
 

1 

 

Mobility analysis of tripod scissor structures using screw theory 
 

Yuan Liao a, Gökhan Kiper b, Sudarshan Krishnan a, * 
 
a School of Architecture, University of Illinois at Urbana-Champaign, Champaign, USA 
b Department of Mechanical Engineering, İzmir Institute of Technology, İzmir, Turkey 

*Corresponding author. E-mail: skrishnn@illinois.edu 

 

Abstract 

Mechanisms consisting of spatial scissor units have different kinematic behaviors than those of 

planar scissors. However, their kinematics, especially the mobility analysis, has not received 

enough attention. Two types of deployable assemblies are analyzed in this paper, namely the 

translational and mirrored assemblies. Both the assemblies are made of tripod scissor units, and 

their instantaneous mobility are examined using screw theory. The study starts on the configuration 

where all the members have the identical deployment angle. Firstly, the geometric property of each 

assembly was studied. Then, screw-loop equations were developed based on graph theory and 

closure equations. Finally, the mobility of each assembly was computed using linear algebra. 

Following the analysis, physical prototypes were constructed to validate the results, and several 

different motion modes were obtained for the translational assembly. The analysis reveals different 

kinematic behaviors of the two assemblies. In the given configuration, the translational assemblies 

have four instantaneous degrees of freedom, while the mirrored assemblies have only a single 

instantaneous degree of freedom. 

Keywords: Deployable structures, tripod scissor, mobility, screw theory, translational assembly, 

mirrored assembly, kinematics. 

Nomenclature 

Symbol  Description  

k Length of the lower segment of the member in a tripod scissor unit (TSU) 

l Length of the upper segment of the member in a TSU 

l' Theoretical length of the upper segment of the members in a mirrored TSU assembly 

M Mobility of an assembly 

r1 The radius of a central hub, i.e. the offset distance of the member from the central axis 

r2 Length of the extension plates of a top or bottom hub 

R A rotation matrix 

S A screw (Jacobian) matrix  

T A translation matrix 

pi Arm vector of the ith screw 

qi Unit orientation vector of the ith screw 

γ Deployment angle of a member from the folded state 

ωi Angular speed of the ith revolute joint 

Ω  Angular velocity column matrix 

$i Screw of the ith revolute joint 
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1. Introduction 

 Deployable structures based on scissor-like elements (SLEs) have attracted great attention 

from engineers and architects since the nineteenth century. Recently, scissor deployable structures 

have been applied to the fields of mechanical engineering [1–5] and building design [6–9] due to 

their special characteristics of scalability and transformability. Therefore, kinematic study is an 

indispensable part of the design and application of these structures. 

 Various types of scissor units have been developed [10]. In general, they can be classified into 

two categories: planar units and spatial units. Planar units typically have two members connected 

by a hinge and rotate about a specific axis, as shown in Fig 1a. Spatial units, on the other hand, 

consist of multiple members (≥ 3) that unfold in three-dimensional space, as shown in Fig. 1b. In 

addition, an intermediate hub is necessary to connect the scissor members at the center of the unit. 

Spatial units employ more members and non-parallel joint axes, making their kinematic analysis 

more complex than planar units. 

 

Figure 1. (a) A planar scissor unit, and (b) a spatial scissor unit with three members. 

 Kinematic studies of scissor mechanisms followed various geometric designs. Langbecker [11] 

presented a kinematic analysis of scissor structures developed by Escrig et al. [12] and Hoberman 

[13], and formulated the geometric condition of foldability. Patel and Ananthasuresh explained the 

kinematic concept of Hoberman’s deployable ring, and proved the feasibility of using multi-

segment members to replace several single-segment elements [14]. Chen et al. analyzed four types 

of planar scissor linkages with the consideration of the inherent symmetry and proposed the 

integral mechanism modes[15].   

 Dai et al. pioneered the mobility study of scissor structures [16]. He stated the difficulty of 

using Grübler–Kutzbach criterion to analyze the mobility of the scissor mechanisms and used 

screw theory for the analysis. Mao et al. reported the mobility conditions of single-loop deployable 

linkages [17]. Zhao et al. analyzed the mobility of spatial grids made of straight planar units, 

including flat, cylindrical, and spherical forms [18]. Cai et al. presented the kinematic and mobility 

analysis of angulated scissor rings using screw theory [19,20]. Sun et al. investigated multi-loop 

deployable modules consisting of planar scissor units based on screw theory and closure equation 

[21,22]. This method was also employed by Han et al. to examine the kinematics of scissor ring 

trusses designed for space antennas [23,24]. Wang et al. analyzed the mobility, motion path, and 

limit point of a series of planar linkages using the system constraint equations [25]. Liu et al. 
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employed screw theory to investigate the kinematics of a reconfigurable mechanism using SLEs 

[26,27]. Meng et al. studied kinematics a series of deployable ring trusses based on SLEs using 

screw theory [28,29]. 

 The aforementioned literature has studied the kinematics of structures made of planar scissor 

units. However, the research on spatial units has focused only on their geometric design, while 

their kinematic study has not been thoroughly investigated yet. The design and application of 

spatial scissor units in architecture were pioneered by Piñero [30] who created several models of 

movable theaters. Escrig compared the spatial scissor units with planar ones and summarized their 

geometric characteristics [31]. Akgün et al. introduced four-legged spatial scissors by using 

additional hinges to gain more degrees of freedom (DOFs) and diverse curvilinear forms [32]. 

Recently, Ramos-Jaime and Sánchez-Sánchez developed design equations for spatial units and 

demonstrated their self-locking behavior using the concept of reciprocal structures [33]. Pérez-

Valcárcel et al. applied the reciprocal-frame-like connection to the end joints, which gives a better 

structural performance [34,35]. Liao and Krishnan proposed a mirror assembly approach for tripod 

scissor units, which can achieve different forms and transformations [36,37]. Pérez-Egea et al. 

compared the deployable modules using both the spatial and planar units and examined the 

influence of joint eccentricity [38]. Suthar and Jung designed a foldable robot arm based on spatial 

scissor units to achieve better bending deformation compared to the traditional planar scissor 

structures [1,39].  

 The queries about the kinematic behavior of mechanisms using spatial units have been raised 

decades ago. Ron Resch showed in his Paper and Stick Film that the tripod scissor assemblies can 

be folded from different directions, which reveals the multiple DOFs of such mechanisms. 

Langbecker also pointed out that the kinematic property he developed may not apply to spatial 

scissor units [11]. However, the mobility of spatial scissor units has not been systematically 

analyzed yet. This has hindered the structure from a broader range of applications. Therefore, the 

gap should be filled by studying the kinematic property of spatial units.  

 This study presents mobility analyses of deployable assemblies composed of three-bar scissor 

bundle modules. These bundle modules can be deployed into a tripod [30], as shown in Fig. 1b. 

Therefore, they are referred to in this paper as tripod scissor units (hereafter referred to as TSUs). 

Screw theory is employed in this study because it has been effectively applied to examine the 

mobility of planar scissor units [16–22] and other complex mechanisms [40–47]. Sections 2 and 

Section 3 analyze the mobility of translational and mirrored assemblies, respectively. In Section 4, 

the results of Sections 2 and 3 are validated using physical models. Section 5 concludes the results 

and observations. 

2. Mobility analysis of translational assemblies  

 Translational assemblies refer to an array of spatial scissor units that are linearly connected, as 

shown in Fig 2. Geometrically, the adjacent unit can be obtained through the transformation of 

translation of the first one. In this method, the two units are connected to each other with two end 

hubs. This type of assembly was proposed by Piñero in the 1960s [30], and several researchers 

have proposed designs to achieve different forms [12,33,48]. It should be noted that all of this 

literature focuses on a special configuration in which all the members are at the same deployment 

angle and all the joint axes are parallel to the same plane. In this way, the mechanism is 

axisymmetric throughout its transformation. There are two reasons why the previous research only 

studied this special configuration. Firstly, this configuration is the most commonly used form for 
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architectural purposes. The second reason is the lack of clarity about the mobility and motion 

modes of this system. Therefore, this study also starts with this configuration. On the one hand, to 

examine the instantaneous mobility of the assembly; on the other hand, to investigate all the 

possible configurations that can be obtained from this particular configuration. In order to study 

the mobility of a translational assembly using screw theory, we first review its geometric properties. 

2.1 Geometry of the translational assembly 

 A single TSU consists of three identical members connecting by an intermediate hub. During 

the deployment, angle γ is used to measure the members’ rotation angle from the fully folded state, 

as shown in Fig 2a. In this study, the analysis focus on the configuration that all the members are 

rotated with the same angle γ. To connect one TSU to another, a top-end hub and a bottom-end 

hub are used. The translational assembly is a three-way linkage [36,49], in which adjacent TSUs 

are connected through a hinge at the top and another at the bottom. If only two units are assembled, 

one of the members in a TSU would become a “free member”. Therefore, at least three units are 

required to form a basic translational assembly, i.e. all the three members can be connected to a 

member of another unit. The three-unit assembly can avoid the additional mobility caused by a 

“free member”, which is not a part of any kinematic loops. In this assembly, the members and the 

joints can be divided into three families according to their orientation. 

 

Figure 2. (a) A translational assembly made of three TSUs, and (b) the geometries of the 

components. 

 The geometries of all the components are illustrated in Fig. 2b. A member has three hinge 

holes, which divide the member’s length into two segments. The semi-length of the upper segment 

is l and the lower segment is k. The intermediate hub is connected to three members via revolute 
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joints. The internal part of a hub has a radius of r1. The joint axes associated with a hub are coplanar 

and intersect at a common point with 120° between each pair of axes. The bottom-end hub also 

has three revolute joints with coplanar axes. However, the joint axes do not all intersect at a 

common point. The distance from the center to each joint axis is r2, and the radius of the internal 

part must be equal to r1. The top-end hub has two joints, which is can be considered as a part of 

the bottom-end joint when one joint axis is removed. So, they share similar geometries. To sum 

up, the translational assembly is made of four types of components: one type of members and three 

types of hubs. All the joints only allow the members to rotate freely about the joint axis of their 

connection but restrain all other DOFs.  

 It is worth noting that the design of components shown in Fig. 2 is only to demonstrate the 

kinematic characteristics of the proposed mechanism. As in the previous research [30,33,34,48,49], 

this system has been proven to be a feasible structural mechanism in the reciprocal state. Therefore, 

for structural purposes, members with circular cross sections and reasonable joint sizes are 

preferred to avoid crushing at contact points and offsets between members [50]. 

2.2 Mobility of translational assembly 

 Straight scissor units made of members with unequal semi-length (l≠k) are a more general 

situation. They are typically called polar units that are used to obtain curved forms. One example 

is the deployable roof structure designed by Piñero using spatial polar units [30]. In this study, l 

denotes the upper segment’s length and k denotes the lower segment’s length, as shown in Fig. 2. 
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Figure 3. Screws of a translational assembly using TSUs. 

 For the assembly shown in Fig 3, hubs are labeled using a single uppercase letter, i.e. A, B, 

C… Members are named using the uppercase letters of the joints that they connect to, for example, 

AB denotes the member connecting to joints A and B. The rotational motions between members 

and hubs are expressed by a screw $i, for example, $1 denotes the rotation between joint A and 

member AB, as shown in Fig. 3. Since all joints are revolute joints, all screws are zero-pitch screws, 

i.e. lines. 

 The global coordinate system A-xyz is established with its origin at the center of hub A, as 

shown in Fig. 3. Axis z vertically points up; x-axis is perpendicular to z-axis and $1; y-axis follows 

the right-hand rule. 

 Assuming the angle between each member and z-axis is γ, with the components’ geometries 

from section 2.1, the screw coordinates of each revolute joint can be written. Taking an example 

of $1, its axis vector q1 and arm vector p1 can be written as 

  
T

0 1 0 1q                                                                                                                     (1) 

  
T

2 1 0r r 1p                                                                                                                   (2) 

 According to screw theory, the screw of revolute joint-1 can be expressed as 

    
T T

1 1 1 20 1 0 0 0q p q r    1$                                                                        (3) 

 Following the same procedure, the screws of the remaining kinematic pairs can be obtained. 

$1-$18 are listed in Appendix A. 

 Based on graph theory, the assembly in Fig. 3 can be expressed using a topological diagram 

[51], which is given in Fig. 4. In the diagram, the nodes stand for the links, i.e. members and hubs. 

The edges connecting the nodes represent the joints.  

 

Figure 4. Topological diagram showing the constraints of a translational TSU assembly. 

 The topological diagram shows three loops (I, II, and III in Fig. 4), which can be selected as 
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the three independent loops. This is consistent with the result using Euler’s formula: n = q – p + 1, 

which indicates, in a multi-loop linkage, the number of independent loops n equals the number of 

joints q minus the number links p plus one.  

 Therefore, we can write the velocity loop equations for the assembly using the screws as 

 

1 1 3 3 4 4 6 6 10 10 11 11 17 17 18 18

1 1 2 2 4 4 5 5 7 7 9 9 13 13 14 14

2 2 3 3 7 7 8 8 10 10 12 12 15 15 16 16

0

0

0

       

       

       

        


       
        

$ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $

                                          (4) 

where ωi denotes the angular speed of the ith revolute joint in the assembly. Eq. (4) can be rewritten 

in a matrix form as 

 t t S Ω 0                                                                                                                                   (5) 

where  

t

 
 


 
  

S

1 3 4 6 10 11 17 18

1 2 4 5 7 9 13 14

2 3 7 8 10 12 15 16

-$ 0 $ -$ 0 -$ 0 0 0 $ $ 0 0 0 0 0 $ -$

$ -$ 0 $ $ 0 -$ 0 -$ 0 0 0 $ -$ 0 0 0 0

0 $ -$ 0 0 0 $ $ 0 -$ 0 -$ 0 0 $ -$ 0 0

 (6) 

  
T

t 1 2 3 18...   Ω                                                                                                  (7) 

and 0 in Eq. (5) is an 18×1 null column matrix. In Eq. (6), each screw $i is a 6×1 column matrix, 

and each 0 is a 6×1 null column matrix. Therefore, the dimension of St is 18×18. Observing Eq. 

(5), it can be found that, since all joint axes are parallel to the xy-plane, the third entry of all screws 

are zero. So, third, ninth and fifteenth rows of St matrix are rows of zeroes, and maximum rank of 

St can be 15 and the DOF of the assembly would be 3 if there is no over-constraint in the 5-

dimensional motion space (no link rotates about the z-axis). Indeed, if the Chebyshev-Grübler-

Kutzbach (CGK) mobility would be used to evaluate the DOF of the mechanism with a 5-

dimensional motion space, the result would be M = 5 × (16 – 18 – 1) + 18 = 3 for 16 links and 18 

revolute joints. According to [52], the mobility M of a multi-loop assembly equals the number of 

columns that are linearly dependent in the matrix, i.e. the dimension of its null space, which can 

be expressed as 

      M Dime snull n ion ait ny R k  t tt SS S                                                                        (8) 

 Computing the rank of St symbolically gives a result of 14. Thus, the translational assembly 

using unequal semi-length members has four DOFs (M = 18 – 14 = 4). There seems to be one 

degree of over-constraint, but this extra DOF could be an isolated (i.e. instantaneous) DOF as well. 

The CAD model simulations and prototype tests (see Section 4) show that all 4 DOFs are finite 

DOFs, but not all of them can be actuated simultaneously.  

 Solving Eq. (5), namely finding the null space of St, gives four linearly independent solutions. 

These results can be expressed in a form of 18×1 column matrix (ω1 ω2 ω3 … ω18)
T as 

 

T

t1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0
k k k k

l l l l

 
   
 

Ω                   (9.1) 
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T

t2 0 1 0 0 0 1 0 0 0 0 0 0 0 0
k k k k

l l l l

 
    
 

Ω                   (9.2) 

 

T

t3 0 0 1 0 0 0 0 1 0 0 0 0 0 0
k k k k

l l l l

 
    
 

Ω                   (9.3) 

  
T

t4 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0Ω                                   (9.4) 

where each of them implies one DOF of the assembly. For instance, Eq. (9.1) represents the motion 

that when there is a unit angle rotation about $1 in one sense, there will be a unit angle rotation 

about $4 in the opposite sense; there will be k/l unit angle rotation about $9 and $11 in the same 

sense; and k/l unit angle rotation about $14 and $17 in the opposite sense; whereas all the rest of the 

joints remain immobile, as shown in Fig. 5a. In other words, only the joints, axes of which are in 

the same family move and the associated members rotate simultaneously for this case. However, 

$9-$11 and $14-$17 screw pairs are no longer coaxial during transformation, which result in a spatial 

loop link in the assembly. This may make the instantaneous DOF infinitesimal rather than a finite 

DOF, which requires further analysis in the future study.  

 Similarly for Eqs. (9.2) and (9.3), which represent the motion of the members in the other two 

families, the motions are shown in Fig. 5b and c. Therefore, we can conclude that components 

from each family have an independent instantaneous mobility and these three motion modes can 

be actuated simultaneously. 
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Figure 5. Active screws and components in the motion of a translational assembly using 

members with unequal segments: (a) first DOF, (b) second DOF, (c) third DOF, and (d) fourth 

DOF. 

 Eq. (9.4) shows a type of motion that has different characteristics than the other three DOFs. 

In this situation, $4-to-$12 rotate in the same sense by the same amount at the same time. It can be 

found from Fig. 5d that $4-to-$12 are all the screws of the intermediate hubs. Hence, this motion 

can be understood as all the intermediate joints rotate simultaneously, but the rest of the joints 

remain immobile such that the bottom and upper hubs are as if rigidly connected to the links joined 

to them This 4th DOF is verified with computer simulations and prototypes. In this mode, the top 

and intermediate hubs do not remain parallel to the bottom hub (i.e. their joint axes are not 

coplanar). However, the range of motion is very limited. When we look at the loops (for instance 

loop $5-$6-$7-$8), they are 4-bar loops. It is very well known that the only mobile 4-bar loops are 

the planar 4-bar, the spherical 4-bar and the Bennett 4-bar. Since the 4-bar loop in consideration 

comprises 3 universal joints ($5-$6 and $7-$8 pairs intersect), is cannot be a finitely mobile loop. 

Therefore, we conclude that this is not a finite DOF, but an infinitesimal DOF, i.e. the mechanism 

is shaky [53,54].  

 Planar scissor units made of members with equal semi-length are a special case when l = k. 

They are also called translational units, as they usually lead to linear transformation [55]. Thus, 

we can use a single parameter l to indicate the length of both segments.  

 Using the same reference frame and the same geometric parameters (except for l and k) from 

Fig. 3, we can find the screws $i of the assembly using members with equal semi-length. $1-$3 

are the same as $1-$3, but $4-$18 are different due to the change of the member’s length. $1-$18 

are given in Appendix B. 

 Substituting $1-$18 into Eqs. (4)-(8), we can write St and Ωt following the same procedure. 

Consequently, it can be found that the mobility of a translational assembly using equal semi-length 

members is also four DOFs. And calculating the null space of St gives four linearly independent 

solutions as  

  
T

t1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0    Ω                        (10.1) 

  
T

t2 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0    Ω                        (10.2) 

  
T

t3 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1    Ω                         (10.3) 

  
T

t4 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 Ω                                 (10.4) 

 Eqs. (10.1)-(10.4) show that the assembly using equal semi-length members has similar motion 

types, i.e. each family of members has an independent DOF, and the intermediate hubs have the 

fourth DOF. However, due to the equal semi-length of the members, $9-$11 and $14-$17 screw 

pairs remain coaxial, and the parallel links in between these joints move together as if they are the 

same link, as shown in Fig. 6a. In this mode, the mechanism reduces merely to a planar 4-bar 

linkage (with link length proportions of a parallelogram loop). This results in finite DOFs for the 

first three motion modes, as shown in Fig. 6a-c. Also, the resulting motion of the unit will be 

different, which is known as a linear motion. However, the last motion mode, as shown in Fig. 6d, 

is still an infinitesimal DOF due to the same reason for the general case. Therefore, for the 

translational assembly with equilateral members, we conclude that the mechanism has 3 finite 
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DOFs and 1 infinitesimal DOF at the selected type of configurations, i.e. when all members have 

the identical deployment angle. 

 

Figure 6. Active screws and components in the motion of a translational assembly with 

equilateral members: (a) first DOF, (b) second DOF, (c) third DOF, and (d) fourth DOF. 

 To sum up, we can conclude that the translational assemblies, in the configuration when all the 

members are unfolded with an identical angle, have four instantaneous DOFs, no matter using 

equal or unequal semi-length members. In addition, it can be observed that, as long as members 

are identical, the change in the member’s segmental length does not influence the instantaneous 

mobility of the system. But it may make a difference of whether the first three DOFs are 

infinitesimal or finite. 

3. Mobility analysis of mirrored assemblies  

 Mirrored TSU structures were proposed by Liao and Krishnan using a different assembly 

approach [36]. They are named as mirrored assemblies because, if ignoring the link thicknesses, 

the circumjacent units are mirror symmetric with respect to the central unit about the plane defined 

by their connecting points, as shown in Fig 7a. Therefore, the adjacent unit can be obtained through 

a reflection. In this type of assembly, units are connected at three locations, and different joints are 

required as shown in Fig. 7. For comparison with the translational assemblies, we use a simple 

mirrored assembly here to analyze its mobility. Its geometric design of long-span structures, such 
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as domes and polyhedral forms, have been presented in [36,37]. The geometry of the basic 

mirrored assembly is reviewed below in preparation for the mobility analysis. 

3.1 Geometry of the mirrored assembly 

 In a physical mirrored TSU model, the thicknesses of members and hubs cause offsets between 

units, so they are not simply mirror symmetric. There are two ways to obtain a circumjacent unit. 

The first way is to mirror the central unit twice about different planes of symmetry. Firstly, 

reflecting the central unit about the symmetry plane defined by the end points of the theoretical 

member lines (the red dashed lines in Fig. 7a). The theoretical member line is the situation where 

all the members and joints have zero thickness, where three member lines with segmental lengths 

of l and k will intersect at the same point. Secondly, reflecting the unit about the vertical plane 

passing through its bottom-end joint. The second step is to overcome the transverse offsets between 

two units. 

 The other way is to replace the two reflections with a rotation. To obtain a circumjacent unit, 

we can rotate the central unit 180° about the axis on the symmetry plane (the green line in Fig. 7). 

This method can simplify the transformation matrices in computation, so it is used to find the 

screws for the mirrored assembly in the following procedure. 

 

Figure 7. (a) A mirrored assembly made of four TSUs, and (b) the geometries of the components. 

 The hubs used to connect the units are different from the translational assemblies. The top-end 

hub has three extension plates that can rotate around a central axis, and each plate connects to a 

member via a revolute joint. The dimensions are given in Fig. 7b. There is no hub at the bottom, 

but the members are simply connected with a revolute joint.   

 Observing Fig. 7a, it can be found that (1) the intermediate hub creates transverse offsets, (2) 

the top-end hub generates both transverse and longitudinal offsets, and (3) the bottom-end joint 

does not cause any offset. Therefore, the member shape should be modified to accommodate all 
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the offsets caused by each type of joints. For the upper segment, its length should be shortened as 

 
   

 

2

2

2

2 8
1

2 2 2

  
  



r k l k l
l l

k k l
                                                                                            (11) 

where l is the shortened upper segmental length and l is the theoretical upper segmental length 

that is used to define the symmetry between the units. The derivation of Eq. (11) is given in 

Appendix C. For the lower segment, the members are modeled to have an L-shape at the bottom 

connections in Fig. 2. However, to ease the fabrication, we can keep the members straight but add 

a washer in between the members to overcome the transverse offsets of 2r1. 

3.2 Mobility of mirrored assembly 

 We first analyze the mobility of a mirrored assembly in general cases, i.e. members with 

unequal semi-length (k ≠ l).  Similarly, k denotes the lower segment’s length and l denotes the 

theoretical upper segment’s length, as shown in Fig. 8. Following the same way to label the links 

and joints, the screws are marked in Fig. 8. The global coordinate system A-xyz is established with 

its origin at the center of hub A, where z-axis vertically points up; y-axis is along $
1 

m; x-axis follows 

the right-hand rule. 

 
Figure 8. Screws of a mirrored assembly using TSUs. 
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 Writing the screws can start from a member in the central unit. For example, $
1 

m - $
3 

m are 

perpendicular to the xz-plane, which can be obtained using their unit orientation vectors q
1 

m - q
3 

m 

and arm vectors p
1 

m - p
3 

m: 

  
T1 0 1 0m q ,  

T1

10 0m rp ,  
T

1

m  1 1 1

m m m$ q p q                                                   (12.1) 

 2 1

m mq q ,  
T2 sin 0 cosm k k  p ,  

T
2

m  2 2 2

m m m$ q p q                                               (12.2) 

 3 1

m mq q ,  
T3 sin 0 cosm l l  p  ,  

T
3

m  3 3 3

m m m$ q p q                                                  (12.3) 

where γ is the rotation angle of a member from the fully folded state. Assuming γ is identical for 

all the members. Other screws in the central unit can be written using rotations. For example, $
4 

m 

can be expressed as 

     
T

4

m  1 1 1

m m m$ q p qR R R                                                                                               (13) 

where R is the rotation matrix about the z-axis by 120: 
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sin 2 / 3 cos 2 / 3 0
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 

 

  
 

  
  

R                                                                                              (14) 

 The screws of the circumjacent units can be obtained using rotation about the axis on the plane 

of symmetry. For example, $
10 

m  can be written as 

     
T

10

1 1 1 1m   1 1 1

m m m$ q p qR R T R                                                                                    (15) 

where R1 and T1 are the transformation matrices                                    
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 Similarly, the screws of the remaining revolute joints can be obtained. $
1 

m-$
30 

m  are listed in 

Appendix D.  

 The topological diagram of the mirrored assembly is given in Fig. 9 based on graph theory. It 

should be noted that the top-end hubs H, I, and J have three extension plates connecting at their 

central hinge, which are labeled as -1, -2, and -3, respectively. Therefore, two screws coincide 

along the central axis of each top-end joint, such as $
25 

m  and $
26 

m . 
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Figure 9. Topological diagram showing the constraints of the mirrored TSU assembly. 

 The topological diagram has six independent loops. Using Euler’s formula: n = q – p + 1, we 

can get the same result (30 – 25 + 1 = 6). In this case, the loop closure equations for this assembly 

are given by 
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                               (17) 

where ω
i 

m denotes the angular speed of the ith revolute joint in the mirrored assembly. Eq. (17) can 

be rewritten into a matrix form as 

 m m S Ω 0                                                                                                                                 (18) 

where 0 is a 30×1 null column matrix, and 

 

 T

 
  
 

1 3 5 7 9 11

m m m m m m

m 2 4 6 8 10 12

m m m m m m

S S S S S S
S

S S S S S S
                                                                                 (19) 

  
T

1 2 3 30

m ...m m m m   Ω                                                                                            (20) 



 

15 

 

where in Eq. (19), S
i 

m is the ith submatrix in matrix Sm, which is given by 

  2 7 9 0 1 2  1 1 1 1

m m m m m m m$ $ 0 0 0 0 $ 0 $ $ $ $ 0 0 0
1

mS                        (21.1)
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2

mS                                           (21.2)
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mS                           (21.3)
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mS                              (21.5)
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mS                                  (21.6)
 

 
 3 7 8  1
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 20 23 24 26  m m m m0 0 0 0 $ 0 0 $ $ 0 $ 0 0 0 0
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mS                             (21.8)
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mS                                  (21.9)
 

 
 20 21 22 27  m m m m0 0 0 0 $ $ $ 0 0 0 0 $ 0 0 0

10

mS                           (21.10)
 

 
 2 4 6 0 3 4    1 1 1 1

m m m m m m m$ $ 0 $ 0 $ 0 0 0 $ 0 0 $ $ 0
11

mS                     (21.11) 

 
 28 m0 0 0 0 0 0 0 0 0 0 0 0 $ 0 0

12

mS                                         (21.12)
 

 
In Eqs. (21), each screw $

i 

m is a 6×1 column matrix, and each 0 is a 6×1 null column matrix. 

Therefore, the dimension of Sm is 36×30. Calculating the rank of Sm gives a result of 29. And using 

Eq. (8), the instantaneous mobility M of a mirrored assembly equals one DOF (M = 30 – 29 = 1). 

The CGK formula would evaluate M = 6 × (25 – 30 – 1 ) + 30 = –6 for 25 links and 30 revolute 

joints, so the degree of over-constraint of this mechanism is 7. 

 Solving Eq. (18) gives the null space of Sm, which has only one independent solution. The 

nonlinear motion results in a very complex symbolic expression for the null space. Thus, we use a 

numerical computation with k = 15, l = 20, r1 = 1, r2 = 2, and γ = 30, and normalize the array by 

dividing all terms to its first entry. The result can be expressed in the form of a 30×1 column matrix 

(ω1 ω2 ω3 … ω30)
T as 

 




m 1 1.43 1.55 1 1.43 1.55 1 1.43 1.55 1 1 1.55 1 1.55 1...

...1 1.55 1 1.55 1 1 1.55 1 1.55 0.013 0.013 0.013 0.013 0.013 0.013

        

   
T

Ω
   (22) 

 The special case should also be examined, when the mirrored assemblies are made of members 

with equal segmental lengths (k = l). Similarly, l denotes the upper segment’s length and k denotes 

the lower segment’s length, as shown in Fig. 7. Using the same reference frame in Fig. 8 and 

considering the change of segmental lengths, we can write the screws ′$
i 

m of the mirrored assembly. 

Observing Fig. 8, we can find that only Eq. (12.2) needs to be rewritten as 

  
T

2  m
  2 2 2

m m m$ q p q                                                                                                        (23.1) 

  
T

25 25 25 25    m
    m m m$ q p q                                                                                                 (23.2) 

where 

  
T2 sin 0 cosm l l    p                                                                                             (24.1) 
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 q                                                                                               (24.2)
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 

    
     
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p (24.3)
 

 For the transformation matrices, Eqs. (16.1) and (16.2) can be simplified as 
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 T

2 2

12 cos sin 2 3 sin sin 2
0

1 15cos 1 15cos

l l   

 

 
     
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                                                                       (25.2) 

 Substituting the rewritten Eqs. (23.1)-(25.2) into Eqs. (17)-(20), we can obtain S′m and Ω′m for 

the mirrored assembly using polar units. Consequently, it can be found that the instantaneous 

mobility of a mirrored assembly using unequal semi-length members is also a single DOF.  

 Therefore, the mirrored assemblies using both equal and unequal semi-length members have 

one DOF. And, if identical members are used, the change in the member’s segmental length does 

not influence the instantaneous mobility of the system. 

4. Validation using physical models 

 Physical prototypes of tripod scissor assemblies are constructed to verify the results of mobility 

analyses from previous Sections. In the physical model, the bars are laser cut using white acrylic 

boards, and the joints are 3D printed using grey plastic filament, as shown in Figs. 10-12. 

4.1 Prototype of the translational assembly 

 The physical prototypes of translational assembly, using members with unequal (Fig. 10) and 

equal segments (Fig. 11) are able to achieve four motion branches. This is consistent with the 

analytical results using screw theory from Section 2. The red arrows represent the positions and 

directions where we add force to fold the assembly. Observing the first three DOFs, it can be found 

that they share the same motion type, just along three different directions of the tripod form. In 

addition, these three motion modes can be combined together to achieve partially or completely 

folded configurations, and vice versa for its deployment process. 

 However, the 4th DOF cannot be combined with the first three DOFs. This can be observed 

from Fig. 10 that, in the 4th DOF, the top and intermediate hubs do not remain parallel to the bottom, 

and the range of motion is very limited. This implies that geometric incompatibility occurs during 

this transformation. The simulations with APEX software that considered elastic deformations 

validated this behavior, as shown in the supplementary video. Namely, the fourth DOF is just 

instantaneous mobility that exists in the configuration when all the members are rotated with an 

identical angle from the folded state. But this DOF still needs to receive enough attention in the 

design, because the relatively small geometric incompatibility would allow considerable non-
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stress-free motion in reality, due to the material elasticity. 

  

Figure 10. Prototype of a translational assembly using members with unequal segments (l/k = 

3/2) and its four types of instantaneous DOFs. 

 The kinematic behavior of the translational TSU assemblies have potential engineering 

applications. The multiple DOFs of the translational TSU assemblies lend themselves to 

reconfigurable mechanisms, such as reconfigurable fixtures and gripper mechanisms.  
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Figure 11. Prototype of a translational assembly using equilateral members and its four types of 

instantaneous DOFs. 

 However, for applications where simultaneous movement of the circumferential modules is 

preferred, such as retractable roof structures, additional links and joints to provide single-DOF 

movement or special simultaneous actuation means must be considered. A case in point is the 

Deployable Traveling Theater proposed by Piñero using the translational assemblies [30]. He 

used cables to lock the structure in the three directions for the service configuration. However, 

according to our analysis, this is not enough because the 4th DOF was not constrained in this 
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situation. As a result, it can cause large deflections when loads are applied to the frame. In 

addition, the actuation means should be improved to control such a flexible system.  

4.2 Prototype of the mirrored assembly 

 The physical prototypes of mirrored assembly using members with unequal and equal 

segments are given in Fig. 12a and b respectively. Both the assemblies can be folded or deployed 

through a single DOF, which is the same as the results in Section 3. It can be observed from the 

image that the mirrored assembly approach not only restrains the tripod scissor to be one DOF, but 

also promotes a curved transformation when using equilateral members, as shown in Fig. 12b. 

However, when using members with a segment-length ratio of 1.5, the mirrored assembly can 

unfold horizontally into a flat grid, as shown in Fig. 12a.  

 

Figure 12. Prototypes of a mirrored assembles with single DOF during their folding and 

deployment: (a) using members with unequal segments (l/k = 3/2) and (b) using equilateral 

members. 

 The single-DOF facilitates control of the mirrored assemblies, making them suitable for kinetic 

architectures in kinematics, such as emergency shelters and retractable roofs. An example of 

deployable shelter was presented in [36], where the members are modified so that the assembly 

can achieve a closed polyhedral form. The single-DOF ease the deployment of the shelter, which 

can reduce the erection time and require less labor. These merits make it an ideal shelter solution 

for disaster relief.  



 

20 

 

5. Conclusions 

 In this paper, the instantaneous mobility of two types of tripod scissor structures was analyzed 

using screw theory. The study focuses on a configuration in which all the members are deployed 

at the same angle and all the joint axes are parallel to the same plane. Both the cases with general 

member geometries (unequal segmental lengths) and special member geometries (equal segmental 

lengths) were examined. The different kinematic behaviors of the two assembly types have been 

identified, and the results are 

 The translational assemblies using both equal and unequal semi-length members have four 

instantaneous DOFs, in the given configuration. For the special case (with equal segmental 

length member), only the 4th DOF is infinitesimal; while for the general case (with unequal 

segmental length member), at least the 4th DOF is infinitesimal. 

 For translational assemblies, different configurations and assembly modes can be obtained 

from the given configuration. All possible assembly modes of the mechanism could be 

worked out as a future study. 

 The mirrored assemblies using both equal and unequal semi-length members have one DOF. 

 And, when using identical member shapes, changing the member’s segmental lengths does 

not influence the mobility of the mirrored assemblies. 

 This paper primarily examines the mobility of the tripod scissor assemblies. It has the 

following limitations due to the length of the paper, which should be further investigated in the 

future. First, this study is limited to the analysis of the instantaneous DOF, while whether these 

DOFs are finite or not should be examined in the next step. Second, for the translational assemblies 

with multiple DOFs and motion modes, their instantaneous mobility of different configurations 

should be further investigated to fully understand the kinematics of this mechanism. Third, for 

both the translational and mirrored assemblies, only the basic modules are analyzed. Complex 

problems with an increased number of modules and elements should be studied to verify and 

improve the formulations and results of the basic assemblies. 
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Appendix A 

 The screws of the revolute joints, $1-$18, are given as follows 
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Appendix B 

 The screws of the revolute joints, $'1-$'18, are given as follows 
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Appendix C 

 The derivation of Eq. (11) is given as follows: For a mirrored assembly, the addition of the 

top-end hub causes offsets and hence the upper segment must be shortened to to accommodate it. 

Here, we use the fully deployed configuration [36] to prove the relationship between the upper 

segmental length l and its theoretical length l.  

 
Figure C1. Geometric relationship of a mirrored assembly in the fully deployed configuration. 

 As shown in Fig. C1a, two similar triangles can be formed in this configuration and their 

corresponding sides are in equal proportion as 

 2

sin D

re

l k k 



                                                                                                                     (C1) 

therefore, we have 

 

 2

sin D

r l k
e

k 

 
                                                                                                                          (C2) 

where γD is determined by k and l. Referring to the right triangle in Fig. C1b, we have 

    
2 22a b c d k l                                                                                                         (C3) 

where 

 cos Da k                                                                                                                          (C4.1) 

 cos Db l                                                                                                                          (C4.2) 

 2 sin Dc l                                                                                                                      (C4.3) 

 sin Dd k                                                                                                                           (C4.4) 

 Substituting Eqs. (C4.1)-(C4.4) into Eq. (C3), sinγD can be solved. And plug it into Eq. (C2), 

the value of the shortened distance e can be found. Consequently, the shortened length of the upper 
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segment is 
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Appendix D 

 The screws of the revolute joints, $
1 

m-$
30 

m , are given as follows 
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where, 
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