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ABSTRACT: Deep frying is one of the strongest emission sources
into indoor air. A vegetable margarine has recently been used in
commercial kitchens. This study investigated the respiratory effects
of exposure to its fumes in an experimental model. A setup with
glass chambers was constructed. A chamber housed a fryer. The
fumes were transported to the other chamber where 24 Wistar
albino rats were placed in four randomized groups: acute, subacute,
chronic, and control for the exposure durations. PM10 concentration
in the exposure chamber was monitored to ensure occupational
levels were obtained. Sacrification was performed 24 h after
exposure. Lung, trachea, and nasal concha specimens were
evaluated by two blinded histologists under a light microscope
with hematoxylin−eosin. Mild mononuclear cell infiltration,
alveolar capillary membrane thickening, alveolar edema, and diffuse alveolar damage, along with diffuse hemorrhage, edema, and
vascular congestion in the interstitium were observed in the acute and subacute groups, and were overexpressed in the chronic
group, whereas normal lung histology was observed in the control group. The results indicate that exposure to fumes of vegetable
margarine for frying in commercial kitchens may cause pulmonary inflammation that becomes severe as the duration of the exposure
increases.

1. INTRODUCTION
Cooking is one of the important sources of indoor air
pollution.1 Frying is a common cooking method, especially in
industrial kitchens, and brought forward due to its strong
emission potential.2−6 Corn, safflower, vegetable, and olive oils
are used for frying.7 Fast food restaurants are increasingly
preferred in nutrition because they are time-saving and
inexpensive. Most of the products are fried in these restaurants.
An increasing number of restaurants and increasing demand
for their products mean more people are exposed to frying
fumes and other emissions for longer periods. Frying at high
temperatures results in carcinogenic fumes8 that contain
particulate matter (PM), aldehydes, volatile organic com-
pounds (VOCs), and polycyclic aromatic hydrocarbons
(PAHs).8−10 Epidemiological studies indicate that cooks and
bakers have higher carcinogenic risks.11 Nonsmoking women
have been shown to have a higher carcinogenic risk in East
Asia.12,13 PAHs and aldehydes have mutagenic effects.14,15

Aldehydes diffuse into cells, causing damage by reacting with
macromolecules such as DNA.16 Similar to PAHs and
aldehydes, some of the VOCs are carcinogenic substances
that cause mucous membrane irritation.17 Some of the
aldehydes, such as acrolein and formaldehyde, are strong

irritants.18 Dienaldehyde was reported to cause increased
reactive oxygen (ROX) products, proinflammatory cytokine
tumor necrosis factor, and interleukin-1β (IL-1β) on the
human bronchial cell line.19 Decreased cell viability, oxidative
stress, inflammation, and apoptosis were also reported in Beas-
2B cells by heated peanut oil fumes,20 while healthy cell
damage was reported to occur even at a low-dose exposure to
cooking oil fume contaminants, i.e., heterocyclic aromatic
amines and aldehydes.21

Inhalation of PM in cooking fumes was reported to cause
pulmonary, cardiac, reproductive, renal, and dermal toxicity.16

Type of frying oil, temperature, time, type of food, and amount
are determinants of the size and concentration of particles in
the fumes.22 Ultrafine particles (UFP, PM0.1) dominate in
terms of number concentration, whereas in terms of mass
concentration, the majority of PM10 consist of fine particles
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(PM2.5), while sub-micron particles (PM1.0) dominate
PM2.5.

23,24 The surface area available for sorption of organic
compounds, such as PAHs, increases with decreasing size of
the particles, which have higher ROX and oxidative stress
formation potential.25−27 UFP have higher peripheral lung
accumulation rates than those of larger particles,28 which
reduces the capacity of alveolar macrophages to remove
exogenic particles.27 The increase in alveolar macrophages was
reported to be an indicator of occupational pulmonary
irritation in fast food and grill kitchen workers.29 PM was
associated with premature death, asthma exacerbation, chronic
bronchitis, and effects on the immune system.26,30 Cooking
fumes were related to increased frequency of respiratory
symptoms in kitchen workers31,32 and decreased lung
function.33 Short-term functional changes were observed
after exposure to cooking fumes in an experimental
study.32,34 Exposure to Chinese-style open-wok cooking
fumes, which are rich in PM, was found to have a strong
relation to rhinitis.35

The time spent frying was reported to be a determinant for
increased personal total dust exposure in large-scale and
European kitchens, where group geometric mean and
individual personal sample concentrations reached 320 and
3900 μg/m3, respectively.36 It has been reported that PM2.5
concentrations may exceed maximum contaminant levels due
to emissions of commercial kitchens7 where indoor air
pollutant concentrations exceed those of residential kitchens.1

The difference may be attributable to the differences in foods
and styles of cooking.7 Deep-fried foods are popularly
consumed in commercial establishments where a type of
vegetable margarine for frying is used in Turkey. We have
studied the indoor air quality in the kitchen of such a small
establishment before, during, and after frying events.37 Results
of our study showed that considerably high levels of
occupational exposure to PM10 occur in the kitchen during
frying, while VOC and aldehyde concentrations were also
increased during frying, but not as sharply as for PM. CO2
concentrations, on the other hand, were not increased.

There is strong evidence that the respiratory toxic effects of
exposure to cooking oil fumes include both airway and
parenchymal damage, and that this is associated with oxidative
stress, which was based on findings observed after 30 days of
smoke exposure.38 It was shown that apoptotic cytokines
increased significantly along with the increase in proinflamma-
tory cytokines. In addition to increased inflammatory cell
infiltration in the tissue, goblet cell hyperplasia and increased
fibrosis were detected. We conducted an experimental study

based on two cases of fast food cooks diagnosed with alveolar
damage and asthma, associated with occupational exposure to
frying oil fumes in our clinic, and based on the literature on the
toxic effects of frying fumes. With this model, we aimed to
investigate the nasal, tracheal, and respiratory parenchymal
effects of acute, subacute, and chronic exposure models in mice
exposed to the fumes of the frying margarine used in industrial
kitchens in Turkey.

2. MATERIALS AND METHODS
2.1. Occupational Concentrations. Our previous study

reported methods employed for the determination of indoor
air quality in a small establishment that uses deep-frying
margarine made of palm oil with dimethylpolysiloxane as an
antioxidant and antifoaming additive.37 The establishment
serves mainly lunch. Several foods (potatoes, chicken, beef)
were fried in a 3 L container at 160−180 °C in a naturally
ventilated kitchen whose doors and windows were kept closed
during frying.

The measurements were conducted in two 1-week
campaigns. Each campaign consisted of three days that started
1.5 h before and ended 1.5 h after lunch. Measurements were
made in three time periods: before, during, and after frying to
determine the increase and decrease in pollutant concen-
trations with reference to the background. The first campaign
was for the regular operation, while the second campaign was
conducted during an out-of-service period to investigate the
effect of the amount of fried potatoes on the kitchen indoor air
concentrations: 1.25 kg denoting the regular operation, 2.5 and
3.75 kg on the first, second, and third days, respectively.

Samples of VOCs and aldehydes were collected in before-,
during-, and after-frying periods, while samples of PM2.5 were
collected in the whole 4 h due to concerns that shorter
sampling would not be sufficient for gravimetrical measure-
ment. In the meantime, continuous monitoring was conducted
for total VOCs (TVOC), PM10, CO, and CO2. Stationary
sampling/monitoring was conducted 50 cm away from the
fryer at 1.5 m height. Further details of the methods employed
can be found in our previous study.37

2.2. Exposure Chamber. An exposure system consisting
of two parts was made of glass (Figure 1). The first unit, 50 cm
× 50 cm × 50 cm (W × L × H) with a 15 cm roof above, was
built to house a fryer with a 1 L oil container. An exhaust on
the tip of the roof was connected to the second unit with a 0.25
in. inner-diameter Tygon tubing. The second unit, 75 cm × 50
cm × 50 cm (W × L × H), was built to house the rats and the
monitoring device. This unit was equipped with a front door

Figure 1. Glass exposure chamber custom-built for the experiment.
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and eight valves. The tubing from the first unit was connected
to one of the valves on the left. One of the valves on the right
was connected to a vacuum pump to sustain 1 air change per
hour in the chamber.

2.3. Monitoring and Standardization of Exposure. In
our previous study to determine occupational exposure
levels,37 the average peak PM10 concentration of the during-

frying period was determined to be 1583 μg/m3 for regular
operation in the studied establishment, whereas the average
during-frying concentration was 4037 μg/m3 in the second
campaign with increased amount of fried potatoes. Therefore,
roughly, the overall average value of the whole study, i.e., 2500
μg/m3, was selected as the exposure concentration in the
experiment so that a realistic occupationally relevant

Figure 2. Histomorphological damage in the lung tissue of the experimental groups. Representative light microscopic images of H−E staining in
the control group (A), acute group (B), subacute group (C), and chronic group (D). The hollow star indicates chronic pulmonary inflammation
that expands the interstitium, (⇒) indicates erythrocyte extravasation, and (▶) indicates the foci of collection of septal and intra-alveolar foamy
histiocytes. The scores of lung histomorphological damage (E). *p < 0.05 vs control, #p < 0.05 vs. chronic group. Error bars show standard error of
the mean.
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concentration is investigated. Preliminary runs were made to
determine how long the margarine needed to be heated to
achieve and sustain the decided experimental concentration. As
a result, the fryer was heated to 180 °C 1 h before each
exposure session, providing PM10 concentrations of 2500 ±
250 μg/m3 during the sessions. Margarine was put into the
fryer to fill the container up to the maximum line when melted,
which melts at room temperature and is kept in solid form in
the refrigerator at 4 °C, and topped when it dropped to the
minimum line in the container.

2.4. Animal Model. The study protocol was approved by
the Ethical Committee of Dokuz Eylül University Medical
School (permit no: 31-2010). Male adult Wistar rats (n:24)
(Dokuz University School of Medicine, Izmir, Türkiye)
weighing 200−250 g were used. Animals were housed in an
appropriate cage on a 12 h light/12 h dark cycle with free
access to standard laboratory food and tap water. The animals
were allowed to habituate to the housing facilities for at least 1
week before the starting of experiments. They were divided
into four groups of six animals each.

The four groups of six rats were formed by random
selection: group 1: acute exposure (120 min), group 2:
subacute exposure (360 min), group 3: chronic exposure (120
min daily for three weeks), group 4: controls. Whole-body
exposure was applied. Rats in groups 1, 2, and 3 were sacrificed
right after their respective exposure periods, while the controls
were sacrificed along with group 3. All groups were kept in
separate cages and brought into the exposure chamber at the
start of the session.

2.5. Histological Assessment. The head, trachea, and
lung tissues were removed after sacrification and fixed in 10%
buffered neutral formalin for three days. Routine tissue follow-
up was initiated after the fixation of the trachea and lung
tissues. After washing under a stream of water for a night to
remove the fixative, the tissues were kept in the oven for 20
min at 60 °C and then passed through a series of increasing
ethyl alcohol: 70, 80, and 96%. Dehydration was followed in
four changes of 20 min in acetone, then two changes of 30 min
in xylol for transparency, and two changes of paraffin
immersion for 1 h, all in a 60 °C oven, before embedding in
paraffin blocks. A rotary microtome (RM 2255, Leica,
Germany) was used for taking 5 μm sections and stained
with hematoxylin−eosin (H−E).

The fixed subject heads were decalcified in EDTA for 2
months. Tissue blocks were removed with two perpendicular
sections extending from the anterior nasal cavity to the hard
palate. They were embedded in paraffin blocks for routine
tissue follow-up after washing under a stream of water for a
night. A rotary microtome (RM 2255, Leica, Germany) was
used for taking 5 μm sections. Nasal conchae sections of each
subject were stained with H−E to evaluate the general
histomorphological features of the tissue.

2.5.1. Hematoxylin−Eosin Staining. The sections were left
in the oven at 60 °C for 2 h for deparaffinization. Then, they
were subjected to xylene, first in the oven for 20 min and then
two times for 10 min. Rehydration was followed with two
changes of absolute and in a series of decreasing percentages of
96−70% alcohol. The sections were stained with hematoxylin
(01562E, Surgipath, Bretton, Peterborough, Cambridgeshire)
for 10 min after rinsing with distilled water. After staining, they
were washed in the stream for 10 min to remove excess paint
from the tissue and then stained with eosin (01602E,
Surgipath, Bretton, Peterborough, Cambridgeshire) for 2

min. The sections were passed through 70, 80, and 96%
alcohol in a series of two, and absolute alcohol, followed by
three changes of xylene for 20 min for transparency before
closing with Entellan (UN 1866, Merck, Darmstadt,
Germany).

2.5.1.1. Lung Tissue. At least 20 lung areas in three
nonoverlapping lung sections per subject were investigated by
skipping the areas with large vessels and airways to evaluate
parenchymal changes by light microscopy. General morpho-
logical changes (alveolar structures, inflammation, alveolar
septum, alveolar macrophage and neutrophil, and hemorrhage,
edema, and congestion in the parenchyma) were evaluated
with the H−E stained sections, while changes in the alveolar
septum and connective tissue changes in parenchyma were
evaluated with the Masson’s trichrome stained sections. Each
lung was evaluated by looking at alveolar structures,
inflammation, increased capillary permeability, thickening of
alveolar septa, increase in alveolar macrophage and neutrophil
counts, and hemorrhage, edema, and congestion in the
parenchyma. These findings were scored with 0, 1, 2, 3, and
4 for no, light, mild, obvious, and very obvious observations,
respectively. Then, averages were calculated for comparison.39

2.5.1.2. Trachea Tissue. The sections stained with H−E
were evaluated semiquantitatively for epithelium (erosion and
inflammation), basement membrane (normal or thickened),
and lamina propria (congestion, hemorrhage, and inflamma-
tion) to assess tracheal damage. Histological parameters were
scored with 0 (no change), 1 (light), 2 (mild), and 3
(obvious). Then, averages were calculated for comparison.40

2.5.2. Image Analysis Methods. The H−E staining sections
were evaluated by two investigators blinded to the study by
light microscopy (Olympus BX-50 Tokyo, Japan). High-
resolution digital images were produced with a computer
equipped with an Olympus DP-71 (Japan) camera. The images
were assessed using the digital image analysis software
(UTSCSA Image tool version 3.0 for Windows, Texas).

2.6. Statistical Analysis. All data were presented as mean
± SEM. Statistical testing for differences between two and
multiple groups was conducted with the Mann−Whitney U-
test and Kruskal−Wallis test, respectively, using SPSS 25.0. A
p-value of < 0.05 was considered statistically significant.

3. RESULTS
3.1. Histomorphology of Lung Parenchyma. Figure 2

demonstrates the histological findings of each group in the
lung tissue of animals exposed to heated frying-margarine
fumes for the control, acute, subacute, and chronic exposure
groups.

3.1.1. Control Group (n = 3). The structure of the lung
tissue of the control group was evaluated as normal. Alveolar
structures were normal. There was no increase in inflamma-
tion, capillary permeability, thickening in alveolar septa, and
number of alveolar macrophages. No findings related to
hemorrhage, edema, and congestion were found in the
parenchyma (Figure 2A).

3.1.2. Acute (n = 7) and Subacute (n = 7) Exposure
Groups. Extensive lung damage was observed compared to the
control group. A small amount of mononuclear cell infiltration
and an increase in capillary permeability were found.
Histomorphological evaluation of alveoli revealed thickening
of alveolar septa, alveolar edema, and diffuse alveolar damage.
Diffuse hemorrhage, mononuclear cell infiltration, edema, and
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vascular congestion were detected in the parenchyma (Figure
2B,C, respectively).

3.1.3. Chronic Exposure Group (n = 7). Higher lung
damage was observed in the chronic exposure group compared
to the acute and subacute groups. Widespread mononuclear
cell infiltration and increased capillary permeability were
found. Obvious thickening of alveolar septa, alveolar edema,
and diffuse alveolar damage were observed. Diffuse hemor-

rhage, mononuclear cell infiltration, edema, and vascular
congestion were increased in the parenchyma (Figure 2D).

The scores of histomorphological damage in the lung tissue
increased significantly in the acute, subacute, and chronic
groups when compared to the control group (p = 0035, p =
0035, and p = 0012, respectively). The scores of the chronic
group were significantly higher when compared to the acute
and subacute groups (p = 0006 and p = 0006, respectively)
(Figure 2E).

Figure 3. Histomorphological damage in the trachea tissue of the experimental groups. Representative light microscopic images of H−E staining in
the control group (A), acute group (B), subacute group (C), and chronic group (D). (★) indicates chronic inflammation that also infiltrates the
respiratory epithelium, (▶) indicates mucosal papillation and squamous metaplasia, and (>) indicates fibrosis. The scores of tracheal
histomorphological damage (E). #p < 0.05 vs control group. Error bars show standard error of the mean.
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3.2. Histomorphology of Trachea. Figure 3 demon-
strates the histological findings of each group in the trachea
tissue of animals exposed to heated frying-margarine fumes for
the control, acute, subacute, and chronic exposure groups.

3.2.1. Control Group (n = 3). The structure of the trachea
tissue of the control group was evaluated as normal.
Respiratory epithelium, lamina propria, and cartilage structures
were normal, and no epithelial changes and inflammation were
observed (Figure 3A).

3.2.2. Acute (n = 7) and Subacute (n = 7) Exposure
Groups. Extensive tracheal injury was observed compared to
the control group. Widespread chronic inflammation in the
lamina propria and an increase in diffuse mononuclear cell
infiltration were observed (Figure 3B,C, respectively).

3.2.3. Chronic Exposure Group (n = 7). Tracheal damage
was more common compared to the acute and subacute
exposure groups. Papillation, squamous metaplasia, and
mononuclear cell infiltration were observed. Chronic inflam-
mation and fibrosis were also detected in the lamina propria
(Figure 3D).

The scores of histomorphological damage in the trachea
tissue increased significantly in the acute, subacute, and
chronic groups when compared to the control group (p =
0009, p = 0011, and p = 0011, resp.). No significant difference
was observed between the acute, subacute, and chronic groups
(Figure 3E).

3.3. Histomorphology of Nasal Conchae. The histo-
morphological evaluation of nasal conchae of animals exposed
to heated frying margarine for the control, acute, subacute, and
chronic exposure groups was based on the H−E staining of
sections (Figure 4).

3.3.1. Control Group (n = 3). The nasal conchae tissue of
the control group showed a regular epithelial structure.
Mucosal cavity structures were normal, and no increase was
observed in inflammation and capillary permeability (Figure
4).

3.3.2. Subacute Exposure Group (n = 7). Nasal mucosal
changes, squamous metaplasia, and goblet cell hyperplasia were
observed in this group, along with widespread mononuclear
cell infiltration in the lamina propria. (Figure 5A1−3).

3.3.3. Chronic Exposure Group (n = 7). Higher damage was
observed compared to the acute and subacute exposure groups.
Basal cell hyperplasia in the epithelium, granulation in the
subepithelial area, and diffuse mononuclear cell infiltration in
the lamina propria were observed (Figure 5 B1−3).

4. DISCUSSION
In this study, we found evidence supporting that acute,
subacute, and long-term exposure to frying oil fumes in mice
has detrimental effects on the tracheobronchial tree and lung
parenchyma, starting from the nasal turbinates. In the nasal
concha and tracheal mucosa, we detected degenerative changes
in the epithelium in the acute exposure group, together with
inflammation in the lamina propria and diffuse mononuclear
cell infiltration in the tissue.

We found that mononuclear cell infiltration occurs rapidly at
the lamina propria level with an increase in capillary number
after acute mucosal injury, squamous metaplasia, and goblet
cell hyperplasia with prolonged exposure, and granulation
tissue development in the subepithelial area together with
tissue repair mechanisms are activated. We also detected
similar changes in the tracheal mucosa. Findings such as
papillation and fibrosis supported the involvement of repair
mechanisms in chronic exposure. Inflammation in the lung
parenchyma was characterized by diffuse alveolar damage
associated with diffuse hemorrhage, mononuclear cell infiltra-
tion, edema, and vascular congestion, as well as alveolar edema
and thickening of the alveolar septa. These findings show that a
single and acute exposure to the fumes of the frying oil used in
our country has harmful effects on the respiratory parenchyma,
as well as the nasal concha and trachea in mice. If the exposure
continues, it leads to exacerbation of inflammation and
activation of repair mechanisms leading to fibrosis in the
tissue. In consequence, it is indicated that inflammation
affecting the airways and parenchyma, which intensifies as the
exposure time to frying smoke increases, may occur in workers
of establishments that use the margarine for frying.

Previous studies have found evidence of severe obstructive
airway disease associated with acute exposure to cooking oil
fumes41 that lifetime, short-term, and low-level kitchen
exposures in women aged over 65 years have been associated
with respiratory complaints and pulmonary functional loss.42

The relationship between the respiratory effects31,33−35

associated with smoke exposure and frying oil exposure is
consistent with our findings.

The importance of cellular changes and/or inflammatory
markers associated with PAHs, aldehydes, and PM released
during frying has been demonstrated,16,17 and findings
supporting persistent oxidative stress in the airway epithelium
were found in volunteers exposed to frying oil fumes.43 These
findings were supported in an experimental study, and a clearer

Figure 4. Localizations of nasal tissues selected for analysis. Representative light-microscopic images of H−E staining in selected nasal concha
sections in the control group (A, B).
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suggestion was presented regarding the mechanism of damage
caused by exposure to frying oil fumes.38

It should be emphasized, however, that acute exposure to
cooking oil fumes, as we have shown in our study, causes
damage to all airways, starting from the nasal passages to the
lung parenchyma. As the exposure time extends, the damage
indicates that the repair mechanisms come into play.

A significant relationship was reported between the frying-
time exposure of women older than 65 years and chronic
respiratory symptoms, and the decrease in functional measures
may be related to the respiratory effects of lifelong, short-time,
and low-level kitchen exposures.42 Although limited, clinical
evidence was reported on the respiratory effects of frying with
different oils, types, and conditions based on workplace field

studies.31,33−35 Simpson, Belfield, and Cooke41 reported a 22-
year-old case of severe obstructive airway disease, which they
called “obliterative bronchiolitis”, with no evidence of
inflammation in the upper respiratory tract after acute exposure
to vegetable oil fumes, following an epileptic seizure. This case
shows that exposure to heavy frying oil fumes can lead to
serious airway disorders; however, the pulmonary parenchymal
effect was not fully revealed due to the lack of tissue analysis.
The importance of cellular changes and/or inflammatory
markers associated with PAHs, aldehydes, and PM emitted
during frying has been shown.16,17 In addition, findings that
support persistent oxidative stress in the airway epithelium
were determined in volunteers exposed to frying oil fumes.43

The increase in the level of IL-1β after exposure to frying

Figure 5. Representative light microscopic images of H−E staining in the nasal concha in the subacute group (A1−3) and the chronic group (B1−
3). Inflammatory response of the nasal concha ( ) and mucosal changes in the nasal concha, basal cell hyperplasia (▶), squamous metaplasia

( ), goblet cell hyperplasia ( ), and subepithelial region with granulation tissue (★).
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fumes was stressed as an indicator of the early inflammatory
response.

Different from residential kitchens, workers are continuously
exposed to frying fumes for regular and long durations in
commercial kitchens where the strength of the emissions is also
higher.1 The difference in emission strength was attributed to
the differences in the style and amount of food.7 The detected
compounds and their concentrations in a commercial kitchen’s
indoor air in our previous study37 have the potential to cause
the health effects reported in the literature.

PM10, a regulated criteria air pollutant, has been well-studied
and known to have health effects. In terms of mass-based
concentrations, PM10 consists mainly of PM2.5, which mainly
consists of sub-micron particles (PM1), which mainly consist of
UFP in terms of number concentration. Ma et al.44,45

investigated the effects of oil temperature (namely, starting
and moderate smoke point temperatures) and time, both on
mass and number concentrations, and proposed a two-way
mitigation strategy: the use of lower oil volume and larger pans
at relatively lower temperatures to primarily control particle
number emissions, and the use of higher oil volumes and
smaller pans at higher temperatures to mitigate particle mass
emissions. Shi et al.46 showed that particle emissions from
heated peanut oil had lognormal size distributions with
spatially variable sizes decreasing with the distance from the
source due to sharp cooling near the source and then
volatilization of semivolatile organic compounds. Particles in
frying fumes may be associated with adverse health effects.
UFP have been found in biological media as single particles
and/or as agglomerates. It has been suggested that when
clustered UFP are given to the mice, the deficiency in cleaning
mechanisms may result in inflammation, proliferation, fibrosis,
and tumor formation in the lungs.30 UFP led to proin-
flammatory changes such as carbon and neutrophil accumu-
lation, protein leakage, and glutathione modulation in studies
that avoided high doses. In these studies, it has been
demonstrated that the phagocytic activities of macrophages
decrease and oxidative stress increases. Although the
mechanisms of action for UFP have not been fully explained,
the relationship between the extent of the surface area and
inflammatory cellular activation has been emphasized.27,30

The exposure to PM10 concentrations was kept at the
occupational levels by continuous monitoring, while the
background levels were 40 to 2.5 times lower than the target
concentration with an average of 4.6 times, in this study.
However, a limitation of this study is the lack of UFP
measurement. The detected inflammation in this study may
have been related to any, measured or not, substance including
UFP in the frying fumes. A relationship between particle
concentrations and PAHs or aldehydes has not been reported
in the literature. Therefore, it has been reported that they were
not covariable factors responsible for the occurrence of adverse
effects.16 In other words, substances such as aldehydes and
PAHs or the complex interaction of all may also be responsible
for the health risks associated with exposure to frying fumes.

5. CONCLUSIONS
The observation of significant inflammatory changes from
acute to chronic exposures in the experimental model
employed in this study indicates that the use of the vegetable
margarine for frying poses occupational health risks to kitchen
workers who are exposed to its fumes. Yet, the histopatho-
logical changes determined in our clinic with a diagnosis of

alveolar damage in two occupational cases were similar to the
findings of this study.

Acute and chronic inflammation, along with epithelial
damage associated with fume exposure in the upper and
lower airways, may underlie favorable conditions for the
development of allergic respiratory diseases as well as
peripheral airway diseases such as bronchiolitis obliterans
and interstitial lung diseases.

The differences in characteristics of the frying margarine
investigated in this study and those in the literature may be the
determining factors of exposure content and magnitude, which
requires continual investigation of frying oil characteristics,
content, and toxicity of their fumes. In the meantime,
monitoring the conditions of work, ensuring the presence of
appropriate ventilation, and raising awareness among the
workers in commercial kitchens are vital.
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