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Abstract: Urban heat island (UHI) is a zone that is significantly warmer than its surrounding rural
zones as a result of human activities and rapid and dense urbanization. Excessive air temperature
due to the UHI phenomenon affects the energy performance of buildings and human health and
contributes to global warming. Knowing that most of the building energy is consumed by residential
buildings, therefore, developing a framework to mitigate the impact of the UHI on residential building
energy performance is vital. This study develops an integrated framework that combines hybrid
micro-climate and building energy performance simulations and multi-criteria decision-making
techniques. As a case study, an urban area is analyzed under the Urban GreenUP project funded by
the European Union’s Horizon 2020 Programme. Four different strategies to mitigate the UHI effect,
including the current situation, changing the low-albedo materials with high-albedo ones, nature-
based solutions, and changing building façade materials, are investigated with a micro-climatic
simulation tool. Then, the output of the strategies, which is potential air temperature, is used in a
dynamic building energy simulation software to obtain energy consumption and thermal comfort
data of the residential buildings in the case area. Finally, a multi-criteria decision-making model,
using real-life criteria, such as total energy consumption, thermal comfort, capital cost, lifetime
and installation flexibility, is used to make a decision for decreasing the UHI effect on residential
energy performance of buildings. The results showed that applying NBSs, such as green roofs
and changing existing trees with high leaf area density ones, have the highest ranking among all
mitigation strategies. The output of this study may help urban planners, architects, and engineers in
the decision-making processes during the design phase of urban planning.

Keywords: thermal comfort; building energy performance; urban heat islands; integrated
multi-decision-making tools

1. Introduction

Urban heat island (UHI) is defined as an urban zone with higher temperature than
rural areas due to human activities [1,2]. The United States Environmental Protection
Agency (US EPA) reported that the main effects of the UHI are boosted energy consumption,
greenhouse gases, air pollution, harmful impact on human health, and poor thermal
comfort [3]. Considering that urban zones are responsible for almost 66% of total energy
consumption [4], decreasing the effect of the UHI on energy consumption is significant
to achieve sustainability goals. Likewise, buildings accounted for 35% of total energy
consumption from the world’s perspective [5]; thereby, the effect of the UHI on the energy
performance of buildings should be investigated in detail [6].
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Associated with the UHI, increased cooling load and decreased heating load in build-
ings are generally expected, which results in increased energy consumption of build-
ings [7,8]. On the other hand, urban zones and buildings have a huge potential in terms of
energy saving since several energy-saving strategies to mitigate the impact of the UHI are
proposed in the literature, i.e., changing pavement materials [9], nature-based solutions
(NBSs), such as planting vegetation [10], using highly reflective materials [11] with a com-
bination of green roof application, and using high-albedo materials in urban surfaces [12].
NBSs are actions inspired by nature and are widely used to mitigate UHI effects. Planting
trees in urban zones, using renewable energy sources, such as wind, wave, or solar power,
and green actions, which are modelled on biological processes, are some good frames of
NBSs [10]. Particularly, researchers use micro-climate simulations [10,11] in order to obtain
the effect of UHI on urban scale and integrate these simulation results with dynamic build-
ing energy simulation tools to examine residential building energy consumption change
due to the UHI [9,12]. However, strategies on decreasing building energy consumption con-
sist of multi-criteria tasks, such as the potential for decreasing air temperature, installation
flexibility, and lifetime, initial, and operational costs [13–15]. Moreover, thermal comfort is
another vital criterion for the decisions and is defined as “the condition of mind that expresses
satisfaction with the thermal environment and is assessed by subjective evaluation” [16]. The
Fanger’s predicted mean vote (PMV) / predicted percentage of dissatisfied (PPD) method
predicts thermal comfort according to 7-point thermal sensation scale; thereby, the PMV
values between −0.5 and +0.5 are accepted as comfortable zones [16]. Including thermal
comfort as another criterion, decision-making between various single/combined strategies
becomes more problematic in the design phases.

Multi-criteria decision-making (MCDM) models target exhibiting possible strategies
to support decision-making for a specific goal when many alternatives and complex criteria
are available [17]. There are several MCDM models in the literature, such as Analytical Hi-
erarchy Process (AHP) [18], Analytic Network Process (ANP) [19], Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [20], Complex Proportional Assessment
(COPRAS) [21], VIekriterijumsko Kompromisno Rangiranje (VIKOR) [22], Preference Rank-
ing Organisation Method for Enrichment Evaluation (PROMETHEE) [23], Elimination Et
Chroix Traduisant la Realite or Elimination and Choice Expressing Reality (ELECTRE) [24],
Case-based Reasoning (CBR) [25], Additive Ratio Assessment (ARAS) [26], Decision Mak-
ing Trial and Evaluation Laboratory (DEMATEL) [27], Stepwise Weight Assessment Ratio
Analysis (SWARA) [28], and Weighted Additive Sum Product Assessment (WASPAS) [29].
The Kemeny Median Indicator Ranks Accordance-Modified (KEMIRA-M) model [30] is one
of the efficient MCDM models, which allows simultaneous identification of the weights of
criteria on separate groups of criteria. The model is easy to use since the model generalizes
expert opinions in order to set priorities of criteria in the decision-making problem [31].
Furthermore, the integration of the expert opinions with the quantitative values, such as
real-time measurements and/or simulation results, also makes the model more efficient
over the other MCDM models.

According to the recommendation of the U.S. Department of Energy, the decisions
regarding the design of both urban zone and building scales must include some charac-
teristics, such as providing many equal alternatives, a comprehensive set of reviews, and
interdisciplinary studies, at many levels of management [32]. Therefore, researchers utilize
the MCDM models in energy-related fields to select a solution for a specific goal. For
instance, Baç et al. [17] used a novel hybrid model of building energy simulation (BES)
integrated modified SWARA and WASPAS framework to select the best heating, ventilating
and air-conditioning (HVAC) system for an industrial building. The authors used twenty-
seven criteria to select the best option among eleven different HVAC systems. Elkhayat
et al. [33] utilized the AHP model to find a solution for the best high-performance glazing
system for an office building. Beltrán and Martínez-Gómez [34] integrated building energy
simulations with the TOPSIS to obtain alternative phase change materials for building
wallboards and roofs. However, according to the author’s knowledge, there are very
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limited studies that use the KEMIRA-M model in energy-related fields. As an example
application, Kış et al. [35] used the KEMIRA-M model in order to determine a warehouse
location for an electricity distribution company in Turkey. On the other hand, integration
of the KEMIRA-M model with the simulation results has not yet been studied in design
problems for urban and building relationships.

Existing frameworks in the literature for the UHI mitigation include correlations
between the UHI and environmental parameters, i.e., in [36], data-driven methods, such as
machine learning methods, i.e., in [37], combined artificial intelligence (AI) and sensitivity
analysis of the environmental, social, and economic performance, i.e., in [38] and planning
and design variables, i.e., in [39]. However, integration of the urban micro-climate and
building energy performance simulations with the MCDM tools is needed in order to
evaluate the effect of UHI on building energy performance. Therefore, the purpose of
this study is to develop an integrated decision-making framework for mitigating the UHI
impact on the energy performance of residential buildings. The model integrates urban
micro-climate and building energy performance simulations with an MCDM model. The
study uses real-time measurement data, which are collected from one of the case study areas
in İzmir/Türkiye for the Urban GreenUP project [40]. The project develops a methodology
to support the development of renaturing urban plans targeting climate change mitigation
and adaptation by NBSs in urban areas.

2. Materials and Methods

The proposed framework integrates a micro-climatic simulation, a dynamic energy
performance simulation, and an MCDM tool (Figure 1).

The framework uses collected meteorological weather data to simulate potential air
temperature in a micro-climatic simulation tool in order to determine the current effect
of the UHI on building energy performance. Different strategies, including changing the
low-albedo materials with high-albedo ones, NBSs, and changing building façade materials,
are applied in a micro-climatic simulation software. For each strategy, an “epw.” file is
used as input of the dynamic building energy performance simulation. Then, the output
of the micro-climatic simulation software, which is the potential air temperature, is used
as input meteorological weather data for dynamic building energy simulation software.
Afterwards, total energy consumption and thermal comfort data are obtained from the
dynamic building energy simulation software for each scenario. At the same time, expert
assessments are used as the input of the MCDM model. Finally, the model presents the
outcomes of the proposed strategies based on each criterion to support decision-makers.

The proposed integrated framework is used in a case study by incorporating both
qualitative and quantitative data to facilitate the multi-level decision-making process.
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2.1. Case Study

The case study utilizes the proposed framework with a micro-climatic simulation
via Envi-Met software V5 [41], a dynamic energy performance simulation by Design-
Builder software v7.0.2.006 [42] and a multi-criteria decision-making tool called KEMIRA-M
model [30].

2.2. Characteristics of the Study Zone

An urban area, Vilayetler Evi Zone (VEZ) in Izmir/Türkiye is selected for the case
study (Figure 2). The VEZ is one of the case study areas of Urban GreenUP project [40]
since the zone has high-heat wave risk and faces UHI problems originating from dense
urbanization and construction operations and heavy traffic [2].
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Izmir is the third most populous city in Turkey with a population of 4,425,789 inhabi-
tants in 2021 [43]. The Köppen-Geiger Climate Classification of İzmir is Csa has a temperate
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climate zone [44]. The average monthly temperature is 22 ◦C in July (the warmest month
in İzmir), while the average in the coldest month (January) is measured as 10 ◦C [45].

2.3. Micro-Climatic Simulations

The micro-climatic simulations are conducted in a 3D urban-climate-modeling tool:
Envi-Met software V5 [41]. The software simulates the microclimatic effects of buildings,
vegetation, and other objects in the fields of urban design. For the study, a 37,500 m2

area in the VEZ is modeled with a resolution of 5 × 5 × 5 m (Figure 3). Firstly, current
soil properties, building mass data, road properties, and current vegetation qualities are
integrated in the software. The input data are generated using outdoor temperature (Tair),
relative humidity (RH), wind direction (WD), and speed (WS) from the meteorological
station in the VEZ, which was installed for the Urban GreenUP project [40]. Table 1 depicts
the sensor specification of the meteorological station [46].
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Table 1. The specifications of the installed meteorological station used for micro-climatic simulations [46].

Specifications Wind Speed Wind Direction

Measurement Range 0 to 76 m/s (0 to 170 mph) 0 to 355 degrees, 5-degree dead band

Accuracy ±1.1 m/s (2.4 mph) or ±4% of reading,
whichever is greater ±5 degrees

Resolution 0.5 m/s (1.1 mph) 1.4 degrees

Specifications Air Temperature (Tair) Relative Humidity (RH)

Measurement Range −40 to 70 ◦C 0 to 100% RH, −40 to 70 ◦C

Accuracy ±0.25 ◦C from −40 to 0 ◦C
±2.5% from 10% to 90% (typical) to a maximum

of ±3.5% including hysteresis at 25 ◦C;
below 10% RH and above 90% RH ±5% typical

Resolution 0.02 ◦C 0.01%

1 July 2022 is chosen for the micro-climate simulations since July is the month of
intensive heat waves in Izmir/Türkiye according to data collected for the Urban GreenUP
project [47]. The “epw.” file of this date is uploaded to the Envi-Met software V5 for the
simulations. Additionally, physical data, such as buildings, pavement materials, sizes,
and species of the trees, as well as geographical and meteorological data are modelled for
the study. The effect of the UHI on building energy performance and thermal comfort is
selected based on the change of the potential air temperature during simulations similar to
past studies in the literature, i.e., in [12]. All the strategies to mitigate the UHI effect are
simulated in the Envi-Met software V5 by changing the physical properties of the urban
zone and buildings. The features of all strategies are given in Section 2.3. It is worth noting
that all simulations are started at 6:00 am and last 24 h for the date of 1 July 2022.

Finally, it is worth reminding that the model simulation results should be validated
with actual measurement data in order to obtain accurate results. Therefore, the model is
validated with actual data, and the results are statistically evaluated by using criteria called
mean squared error (MSE) and mean absolute percentage error (MAPE) in Equations (1)
and (2), respectively [48,49].

MSE =
1

∑n
1 (Ta − Tm)

2 (1)

MAPE =
100
n ∑n

1

∣∣∣∣Ta − Tm

Ta

∣∣∣∣ (2)

where n is the sample number, and Ta is the actual temperature, while Tm is the simulated
temperature by the model.

2.4. Proposed Strategies

Four strategies, including the current situation (Case A), changing the low-albedo
materials with high-albedo ones (Case B), nature-based solutions (Case C), and changing
building façade materials, including green roofs (Case D), are investigated in micro-climate
simulations. These strategies are designed based on the feasibility, ease-to-use, and high
efficiency of mitigating the UHI in the urban zone. The startup parameters for the Envi-Met
tool are given in Table 2.
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Table 2. The startup parameters used in Envi-Met program.

Meteorological Data Vegetation Data Soil Data Ground Data

Relative humidity in
2 m = 41%

Wind speed in 10 m ab.
ground = 2.24 m/s

Wind direction: 220◦

Initial potential air
temperature = 300 K

61 trees in various directions
with 10 m height

Impervious soil = 0.00
Partially impervious

soil = 0.30
Semi-impervious soil = 0.50

Green area without
connection with natural

soil = 0.50
Green area with connection

to natural soil = 0.70
Green area on natural

soil = 1.00

Loamy soil and pavements
Initial air temperature = 25.85 ◦C at

21% of relative humidity

Case A—Current situation

The current situation is based on the current physical properties of the selected urban
zone (Figure 4). The buildings have no roof greening and consist of brick walls with
insulation. The roads are dark grey and red cobblestone with an albedo value of 0.19 [50].
The pavements consist of the combination of concrete and dark grey and red cobblestone
with albedo of 0.2. The selected urban zone does not have much soil since the area is a
dense urbanized zone. Therefore, the properties of the soil are neglected for the simulations.
The amount of the vegetation is medium, and the streets mostly host “Chamaerops excelsa”,
which is planted for the purpose of vegetation during the Urban GreenUP project [40];
hence, this type of tree is modelled in the simulations. The roof of the buildings is concrete
with an albedo value of 0.4.
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Case B—Changing the low-albedo materials with high-albedo ones

Pavements and roads are generally exposed to solar radiation, which increases the
potential air temperature in urban zones [51]. Considering that almost 40% of the urban
zones consist of pavements and roads [52], the first solution in order to mitigate the UHI is,
therefore, changing the materials of these components. In this strategy, dark grey and red
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cobblestone roads (albedo of 0.19) are changed to bright asphalt with an albedo value of
0.5. In addition, pavements are changed from a combination of concrete and dark grey and
red cobblestone (albedo of 0.19) to white granite with an albedo of 0.6. The other properties
are kept the same as the current situation.

Case C—Nature-based solutions (NBSs)

Vegetation helps to cool the urban zones by decreasing the heat gain of the surface [53].
Therefore, in this strategy, NBSs, including changing tree species and adding a green roof,
are integrated into the current situation. The current “Chamaerops excelsa” trees are changed
to “Platanus orientalis” with high leaf area density (LAD) in order to create a dense shading
effect on the roads, buildings, and pavements.

The LAD incorporates the height of the crown (H), the diameter of the crown (D), the
condition of the crown (CF), and a shading coefficient (Sh) that reflected the inherent crown
density of particular species. This relationship represents an estimate of the leaf area of a
single healthy tree. In micro-climate simulations, the Envi-Met considers three different
values for LAD: high LAD (1.1), medium LAD (0.6), and low LAD (0.3). Therefore, the
LAD value of Platanus orientalis is calculated by using Equation (3).

Leaf area density (LAD) = one-sided leaf area (m2)/reference volume (m3) (3)

In Equation (3), the reference volume is selected as 1 m3 [41]. By using Equation (3),
the LAD value of 0.6 is calculated for the “Platanus orientalis” and is used for the simulations.
Moreover, the grass is integrated on some parts of the pavements with an albedo value of
0.8. The green roof is also applied to all buildings (with an albedo value of 0.93).

Case D—Changing building façade materials, including green roofs

The effect of the UHI on building energy consumption and thermal comfort is highly
associated with building characteristics and material properties [12]. To this aim, the
insulations of the buildings are changed from poor insulation to moderate insulation
(U-value: 0.35 W/m2-K with an albedo of 0.2), and double-glazed windows are changed
from light transmittance (39%) and no solar protection to semi-opaque white heat protection
glass (4 mm) in micro-climate simulations. Furthermore, the paint of the buildings is
changed to white color. It is worth reminding that the green roof application of Case C is
also valid for this strategy.

Figure 5 illustrates the proposed strategies used for this study.
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2.5. Building Energy Performance Simulations

The building energy performance simulations include the total energy consumption
of the case building on the date of 1 July 2022 and thermal comfort hours in a day. Thermal
comfort hours are the hours a day that the thermal comfort range of −0.5 < PMV < +0.5 is
met. To this aim, a case building in the VEZ is selected to simulate energy consumption and
thermal comfort according to the mean potential air temperature results of the strategies
obtained by Envi-Met simulations in micro-climate simulations. The case building is a
five-story apartment building that has a total area of 2489 m2 (Figure 6). Two flats with the
same architectural configuration exist on each floor. The properties of the case building are
presented in Table 3. In the case of buildings, the heating is satisfied with radiators using
natural gas as an energy source. The building has a boiler in order to provide heating and
domestic hot water. The set temperature of the radiators is constant at 22 ◦C during the
winter. On the other hand, in summer, a split air-conditioner is used in each flat with a set
temperature of 22 ◦C. The building has no mechanical ventilation, and the airtightness of
the building is assumed as 0.5 air changes per hour, which is a moderate rate for naturally
ventilated residential buildings [54]. The lighting activity is selected as between 18:00 and
23:59. Equipment (i.e., laptops, televisions, washing machines, etc.) used in the building
are scheduled as a residential activity template.

Table 3. Building properties for energy performance and thermal comfort simulations.

Envelope Layers Thickness
(m)

U
(W/m2K)

External walls Plaster, brick,
insulation 0.41 0.238

Roof Plaster, brick,
insulation 0.24 0.236

Floor Concrete, gypsum
mortar, insulation 0.23 0.34

Windows Double glazed 12 mm gap 2.8
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2.6. KEMIRA-M Calculations

To support decision-making between various strategies, the researchers utilize MCDM
tools, i.e., in [17,33–35]. The KEMIRA-M model is one of these tools to solve real-life
multi-alternative problems [30]. This study uses the KEMIRA-M model to support decision-
makers presenting solution alternatives based on various criteria in order to mitigate the
UHI effect by decreasing energy consumption while meeting thermal comfort requirements.
The reason for selecting the KEMIRA-M model for this study is its advantage of using
much less information compared to other MCDM models [30]. A few expert reports are
required to combine the quantitative results with the ranking methods. Alternatives are
the strategies called Cases A, B, C, and D, as discussed in Section 2.4. Table 4 depicts the
internal and external factors which affect the decision of selecting an alternative and the
sources of the parameters. Internal factors are selected as total energy consumption and
thermal comfort in the building, while external factors are capital cost, installation flexibility,
and lifetime. It is worth noting that installation flexibility represents the complexity of the
system (number of components) during the installation [17].

Table 4. The criteria used in the KEMIRA-M calculations.

Internal Factors Unit Source

X1
Total energy
consumption kWh/m2day DesignBuilder

X2 Thermal comfort comfortable- hours/day DesignBuilder

External factors

Y1 Capital cost € Calculated from current
prices, including VAT

Y2
Installation
flexibility - Experts

Y3 Lifetime year Experts

Results of the simulations (Envi-Met and DesignBuilder) and expert opinions are
required for the KEMIRA-M calculations. The evaluations of three experts, one from energy
and two from urban planning fields, are obtained in order to calculate the weights of
the criteria.
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For the calculations, a decision matrix (DM) is firstly constructed by Equation (4).

DM :

 x1 xn · · · y1

x1i
...

. . .
...

x1k xnk · · · y1k

 (4)

i is alternatives from 1 to k for the x and y criteria.
Then, priorities of the internal and external factors are determined from the experts

by face-to-face interviews with non-quantitative evaluations. Numerical projections of the
DM are then constructed as given in Equation (5).

X(C) =
∥∥Xij

∥∥
4x2 Y(C) =

∥∥Yij
∥∥

4x3 (5)

After all criteria values are transformed to the factors treated due to their maximization
value, the normalized decision matrix formula is calculated from the Equation (6). Hence,
the values belong to the range of [0, 1].

normalized xi
j =

xi
j − xi

min

xi
max − xi

min
normalized yi

j =
yi

j − yi
min

yi
max − yi

min
(6)

i is from 1 to 4.
The next step for the calculation is determining median priorities of internal (X) and

external (Y) factors via obtaining one or few medians. The weights of X (Wxi) and Y
(Wyi) are firstly selected according to the difference of weighted averages and constraints.
It is worth noting that the total of the weights is 1. Finally, the alternatives are ranked
by Equation (7).

Xwi(C) + Ywi(C) (7)

where Xwi (C) = ∑m
1 [W xj * normalized Xj(C)] and Ywi (C) = ∑m

1 [W yj * normalized Yj(C)].
Further details of the KEMIRA-M calculation steps can be found in [30].

3. Results and Discussion

This section includes the micro-climate simulation results of 1 July 2022 for the Envi-
Met model, the building energy performance simulation results (DesignBuilder v7.0.2.006)
for the case building, and the KEMIRA-M calculation results to provide better solutions
to decision-makers for mitigating the UHI impacts on energy performance and thermal
comfort of residential buildings.

3.1. Micro-Climatic Simulation Results

The selected urban area in the VEZ is modelled in Envi-Met software V5, as shown
in Figure 7. For the simulations, the date of 1 July 2022 is selected, and the potential air
temperature is obtained as the output.

The simulated potential air temperature results are compared with the actual measure-
ment data for the selected data, and the results showed that the Envi-Met model is successfully
validated with values of MSE and MAPE of 0.3 and 2.1%, respectively. Figures 8 and 9 depict
the comparison of model results with the actual data. The figures show that the model data
match with the actual data with a R2 of 0.99, which means that the existing model can be used
for the next simulations for the different strategies.
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3.2. Comparison of the Proposed Strategies

Four different strategies, including the current situation (Case A), changing the low-
albedo materials with high-albedo ones (Case B), NBSs (Case C), and changing building
façade materials, including green roofs (Case D), are compared for the study. Figure 10a–d
illustrate the potential air temperature for Cases A, B, C, and D, respectively.
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In Case A, which is the current situation, the maximum potential temperature is
calculated as 32.74 ◦C, while the minimum potential temperature is found as 30.73 ◦C.
The temperature in the southern part of the zone (between the range of X [30:120] and
Y [40:60]) is higher than the northern part since the southern part exposes more solar
radiation. Another reason for this difference could be the existence of denser green areas
and “Chamaerops excelsa” trees in the urban zone. Moreover, buildings could cause a
reduction in wind movement, which brings horizontal hot air flow from open zones.

The simulation results of the first strategy (Case B) demonstrate that changing the low-
albedo materials with high-albedo ones decreases the potential maximum temperature by
4.73%. This result indicates that high-albedo materials have a high impact on the reduction
of potential air temperature. The greater albedo surface cover cools the buildings and
environments compared to the other part of the zone. On the other hand, in the simulation
of Case C, the maximum potential air temperature is decreased by 7.48% compared to
the current situation. The result indicated that adding vegetation highly decreased the
temperature, particularly in the northern part of the zone. However, on the west part
of the zone between the buildings (between the range of X [30–60] and Y [90–230]), the
potential air temperature is found as higher than Case B. The low-albedo materials increase
the potential air temperature since in the high-density building part enough space to
plant vegetation does not exist. In the last strategy (Case D), the maximum potential air
temperature is decreased by 9.36% compared to the current situation. The temperature is
highly decreased in the high-density building part (between the range of X [60–90] and Y
[90–190]) with an average of 1.9 ◦C. The reason could be the implementation of the green
roof and white paint, which reflects the solar radiation.

Table 5 and Figure 11 depict the comparison of the strategies in terms of potential air
temperature reduction.

Table 5. Comparison of different strategies in terms of micro-climate simulation.

Strategy Implementation

Maximum-Minimum
Potential Air
Temperature

(◦C)

Reduction
(%)

Reduction
(◦C)

Case A Current Situation [30.73; 32.74] - -

Case B Changing the low-albedo
materials with high-albedo ones [29.75; 31.19] 4.73 1.55

Case C Nature-based solutions [28.04; 30.29] 7.48 2.45

Case D
Changing building façade
materials with green roof

implementation
[27.06; 29.68] 9.36 3.06

Table 5 and Figure 11 indicate that the maximum temperature could be decreased by
3.06 ◦C by implementing the strategies. In addition, the peak and lowest temperatures occur
at 15:00 P.M. and 05:00 A.M. for all strategies, respectively. The decrease in temperature is
higher between 00:00 A.M. and 05:00 A.M. in Case C since the evapotranspiration occurs in
the vegetated areas as this situation is discussed in [55]. Moreover, the decrease in potential
air temperature at night is sharper in the NBSs (Case C).
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3.3. Building Energy Performance Results

The total energy consumption and thermal comfort simulations for the case building
are conducted for 1 July 2022. Table 6 depicts the building energy performance results for
the case building for all strategies.

Table 6. Comparison of different strategies in terms of building energy performance simulation.

Strategies Total Energy Consumption
(kWh/m2day)

Thermal Comfort
(Comfortable-hours/day)

Case A 0.811 11

Case B 0.789 14

Case C 0.781 15

Case D 0.694 17

The total energy consumption of the case building for Case A (current situation)
is calculated as 0.811 kWh/m2day, while comfort hours are 11 h in a day. The second
scenario simulated for the high-albedo materials on pavements and roads and total energy
consumption of the case building decreased by 2.7% for this strategy. On the other hand,
comfortablehours increased by 27.3% due to the decrease of the potential air temperature
on the urban environment. The total energy consumption of the case building decreased by
3.7% for Case C, while the comfortable hours increased by 36.3% compared to the current
situation (Case A). Lastly, insertion of the green roof along with changing the building
façade materials (Case D) decreased the total energy consumption of the case building by
14.4% compared to Case A. Additionally, this strategy increased the comfortable hours
by 54.5%. Overall, a reduction in total energy consumption and increase of comfortable
hours are conducted in all strategies. Total energy consumption and comfortable-hours
data, which are taken from the building energy performance simulations, are then used in
the calculation of the KEMIRA-M as internal factors.

3.4. KEMIRA-M Calculation Results

To provide better solutions to decision-makers in order to mitigate the effect of the UHI
on energy performance and thermal comfort of the residential building, a multi-criteria
decision-making tool, the KEMIRA-M model, is used in this study. The internal factors are
selected as total energy consumption and thermal comfort and are taken as quantitative
results from the building energy performance simulations. On the other hand, external
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factors are chosen from the literature, i.e., in [17], as capital cost, installation, flexibility, and
lifetime, which are the most influencing factors that affect the decision on implementation
of the strategies.

The problem, which will be solved in this study, is an optimization problem; hence,
the optimization function is constructed as:

x1:“Total energy consumption” is needed to be the lowest one.
x2: “Thermal comfort” is needed to be the highest one.
y1: “Capital cost” is needed to be the lowest one.
y2: “Installation flexibility” is needed to be the lowest one.
y3: “Lifetime” is needed to be the highest one.

Table 6 represents the significance of the factors determined by the expert opinion
results. The lower number in Table 7 means the higher priority of the corresponding
criterion. For instance, the first expert indicates that x1 is the most influencing criteria in
internal factors, while y1 is the most vital criteria among external factors.

Table 7. Significance of the factors.

Expert Number x1 x2 y1 y2 y3

1 1 2 1 3 2

2 1 2 1 2 3

3 2 1 2 1 3

Table 8 shows the initial decision matrix for four strategies in order to mitigate the
effect of the UHI on energy performance of residential buildings. Instead of the capi-
tal cost of Case A (y1), which is zero, the one (1) value is taken in the decision matrix
since the zero value could make the results zero before starting the calculations in the
normalization process.

Table 8. Initial decision matrix.

Strategies x1 x2 y1 y2 y3

Case A 0.811 11 1 1 1

Case B 0.789 14 351,764 3 3

Case C 0.781 15 210,410 2 4

Case D 0.694 17 658,788 4 2

The normalized decision matrix is constructed using Equation (6) and is shown in
Table 9. All criteria values are converted to [0, 1] fuzzy sets.

Table 9. Normalized decision matrix.

Strategies x1 x2 y1 y2 y3

Case A 0 1 1 0 0

Case B 0.165391417 0.392857 1.32488 × 10−6 0.666 0.333

Case C 0.22784 0.24444 3.23469 × 10−6 0.333 1

Case D 1 0 0 1 0.666

Weighted coefficients are calculated according to the Modified Indicator Rank Ac-
cordance method [30], and the priority of criteria is determined by the Kemeny Median
method [30]. Therefore, the 2 and 3 permutations are calculated for internal and external
factors, respectively. Table 10 indicates the final rankings of the strategies in the study
obtained from the sum of Xwi(C) + Ywi(C). The larger value is calculated as 1.116 for the
fourth alternative, while the minimum is found as 0.761 for the second alternative.
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Table 10. Final ranking of alternatives.

Strategies Xwi(C) Ywi(C) Xwi(C)+Ywi(C) Rank

Case A 0.450 0.365 0.815 3

Case B 0.444 0.317 0.761 4

Case C 0.438 0.678 1.116 1

Case D 0.513 0.541 1.054 2

Table 9 shows the rankings of the four strategies are Case C > Case D > Case A >
Case B. According to the calculation results, Case C, which includes implementation of
NBSs, is the most preferable alternative. Although energy performance and micro-climate
simulations pointed out that the most effective solution is Case D (changing building
façade materials, including green roof implementation), integrating other factors, such as
capital cost, lifetime, and installation flexibility, moved Case C to the first place. Changing
building materials for the case zone is not cost effective and is quite time consuming for
implementation. On the other hand, considering the cooling effect of the vegetation in
summer, particularly in temperate climate zone, implementation of the vegetation could
be a reasonable solution for mitigating the effect of the UHI on the energy performance
of the residential buildings. One of the interesting results of the KEMIRA-M calculation
is the ranking of Case A (current situation) as the third alternative. The capital cost of
the current situation is zero; thus, this external factor affects the decision-making process.
Another reason could be that the reduction in energy consumption is low (2.7% of energy
saving) for the fourth alternative (Case B) compared to the current situation (Case A). On
the other hand, the expert reports mostly indicate that the total energy consumption is
the most influencing internal factor on the ranking of the alternatives, as represented in
Table 7. Therefore, the small energy saving potential of Case B can be neglected beside
the other factors compared to the current situation on the decision-making processes. On
the other hand, combining all strategies may be a better alternative for decreasing energy
consumption and maximizing thermal comfort; however, the capital cost will be high.
Moreover, the combination of greenery and usage of cool materials would be preferable to
reduce potential air temperature in micro-climatic simulations. On the other hand, decision-
makers should take other criteria, i.e., lifetime and costs, into account while making the
decision to mitigate the UHI effect on building energy performance.

In this study, Envi-Met and DesignBuilder and the KEMIRA-M tool are used as micro-
climatic and dynamic building energy simulations and a multi-criteria decision-making
tool, respectively. However, one can utilize any other tools behind the framework.

Some limitations can also be drawn in this section. This study only considers the
potential air temperature in micro-climate simulations. However, some researchers indicate
that some other meteorological factors, such as wind speed, mean radiant temperature, and
relative humidity, could affect the energy performance of the buildings [50,51,53]. Further
studies will focus on integrating all factors in the decision-making process. The case study is
conducted in a temperate climate zone where cooling energy demand could be higher than
the heating energy demand [56]. Therefore, summer conditions are concentrated in this
study. However, further studies should also focus on the effect of the considered strategies
on heating energy consumption. On the other hand, considering that the micro-climate
simulations, i.e., Envi-Met, requires straight and perpendicular lines on modelling streets
and trees, the model should be integrated in the software in detail. However, modelling
detailed components in the software and simulating all the strategies are computational
heavy. Therefore, a basic urban zone with straight and perpendicular lines is selected for
this study. Finally, the boundary of the simulation is too close to the buildings for this study.
Therefore, this may lead to unstable airflow, reducing the accuracy of obtaining potential
air temperature.
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4. Conclusions

One of the primary targets of this study was to select a strategy by integrating micro-
climate and building energy performance simulations and a multi-criteria decision-making
tool on mitigating the effect of the UHI on energy performance of residential buildings. To
this aim, an urban area in İzmir/Türkiye, which has temperate climate zone characteristics,
was studied as a case study. The multi-criteria decision-making tool integrated the results
of micro-climate and building energy performance simulations, and the decision of the
selection among alternatives was conducted by utilizing the KEMIRA-M model. The
criteria were divided into two main groups as internal (total energy consumption and
thermal comfort) and external factors (capital cost, installation flexibility, and lifetime).

The integrated decision-making framework that resulted showed that the provided
strategy to mitigate the UHI effect on energy performance of the case study was applying
NBSs, such as green roofs and changing existing trees with high leaf area density ones
(Case C). Moreover, NBSs also improve outdoor thermal comfort with their shading effect.
Considering the building energy performance is highly affected by temperature rise caused
by the UHI, the result of this study may become a vital issue to develop sustainable
urban zones. Furthermore, engineers, architects, and urban planners may use integrated
frameworks, such as in this study, in decision-making processes.
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