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ABSTRACT 

 

BIOINFORMATIC APPROACHES TO INVESTIGATE HIV CAPSID-

NANOBODY INTERACTION 

 

Infection with HIV is still a global pandemic. Since the discovery of this highly 

mutagenic virus, nearly 40 million people have passed away as a result of HIV-related 

health problems. Currently, 38.4 million people are HIV-positive. Following infection, 

the viral genome gets integrated into the host cell genome. The infected person carries 

the virus for the rest of their life and can spread it to others through bodily fluids. Because 

there is no treatment for HIV, the World Health Organization recommends that infected 

people be diagnosed early through comprehensive screening to restrict the virus's spread. 

As a result, there is still a need to create practical, sensitive diagnostic tools, particularly 

for use in the field of HIV infection testing. In this study, the interaction between HIV-1 

capsid protein, the first antigen found in the blood during the acute phase of HIV 

infection, and a nanobody (Nb, a single domain antibody) known to bind to capsid is 

investigated at the molecular level through computational methods. Because the structure 

of HIV-1 CA binding-Nb is unknown, all-atom models of the Nb structure were 

constructed using comparative methods, deep-learning-based methods, and hybrid 

methods (SwissModel, trRosetta, Robetta, AlphaFold2), and promising models were 

chosen. In the second stage, molecular docking was used to produce HIV-1 capsid-

nanobody complex structures, which were then tested for stability and native-likeness 

using standard molecular dynamics simulations. Understanding the molecular details of 

the HIV-1 capsid-nanobody complex, we believe, will provide essential data for using 

this antigen-antibody pair inan immunosensor system for HIV-1 infection diagnosis. 
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ÖZET 

 

BİYOİNFORMATİK YÖNTEMLERLE HIV KAPSİT-NANOBADİ 

ANTİKOR ETKİLEŞİMİNİN İNCELEMESİ 

 

HİV enfeksiyonu küresel bir salgın olarak devam etmektedir. Bu mutasyon 

geçirme kapasitesi yüksek virüsün keşfinden bu yana, yaklaşık 40 milyon insan HİV 

enfeksiyonu sonucunda oluşan fırsatçı enfeksiyonlar veya hastalıklar dolayısıyla hayatını 

kaybetmiştir. Günümüzde yaklaşık 38.4 milyon insan HİV-pozitif oldukları tahmin 

edilmektedir. Enfeksiyondan sonra virüs viral genomunu konak hücre genomuna entegre 

eder. Enfekte olan kişi, geri kalan hayatı boyunca virüsü taşır ve vücut sıvıları aracılığıyla 

diğer insanlara bulaştırabilir. HİV enfeksiyonu için henüz bir tedavi olmadığından, Dünya 

Sağlık Örgütü, virüsün yayılmasını kısıtlamak için enfekte olan insanların kapsamlı 

tarama yoluyla erken teşhis edilmesini önermektedir. Bu nedenle, özellikle HİV 

enfeksiyonu testi için sahada kullanılmak üzere pratik, ve hassas tanı araçlarına ihtiyaç 

duyulmaktadır. Bu çalışmada, HİV-1 kapsid proteini (HİV-1 CA) ile kapside bağlanan 

bir nanobadi (Nb, tek bölgeli antikor) arasındaki etkileşimin moleküler detayları 

incelenmektedir. Nb proteininin 3-boyutlu yapısı bilinmediği için, Nb yapısının tüm atom 

modelleri karşılaştırmalı yöntemler, derin öğrenme tabanlı yöntemler ve hibrit yöntemler 

(SwissModel, trRosetta, Robetta, AlphaFold2) kullanılarak oluşturuldu ve uygun 

olabilecek modeller seçildi. İkinci aşamada, moleküler yanaştırma yöntemleri 

kullanılarak olası HİV-1 kapsid-nanobadi kompleksi yapıları üretildi. Son aşamada, 

moleküler yanaştırma çalışmasında uygun bulunan HİV-1 CA-Nb kompleks yapıların 

standart moleküler dinamik simülasyonları ile stabiliteleri ve doğal benzerlikleri test 

edildi. Bu çalışmada HİV-1 kapsid-nanobadi kompleks yapısının çözümlenmesiyle, Nb 

proteini ile geliştirilecek bir immünosensör ile  HİV’in farklı suşlarının  tanısı için 

kullanılması mümkün olacaktır.  
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1. Human Immunodeficiency Virus (HIV) 

 

 

HIV is the leading cause of Acquired Immunodeficiency Syndrome (AIDS), and 

approximately 38.4 million people are infected with HIV, according to 2021 Joint United 

Nations Programme on HIV/AIDS (UNAIDS) data. Most of these infections are in 

Eastern and Southern Africa, with approximately 20.6 million people living with HIV 

(Figure 1) (UNAIDS Fact Sheet). can be transmitted through body fluid, as represented 

in Figure 2. 
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Figure 1. UNAIDS 2021 Adults and children living with HIV (UNAIDS 2021 Adults and 

Children Living with HIV, 2021). 

 

  

 

 

Figure 2. HIV transmission mechanism. (HIV Infection | BioNinja, n.d.) 
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The target of this virus is the CD4+ T cells, which are part of the immune system. 

Infection of the CD4+ T cells with HIV leads to a weakened immune system since they 

cannot fulfill their purpose. Thus, leaving the body vulnerable to other infections. Without 

treatment, this viral infection can lead to AIDS and maybe death due to opportunistic 

infections (UNAIDS). 

Replicating by RNA without any proof-reading mechanism causes HIV to have a 

higher mutation rate, thus leading to greater genetic diversity (Rihn et al., 2013a). HIV 

has two types named HIV-1 and HIV-2; among them, HIV-1 has the most common 

occurrence of infection. HIV-1 is examined under four groups, M, N, O, and P, with 

several subtypes under them (Bbosa et al., 2019).  

 

 

1.1.1. Viral Structure of HIV 

 

 

HIV is a lentivirus which is a genus of retroviruses. The genetic material of HIV 

is composed of two identical copies of single-stranded RNA(ssRNA). Structural proteins 

(gag), viral enzymes (pol), and viral envelope proteins (env) are encoded in this genome 

(Wilk et al., 2001). 

The structural proteins to mention include matrix (MA), capsid (CA), and 

nucleocapsid (NC), which are derived from the polyprotein Gag. MA protein is associated 

with the inner surface of the viral membrane and takes a role in viral budding. CA protein 

surrounds the genetic material and takes part in delivering genetic material during 

infection. NC protein participates in the specific encapsidation of RNA (Ganser-Pornillos 

et al., 2008; Mishra et al., 2020; Zhang et al., 1998).   The viral enzymes include; reverse 

transcriptase (RT), integrase (IN), and protease PR. RT is responsible for building the 

DNA copy of viral RNA, and IN is responsible for incorporating this DNA copy into the 

host cell genome. PR takes part in the maturation of the virus; this enzyme cleaves viral 

polyproteins into their functional pieces (Johnston & Hoth, 1993; The Structural Biology 
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of HIV, n.d.).  Surface and transmembrane envelop proteins gp120 and gp41 take part in 

the recognition and infection of the target proteins (Julien et al., 2013).  

 

 

 

 

Figure 3. Graphical representation of the HIV viral structure. Structural proteins, except 

nucleocapsid, are represented in blue, viral enzymes are represented in pink, and 

accessory proteins are represented in green (The Structural Biology of HIV, 

n.d.). 
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1.1.2. HIV Viral Actions and Infection 

 

 

Infection of HIV starts with viral entry to the host cell. Envelope proteins of HIV, 

surface and transmembrane glycoproteins gp120 and gp41, recognize the target protein’s 

surface receptors and cause a cascade of conformational changes to merge the viral 

membrane into the target cell’s membrane. Thus, the HIV core enters the target protein 

cytoplasm, shown in steps 1 and 2 of Figure 4. The viral core comprises RNA enclosed 

by capsid cage structure, RT, and IN enzymes. After entering the target cell, the capsid 

cage structure opens to release genomic material, as shown in step 3 of Figure 4. During 

the infection period, viral RT synthesizes the viral DNA from viral ssRNA, then viral IN 

integrates viral DNA into the host cell’s DNA, shown in steps 4-6 in Figure 4 (Engelman 

& Cherepanov, 2012). 
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Figure 4. Viral lifecycle of HIV (Engelman & Cherepanov, 2012). 

 

 

After the infection, the synthesis of the new viruses starts within the host cell. The 

host cell’s transcription mechanism mediates this synthesis through the integrated viral 

DNA. Synthesized virus-like particles assemble at the plasma membrane, and viral 

budding occurs, resulting in an immature virus. Viral PR processes Gag polyprotein 

outside the host cell, leading to viral maturation. After maturation, the new virus can 

infect new cells (Engelman & Cherepanov, 2012; Ganser-Pornillos et al., 2008).   
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1.1.3.  Current Diagnostic Techniques for HIV 

 

 

Diagnosis of the virus is an important starting point for treatment and taking 

preventative measures for the spread of infection. There are several methods for the 

detection of HIV listed in Table 1. During the acute phase of the infection, HIV possesses 

high replication potential and the highest infectivity rate. In the acute period, an immune 

response is not yet developed, and diagnosis can only be made through high-sensitivity 

assays, such as nucleic acid amplification tests (NAAT). Although NAAT is extensively 

used in resource-rich environments, it is in limited use for resource-limited environments 

due to being expensive and complex. Therefore, accessible point-of-care (PoV) 

diagnostic tests can benefit resource-limited settings (Cornett & Kirn, 2013; Gray et al., 

2018).  

 

 

Table 1. Current Diagnostic Tests for HIV Infection. The table is adapted from Cornett 

& Kirn, 2013. 

 

Technology Principle Strengths Limitations 

First- and 

second-

generation 

immunoassays 

Detect IgG response 
Detect HIV-

specific IgG 

Do not detect 

IHV-specific IgM 

and antigens 

Third-generation 

immunoassays 

Detect IgG and IgM 

response 

HIV specific IgMs 

are present earlier 

in body. 

Do not detect HIV 

antigens 

 
(cont. on the next page) 



 

 

 

8 

Cont. of Table 1 

Fourth-

generation 

immunoassays 

Anti-HIV Abs are 

detected by 

recombinant 

antigens and p24 

antigen is detected 

by antihuman Abs 

Detect both Abs 

and Ags, allowing 

detection before 

immune response 

generated 

May miss HIV 

infections before 

viral antigen 

reaches 

detectable levels 

Rapid tests Employs lateral flow, 

immunoconcentration, 

or particle 

agglutination 

technologies 

Performs similar 

to lab-based 

immunoassays 

with <30 min of 

completion time 

Generation 

dependent 

NAATs Nucleic acids are 

amplified with 

specific primers and 

detected with labeled 

probes 

Detect acute HIV 

infection before 

viral antigen 

reaches detectable 

levels 

Complex and 

expensive. Most 

only detect HIV-1 

and can provide 

false-negatives in 

some Ab-positive 

cases 

 

 

After the transmission, the earliest detectable virus particles are viral RNA and 

the p24 capsid protein of HIV. These particles reach detectable levels after the first and 

second week, respectively. Then, the immune response is generated, and diagnosis can 

proceed through antibody response. Currently, fourth-generation antibody-antigen assays 

are the recommended method of diagnosis. These methods detect both p24 capsid protein 

and antibody response to viral infection. Viral RNA, antigen, and antibody response 

levels according to days after transmission are shown in Figure 5, with diagnostic tests 

according to their earliest applicable timeframes (Gray et al., 2018). 
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Figure 5. Viral RNA, antigen and antibody response levels through the timeframes after 

transmission and diagnostic test generations according to their earliest 

applicable timeframes (Gray et al., 2018). 

 

 

1.1.4. HIV-1 and HIV-2 Comparison 

 

 

From the infectivity perspective, HIV-2 is less infective and virulent than HIV-1, 

which can explain the low viral load of HIV-2. HIV-2 is mostly restricted to the western 

part of Africa. However, some cases exist in Europe, the United States of America, and 

India. HIV-2 has nine groups, A to I, but only groups A and B are circulating (Bbosa et 

al., 2019; Visseaux et al., 2016).  
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1.1.5. HIV-1 Capsid Protein 

 

 

Capsid is a structural protein of HIV. Before maturation, it is a part of the Gag 

polyprotein, which upon maturation, forms a capsid cage around the viral genome (Figure 

6). It participates in several critical functions during the viral lifecycle, such as reverse 

transcription, cytoplasmic transport, nuclear entry, and viral maturation. It interacts with 

more than 20 host factors for successful infection. 

  

 

 

 

Figure 6. Maturation of HIV-1 through sequential cleavage of Gag polyprotein (Perilla et 

al., 2021). 

 

 

HIV capsid protein is composed of two domains that fold independently, N-

terminal (NTD) and C-terminal (CTD), connected with a flexible linker domain. The 

capsid's three-dimensional (3D) structure is dominated by ⍺-helices, seven in NTD and 
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four in CTD, and a cyclophilin A (CypA)-binding loop at NTD. Capsid monomers form 

hexameric and pentameric structures to form an enclosed capsid core. The 

formation of the core is mediated by interactions at two-, three-, and sixfold 

symmetry regions of Capsid multimers. The stability and timing of these 

interactions are critical for capsid to fulfill its purpose in the viral lifecycle. An 

increase or decrease of stability in these interactions may res-infectious virus. A 

capsid cage is mostly composed of hexameric structures, while pentameric 

structures are located at the curvature regions to form a closed capsid core (Figure 

7). HIV-2 Capsid is differentiated by its polymerization properties and thermal 

stability from HIV-1 Capsid. However, we will not go into detail about this 

comparison in this study (McFadden et al., 2021; Miyazaki et al., 2017; Perilla et al., 

2021). 

 

 

 

 

Figure 7. HIV Capsid structures. Capsid monomer PDBID: 6WAP, Capsid Hexamer 

PDBID: 5MCX, Capsid Pentamer PDBID: 5MCY (Deshmukh et al., 2013). 
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As mentioned earlier, HIV replicates via RNA, exhibiting high mutation rates. In 

general, high mutation rates could benefit survival against immunological pressure. 

However, capsid protein must maintain functional roles in viral assembly, maturation, 

uncoating, and nuclear import. Therefore, HIV capsid lacks the genetic robustness 

required to maintain a high mutation rate (Rihn et al., 2013b). This results in high amino 

acid sequence conservation rates in the capsid and makes this protein promising for 

detecting different variants of HIV. Conservation rates of the capsid protein will be 

further discussed in Chapter 3.1. 

 

 

1.2.  Nanobodies 

 

 

Nanobodies are derived from heavy-chain only antibodies of camelid family 

animals. They are also referred to as single-domain antibodies (sdAbs) or variable heavy 

chain of heavy domain (VHH). Derivation of a nanobody is mostly achieved through 

immunized animals. However, there are also ongoing synthetic development studies (Bao 

et al., 2021; Mitchell & Colwell, 2018b; Valdés-Tresanco et al., 2022).  

 The importance of nanobodies lies not only in their smaller size but they can also 

achieve nanomolar affinities to their cognate antigen. Nanobodies are also easier to 

produce; their hydrophobic nature, stability, and resistance to reducing environments 

allow them to be produced in different environments, such as bacteria, yeast, or 

mammalian cells. With the provided benefits, nanobody-related studies are increasing 

every year (Figure 8) (Bao et al., 2021; Mitchell & Colwell, 2018b; Valdés-Tresanco et 

al., 2022). 
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Figure 8. Number of articles per year from “nanobody” keyword search of PubMed. 

 

 

1.2.1.  Nanobody Structure  

 

 

Nanobodies are composed of the VHH domain of Camelid heavy chain antibodies 

and do not contain the constant chains (Figure 9). Nanobodies have a globular fold with 

a framework/skeleton region and complementarity-determining regions (CDRs), the main 

antigen-recognition regions (Figure 10). Across the nanobody sequences, 

framework/skeleton regions are highly conserved, whereas variable CDR regions show 

less conservation, CDR3 being the least conserved and generally longest among them 

(Figure 11). They can preserve their affinity towards their antigen despite being much 

smaller, 15kDa, compared to an antibody. Being smaller in size and having longer CDR3 



 

 

 

14 

allows nanobodies to reach the surfaces an antibody may not reach  (Mitchell & Colwell, 

2018b).   

 

 

 

 

Figure 9. Comparative representation of classical IgG antibody, Camelid heavy chain 

antibody, and nanobody. The figure is adapted from the 2018 study by Mitchell 

& Colwell. Variable heavy chain (VH) is light blue, variable light chain (VL) 

and constant light chain (CL) is light grey, constant heavy chains (CH) are dark 

grey, variable heavy chain of heavy domains are magenta, and antigen is 

yellow. 
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Figure 10. Representation of a nanobody structure. The figure is adapted from the 2018 

study by Mitchell & Colwell. (A) The open structure of a nanobody, gray 

representing framework/skeleton regions, yellow representing VHH-tetrad 

positions, and blue, yellow, and red representing CDR regions. (B) Cartoon 

representation of a nanobody, colored according to (A). 

 

 

 

 

Figure 11. Sequence variability of 90 non-redundant, protein-binding nanobodies. The 

figure is adapted from the 2018 study by Mitchell & Colwell. 

 

A B 
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1.2.2. Applications of Nanobodies 

 

 

Nanobodies achieved recognition in applications as both diagnostic tools and 

therapeutic agents since their discovery. Nanobodies have applications as therapeutic 

agents for targeting, inhibiting, tumor imaging, and diagnosis. Their small size, stability, 

specificity, and solubility provide essential advantages.  

Monoclonal antibodies have important therapeutic applications; however, they are 

held back by their size and tissue penetration capabilities. As an alternative, nanobodies 

have become more prominent, especially in cancer therapy. Nanobodies have better tissue 

penetration capabilities than monoclonal antibodies, allowing nanobodies to reach the 

target tissue.  

High specificity and tissue penetration abilities of nanobodies can be used to guide 

encapsulated cytotoxic drugs to tumor tissue to improve the drug’s efficacy. Bivalent or 

bispecific nanobodies can be developed to improve binding affinity and specificity, 

leading to improved therapeutic capacity for carried therapeutics. 

The small size of the nanobodies can be disadvantageous since they can be quickly 

secreted from the body via the kidney. The impact of this can allow early imaging of non-

kidney lesions since the non-bonded nanobodies are quickly secreted from the body, it 

can reduce the background signal intensity and the toxicity for tumor imaging 

applications (Hu et al., 2017; Moradi-Kalbolandi et al., 2020; Sun et al., 2021; C. Wang 

et al., 2018). 

Besides their applications in drug delivery and imaging, nanobodies can also be 

used for treatment. A bivalent single-domain antibody, caplacizumab, was approved for 

treating thrombotic thrombocytopenic purpura (TTP) and thrombosis by the FDA in 

2019. This trug is the first to be approved for this disease and the first FDA-approved 

domain antibody (Morrison, 2019). During the COVID-19 pandemic, several nanobodies 

were proposed against SARS-CoV-2 (Raybould et al., 2021). 
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In diagnostic applications, nanobodies can be used as detector and capture agents. 

In the 2016 study of Doerflinger, S. Y and their team, previously characterized 

nanobodies used for the development of Nanobody-Based Lateral Flow Immunoassay to 

detect human norovirus. In their studies, Nanobody-based lateral flow immunoassay 

achieved 80% sensitivity and 86% specificity for norovirus and norovirus-like particles 

(Doerflinger et al., 2016). In another study by Helma, J. and their team in 2012, a 

nanobody (CANTDcb1) was developed by immunizing an alpaca with purified HIV-1 

capsid protein. In this study, CANTDcb1 and HIV-1 capsid protein were co-expressed in 

HeLa-Kyoto cells, and co-localization was observed. In their experiments, nanobody 

achieved a KD value of 0,16 nM (Helma et al., 2012).    

 

 

1.3. Computational Methods for Understanding Protein-Protein 

Interactions  

 

 

1.3.1. Protein Structure Prediction 

 

 

Computational prediction of protein structures carries extreme importance when 

a 3D crystal structure is not available, yet the amino acid sequence of the protein is 

available. To address the need for a 3D structure in these situations, several homology 

modeling programs have been developed, tested, and improved. Briefly, these programs 

can be classified as comparative methods such as SwissModel (Bienert et al., 2017; Guex 

et al., 2009; Waterhouse et al., 2018), deep learning-based methods such as AlphaFold2 

(Jumper et al., 2021; Varadi et al., 2021), and hybrid methods deep-learning or de novo 

prediction based programs with comparative methods such as trRosetta (Du et al., 2021; 

Su et al., 2021; W. Wang et al., 2022). Through such programs, predicting and evaluating 

a protein structure with provided structure assessment tests is possible. Details of these 
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programs and structure assessment tests are explained in more detail in Section 2.3. 

Through such programs, predicting and evaluating a protein structure with provided 

structure assessment tests is possible. Details of these programs and structure assessment 

tests will be explained in more detail in Section 2.3.  

 

 

1.3.2. Molecular Docking 

 

 

Molecular docking is a convenient way to predict possible complex structures 

using structural information. In molecular docking, it is possible to predict protein-

protein, protein-ligand, protein-peptide, and protein-nucleic acid complexes. During 

docking, provided structures can be rigid or provided with a certain flexibility to improve 

the accuracy of the resulting complexes. However, as the degrees of flexibility provided 

to the structures increase, the required computational cost and time also increase. In some 

docking programs, it is possible to introduce side-chain flexibility to the complexes in 

post-processing (Lohning et al., 2017). The molecular docking details will be explained 

in more detail in Section 2.3.  

 

 

1.3.3. Molecular Dynamics 

 

 

Molecular dynamics (MD) simulation is a computational method to analyze 

flexible molecular systems at the atomic scale as a function of time. Systems are placed 

in an ensemble in these simulations to simulate the desired environment. In MD, the 

movement of the atoms is computed by a predefined force field (Salmaso & Moro, 2018). 
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It is the computationally most demanding and realistic method in terms of protein-protein 

interaction that we will mention in this study. MD simulations are going to be explained 

in more detail in Section 2.3.  

 

 

1.4. Aim of the Study 

 

 

In this study, we aim to understand the molecular details of the interaction of HIV-

1 Capsid and the nanobody CANTDcb1 discovered in the 2012 study by Helma J. and 

colleagues. First, the 3D structure model of CANTDcb1 is generated through comparative 

and deep learning-based methods. Next, CANTDcb1 models and known HIV-1 capsid 

structures are used for molecular docking. After evaluating the docking results, the best 

complex structures are further tested with Molecular Dynamics simulations. Successful 

identification of the interacting residues would be beneficial to understand the diagnostic 

capabilities of the CANTDcb1. According to the conservation rates of these residues, we 

can propose if the CANTDcb1 can be applicable for diagnosing different subtypes of 

HIV-1. 
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CHAPTER 2  

 

 

MATERIALS AND METHODS 

 

 

2.1. Data Collection 

 

 

Computational methods discussed in this study are improving with the help of 

vast amounts of data collected daily. Although these methods, such as homology 

modeling and molecular docking, are improving in accuracy, they should not be the only 

source of evaluation. To evaluate the results of these methods, we must have access to 

high-quality data and evaluate the results accordingly. Therefore, data collection in this 

study is focused on the sequence and structural data of HIV capsid proteins and 

nanobodies to evaluate the modeling results of CANTDcb1 and docked complexes of 

HIV-1 capsid and nanobody proteins. 

 

 

2.1.1. Protein Data Bank 

 

 

Protein Data Bank (PDB) is an archive to store, organize, and share 3D structure 

data of biological macromolecules, primarily protein. The majority of the deposited 

structure data is created by experimental methods such as X-ray crystallography, nuclear 

magnetic resonance (NMR) spectroscopy, and electron microscopy (Berman et al., 2000). 

However, it is also updated to provide structural data of computationally generated 
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structures. As of July 2023, >200.000 experimental and >1.000.000 computational 

structures are freely accessible in PDB. In this study, structures with PDB IDs 4XFX and 

3J3Y were sourced from PDB. 

 

 

2.1.2. The Single Domain Antibody Database  

 

 

The Single Domain Antibody Database (sdAb-DB) is a source to acquire 

sequence and CDR data of the nanobodies with the related research papers. Its goal is to 

enable the use and sharing of existing nanobodies. Data in sdAb-DB are gathered 

manually through protein databases such as PDB and NCBI, published literature, and user 

submissions.  (Wilton et al., 2018) 
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Figure 12. sdAb-DB submission and accession workflow (Wilton et al., 2018). 

 

 

2.1.3. Los Alamos National Laborotory  

 

 

Los Alamos National Laboratory hosts an extensive sequence library of HIV. At 

the moment of the 2021 HIV Sequence Compendium, it hosts more than a million 

sequences in their database. Their sequence database is accessible through their web page 

under HIV Sequence Alignments. In the sequence alignment, available data can be 
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filtered according to alignment type, organism, region, subtype, DNA/Protein, and year. 

The filtered results are accessible in 24 formats, including FASTA (Apetrei et al., 2021). 

In this study, 414 HIV-1 capsid and 80 HIV-2 capsid sequences were obtained from Los 

Alamos National Laboratory HIV Sequence Database. 

 

 

2.2.   Multiple Sequence Alignment of HIV-1 Capsid      

 

 

HIV capsid sequences obtained from Los Alamos National Laboratory HIV 

Sequence Database were aligned on the UGene alignment program. The MUSCLE 

alignment method was used for this alignment to analyze per-residue conservation. The 

same sequences were again aligned in UCSF Chimera molecular visualization program 

to visualize them on the 3D structure of HIV-1 capsid with PDBID of 4XFX. 

 

 

2.3. Modelling the 3D Structure of the Nanobody 

 

 

The 3D structure of the nanobody developed by Helma J. and their team in 2012 

remains unsolved. However, the amino acid sequence of CANTDcb1 is available to us. 

In our study, we employed several structure prediction programs to model CANTDcb1, 

including comparative methods to deep learning-based methods.  

 

 

 



 

 

 

24 

2.3.1. Homology Modelling 

 

 

Homology modeling is a computational method used in this study to model the 

3D structure of the CANTDcb1 through the amino acid structure. These methods can be 

further classified as comparative, deep learning-based, and hybrid methods. These 

methods are evaluated at Critical Assessment of Structure Prediction (CASP) every two 

years. In this section, we will further discuss homology modeling methods. 

 

 

2.3.1.1. Comparative Methods 

 

 

The main idea behind comparative methods is to use available 3D structures with 

some percent of sequence identity to the desired sequence, also named templates. The 

reliability of these models is directly proportional to the percent identity and the number 

of available templates. Also, there can be a problem with different sequences sharing the 

same 3D structure, but fold-recognition technologies can help overcome this issue. These 

methods generally follow four steps that can be iteratively repeated if required: template 

selection, target, and template alignment, building the model, and evaluating the built 

model. We have selected SwissModel as our comparative homology modeling method in 

this study. Therefore, the steps will be explained according to how SwissModel works. 

(Lohning et al., 2017; Waterhouse et al., 2018).  

The initial step in these methods is the search for temples. In SwissModel, this 

can be achieved through three different modes depending on the difficulty of the modeling 

task: Automated Mode, Alignment Mode, and Project Mode. In Automated Mode, user 

can simply supply their amino acid sequence and let the system select appropriate 

templates based on BLAST and HHblits for the modeling task. Users can upload their 
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target-template alignment in FASTA or Clustal format in Alignment Mode. This method 

is usually used when the target templates are already known and available. In Project 

Mode, users have complete control over modeling parameters. This way, users have more 

control over the modeled structure to improve quality. After the template search, these 

templates are ranked according to Global Model Quality Estimate (GMQE) and 

Quaternary Structure Quality Estimate (QSQE). After ranking the templates, they can be 

selected by the user (Bertoni et al., n.d.; Biasini et al., 2014; Guex et al., 2009; Waterhouse 

et al., 2018).  

After the selection of templates, the modeling of the structure begins by 

transferring conserved residues in the alignment. Then the backbone of the remaining 

residues is modeled by loop modeling, followed by constructing non-conserved residues’ 

side chains to build a full-atom model of the target structure. Swiss-Model uses the 

computational structural biology framework of OpenStructure (Biasini et al., 2013) and 

ProMod3 in their application to build the model. After the model is built, model quality 

is analyzed. We will discuss this concept later in Section 2.3.2 (Waterhouse et al., 2018). 

 

 

2.3.1.2. Deep Learning-Based Methods 

 

 

Comparative methods fall short when there are no available templates. Therefore, 

deep learning-based methods are being developed to answer the continuing quest of how 

proteins fold.  

One of the programs that we used in this category is AlphaFold2. AlphaFold2 

utilizes neural network architectures with evolutionary data and physical and geometric 

constraints of protein structures to train these networks. These neural networks are trained 

to recognize patterns and relationships between amino acids in 3D protein structures. 

AlphaFold2 network has two main stages. The first stage is named Evoformer block, 

which processes multiple sequence alignments (MSAs). Followed by the structure 
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module, it introduces an explicit 3D structure, which is represented by rotations and 

translations. Details of this architecture can be seen in Figures 13 and 14 (Jumper et al., 

2021; Varadi et al., 2021).  

 

 

 

 

Figure 13. Evaformer block in AlphaFold2 pipeline (Jumper et al., 2021). 

 

 

 

 

Figure 14. Structure module in AlphaFold2 (Jumper et al., 2021). 
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 Another deep learning-based method utilized in this study is roseTTAFold. This 

model was served under the Robetta name server during the structure prediction phase of 

this study). This method is inspired by AlphaFold2, but the module related to the 3D 

structure building works in parallel to other layers. This approach provides active 

communication between 1D amino acid sequences, 2D distance map, and 3D coordinate 

information. Information from these three layers is then combined to produce a 3D 

structure. (Baek et al., 2021) 

 

 

2.3.1.3. Hybrid Methods 

 

 

Hybrid methods used in this study combine knowledge-based approaches with 

deep learning-based structure prediction algorithms. In our study, we utilized transform-

restrained Rosetta (trRosetta). This method comprises two steps to predict a structure. 

First, the distance and orientations of inter-residue geometries are predicted with a deep 

neural network. The features in this prediction are derived from a generated multiple 

sequence alignment, including per-residue and inter-residue properties. If the homologs 

of the target protein are available, optional parameters can be used as additional inputs. 

The predicted geometries guide the structure prediction process using direct energy 

minimization within the Rosetta framework (Du et al., 2021; Su et al., 2021; W. Wang et 

al., 2022). 
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Figure 15. The trRosetta protocol is visualized in a flowchart, outlining the sequential 

steps involved in the process (Du et al., 2021). 

 

 

2.3.2. Structure Assessment Test 

 

 

Structure assessment tests help evaluate the modeled structures' local and global 

quality. These tests can provide significant insight into how good our modeled structure 

is and, therefore, explicitly applied to our produced models. The structure assessment 

tests in this study were done on the SwissModel web service. These tests include the 

Ramachandran plot, MolProbity evaluation, local distance difference test (lDDT), 

Qualitative Model Energy Analysis (QMEAN), and QMEAN extended with distance 

constraints (QMEANDisCo).  
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2.3.2.1. Ramachandran Plot 

 

 

All amino acids except N-terminal and C-terminal amino acids in a protein chain 

have dihedral angles called Φ and Ψ angles. Although these values can be between -180° 

and 180°, many are impossible due to steric interference (Nelson & Cox, 2017). 

A Ramachandran plot can visualize energetically preferred regions for backbone 

dihedral angles against amino acid residues in a protein structure. An empty 

Ramachandran plot can be seen in Figure 15. This plot does not include the Proline or 

Glycine due to their atypical structures. Plots representing only Glycine or only Proline 

are available if needed. Every amino acid in the protein chain, except N-terminal and C-

terminal, will be represented with a local QMEANDisCo score, which we will mention 

in Chapter 2.3.2.4 on the Ramachandran plot.  

 

 

 

Figure 16. An empty general (No Proline or Glycine) Ramachandran plot from 

SwissModel with favored regions colored in tones of green. 
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2.3.2.2. MolProbity Evaluation 

 

 

MolProbity is another integration in SwissModel’s structure assessment tests. It 

is used to analyze clashes, Ramachandran distribution, and bonds automatically. It first 

calculates the Clashscore, the number of atom-atom overlaping ≥0.4Å per thousand 

atoms; in an ideal case, it should be 0. After clashes, MolProbity analyzes the sidechain 

rotamers; in an ideal case, it should be <1%. Then, MolProbity analyzes the 

Ramachandran plot for each amino acid for whether it is in a favored position or an 

outlier. In an ideal case, Ramachandran favored percentage should be >98%, and 

Ramachandran outliers should be <0.2%. Then, through a weighed calculation on clashes, 

Ramachandran favored percentage and rotamer outliers, it calculated a MolProbity score. 

This score helps compare structures relative to each other. It does not indicate an absolute 

measurement of quality. However, it should be as low as possible (Williams et al., 2018). 

 

 

 

 

Figure 17. Example output of a MolProbity analysis. 
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2.3.2.3. Local Distance Difference Test (lDDT) 

 

 

A model can be evaluated through several global methods, such as root mean 

square deviation (RMSD) or Global Distance Test (GDT). These global tests have several 

shortcomings; for example, in RMSD, outliers can dominate the score, be insensitive to 

missing residues, or be unable to consider flexible domains that can change their 

orientations naturally, as seen in Figure 17. These shortcomings brought the need for local 

evaluation techniques that can overcome the flexible domain issues. lDDT score is one 

way to overcome these issues because it can highlight low-quality regions in the model, 

independent of domain movements. By comparing the separations between 

corresponding atoms in the predicted and actual protein structures, the lDDT method 

evaluates the precision of protein structure predictions. It offers a numerical evaluation 

between 0-100, 100 meaning identical to the reference structure, of the accuracy of the 

local prediction (Mariani et al., 2013). In this study, lDDT is not used directly but is a 

supplement to the QMEANDisCo quality estimate. 
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Figure 18. CASP target T0542 reference model and predicted structure model 

comparison. (A) The model is predicted as full-length, and the first domain 

is superimposed on the target. (B) Two domains are modeled separately and 

superposed individually to the target structure. Structures in both panels are 

colored according to full-length lDDT scores, with green indicating high and 

red indicating low lDDT scores in the spectrum (Mariani et al., 2013). 

 

 

2.3.2.4. Quality Estimate: QMEAN and QMEANDisCo 

 

 

Qualitative Model Energy Analysis (QMEAN) is a composite scoring function 

for assessing protein structure quality. This scoring function provides us with information 

about the “degree of nativeness” of the protein. It is calculated through five different 

structural properties. These properties define the protein and its residues in terms of their 
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environment, interactions with neighboring residues, and solvent accessibility while 

considering the secondary structure these residues are in. Depending on the sequence 

identity, the protein is compared to the reference structures the function identifies. In 

QMEAN, energies associated with certain interactions in protein structure are calculated 

from statistical analysis of known protein structures. The function employs a machine-

learning model trained from known protein structures for the weighted evaluation of 

different structural features and energy terms based on their importance in determining 

protein quality. A combination of these scores and weight is then used to assign a 

QMEAN score to assign a quality score. The QMEAN score is normalized according to 

the number of interactions in the structure to make it independent of the structure size. 

Then the model quality estimates are expressed as z-scores and compared to available 

crystal structures (Figure 18) (Benkert et al., 2008, 2011).  

 

 

 

 

Figure 19. Normalized QMEAN scores are expressed as z-scores in comparison with 

available crystal structures. The graph shows the size of proteins on the 

horizontal axis. On the vertical axis, we have the "normalized QMEAN" 
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score, which tells us how good the protein structure is. Each dot on the graph 

represents one real protein structure that has been experimentally determined. 

The black dots represent crystal structures that have a "QMEAN" score 

within 1 standard deviation of the average score. The grey dots represent 

structures that have a "QMEAN" score that is between 1 and 2 standard 

deviations away from the average. The light grey dots represent structures 

that are even further from the average. The red star represents the model we 

are interested in. We want to compare how well the model matches the real 

structures (Benkert et al., 2008). 

 

 

 QMEANDisCo is an extended method of the QMEAN function with consensus-

based distance constraints (DisCo) score. It extends QMEAN by introducing pairwise 

distances from homologous structures to target protein. While QMEAN focuses on the 

global evaluation of the structure, QMEANDisCo focuses on residue-based evaluation. 

The average of these local quality estimates represents the QMEANDisCo global score. 

In this method, an lDDT score with the range [0.0, 1.0] is used, which is predicted from 

a trained deep learning model. According to the test results, models with a local and global 

lDDT score >0.6 can be classified as correct (Studer et al., 2020). 
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Figure 20. An example of results of QMEANDisCo evaluation. The horizontal axis 

represents the residue number in the target protein. The vertical axis 

represents the per residue lDDT score. The baseline for the bars is the global 

quality estimate score (Studer et al., 2020). 

 

 

2.4. Determining Protein-Protein Complex Orientation 

 

 

Knowing the protein-protein complex orientation is crucial for understanding 

molecular interactions, structural and functional characterization, predicting protein 

function and behavior, and developing therapeutics. Determining these complexes is 

possible through both experimental and computational methods. In this section, we will 

discuss a widely used computational method termed molecular docking (Kozakov et al., 

2017).   
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2.4.1. Molecular Docking 

 

 

Determining a protein-protein complex structure can be difficult even when we 

have structures of these proteins are determined experimentally. Accounting for the 

flexibility and dynamics of complexes can be challenging for experimental methods, and 

these methods are costly in terms of time and resources. Molecular docking techniques 

are developed to overcome these challenges and aim for accuracies close to experimental 

methods. These methods are being benchmarked and improved continuously. Although 

they are not able to produce the same native complex at once, they can provide us with 

several possible complexes which have a high probability of containing a native-like 

complex. Molecular docking methods can be simplified into three steps: (1) the proteins 

of interest are placed in a grid, and the grid represents a collection of specific points in 

three-dimensional space that serve as potential locations for placing the ligand during the 

docking procedure; (2) the ligand is docked into the binding site by exploring various 

conformations through rotations, translations, and torsional changes within the grid; (3) 

a scoring function evaluates each conformation, this scoring can be different for each 

method. Depending on the approach, some docking methods can also include pre- and 

post-processing steps. (Kozakov et al., 2017; Kurkcuoglu & Bonvin, 2020).  

Molecular docking techniques can be discussed under an important property, the 

flexibility of the structures. Depending on whether there are any flexibilities in structures, 

we can separate them as rigid-body docking and flexible docking methods. This is not an 

absolute separation since, in some methods, the structures have no flexibility. In contrast, 

in others, their structures can have a certain degree of flexibility without being absolutely 

flexible (Lohning et al., 2017).  

In this study, we utilized three docking methods: ZDock, Haddock, and ClusPro. 

ZDOCK is predominantly classified as a rigid docking method, systematically exploring 

fixed orientations and translating two protein structures to determine potential binding 

configurations. It does not explicitly incorporate conformational changes or flexibility; 

however, it can be combined with supplementary techniques to introduce limited 
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flexibility or refinement (Pierce et al., 2014). HADDOCK is a docking method that 

accounts for flexibility and conformational changes in both the receptor and ligand during 

docking. It utilizes experimental data to guide the docking process and refinement, 

enabling the exploration of diverse conformations and orientations.  (Honorato et al., 

2021; Van Zundert et al., 2016). ClusPro is a docking method that employs a combination 

of rigid-body and flexible docking techniques. It begins with rigid docking, investigating 

different orientations and translations. Subsequently, a refinement step is applied, 

allowing for little flexibility in side-chain orientations and minor backbone adjustments. 

This hybrid methodology improves the precision of the predicted protein-protein 

complexes (Desta et al., 2020; Kozakov et al., 2013, 2017; Vajda et al., 2017). 

 

 

2.4.2. Evaluation of the Docked Complexes 

 

 

Molecular docking methods are powerful tools to determine protein-protein 

complex orientations. Although these methods are continuously being improved, they 

produce several possible orientations, which need to be evaluated before selection. In this 

study, docked complexes were eliminated by docking scores, established non-covalent 

interactions, and visual inspection of the complexes. 

 

 

2.4.2.1. Docking Scores and Clusters 

 

 

In molecular docking methods, scoring functions are crucially essential since 

these functions are the first step of evaluation in docking. Produced complex orientations 

are presented to the end user according to their scores. Therefore, the quality of scoring 
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functions significantly impacts the method’s accuracy. In some methods, scoring 

functions are supplemented with clustering of samples with implications that the number 

of occurrences of an orientation is related to the “degree of nativeness” of the orientation. 

In this section, we will discuss the scoring approaches of ZDock, Haddock, and ClusPro. 

 In ZDock scoring functions: surface complementarity (SC), desolvation free 

energy (DS), and electrostatics are utilized to calculate a docking score. In shape 

complementarity, receptor, and ligand are expressed as (𝑙, 𝑚, 𝑛) with the dimensions of 

𝑁 × N × N grid with discrete values from 1 to N. In this expression, N should be large 

enough to cover coordinate space but not too large to hinder the performance of the 

calculations. Functions 𝑅𝑆𝐶  for the receptor and 𝐿𝑆𝐶  for the ligand used to assign values 

according to geometric properties shown if equations 2.1 and 2.2. Here 𝜌 is a positive 

number (Chen & Weng, 2002). 

 

 

RSC(l, m,n)= {
1,  surface of R

ρi,  core

0,  empty space

(Equation 2.1) 

 

 

LSC(l, m,n)= {
1,  surface of L

ρi,  core

0,  empty space

(Equation 2.2) 

 

 To determine whether an atom in a protein belongs to the surface or core, a 

computational method was utilized to calculate the solvent-accessible area. In this 

approach, a water probe with a radius of 1.40Å is used. If an atom in the protein possesses 

a solvent-accessible area greater than 1Å², it is categorized as a surface atom. If the 

solvent accessible area is equal to or less than 1Å², the atom is classified as a core atom; 

after the classification, grid points are assigned accordingly. In this method, 𝜌 values are 

assigned as 9. The 2002 study of Weng, Z., and their team explained the assignment 
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procedure of these grid values. Shape complementarity can be calculated with equation 

2.3. Correlation between two functions can be computed with Discrete Fourier Transform 

(DFT) and Inverse Fourier Transform (IFT) as in equation 2.4. In these equations, "o," 

"p," and "q" values represent the number of grid points that determine the shift of ligand 

L in relation to receptor R across each dimension and represent the shape 

complementarity (Chen & Weng, 2002). 

 

 

SSC(o,p,q)=Re [∑∑∑ RSC(l,m,n)∙LSC(l+o,m+p,n+q)

N

n=1

N

m=1

N

l=1

]

                       - Im [∑∑∑ RSC(l,m,n)∙LSC(l+o,m+p,n+q)

N

n=1

N

m=1

N

l=1

] (Equation 2.3)

 

 

 

SSC=Re [
1

N3
IFT(IFT(RSC)∙DFT(LSC))] -Im [

1

N3
IFT(IFT(RSC)∙DFT(LSC))] (Equation 2.4) 

 

 

 In this calculation, core-core contacts contribute to the result by (𝜌𝑖)2 = −81, 

surface-core contacts contribute by 𝐼𝑚[𝜌𝑖] = −9 , surface-surface contacts by 1, and if 

there is no contact it contributes by 0. After the calculation of shape complementarity, 

ZDock calculates the DS. Calculations of DS are similar to the SC, however, with 

different values (equation 2.5), and only one DFT and two IFTs are required to compute 

this value (equation 2.6). Lastly, ZDock utilizes an approach based on the Coulombic 

formula to calculate the electrostatic energy in protein-ligand interactions. The method 

involved correlating the receptor's electric potential with the ligand. This method adopts 

the approach previously used by Gabb et al. but incorporates partial charges from the 

CHARMM19 potential. Additionally, to avoid non-physical receptor-core/ligand 
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contacts, grid points in the core of the receptor were assigned a value of 0 for the electric 

potential. Final scoring is calculated by the weighted sum of the results of these 

calculations, shown in equation 2.7. In this method, the default scaling factors were set to 

0.01 for 𝛼 and 0.06 for 𝛽. (Chen & Weng, 2002).   

 

 

SDS(o,p,q)=Im [∑∑∑ RDS(l,m,n)∙LDS(l+o,m+p,n+q)

N

n=1

N

m=1

N

l=1

] (Equation 2.5) 

 

 

SDS=
1

2
×Im [

1

N3
IFT(IFT(RDS)∙DFT(LDS))] (Equation 2.6) 

 

 

S=αSSC+SDS+βSELEC (Equation 2.7) 

 

 

A combination of scoring terms that measure the compatibility and quality of the 

protein-protein complex determines the Haddock docking score.  Haddock assesses the 

shape complementarity of interacting protein surfaces. Van der Waals interactions, which 

describe attractive and repulsive forces between atoms based on size and configuration, 

are considered in this evaluation. Electrostatic interactions, as well as charge 

complementarity of the complex, are considered. Haddock also considers the solvation 

and desolvation energies to determine the effects of the solvent. As a result, Haddock 

outputs several different complexes to the user. After generating multiple complex 

structures, Haddock performs a clustering analysis to identify distinct clusters 

representing different possible complex conformations. The clustering helps select the 
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most representative structures and provides insights into the complex's conformational 

variability. Resulting complexes are ordered depending on their scores as well as cluster 

sizes. Scripts of the individual calculation are not provided due to their length. The source 

code of Haddock is available on GitHub, and the scoring functions can be found at 

https://github.com/haddocking/haddock3. (Dominguez et al., 2003; HADDOCK2.4 

Manual - Analysis, 2023; Kurkcuoglu & Bonvin, 2020). 

 The rigid-body docking step in ClusPro utilizes PIPER, a Fast Fourier Transform 

(FFT) based docking program. Docking scores in ClusPro are provided directly from the 

PIPER program. However, it is emphasized that instead of the complexes based on the 

energy score provided by PIPER, the largest clusters of low-energy structures should be 

considered. In PIPER, the energy function is expressed by equation 2.8. 𝐸𝑟𝑒𝑝 and 𝐸𝑎𝑡𝑡𝑟 

represent the repulsive and attractive components of the van der Waals interaction energy, 

while 𝐸𝑒𝑙𝑒𝑐 refers to the electrostatic energy term. The term 𝐸𝐷𝐴𝑅𝑆 corresponds to a 

pairwise structure-based potential known as the "decoys as the reference state" (DARS), 

and 𝑤1, 𝑤2, 𝑤3 terms describe the contribution weights. Models built with different 

weights in energy functions can be selected after the docking process in ClusPro. In 

PIPER, shape complementarity calculations are done on a 3D grid system; grid points are 

represented as (𝑙, 𝑚, 𝑛). Each grid point is evaluated through 𝑅𝑝 and 𝐿𝑝 functions shown 

in equations 2.9 and 2.10. In 𝑅𝑝 function: 𝑐𝑙,𝑚,𝑛 represent the number of atoms that are at 

the attractive interaction range of the grid point, 𝑟𝑙,𝑚,𝑛 represents the atoms within the 

repulsive interaction range of the grid point. The 𝐿𝑝 function evaluates whether an atom 

is present at that grid point. Correlation between these functions results in a shape 

complementarity term. For determining electrostatic interaction terms, a Generalized 

Born-type equation is used with constant Born radii. This allows for expressing 

electrostatic interactions in terms of the receptor's potential field and the ligand's 

electrostatic charge. The DARS method is used for determining structure-based 

intermolecular potentials. Details on these functions are available in provided references 

in detail (Desta et al., 2020; Kozakov et al., 2006, 2013, 2017; Vajda et al., 2017).   

 

 

https://github.com/haddocking/haddock3
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E=w1Erep+w2Eattr+w3Eelec+w4EDARS (Equation 2.8) 

 

 

Rp(l,m,n)=-cl,m,n+w1rl,m,n (Equation 2.9) 

 

Lp(l,m,n)= {
1 if   &(l,m,n) ∋(aj∈J)

0  otherwise
(Equation 2.10) 

 

 

2.4.2.2. Non-Covalent Interactions and Visual Analysis 

 

 

In the absence of crystal structures of protein-protein complexes, we can benefit 

from other experimental data. This data can be used to guide our docking and evaluation 

of docked poses. In our case, we have several studies to help us with docking. From 

previous studies, we learned that CANTDcb1 targets the NTD of the HIV-1 capsid protein 

and does not show an inhibitory effect (Alfadhli et al., 2021; Helma et al., 2012). This 

information is used to eliminate complexes that target CTD of HIV-1 capsid and 

interactions that can disrupt the capsid core formation. Since the binding of CANTDcb1 

does not disturb capsid core formation, it should not clash with other monomers in the 

multimeric structures of HIV-1 capsid protein. Important residues that take part in the 

formation of capsid core are highlighted in Figure 21 (Craveur et al., 2019; Gres et al., 

2015): 
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Figure 21. Important residues that take part in the formation of capsid core. (A) Residues 

highlighted with yellow on HIV-1 capsid sequence. (B) Residues highlighted 

on the 3D structure of HIV-1 capsid structure. Yellow highlighted residues are 

important in the formation of capsid core.  The figure is prepared in UCSF 

Chimera. 

 

 

 In this study, non-covalent interactions are analyzed through PDBsum Generate, 

and visual analysis of docked poses is evaluated with UCSF Chimera.  
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2.5. Molecular Dynamics Simulations 

 

 

Molecular Dynamics (MD) simulations are computational methods that provide 

us with atomic-level details of the dynamics of systems. These methods are based on 

Newton’s equations of motion. During MD simulations, coordinates, velocities, forces, 

and potential energies are determined at each iterative step, which is denoted by the term 

"time step". Lowering the time step value can increase simulation accuracy but at the cost 

of computational resources. Properties of the system can be divided in two: macroscopic 

system properties that represent volume (V), pressure (P), temperature (T), and number 

of atoms (N); microscopic system properties that represent velocities (vi) and positions 

(ri). MD simulations provide us with trajectories, which are time-dependent changes in 

the system (Zheng et al., 2018). In this section, we will briefly explain the simulation 

ensembles and force fields in MD. 

 

 

2.5.1. Simulation Ensembles 

 

 

Simulation ensembles are mainly concerned with macroscopic system properties, 

volume (V), pressure (P), temperature (T), and number of atoms (N). These ensembles 

are; canonical ensemble (NVT), microcanonical ensemble (NVE), and isothermal-

isobaric ensemble (NPT). Names of the ensembles are assigned according to what is being 

held constant in the system. In NVT, the number of atoms, volume, and temperature of 

the system are constant. Energy exchange is possible for the systems in this ensemble. In 

NVE, the number of atoms, volume, and energy of the system are constant, representing 

an isolated system. In NPT, the temperature and pressure of the system are constant, 

representing an isothermal and isobaric system (Zheng et al., 2018). In this study, 
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equilibration steps are completed in an NVT ensemble, and production steps are 

completed in an NPT ensemble at 303.15K constant temperature.   

 

 

2.5.2. Periodic Boundary Condition (PBC) 

 

 

PBC is a concept to keep in mind when analyzing MD simulations. In large-scale 

models, it is impractical to have an infinite or too large of a system. Therefore, the 

simulation environment in MD simulations is expressed with one cell, replicated to 

surround itself infinitely, and these replicas are called periodic images. Without 

considering PBC, atoms at the edge of the simulation box would experience different 

forces than other atoms. In PBC, if an atom leaves the system from one edge of the box, 

it will reappear on the opposite side of the system (Yu & Dalby, 2020).MD trajectories 

are visualized with VMD, and VMD at its base state does not consider the PBC. To 

overcome this, we will utilize an MDTraj script before visualizing it in VMD. 

 

 

2.5.3. Force Fields 

 

 

Force fields in MD simulations are a potential energy field representing the 

topology and motion of atoms in the system. The molecular properties of simple 

molecules like water are described with a spectrum constant force field. To describe the 

properties of more complex molecules, empirical potential function force fields are 

usually utilized. For this potential energy calculation, non-binding potential, bonding 

stretching term potential, angle bending term potential, torsion (dihedral) angle term 

potential, out-of-plane bending term potential, and coulombic interaction term potential 
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can be utilized (Zheng et al., 2018). For the MD simulations in this study, the 

Charmm36m force field is used. 

 

 

2.5.3.1. CharmmGUI and Charmm36m Force Field 

 

 

Charmm is a commonly used classic force field. Potential energy is expressed in 

terms of 𝑈(�⃗� ), internal terms include bond (𝑏), valence angle (𝜃), Urey–Bradley (𝑈𝐵, 𝑆), 

dihedral angle (𝜑), improper angle (𝑥), and backbone torsional correction (𝐶𝑀𝐴𝑃,𝜑, 𝜓) 

contributions (Equation 2.11). The Verlet-type integrator in Charmm can be used for 

velocity reassignment and velocity scaling (Brooks et al., 2009; Huang et al., 2016). 

 

 

 𝑈(�⃗� ) = ∑ 𝐾𝑏(𝑏 − 𝑏0)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝑈𝐵(𝑆 − 𝑆0)
2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ 𝐾𝜑(1 + cos(𝑛𝜑 − 𝛿))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝐾𝜔(𝜔 − 𝜔0
2) 

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ {휀𝑖𝑗
𝑚𝑖𝑛 [(

𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)

12

− 2(
𝑅𝑖𝑗

𝑚𝑖𝑛

𝑟𝑖𝑗
)

6

]  

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

+ 
𝑞𝑖𝑞𝑗

4𝜋휀0휀𝑟𝑖𝑗
} + ∑ 𝑈𝐶𝑀𝐴𝑃(𝜑, 𝜓)

𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

 
(2.11) 

 

 

 In this study, we are utilizing the CharmmGUI input generator for OpenMM 

simulation using the Charmm36m force field. For the simulation ensembles, as we have 
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mentioned earlier, equilibration steps are completed in an NVT ensemble, and production 

steps are completed in the NPT ensemble at 303.15K. Molecules are placed in a 

rectangular water box. In the water box, K+ and Cl- ions are placed with the Monte Carlo 

method, and ion concentration is set to 0.15. (Jo et al., 2008; Lee et al., 2015).   
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CHAPTER 3  

 

 

RESULTS AND DISCUSSION 

 

 

3.1. HIV-1 Capsid Protein Multiple Sequence Alignment 

 

 

Amino acid sequence conservation of HIV-1 capsid protein is important for his 

study. In our hypothesis, if CANTDcb1 interacts with a highly conserved region of the 

capsid protein, we can further utilize CANTDcb1 for diagnosing multiple HIV-1 

subtypes. 

A subset of sequences representing major subtypes of HIV-1 is acquired from the 

Los Alamos National Laboratory HIV Sequence database. A total of 414 HIV-1 capsid 

sequences were aligned, and upon visual inspection, the HIV-1 capsid protein showed 

significant conservation, clearly visible in Figure 22. After assessing sequence 

conservation, we applied our alignment result in Chimera. We then highlighted the 

regions with above 90% sequence conservation on the 3D crystal structure of HIV-1 

capsid in Figure 23. 
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Figure 22. Sequence logo representation of 414 aligned HIV-1 capsid sequences. The 

horizontal axis represents the residue number, and single-letter representation 

is used for the residues. The size of the letter indicates how dominant that 

residue is across multiple sequences. The sequence logo is prepared in 

WebLogo 3.7.4. 
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Figure 23. HIV-1 Capsid protein (PDBID: 4XFX) highlighted according to sequence 

conservation. Residues with above 90% conservation are highlighted with 

blue, and residues with less or equal to 90% conservation are highlighted with 

red. The figure is prepared on UCSF Chimera.  

 

 

3.2. Modeling Nanobody 3D Structure 

 

 

Modeling of the CANTDcb1 was done on four different methods. The main 

reasons behind building multiple models are (1) to assess variances in conformation 
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between models built by different methods and (2) if there are considerable variances, we 

can use multiple models in our further analysis. For modeling, we did not supply any 

template structures or sequence alignment. All necessary information was provided by 

the methods themselves. At the time of modeling, among these methods, only AlphaFold2 

did not have any user interface. Therefore, we used a Python script to model the structure. 

The script is provided in Appendix A. Modeled structures are superimposed with 

CANTDcb1 amino acid sequence and CDR regions highlighted in Figure 24. 

 

 

 

 

Figure 24. Sequence 3D computational models of CANTDcb1. (A) The amino acid 

sequence of CANTDcb1 with CDR regions are highlighted. Magenta, red, and 

blue represent CDR1, CDR2, and CDR3, respectively. (B) 3D computational 

models of CANTDcb1 are superimposed. Models in this image are built by 

SwissModel, trRosetta, Robetta, and AlphaFold2. Models are visualized in 

UCSF Chimera. 
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  In visual inspection, in all four models, skeleton/framework regions were very 

similar and consistent. However, we saw some variation in CDR3. The reason for this 

can be the flexibility and length of the CDR3 of this nanobody. In visual inspection, the 

trRosetta model’s CDR3 formed a more ‘open’ conformation in comparison to other 

models. 
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3.3. Structure Assessment of the Nanobody 

 

 

Upon visual inspection, modeled structures were satisfactory to continue with 

structure assessment tests. All structure assessment tests were conducted in the 

SwissModel service.  

 

 

 

 

Figure 25. Evaluation of CANTDcb1 on Ramachandran plot. All residues are colored 

according to their local QMEANDisco scores. Red represents a low score, and 

blue represents a high score. 
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Table 2. MolProbity results of the CANTDcb1 models. 

 

 Robetta SwissModel AlphaFold2 trRosetta 

MolProbity 

Score 
3.04 1.51 2.23 1.07 

Ramachandran 

Favored 
94.31% 95.87% 98.37% 99.19% 

Ramachandran 

Outliers 
0.81% 2.48% 0.81% 0% 

Bad Bonds 2/976 0/965 32/975 0/952 

Bad Angles 1/1323 2/1308 11/1321 0/1283 

 

 

 Upon receiving the Ramachandran plots and MolProbity results, we wanted to 

establish a baseline in comparison to the native structure. For the baseline, four structures 

from PDB were selected: 4GFT, 4P2C, 5OCL, and 6SSP. All these structures were 

crystalized in a protein-nanobody complex form. We extracted the nanobodies of these 

complexes for structure assessment tests. Baseline structures showed Ramachandran 

favoredness between 93.7%-99.15%. There were no bad bonds or angles in three of the 

results, 4GFT had two bad bonds and one bad angle. As a result, of this analysis, we 

eliminated the AlphaFold2 structure due to having a high number of bad bonds and 

angles. 

 Global and local QMEANDisCo scores of the modeled structures were evaluated. 

In Figure 25, we can see the skeleton/framework regions have the highest local scores. 

This is expected since these regions are mostly conserved in nanobodies. More flexible 

loop regions and CDRs showed the lowest local scores, especially in CDRs. It is again an 

expected result, CDRs of nanobodies can have high variability in length, and their 

sequence is less conserved. trRosetta model received a global QMEANDisCo score of 

0.78, and the rest of the models got a score of 0.8. For global score evaluation, scores 
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above 0.6 are counted as satisfactory. In this analysis, all models behaved as expected. 

Normalized QMEAN4 scores were also analyzed for these structures (Figure 26). All the 

modeled structures stayed within |𝑧 − 𝑠𝑐𝑜𝑟𝑒|  ≤ 1 zone.  

 

   

 

 

Figure 26. Local QMEANDisCo charts of the CANTDcb1 models. Horizontal axis 

represents residue number. Vertical axis represents QMEANDisCo 

evaluation results. Baseline for the bars is set to the model’s global 

QMEANDisCo score. 

 

 

In conclusion of this analysis, we decided to continue with Robetta and trRosetta 

models. The Robetta model achieved the highest MolProbity score and showed 

acceptable performance with high Ramachandran favoredness, low Ramachandran 
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outliers, and low bad angle and bad bond counts. trRosetta showed acceptable 

performance also, but it was chosen instead of SwissModel, due to having a relatively 

different CDR3 conformation than other models.  

 

 

 

 

Figure 27. Normalized QMEAN scores of CANTDcb1models expressed as z-scores in 

comparison with available crystal structures. The graph shows the size of 

proteins on the horizontal axis. On the vertical axis, we have the "normalized 

QMEAN" score, which tells us how good the protein structure is. Each dot on 

the graph represents one real protein structure that has been experimentally 

determined. The black dots represent crystal structures that have a "QMEAN" 

score within 1 standard deviation of the average score. The grey dots represent 

structures that have a "QMEAN" score that is between 1 and 2 standard 

deviations away from the average. The light grey dots represent structures that 
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are even further from the average. The red star represents the model we are 

interested in.  

 

 

3.4. HIV-1 Capsid Protein and Nanobody Interaction Analysis 

 

 

Initial docking trials followed a blind docking procedure. In blind docking, we do 

not introduce any per-residue attraction or repulsion to the docking method. Later, we 

introduce repulsions and/or attractions to the docking methods to guide the docking 

process.  

The position of CANTDcb1 and possible clashes with capsid monomers in the 

formation of three hexamers are the first evaluation criteria. From experimental data, we 

know CANTDcb1 interacts with the NTD of capsid and can bind to the multimeric capsid. 

If CANTDcb1 in the complexes interacts mostly with the CTD of the capsid or causes 

clashes in the capsid formation of three hexamers, it is eliminated. Capsid formation of 

three hexamers is used because it allows us to visualize the position of CANTDcb1 in a 

multimeric capsid. 

 

 

3.4.1. ZDock Blind Docking 

 

 

 Initial docking attempts were performed on ZDock 3.0.2 and used the Robetta 

model. 10 blind docking and 3 guided docking runs were performed, resulting in 130 

complexes. The majority of the blind-docked complexes showed a tendency to interact 

with CTD. Therefore, we introduced restrictions to the CTD of the capsid to guide 

CANTDcb1 to interact with the NTD of the capsid. This resulted in CANTDcb1 only 
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targeting the NTD of the capsid, but the majority of the interactions were established 

through skeleton/framework regions. Due to the performance, it was decided that ZDock 

is not the appropriate method for this study. Docking studies were continued with ClusPro 

and Haddock 2.4. 

 

 

3.4.2. ClusPro Blind Docking 

 

 

 In ClusPro, as mentioned before, it is possible to evaluate complexes by four 

different scoring functions, and there is also an antibody-antigen specific docking mode. 

Here we have performed 9 blind docking, including capsid monomer, pentamer (PDBID: 

3P05), and the formation of three hexamers (derived from PDBID: 3J3Y) with the 

Robetta model. In addition, we performed 6 more blind docking with antibody mode in 

the same conditions. In total, 330 blind-docked complexes were analyzed. Docking 

results from ClusPro showed a better tendency to target NTD. We decided that results 

could be improved by introducing attraction and repulsion terms or active residues. 

However, results from antibody mode caused similar issues to ZDock. These blind 

docking results were later used to define active residues. We created a subset from 

ClusPro docking results, where complexes were able to establish salt-bridge(s). Residues 

involved in these salt bridges were identified in Figures 27-30. From these residues, 

Arg132 in HIV-1 capsid, and Asp99 and Asp111 from CANTDcb1 CDR3 were selected 

for attraction active residues.  
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Figure 28. Residues commonly involved in salt bridges in HIV-1 capsid. The horizontal 

axis represents residues in HIV-1 CA, and the vertical axis represents the 

number of times these residues appear in complex interfaces. 

  

 

 

Figure 29. Residues commonly involved in salt bridges in CANTDcb1. The horizontal 

axis represents residues in HIV-1 CA, and the vertical axis represents the 

number of times these residues appear in complex interfaces. 
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Figure 30. Residues commonly involved in salt bridges in HIV-1 capsid in antibody 

mode. The horizontal axis represents residues, and the vertical axis represents 

the number of occurrences in of these residues. 

 

 

 

 

Figure 31. Residues commonly involved in salt bridges in CANTDcb1 in antibody mode. 

The horizontal axis represents residues, and the vertical axis represents the 

number of occurrences in of these residues. 
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3.4.3. Haddock Guided Docking and MD Simulations 

 

 

 For the remainder of this study, we continued only with the guided docking 

process. For guiding the docking process, several attraction and repulsion terms or active 

residues were considered. For clarification, attraction and repulsion terms were used in 

ClusPro, and active residues were used in Haddock. Active residues include residues in 

HIV-1 capsid NTD and the most common residues that are involved in salt bridges. These 

active residues were used in combination as listed below: 

(1) HIV-1 CA:NTD - CANTDcb1:Asp99 

(2) HIV-1 CA:NTD - CANTDcb1:Asp111 

(3) HIV-1 CA:NTD - CANTDcb1:Asp99+Asp111 

(4) HIV-1 CA:Arg132 - CANTDcb1:Asp99 

(5) HIV-1 CA:Arg132 - CANTDcb1:Asp111 

(6) HIV-1 CA:Arg132 - CANTDcb1:Asp99+Asp111 

For Haddock runs, we used the Robetta model. Complexes were evaluated with 

docking scores and cluster sizes in addition to the criteria mentioned earlier in this section. 

Complex 4 in group (1), complex 1 in group (2), complex 10 in group (3), complex 1 in 

group (4), complex 13 in group (5), and complex 1 in group (6) were selected for further 

inspection. These complexes are evaluated in PDBSum to determine interactions between 

capsid and CANTDcb1, and they are visually inspected. Complex 4 in group (1) was not 

able to establish a salt bridge. Complex 1 in the group (2), complex 10 in group (3), and 

complex 1 in group (4) showed major clashes when superimposed to tri-hexameric capsid 

structure. Therefore, these structures were eliminated. Complex 13 in group (5) and 

complex 1 In group (6) was able to form a salt bridge, although it was not the desired one, 

and they did not display any major clashes when superimposed to tri-hexameric capsid 

structures. The orientation of CANTDcb1 in these complexes are acceptable, and it is 

decided to further evaluate these structures with MD simulations. 
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Figure 32. PDBSum results of restricted Haddock run. In both figures, Chain A represents 

HIV-1 capsid, and Chain B represents CANTDcb1. (A) Complex 13 in group 

(5), (B) complex 1 from group (6).  



 

 

 

63 

 

 

Figure 33. Docked complexes of restricted Haddock run. (A) Complex 13 in group (5), 

(B) complex 1 from group (6). Figure is prepared on UCSF Chimera. 

 

 

We started our MD runs with complex 13 of the group (5). While evaluating this 

run, all complex was aligned. Then we calculated the RMSD of HIV-1 capsid and 

CANTDcb1 (Figure 34). During the run, there were no major changes in the structures of 

the proteins. As seen in Figure 33, this complex has one possible salt bridge between 

HIV-1 CA:Glu98 and CANTDcb1:Arg44. During the MD run, this electrostatic 

interaction was not conserved, and structures drifted away from their positions (Figure 

35). We saw a similar result in complex 1 of the group (6), as seen in Figures 36 and 37. 

In conclusion, both models failed in our MD runs. 
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Figure 34. RMSD calculations of the structures through the simulation of complex 13 of 

group (5) compared to the staring structures. 
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Figure 35. HIV-1 CA:Glu98 and CANTDcb1:Arg44 distances per atom throughout the 

simulation of complex 13 of group (5). 
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Figure 36. RMSD calculations of the structures through the simulation of complex 1 of 

group (6). 
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Figure 37. HIV-1 CA:Glu98 and CANTDcb1:Arg44 distances through the simulation of 

complex 1 of group (6). 

 

 

3.4.4. ClusPro Guided Docking and MD Simulations 

 

 

  Docking studies were conducted on ClusPro to introduce repulsion terms.  It was 

realized that, unlike Haddock, ClusPro was very strict with repulsion terms, as was 

observed in capsid CTD repulsion terms. Since strict terms are needed to guide the 

docking, we preferred to continue with ClusPro. As we have mentioned earlier, there are 

several residues that take part in establishing the necessary interactions to form the capsid 

core (Figure 21). We introduce these residues as repulsion terms during ClusPro docking. 
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Up until this point, only the Robetta model of the CANTDcb1 was used. Here we 

introduced the trRosetta model as well, doing two docking runs.  

    We started this docking process with the Robetta model. Of the docked 

complexes, the first complex showed the best performance. This complex had three 

possible salt bridges (Figure 38) and was in a favorable position to not cause any major 

clashes with the trihexameric capsid structure.  

After the evaluation, we decided to perform an MD run on this complex. In this 

run, the complex was stable throughout the simulation. Only one binding residue pair was 

unstable during the simulation (Figures 38-42). Since the results of this MD run were 

satisfactory, we decided to perform two more MD runs to determine if the results were 

replicable. 
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Figure 38. First of the docking results from the Robetta model docking with repulsion 

terms applied for residues that take part in establishing the necessary 

interaction to form the capsid core. (A) 3D visualization of the docked pose. 

The figure is prepared on UCSF Chimera. (B) PDBSum result of the docked 

pose.  
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Figure 39. RMSD calculations of the first complex of the docking results from the Robetta 

model docking with repulsion terms applied for residues that take part in 

establishing the necessary interactions to form the capsid core. 
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Figure 40. HIV-1 CA:Arg132 and CANTDcb1:Asp111 interaction as shown with atomic 

distances. This is the first complex of the docking results from Robetta model 

docking with repulsion terms applied for residues that takes part in 

establishing necessary interaction to form capsid core. 
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Figure 41. HIV-1 CA:Arg132 and CANTDcb1:Asp99 interaction as shown with atomic 

distances. This is the first complex of the docking results from Robetta model 

with repulsion terms applied for residues that takes part in establishing 

necessary interaction to form capsid core. 
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Figure 42. HIV-1 CA:Arg82 and CANTDcb1:Glu43 interaction as shown with atomic 

distances. This is the first complex of the docking results from Robetta model 

docking with repulsion terms applied for residues that takes part in 

establishing necessary interaction to form capsid core. 

 

 

 In the repeated runs, the results were not replicated. The outcome of the MD 

simulations were different in all runs. In the repeated runs, structures were not stabilized 

during simulation or separated completely, as seen in Figures 43-50.  
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Figure 43. Second run RMSD calculations of the first complex of the docking results from 

Robetta model docking with repulsion terms applied for residues that take part 

in establishing the necessary interaction to form the capsid core. 
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Figure 44. Second run HIV-1 CA:Arg132 and CANTDcb1:Asp111 interaction as shown 

with atomic distances. This is the first complex of the docking results from 

the Robetta model docking with repulsion terms applied for residues that takes 

part in establishing the necessary interaction to form the capsid core. 
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Figure 45. Second run HIV-1 CA:Arg132 and CANTDcb1:Asp99 interaction as shown 

with atomic distances. This is the first complex of the docking results from 

the Robetta model docking with repulsion terms applied for residues that take 

part in establishing the necessary interaction to form the capsid core. 
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Figure 46. Second run HIV-1 CA:Arg82 and CANTDcb1:Glu43 interaction as shown 

with atomic distances. This is the first complex of the docking results from 

the Robetta model docking with repulsion terms applied for the residues that 

takes part in establishing the necessary interaction to form capsid core. 
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Figure 47. Third run RMSD calculations of the first complex of the docking results from 

the Robetta model docking with repulsion terms applied for the residues that 

take part in establishing the necessary interaction to form the capsid core. 
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Figure 48. Third run HIV-1 CA:Arg132 and CANTDcb1:Asp111 interaction as shown 

with atomic distances. This is the first complex of the docking results from 

the Robetta model docking with repulsion terms applied for the residues that 

take part in establishing the necessary interaction to form the capsid core. 
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Figure 49. Third run HIV-1 CA:Arg132 and CANTDcb1:Asp99 interaction as shown 

with atomic distances. This is the first complex of the docking results from 

the Robetta model docking with repulsion terms applied for the residues that 

take part in establishing the necessary interaction to form the capsid core. 
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Figure 50. Third run HIV-1 CA:Arg82 and CANTDcb1:Glu43 interaction as shown with 

atomic distances. This is the first complex of the docking results from the 

Robetta model docking with repulsion terms applied for the residues that take 

part in establishing the necessary interaction to form the capsid core. 

 

 

During the visual inspection of docked complexes, model 8 showed a different 

conformation than the rest. Therefore, we evaluated the interactions involved in this 

complex on PDBSum.  The majority of these interactions were hydrophobic interactions 

(Figure 51). Due to our curiosity, we performed three MD simulations with this model.  
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Figure 51. Eighth  Complex of the docking results from Robetta model docking with 

repulsion terms applied for the residues that take part in establishing the 

necessary interaction to form the capsid core. (A) The 3D visualization of the 

docked pose. The figure is prepared on UCSF Chimera. (B) PDBSum result 

of the docked pose. 

 

 

This model did not have any salt bridges, so we followed a different way to 

analyze binding this MD run. We prepared three runs for this complex; however, only the 

first run is completed for 100 ns. The second run is at around 80 ns, and the third run is 

yet to start at the time of writing. First, we performed a visual assessment for the two MD 

runs, then calculated their RMSD throughout the simulation (Figures 52 and 53). 
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Throughout both simulations, capsid and CANTDcb1 stayed bound. To better understand 

the binding dynamics, contacts between the proteins were identified and presented in 

Table 3.  Previous research on nanobody-antigen interactions has revealed distinct 

characteristics compared to traditional antibodies. Nanobodies exhibit a higher 

prevalence of hydrophobic interactions, particularly involving amino acids Ile, Val, and 

Leu. Additionally, Glu, Asn, Asp, Ser, Thr, and Tyr residues have been identified as 

frequent contributors to antigen binding, with Tyr playing a prominent role among them. 

Furthermore, the CDR3 region of the nanobody has been identified as the primary region 

in establishing contact with the antigen. The interactions observed in Table 3 align with 

the findings from these earlier studies, further supporting the significance of these specific 

features in nanobody-antigen recognition (Liu et al., 2022; Mitchell & Colwell, 2018a). 

These interactions involve hydrogen bonds and hydrophobic interactions. All highlighted 

contacts are hydrogen bonds, and common contacts between the two simulation runs were 

highlighted in magenta (Table 3). Almost all these interactions are through the CDRs of 

CANTDcb1, especially the CDR3. According to the calculations of PDBSum, 738Å2 and 

773Å2 solvent accessible surface area between capsid and CANTDcb1 was buried, 

respectively. These contacts were first plotted in Figure 54, then analyzed individually in 

Figure 55. In conclusion, the capsid-CANTDcb1 complex was stable and stayed bound 

during the two MD runs. This model will be analyzed further with the completion of the 

second and third MD runs.  
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Table 3. Interactions in two MD runs of model 8 complex of the docking results from 

Robetta model docking with repulsion terms applied for residues that take part 

in establishing necessary interaction to form capsid core binding analysis. Pairs 

highlighted in yellow and magenta represent potential hydrogen bonds and 

common interactions between different runs, respectively. 

 

RUN 1  

(HIV-1 CA – CANTDcb1) 

RUN 2  

(HIV-1 CA – CANTDcb1) 

THR119:HB – ILE100:CD1 MET10:O - LEU109:CA 

GLY94:HA2 –PHE102:HA  MET10:C - LEU109:HA 

HIS120:HA – PHE102:CD1 MET10:O - LEU109:HA 

HIS120:HA – PHE102:HD1 MET10:O - LEU109:HB3 

HIS120:HA – PHE102:CE1 VAL11:HA - LEU109:HB3 

GLY116-HA2 – PHE102:HE1 HIS12:H - LEU109:HB3 

GLY116:O - PHE102:HE1 MET10:HA - LEU109:CD2 

THR119:OG1 - PHE102:HE1 MET10:HA - LEU109:HD21 

HIS120:N - PHE102:HE1 MET10:HA - LEU109:HD22 

HIS120:HA - PHE102:HE1 MET10:HA - LEU109:HD23 

GLY116:HA3 - PHE102:HZ MET10:O - LEU109:C 

GLY116:HA2 - PHE102:HZ MET10:O - TYR110:N 

GLY116:O - PHE102:HZ MET10:C - TYR110:H 

GLY94:C - PHE102: HD2 MET10:O - TYR110:H 

GLY94:O - PHE102:HD2 VAL11:HA - TYR110:H 

THR119:HB - CYS107:O VAL11:HA - TYR110:O 

THR119:CG2 - CYS107:O MET10:O - TRP113:HZ2 

MET10:HA - ALA108:O  

MET10:O - LEU109:CA  

MET10:CA - LEU109:HA  

MET10:HA - LEU109:HA  

 
(cont. on the next page) 
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Cont. of Table 3 

MET10:C - LEU109:HA  

MET10:O - LEU109:HA  

THR119:CG2 - LEU109:HB2  

THR119:HG21 - LEU109:HB2  

THR119:HG22 - LEU109:HB2  

THR119:HG23 - LEU109:HB2  

MET10:O - LEU109:C  

MET10:O - TYR110:N  

TYR110-H MET10-C  

TYR110-H MET10-O  

TYR110-H VAL11-HA  

TYR110-O MET10-O  

TYR110-O VAL11-HA  

TRP113-HZ2 MET10-C  

TRP113-HZ2 MET10-O  
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Figure 52. First run RMSD calculations of the eighth complex of the docking results from 

the Robetta model docking with repulsion terms applied for the residues that 

take part in establishing the necessary interaction to form the capsid core. 
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Figure 53. Second run RMSD calculations of the eighth complex of the docking results 

from the Robetta model docking with repulsion terms applied for the residues 

that take part in establishing the necessary interaction to form the capsid core.  
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Figure 54. First run point of view for the eighth complex of the docking results from the 

Robetta model docking with repulsion terms applied for residues that take part 

in establishing the necessary interaction to form capsid core binding analysis. 
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Figure 55. Second run point of view for the eighth complex of the docking results from 

the Robetta model docking with repulsion terms applied for residues that take 

part in establishing the necessary interaction to form capsid core binding 

analysis. 
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Figure 56. 80th percent analysis of HIV-1 CA Met10:O-CANTDcb1 LEU109:HA. (A) 

First run evaluation of the bond. (B) Second run evaluation of the bond. 

 

 

 

 

Figure 57. 80th percent analysis of HIV-1 CA Met10:O-CANTDcb1 Tyr110:H. (A) First 

run evaluation of the bond. (B) Second run evaluation of the bond. 
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Figure 58. 80th percent analysis of HIV-1 CA Val11:HA-CANTDcb1 Tyr110:O. (A) First 

run evaluation of the bond. (B) Second run evaluation of the bond. 

 

 

 

 

Figure 59. 80th percent analysis of HIV-1 CA Val10:O-CANTDcb1 Tyr113:HZ2. (A) 

First run evaluation of the bond. (B) Second run evaluation of the bond. 
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In our next docking run, we used the trRobetta model. Compared to the Robetta, 

this model had a more open CDR conformation. Among the docking results, we selected 

the first model. Although the first model does not have any salt bridge, it has a more 

favorable position (Figure 60). After the evaluation, we decided to perform an MD run 

on this complex. However, MD simulations for this complex are not yet concluded. 

 

 

 

 

Figure 60. First complex of the docking results from the trRosetta model docking with 

repulsion terms applied for residues that takes part in establishing necessary 

interaction to form capsid core. (A) 3D visualization of the docked pose. 

Figure is prepared on UCSF Chimera. (B) PDBSum result of the docked pose. 
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As a result of the molecular docking attempts and interaction analysis, we decided 

that guided docking is the appropriate method to follow. From these docking runs, the 

eighth complex of the docking results from Robetta model docking on ClusPro with 

repulsion terms applied for residues that takes part in establishing necessary interaction 

to form capsid core performed the best. trRosetta was docked with the same parameters, 

however, MD simulation results are not available yet. 

 

  



 

 

 

94 

CHAPTER 4  

 

 

CONCLUSION 

 

 

Diagnosis of HIV is a crucial step in preventing the spread of the virus. The aim of 

this study is to understand the interactions between HIV-1 capsid and CANTDcb1, a 

previously developed nanobody. This information will prove beneficial for developing a 

diagnostic assay. 

We modeled CANTDcb1 3D structure through SwissModel, AlphaFold2, 

trRosetta, and Robetta. These models were evaluated with structure assessment tests, and 

trRosetta and Robetta models were selected. Both models proceeded to be docked with 

HIV-1 capsid protein. Robetta model was docked at ZDock, ClusPro, and Haddock, and 

trRosetta was docked at ClusPro. Binding data from blind docking studies were extracted 

to be used as parameters in guided docking. In guided docking, attraction and repulsion 

terms and active residues were applied. Among the guided docking results, complexes 

were selected for MD simulations according to visual evaluation and binding analysis. 

These complexes are: 

  Complex 13 of HIV-1 CA:Arg132 – CANTDcb1:Asp111 group,  

 Complex 1 of  HIV-1 CA:Arg132 - CANTDcb1:Asp99+111 group,  

 Complex 1 of the Robetta model docking with repulsion terms applied for residues 

that take part in establishing necessary interactions to for capsid core 

 Complex 8 of the Robetta model docking with repulsion terms applied for residues 

that take part in establishing necessary interactions to for capsid core, 

 Complex 1 of the trRosetta model docking with the same repulsion terms. 

A total number of 4 MD simulations are discussed in this study. Models were 

evaluated according to stability of the starting individual protein structures and protein-
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protein complexes throughout the simulation. Number and type of non-covalent 

interactions (salt bridge, hydrogen bonds and hydrophobic interactions) and buried 

solvent accessible surface area are important parameters investigated.   

In MD simulations of complex 13 of HIV-1 CA:Arg132 – CANTDcb1:Asp111 

group and complex 1 of  HIV-1 CA:Arg132 - CANTDcb1:Asp99+111 group, complexes 

were not stable and proteins drifted away from each other. In MD simulations of 

complexes 1 of the Robetta model  was stable in the first MD run, however, the other two 

MD runs of this complex were not stable and positions of the complexes after 100ns were 

completely different from each other. Complex 8 of the Robetta model was stable in the 

first and second runs, the third run is not complete yet . In the first two MD runs of 

complex 8, there are consistently present H-bonds and many hydrophobic interactions are 

observed in around 750A2 buried surface area between the two proteins. Despite the 

absence of any electrostatic interaction, HIV-1CA – CANTDcb1 complex stayed close 

together. Complex 8 of Robetta model has promising results but further docking and MD 

runs need to be conducted to be able to elucidate the molecular details of HIV-1 Capsid 

and CANTDcb1 interaction. 
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APPENDIX A 

 

 

Python script of AlphaFold2: 

import os 

import mock 

import numpy as np 

import pickle 

import py3Dmol 

from typing import Dict 

 

from AlphaFold2.common import protein 

from AlphaFold2.data import pipeline 

from AlphaFold2.data import templates 

from AlphaFold2.model import data 

from AlphaFold2.model import config 

from AlphaFold2.model import model 

 

# setup which models to use 

# note for demo, we are only using model_1 

model_runners = {} 

models = ["model_1"] #,"model_2","model_3","model_4","model_5"] 

for model_name in models: 
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  model_config = config.model_config(model_name) 

  model_config.data.eval.num_ensemble = 1 

  model_params = data.get_model_haiku_params(model_name=model_name, 

data_dir=".") 

  model_runner = model.RunModel(model_config, model_params) 

  model_runners[model_name] = model_runner 

 

def mk_mock_template(query_sequence): 

  # mock template features 

  output_templates_sequence = [] 

  output_confidence_scores = [] 

  templates_all_atom_positions = [] 

  templates_all_atom_masks = [] 

 

  for _ in query_sequence: 

    

templates_all_atom_positions.append(np.zeros((templates.residue_constants.atom_type

_num, 3))) 

    

templates_all_atom_masks.append(np.zeros(templates.residue_constants.atom_type_nu

m)) 

    output_templates_sequence.append('-') 

    output_confidence_scores.append(-1) 

  output_templates_sequence = ''.join(output_templates_sequence) 
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  templates_aatype = 

templates.residue_constants.sequence_to_onehot(output_templates_sequence, 

                                                                    

templates.residue_constants.HHBLITS_AA_TO_ID) 

 

  template_features = {'template_all_atom_positions': 

np.array(templates_all_atom_positions)[None], 

        'template_all_atom_masks': np.array(templates_all_atom_masks)[None], 

        'template_sequence': [f'none'.encode()], 

        'template_aatype': np.array(templates_aatype)[None], 

        'template_confidence_scores': np.array(output_confidence_scores)[None], 

        'template_domain_names': [f'none'.encode()], 

        'template_release_date': [f'none'.encode()]} 

         

  return template_features 

 

def predict_structure( 

    prefix: str, 

    data_pipeline: pipeline.DataPipeline, 

    model_runners: Dict[str, model.RunModel], 

    random_seed: int): 

   

  """Predicts structure using AlphaFold2 for the given sequence.""" 
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  # Get features. 

  feature_dict = data_pipeline.process() 

 

  # Run the models. 

  plddts = {} 

  for model_name, model_runner in model_runners.items(): 

    processed_feature_dict = model_runner.process_features(feature_dict, 

random_seed=random_seed) 

    prediction_result = model_runner.predict(processed_feature_dict) 

    unrelaxed_protein = 

protein.from_prediction(processed_feature_dict,prediction_result) 

    unrelaxed_pdb_path = f'{prefix}_unrelaxed_{model_name}.pdb' 

    plddts[model_name] = prediction_result['plddt'] 

 

    with open(unrelaxed_pdb_path, 'w') as f: 

      f.write(protein.to_pdb(unrelaxed_protein)) 

  return plddts 

 

query_sequence = 

"QVQLVESGGGLVQAGGSLRLSCAASGYFSSYAMGWFRQAPGKEREFVAAISW

IESTTDYADSVKGRFTISRDNAKKTLHLQMNSLKPEDTAVYYCAACDIPFGQAF

CALYDYWGQGTQVTVSSKLAAALE" 

 

# mock pipeline for testing 

data_pipeline_mock = mock.Mock() 
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data_pipeline_mock.process.return_value = { 

    **pipeline.make_sequence_features(sequence=query_sequence, 

                                      description="none", 

                                      num_res=len(query_sequence)), 

    **pipeline.make_msa_features(msas=[[query_sequence]], 

                                 deletion_matrices=[[[0]*len(query_sequence)]]), 

    **mk_mock_template(query_sequence) 

} 

 

plddts = predict_structure( 

  prefix="test", 

  data_pipeline=data_pipeline_mock, 

  model_runners=model_runners, 

  random_seed=0) 


