step for balancing, so three experiment setups are proposed in our study. We carried out

our research for two separate SDP scenarios, IRDP and CPDP. Because the nature of the

training and testing datasets differentiates the IRDP scenario from the CPDP scenario,

we performed three distinct experimental designs twice.

There are six main parts of the experimental setups, which are software repository

preparation, software measures calculation, data preprocessing, ML hyperparameter

tuning, performance evaluation of the ML models, and performance comparison, as

shown in Figure 9.

Figure 9. Experimentation process

 20

Below, we described the stages of experimental design in detail. We discussed

our actions to increase the validity of our study. We chose commonly used software

repositories, over-sampling, data preprocessing, and ML techniques. We used statistical

tests to determine the statistical significance of the performance comparison.

4.1. Dataset

The software engineering research community frequently uses a collection of

datasets to build models for SDP (Sayyad Shirabad and Menzies 2005). Also, as we

pointed out in section 1.1, supervised learning needs a training set to build an ML model.

Several datasets, some of which are listed in Table 3, are publicly available (Ferenc et al.

2018). We defined the following criteria to select our training and testing datasets:

1. The source code must be publicly available because our solution includes

software mutation, and we must be able to compile mutated source codes.

2. We need to know which part of the code is defective.

3. Defect labels must be available and associated with the relevant code

elements.

Table 3. Public datasets for SDP

Dataset Source

PROMISE (Sayyad Shirabad and Menzies 2005)

Eclipse Bug Dataset (Zimmermann, Premraj, and Zeller 2007)

Bug Prediction Dataset (D’Ambros, Lanza, and Robbes 2010)

Bugcatchers Bug Dataset (Hall et al. 2014)

GitHub Bug Dataset (Tóth Zoltán and Gyimesi, 2016)

PROMISE is one of the largest datasets for SDP. One of the main datasets in the

PROMISE was given by Jurezcko and Madeyski (Jureczko and Madeyski 2010). There

are lots of popular projects in the dataset, such as Ant, Camel, Forrest, Ivy, JEdit, Log4j,

Lucene, PBeans, Synapse, Velocity, Xalan and Xerces. The advantage of choosing well-

 21

known projects is that it is possible to find lots of available resources which are highly

needed while compiling and deciding the dependencies of the projects. It is the main

reason why we chose PROMISE to increase the validity of our study. The modules of

these projects, which were developed in Java, were subjected to 20 static software

measures. Defective modules are labeled with the total number of defects contained in

the module, while non-defective modules are labeled with zero. Source codes for datasets

are publicly available.

We had to be sure that the source codes that were used to create PROMISE and

the publicly available versions that we used to apply for MBA were the same, but Ferenc

et al. stated that some of the modules in the source code do not match the published

modules by Jureczko (Ferenc et al. 2018). Therefore, we could not include all the versions

of projects. We decided to include or exclude projects with respect to the reasons in Table

4.

Table 4. Selected projects and versions in our dataset

Project Included Versions Explanation

Ant 1.3, 1.4, 1.5, 1.6, 1.7 All versions included.

Camel - Suitable dependencies not found.

Ckjm - In Jureczko's dataset, there is a file that

does not exist in the source code (Ferenc

et al. 2018).

Forrest - Source code contains two distinct filees

that appear twice (Ferenc et al. 2018).

Ivy - Suitable dependencies not found.

JEdit 3.2.1, 4.0, 4.1, 4.2, 4.3 All versions included.

Log4j - There is a contribs directory containing

the source code of various contributors. It

is unknown which files Jureczko has

included (Ferenc et al. 2018).

Lucene 2.0, 2.2, 2.4 All versions included.

 (Cont. on next page)

 22

Table 4. (cont.)

PBeans 1.0, 2.0 All versions included.

Poi 1.5, 2.0RC1, 2.5.1, 3.0 All versions included.

Synapse 1.0, 1.1, 1.2 All versions included.

Velocity 1.4, 1.5, 1.6.1 All versions included.

Xalan 2.6, 2.7 2.4 and 2.5 are not included because

suitable dependencies not found.

Xerces 1.2, 1.3 1.4 is not included because the number of

publicly available source code files does

not match up to the number shared by

Jureczko (Ferenc et al. 2018).

As we stated in section 1.1, training datasets play an important role in an SDP

scenario. WRDP is not possible for MBA because we inject mutations into the software

repository before calculating the software measures, and even if we choose testing

samples from non-mutated samples, the software measures are affected by mutation

because correlated files may have mutations. As a result, we can not evaluate MBA

applied models without a proper testing dataset. There are two scenarios available: IRDP

and CPDP.

For IRDP, we trained our models on the project versions that have at least one

newer version for testing, so the latest versions available are not training dataset

candidates. We only considered increasing the defect ratio because of the nature of the

MBA and over-sampling methods. We listed the defect ratios of the projects in Table 5.

Because some of the projects had a defect ratio of more than 50%, we were unable to use

all of the available software repositories for training datasets. For testing datasets, there

is no defect ratio restriction.

 23

Table 5. Defect ratios of the projects

Project Version Defect Ratio (%)

Ant 1.3 15.87

Ant 1.4 22.47

Ant 1.5 10.92

Ant 1.6 26.14

Ant 1.7 22.28

JEdit 3.2.1 33.09

JEdit 4.0 24.51

JEdit 4.1 25.32

JEdit 4.2 13.08

JEdit 4.3 2.24

Lucene 2.0 46.67

Lucene 2.2 58.3

Lucene 2.4 59.71

PBeans 1.0 76.92

PBeans 2.0 19.61

Poi 1.5 59.49

Poi 2.0RC1 11.78

Poi 2.5.1 64.42

Poi 3.0 63.57

Synapse 1.0 10.19

Synapse 1.1 27.03

Synapse 1.2 33.59

Velocity 1.4 75.0

Velocity 1.5 66.36

Velocity 1.6.1 34.06

Xalan 2.6 46.44

Xalan 2.7 98.79

Xerces 1.2 16.14

Xerces 1.3 15.23

 24

While adding mutants to projects, some of the files do not contain any elements

that the Major mutation operator can change. We could only increase the defect ratio of

Synapse 1.0 from 10.19% to 26.11% because the mutation operators we used did not

allow us to increase the number of mutated files. We excluded Synapse 1.0 because its

mutated defect ratio was significantly lower than 50%.

For CPDP, we used all project versions as a testing dataset. We trained our models

on all versions of the projects that remained in the testing dataset, ensuring that no

versions of the same project were included in both the testing and training datasets. We

included every project stated in Table 5, although we did not include some of the dataset

versions with defect ratios greater than 50% in the training dataset.

Finally, as shown in Table 6, we could use 27 dataset pairs for our IRDP

experiments, which included 22 versions of seven PROMISE projects. We could use 29

dataset pairs for our CPDP experiments, which included 29 versions of nine PROMISE

projects.

Table 6. Training and testing dataset pairs used in experiments

Training → Testing Datasets for IRDP

Scenario

Training → Testing Datasets for CRDP

Scenario

Ant 1.3 → 1.4, 1.5, 1.6, 1.7

Ant 1.4 → 1.5, 1.6, 1.7

Ant 1.5 → 1.6, 1.7

Ant 1.6 → 1.7

JEdit 3.2.1, 4.0, 4.1, 4.2, 4.3 + Lucene 2.0

+ pBeans 2.0 + Poi 2.0RC1 + Synapse 1.1,

1.2 + Velocity 1.6.1 + Xalan 2.6 + Xerces

1.2, 1.3 → Ant 1.3, 1.4, 1.5, 1.6, 1.7

JEdit 3.2.1 → 4.0, 4.1, 4.2, 4.3

JEdit 4.0 → 4.1, 4.2, 4.3

JEdit 4.1 → 4.2, 4.3

JEdit 4.2 → 4.3

Ant 1.3, 1.4, 1.5, 1.6, 1.7 + Lucene 2.0 +

pBeans 2.0 + Poi 2.0RC1 + Synapse 1.1,

1.2 + Velocity 1.6.1 + Xalan 2.6 + Xerces

1.2, 1.3 → JEdit 3.2.1, 4.0, 4.1, 4.2, 4.3

Lucene 2.0 → 2.2, 2.4 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + pBeans 2.0 + Poi 2.0RC1 +

Synapse 1.1, 1.2 + Velocity 1.6.1 + Xalan

2.6 + Xerces 1.2, 1.3 → Lucene 2.0, 2.2,

2.4

 (Cont. on next page)

 25

Table 6. (cont.)

 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + Lucene 2.0 + Poi 2.0RC1 +

Synapse 1.1, 1.2 + Velocity 1.6.1 + Xalan

2.6 + Xerces 1.2, 1.3 → pBeans 1.0, 2.0

Poi 2.0RC1 → 2.5.1, 3.0 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 +

Synapse 1.1, 1.2 + Velocity 1.6.1 + Xalan

2.6 + Xerces 1.2, 1.3 → Poi 1.5, 2.0RC1,

2.5.1, 3.0

Synapse 1.1 → 1.2 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 +

Poi 2.0RC1 + Velocity 1.6.1 + Xalan 2.6 +

Xerces 1.2, 1.3 → Synapse 1.0, 1.1, 1.2

 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 +

Poi 2.0RC1 + Synapse 1.1, 1.2 + Xalan 2.6

+ Xerces 1.2, 1.3 → Velocity 1.4, 1.5, 1.6.1

Xalan 2.6 → 2.7 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 +

Poi 2.0RC1 + Synapse 1.1, 1.2 + Velocity

1.6.1 + Xerces 1.2, 1.3 → Xalan 2.6, 2.7

Xerces 1.2 → 1.3 Ant 1.3, 1.4, 1.5, 1.6, 1.7 + JEdit 3.2.1, 4.0,

4.1, 4.2, 4.3 + Lucene 2.0 + pBeans 2.0 +

Poi 2.0RC1 + Synapse 1.1, 1.2 + Xalan 2.6

+ Velocity 1.6.1 → Xerces 1.2, 1.3

We went over the first stage of our experimentation. The software measures

calculation process was introduced in section 4.2, which follows the software repository

selection process. In contrast to MBA, the mutant injection process is carried out before

software measures calculations, as detailed in section 3.2.

 26

4.2. Software Measures Calculation

As we mentioned in section 1.1, we need to represent source code in a suitable

format to feed an SDP model. Several researchers used software measures to predict

defect-prone code as an input to SDP models as attributes. The majority of the researchers

do not concentrate on the measure calculation process. They used calculated measures

from previous studies. Jureczko shared a software measures dataset that is mostly used

by researchers studying SDP (Jureczko and Spinellis 2010). Jureczko used an extended

version of Chidamber and Kemerer Java Metrics (ckjm-extended) for the calculation of

measures (Spinellis 2005). Ckjm-extended is a tool that calculates 20 size and structure

software measures by processing the object code of compiled Java files (Jureczko and

Spinellis 2010). The program calculates measures for each files listed in Table 7.

Table 7. Software measures definitions (Source: Jureczko & Spinellis, 2010)

Measure Definition Source

Weighted

methods

per class

(WMC)

The value of the WMC is equal to the number of

methods in the class (assuming unity weights for all

methods).

(Chidamber

and

Kemerer

1994)

Depth of

Inherit-

ance Tree

(DIT)

The DIT measure provides for each class a measure of

the inheritance levels from the object hierarchy top.

(Chidamber

and

Kemerer

1994)

Number of

Children

(NOC)

The NOC measure simply measures the number of

immediate descendants of the class.

(Chidamber

and

Kemerer

1994)

(Cont. on next page)

 27

Table 7. (cont.)

Coupling

between

object

classes

(CBO)

The CBO measure represents the number of classes

coupled to a given class (efferent couplings and afferent

couplings). These couplings can occur through method

calls, field accesses, inheritance, method arguments,

return types, and exceptions.

(Chidamber

and

Kemerer

1994)

Response

for a Class

(RFC)

The RFC measures the number of different methods that

can be executed when an object of that class receives a

message. Ideally, we would want to find for each method

of the class, the methods that class will call, and repeat

this for each called method, calculating what is called the

transitive closure of the method call graph. This process

can however be both expensive and quite inaccurate.

Ckjm calculates a rough approximation to the response

set by simply inspecting method calls within the class

method bodies. The value of RFC is the sum of number

of methods called within the class method bodies and the

number of class methods. This simplification was also

used in the Chidamber and Kemerer's description of the

measure (Chidamber and Kemerer 1994).

(Chidamber

and

Kemerer

1994)

Lack of

cohesion in

methods

(LCOM)

The LCOM measure counts the sets of methods in a class

that are not related through the sharing of some of the

class fields. The original definition of this measure

(which is the one used in ckjm) considers all pairs of

class methods. In some of these pairs both methods

access at least one common field of the class, while in

other pairs the two methods do not share any common

field accesses. The lack of cohesion in methods is then

calculated by subtracting from the number of method

pairs that do not share a field access the number of

method pairs that do.

(Chidamber

and

Kemerer

1994)

(Cont. on next page)

 28

Table 7. (cont.)

Lack of

cohesion in

methods

(LCOM3)

𝐿𝐶𝑂𝑀3 =
(1𝑎 ∑ 𝜇(𝐴!"

!#$)) − 𝑚
1 −𝑚 	

𝑚: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑡ℎ𝑜𝑑𝑠	𝑖𝑛	𝑎	𝑐𝑙𝑎𝑠𝑠	

𝑎: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠	𝑖𝑛	𝑎	𝑐𝑙𝑎𝑠𝑠	

𝜇P𝐴!Q: 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑒𝑡ℎ𝑜𝑑𝑠	𝑡ℎ𝑎𝑡	𝑎𝑐𝑐𝑒𝑠𝑠	𝑡ℎ𝑒	𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒	𝐴

(Henderson

-Sellers

1995)

Afferent

couplings

(Ca)

The Ca measure represents the number of classes that

depend upon the measured class.

(Martin

1994)

Efferent

couplings

(Ce)

The Ce measure represents the number of classes that the

measured class is depended upon.

(Martin

1994)

Number of

Public

Methods

(NPM)

The NPM measure simply counts all the methods in a

class that are declared as public. The measure is known

also as Class Interface Size (CIS).

(Bansiya

and Davis

2002)

Data

Access

Metric

(DAM)

This measure is the ratio of the number of private

(protected) attributes to the total number of attributes

declared in the class.

(Bansiya

and Davis

2002)

Measure of

Aggregatio

n (MOA)

The MAO measures the extent of the part-whole

relationship, realized by using attributes. The measure is

a count of the number of class fields whose types are

user defined classes.

(Bansiya

and Davis

2002)

Measure of

Functional

Abstraction

(MFA)

This measure is the ratio of the number of methods

inherited by a class to the total number of methods

accessible by the member methods of the class. The

constructors and the java.lang.Object (as parent) are

ignored.

(Bansiya

and Davis

2002)

(Cont. on next page)

 29

Table 7. (cont.)

Cohesion

Among

Methods of

Class

(CAM)

This measure computes the relatedness among methods

of a class based upon the parameter list of the methods.

The measure is computed using the summation of

number of different types of method parameters in every

method di- vided by a multiplication of number of

different method parameter types in whole class and

number of methods.

(Bansiya

and Davis

2002)

Inheritance

Coupling

(IC)

This measure provides the number of parent classes to

which a given class is coupled. A class is coupled to its

parent class if one of its inherited methods functionally

dependent on the new or redefined methods in the class.

A class is coupled to its parent class if one of the

following conditions is satisfied:

• One of its inherited methods uses an attribute that

is defined in a new/redefined method.

• One of its inherited methods calls a redefined

method.

• One of its inherited methods is called by a

redefined method and uses a parameter that is

defined in the redefined method.

(Tang,

Kao, and

Chen 1999)

Coupling

Between

Methods

(CBM)

The CBM measures the total number of new/redefined

methods to which all the inherited methods are coupled.

There is a coupling when at least one of the given in the

IC measure definition conditions is held.

(Tang,

Kao, and

Chen 1999)

Average

Method

Complexity

(AMC)

The AMC measures the average method size for each

class. Size of a method is equal to the number of Java

binary codes in the method.

(Tang,

Kao, and

Chen 1999)

(Cont. on next page)

 30

Table 7. (cont.)

Maximum

McCabe's

cyclomatic

complexity

(MAX CC)

CC is equal to number of different paths in a method

(function) plus one. The cyclomatic complexity is

defined as:

𝐶𝐶 = 𝐸 − 𝑁 + 𝑃	

𝐸: 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑑𝑔𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ	

𝑁: 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ	

𝑃: 𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

CC is the only method size measure. The constructed

models make the class size predictions. Therefore, the

measure had to be converted to a class size measure.

Two measures has been derived:

• MAX(CC) - the greatest value of CC among

methods of the investigated class.

• AVG(CC) - the arithmetic mean of the CC value

in the investigated class.

(McCabe

1976)

Average

McCabe's

cyclomatic

complexity

(AVG CC)

Lines of

Code

(LOC)

The LOC measure based on Java binary code. It is the

sum of number of fields, number of methods and number

of instructions in every method of the investigated class.

We can not use pre-calculated software measures because we apply mutations to

source code, and the software measures calculation process comes after compilation as

we mentioned in section 3.2. Therefore, we need to recalculate software measures after

balancing the dataset with MBA. We chose ckjm-extended to work with the most studied

measures and we were able to compare our software measures with other studies to

determine the validity of our study. In this way, we supported the reliability of MBA. In

the study by Jureczko, which shared a software measures database, they extended the

PROMISE (software repository dataset) with some other private repositories. Software

measures from private repositories are not useful for the MBA because we can not reach

the source codes. We validated our results with the public software repositories. To

increase the reliability of our study, we determined the causes of the differences in our

software measures calculation and Jureczko's. We could not produce the same software

 31

measures values as in Jureczko’s study. Ferenc et al. mentioned that some tool and

environment versions are not clearly defined in Jureczko’s study (Ferenc et al. 2018).

They attempted to match their software measures calculation with the software measures

dataset shared by Jureczko, but they were unable to do so, as we were. We had to guess

the following variables while calculating software measures:

1. Versions of dependencies in software repositories

2. Java versions of the compilation of software repositories and their

dependencies

3. Version of ckjm-extended

4. Java version to run ckjm-extended

Jureczko did not mention which versions of software repositories, dependencies,

and the Java SDK were used. Jureczko most likely calculated software measures using

pre-compiled object codes from software repositories; thus, we selected dependencies

and Java SDK versions to conduct several trials to obtain the same software measures as

the pre-compiled object codes. Each software repository was compiled using a specific

version of the Java SDK.

We have tried some of the possible combinations of variables to get the software

measures calculated by Jureczko. For the ckjm-extended version, we tried three versions

of ckjm-extended which are 2.1, 2.2, and 2.3. We compared software measures published

by Jureczko and calculated in our experiment on Ant 1.3 for the three ckjm-extended

versions and we plotted the number of different software measures for each software

measure type. The ckjm-extended 2.2 gave us the closest results both as shown in Figure

10, Figure 11, and Figure 12 and in the literature (Ferenc et al. 2018).

 32

Figure 10. Comparison of software measures presented in Jureczko’s study and
calculated in our experiment with ckjm-extended 2.1 on ant 1.3

Figure 11. Comparison of software measures presented in Jureczko’s study and
calculated in our experiment with ckjm-extended 2.2 on ant 1.3

 33

Figure 12. Comparison of software measures presented in Jureczko’s study and
calculated in our experiment with ckjm-extended 2.3 on ant 1.3

When we consider the measures “DIT”, “MFA”, “IC”, “CBM” and “CC” that do

not match, we noticed that these measures are about the inheritance hierarchy of the code.

In the documentation of ckjm-extended, by default, Java SDK packages are not

considered while calculating the software measures. They also include a flag to optionally

enable Java SDK packages. During the inspection of the source code, we realized that

ckjm-extended uses a framework called BCEL for these calculations. BCEL tracks the

inheritance of objects with Java SDK objects if the related object inherits any Java SDK

object. The problem here is the Java SDK version used for software measures calculation.

We could produce differences only by changing the version of Java SDK that used to run

ckjm-extended; some of the inheritance-dependent measures changed. It clearly seems

that ckjm-extended considers Java SDK packages by default. Also, our results are parallel

to this claim, as shown in Figure 13 below.

 34

Figure 13. Comparison of software measures calculated by Java SDK 1.6 and calculated
by Java SDK 1.7 with ckjm-extended 2.2 on ant 1.3

On the other hand, in terms of backward compatibility, we considered that a

project should be compatible with other Java SDK versions. Since the differences in

software measures presented by Jureczko and calculated by us are unrelated to the

software repository, which is the dataset, we accept these differences as environmental

differences and do not expect them to affect an instance's defectiveness. Another problem

is that BCEL could not find some of the objects with the Java 1.8 SDK. We generate the

results with different Java SDK versions, which are 1.6, 1.7, and 1.8. We compared the

generated results with Jureczko’s, but there is not a clear difference to select a better

version of the Java SDK. Also, 1.5 and lower versions of the Java SDK are not compatible

with ckjm-extended 2.2. There are two options to continue: Java SDK 1.6 and Java SDK

1.7. Most of the projects in PROMISE dataset were released before Java SDK 1.6 was

released. Java SDK 1.6 will be more compatible with projects. We chose Java SDK 1.6

to run ckjm-extended 2.2. We went over the software measures calculation process in

great detail. In section 4.3, we introduced the third stage, data preprocessing.

 35

4.3. Data Preprocessing

Distinctions in scale across input data could make the problem being modeled

more challenging. When numerical input parameters are scaled to a normal range, the

performance of many ML algorithms increases (Brownlee 2020). Normalization scales

each input variable to a value between 0 and 1 (Bharati, Podder, and Hossain Mondal

2020). We applied the MinMax scaler to normalize values as in the literature (Kumar,

Rath, and Sureka 2017). We want features that have the same effect on the model.

𝑥% =
𝑥 − 𝑥&'(

𝑥&") − 𝑥&'(
	 (4.1)

In the equation above, 𝑥 denotes the original value of a feature of an instance,

𝑥&'(is minimum value and 𝑥&") is maximum value of the feature in all instances in the

dataset. 𝑥% gives us the normalized value of 𝑥. In our dataset, we have 20 features for

input data. Table 8 contains 4 Ant 1.3 instances. It appears that there are large scale

differences between features, and normalization is required for our study. Before building

ML models in our study, we applied the MinMax scaler to each data instance, and then

we tuned the hyperparameters of ML methods, as detailed in section 4.4.

Table 8. Software measures of four instances of Ant 1.3

W
M

C

D
IT

N
O

C

CB
O

RF
C

LC
O

M

CA

CE

N
PM

LC
O

M
3

LO
C

D
A

M

M
O

A

M
FA

CA
M

IC

CB
M

A
M

C

M
A

X
 C

C

A
V

G
 C

C

11 2 0 7 15 13 5 3 11 .75 97 1 3 .20 .22 0 0 7.3 1 1

8 3 0 4 41 10 0 4 8 .80 236 1 0 .84 .87 1 1 27.8 14 2.75

5 1 0 4 20 0 0 4 4 .33 144 1 1 0 .90 0 0 27.2 5 2.40

3 2 0 8 18 3 1 7 2 1 132 0 0 .92 .50 0 0 42 1 1

 36

4.4. Hyperparameter Tuning

Hyperparameters are the parameters that are used to configure a model to

minimize the loss function, and exploring the best combination of hyperparameters is

called as hyperparameter tuning (L. Yang and Shami 2020). In the literature, some of the

commonly used hyperparameter tuning techniques are Grid Search, Random Search,

Gradient-based Optimization, Bayesian Optimization, Multi-fidelity Optimization,

Genetic Algorithm. Every technique has weaknesses and strengths. Grid Search is a

simple method that tries all combinations of defined parameters. Evaluating every defined

combination is a very time-consuming process, so parameter space selection is very

important. Random Search evaluates randomly selected hyperparameters. Random search

works like Grid Search but the selection of hyperparameter combinations is done

randomly, so it does not guarantee any stability. It can hit a better hyperparameter

combination than Grid Search. The number of trials increases the success of Random

Search. Gradient-based Optimization only works for continuous hyperparameters.

Gradient-based Optimization evaluates a parameter, which is generally given by an

analyst. Gradient-based Optimization searches for near values of the parameter with a

step that is also generally given by the analyst. Gradient-based Optimization converges

on a local maximum and stops with a performance criterion. Bayesian Optimization is an

iterative algorithm that determines the next hyperparameter configuration (L. Yang and

Shami 2020). Bayesian Optimization is generally used for problems whose evaluation

takes longer (L. Yang and Shami 2020). Bayesian Optimization has two steps: surrogate

model and acquisition function. A surrogate model fits all currently observed points into

the objective function. An acquisition function selects the best subset of a dataset to make

a surrogate model more representative. Bayesian Optimization builds a surrogate model

and iteratively does three steps until an initially set iteration count is reached. First, it

detects optimal hyperparameter values on the surrogate model. Applies these

hyperparameters to the real objective function to evaluate them and updates the surrogate

model with respect to new results. Bayesian Optimization needs fewer resources than

Grid Search and Random Search but does not cover hyperparameter ranges as much as

Grid Search. Multi-fidelity Optimization combines low-fidelity and high-fidelity. Low-

fidelity means evaluating hyperparameters on a small subset of a dataset. High-fidelity

means evaluating hyperparameters on a large subset of a dataset. Low-fidelity has a lower

 37

cost but poorer performance than high-fidelity. Multi-fidelity selects hyperparameters by

applying high-fidelity to well-performed low-fidelity cases (L. Yang and Shami 2020).

Genetic Algorithm simulates a survival race on hyperparameters. Each chromosome

represents a hyperparameter, and every chromosome has several genes. Genetic

Algorithm applies crossing-over and mutations to randomly initialized individuals, and

new individuals are generated. New individuals are evaluated, and worse performing

individuals are eliminated. Genetic Algorithm continues this process until the termination

condition is met.

In the SDP, Grid search and Random search are used in several studies (Bennin

et al. 2018; Li et al. 2020; Bahaweres et al. 2020). As we mentioned, Grid search is a

good choice when the hyperparameter search space is defined in optimum ranges. We

decided to use Grid search in our study because Hyperparameter Tuning problem is

studied for many ML algorithm hyperparameters and their ranges in SDP on many

datasets. We considered previous studies and decided on feasible search spaces for our

Hyperparameter Tuning setup. Even though Grid Search is not good at reducing

unnecessary evaluations, we have enough computational power to cover all evaluations.

As a result, the likelihood of missing well hyperparameter setting is reduced. Grid search

runs all possible combinations (cartesian product) of the set of parameters and selects the

best parameters with respect to an evaluation function. Parameter selection is essential

for Grid Search. It is also the only input for this method. We select parameters in Table 9

below. We get the parameters from three studies with respect to the ML method (Bennin

et al. 2018; Bahaweres et al. 2020; Li et al. 2020).

Table 9. Tuned hyperparameters for ML models

Method Parameter Range

K-Nearest Neighbor

(KNN)

n_neighbours {1, 3, 5, 7, 9, 11, 13, 15}

Random Forest (RF) n_estimaators [10, 100] step:10

criterion {‘gini’, ‘entropy’}

max_features {‘None’, ‘sqrt’, ‘log2’}

(Cont. on next page)

 38

Table 7. (cont.)

SVM kernel {‘rbf’, ‘linear’, ‘poly’, ‘sigmoid’}

degree [0, 3] step: 1

coef() [0, 3] step: 1

gamma {‘scale’, ‘auto’}

Naïve Bayes (NB) - -

Decision Tree (DT) criterion {‘gini’, ‘entropy’, ‘log_loss’}

max_features {‘auto’, ‘sqrt’, ‘log2’}

max_depth [5, 10] step: 1

4.5. Performance Measure

The commonly used performance measures in SDP are AUC (Area Under the

Curve), F-measure (F1), recall, precision, false alarm, g-measure, and balance (Moussa

and Sarro 2022). There is no agreement on which performance measures should be used

to evaluate an ML method (Seliya, Khoshgoftaar, and Van Hulse 2009). Selecting

appropriate performance measures is very important, especially in SDP because CIP

makes assessing ML models harder. If we do not measure its performance using the

proper measurement method, we can not find the right model. For instance, if we select

accuracy as the performance measure for an imbalanced dataset, predictions will be

biased toward the major class because using accuracy as the performance measure means

maximizing the number of true predictions over total predictions. Assume that the minor

class ratio is 10%. For such a scenario, predicting all instances as major class results in

90% accuracy, which is a very high score, but the model fails to identify any minor

classes. This is unacceptable from the point of view of SDP because the main concern is

detecting defective instances.

The base for measuring performance in a binary classification problem is

confusion matrix because four performance measures that are also used to calculate other

measures are calculated from confusion matrix. True Positive (TP), False Negative (FN),

False Positive (FP) and True Negative (TN) measures are calculated from confusion

matrix. Confusion Matrix shows the number of predicted and actual classes of instances

as in Table 10.

 39

Table 10. Confusion Matrix for Binary Classification (Source: Moussa & Sarro, 2022)

Actual Value

Predicted Value

Defective Non-Defective

Defective True Positive (TP) False Negative (FN)

Non-Defective False Positive (FP) True Negative (TN)

Other than the measures defined in the confusion matrix, there are some measures

developed in the literature for assessing the performance of ML models from various

perspectives. CIP is the most important topic to consider when selecting an performance

evaluation measure because it is present in the majority of the dataset. We considered the

most commonly used measures in SDP, which are AUC, F1, recall, precision, FPR, g-

measure, and balance.

Recall shows the probability of classifying defective instances correctly. Precision

shows how well the model classifies instances as defective while misclassifying non-

defective instances. For SDP, accurately classifying faulty modules is important, but on

the other hand, classifying non-defective instances accurately is a very important task

because non-defective instances mostly belong to the major class.

G-measure is the geometric mean between precision and recall, and F1 calculates

the harmonic mean of precision and recall. From class imbalance perspective, g-measure

and F1 provide more honest evaluation results for SDP models.

Balance measures the distance between FPR and recall. When FPR is equal to the

recall, balance gets its higher value, which is 1. The importance of the balance between

FPR and recall shows that the success of the classification of defective instances does not

come from classifying instances most likely as defective.

Receiver Operator Characteristic (ROC) curve visualizes the relation between TP

and FN. In a ROC curve, one axis represents True Positive Rate (TPR), and the other one

represents False Positive Rate (FPR). Using rates of TP and FP together makes

assessment fair for imbalanced datasets. When we plot this graph, we get a curve. The

area under the curve (AUC) gives us an ideal performance measure for SDP problem. We

summarized the seven commonly used performance measures in SDP in Table 11.

 40

Table 11. The definition of the performance measures (Source: Moussa & Sarro, 2022)

Performance Measure Definition

AUC Area under the Receiver Operating

Characteristic Curve

Recall or pd (TPR) 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Precision 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

F-measure (F1) 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

False Alarm or pf (FPR) 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

G-measure 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × (1 − 𝐹𝑃𝑅)
𝑅𝑒𝑐𝑎𝑙𝑙 + (1 − 𝐹𝑃𝑅)

Balance
1 −

^(0 − 𝐹𝑃𝑅)* + (1 − 𝑅𝑒𝑐𝑎𝑙𝑙)*

√2

We chose AUC, pd and pf measures for evaluation of our models because they

are the most commonly used performance measure for SDP, and AUC works well for

imbalanced datasets, as we need in our problem. Lower pf values and higher AUC and

pd values indicate better predictors. Since precision and F1 are unstable for evaluating

models trained using imbalance datasets (Menzies et al. 2007), we did not include them.

Performance evaluation is the last stage of the experimental design before comparing the

performances of the experiments. We summarized three experimental designs in section

4.6.

4.6. Summary of Experimental Designs

In this chapter, we explained our experimental design in detail. In this section, we

were interested in demonstrating the overall steps of each of the three experimental

designs. The performance comparison stage is excluded from these designs because it

 41

employs statistical analysis techniques that require the aggregated results of all

experiments, as detailed in section 4.7.

4.6.1. Baseline Experimental Design

We followed the steps in Figure 14 for each dataset. First, as shown in Table 6,

we prepared training and testing software repositories. For both training and testing

datasets, we calculated software measures and preprocessed them with the MinMax

scaler. The training dataset is divided into two parts: 20% for validation and 80% for

training. Because we employed 5-fold stratified cross validation, the defect ratio was

preserved across all folds. We chose the best-performing model's parameter as optimal

and developed the prediction model with the optimal parameter. Finally, we ran the

prediction model against the testing dataset and calculated its performance.

Figure 14. Baseline experimental design

 42

4.6.2. Over-sampling-based Experimental Design

We followed the steps in Figure 15 for each dataset. First, as shown in Table 6,

we prepared training and testing software repositories. For both training and testing

datasets, we calculated software measures and preprocessed them with the MinMax

scaler. We resampled the training dataset with over-sampling methods. The training

dataset is divided into two parts: 20% for validation and 80% for training. Because we

employed 5-fold stratified cross validation, the defect ratio was preserved across all folds.

We chose the best-performing model's parameter as optimal and developed the prediction

model with the optimal parameter. Finally, we ran the prediction model against the testing

dataset and calculated its performance.

Figure 15. Over-sampling-based experimental design

 43

4.6.3. Mutation-based Experimental Design

We followed the steps in Figure 16 for each dataset. First, as shown in Table 6,

we prepared training and testing software repositories as we discussed in chapter 3. We

injected mutants into the training software repository. For both training and testing

datasets, we calculated software measures and preprocessed them with the MinMax

scaler. The training dataset is divided into two parts: 20% for validation and 80% for

training. Because we employed 5-fold stratified cross validation, the defect ratio was

preserved across all folds. We chose the best-performing model's parameter as optimal

and developed the prediction model with the optimal parameter. Finally, we ran the

prediction model against the testing dataset and calculated its performance.

Figure 16. Mutation-based experimental design

 44

4.7. Performance Comparison

To statistically evaluate and compare MBA to the other over-sampling techniques

and Baseline, we selected one-way repeated measures ANOVA to determine whether the

means of the performance measure values of the seven groups are different. We decided

to use a parametric test because parametric tests are more powerful than non-parametric

tests if the sample is normally distributed (Pappas and DePuy 2004). One-way repeated

measures ANOVA has two preconditions, which are normality and sphericity. To test

normality, we used Z-scores of skewness and kurtosis attributes. To check normality, we

checked skewness and kurtosis values. These values must be between -1.96 and +1.96 for

𝛼 = 0.05. To check sphericity, we applied Mauchly’s test of sphericity. The significance

value of Mauchly’s test must be greater than 0.05 for the samples that satisfy sphericity.

If these tests failed, we decided to use Friedman test, which is the non-parametric

alternative to the one-way repeated measures ANOVA. If the Friedman test shows that

there is a statistically significant difference in performance measure values depending on

the type of over-sampling methods, MBA, and Baseline, we decided to use Wilcoxon

signed-rank tests on the groups of two between the seven methods. To quantitatively

analyze and compare MBA to the baseline and the other five over-sampling approaches,

we employed win-tie-loss statistics, which have been used in earlier research studies

(Bennin et al. 2018). The performance values of two predictors were compared using the

Wilcoxon signed-rank test, and if the performance distributions were not statistically

different, the "ties" counter was increased by one. If there were a statistically significant

difference between two predictions, the counters for "wins" and "losses" were increased

by one. To compute Friedman and Wilcoxon signed-rank tests, we used the SciPy Python

library (Virtanen et al. 2020). To compute the sphericity and normality tests, we used the

Pingouin Python library (Vallat 2018). Because every analysis failed the sphericity and

normality tests, we did not employ any tool to compute the one-way repeated measures

ANOVA.

 45

CHAPTER 5.

RESULTS AND DISCUSSION

In this chapter, we presented the results of Baseline, MBA, and each over-

sampling technique on the ML methods and compared the performances of MBA with

over-sampling techniques and Baseline. We discussed the results of our study. We

provided a critical analysis of the results that were obtained.

RQ1: Does the proposed MBA improve performance over existing over-sampling

approaches and Baseline on IRDP? MBA and over-sampling techniques have better

recall values than Baseline, but Baseline has the lowest false alarm values, and there was

no significant difference between the AUC values of rebalancing techniques, so we can

not conclude that MBA outperforms over-sampling techniques and Baseline.

RQ2: Does the proposed MBA improve performance over existing over-sampling

approaches and Baseline on CPDP? Only MBA consistently outperformed Baseline for

recall values, but Baseline has the lowest false alarm values, and there was no significant

difference between the AUC values of rebalancing techniques, so we can not conclude

that MBA outperforms over-sampling techniques and Baseline.

RQ3: How does the change percentage of software measures (SMC) affect

performance of MBA on IRDP? SMC and recall and SMC and false alarm showed a

significantly positive association, whereas SMC and AUC had no significant correlation,

so we can not draw the conclusion that performance improved as datasets became more

balanced.

RQ4: How does the change percentage of software measures (SMC) affect

performance of MBA on CPDP? SMC and recall and SMC and false alarm showed a

significantly positive association, whereas SMC and AUC had no significant correlation,

so we can not draw the conclusion that performance improved as datasets became more

balanced.

 46

5.1. Performance Evaluation of Rebalancing Methods for IRDP

Scenario

For the IRDP scenario, we created 945 SDP models using five ML algorithms,

seven rebalancing methods (Baseline, MBA, and five over-sampling techniques), and 27

training and testing dataset pairs, as shown in Table 6.

The quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA,

and five over-sampling methods for each ML algorithm are shown in Figure 17. The

quartile bounds represent the 25th and 75th percentiles, respectively, and the solid dots

represent the median values. Higher median values show higher AUC and pd measure

performance, while lower median values indicate better pf measure performance. MBA

and over-sampling techniques did not significantly improve AUC values for all ML

algorithms, as shown in the top lane of Figure 17. Rebalancing method and ML algorithm

pairs have AUC values around 0.6. MBA and five over-sampling techniques improved

the recall (pd) measure compared to the Baseline. According to Figure 17, in the middle

lane, MBA beat the Baseline and other five over-sampling techniques for all ML

algorithms. MBA and over-sampling techniques, on the other hand, created more false

alarms (pf) than the Baseline (bottom lane of Figure 17). In most cases, MBA had the

worst pf value.

Figure 18 shows Wilcoxon signed-rank test win-tie-loss comparisons of MBA to

the Baseline and five over-sampling techniques. Except for the SMOTE Nominal and NB

pairs, MBA did not increase IRDP performance using the AUC measure. MBA reduced

AUC values in five cases (shown with orange dots). In terms of pd, MBA yielded

statistically significantly better results (23 wins, green dots, and 7 ties, blue dots). Instead

of increasing pd values, MBA decreased pf values in 26 of 30 cases (four of which

resulted in ties). In terms of pd and pf performance, MBA outperformed "SMOTE & NB"

and "SMOTE Nominal & SVM" pairs, as well as tied pf values.

47

Figure 17. IRDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA, over-sampling techniques per each ML
algorithm

 48

Figure 18. IRDP Scenario: Wilcoxon test win-tie-loss comparison of MBA vs. Baseline,
SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, SVM SMOTE across all

datasets per each ML algorithm and performance measures (AUC, pd, and pf)

 49

We used the Wilcoxon signed-rank test to compare AUC, recall, and pf values to

find the best performing combination of rebalancing method and ML algorithm. Table 12

displays win-tie-loss values sorted by the difference between wins and losses. Due to

space constraints, we give the top and bottom ten performers for each performance

measure.

MBA and over-sampling methods provide some improvement in terms of AUC

performance measure, as the Baseline combined with ML algorithms is listed in the

bottom half of Table 12 (Baseline with RF 20th, NB 24th, KNN 28th, DT 34th, SVM

35th). The first seven positions are occupied by SMOTE, Borderline-SMOTE, and SVM

SMOTE. NB appears to be the best performing ML algorithm, with five positions in the

top ten. MBA, paired with NB, was ranked ninth. In terms of AUC values, we can not

find a dominant sampling method and ML algorithm pair. Even the RF and SMOTE

combination improved AUC values in 16 cases but not in 18. In terms of recall

performance, MBA combined with SVM and KNN beat the over-sampling and ML

algorithm pairs, with wins-losses scores of 32 and 28 out of 34 comparisons, respectively.

MBA was ranked in the top ten when combined with RF and DT, although with

substantially lower wins-losses scores of 18 and nine, respectively. SMOTE and

Borderline-SMOTE were the other sampling methods seen in the top ranks. MBA and

over-sampling techniques often underperform compared to Baseline in terms of the pf

performance measure. SVM, RF, NB, and KNN algorithms trained on identical datasets

provided much fewer false alarms, with 34, 31, 24, and 24 wins-losses scores out of 34,

respectively. MBA, when paired with KNN and SVM, produced the most false alarms,

with -32 and -31 wins-losses values, respectively

50

Table 12. IRDP Scenario: Rankings for performance measures in terms of wins (W), losses (L), wins-losses (W-L), and ties (T)

 AUC pd pf

ML Sampl. Tech. W L W-L T ML Sampl. Tech. W L W-L T ML Sampl. Tech. W L W-L T
1 RF SMOTE 16 0 16 18 SVM MBA 32 0 32 2 SVM Baseline 34 0 34 0
2 NB B-SMOTE 15 0 15 19 KNN MBA 28 0 28 6 RF Baseline 32 1 31 1
3 SVM B-SMOTE 14 0 14 20 KNN SMOTE 21 1 20 12 NB Baseline 25 1 24 8
4 RF B-SMOTE 12 0 12 22 RF MBA 19 1 18 14 KNN Baseline 26 2 24 6
5 NB SVM SMOTE 12 0 12 22 KNN B-SMOTE 18 0 18 16 RF ROS 26 2 24 6
6 RF SVM SMOTE 12 0 12 22 SVM SMOTE 18 2 16 14 RF SMOTE Nom 24 2 22 8
7 NB SMOTE 11 0 11 23 SVM B-SMOTE 17 2 15 15 RF SVM-SMOTE 23 3 20 8
8 NB ROS 11 0 11 23 KNN SVM SMOTE 14 3 11 17 DT Baseline 21 3 18 10
9 NB MBA 10 0 10 24 NB B-SMOTE 11 1 10 22 NB ROS 20 3 17 11
10 SVM SVM SMOTE 10 0 10 24 DT MBA 11 2 9 21 RF SMOTE 19 6 13 9
.
26 DT MBA 0 10 -10 24 DT ROS 4 13 -9 17 KNN SVM-SMOTE 6 17 -11 11
27 DT ROS 0 11 -11 23 NB ROS 3 13 -10 18 SVM SMOTE 3 15 -12 16
28 KNN Baseline 1 14 -13 19 DT SMOTE Nom 2 18 -16 14 SVM SMOTE Nom 1 17 -16 16
29 KNN SMOTE Nom 0 16 -16 18 NB Baseline 1 18 -17 15 NB SMOTE Nom 0 19 -19 15
30 SVM SMOTE Nom 0 16 -16 18 RF ROS 2 22 -20 10 KNN B-SMOTE 2 24 -22 8
31 KNN MBA 0 17 -17 17 RF SMOTE Nom 2 22 -20 10 DT MBA 2 25 -23 7
32 NB SMOTE Nom 0 18 -18 16 DT Baseline 1 26 -25 7 RF MBA 2 25 -23 7
33 DT SMOTE Nom 0 20 -20 14 KNN Baseline 1 27 -26 6 KNN SMOTE 2 25 -23 7
34 DT Baseline 0 21 -21 13 RF Baseline 1 28 -27 5 SVM MBA 0 31 -31 3
35 SVM Baseline 0 23 -23 11 SVM Baseline 0 34 -34 0 KNN MBA 0 32 -32 2

 51

Table 13. IRDP Scenario: Median values for AUC, pd, and pf for each dataset

 Project Baseline SMOTE
B-

SMOTE

SVM

SMOTE

SMOTE

Nom
ROS MBA

AUC

Ant 0.56 0.61 0.61 0.61 0.58 0.60 0.61

jEdit 0.68 0.69 0.71 0.68 0.67 0.69 0.63

Lucene 0.58 0.53 0.51 0.53 0.49 0.52 0.59

Poi 0.52 0.53 0.51 0.53 0.49 0.52 0.69

Synapse 0.61 0.60 0.59 0.60 0.58 0.61 0.51

Xalan 0.66 0.67 0.66 0.68 0.68 0.69 0.65

Xerces 0.54 0.55 0.56 0.53 0.51 0.54 0.63

pd

Ant 0.18 0.44 0.42 0.36 0.39 0.35 0.63

jEdit 0.48 0.63 0.68 0.61 0.60 0.61 0.64

Lucene 0.34 0.42 0.45 0.44 0.47 0.40 0.35

Poi 0.09 0.34 0.25 0.19 0.12 0.25 0.60

Synapse 0.28 0.41 0.41 0.42 0.35 0.44 0.50

Xalan 0.32 0.36 0.46 0.37 0.37 0.38 0.37

Xerces 0.20 0.39 0.32 0.26 0.22 0.29 0.61

pf

Ant 0.06 0.19 0.15 0.16 0.15 0.15 0.43

jEdit 0.14 0.26 0.29 0.24 0.27 0.24 0.39

Lucene 0.18 0.22 0.21 0.23 0.25 0.16 0.18

Poi 0.02 0.20 0.18 0.15 0.14 0.19 0.18

Synapse 0.11 0.23 0.24 0.16 0.21 0.24 0.52

Xalan 0.00 0.00 0.09 0.00 0.00 0.00 0.00

Xerces 0.09 0.34 0.17 0.19 0.17 0.32 0.38

 52

Table 13 shows the medians of AUC, pd, and pf for each dataset in the IRDP

scenario. MBA improved AUC values for the Lucene, Poi, and Xerces datasets and

performed similarly to SMOTE, Borderline-SMOTE, and SVM SMOTE for the Ant

dataset. MBA outperformed pd on the Ant, Poi, Synapse, and Xerces datasets. Except for

the Lucene dataset, MBA and over-sampling techniques provided more false alarms than

the Baseline. ROS reduced false alarms for Lucene significantly. The Xalan false alarm

rate is 0% because the only testing dataset, Xalan 2.7, has a defect ratio of 99% (see Table

5), and hence none of the models produced a false signal. MBA outperformed the other

sample methods on the Poi dataset, significantly improving AUC and pd values while

providing as few false alarms as possible.

5.2. Performance Evaluation of Rebalancing Methods for CPDP

Scenario

For the CPDP scenario, we created 1015 SDP models using five ML algorithms,

seven rebalancing techniques (Baseline, MBA, and five over-sampling techniques), and

29 training and testing dataset pairs, as shown in Table 6.

The quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA,

and over-sampling methods for each ML algorithm are shown in Figure 19. MBA and

over-sampling techniques did not significantly increase AUC values for all ML

algorithms, similar to the IRDP scenario (see Figure 19's top lane). Seven rebalancing

techniques and ML algorithm pairs have AUC values around 0.6. Only MBA produced

more false alarms against the Baseline (bottom lane of Figure 19) but improved pd values

for all ML methods (middle lane of Figure 19).

53

Figure 19. CPDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA, over-sampling techniques per each
ML algorithm

 54

 Figure 20 uses Wilcoxon signed-rank test win-tie-loss comparisons to show how

the MBA performed when compared to the Baseline and five over-sampling techniques.

MBA performed better than SVM SMOTE when DT, RF, and SVM algorithms were

combined. AUC value for the MBA and NB pair decreased compared to Baseline. In

general, MBA did not increase AUC when compared to Baseline and five over-sampling

techniques. MBA resulted in a decrease in AUC values in five instances (denoted by

orange dots). MBA yielded statistically significantly better outcomes in terms of pd (27

wins, green dots, and 3 ties, blue dots) than Baseline and five over-sampling methods. In

28 out of 30 cases (one tie and one loss), MBA worsened pf values at the expense of

higher pd values. In terms of three performance measures, MBA outperformed “SVM

SMOTE & DT” by improving AUC with tied pd and pf values and “SVM SMOTE &

RF” with better AUC and pf, and tied pd.

 55

Figure 20. CPDP Scenario: Wilcoxon test win-tie-loss comparison of MBA vs.
Baseline, SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, SVM SMOTE across

all datasets per each ML algorithm and performance measures (AUC, pd, and pf)

 56

In terms of AUC, pd, and pf performance measures, Table 14 displays the top and

worst performing combinations of rebalancing techniques and ML algorithms. Wilcoxon

signed-rank test was used to calculate win-tie-loss results, which were then displayed in

descending order by the difference between wins and losses. Due to space restrictions,

we only provide the top and lowest 10 performers for each performance measure.

None of the ML algorithm and sampling method combinations dominated in terms

of the AUC measure. Despite being ranked as the top performers, SVM and RF combined

with SMOTE and Borderline SMOTE were unable to outperform more than half of the

other combinations (18 wins and 16 ties for SVM; 16 wins and 18 ties for RF). In terms

of AUC, MBA was unable to perform well (MBA combined with SVM 16th, RF 17th,

KNN 18th, and NB 19th). With two wins, 18 losses, and 14 ties, MBA together with DF

underperformed. MBA paired with NB, RF, SVM, KNN, and DT placed between third

and seventh, respectively, in the recall measure. The values for the wins-losses out of 34

range from 30 to 21. The combination of RF and SVM SMOTE scored the best in terms

of recall but had the worst AUC and pf values. MBA's relatively good recall values were

at the cost of worsened pf values.

57

Table 14. CPDP Scenario: Rankings for performance measures in terms of wins (W), losses (L), wins-losses (W-L), and ties (T)

 AUC pd pf

ML Sampl. Tech. W L W-L T ML Sampl. Tech. W L W-L T ML Sampl. Tech. W L W-L T
1 SVM SMOTE 18 0 18 16 RF SVM SMOTE 31 0 31 3 RF ROS 34 0 34 0
2 SVM B-SMOTE 18 0 18 16 NB Baseline 30 0 30 4 RF SMOTE Nom 31 1 30 2
3 RF SMOTE 16 0 16 18 NB MBA 30 0 30 4 NB ROS 27 1 26 6
4 RF B-SMOTE 16 0 16 18 RF MBA 30 0 30 4 NB SMOTE 26 2 24 6
5 SVM ROS 15 0 15 19 SVM MBA 30 1 29 3 SVM Baseline 25 2 23 7
6 NB SMOTE 13 0 13 21 KNN MBA 26 5 21 3 RF B-SMOTE 25 2 23 7
7 NB SMOTE Nom 13 0 13 21 DT MBA 26 5 21 3 RF SMOTE 24 2 22 8
8 RF ROS 12 0 12 22 SVM B-SMOTE 20 5 15 9 NB B-SMOTE 25 4 21 5
9 KNN Baseline 11 0 11 23 DT SVM SMOTE 19 5 14 10 SVM SMOTE Nom 22 3 19 9
10 NB Baseline 11 0 11 23 SVM SMOTE 15 8 7 11 DT SMOTE Nom 20 4 16 10
.
26 KNN SMOTE 4 13 -9 17 KNN ROS 4 19 -15 11 KNN SMOTE 8 20 -12 6
27 KNN ROS 3 16 -13 15 RF SMOTE 3 18 -15 13 SVM SVM SMOTE 7 21 -14 6
28 DT ROS 2 15 -13 17 RF B-SMOTE 3 18 -15 13 KNN MBA 6 26 -20 2
29 KNN SMOTE Nom 2 16 -14 16 SVM SMOTE Nom 2 20 -18 12 NB Baseline 3 27 -24 4
30 KNN SVM-SMOTE 2 16 -14 16 SVM Baseline 2 21 -19 11 DT MBA 2 28 -26 4
31 DT MBA 2 18 -16 14 NB ROS 2 22 -20 10 SVM MBA 1 28 -27 5
32 DT SMOTE Nom 2 25 -23 7 KNN SVM SMOTE 2 23 -21 9 DT SVM SMOTE 1 28 -27 5
33 SVM SVM SMOTE 2 27 -25 5 DT SMOTE Nom 0 28 -28 6 NB MBA 1 29 -28 4
34 DT SVM SMOTE 0 33 -33 1 RF ROS 0 32 -32 2 RF MBA 1 30 -29 3
35 RF SVM SMOTE 0 33 -33 1 RF SMOTE Nom 0 32 -32 2 RF SVM SMOTE 0 34 -34 0

 58

Table 15. CPDP Scenario: Median values for AUC, pd, and pf for each dataset

 Project Baseline SMOTE
B-

SMOTE

SVM

SMOTE

SMOTE

Nom
ROS MBA

AUC

Ant 0.66 0.67 0.62 0.58 0.63 0.65 0.58

jEdit 0.67 0.67 0.67 0.57 0.62 0.63 0.63

Lucene 0.61 0.58 0.58 0.53 0.56 0.59 0.56

pBeans 0.54 0.60 0.64 0.52 0.59 0.63 0.59

Poi 0.59 0.54 0.55 0.52 0.52 0.54 0.60

Synapse 0.62 0.65 0.66 0.58 0.63 0.65 0.58

Velocity 0.56 0.56 0.56 0.52 0.54 0.56 0.57

Xalan 0.56 0.57 0.59 0.51 0.56 0.58 0.67

Xerces 0.54 0.55 0.58 0.55 0.55 0.54 0.54

pd

Ant 0.72 0.69 0.65 0.69 0.59 0.60 0.83

jEdit 0.53 0.55 0.59 0.58 0.49 0.45 0.70

Lucene 0.46 0.33 0.37 0.33 0.32 0.31 0.72

pBeans 0.50 0.48 0.45 0.70 0.30 0.43 0.70

Poi 0.48 0.31 0.35 0.39 0.27 0.35 0.79

Synapse 0.65 0.67 0.69 0.73 0.55 0.62 0.90

Velocity 0.42 0.34 0.36 0.35 0.22 0.28 0.62

Xalan 0.29 0.30 0.31 0.39 0.21 0.21 0.64

Xerces 0.34 0.32 0.34 0.30 0.26 0.29 0.53

pf

Ant 0.40 0.41 0.43 0.52 0.31 0.36 0.63

jEdit 0.22 0.22 0.26 0.40 0.24 0.21 0.45

Lucene 0.26 0.17 0.22 0.33 0.18 0.16 0.56

pBeans 0.33 0.29 0.30 0.47 0.04 0.27 0.46

Poi 0.31 0.20 0.25 0.28 0.19 0.27 0.54

Synapse 0.38 0.39 0.37 0.52 0.31 0.35 0.69

Velocity 0.34 0.22 0.25 0.37 0.14 0.18 0.53

Xalan 0.09 0.09 0.04 0.28 0.09 0.02 0.32

Xerces 0.27 0.20 0.16 0.22 0.22 0.17 0.39

 59

AUC, pd, and pf median values for each dataset for the CPDP scenario are listed

in Table 15. AUC values for the Poi, Velocity, and Xalan datasets were improved using

MBA. The most effective method for pBeans, Synapse, and Xerces was B-SMOTE.

SMOTE and B-SMOTE displayed the same performance as Baseline for the jEdit dataset.

No rebalancing method raised the AUC value over the baseline. MBA fared better than

all other strategies for all datasets in terms of the pd measure, with the exception of a tie

for the pBeans dataset. With the exception of Xerces, SMOTE Nominal and ROS

generated the fewest false alarms across all datasets. B-SMOTE produced the best median

value for Xerces. For all datasets, MBA generated the most false alarms.

5.3. Stability of MBA for IRDP Scenario

To assess the stability of MBA for IRDP scenario, we investigated software

measure changes and performance changes when datasets are balanced. Additionally, to

test if balancing a dataset with a 50% defect ratio is the right approach, as described in

the literature, we injected mutants with 30%, 40%, and 50% steps. In this way, we were

able to see the trend of performance change with respect to defect ratio change. We

provided the number of changed software measures and the number of new defects by

MBA for each dataset in Appendix B to illustrate the impact of MBA on software

measures. We investigated the impact of increasing the number of mutants on the

performance of SDP models in Appendix A to show how MBA performed in detail. For

the IRDP scenario, we created 400 SDP models using five ML algorithms, four different

defect levels (Baseline, MBA 0.3, MBA 0.4, and MBA 0.5), and 20 training and testing

dataset pairs. For IRDP scenario, there are 27 dataset pairs, as shown in Table 6 but we

could not include seven dataset pairs (JEdit 3.2.1 → 4.0, 4.1, 4.2, 4.3, Lucene 2.0 → 2.2,

2.4, Xalan 2.6 → 2.7) because their training datasets (JEdit 3.2.1, Lucene 2.0, Xalan 2.6)

have a defect ratio more than 30%. The quartile plots of performance measures (AUC,

pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm are

shown in Figure 21. For 48 of 100 cases (20 dataset pairs x 5 ML algorithms), each

increase in defect ratio resulted in higher recall values. The median recall values are 0.39,

0.46, and 0.63 for 30%, 40%, and 50% defect ratios, respectively (see Figure 21's middle

lane). For 63 of 100 cases, each increase in defect ratio resulted in higher false alarm

values. The median false alarm values are 0.14, 0.23, and 0.41 for 30%, 40%, and 50%

 60

defect ratios, respectively (see Figure 21's bottom lane). In general, we can observe that

increasing defect ratio with MBA increased both recall and false alarm values. For 11 of

100 cases, each increase in defect ratio resulted in higher AUC values. The median AUC

values are 0.62, 0.62, and 0.61 for 30%, 40%, and 50% defect ratios, respectively (see

Figure 21's top lane).

61

Figure 21. IRDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each
ML algorithm

 62

We also investigated the impact of changing software measures on prediction

performance of SDP models. For each training dataset, we calculated the change of

software measures between Baseline and three different defect levels (MBA 0.3, MBA

0.4, and MBA 0.5) and normalized them to enable proper analysis. The change percentage

of software measures (SMC) is calculated using the formula below to compare two

datasets:

𝑆𝑀𝐶	(%) =
∑ ∑ P𝑀',!Q,

!#$
-
'#$

𝑓 × 𝑠 × 100 (5.1)

where 𝑓 is the number of files in a dataset, 𝑠 is the number of performance

measures which is 20 (see Table 7) in our study, 𝑀',! is 1 if 𝑖./ file of 𝑗./ software measure

differs from Baseline, otherwise 0. The scatter plots of performance measures (AUC, pd,

and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm are shown in Figure

22. To check the correlation between SMC and performance measures, we decided to

calculate Pearson correlation coefficient if normality is not violated otherwise, we chose

Kendall’s Tau correlation coefficient which is non-parametric alternative of Pearson

correlation test. 10 of 15 ML algorithm and performance measure pairs satisfied

normality but SMC violated (the same SMC is used for all cases), so we used Kendall’s

Tau correlation coefficients to show the relation between performance measures and

SMC for all ML algorithms (KNN, NB, DT, RF, and SVM) as shown in Table 16. Low

and insignificant correlation values of less than 0.09% were observed for AUC. SMC and

the other performance measures (pd and pf) were positively and significantly correlated

for all ML techniques. However, a positive and significant correlation for pf measure

indicates that increasing SMC causes producing more false alarms which is undesirable

for better performance. The software measures' change has little impact on NB, DT, and

RF because they are the most resistant to SMC.

 63

Table 16. IRDP Scenario: Kendall's Tau correlation analysis between SMC and each
performance measure per each ML algorithm

 Software Measure Change

Performance Measure ML Method
SMC

Correlation Significance (p=0.05)

AUC

KNN -0.02 0.85

NB 0.01 0.89

DT 0.08 0.35

RF -0.07 0.46

SVM -0.03 0.72

pd KNN 0.39 0.00

NB 0.24 0.01

DT 0.28 0.00

RF 0.18 0.04

SVM 0.46 0.00

pf KNN 0.50 0.00

NB 0.25 0.00

DT 0.29 0.00

RF 0.36 0.00

SVM 0.51 0.00

64

Figure 22. IRDP Scenario: The scatter plots of performance measures (AUC, pd, and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML
algorithm

 65

5.4. Stability of MBA for CPDP Scenario

To assess the stability of MBA for CPDP scenario, we investigated software

measure changes and performance changes when datasets are balanced. Additionally, to

test if balancing a dataset with a 50% defect ratio is the right approach, as described in

the literature, we injected mutants with 30%, 40%, and 50% steps. In this way, we were

able to see the trend of performance change with respect to defect ratio change. We

provided the number of changed software measures and the number of new defects by

MBA for each dataset in Appendix D to illustrate the impact of MBA on software

measures. We investigated the impact of increasing the number of mutants on the

performance of SDP models in Appendix C to show how MBA performed in detail. For

the CPDP scenario, we created 1540 SDP models using five ML algorithms, four different

defect levels (Baseline, MBA 0.3, MBA 0.4, and MBA 0.5), and 77 training and testing

dataset pairs. There are 29 dataset pairs for the CPDP scenario, but we were unable to

build the training datasets as shown in Table 6 since some of the training datasets (JEdit

3.2.1, Lucene 2.0, Xalan 2.6) have a defect ratio more than 30%. All of these three

projects' versions might be used as a testing dataset because we did not utilize them in a

training dataset. For all of the resting training datasets, it led to a drop of three training

datasets but an increase of eight testing datasets, so in total 77 training and testing dataset

pairs are created as shown in Appendix C. The quartile plots of performance measures

(AUC, pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each ML algorithm

are shown in Figure 23. For 192 of 385 cases (77 dataset pairs x 5 ML algorithms), each

increase in defect ratio resulted in higher recall values. The median recall values are 0.34,

0.48, and 0.55 for 30%, 40%, and 50% defect ratios, respectively (see Figure 23's middle

lane). For 203 of 385 cases, each increase in defect ratio resulted in higher false alarm

values. The median false alarm values are 0.23, 0.34, and 0.43 for 30%, 40%, and 50%

defect ratios, respectively (see Figure 23's bottom lane). In general, we can observe that

increasing defect ratio with MBA increased both recall and false alarm values. For 24 of

385 cases, each increase in defect ratio resulted in higher AUC values. The median AUC

values are 0.56, 0.58, and 0.56 for 30%, 40%, and 50% defect ratios, respectively (see

Figure 23's top lane).

66

Figure 23. CPDP Scenario: Quartile plots of performance measures (AUC, pd, and pf) for Baseline, MBA 0.3, MBA 0.4, and MBA 0.5 for each
ML algorithm

 67

We also investigated the impact of changing software measures on prediction

performance of SDP models. For each training dataset, we calculated the change of

software measures between Baseline and three different defect levels (MBA 0.3, MBA

0.4, and MBA 0.5) and normalized them to enable proper analysis. The scatter plots of

performance measures (AUC, pd, and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each

ML algorithm are shown in Figure 24. To check the correlation between SMC and

performance measures, we decided to calculate Pearson correlation coefficient if

normality is not violated otherwise, we chose Kendall’s Tau correlation coefficient which

is non-parametric alternative of Pearson correlation test. 4 of 15 ML algorithm and

performance measure pairs satisfied normality but SMC violated (the same SMC is used

for all cases), so we used Kendall’s Tau correlation coefficients to show the relation

between performance measures and SMC for all ML algorithms (KNN, NB, DT, RF, and

SVM) as shown in Table 177. Low correlation values of less than 0.11% were observed

for AUC. On a rare occasion did the SMC have significant negative correlation with AUC

for DT. SMC and the other performance measures (pd and pf) were positively and

significantly correlated for all ML techniques. However, a positive and significant

correlation for pf measure indicates that increasing SMC causes producing more false

alarms which is undesirable for better performance. The software measures' change has

little impact on NB because it is the most resistant to SMC. The software measures'

change has remarkable impact on DT and RF different than IRDP scenario.

 68

Table 17. CPDP Scenario: Kendall's Tau correlation analysis between SMC and each

performance measure per each ML algorithm

 Software Measure Change

Performance Measure ML Method
SMC

Correlation Significance (p=0.05)

AUC

KNN -0.02 0.67

NB 0.04 0.43

DT -0.10 0.02

RF 0.03 0.52

SVM 0.10 0.10

pd KNN 0.35 0.00

NB 0.13 0.00

DT 0.30 0.00

RF 0.44 0.00

SVM 0.69 0.00

pf KNN 0.44 0.00

NB 0.18 0.00

DT 0.36 0.00

RF 0.48 0.00

SVM 0.71 0.00

69

Figure 24. CPDP Scenario: The scatter plots of performance measures (AUC, pd, and pf) for MBA 0.3, MBA 0.4, and MBA 0.5 for each ML
algorithm

 70

5.5. General Discussion

The optimal predictor should have a high probability of finding a defect

(pd/recall) and produce few false alarms (pf). According to earlier studies, this ideal

condition is extremely uncommon (Menzies, Greenwald, and Frank 2007). High

detection probabilities can be achieved at the expense of more false alarms (Menzies,

Greenwald, and Frank 2007; Turhan et al. 2009). A comprehensive meta-analysis

confirms the difficulty of achieving high recall results without reducing precision

(Hosseini, Turhan, and Gunarathna 2019). However, they found that when the factors

affecting performance are addressed, CPDP techniques can reach comparable predictive

performance to WRDP (Hosseini, Turhan, and Gunarathna 2019). In our trials, we

encountered identical results for the IRDP and CPDP scenarios. Only MBA consistently

beat the Baseline in the CPDP scenario, despite the fact that nearly all rebalancing

approaches increased recall compared to Baseline in the IRDP scenario. According to

reports in the literature, the increase in false alarms for both scenarios was caused by the

improvement in recall (Hosseini, Turhan, and Gunarathna 2019; Menzies, Greenwald,

and Frank 2007; Turhan et al. 2009). Only three datasets—Lucene, Poi, and Xerces for

the IRDP scenario and Poi, Velocity, and Xalan for the CPDP scenario—were used by

MBA to get the best AUC values for each scenario. Therefore, we can not draw the

conclusion that an MBA always raises AUC. The median AUC values range between

0.53 and 0.90 for the CPDP scenario and 0.35 - 0.63 for the IRDP scenario, indicating

that the recall values for the CPDP scenario were greater than the ones for IRDP.

We had to understand how MBA affected software measures in our experiment

because we used software measures to build SDP models. In order to achieve this, we

counted the number of datasets affected by mutation for each software measure. All

training datasets mentioned in Table 6 had their RFC, LOC, AMC, MAX CC, and AVG

CC measures modified. In the majority of datasets (eight to twelve), LCOM, LCOM3,

CBO, CA, CE, CBM, and IC measures were influenced. In a small number of datasets

(two to four), WMC, DAM, MFA, and CAM indicators were impacted. DIT, NOC, NPM,

and MOA measures were unaffected by the mutation operators described in Table 2 for

any dataset. As each software measure's contribution to SDP may differ depending on the

project (Esteves et al. 2020). Software measures that were left unchanged or that were not

 71

changed sufficiently may have degraded MBA's performance. For instance, CAM and

WMC measures, which were impacted by mutations for three and four datasets

respectively, were reported as effective predictors of defects (Al Dallal and Briand 2010;

Radjenović et al. 2013). LOC, AMC, DAM, RFC, and NPM are mentioned as important

features for SDP (Esteves et al. 2020). Mutations had no effect on NPM and had an impact

on DAM for only two datasets. In order to have an impact on WMC, it is worthwhile to

expand the collection of mutation operators to include mutation operators such as

overriding and overloading method deletion (Ma and Offutt 2005). Other mutation

operators, such as the access modifier change operator for NPM, can be used to affect

unchanged software measures (Ma and Offutt 2005). Additionally, measures that have

been shown to be successful for SDP in the literature, including Similarity-based Class

Cohesion (Al Dallal and Briand 2010), can be included in the software measure suite. We

examined the correlation between the number of defects in a file and performance

measures (AUC, pd, and pf) to see how the number of defects in a file affected the

performance of SDP models. No performance measure is statistically significantly

correlated with the quantity of defects in a file, as per Kendall’s Tau correlation test. On

the performance of SDP models, the change percentage of software measures (SMC)

contributes more than the quantity of defects. In other words, the quality of the mutation

is more important than the amount.

We can not conclude that increasing the defect ratio with MBA increases

performance, as mentioned in many other studies (Bennin et al., 2018). One of the biggest

problems for MBA is locating the exact defect or defects at the same time and getting the

right software measures changed for the right dataset. In some cases, more mutant

addition causes a decrease in the performance of SDP models for some of the ML

methods. We examined these examples and found that the software measures had not

changed enough. Since the ML process only understands measures, this is equivalent to

converting labels to defective without mutant addition. For instance, Synapse 1.1 has a

significant number of changes only on RFC, LOC, and AMC and its performance

decreased when the defect ratio increased. On the other hand, Xerces 1.2 has a significant

number of changes to RFC, LCOM, LCOM3, LOC, CBM, AMC, MAX CC, and AVG

CC and its performance increased when the defect ratio increased. Also, two SDP models

of Poi 2.0RC1 have an increase in both recall and AUC values of 0.5 defect ratio. When

we inspected the number of changed software measures, we noticed that there were a

notable number of CBM changes. Because all training datasets share similar projects with

 72

one another, the CPDP scenario did not see the same variation in software measures

change as the IRDP scenario. Since SDP models use software measures as predictors of

defects, the performance of MBA depends on how much mutants impact software

measures. With the set of mutation operators used in this study, we are not able to

conclude that MBA constantly improves defect prediction performance as training

datasets are more balanced. Therefore, we propose to investigate a better set of mutation

operators that lead to more meaningful changes in software measures to improve

prediction performance.

Due to the need to execute a test suite on each mutation, mutation testing is seen

as expensive (Jahangirova and Tonella 2020). MBA consists solely of applying mutation

operators to source code, as seen in Figure 9 and Figure 16. A test suite's execution and

accessibility are unimportant to MBA. As a result, we contrasted how long it took to apply

mutation operators to balancing via sampling techniques. A personal computer running

the Ubuntu 18.04 LTS operating system and one physical Intel Core i7-10875H processor

running at 2.30 GHz with eight cores and sixteen threads was used to carry out the

experiment. Over-sampling techniques required no more than 1 msec per dataset. On

Xalan 2.6, however, mutating a dataset took an average of 0.89 seconds and as long as

1.9 seconds. Since an SDP model is only trained after prediction performance has

significantly declined, the additional time required for mutation is therefore negligible.

Furthermore, the mutation procedure adds only 1-2 seconds of time to the model

construction process for each dataset. Although this time cost depends on the tool used

for the mutation, we do not expect a significant increase as a result of the tool change.

The significance of repeatability and replication of ML studies in software

engineering research was highlighted by the fact that several researchers do not publish

their artifacts, such as source code, datasets, parameters used to develop models, and other

information for reproducing experiments (Giray et al. 2023; Liu et al. 2021). Due to the

unavailability of (1) project source codes, (2) project dependencies, (3) the Java SDK

version used to build source codes, and (4) the details of the software measure extraction

tool (in

1 https://github.com/dincerguner/Mutant-based-Approach-to-Alleviate-CIP-in-SDP 73

our experiment, the version of the ckjm-extended tool and the Java version to run ckjm-

extended), we encountered several problems. We were able to acquire the source codes

and dependencies for the projects listed in Table 4 as a result of these problems. We

performed many evaluations to determine the ideal Java SDK version and the ideal

version of ckjm-extended (versions 2.1, 2.2, and 2.3 were used in the evaluations), as

detailed in section 4.2. We could reproduce the measures MFA, IC, CBM, MAX CC, and

AVG CC with some minor differences reported by (Jureczko and Madeyski 2010). We

publish all artifacts and information publicly to clear the way for solving the problem of

reproducibility and replication.

The wide variety of performance measures provided in the research presents

another challenge in utilizing the SDP literature that already exists (Y. Yang et al. 2022).

Multiple-number assessment criteria make it more difficult to evaluate ML models (Ng

2019). Therefore, using a suitable number of measures rather than a single-number

evaluation measure is recommended whenever that is not practicable. Unfortunately,

researchers have not come to an agreement on a standard set of performance measures

for evaluating SDP models (Giray et al. 2023). To evaluate different aspects of the

models, we used three performance measures. We were able to compare our findings with

certain research that accurately reported performance measures. To address this issue, we

publish the values for a variety of performance measures that were obtained throughout

the experiment in the online repository1.

Despite the challenges with SDP, there is a lot of interest in defect predictors

because alternative testing approaches are more expensive and time-consuming. Out of

395 practitioners, more than 90% said that they would be willing to embrace SDP models

(Wan et al. 2020). Interest in SDP models and calls for further research have been

reported in the literature (Zimmermann et al. 2009; Lewis et al. 2013). Therefore, we

think that MBA may have additional advantages for creating better predictors. The

prospective MBA enhancement opportunities are detailed in chapter 6 and reserved for

future investigation.

74

5.6. Threats to Validity

The data that are used to produce our experimental results is a threat to validity because

there are some differences between our software measure dataset and other studies, as we

discussed and stated the possible reasons in section 4.2. We must exclude some of the

projects of PROMISE dataset as we discussed in section 4.1. All the projects used were

from the PROMISE repository and were heavily utilized in numerous defect prediction

studies. Because we used a limited number of repositories as datasets, our findings might

not be appropriate for all software projects.

 The collection of software measures we utilized to create SDP models is one of

the potential threats to our results. Our findings can not be generalized to different

software measures in general. Static code measures appear to perform well, according to

earlier research (Menzies et al. 2010). However, it might be beneficial to add measures

to the measure suite that have been shown to be useful in the literature, such as Similarity-

based Class Cohesion (Al Dallal and Briand 2010). Additionally, as we discussed in

section 5.3, variety and combinations of mutants are important for MBA.

The ML methods that we used in our setup are another threat to validity. In our

study, we only used five different ML methods. We could not validate our results with

many other algorithms because of time limitations, but we chose the five ML methods

with respect to popularity and success in SDP. Data science is a very large and dynamic

field with many different algorithms. State-of-the-art approaches, in particular, are built

with deep learning models, but deep learning models require a large number of instances

in training datasets (Giray et al. 2023). Because the dataset in our study was limited, we

did not use deep learning techniques.

We randomly divided the training datasets into training (80%) and validation

(20%) sets as part of the ML model training process. We used a five-fold cross-validation

procedure and presented the average findings to lessen the impact of this random split.

The selection of hyperparameters during model training presents another threat. We

utilized grid search to optimize a pool of hyperparameters that we had chosen from the

literature, as given in Table 9. This is justified by the fact that meta-heuristic methods can

assist in computing the ideal values and that random selection of hyperparameters may

result in lower prediction performance (N. Zhang et al. 2022).

75

The variety of over-sampling methods that we used in our analysis is a threat to

validity. We used five different over-sampling methods with MBA and Baseline in our

experiments. Even if we choose these methods with respect to popularity in SDP, there

are other sampling strategies that we did not include. Therefore, we could not validate

our results with many other over-sampling algorithms because of space and time

limitations.

76

CHAPTER 6.

CONCLUSION AND FUTURE WORK

 The high degree of class imbalance in most real-world defect datasets makes

resampling techniques necessary to alleviate CIP. Synthetic minority data instances are

produced to balance the distribution between minority and majority class samples in over-

sampling techniques. It has been stated that these synthetic approaches improve

prediction performance, but they occasionally produce duplicate or inaccurate data

instances. Additionally, these over-sampling techniques are domain-agnostic, so the only

source is the instances that are minor in the dataset. Therefore, new instances must be

similar to the minor instances, which already have less diversity. Exploiting these

challenges, we proposed an alternative approach that transforms major class instances

into minor class instances with software mutants. Our motivation is balancing the class

ratio in the dataset with synthetic mutants and strengthening minor class instance

diversity from different than current over-sampling techniques.

We empirically evaluated MBA by comparing it to five other over-sampling

approaches (SMOTE, ROS, SMOTE Nominal, Borderline-SMOTE, and SVM SMOTE)

and Baseline using five ML methods (KNN, NB, DT, RF, and SVM). We used 13 and 19

imbalanced datasets, whose minor class is defective, for IRDP and CPDP scenarios,

respectively. In total, 945 and 1015 different experiment instances were produced for

IRDP and CPDP scenarios respectively. In the IRDP scenario, almost all rebalancing

techniques increased recall compared to Baseline; however, in the CPDP scenario, only

MBA consistently outperformed the Baseline. According to reports in the literature, the

improvement in recall resulted in the production of more false alarms (Menzies,

Greenwald, and Frank 2007; Turhan et al. 2009; Hosseini, Turhan, and Gunarathna 2019).

Only three datasets—Lucene, Poi, and Xerces for the IRDP scenario and Poi, Velocity,

and Xalan for the CPDP scenario—were used by MBA to get the best AUC values for

each scenario. Therefore, we can not draw the conclusion that an MBA always improves

AUC. The median AUC values range between 0.53 and 0.90 for the CPDP scenario and

0.35 - 0.63 for the IRDP scenario, indicating that the recall values for the CPDP scenario

were greater than those for IRDP.

77

In terms of Wilcoxon signed-rank tests, our experimental results show that:

• For recall scores, almost all rebalancing methods outperformed Baseline in Inter-

release Defect Prediction (IRDP) scenario but only MBA significantly

outperformed Baseline in Cross-project Defect Prediction (CPDP) scenario.

• As stated in literature, the performance increase in recall resulted in the production

of more false alarms for both scenarios.

• Only three datasets—Lucene, Poi, and Xerces for the IRDP scenario and Poi,

Velocity, and Xalan for the CPDP scenario— used by MBA resulted in the best

AUC values, so we can not generalize that MBA outperforms Baseline and the

five over-sampling strategies in terms of AUC scores.

• In terms of recall values, the MBA performed better in CPDP than IRDP;

specifically, the CPDP scenario's range for median recall values is between 0.53

and 0.90, whereas the IRDP scenario's range is between 0.35 and 0.63.

We also investigated the correlation between the change percentage of software measures

(SMC) and performance measures. For both IRDP and CPDP scenarios, in terms of

Kendall’s Tau correlation analysis, our results show that:

• There was a significant and positive correlation between SMC and recall.

• There was also a significant and positive correlation between SMC and false

alarm.

• On the other hand, there was no significant correlation between SMC and AUC.

• NB is the less impacted ML method from software measure changes by MBA.

We see the following areas of future investigation for ourselves and other possible

researchers based on the limitations and threats to the validity of our study:

• To increase prediction performance, the set of mutation operators can be

expanded to simulate a greater variety of software defects. Overriding,

overloading, method deletion, and access modifier change operators are examples

of additional mutation operators (Ma and Offutt 2005).

• With the use of datasets created using several programming languages, this

experiment can be repeated. These programming languages must provide a

mutation tool, such as Python's MutPy (Hałas 2011).

• Additional software measures, such as Similarity-based Class Cohesion, can be

added to the existing collection of software measures (Al Dallal and Briand 2010).

78

• Source code can be represented by other schemes, such as AST (Liang et al. 2019)

or image (J. Chen et al. 2020).

• Researching the effectiveness of MBA for small-scale and large-scale projects can

be another interesting direction (Majumder, Mody, and Menzies 2022).

79

REFERENCES

Andrews, J. H., L. C. Briand, and Y. Labiche. 2005. “Is Mutation an Appropriate Tool

for Testing Experiments? [Software Testing].” In Proceedings. 27th International

Conference on Software Engineering, 2005. ICSE 2005., 402–11.

https://doi.org/10.1109/ICSE.2005.1553583.

Arisholm, Erik, Lionel C. Briand, and Eivind B. Johannessen. 2010. “A Systematic and

Comprehensive Investigation of Methods to Build and Evaluate Fault Prediction

Models.” Journal of Systems and Software 83 (1): 2–17.

https://doi.org/https://doi.org/10.1016/j.jss.2009.06.055.

Bahaweres, Rizal Broer, Fajar Agustian, Irman Hermadi, Arif Imam Suroso, and Yandra

Arkeman. 2020. “Software Defect Prediction Using Neural Network Based

SMOTE.” In 2020 7th International Conference on Electrical Engineering,

Computer Sciences and Informatics (EECSI), 71–76.

https://doi.org/10.23919/EECSI50503.2020.9251874.

Bansiya, J., and C. G. Davis. 2002. “A Hierarchical Model for Object-Oriented Design

Quality Assessment.” IEEE Transactions on Software Engineering 28 (1): 4–17.

https://doi.org/10.1109/32.979986.

Bennin, Kwabena Ebo, Jacky Keung, Passakorn Phannachitta, Akito Monden, and

Solomon Mensah. 2018. “MAHAKIL: Diversity Based Oversampling Approach to

Alleviate the Class Imbalance Issue in Software Defect Prediction.” IEEE

Transactions on Software Engineering 44 (6): 534–50.

https://doi.org/10.1109/TSE.2017.2731766.

Bharati, Subrato, Prajoy Podder, and M. Rubaiyat Hossain Mondal. 2020. “Diagnosis of

Polycystic Ovary Syndrome Using Machine Learning Algorithms.” In 2020 IEEE

Region 10 Symposium (TENSYMP), 1486–89.

https://doi.org/10.1109/TENSYMP50017.2020.9230932.

Bouguila, Nizar, Jian Han Wang, and A. Ben Hamza. 2008. “A Bayesian Approach for

Software Quality Prediction.” In 2008 4th International IEEE Conference Intelligent

Systems, 2:11-49-11–54. https://doi.org/10.1109/IS.2008.4670508.

80

Bowyer, Kevin W., Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer.

2011. “SMOTE: Synthetic Minority Over-Sampling Technique.” CoRR

abs/1106.1813. http://arxiv.org/abs/1106.1813.

Brownlee, Jason. 2020. Data Preparation for Machine Learning: Data Cleaning, Feature

Selection, and Data Transforms in Python. Machine Learning Mastery.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. “SMOTE:

Synthetic Minority Over-Sampling Technique.” Journal of Artificial Intelligence

Research 16 (June): 321–57. https://doi.org/10.1613/jair.953.

Chen, Jinyin, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir Filkov.

2020. “Software Visualization and Deep Transfer Learning for Effective Software

Defect Prediction.” In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, 578–89. ICSE ’20. New York, NY, USA:

Association for Computing Machinery. https://doi.org/10.1145/3377811.3380389.

Chen, Lin, Bin Fang, Zhaowei Shang, and Yuanyan Tang. 2018. “Tackling Class Overlap

and Imbalance Problems in Software Defect Prediction.” Software Quality Journal

26 (1): 97–125. https://doi.org/10.1007/s11219-016-9342-6.

Chidamber, S. R., and C. F. Kemerer. 1994. “A Metrics Suite for Object Oriented

Design.” IEEE Transactions on Software Engineering 20 (6): 476–93.

https://doi.org/10.1109/32.295895.

Dallal, Jehad Al, and Lionel C. Briand. 2010. “An Object-Oriented High-Level Design-

Based Class Cohesion Metric.” Information and Software Technology 52 (12):

1346–61. https://doi.org/https://doi.org/10.1016/j.infsof.2010.08.006.

D’Ambros, Marco, Michele Lanza, and Romain Robbes. 2010. “An Extensive

Comparison of Bug Prediction Approaches.” In 2010 7th IEEE Working Conference

on Mining Software Repositories (MSR 2010), 31–41.

https://doi.org/10.1109/MSR.2010.5463279.

Domingos, Pedro. 1999. “MetaCost: A General Method for Making Classifiers Cost-

Sensitive.” In Proceedings of the Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 155–64. KDD ’99. New York, NY, USA:

Association for Computing Machinery. https://doi.org/10.1145/312129.312220.

Emam, Khaled El, Saida Benlarbi, Nishith Goel, and Shesh N. Rai. 2001. “Comparing

Case-Based Reasoning Classifiers for Predicting High Risk Software Components.”

J. Syst. Softw. 55 (3): 301–20. https://doi.org/10.1016/S0164-1212(00)00079-0.

81

Erturk, Ezgi, and Ebru Akcapinar Sezer. 2015. “A Comparison of Some Soft Computing

Methods for Software Fault Prediction.” Expert Systems with Applications 42 (4):

1872–79. https://doi.org/https://doi.org/10.1016/j.eswa.2014.10.025.

Esteves, Geanderson, Eduardo Figueiredo, Adriano Veloso, Markos Viggiato, and Nivio

Ziviani. 2020. “Understanding Machine Learning Software Defect Predictions.”

Automated Software Engineering 27 (3): 369–92. https://doi.org/10.1007/s10515-

020-00277-4.

Ferenc, Rudolf, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy. 2018.

“A Public Unified Bug Dataset for Java.” In Proceedings of the 14th International

Conference on Predictive Models and Data Analytics in Software Engineering, 12–

21. PROMISE’18. New York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/3273934.3273936.

Galar, Mikel, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and

Francisco Herrera. 2012. “A Review on Ensembles for the Class Imbalance

Problem: Bagging-, Boosting-, and Hybrid-Based Approaches.” IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (4): 463–

84. https://doi.org/10.1109/TSMCC.2011.2161285.

García, V., J. S. Sánchez, and R. A. Mollineda. 2012. “On the Effectiveness of

Preprocessing Methods When Dealing with Different Levels of Class Imbalance.”

Knowledge-Based Systems 25 (1): 13–21.

https://doi.org/https://doi.org/10.1016/j.knosys.2011.06.013.

Giray, Görkem, Kwabena Ebo Bennin, Ömer Köksal, Önder Babur, and Bedir

Tekinerdogan. 2023. “On the Use of Deep Learning in Software Defect Prediction.”

Journal of Systems and Software 195: 111537.

https://doi.org/https://doi.org/10.1016/j.jss.2022.111537.

Goyal, Somya. 2022. “Handling Class-Imbalance with KNN (Neighbourhood) Under-

Sampling for Software Defect Prediction.” Artificial Intelligence Review 55 (3):

2023–64. https://doi.org/10.1007/s10462-021-10044-w.

Goyal, Somya, and Pradeep Bhatia. 2020. “Comparison of Machine Learning Techniques

for Software Quality Prediction.” International Journal of Knowledge and Systems

Science 11 (May): 20–40. https://doi.org/10.4018/IJKSS.2020040102.

82

Guo, L., Y. Ma, B. Cukic, and Harshinder Singh. 2004. “Robust Prediction of Fault-

Proneness by Random Forests.” In 15th International Symposium on Software

Reliability Engineering, 417–28. https://doi.org/10.1109/ISSRE.2004.35.

Gyimothy, T., R. Ferenc, and I. Siket. 2005. “Empirical Validation of Object-Oriented

Metrics on Open Source Software for Fault Prediction.” IEEE Transactions on

Software Engineering 31 (10): 897–910. https://doi.org/10.1109/TSE.2005.112.

Haixiang, Guo, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing.

2017. “Learning from Class-Imbalanced Data: Review of Methods and

Applications.” Expert Systems with Applications 73: 220–39.

https://doi.org/https://doi.org/10.1016/j.eswa.2016.12.035.

Hałas, Konrad. 2011. “Mutation Testing in Python.” Doctoral dissertation, Instytut

Informatyki.

Hall, Tracy, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012. “A

Systematic Literature Review on Fault Prediction Performance in Software

Engineering.” IEEE Transactions on Software Engineering 38 (6): 1276–1304.

https://doi.org/10.1109/TSE.2011.103.

Hall, Tracy, Min Zhang, David Bowes, and Yi Sun. 2014. “Some Code Smells Have a

Significant but Small Effect on Faults.” ACM Trans. Softw. Eng. Methodol. 23 (4).

https://doi.org/10.1145/2629648.

Han Hui and Wang, Wen-Yuan and Mao Bing-Huan. 2005. “Borderline-SMOTE: A New

Over-Sampling Method in Imbalanced Data Sets Learning.” In Advances in

Intelligent Computing, edited by Xiao-Ping and Huang Guang-Bin Huang De-

Shuang and Zhang, 878–87. Berlin, Heidelberg: Springer Berlin Heidelberg.

Hassan, Ahmed E. 2009. “Predicting Faults Using the Complexity of Code Changes.” In

Proceedings of the 31st International Conference on Software Engineering, 78–88.

ICSE ’09. USA: IEEE Computer Society.

https://doi.org/10.1109/ICSE.2009.5070510.

He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. “ADASYN: Adaptive

Synthetic Sampling Approach for Imbalanced Learning.” In 2008 IEEE

International Joint Conference on Neural Networks (IEEE World Congress on

Computational Intelligence), 1322–28.

https://doi.org/10.1109/IJCNN.2008.4633969.

83

Henderson-Sellers, Brian. 1995. Object-Oriented Metrics: Measures of Complexity.

USA: Prentice-Hall, Inc.

Hosseini, Seyedrebvar, Burak Turhan, and Dimuthu Gunarathna. 2019. “A Systematic

Literature Review and Meta-Analysis on Cross Project Defect Prediction.” IEEE

Transactions on Software Engineering 45 (2): 111–47.

https://doi.org/10.1109/TSE.2017.2770124.

Hulse, Jason Van, Taghi M. Khoshgoftaar, and Amri Napolitano. 2007. “Experimental

Perspectives on Learning from Imbalanced Data.” In Proceedings of the 24th

International Conference on Machine Learning, 935–42. ICML ’07. New York, NY,

USA: Association for Computing Machinery.

https://doi.org/10.1145/1273496.1273614.

Jahangirova, Gunel, and Paolo Tonella. 2020. “An Empirical Evaluation of Mutation

Operators for Deep Learning Systems.” In 2020 IEEE 13th International Conference

on Software Testing, Validation and Verification (ICST), 74–84.

https://doi.org/10.1109/ICST46399.2020.00018.

Japkowicz, Nathalie, and Shaju Stephen. 2002. “The Class Imbalance Problem: A

Systematic Study.” Intell. Data Anal. 6 (5): 429–49.

Jia, Yue, and Mark Harman. 2011. “An Analysis and Survey of the Development of

Mutation Testing.” IEEE Transactions on Software Engineering 37 (5): 649–78.

https://doi.org/10.1109/TSE.2010.62.

Johnson, Justin M., and Taghi M. Khoshgoftaar. 2019. “Survey on Deep Learning with

Class Imbalance.” Journal of Big Data 6 (1): 27. https://doi.org/10.1186/s40537-

019-0192-5.

Jureczko, Marian, and Lech Madeyski. 2010. “Towards Identifying Software Project

Clusters with Regard to Defect Prediction.” In Proceedings of the 6th International

Conference on Predictive Models in Software Engineering. PROMISE ’10. New

York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/1868328.1868342.

Jureczko, Marian, and Diomidis Spinellis. 2010. “Using Object-Oriented Design Metrics

to Predict Software Defects.” In Models and Methods of System Dependability.

Just, René, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and

Gordon Fraser. 2014. “Are Mutants a Valid Substitute for Real Faults in Software

Testing?” In Proceedings of the 22nd ACM SIGSOFT International Symposium on

84

Foundations of Software Engineering, 654–65. FSE 2014. New York, NY, USA:

Association for Computing Machinery. https://doi.org/10.1145/2635868.2635929.

Just, René, Gregory M. Kapfhammer, and Franz Schweiggert. 2012. “Using Non-

Redundant Mutation Operators and Test Suite Prioritization to Achieve Efficient and

Scalable Mutation Analysis.” In 2012 IEEE 23rd International Symposium on

Software Reliability Engineering, 11–20. https://doi.org/10.1109/ISSRE.2012.31.

Just, René, Franz Schweiggert, and Gregory M. Kapfhammer. 2011. “MAJOR: An

Efficient and Extensible Tool for Mutation Analysis in a Java Compiler.” In 2011

26th IEEE/ACM International Conference on Automated Software Engineering

(ASE 2011), 612–15. https://doi.org/10.1109/ASE.2011.6100138.

Khoshgoftaar, T. M., E. B. Allen, J. P. Hudepohl, and S. J. Aud. 1997. “Application of

Neural Networks to Software Quality Modeling of a Very Large

Telecommunications System.” IEEE Transactions on Neural Networks 8 (4): 902–

9. https://doi.org/10.1109/72.595888.

Khoshgoftaar, Taghi M., and Naeem Seliya. 2003. “Analogy-Based Practical

Classification Rules for Software Quality Estimation.” Empirical Software

Engineering 8 (4): 325–50. https://doi.org/10.1023/A:1025316301168.

Kumar, Lov, Sai Krishna Sripada, Ashish Sureka, and Santanu Ku. Rath. 2018. “Effective

Fault Prediction Model Developed Using Least Square Support Vector Machine

(LSSVM).” Journal of Systems and Software 137: 686–712.

https://doi.org/https://doi.org/10.1016/j.jss.2017.04.016.

Kumar, Santanu Rath, and Ashish Sureka. 2017. “Using Source Code Metrics and

Ensemble Methods for Fault Proneness Prediction,” February.

Laradji, Issam H., Mohammad Alshayeb, and Lahouari Ghouti. 2015. “Software Defect

Prediction Using Ensemble Learning on Selected Features.” Information and

Software Technology 58: 388–402.

https://doi.org/https://doi.org/10.1016/j.infsof.2014.07.005.

Lessmann, Stefan, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.

“Benchmarking Classification Models for Software Defect Prediction: A Proposed

Framework and Novel Findings.” IEEE Transactions on Software Engineering 34

(4): 485–96. https://doi.org/10.1109/TSE.2008.35.

Lewis, Chris, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and E. James

Whitehead. 2013. “Does Bug Prediction Support Human Developers? Findings from

85

a Google Case Study.” In 2013 35th International Conference on Software

Engineering (ICSE), 372–81. https://doi.org/10.1109/ICSE.2013.6606583.

Li, Ke, Zilin Xiang, Tao Chen, Shuo Wang, and Kay Chen Tan. 2020. “Understanding

the Automated Parameter Optimization on Transfer Learning for Cross-Project

Defect Prediction: An Empirical Study.” In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, 566–77. ICSE ’20. New York,

NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/3377811.3380360.

Liang, Hongliang, Yue Yu, Lin Jiang, and Zhuosi Xie. 2019. “Seml: A Semantic LSTM

Model for Software Defect Prediction.” IEEE Access 7: 83812–24.

https://doi.org/10.1109/ACCESS.2019.2925313.

Liu, Chao, Cuiyun Gao, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2021. “On

the Reproducibility and Replicability of Deep Learning in Software Engineering.”

ACM Trans. Softw. Eng. Methodol. 31 (1). https://doi.org/10.1145/3477535.

Ma, Yu-Seung, and Jeff Offutt. 2005. “Description of Class Mutation Mutation Operators

for Java,” April.

Majumder, Suvodeep, Pranav Mody, and Tim Menzies. 2022. “Revisiting Process versus

Product Metrics: A Large Scale Analysis.” Empirical Software Engineering 27 (3):

60. https://doi.org/10.1007/s10664-021-10068-4.

Martin, Robert. 1994. “OO Design Quality Metrics.” An Analysis of Dependencies 12 (1):

151–70.

McCabe, T. J. 1976. “A Complexity Measure.” IEEE Transactions on Software

Engineering SE-2 (4): 308–20. https://doi.org/10.1109/TSE.1976.233837.

Menzies, Tim, Alex Dekhtyar, Justin Distefano, and Jeremy Greenwald. 2007. “Problems

with Precision: A Response to ‘Comments on “Data Mining Static Code Attributes

to Learn Defect Predictors.”’” IEEE Transactions on Software Engineering 33 (9):

637–40. https://doi.org/10.1109/TSE.2007.70721.

Menzies, Tim, Jeremy Greenwald, and Art Frank. 2007. “Data Mining Static Code

Attributes to Learn Defect Predictors.” IEEE Transactions on Software Engineering

33 (1): 2–13. https://doi.org/10.1109/TSE.2007.256941.

Menzies, Tim, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and Ayşe Bener.

2010. “Defect Prediction from Static Code Features: Current Results, Limitations,

86

New Approaches.” Automated Software Engineering 17 (4): 375–407.

https://doi.org/10.1007/s10515-010-0069-5.

Miholca, Diana-Lucia, Gabriela Czibula, and Istvan Gergely Czibula. 2018. “A Novel

Approach for Software Defect Prediction through Hybridizing Gradual Relational

Association Rules with Artificial Neural Networks.” Information Sciences 441:

152–70. https://doi.org/https://doi.org/10.1016/j.ins.2018.02.027.

Monden, Akito, Takuma Hayashi, Shoji Shinoda, Kumiko Shirai, Junichi Yoshida, Mike

Barker, and Kenichi Matsumoto. 2013. “Assessing the Cost Effectiveness of Fault

Prediction in Acceptance Testing.” IEEE Transactions on Software Engineering 39

(10): 1345–57. https://doi.org/10.1109/TSE.2013.21.

Moser, Raimund, Witold Pedrycz, and Giancarlo Succi. 2008. “A Comparative Analysis

of the Efficiency of Change Metrics and Static Code Attributes for Defect

Prediction.” In Proceedings of the 30th International Conference on Software

Engineering, 181–90. ICSE ’08. New York, NY, USA: Association for Computing

Machinery. https://doi.org/10.1145/1368088.1368114.

Moussa, Rebecca, and Federica Sarro. 2022. “On the Use of Evaluation Measures for

Defect Prediction Studies.” In Proceedings of the 31st ACM SIGSOFT International

Symposium on Software Testing and Analysis, 101–13. ISSTA 2022. New York,

NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/3533767.3534405.

Munson, J. C., and T. M. Khoshgoftaar. 1992. “The Detection of Fault-Prone Programs.”

IEEE Transactions on Software Engineering 18 (5): 423–33.

https://doi.org/10.1109/32.135775.

Nagappan, Nachiappan, and Thomas Ball. 2005. “Use of Relative Code Churn Measures

to Predict System Defect Density.” In Proceedings of the 27th International

Conference on Software Engineering, 284–92. ICSE ’05. New York, NY, USA:

Association for Computing Machinery. https://doi.org/10.1145/1062455.1062514.

Nagappan, Nachiappan, Thomas Ball, and Andreas Zeller. 2006. “Mining Metrics to

Predict Component Failures.” In Proceedings of the 28th International Conference

on Software Engineering, 452–61. ICSE ’06. New York, NY, USA: Association for

Computing Machinery. https://doi.org/10.1145/1134285.1134349.

Namin, Akbar Siami, and Sahitya Kakarla. 2011. “The Use of Mutation in Testing

Experiments and Its Sensitivity to External Threats.” In Proceedings of the 2011

87

International Symposium on Software Testing and Analysis, 342–52. ISSTA ’11.

New York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/2001420.2001461.

Ng, Andrew. 2019. “Machine Learning Yearning Technical Strategy for Ai Engineers in

the Era of Deep Learning.” https://www.mlyearning.org.

Nguyen, Hien M., Eric W. Cooper, and Katsuari Kamei. 2011. “Borderline Over-

Sampling for Imbalanced Data Classification.” Int. J. Knowl. Eng. Soft Data

Paradigm. 3 (1): 4–21. https://doi.org/10.1504/IJKESDP.2011.039875.

Offutt, A. Jefferson, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf.

1996. “An Experimental Determination of Sufficient Mutant Operators.” ACM

Trans. Softw. Eng. Methodol. 5 (2): 99–118.

https://doi.org/10.1145/227607.227610.

Özakıncı, Rana, and Ayça Tarhan. 2018. “Early Software Defect Prediction: A

Systematic Map and Review.” Journal of Systems and Software 144: 216–39.

https://doi.org/https://doi.org/10.1016/j.jss.2018.06.025.

Pappas, Paul A., and Venita DePuy. 2004. “An Overview of Non-Parametric Tests in

SAS: When, Why, and How.” Paper TU04. Duke Clinical Research Institute,

Durham, 1–5.

Pazzani, Michael, Christopher Merz, Patrick Murphy, Kamal Ali, Timothy Hume, and

Clifford Brunk. 1994. “Reducing Misclassification Costs.” In Machine Learning

Proceedings 1994, edited by William W Cohen and Haym Hirsh, 217–25. San

Francisco (CA): Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-1-

55860-335-6.50034-9.

Provost, Foster J. 2008. “Machine Learning from Imbalanced Data Sets 101.” In .

Qu, Yang, Zhenming Li, Jiaoru Zhao, and Hui Li. 2022. “Unbalanced Data Processing

for Software Defect Prediction.” In 2022 4th International Conference on Data-

Driven Optimization of Complex Systems (DOCS), 1–6.

https://doi.org/10.1109/DOCS55193.2022.9967755.

Quah, Tong-Seng, and Mie Mie Thet Thwin. 2003. “Application of Neural Networks for

Software Quality Prediction Using Object-Oriented Metrics.” In International

Conference on Software Maintenance, 2003. ICSM 2003. Proceedings., 116–25.

https://doi.org/10.1109/ICSM.2003.1235412.

88

Radjenović, Danijel, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013.

“Software Fault Prediction Metrics: A Systematic Literature Review.” Information

and Software Technology 55 (8): 1397–1418.

https://doi.org/https://doi.org/10.1016/j.infsof.2013.02.009.

Rao, K. Nitalaksheswara, and Ch. Satyananda Reddy. 2020. “A Novel under Sampling

Strategy for Efficient Software Defect Analysis of Skewed Distributed Data.”

Evolving Systems 11 (1): 119–31. https://doi.org/10.1007/s12530-018-9261-9.

Rathore, Santosh S., and Sandeep Kumar. 2019. “A Study on Software Fault Prediction

Techniques.” Artificial Intelligence Review 51 (2): 255–327.

https://doi.org/10.1007/s10462-017-9563-5.

Rekha G. and Shailaja, K. and Jatoth Chandrashekar. 2022. “Informative Software Defect

Data Generation and Prediction: INF-SMOTE.” In Advances in Computing and

Data Sciences, edited by Vipin and Gupta P K. and Flusser Jan and Ören Tuncer

Singh Mayank and Tyagi, 179–91. Cham: Springer International Publishing.

Sayyad Shirabad, J., and T. J. Menzies. 2005. “The PROMISE Repository of Software

Engineering Databases.” http://promise.site.uottawa.ca/SERepository.

Seliya, Naeem, Taghi M. Khoshgoftaar, and Jason Van Hulse. 2009. “A Study on the

Relationships of Classifier Performance Metrics.” In 2009 21st IEEE International

Conference on Tools with Artificial Intelligence, 59–66.

https://doi.org/10.1109/ICTAI.2009.25.

Shanab, Ahmad Abu, Taghi M. Khoshgoftaar, Randall Wald, and Amri Napolitano. 2012.

“Impact of Noise and Data Sampling on Stability of Feature Ranking Techniques

for Biological Datasets.” In 2012 IEEE 13th International Conference on

Information Reuse & Integration (IRI), 415–22.

https://doi.org/10.1109/IRI.2012.6303039.

Siami Namin, Akbar, James Andrews, and Duncan Murdoch. 2008. “Sufficient Mutation

Operators for Measuring Test Effectiveness.” In 2008 ACM/IEEE 30th International

Conference on Software Engineering, 351–60.

https://doi.org/10.1145/1368088.1368136.

Smith, Michael R., Tony Martinez, and Christophe Giraud-Carrier. 2014. “An Instance

Level Analysis of Data Complexity.” Machine Learning 95 (2): 225–56.

https://doi.org/10.1007/s10994-013-5422-z.

89

Song, Qinbao, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. 2011. “A General

Software Defect-Proneness Prediction Framework.” IEEE Transactions on Software

Engineering 37 (3): 356–70. https://doi.org/10.1109/TSE.2010.90.

Spinellis, D. 2005. “Tool Writing: A Forgotten Art? (Software Tools).” IEEE Software

22 (4): 9–11. https://doi.org/10.1109/MS.2005.111.

Subramanyam, R., and M. S. Krishnan. 2003. “Empirical Analysis of CK Metrics for

Object-Oriented Design Complexity: Implications for Software Defects.” IEEE

Transactions on Software Engineering 29 (4): 297–310.

https://doi.org/10.1109/TSE.2003.1191795.

Sun, Yanmin, Mohamed S. Kamel, Andrew K. C. Wong, and Yang Wang. 2007. “Cost-

Sensitive Boosting for Classification of Imbalanced Data.” Pattern Recognition 40

(12): 3358–78. https://doi.org/https://doi.org/10.1016/j.patcog.2007.04.009.

Tang, Mei-Huei, Ming-Hung Kao, and Mei-Hwa Chen. 1999. “An Empirical Study on

Object-Oriented Metrics.” In Proceedings Sixth International Software Metrics

Symposium (Cat. No.PR00403), 242–49.

https://doi.org/10.1109/METRIC.1999.809745.

Tóth Zoltán and Gyimesi, Péter and Ferenc Rudolf. 2016. “A Public Bug Database of

GitHub Projects and Its Application in Bug Prediction.” In Computational Science

and Its Applications – ICCSA 2016, edited by Beniamino and Misra Sanjay and

Rocha Ana Maria A.C. and Torre Carmelo M. and Taniar David and Apduhan

Bernady O. and Stankova Elena and Wang Shangguang Gervasi Osvaldo and

Murgante, 625–38. Cham: Springer International Publishing.

Tsai, Chih-Fong, Wei-Chao Lin, Ya-Han Hu, and Guan-Ting Yao. 2019. “Under-

Sampling Class Imbalanced Datasets by Combining Clustering Analysis and

Instance Selection.” Information Sciences 477: 47–54.

https://doi.org/https://doi.org/10.1016/j.ins.2018.10.029.

Turhan, Burak, and Ayse Bener. 2009. “Analysis of Naive Bayes’ Assumptions on

Software Fault Data: An Empirical Study.” Data & Knowledge Engineering 68 (2):

278–90. https://doi.org/https://doi.org/10.1016/j.datak.2008.10.005.

Turhan, Burak, Tim Menzies, Ayşe B. Bener, and Justin Di Stefano. 2009. “On the

Relative Value of Cross-Company and within-Company Data for Defect

Prediction.” Empirical Software Engineering 14 (5): 540–78.

https://doi.org/10.1007/s10664-008-9103-7.

90

Vallat, Raphael. 2018. “Pingouin: Statistics in Python.” The Journal of Open Source

Software 3 (31): 1026.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David

Cournapeau, Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for

Scientific in Python.” Nature Methods 17: 261–72. https://doi.org/10.1038/s41592-

019-0686-2.

Vuttipittayamongkol, Pattaramon, and Eyad Elyan. 2020. “Neighbourhood-Based

Undersampling Approach for Handling Imbalanced and Overlapped Data.”

Information Sciences 509: 47–70.

https://doi.org/https://doi.org/10.1016/j.ins.2019.08.062.

Wan, Zhiyuan, Xin Xia, Ahmed E. Hassan, David Lo, Jianwei Yin, and Xiaohu Yang.

2020. “Perceptions, Expectations, and Challenges in Defect Prediction.” IEEE

Transactions on Software Engineering 46 (11): 1241–66.

https://doi.org/10.1109/TSE.2018.2877678.

Weiss, Gary, and Foster Provost. 2001. “The Effect of Class Distribution on Classifier

Learning: An Empirical Study.” Tech Rep, February.

Wong, Ginny Y., Frank H. F. Leung, and Sai-Ho Ling. 2013. “A Novel Evolutionary

Preprocessing Method Based on Over-Sampling and under-Sampling for

Imbalanced Datasets.” In IECON 2013 - 39th Annual Conference of the IEEE

Industrial Electronics Society, 2354–59.

https://doi.org/10.1109/IECON.2013.6699499.

Yang, Li, and Abdallah Shami. 2020. “On Hyperparameter Optimization of Machine

Learning Algorithms: Theory and Practice.” Neurocomputing 415: 295–316.

https://doi.org/https://doi.org/10.1016/j.neucom.2020.07.061.

Yang, Yanming, Xin Xia, David Lo, Tingting Bi, John Grundy, and Xiaohu Yang. 2022.

“Predictive Models in Software Engineering: Challenges and Opportunities.” ACM

Trans. Softw. Eng. Methodol. 31 (3). https://doi.org/10.1145/3503509.

Yen, Show-Jane, and Yue-Shi Lee. 2006. “Cluster-Based Under-Sampling Approaches

for Imbalanced Data Distributions.” Expert Systems with Applications 36 (October):

5718–27. https://doi.org/10.1016/j.eswa.2008.06.108.

Yoon, Kihoon, and Stephen Kwek. 2007. “A Data Reduction Approach for Resolving the

Imbalanced Data Issue in Functional Genomics.” Neural Computing and

Applications 16 (3): 295–306. https://doi.org/10.1007/s00521-007-0089-7.

91

Zhang, J., and I. Mani. 2003. “KNN Approach to Unbalanced Data Distributions: A Case

Study Involving Information Extraction.” In Proceedings of the ICML’2003

Workshop on Learning from Imbalanced Datasets.

Zhang, Nana, Shi Ying, Kun Zhu, and Dandan Zhu. 2022. “Software Defect Prediction

Based on Stacked Sparse Denoising Autoencoders and Enhanced Extreme Learning

Machine.” IET Software 16 (April). https://doi.org/10.1049/sfw2.12029.

Zhang, Yun, David Lo, Xin Xia, and Jianling Sun. 2018. “Combined Classifier for Cross-

Project Defect Prediction: An Extended Empirical Study.” Frontiers of Computer

Science 12 (2): 280–96. https://doi.org/10.1007/s11704-017-6015-y.

Zimmermann, Thomas, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and

Brendan Murphy. 2009. “Cross-Project Defect Prediction: A Large Scale

Experiment on Data vs. Domain vs. Process.” In Proceedings of the 7th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software Engineering, 91–100. ESEC/FSE ’09.

New York, NY, USA: Association for Computing Machinery.

https://doi.org/10.1145/1595696.1595713.

Zimmermann, Thomas, Rahul Premraj, and Andreas Zeller. 2007. “Predicting Defects for

Eclipse.” In Third International Workshop on Predictor Models in Software

Engineering (PROMISE’07: ICSE Workshops 2007), 9.

https://doi.org/10.1109/PROMISE.2007.10.

92

 APPENDIX A.

IRDP SCENARIO: AUC, PD AND PF VALUES OF

BASELINE AND DIFFERENT DEFECT LEVELS (0.3, 0.4,

AND 0.5 DEFECT RATIO) OF MBA FOR EACH DATASET

93

Figure A.1. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (1/4)

94

Figure A.2. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (2/4)

95

Figure A.3. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (3/4)

96

Figure A.4. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (4/4)

97

 APPENDIX B.

IRDP SCENARIO: NUMBER OF CHANGED MEASURES

ON DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5

DEFECT RATIO) OF MBA FOR EACH DATASET

98

Figure B.1. Number of changed measures on different defect levels (0.3, 0.4, and 0.5
defect ratio) of MBA for each dataset (1/2)

99

Figure B.2. Number of changed measures on different defect levels (0.3, 0.4, and 0.5
defect ratio) of MBA for each dataset (2/2)

100

 APPENDIX C.

CPDP SCENARIO: NUMBER OF CHANGED MEASURES

ON DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5

DEFECT RATIO) OF MBA FOR EACH DATASET

101

Figure C.1. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (1/16)

102

Figure C.2. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (2/16)

103

Figure C.3. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (3/16)

104

Figure C.4. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (4/16)

105

Figure C.5. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (5/16)

106

Figure C.6. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (6/16)

107

Figure C.7. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (7/16)

108

Figure C.8. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (8/16)

109

Figure C.9. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4, and
0.5 defect ratio) of MBA for each dataset (9/16)

110

Figure C.10. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (10/16)

111

Figure C.11. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (11/16)

112

Figure C.12. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (12/16)

113

Figure C.13. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (13/16)

114

Figure C.14. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (14/16)

115

Figure C.15. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (15/16)

116

Figure C.16. AUC, pd and pf values of Baseline and different defect levels (0.3, 0.4,
and 0.5 defect ratio) of MBA for each dataset (16/16)

117

 APPENDIX D.

CPDP SCENARIO: NUMBER OF CHANGED MEASURES

ON DIFFERENT DEFECT LEVELS (0.3, 0.4, AND 0.5

DEFECT RATIO) OF MBA FOR EACH DATASET

118

Figure D.1. Number of changed measures on different defect levels (0.3, 0.4, and 0.5
defect ratio) of MBA for each dataset (1/2)

119

Figure D.2. Number of changed measures on different defect levels (0.3, 0.4, and 0.5
defect ratio) of MBA for each dataset (2/2)

