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ABSTRACT 

 

DEVELOPMENT OF NEW CHEMOMETRICS APPROACHES TO 

DETERMINE PHYSICAL AND CHEMICAL PROPERTIES OF CRUDE 

DISTILLATION UNIT PRODUCTS BASED ON MOLECULAR 

SPECTROSCOPY 

 

 Crude distillation units are the first processing units of crude oils based on 

fractional distillation. The properties of the petroleum products obtained from refinery 

units are frequently analyzed to ensure that the off-spec product cannot be obtained and 

that the process is working under the desired conditions. This study aims to develop a 

method based on multivariate data analysis to determine physical and chemical properties 

of petroleum samples as an alternative to time-consuming and conventional analytical 

methods. 

Four different petroleum products obtained from CDU for years were selected and 

used in this study, which are heavy and light diesel, heavy and light straight run naphtha. 

Four different spectroscopic methods which are UV-Vis, Fluorescence, FT-NIR and 

FTIR-ATR spectroscopy, were performed and compared. Multivariate calibration models 

were developed using Partial least Squares (PLS) and Genetic Inverse Least Squares 

(GILS) algorithms.  

For heavy and light diesel, predictive performance of three different spectroscopic 

methods were compared and for heavy diesel UV-Vis spectroscopy, for light diesel  

FT-NIR spectroscopy was selected for most of the parameters. Developed models by 

fluorescence analysis of light diesel samples conducted with two different measurement 

modes and synchronized fluorescence spectral data has resulted in better models 

compared to total fluorescence spectra. Studies with straight run naphtha samples were 

obtained from three different refineries and prediction performances were compared. All 

obtained model results indicates that developed methodology can be used in routine 

operations instead of conventional analytical methods.  
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ÖZET 

 

HAM PETROL ÜNİTELERİ ÜRÜNLERİNİN FİZİKSEL VE 

KİMYASAL ÖZELLİKLERİNİN BELİRLENMESİNDE MOLEKÜLER 

SPEKTROSKOPİYE DAYALI YENİ KEMOMETRİK 

YAKLAŞIMLARIN GELİŞTİRİLMESİ 

 

Karmaşık proseslere ait petrol rafinerilerinde ham petrol öncelikli olarak ham 

petrol damıtma ünitelerinde işlenerek fraksiyonel damıtma yöntemiyle ayrıştırılır. İşlenen 

ham petrol farklı kaynaklara ve özelliklere sahip olsa bile, elde edilen ürünün 

özelliklerinin belirli standartlara uyması beklenmektedir. Bu amaçla ürün özellikleri 

standart analiz metotlar yardımıyla laboratuvarlarda düzenli olarak takip edilmektedir. Bu 

çalışmada zaman alıcı klasik analiz yöntemlerine alternatif olarak petrol ürünlerinin  

fiziksel ve kimyasal özelliklerini belirlemek için çok değişkenli veri analizine dayalı bir 

yöntem geliştirilmesi amaçlanmıştır.  

Çalışmalar ağır dizel, hafif dizel, ağır ve hafif nafta olmak üzere dört ana ürün 

grubuyla gerçekleştirilmiştir. Ürünler direkt olarak rafineri üretimden elde edilmiş olup, 

modelleme çalışmaları dört farklı spektroskopik veri ile gerçekleştirilmiştir.  UV-Vis, 

Floresans, FT-NIR ve FTIR-ATR spektroskopik ölçümleri alınan numunelerde modeller 

Kısmi En Küçük Kareler (PLS) ve Genetik En Küçük Ters Kareler (GILS) algoritmaları 

kullanılarak geliştirilmiştir.  

Dizel numunelerinde üç farklı spektroskopik veriyle gerçekleştirilen model 

sonuçları karşılaştırılmış ve ağır dizel numunesi için UV-Vis spektroskopisi, hafif dizel 

için ise FT-NIR spektroskopisi birçok parametre için en iyi model seçilmiştir.  Hafif 

dizellerin floresans analizleri iki farklı modda gerçekleştirilmiş ve senkronize modda 

toplanan verilerle gerçekleştirilen modeller toplam floresans moduna göre tahmin başarısı 

daha yüksek modellerle sonuçlanmıştır. Nafta örnekleriyle üç farklı rafineride çalışma 

gerçekleştirilmiş olup, tahmin performansları karşılaştırılmıştır.  

Seçilen tüm model sonuçları, çalışma kapsamında geliştirilen metodolojinin 

klasik yöntemler yerine kullanılabileceğini göstermektedir.  
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CHAPTER 1 

 

INTRODUCTION 

 

Oil refineries have the most complex process in chemical industry. They consist 

of many different physical and chemical processes.  They are mainly atmospheric and 

vacuum distillation units, cracking isomerization, hydrogenation, desulfurization, 

aromatization and blending. Many processes are connected to each other, and they work 

to be the other’s charge. In case of any malfunction, unit shut down or out of control 

processes are affected quickly and serious loses can occur in refinery profitability. 

Therefore, production is carried out according to certain specifications.  Refineries often 

process different types of crude oil that vary in content. Changes in crude oil prices, 

capability limits of crude oil tanks, political instabilities of crude oil exporting countries, 

regulations in product specifications, make it inevitable for crude oil exchanges or the 

blending of crude oil. Crude oil blending is one of the most important actions of refineries 

to increase profit margin. Variations in the crude oil composition affect the planned 

production capacities in order to meet the final product quantities. As each refinery units’ 

scheme is unique, the structure is very complex. Most refineries are designed to process 

crude oil in a certain API and produce products in a certain range. API stands for the 

American Petroleum Institute gravity and it is a measure of how heavy or light petroleum 

liquid is compared to water.  

Nowadays, refineries must respond quickly to changes in crude oil, changes in 

final product demands and leads. The required flexibility in refinery planning and in the 

complexity of various processes can only be achieved by strictly observing the change of 

each refinery unit and the flow of output product. The composition in each product stream 

is the shaped according to the composition in crude oil. 

Optimization of crude distillation unit process conditions is the most important 

parameter in every refinery. Delays in the analysis cause delays in the adjustment of the 

process conditions. Failure to take an action immediately in the case of defective 

malfunction may lead to decrease in production or even to unit shut down.  Profitability 

of refinery increases with production of required distillates at maximum efficiency with 

minimum cost. To achieve this, strict monitoring of the charge and output of each refinery 
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unit must be performed. Refineries need to respond quickly to changes in crude oil 

compositions or changes leading to end-product demands.  

 

1.1. Standard Analysis  

 

Determination of the physical properties for the intermediate products of the crude 

oil unit in the refinery that depends on conventional analytical methods is time-

consuming, requiring relatively large sample volume and expensive operations. The 

extension of the time from sampling to analysis reporting can result in off-spec products 

at the refinery. Each one of these reference analyses is performed separately according to 

the appropriate American Society for Testing and Materials (ASTM) or European (EU) 

standard methods. As a result, laboratory analysis consists of several laborious steps in 

the form of sampling, sample storage, sample preparation, measurement, data verification 

and reporting. Among the physical properties routinely monitored are distillation points, 

API gravity, flash point, vapor pressure and freezing point. The standards that are used 

for references analysis for this study are given in Table 1.1 for each parameter.  

 

Table 1.1. Standard methods for reference analysis 

Analysis Standard Methods 

Distillation Points 
EN-ISO-3405; ASTM D86 

ASTM D2887 (for heavy diesel only) 

API/Density EN-ISO-3675; ASTM 1298 

Flash Point 
EN-ISO-2719; ASTM D96 

IP 170 (for kerosene) 

Vapor Pressure IP 394; ASTM 5191 

 

 

EN-ISO-3405 is the test method for atmospheric distillation of petroleum product 

using a laboratory batch distillation unit to quantitatively determine boiling range 

characteristics of such products as light and middle distillates and natural gasolines 1.  The 

boiling range gives information on the composition, the properties and the behavior of 

the fuel during storage and volatility is the major determinant of the tendency of a 
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hydrocarbon mixture. Distillation limits are often included in petroleum product 

specifications, process refinery and control applications.  

ASTM D2887 is the standard test method for boiling range distribution of 

petroleum fractions by gas chromatography 2. This method cannot be used for the analysis 

of gasoline samples or gasoline components since it is limited to samples having a boiling 

range greater than 55 oC. This test method is sometimes used to replace conventional 

distillation methods (D86). Boiling range distributions obtained by this method are 

equivalent to those obtained by true boiling point (TBP) distillation, not equivalent to low 

efficiency distillation such as EN-ISO-3405.  

EN ISO 3675 is the standard test method for determination of density of crude oil 

and liquid petroleum products in laboratory3. This method is also called as Hydrometer 

method. Density is a fundamental physical property to characterize both light and heavy 

fractions of petroleum products.  This standard specifies the density of oil and non -oil 

products, liquid petroleum products, liquid crude oil under normal conditions, at 15 oC 

by using glass hydrometer.  

EN ISO 2719 and IP 170 are the test methods for determination of flash point4. 

Flash point measures the tendency of the specimen to form a flammable mixture with air 

under controlled laboratory conditions. This method gives information about overall 

flammability hazard of a material.  

IP 394 the test method for determination of air saturated vapor pressure (ASVP) 

and calculated dry vapor pressure equivalent (DVPE)5. Vapor pressure is one measure of 

the volatility characteristics of fuels used in many differing types of engines with large 

variations in operating temperatures. It is used as a classification criterion for the safe 

handling and carriage pf petroleum products, feedstocks, and components. Specifications 

for volatile petroleum products generally include vapor pressure limits to ensure products 

of suitable volatility performance. Fuels having a high vapor pressure may vaporize too 

readily in the fuel handling systems, resulting in decreased flow to the engine.  

IP 435 is the test method for determination of the freezing point of aviation turbine 

fuels by the automatic phase transition method6.  The freezing point of an aviation fuel is 

the lowest temperature at which the fuel remains free of solid hydrocarbon crystals that 

can restrict the flow of fuel through filters if present in the fuel system of the aircraft. The 

temperature of the fuel in the aircraft tank normally falls during flight depending on 

aircraft speed, altitude, and flight duration. The freezing point of the fuel must always be 

lower than the minimum operational tank temperature.  
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To determine physical properties of one petroleum product, at least two different 

standard analysis method should be performed. Each conventional analytical methods, 

explained above, are time-consuming analysis. Especially, determination of distillation 

temperature of samples can take more than one hour. Additionally, those analysis requires 

trained personal and high investment cost.  

There are several studies in literature which propose alternative methods to 

determination of physical parameters of petroleum products. Following section 

summarizes some of these studies given in the literature. 

 

1.2. Literature Reviews  

 
Chung et al. 7 have studied with six different petroleum products (LSR, Naphtha 

Kerosene, LGO, Gasoline and Diesel), which are obtained over 4 months and suggested 

a method for rapid classification of different types of samples by using near-infrared 

spectroscopy with reflection probe. Principal component analysis (PCA) combined with 

Mahalanobis distance was used for classification and they suggest that with the help of 

NIR spectroscopy, identification of petroleum products can be achieved. Using NIR 

spectra, Kim and his co-workers studied real-time classification for petroleum products 

8. Proposed classification method has been applied to six different petroleum products 

which are diesel, gasoline, kerosene, light gas oil, light straight run and naphtha. In the 

study, where PCA was used for feature selection and Bayesian classifier was used for 

classification, error results were reported as less than 6%.   

Kelly and Callis 9 were performed an analysis with finished gasoline products. 

Since three different hydrocarbon classes, aromatics, olefins and saturates, are several 

important parameters, this study aims to perform a fast analysis technique, which can be 

used instead of reference methods.  Samples were collected over 19 months and NIR 

spectra of those samples were collected. Stagewise multilinear regression (MLR) and 

Partial Least Square (PLS) was used for statistical analysis. This study shows that NIR 

spectroscopy combined with multivariate analysis gives results at least as good as 

reference methods for volume percentages of hydrocarbon classes. In other study, 

analysis of gasoline samples was also investigated by Fodor and his co-workers 10. In this 

work, unlike other studies, FT-IR spectroscopy with ATR accessory was used for 
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spectroscopic analysis. To be able to achieve compositional variety, a total of 800 

gasoline samples were collected from different geographic locations from all over US. 

PLS regression analysis were performed for thirteen different parameters by their 

respective FTIR spectra. In this article, necessity of baseline correction of FTIR spectra, 

separate calibration models for summer- and winter-grade gasoline samples were studied. 

The results showed no significant improvement in calibration models built from baseline 

corrected FTIR spectra. However, because of different chemical composition for 

summer- and winter-grade gasoline, two different models were found to be needed for 

gasoline models. Al-Ghouti and his team have been studied to determine the adulteration 

of motor gasoline products using FTIR spectroscopy and multivariate calibration 11. Study 

aims to quantify three different motor gasoline samples, which were also differ in prices, 

by means of density and distillation temperatures using FTIR spectroscopy combined 

with PLS regression method.  At the end of the study, proposed method suggested for 

detecting any adulteration of super leaded motor gasoline from regular leaded motor 

gasoline. Another study with gasolines were published by Özdemir 12, to determine the 

octane number of gasoline using NIR spectroscopy and multivariate calibration methods. 

Three different genetic calibration techniques were used which are genetic regression 

(GR), genetic classical least squares (GCLS) and genetic inverse least squares (GILS). 

Calibration models to quantify octane number were built from the set of 60 gasoline 

samples. Each genetic algorithm-based method was compared with literature studies. 

Study shows that models obtained with genetic algorithms improve the accuracy of ILS 

and CLS techniques. For gasoline classification, Balabin and his team 13 compared 

different multivariate calibration methods. Nine different methods were used which are 

Linear Discriminant Analysis, Quadratic Discriminant Analysis (QDA), regularized 

discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), 

partial least squares (PLS), K-nearest neighbor (KNN), support vector machines (SVM), 

probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP).  From the 

calibration models, PNN was found to be the most effective method, however, it is also 

mentioned that KNN technique is much easier and gives an adequate result, so KNN was 

recommended. 

In another study, Lysaght et al. 14 aimed to determine the percent aromatic, percent 

saturates and freezing point of military aviation fuel. Composition of a set of 33 JP-4 fuel 

samples was determined at six different laboratories and each analysis was performed 
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 triplicate. Stagewise multiple linear regression and partial least squares regression were 

applied to collected NIR spectra and performance of models were compared with ASTM 

standards. Although errors of prediction sets found to be less than the reproducibility of 

ASTM methods, limitations due to dependency on reference analysis emphasized as the 

biggest limitation. Another study with jet fuels was, performed by Westbrook 15, aimed 

to use NIR spectroscopy for determination of several physical and chemical properties 

which are cloud point, cetane number, selected percent evaporated distillation points, 

density, aromatics, heat of combustion and viscosity of Army compression ignition fuels 

by the help of PLS regression. Performance of each model was presented for their 

prediction ability and best model was found for density with R2 0.89 and for the model 

for cetane number has the lowers R2, 0.25. Comparison of near-infrared and mid-infrared 

spectroscopy for properties of kerosene samples were performed by Chung and his co -

workers 16. In the study, performed by fifty samples collected over 3 months, comparison 

of two different spectroscopic methods were based on the predictive ability of PLS 

regression models for distillation temperatures of kerosene at different percent recoveries. 

Results showed that, NIR spectroscopy have better calibration performance over Mid-IR 

while, Mid-IR provides richer qualitative spectral information with higher resolution 

power.  

The importance of naphtha in the production cycle has been the subject of many  

studies found in the literature. Spectroscopic analysis combined with chemometrics 

techniques allows rapid and accurate analysis for determination of naphtha composition. 

Although there are several studies conducted with naphtha samples obtained from actual 

refining process 17,18,56–60, sample collection times are only several months. Several of 

studies have been published to determine detailed hydrocarbon composition of naphtha 

samples, which are paraffin, naphthenic and aromatic structures 17,58–61. In industrial 

applications, it is crucial to have samples represents whole composition variability related 

to process operations such as crude oil switch, conditions of upstream processes, seasonal 

operational strategies, and other process variations 62,63. To be able to have perfect 

database, sampling stage should be extended. Ku and his co-workers 17 proposed a rapid 

compositional analysis by Near-Infrared spectroscopy coupled with PLS regression. In 

the article where paraffin, naphthenic and aromatic content were investigated, a total of 

50 different naphtha samples were collected for 3 months. NIR analysis were performed 

by reflectance probe. It is suggested that obtained models shows excellent correlation 
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with respective reference analysis of parameters.  Another comparison for different 

spectroscopic methods were also performed by Ku and Chung 18. Six different chemical 

composition of naphtha samples were used to compare NIR and Raman spectroscopy. 

Quantitative analysis of physical and chemical properties of fifty naphtha samples was 

performed by PLS for each spectroscopic technique. Results showed that NIR have better 

calibration performance than Raman spectroscopy due to its superior signal-to-noise ratio 

and spectral reproducibility.  

Breitkreitz and her co-workers have been studied to determine total sulfur content 

in diesel fuel by NIR spectroscopy and multivariate calibration 19. By using ninety-seven 

different diesel samples, the performance of five different multivariate calibration 

approaches which are principal component regression (PCR), Partial least squares 

regression PLSR, multiple linear regression (MLR), variable selection based genetic 

algorithm (GA) and successive projection algorithm (PA). The results showed that, not 

only total sulfur content can be determined by NIR spectroscopy, also all the multivariate 

calibration models showed acceptable prediction results. However, GA and SPA was 

emphasized as they have the more robust models compared to other calibration 

approaches.  To determine the main properties of diesel, which are cetane number, cetane 

index, density, viscosity, distillation temperatures, total aromatics, polycyclic aromatics 

hydrocarbons, Marinovic and his team proposed PLS calibration models with two 

different spectroscopic techniques (FT-IR and FT-Raman) 20. Sample set consist of ninety 

commercial diesel fuels and results showed that FT-IR spectroscopy combined with PLS 

regression give better quantitative determination of physico-chemical properties of diesel.  

Genetic algorithm-based method, GILS, were also used for determination of several 

properties of diesel samples with the help of near infrared spectroscopy 21.  A total of 250 

diesel samples were used and study shows that, GILS algorithm is able to select and 

extract the chemical information which is sought. For boiling point, total aromatic 

content, density and viscosity, GILS model results showed successful calibration models. 

There are several studies about determination of Biodiesel/diesel blend properties 

using spectroscopic techniques combined with PLS regression 22–26. In a study in which 

NIR spectroscopy used for monitoring biodiesel blends, Oliveira and his team propose a 

method based on multivariate control charts 22.Study shows that proposed method 

enhance the quality diagnostics of the model and making possible to identify out of 

control samples. Another study proposed FTIR spectroscopy combined with PLS 
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regression methods have been studied by Guerrero et. al 27. In this study, biodiesel 

concentration was aimed to quantified in petrodiesel blends and results were reported as 

obtained models have good ability for determining the concentration of African palm 

biodiesel in petrodiesel-biodiesel blends.  Using synchronous fluorescence, simultaneous 

determination of quality parameters of biodiesel/diesel blends were also studied by 

Insausti and his co-workers 24 by the help PLS multivariate calibration. Study was 

performed with 30 different diesel samples which were collected in different gas stations 

with biodiesel contents 5% (w/w %) and 7% (w/w %). At the results, it is reported that 

fatty acid methyl esters, cetane number, gross heat of combustion and color of 

biodiesel/diesel samples can be identified by fluorescence spectroscopy combined with 

PLR regression.  

Aleme and his team have been proposed two papers which uses distillation curves 

and multivariate calibrations for determination of flash point and cetane index 28 and 

specific gravity and kinematic viscosity 29  in diesel using distillation curves and 

multivariate calibration. Unlike other studies, these studies were performed their 

calibration models from the results obtained from ASTM reference methods, not from 

spectroscopic data. From five different ref ineries, a total of 300 diesel samples were 

obtained for this study. It was suggested that ASTM D86 method together with PLS 

regression is effective to predict all the parameters mentioned above, regardless origin 

and type of diesel.  

Although infrared spectroscopies (both Mid-IR and Near-IR) are extensively used 

for analysis of crude oil and crude oil products, fluoresce spectroscopy is also preferred 

because of its inhered advantages. Several studies have used fluorescence analysis of 

crude oil and its products and indicated that physical properties of samples, especially 

API values, have great impact on fluorescence emissions 51,52 . Different modes of 

fluorescence spectral analyses such as conventional fluorescence, total fluorescence, 

synchronous fluorescence, time-resolved fluorescence was conducted and compared. It 

was indicated that synchronous fluorescence mode is resulted in good results for 

determination of kerosene present in diesel 52–55. 
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1.3. Spectroscopic Analysis Methods  

 
As in literature reviews, several spectroscopic methods can be used for 

determination of quality properties of petroleum products. Four different spectroscopic 

analyses were used in this thesis which are UV-Visible Spectroscopy, Fluorescence 

spectroscopy, Fourier Transform Near Infrared Spectroscopy and Fourier Transform 

Infrared Spectroscopy. 

 

1.3.1. UV-Visible Spectroscopy 

 
UV-Visible spectroscopy is based on the absorption of radiation from ultraviolet 

region i.e. 180 nm to visible region i.e.780 nm by the chemical compound. Interaction of 

light with molecules occurs at electronic levels. Electromagnetic radiation interacts with 

matter and several processes occur which are absorption, transmission, scattering or 

reflection. Absorption of light by matter causes transition of electrons to different energy 

level, from ground state to an excited state. During this transition, vibrational and 

rotational transitions occur as well. This method is widely used in the field of analytical 

chemistry for quantitative analysis since the amount of light which absorbed is linearly 

correlated with concentration of sample.  

 

1.3.2.  Fluorescence Spectroscopy  

 
Similar to UV-Vis spectroscopy, absorption of electromagnetic radiation caused 

by photons exciting a molecule and raising it to an electronic state. In fluorescence 

spectroscopy, absorption spectrum of molecules that has fluorescent properties are 

obtained. Figure 1.2 shows the Jablonski diagram which explains the fluorescence 

phenomenon.  
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Figure 1.2.  The Jablonski Diagram30 
 

The main advantage of fluorescence spectroscopy is its high sensitivity of 

molecules which have fluorescent properties.  

 

1.3.3. Infrared (IR) Spectroscopy 

 
Infrared spectroscopy has been used for the identification and structural analysis 

of chemical compounds. Beside diatomic molecules, all functional groups absorb IR 

radiation and frequencies at which functional groups absorb IR radiation is different and 

unique. Hence, IR spectroscopy has been used for identification and structural analysis of 

chemical compounds. In IR regions, the vibrations of fundamental bonds on different 

functional groups remain reasonably independent from the rest of a molecule, while 

occupying a different, but repeatable, position in the spectrum. The absorption data for 

molecular bonds are linearly proportional to the concentration information of the sample 

(Eq 1.1.). It is possible to perform univariate calibration studies by using concentration 

information with specific absorption peaks belonging to different functional groups in the 

sample. However, multivariate calibration methods are needed in the analysis of 

overlapping peaks and combination bands that give information about more than one 

bond. 

  

                                                       𝐴 =  𝜀. 𝑏. 𝑐                                                (1.1) 

A: Absorbance, ε : Molar absorptivity, b: Length of light path,  c: Concentration 

 

Main advantages of IR spectroscopy are it is a non-destructive technique, it has 

good precision, no external calibration needed, low S/N ratio and mechanically simple 
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technique. Infrared region in electromagnetic spectrum is divided into three parts which 

are Near-IR, Middle-IR, Far-IR as shown in Table 1.2. 

 

Table 1.2. IR Spectral Regions 31 

Region Wavelength, µm Wavenumber, cm-1 

Near 0.78 to 0.25 12800 to 4000 

Middle 2.5 to 50 4000 to 200 

Far 50 to 1000 4000 to 600 

 
1.3.3.1.  Fourier Transform Near Infrared Spectroscopy 

 
Near-infrared region in electromagnetic spectrum covers the transition from 

visible spectral region to middle infrared spectral range which is 800-2500 nm 

 (12800-4000 cm-1).  Functional groups of -CH, -OH, -SH and -NH tent to absorb NIR 

radiation and mainly those vibrations are observed. In FT-NIR, spectral features are seen 

as a result of overtones and combinations of fundamental mid-infrared bands 32,33. 

Table 1.3 shows the main overtones and combination bands in the infrared region. 34 

 

Table 1.3. Main overtones and combination bands in the infrared region 

Vibrations Wavelength, nm 

O-H First Overtone  1400 – 1450 

O-H Combinations 1900 – 1975 

C-H Second Overtone 1125 – 1225 

C-H Combinations first overtone 1350 – 1450 

C-H First overtone 1625 – 1775 

C-H Combinations region 1950 – 2450 

 

The NIR region is attractive for petroleum analysis because many of the 

absorption bands observed in this region arise from overtones or combinations of carbon-

hydrogen stretching vibrations. Although it is hard to interpret FT-NIR spectra due to 

highly overlapping and broad absorption bands, chemometrics have proven its 

effectiveness for both quantitative and qualitative analysis in many fields in the literature.    
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1.3.3.2.  Fourier Transform Infrared Spectroscopy 

 
Starting with the invention of interferometers by Albert Abraham Michelson and 

development of Fourier Transform Infrared Spectrometers has revitalized the field of 

infrared spectroscopy and overcome the limitation of dispersive spectrometers.  

Middle-infrared region has two main regions which are functional group region  

(3600 – 1200 cm-1) and the fingerprint region (1200-600 cm-1). Compared to fingerprint 

region, functional group region is easy to interpret. To be able to extract the information 

from fingerprint region chemometrics models have been used. 

 

1.4 . Aim of the Study 

 
Although there are a number of studies for determination of properties of 

petroleum products using multivariate calibration techniques, it is observed that almost 

all of these studies performed with finished products or with the samples collected for 

only short period of time and with a little bit of changes in the process. Additionally, 

conventional analytical methods have important disadvantages, which are requiring long 

analyses times and required well-trained personnel. Since all processes are dependent to 

each other in refinery, long analyses and reporting times can cause lack of feedback which 

needed for decision making.  

This study aims to develop new chemometrics approaches to cover the all the 

changes in this dynamic process and determine the physical and chemical properties of 

products obtained from crude distillation units. Since the percentage and composition of 

crude oil blends fed to the atmospheric distillation unit changes every day, the 

composition of the distillates also changes. In the refinery where samples are collected 

for this study, composition of crude oil varies, and more than four types of crude oil blends 

are processed.  
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CHAPTER 2 

 

EXPERIMENTAL 

 

2.1. Standard Analysis 

 
All parameters of petroleum samples were determined in accredited laboratory 

located in Tüpraş Refineries.  

Boiling range distribution of samples were analyzed by two different standard 

methods. For heavy diesels, this analysis was ASTM D2887 2, while for other crude oil 

unit products, the EN ISO 34051 method was followed. In ASTM D2887, boiling range 

distribution is simulated by the use of gas chromatography. A capillary (open tubular) or 

nonpolar column is used to elute the hydrocarbon components of the sample in order of 

increasing boiling point. The area under the chromatogram is recorded as the column 

temperature is raised at a reproducible linear rate.  Under the same chromatographic 

conditions, a known mixture of hydrocarbons is analyzed and from the calibration curve 

obtained, boiling points of sample are assigned. In EN ISO 3405, the distillation is 

performed at ambient pressure under conditions that are designed to provide 

approximately one theoretical plate fractionation. A 100 mL of sample is distilled under 

specified condition. Each sample is assigned to one of four groups.  Temperature readings 

and volume of condensate are carried out and observations are recorded. At the end of 

distillation, the observed vapor temperature can be corrected for barometric pressure. The 

test results are expressed as percent evaporated or percent recovered versus corresponding 

temperature as a plot of the distillation curve1. 

The API gravity of samples was determined according to EN ISO 3675 3. The 

sample is set so a certain temperature and transferred to the cylinder which approximately 

has the same temperature. Temperature equilibrium is expected to be reached and then 

the hydrometer scale is read. Read temperature and hydrometer value are converted to 

15oC using standard measurement tables.  

The flash point temperatures were determined following the procedure described 

in EN ISO 29174. In the test method, determination of flash point is performed by  
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Pensky-Martens closed cup method. The portion of a sample is placed into the test cup of 

a Pensky-Marten’s apparatus and heated to give a constant temperature increase with 

continuous stirring. The lowest temperature in which a directed ignition source though an 

opening the test cup lid causes the vapor is recorded as the flash point at the absolute 

barometric pressure. Then the obtained temperature is corrected to atmospheric pressure.  

In test method of vapor pressure, IP 394, a cooled air-saturated sample of known 

volume is injected into a thermostatically controlled evacuated chamber5. After injection 

into the chamber, the sample is allowed to reach thermal equilibrium at the test 

temperature and the resulting total pressure in the chamber is equivalent to the vapor 

pressure of sample. The measured total vapor pressure can be converted to a DVPE by 

use of a correlation equation.  

 

2.2. Spectroscopic Analysis  

 
Four different spectroscopic analyses were used in this thesis which are Fourier 

Transform Infrared Spectroscopy, Fourier Transform Near Infrared Spectroscopy 

UV-Visible Spectroscopy and Fluorescence spectroscopy. 

For heavy and light diesel samples, FTIR analysis were carried out at room 

temperature with Perkin Elmer FTIR spectroscopy equipped with one-diamond ATR 

accessory with a spectral range from 4000 to 600 cm-1   The spectral resolution was 

4 cm-1 for all spectra and 32 scans were accumulated. Near-Infrared spectra of diesel 

samples were collected over the 12000 to 4000 cm-1 spectral region with a Bruker Matrix 

FT-NIR Spectroscopy using 2 mm pathlength quartz cell. The spectral resolution was  

2 cm-1 for all spectra and 8 scans were accumulated. UV-Vis spectra of diesel samples 

were recorded in a Perkin Elmer Lambda 25 Spectrometer with a spectral range from 200 

to 700 nm using 1-cm pathlength quartz cell. A background spectrum of air was recorded 

in with a clean dry cell before analysis.  

Both total fluorescence spectra (TFS) and synchronous fluorescence spectra (SFS) 

of light diesel samples were recorded on an Agilent Cary Eclipse Fluorescence 

Spectroscopy using 1-cm pathlength quartz cell for. For TFS, the excitation range was 

320 – 410 nm (10 nm intervals) and the emission range 340-650 nm (10 nm intervals). 

For SFS, spectra were recorded with emission from 300-600 nm with initial Δλ=10 nm 

and an increment of 10 nm on each scan for a total of 10 scans at a scan rate of 600 
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nm/min. Excitation slit was set to 5 nm while emission slit was 2.5 nm with a scan rate 

of 600 nm/min. Samples were passes through 0.45-micron syringe filter before 

measurement to get rid of unwanted contamination. A background spectrum of air was 

recorded in with a clean dry cell before analysis. 

Near-Infrared spectra of all HSRN and LSRN samples obtained from three 

different refinery were collected at each refinery quality control laboratory. In İzmit 

Refinery, spectral measurements were carried out with a Bruker Matrix FT-NIR 

Spectroscopy using 2 mm pathlength quartz cell over the 12000 to 4000 cm-1 spectral 

region with an air background. In İzmir and Kırıkkale refinery, Near-Infrared spectra all 

naphtha samples were collected over the 10000 to 4000 cm-1 spectral region with a Perkin 

Elmer Spektrum Two N FT-NIR Spectroscopy using 2 mm pathlength quartz cell with an 

air background. For each sample, daily spectroscopic measurements were recorded.   
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CHAPTER 3 

 

DATA ANALYSIS 

 

3.1. Data Pre-processing Techniques 

 

In industrial applications, controlling sample composition and unwanted 

variations due to spectral measurements are almost impossible which resulted in poor 

predictive performance in developed calibration models. Depending on the spectral 

analysis, random measurement noise, non-linear instrument responses, systematic errors 

and unwanted physical or chemical variations are hard to be avoid.  

This situation can be overcome in two main steps. One of them is the extending 

sampling time to cover changes in crude oil, refinery operations etc. Secondly, choosing 

proper preprocessing technique to enhance signal properties and suppress unwanted 

variations.  Preprocessing methods can be divided into two main categories, which are 

spectral derivatives and scatter correction or model-based methods. 

Derivative transformations are the oldest technique used to remove the effects of 

increased noise and scattering in spectra. The first-order derivative estimates the 

difference between two consecutive spectral measurements, while the second-order 

derivative is estimated by calculating the difference between two consecutive first-

derived spectral measurements. Model-based methods, unlike derivative transformations, 

are able to quantify and separate the different types of chemical and physical variations 

in spectra.  

 

3.1.1. Savitzky-Golay Filter 

 

Savitzky-Golay (SG) algorithm is one of the most chosen preprocessing method 

to which approximates spectrum by polynomial least-square fitting inside a moving 

window 35–37 . Selection of window size is crucial while optimizing SG technique since 

every parameter interested in the spectra can place in different spectral region.  Although 
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 taking derivative of spectral data increases noise, least square fitting of the SG procedure 

can reduce the level of spectral noise. Using first derivative of data eliminates the baseline 

shift.  

Savitzky-Golay Filters are widely used for smoothing and differentiation mainly 

in absorption spectroscopy. This preprocessing method is one of the popular choices in 

an averaging algorithm that fits least squares polynomial to the data points and then the 

value to be averaged is predicted from the polynomial. There are two important 

parameters in this transformation. One of them is the window opening and the other is the 

degree of derivative and these values are determined by the user 35,36,38–41. The selection 

of window size is critical. Selected window size has strong influence on derivated curve, 

hence multivariate analysis. Even though same sample is used, signal bandshapes can 

change in different spectral region. Optimal window size for should be found before each 

data set obtained from each spectral region before multivariate analysis. Since derivation 

of data occur in between selected window size, it is important not to lose spectral 

information during this process and to keep meaningful spectral information within the 

selected window range. 

 

3.1.2. Multiplicative Scattering Correction 

 

In the 1980s, model-based data preprocessing methods began to take place in the 

literature. Multiplicative Signal Correction, MSC, method is a method used in signal 

processing. It was first presented by Marten et al in 1983 42, and further studies were 

carried out by Geladi et al43. The purpose of the method is to remove the unwanted 

scattering effects in the spectra. MSC basically takes place in two steps: 

1. Regression of each spectrum against the mean spectrum.  

𝐱 i  ≈  𝑎i +  𝑏i𝐱m                                                             (3.1) 

2. The original data set is corrected with the obtained coefficients. 

𝐱 i
msc = (𝐱 i −  𝑎i )/ 𝑏i                                                         (3.2) 

 

where  𝐱m is the mean spectrum, 𝐱 i is the ith spectrum of the collection used for 

calculation. By ordinary least squares regression of 𝐱 i  onto 𝐱m  estimates of a and b can 

be obtained.  
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In the original paper, reference spectrum is suggested to be calculated by using 

parts which do not contain spectral information in the spectra.  However, it is hard to 

determine such region in application especially in FT-NIR spectra since signals are highly 

overlapping and correlated. Alternatively, most studies use entire spectrum to calculate 

average spectrum which is called reference spectrum. 

 

3.1.3. Extended Multiplicative Scattering Correction 

 

By expanding the basic logic in the MSC method, the EMSC method was 

proposed in 1991 and is frequently used especially in NIR spectroscopic data  44. Unlike 

the MSC method, a quadratic polynomial equation is fitted to the reference spectrum and 

a correction vector (reference spectrum) is obtained by establishing a regression between 

the reference spectrum and the prior information. Correction is performed on the raw data 

using the reference spectrum. In the EMSC method, the trend of the data to the 

wavenumber axis is also often included in the 2nd order polynomial equation. 36,38. 

 

𝐱 i  ≈  𝑎i +  𝑏i ∗ 𝐗m +  𝑑𝑖 ∗ 𝛌 +  𝑒𝑖 ∗ 𝛌2                                (3.3) 

 

𝐱 i
emsc = (𝐱 i −  (𝑎i + 𝑑𝑖 ∗ 𝛌 + 𝑒𝑖 ∗ 𝛌2 ))/ 𝑏i                              (3.4) 

 

where  𝐱m is the mean spectrum, 𝐱 i is the ith spectrum of the collection used for 

calculation and 𝛌 is the wavelengths or wavenumbers of the spectral range for the 

wavelength dependency correction. By applying multiple regression of 𝐱 i  onto 𝐱m, 𝛌 

and 𝛌2, estimates of a, b, d and e can be obtained.  

It is emphasized in the literature that it is more selective and effective than a 

classical filtering technique in eliminating deviations and unwanted variations caused by 

various reasons 39,40,45. This technique, which is used to separate and measure chemical 

and physical deviations, allows better interpretation of spectra and statistically more 

robust calibration models. Its use is increasing day by day not only in the NIR region, but 

also in Mie scattering in the mid-infrared region, and laser and particle size-based data in 

Raman spectroscopy. 
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The most important parameter in MSC and EMSC techniques is the correct 

reference spectrum calculation. Data which has an absorbance value 2.5 or higher can 

store meaningful spectral information. However, since Beer’s rule deviates on those 

absorbance values, MSC techniques can be applied to those data and spectral information 

can be saved.   

In order to prevent this and create a robust reference spectrum, two different 

alternatives are presented: 

1. Adding predetermined weight coefficients to the wavenumber axis 

2. Using iterative search method for optimal weight coefficients 

The iteration method works on the theme of assigning low weighting coefficients 

to regions where there are very large differences between the spectra. Thus, it is ensured 

that the spectral regions containing information about the sample are not affected by the 

large differences in the noisy regions. 

 

3.2. Calibration Methods  

 
Calibration methods are used to find the relationship between two different sets 

which are output from an instrument, x, and properties of the sample, c. The mathematical 

formula that describes this relationship then can be used to predict the interested 

properties of the sample. Linear calibration methods can be used then the properties of 

sample and instrument response(s) are linearly correlated. These calibration techniques 

can be divided into two groups:  

 

1. Univariate Calibration 

2. Multivariate Calibration 

 

When the aim is to develop a model for a single property of the sample by using 

a single variable, univariate calibration is used. In spectroscopic data, mostly single 

variable is chosen as the wavelength of highest absorbance. If multiple responses are used 

to model multiple properties of a sample, it is called multivariate calibration.  
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3.2.1. Univariate Calibration 

 
Most common univariate calibration methods are classical univariate calibration 

and inverse univariate calibration. Classical univariate calibration is the most common 

and simple univariate calibration method and very similar to Beer-Lambert Law. General 

formula of classical univariate calibration is given in equation 3.5 while formula of 

inverse univariate calibration is given in equation 3.6. 

 

𝑥 = 𝑐. 𝑠                                                         (3.5) 

𝑐 = 𝑥. 𝑠                                                         (3.6) 

 

where x is an instrument response, c is the property of sample and s is a scalar that 

relates these two variables.  

The main difference between classical and inverse univariate calibration is that 

classical univariate calibration assumes all the errors in the instrumental responses while 

inverse univariate calibration assumes the source of errors are in concentrations. 

Considering preparation of sample more likely includes human error considering using 

volumetric flasks, sample containers than errors during sample scans considering the 

improvements in devices, inverse univariate calibration method is resulted in better 

calibration model.  

To reflect baseline of the responses, intercept term is used in calibration models. 

Using intercept term may significantly increase the predictive performance of developed 

calibration model if a constant response is observed. There are two main ways to add 

intercept term. One of them is given below.  

 

                                                     If  𝑥 = 𝑐. 𝑠 ;               

                                               𝐬 =  (𝐂 ′ . 𝐂)−𝟏. 𝐂 ′ .𝐱                                                      (3.7) 

 

where C is a two column matrix in which first columns consist of ones for fitting 

the intercept and the second column for the property of the training samples e.g. 

concentrations, x is the vector of responses and s is the vector of coefficients relating the 

x to C. 
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                                                     If  𝑐 = 𝑥. 𝑠 ;              

𝐬 =  (𝐗′ . 𝐗) −𝟏. 𝐗′ . 𝐜                                                        (3.8) 

 

 

where c is vector of the property of the training samples e.g. concentrations, X is 

the matrix includes two columns in which first columns consist of ones for fitting the 

intercept and second one is responses and s is the vector of coefficients relating the c  

to X. 

Second way of adding intercept to model is mean centering the data. Mean 

centering is applied by subtracting the mean of properties from each property while mean 

of responses are subtracted from each response.  

 

3.2.2. Multivariate Calibration 

 

If the property of interest consists of several chemical compounds each having 

different wavelength of absorbance, univariate calibration methods may fail. Using 

multiple wavelengths resulted in better calibration models most of the time since 

averaging of useful information in absorbance is used. In addition, effect of random 

interferences and noises are less when compared to univariate calibration due to same 

averaging. Beside these advantages, there are some limitations as well. To be able to 

obtain reboots calibration models, the number of variables should be at least the number 

of compounds and the number of experiments should also exceed the number of variables.  

Classical least squares calibration, CLS, is the multivariate form of classical 

univariate calibration. To obtain a reasonable model from CLS, all properties of the 

sample should be used while modelling. Inverse least squares, ILS, similar to inverse 

univariate calibration, defines the properties of a sample as a function of response. That 

allows to model a single component in a sample without a knowledge of the other 

components. However, this method prone to multicollinearity issues which resulted in 

overfitting.  
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3.2.2.1. Partial Least Squares (PLS) 

 

Partial least squares (PLS) is a soft modeling technique in which the data are 

decomposed into new variables which are linear combinations of the original data using 

Principal Component Analysis (PCA). These new variables coming from PCA are named 

as principal components or factors. This method uses only the advantages of CLS and 

ILS methods. There is no need for the knowledge of all interfering species like CLS. Also, 

since new variables are obtained from PCA and these variables projects the dependent 

variables to a new smaller dimensional space, multicollinearity problem is mostly 

eliminated. Unlike other methods, PLS accounts noise in both responses and 

concentrations.   

There are two different PLS algorithms which are called PLS1 and PLS2. Studies 

in this thesis PLS1 algorithm was used since it has better prediction performance. The 

decomposition of the data in PLS1 is given below.  Figure 3.2 shows the graphical 

representation of equation 3.9 and 3.10. to show matrix size.  

 

𝐗 = 𝐓. 𝐏 + 𝐄                                                    (3.9)  

𝐜 = 𝐓. 𝐪 + 𝐟                                                    (3.10) 

 

 

 

Figure 3.1. The size of matrices and vectors used in PLS. 
 

 

where X is the matrix of responses obtained from instrument for n number of 

training samples at p number of variables (wavelengths or wavenumbers), T is the scores 

matrix which is used to develop a model with ILS algorithm, P is the loading of responses, 
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E is the residuals of responses. The number of latent variables is shown as a. Property of 

interest is shown as c which is usually the concentrations one of the components of the 

training samples, q is the vector of regression coefficients that relates the score matrix T 

to concentration vector c. Here, f is the vector of residuals for a number of latent variables. 

Determination of latent variable is one of the most important aspect in PLS 

modelling. Most common way for choosing latent value is using the predicted estimation 

sum of squares (PRESS) values. From calculated PRESS values, latent variable is chosen 

when PRESS stop decreasing or before the increment in PRESS.  

 

𝑃𝑅𝐸𝑆𝑆 =  ∑ (ĉ −  𝑐𝑖)
2𝑚

𝑖=1                                         (3.11) 

 

3.2.2.2. Genetic Inverse Least Squares 

 

Genetic Inverse Least Squares (GILS) is the combination of ILS for calibration 

and a genetic algorithm for feature selection. GILS effectively picks and shuffles small 

sets of features in an iterative process to obtain better sets where the success criteria is 

assigned by cross-validation with ILS. These feature sets are then used for creating new 

models without the collinearity problem and potentially with less overfitting issues while 

averaging provides even further enhancement in predictive power. 

There are five main steps which are initialization of gene population, fitness 

assignment of the population, selection of genes to be breed, cross-over and breeding, 

lastly the replacement of the genes with the old ones.  

To find the best combination of variables and achieve desired computational time 

and obtain robust model, there are used defined options which are selection of number of 

genes in the population, coefficient threshold for the initialization of new genes, the 

number of iterations for breeding and replacement of old genes.  

To construct a gene, random number of variables, which are a set of absorbances 

at specific wavenumbers, are selected. Obtained gene is subjected to the cross-validation 

for the determination of its fitness and coefficient. Leave-one-out cross validation is 

applied where a single sample is removed from the whole data and ILS model developed 

with rest of them and removed data is predicted. This procedure is repeated for all  
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samples. If R2 of obtained gene is above defined threshold, it is added to the pool, 

otherwise it disposed. New genes are created until the population of gene pool reaches 

the user defined number. Those genes are called the parent genes. For each gene in the 

pool, fitness values are calculated by the formula below. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑆𝐸𝐶𝑉
                                                      (3.12) 

 

𝑆𝐸𝐶𝑉 =  √
∑ (𝑐𝑖− ĉ𝑖 )2𝑚

𝑖=1

𝑚−2
                                             (3.13) 

 

where m is the number of samples, 𝑐𝑖  is the property of sample and ĉ𝑖  is its 

prediction.  

Selection of parent genes for breeding, roulette wheel method is used. In this 

method, each gene has an area which is proportional to their fitness value. Genes are 

selected by spinning the wheel and randomly chosen. The genes with highest fitness value 

have a more chance to be selected then genes with lower fitness values since they have 

higher portion on the wheel. From the selected genes from wheel, off -spring genes are 

created. Parent genes, or first selected genes, are cut from the middle and exchange 

variables so a new pair of offspring are formed.  

 

Parent Gene Pair: 

G1 = [A300, A4300 # A1450, A2814] 

G2 = [A500, A1000, A208 # A2108, A1991, A1993] 

Offspring: 

NEWG1 = [A300, A4300, A2108, A1991, A1993] 

NEWG2 = [A1450, A2814, A500, A1000, A208] 

 

Parent genes are cut off from the # symbol and subjected to cross-over. Then 

parent genes are replaced with their offspring.  The fitness of offspring is compared the 

fittest gene and replaced if offspring fits better. This iteration is repeated until user defined  

iteration number is reached.  When it is done, whole procedure which starts from 

initialization and ends from iteration is called a run. After each run, fittest gene is found 

and after completing the number of runs, final model obtained from best genes.  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

Studies with each crude distillation unit products were performed separately and 

reported in order from heavy product to lightest under different sections.  

Studies with diesel samples mostly not separated as light and heavy fractions of 

diesel in literature studies. However, in Tüpraş Refineries, diesel samples are obtained 

from crude distillation units are separated as light and heavy fractions due to the 

production parameters. Light diesel samples are obtained right above where heavy diesel 

samples are obtained and these samples have lower carbon number hence lower boiling 

points then heavy diesel samples. 

 

4.1. Heavy Diesel Samples 

 
Studies conducted with heavy diesel samples were performed in three different 

spectroscopic methods which are FTIR-ATR, FT-NIR, and UV-Vis Spectroscopy. 

Samples were obtained from one of the crude distillation unit in TUPRAS İzmit Refinery.  

Multivariate calibration studies with heavy diesel samples collected for one year 

(from 2018 to 2019). During one year of sample collection time, a total of 23 different 

crude oil with different percentages were processed in crude distillation unit. Distillation 

temperatures, API gravity and flash point of the samples were analyzed in quality control 

laboratory located in İzmit Refinery, according to their respective ASTM methods. 

Distillation temperature analysis of heavy diesel samples were analyzed three times a day 

while API and flash point analyses were performed once a day.  

Each spectroscopic analysis of samples was performed in different laboratories.  

To be able to compare the multivariate calibration model performance of heavy diesel 

samples, both calibration and validation data sets were kept same for each spectroscopic 

analysis.  

During one year of sample collection, distillation temperature range of a total of 

matched 268 heavy samples were analyzed with both standard analysis method and three 

spectroscopic analyses. Since standard method API and flash point analyses were 
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performed once a day, only 88 matched sample was analyzed with three spectroscopic 

analyses. The distillation temperature ranges from initial boiling point (IBP) to final 

boiling point (FBP) along with API gravity and flash point of samples are summarized in 

Table 4.1. Graphical representation of Table 4.1 is shown in Figure 4.1.  

 

Table 4.1. Data range, mean, median and standard deviation of physical properties of 
heavy diesel samples.  

 Minimum 

(Min) 

Maximum 

(Max) 
Mean Median 

Standard 

deviation 

IBP, oC  114.6 139.7 129.8 130.7 6.0 

T5, oC  180.3 201.0 191.7 192.2 4.0 

T10, oC  211.6 230.5 221.8 222.8 4.0 

T20, oC 249.5 267.3 257.8 258.4 3.7 

T30, oC 272.7 291.9 282.6 283.2 3.5 

T40, oC 289.8 311.9 302.2 302.1 3.7 

T50, oC 302.1 328.9 319.1 319.8 4.7 

T60, oC 315.2 346.5 335.6 337.1 5.9 

T70, oC 327.5 363.8 351.4 354.0 6.8 

T80, oC 341.0 382.3 368.8 371.9 8.5 

T90, oC 357.8 410.5 392.4 396.8 11.5 

T95, oC 372.7 436.0 410.8 415.7 13.8 

FBP, oC 412.5 503.0 451.9 455.0 17.0 

API 30.7 35.3 33.4 33.4 1.0 

Flash Point, oC 75.0 94.0 83.2 83.5 4.5 

 

 

 

Figure 4.1. Graphical representation of Table 4.1. 
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According to the standard deviations, green dots whose y-axis is on the right in 

Figure 4.1, the parameters with relatively less variability are T30, T40 and T50 while FBP 

has the highest variation. Mean and median values of all parameters are close to each 

other which indicates the distribution of dataset can be assumed as normal.  

For distillation models, from 268 samples, a total of 178 samples were assigned 

as calibration set to train model, a total of 60 samples were used as independent validation 

and remaining 30 samples were used as unknowns to observe prediction performance of 

chosen model. For API and flash point models, a total of 66 samples were assigned as a 

calibration set while the rest 22 samples were used as independent validation set. Since 

the number of samples in API and flash point dataset is less than distillation point dataset, 

prediction performance of models was decided to be observed using SEP values and no 

unknown set was assigned.  

Each data set obtained from spectroscopic analysis were treated with different 

data pre-processing method and two different multivariate calibration approach were 

performed to preprocessed data, which will explain under spectroscopic analysis results.   

 

4.1.1.  FTIR-ATR Spectroscopic Results 

 
Raw FTIR-ATR spectra of a total of 268 heavy diesel samples are shown in  

Figure 4.2.  

 

 

Figure 4.2. Raw FTIR-ATR Spectra of a total of 268 CDU heavy diesel samples. 
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In Figure 4.2., spectral regions 3100-2500 cm-1 correspond to C-H stretching 

while 1800-1000 cm-1 correspond to C-H bending vibrations. The absorbances around 

3000-2800 cm-1 raised from C-H stretching vibrations of CH2 groups and stretching band 

of CH3 groups. The presence of stretching vibrations of C-N groups were indicated in 

region located at 1300-1250 cm-1 while bending vibrations of methylene groups were 

observed at around 1450 cm-1.  

Spectral data shown in Figure 4.2 was optimized for three different ASTM 

methods which are distillation, API gravity and flash point analyses to determine the best 

preprocess technique. From 13 different distillation point parameters, T50 was selected 

for optimization of preprocess since it has the lowest reproducibility values compared to 

rest of distillation points. Reproducibility value is defined as “The difference between two 

single and independent results obtained by different operators working in different 

laboratories on identical test material would, in the long run, exceed the following values 

only one case in twenty” in ASTM standards. Table 4.2 shows the reproducibility value 

calculation of distillation parameters from ASTM methods. The letter i next to the 

physical parameters states the ith sample used for calculation. 

 

Table 4.2. Reproducibility value calculation for heavy diesel according to ASTM D2887. 

Parameters 
Heavy Diesel 

Reproducibility, oC 

IBP 0.066 IBPi 

T5 0.015 (T5i +100) 

T10 0.015 (T10i +100) 

T20 0.015 (T20i +100) 

T30 0.013 (T30i +100) 

T40 – T90 4.3 

T95 5.0 

FBP 11.8 

 

 

To the spectral data shown in Figure 4.2., three different preprocess techniques 

were applied which are SG filter, MSC and EMSC. By systematic varying preprocess 

parameters like smoothing, chancing window size, polynomial order, derivative options, 

different scattering correction methods, best preprocessing method was determined for 

each model development. Best technique was chosen for model that has lowest SEP value. 
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Best preprocess technique for distillation point models were obtained with a first 

order derivate with Savitzky-Golay algorithm using second order polynomial and 11 

points window size along with Multiplicative Scattering Correction.  For API and Flash 

Point, first order derivative with SG algorithm using first order polynomial and 13 points 

window size along with Extended Multiplicative Scattering Correction. Additionally, 

reduction of wavenumber range from 4000 cm-1 to 3300 cm-1 was resulted in models with 

higher predictive ability. Figure 4.3 shows FTIR-ATR spectra of heavy diesel samples in 

which selected preprocessed technique for distillation point parameters were applied .  

 

 

Figure 4.3. FTIR-ATR Spectra of heavy diesel samples treated by first derivative using 
first order polynomial and a window size of eleven followed by MSC.  

 

As shown in Figure 4.3, taking first derivative of spectra emphasize the maximum 

absorbances on each spectrum. After determination of preprocessing technique, two 

different calibration approach were applied to the data set which and PLS and GILS 

algorithm. Table 4.3 shows the calculated standard error of cross-validation (SECV), 

standard error of prediction (SEP) and the correlation coefficient of calibration curve, R2, 

of each parameter obtained from developed PLS and GILS models. Developed model that 

has lowest SEP values for each parameter was highlighted as bold font.  
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Table 4.3. Two different multivariate calibration results of heavy diesel samples obtained 
from FTIR-ATR along with data range and average reproducibility value  
(R, avg)   

FTIR-

ATR 

Data Range PLS GILS R 

avg Min Max Range SECV SEP  R2 LVs SECV SEP  R2 

IBP,oC  114.6 139.7 25.1 1.178 3.101 0.963 7 1.619 2.866 0.938 8.4 

T5, oC  180.3 201.0 20.7 1.521 2.474 0.860 6 1.506 2.342 0.886 4.4 

T10, oC  211.6 230.5 18.9 0.933 2.215 0.943 7 1.277 2.263 0.910 4.8 

T20, oC  249.5 267.3 16.9 0.518 1.977 0.981 9 0.892 1.907 0.951 5.4 

T30, oC  272.7 291.9 19.2 0.593 1.599 0.974 8 0.754 1.536 0.963 5.0 

T40, oC  289.8 311.9 22.1 0.637 1.720 0.973 8 0.791 1.636 0.963 4.3 

T50, oC  302.1 328.9 26.8 1.192 1.810 0.940 6 0.850 1.811 0.970 4.3 

T60, oC  315.2 346.5 31.3 1.390 2.164 0.949 6 1.106 1.974 0.968 4.3 

T70, oC  327.5 363.8 36.3 1.746 2.488 0.939 6 1.546 2.302 0.953 4.3 

T80, oC  341.0 382.3 41.3 1.552 3.464 0.970 7 1.711 3.108 0.964 4.3 

T90, oC  357.8 410.5 52.7 2.977 4.706 0.939 6 2.675 4.442 0.952 4.3 

T95, oC  372.7 436.0 63.3 3.777 5.899 0.931 6 3.601 5.755 0.939 5.0 

FBP, oC  412.5 503.0 84.2 7.580 8.702 0.801 5 6.262 8.478 0.872 11.8 

API 30.7 35.3 4.8 0.045 0.194 0.998 7 0.119 0.168 0.987 0.5 

Flash P., 
oC  

75.0 94.0 19.0 0.665 1.751 0.980 7 2.220 1.784 0.812 6.0 

 

As Table 4.3 indicates, beside of T10 and T50 distillation points and flash point, 

GILS models resulted in lowest SEP values which indicates better predictive ability. 

Results indicates that genetic algorithm can be selected for quantitative analysis of 

petroleum products conducted with FTIR-ATR spectroscopy.  Another trend was 

observed in SEP values of distillation parameter models. Lower reproducibility value of 

standard analysis method has resulted in lower the standard error of prediction value. 

Since multivariate calibration models are trained with standard analysis results and 

reproducibility value indicated the nature error found in the analysis, it is accepted to have 

better models for parameters that have lowest reproducibility values. 
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4.1.2. Near-Infrared Spectroscopic Analysis Results 

 
Raw FT-NIR spectra of a total of 268 heavy diesel samples are shown in   

Figure 4.4. 

 

 

Figure 4.4.  Raw FT-NIR Spectra of a total of 268 CDU heavy diesel samples 
  (a) full range (b) narrowed range 

 

As shown in Figure 4.4 (a), although the 4500-4000 cm-1 spectral range shows 

significant spectral variations, it contains no useful spectral information due to the strong 

saturation of NIR radiation. Before any further analysis, in addition to spectral range of 

4500-4000 cm-1, 12000-9000 cm-1 ranges were also removed from data set since no 

infrared absorption was observed between these spectral ranges. Figure 4.4 (b) shows the 

narrowed range NIR spectra.  

In Figure 4.4 (b), spectral bands between 9000-8000 cm-1 corresponds to the 

second overtone region, 7500-7000 cm-1 corresponds to second combination region and  

6200-5300 cm-1 corresponds to first overtone region of C-H bands 50 The spectral region 

found in 4700-4300 cm-1 spectral range, corresponds a part of first combination region. 

Although noticeable spectral variations in terms of position and intensity of peaks are 

observed around major bands, significant baseline shifts were observed in obtained NIR 

spectra. To be able to enhance signal properties and eliminate baseline and background 

effects, preprocessing techniques were applied to raw FT-NIR spectra. 
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By systematic varying preprocess parameters were also applied to FT-NIR spectra 

and best preprocess method was chosen for each parameter according to lowest SEP 

values.  For distillation points, smoothing with third order polynomial fitting and 5-point 

window size following Extended Multiplicative Scatter Correction was chosen. For API 

and Flash Point, only EMSC was applied to the narrowed data set. Figure 4.5. shows the 

preprocessed FT-NIR spectra of heavy diesel samples.  

 

 

Figure 4.5. FT-NIR Spectra of heavy diesel samples treated by smoothing using first order 

polynomial and a window size of 5 followed by EMSC.  
 

As shown in Figure 4.5, baseline variation has been minimized with selected 

preprocessed technique. To spectra shown in figure above, two different multivariate 

calibration approach were performed, and multivariate calibration results are given in 

Table 4.4 with standard error of cross-validation (SECV), standard error of prediction 

SEP), the correlation coefficient of calibration curve, R2, along with latent variables for 

PLS models. For each parameter, multivariate calibration model with lowest SEP values 

was highlighted as bold font.  
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Table 4.4. Two different multivariate calibration results of heavy diesel samples obtained 
from FT-NIR along with data range and average reproducibility value (R, avg)   

FT-NIR 
Data Range PLS GILS R 

avg Min Max Range SECV SEP  R2 LVs SECV SEP  R2 

IBP, oC  114.6 139.7 25.1 1.499 2.622 0.940 13 1.709 2.670 0.926 8.4 

T5, oC  180.3 201.0 20.7 1.331 1.956 0.891 13 1.390 2.224 0.893 4.4 

T10, oC  211.6 230.5 18.9 0.884 2.010 0.951 14 1.240 2.189 0.912 4.8 

T20, oC  249.5 267.3 16.9 0.829 1.797 0.952 13 1.129 1.861 0.918 5.4 

T30, oC  272.7 291.9 19.2 0.881 1.428 0.936 11 0.788 1.415 0.951 5.0 

T40, oC  289.8 311.9 22.1 1.477 1.610 0.855 11 1.233 1.541 0.903 4.3 

T50, oC  302.1 328.9 26.8 0.859 1.550 0.969 12 0.841 1.609 0.971 4.3 

T60, oC  315.2 346.5 31.3 1.440 1.500 0.946 12 1.290 1.570 0.958 4.3 

T70, oC  327.5 363.8 36.3 1.009 1.646 0.980 15 1.332 1.778 0.966 4.3 

T80, oC  341.0 382.3 41.3 1.283 2.023 0.979 14 1.655 2.372 0.967 4.3 

T90, oC  357.8 410.5 52.7 1.668 2.948 0.981 17 2.702 4.119 0.954 4.3 

T95, oC  372.7 436.0 63.3 2.385 3.704 0.973 14 2.981 4.432 0.960 5.0 

FBP, oC  412.5 503.0 84.2 3.833 5.818 0.946 13 4.625 6.955 0.927 11.8 

API 30.7 35.3 4.8 0.068 0.108 0.996 12 0.132 0.171 0.984 0.5 

Flash P., 
oC  

75.0 94.0 19.0 1.964 1.889 0.802 8 1.573 2.063 0.887 6.0 

 

To the contrary of multivariate calibration results of FTIR dataset, Table 4.4 

indicates that PLS method resulted in lower SEP values compared to GILS models, beside 

for T30 and T40 distillation points.  Relation between SEP and reproducibility values are  

observed in FT-NIR results as well. It is also observed that chosen latent variable values 

for FT-NIR PLS models are higher than the FTIR PLS values.  
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4.1.3. UV-Vis Spectroscopic Analysis Results 

 

Raw UV-Vis spectra of a total of 268 heavy diesel samples is shown in  

Figure 4.6.  

 

Figure 4.6. Raw UV-Vis Spectra of a total of 268 CDU heavy diesel samples  

(a) full range (b) narrowed range 
 

As shown in Figure 4.6 (a), high absorption values between wavenumber from 

200 to 385 nm were observed in the spectra due to the saturation. Those wavenumber 

regions were removed from the spectra and narrowed range UV-Vis spectra is shown in 

Figure 4.6 (b). 

Best preprocessing technique was also searched for UV-Vis study. For distillation 

Savitzky-Golay filtering technique was applied to UV-Vis spectra using a window size 

of 9, 3rd order polynomial fitting and calculating the 1st derivative following by MSC 

which is shown in Figure 4.7. For API and Flash Point, smoothing was applied to  

Savitzky-Golay using 13-point window size and first order polynomial fitting followed 

by MSC.  
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Figure 4.7. Preprocessed UV-Vis Spectra heavy diesel samples. 

 

To the spectra shown in Figure 4.7, two different calibration approaches which 

are PLS and GILS are applied and SECV, SEP values along with  the correlation 

coefficient of calibration curve, R2 and selected latent variables of PLS models are given 

in Table 4.5. Multivariate calibration model with lowest SEP values for each parameter 

is highlighted as bold in the Table.   

 

Table 4.5. Two different multivariate calibration results of heavy diesel samples obtained 
from UV-Vis along with data range and average reproducibility value (R, avg)   

UV-Vis 
Data Range PLS GILS R 

avg Min Max Range SECV SEP  R2 LVs SECV SEP  R2 

IBP,oC  139.7 114.6 25.1 2.040 2.142 0.886 17 1.716 2.087 0.921 8.4 

T5, oC  201.0 180.3 20.2 1.827 2.075 0.785 17 1.559 1.761 0.849 4.4 

T10, oC  230.5 211.6 18.9 1.783 2.300 0.802 17 1.332 2.022 0.892 4.8 

T20, oC  267.3 249.5 17.8 1.659 2.163 0.802 20 1.353 1.990 0.871 5.4 

T30, oC  291.9 272.7 18.8 1.396 1.673 0.849 18 1.098 1.657 0.908 5.0 

T40, oC  311.9 289.8 22.1 1.645 1.807 0.819 17 1.254 1.820 0.897 4.3 

T50, oC  328.9 302.1 26.8 1.544 1.810 0.899 19 1.262 1.743 0.934 4.3 

T60, oC  346.5 315.2 31.3 1.597 1.623 0.933 19 1.290 1.570 0.958 4.3 

T70, oC  363.8 327.5 36.3 1.617 1.475 0.948 16 1.227 1.471 0.970 4.3 

T80, oC  382.3 341.0 41.3 1.750 1.600 0.961 16 1.341 1.510 0.977 4.3 

T90, oC  410.5 357.8 52.7 1.918 1.678 0.974 17 1.438 1.667 0.986 4.3 

T95, oC  436.0 372.7 63.3 1.810 1.751 0.984 17 1.313 1.794 0.992 5.0 

FBP, oC  503.0 412.5 90.5 2.823 2.312 0.975 18 2.145 2.045 0.986 11.8 

API 35.3 30.7 4.6 0.219 0.349 0.942 18 0.194 0.246 0.955 0.5 

Flash P., 
oC  

94.0 75.0 19.0 2.612 2.214 0.684 11 2.279 1.981 0.761 6.0 
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Similar to developed models with FTIR spectra, GILS algorithm has resulted in 

lower SEP value for almost all parameters compared to PLS regression. Multivariate 

calibration results developed with three different spectroscopic method were compared 

and best model for each parameter was selected according to lowest SEP values. Selected 

multivariate calibration algorithms and spectroscopic methods are shown  

in Table 4.6. 

 

Table 4.6. Multivariate calibration results of heavy diesel samples along with selected 
algorithm and spectroscopic analysis.  

 
Data Range Multivariate Calibration Results 

Method Spectroscopy 
Max Min Range SECV SEP  R2 LVs 

IBP 139.7 114.6 25.1 1.716 2.087 0.921 - GILS UV-Vis 

T5 201.0 180.3 20.2 1.559 1.761 0.849 - GILS UV-Vis 

T10 230.5 211.6 18.9 0.884 2.010 0.951 14 PLS FT-NIR 

T20 267.3 249.5 17.8 0.829 1.797 0.952 13 PLS FT-NIR 

T30 291.9 272.7 18.8 0.788 1.415 0.951 - GILS FT-NIR 

T40 311.9 289.8 22.1 1.233 1.541 0.903 - GILS FT-NIR 

T50 328.9 302.1 26.8 0.859 1.550 0.969 12 PLS FT-NIR 

T60 346.5 315.2 31.3 1.440 1.500 0.946 12 PLS FT-NIR 

T70 363.8 327.5 36.3 1.227 1.471 0.970 - GILS UV-Vis 

T80 382.3 341.0 41.3 1.341 1.510 0.977 - GILS UV-Vis 

T90 410.5 357.8 52.7 1.438 1.667 0.986 - GILS UV-Vis 

T95 436.0 372.7 63.3 1.810 1.751 0.984 17 PLS UV-Vis 

FBP 503.0 412.5 90.5 2.145 2.045 0.986 - GILS UV-Vis 

API 35.3 30.7 4.6 0.068 0.108 0.996 12 PLS FT-NIR 

Flash P. 94.0 75.0 19.0 0.665 1.751 0.980 7 PLS FTIR 

 

For lower boiling points, IBP and T5 and higher boiling points starting with T70, 

GILS multivariate calibration developed with UV-Vis spectroscopic data have resulted 

in better predictive ability models. Rest of distillation points, models developed with  

FT-NIR spectral data were selected. FTIR spectral data was only found to have best model 

for Flash Point.  

A total of 30 samples which were separated from distillation point data sets and 

labelled as unknowns were used to observe predictive ability of developed models. For 

each spectroscopic data, selected and highlighted bold models shown in Table 4.3, 4.4 

and 4.5 were used. Model performance of each parameter has been evaluated with 

reproducibility value of standard methods.  Each difference between standard analysis 
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value and model prediction value, which will be called residuals from now on, was 

compared to calculated reproducibility value. Table 4.7 represents the number of samples 

which exceeds reproducibility value. 

 

Table 4.7. Total number of samples which exceeds reproducibility value. 

Parameters 
Spectroscopy 

FTIR FT-NIR UV-Vis 

IBP 0 0 0 

T5 2 4 1 

T10 1 1 1 

T20 0 0 1 

T30 0 0 0 

T40 0 0 1 

T50 0 0 0 

T60 0 0 1 

T70 1 0 0 

T80 3 0 0 

T90 9 4 1 

T95 12 5 1 

FBP 5 6 0 

 

The results in Table 4.7 show good alignment with results in Table 4.6. Models 

resulted in lowest SEP values also found to be the ones with lowest residuals and mostly 

in between reproducibility limits. Obtained results show that shown models in Table 4.6 

can be selected as best models. Residual values of 30 unknown samples are shown in 

Figure 4.8. In each graph black points shows the difference between actual and model 

prediction values. Red lines represent the reproducibility value of standard method.  
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Figure 4.8. Residual graphs of 30 unknown samples from selected models for distillation 
points. 
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Residual graphs shown in Figure 4.8 indicated that combination of selected 

multivariate calibration algorithm and spectral analysis technique, in Table 4.5, have 

resulted in robust models which can be used instead of standard analysis method. Almost 

all residual values are in between reproducibility limits and successful predictions have 

been obtained.  Standard method results vs selected model prediction values of developed 

models are given in Figure 4.9. 

 

   

   

   

Figure 4.9.  Standard analysis vs model prediction results obtained from three different 
spectroscopic analysis.  
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Figure 4.9.  Standard analysis vs model prediction results obtained from three different 
spectroscopic analysis (cont’d).  

 

According to Figure 4.9., validation set predictions of lower boiling points, which 

are IBP, T5, T10 and T20 are more scattered compared to rest of parameters.  Success of 

models increases with increasing boiling point temperature when R2 values are 

considered. Although FBP has the highest reproducibility value, selected model for this 

parameter has resulted in having one of the highest R2 value, lowest SEP value and non-

residuals of unknown sample is out of reproducibility value shown in Figure 4.8. 

However, as shown in Table 4.2 and 4.3, with FTIR-ATR and FT-NIR spectroscopy, 

higher boiling points, especially for FBP, developed models are less successful and has 

low prediction ability compared to others. Since higher boiling points of sample indicates 

the boiling point temperature of heavier chemical compounds compared to lower boiling 

points, models developed with UV-Vis spectroscopy includes and explains more 

information of those chemical components.  
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4.2. Light Diesel Samples 

 

Studies with light diesel samples were conducted in two parts. Firstly, three 

different spectroscopic methods were compared using two different multivariate 

calibration approaches. Secondly, analyses performed with fluorescence spectroscopy 

were reported.  

 

4.2.1. Spectroscopic Analysis Comparison 

 
In this part, analysis of light diesel samples obtained from crude distillation unit 

were performed using three different spectroscopic methods which are FTIR-ATR,  

FT-NIR and UV-Vis Spectroscopy. Obtained spectral data were treated with different 

data preprocessing techniques and by the help of two different chemometric approach, 

best model and spectroscopic method was aimed to be found for physical parameters of 

light diesel samples.   

Light diesel samples were collected for a year in Tüpraş İzmit Refinery. The time 

period of heavy diesel and light diesel sample collection time was kept same. Although 

the sample collection time of diesel sample fractions are same, the total of analyzed heavy 

diesel samples are triple of light diesel samples. Reason of this difference arise from the 

fact that distillation temperatures of heavy diesel samples were tracked three times of a 

day. Thus, collected and analyzed heavy diesel sample are much more than light diesel 

samples. Additionally, each spectral analysis of collected samples are performed in 

different laboratories. To be able to compare spectroscopic methods, samples were 

matched and data set with a total of consisting of the same samples was obtained. Physical 

properties of light diesel samples, distillation temperatures, API gravity and flash point 

temperatures, were analyzed and reported in quality control laboratory in İzmit Refinery. 

Physical properties of a total of 75 matched light diesel samples are summarized in   

Table 4.8. Figure 4.10 shows graphical representation of Table 4.8. 
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Table 4.8. Data range, mean, median and standard deviation of physical properties of light 
diesel samples.  

 Minimum 

(Min) 

Maximum 

(Max) 
Mean Median 

Standard 

deviation 

IBP, oC  233.6 247.8 240.6 240.5 3.3 

T5, oC  246.2 267.7 259.7 259.7 3.9 

T10, oC  258.4 274.0 266.7 266.8 3.1 

T20, oC 268.9 281.6 275.0 275.3 2.9 

T30, oC 274.9 288.0 280.9 281.0 3.0 

T40, oC 279.6 294.2 286.7 287.0 3.4 

T50, oC 284.0 299.5 291.1 291.4 3.5 

T60, oC 287.9 304.8 296.2 296.4 3.9 

T70, oC 291.8 310.4 300.5 300.5 4.1 

T80, oC 296.3 317.4 306.3 306.3 4.7 

T90, oC 299.2 327.5 313.3 313.5 5.6 

T95, oC 307.2 338.0 320.4 320.3 6.6 

FBP, oC 312.4 346.4 328.2 328.2 7.3 

API 32.0 36.8 35.1 35.2 1.0 

Flash Point, oC 107.5 130.0 117.5 117.0 5.1 

 

 

 

Figure 4.10. Graphical representation of Table 4.8. 
 

 

 Standard deviation values shown in last column in Table 4.8 and green dots in 

Figure 4.10 indicates that starting with T30, variability of parameter increases with 

increasing distillation point. API parameter has the lowest variability. Close mean and 

median values indicate that data has normal distribution. 
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From 75 light diesel samples, a total of 56 samples were assigned as calibration 

set to develop model, the rest of 19 samples were used as independent validation set. 

Unlike heavy diesel study, due to limited number of matched samples, no unknown set 

was separated to evaluate developed model performances. Instead of this, independent 

validation set prediction performance was decided to be analyzed. Each data set obtained 

from spectroscopic analysis were treated with different data pre-processing method and 

two different multivariate calibration approach were performed to preprocessed data, 

which will explain under spectroscopic analysis results.   

 

4.2.1.1. FTIR-ATR Spectroscopic Analysis 

 

Raw FTIR-ATR spectra of a total of 75 light diesel samples are shown in  

Figure 4.11.  

 

 

Figure 4.11. Raw FTIR-ATR Spectra of a total of 75 CDU light diesel samples. 

 

As diesel sample fractions has very similar chemical components, raw FTIR-ATR 

spectra of heavy diesel, in Figure 4.2, shows similar characteristics peak positions with 

light diesel sample spectra in Figure 4.11. To select best preprocessing method, SG filter, 

MSC and EMSC were applied iteratively, and best combination of preprocessing method 

was chosen according to SEP values.  Reduction of wavenumber range from 4000 cm-1 

to 3300 cm-1 was resulted in better models, as heavy diesel study. Only MSC was applied 



 

44 

to FTIR-ATR spectra for multivariate calibration models. Figure 4.12 shows 

preprocessed FTIR-ATR spectra of light diesel samples.  

 

 

Figure 4.12. Preprocessed FTIR-ATR Spectra of light diesel samples. 

 

Although applied preprocessing algorithm almost show no difference compared 

to raw spectra, differences which can not be seen by naked eyes found to be result in 

better models with higher predictive ability. Two different calibration approach were 

applied to the data set which and PLS and GILS algorithm. Table 4.9 shows the calculated 

standard error of cross-validation (SECV), standard error of prediction (SEP) and the 

correlation coefficient of calibration curve, R2, of each parameter obtained from 

developed PLS and GILS models. Developed model that has lowest SEP values for each 

parameter was highlighted as bold font. Reproducibility values for light diesel samples 

are formulized based on respective ASTM analysis and formulations are shown in Table 

4.10. Letter i states the ith sample for the calculation.  
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Table 4.9. Two different multivariate calibration results of light diesel samples obtained 
from FTIR-ATR along with data range and average reproducibility value  
(R avg)   

FTIR-

ATR 

Data Range PLS GILS R 

avg Min Max Range SECV SEP  R2 LVs SECV SEP  R2 

IBP,oC  233.6 247.8 14.2 0.120 2.789 0.999 12 1.146 2.841 0.949 13.2 

T5, oC  246.2 267.7 21.5 1.235 2.407 0.913 7 1.404 2.270 0.911 7.1 

T10, oC  258.4 274.0 15.6 0.730 2.019 0.953 7 0.951 2.034 0.940 5.9 

T20, oC  268.9 281.6 12.7 0.461 1.634 0.977 7 0.698 1.346 0.960 5.7 

T30, oC  274.9 288.0 13.1 0.501 1.180 0.978 7 0.432 1.161 0.985 4.6 

T40, oC  279.6 294.2 14.6 0.373 1.118 0.990 7 0.505 0.902 0.984 4.0 

T50, oC  284.0 299.5 15.5 0.411 1.062 0.989 8 0.583 0.765 0.980 3.0 

T60, oC  287.9 304.8 16.9 0.474 1.156 0.989 7 0.537 0.777 0.988 3.5 

T70, oC  291.8 310.4 18.6 0.967 1.008 0.956 6 0.804 0.866 0.973 3.8 

T80, oC  296.3 317.4 21.1 0.775 1.450 0.979 7 0.950 1.339 0.971 4.2 

T90, oC  299.2 327.5 28.3 1.497 1.661 0.942 6 1.313 1.629 0.959 4.7 

T95, oC  307.2 338.0 30.8 1.514 2.391 0.955 6 1.729 2.412 0.953 7.5 

FBP, oC  312.4 346.4 34.0 1.807 2.205 0.946 6 1.579 2.336 0.961 7.1 

API 32.0 36.8 4.8 0.030 0.130 0.999 9 0.075 0.128 0.996 0.4 

Flash P., 
oC  

107.5 130.0 22.5 3.623 4.674 0.216 3 2.032 5.268 0.800 8.4 

 

Table 4.10. Reproducibility value calculation for light diesel calculations based on 

standard method. 

Parameters 
Light Diesel 

Reproducibility, oC 

IBP 0.055 IBPi 

T5 0.03 T5i 

T10 0.022 T10i 

T20 0.0208 T20i 

T30 0.0165 T30i 

T40 0.014 T40i 

T50 3.0 

T60 0.0117 T60i 

T70 0.0125 T70i 

T80 0.0136 T80i 

T90 0.015 T90i 

T95 0.04105 (T95i – 140) 

FBP 7.1 

API 0.6+(0.037 (APIi-60)) 

Flash Point 0.071 x Flash Pi 
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Bold values in Table 4.9 indicates that genetic algorithm was resulted in lower 

SEP values for middle point in distillation curve, T5, T20-90 and flash point analysis.  

For upper and lower limits, IBP and FBP and API values PLS algorithm was found to 

have lowest SEP values which indicates better predictive ability. Selection of multivariate 

calibration method for FTIR-ATR spectra shows similarity to heavy diesel study. 

However, reproducibility values for light diesel analysis were found higher than heavy 

diesel samples. Main reason is the difference in standard analysis methods. Distillation 

temperatures of heavy diesel samples are found by ASTM D2887 in which GC is used 

while distillation analyses of light diesel samples are obtained by ASTM D86. 

 

4.2.1.2. FT-NIR Spectroscopic Analysis Results  

 

Raw FT-NIR spectra of a total of 75 light diesel samples are shown in Figure 4.13. 

 

 

 

Figure 4.13. Raw FT-NIR Spectra of a total of 75 light diesel samples. 

 

 

Similar to all FT-NIR spectra reported in this thesis, high absorbance values due 

to saturation were observed in wavenumbers between 4500 cm-1 and 4000 cm-1. These 

wavenumbers were removed from dataset as well as 12000-9000 cm-1.To enhance signal 

properties and reduce the effect of baseline shift, three different preprocessing method 
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were applied to this data set as well. EMSC method with smoothing with third order 

polynomial fitting and 9-point window size was selected to tread FT-NIR spectra for light 

diesel calibration study. Preprocessed spectra are shown in Figure 4.14. 

 

 

 

Figure 4.14. Preprocessed FT-NIR spectra of light diesel samples. 

 

 

Two different calibration approaches, PLS and GILS, were also applied to spectra 

shown in Figure 4.14. Multivariate calibration results are given in Table 4.11 with 

standard error of cross-validation (SECV), standard error of prediction (SEP) and the 

correlation coefficient of calibration curve, R2, along with latent variables for PLS 

models. For each parameter, multivariate calibration model with lowest SEP values was 

highlighted as bold font. 

For most of the parameters, PLS algorithm was chosen similar to heavy diesel 

FT-NIR study. However, GILS was found to have low SEP values for several distillation 

points, unlike to heavy diesel study results shown in Table 4.3. As indicated in other 

multivariate calibration results, SEP values gets higher with high reproducibility values.   
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Table 4.11. Two different multivariate calibration results of light diesel samples obtained 

from FT-NIR along with data range and average reproducibility value (R, avg)   

FT-NIR 
Data Range PLS GILS R 

avg Min Max Range SECV SEP  R2 LVs SECV SEP  R2 

IBP, oC  233.6 247.8 14.2 2.529 2.860 0.418 5 1.968 2.942 0.741 13.2 

T5, oC  246.2 267.7 21.5 1.455 2.412 0.880 11 3.004 1.894 0.642 7.1 

T10, oC  258.4 274.0 15.6 0.308 1.571 0.992 14 0.884 1.385 0.946 5.9 

T20, oC  268.9 281.6 12.7 1.004 1.042 0.904 8 0.991 0.834 0.919 5.7 

T30, oC  274.9 288.0 13.1 0.307 0.939 0.992 13 0.816 0.956 0.947 4.6 

T40, oC  279.6 294.2 14.6 0.355 0.719 0.992 12 0.815 0.837 0.956 4.0 

T50, oC  284.0 299.5 15.5 0.376 1.061 0.991 13 1.015 1.179 0.940 3.0 

T60, oC  287.9 304.8 16.9 0.357 1.020 0.994 12 0.799 1.007 0.971 3.5 

T70, oC  291.8 310.4 18.6 0.365 1.335 0.994 13 1.359 1.432 0.915 3.8 

T80, oC  296.3 317.4 21.1 0.450 1.055 0.993 12 1.192 1.553 0.951 4.2 

T90, oC  299.2 327.5 28.3 0.659 1.683 0.988 12 1.497 1.771 0.946 4.7 

T95, oC  307.2 338.0 30.8 0.746 2.086 0.989 12 2.132 2.685 0.907 7.5 

FBP, oC  312.4 346.4 34.0 0.943 2.539 0.986 13 2.103 2.760 0.937 7.1 

API 32.0 36.8 4.8 0.057 0.096 0.997 12 0.109 0.100 0.990 0.4 

Flash P., 
oC  

107.5 130.0 22.5 3.481 4.806 0.400 5 2.712 4.681 0.684 8.4 

 

4.2.1.3. UV-Vis Spectroscopic Analysis Results 

 
Raw UV-Vis spectra of light diesel samples is shown in Figure 4.15.  

 

 

Figure 4.15. Raw UV-Vis Spectra of a total of 75 CDU light diesel samples. 
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Figure 4.15 shows high absorption values that can not be used for calibration 

studies between wavenumbers from 200 to 385 nm. Those wavenumbers were removed 

before treatment with any preprocessing technique. After reduction of those 

wavenumbers, best preprocessing technique was selected by same iterative method as 

other studies and first derivative with third order polynomial fitting and 9-point window 

size following MSC was chosen. UV-Vis spectra treated with selected preprocessing 

technique was shown in Figure 4.16. 

 

 

 

Figure 4.16. Preprocessed UV-Vis Spectra of light diesel samples. 
 

To spectral data shown in Figure 4.16, two different calibration approaches were 

applied as well. Table 4.12. shows obtained multivariate calibration model results along 

with and the correlation coefficient of calibration curve, R2, selected latent variables and 

reproducibility values. 
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Table 4.12. Multivariate calibration results of light diesel samples obtained from UV-Vis 
along with data range and average reproducibility value (R, avg)   

UV-Vis 
Data Range PLS GILS R 

avg Min Max Range SECV SEP  R2 LVs SECV SEP  R2 

IBP,oC  233.6 247.8 14.2 1.799 4.579 0.722 12 2.069 2.431 0.711 13.2 

T5, oC  246.2 267.7 21.5 1.153 3.301 0.909 15 1.796 2.557 0.826 7.1 

T10, oC  258.4 274.0 15.6 1.991 2.067 0.511 7 1.216 1.969 0.860 5.9 

T20, oC  268.9 281.6 12.7 1.790 1.659 0.581 7 1.282 2.533 0.821 5.7 

T30, oC  274.9 288.0 13.1 1.839 1.954 0.645 6 1.562 2.360 0.754 4.6 

T40, oC  279.6 294.2 14.6 2.192 2.530 0.644 5 1.944 2.761 0.733 4.0 

T50, oC  284.0 299.5 15.5 2.142 2.310 0.658 6 1.868 2.918 0.754 3.0 

T60, oC  287.9 304.8 16.9 2.453 3.073 0.673 5 2.102 2.419 0.771 3.5 

T70, oC  291.8 310.4 18.6 1.747 2.957 0.824 6 1.809 2.424 0.817 3.8 

T80, oC  296.3 317.4 21.1 2.368 3.473 0.752 4 1.958 3.427 0.836 4.2 

T90, oC  299.2 327.5 28.3 2.825 3.648 0.744 6 2.743 2.708 0.763 4.7 

T95, oC  307.2 338.0 30.8 2.610 4.124 0.816 7 2.521 3.860 0.833 7.5 

FBP, oC  312.4 346.4 34.0 5.013 4.801 0.530 4 3.117 5.049 0.822 7.1 

API 32.0 36.8 4.8 0.624 0.464 0.678 9 0.381 0.558 0.906 0.4 

Flash P., 
oC  

107.5 130.0 22.5 4.100 5.642 0.347 8 2.418 4.622 0.810 8.4 

 

 

Selected multivariate techniques for UV-Vis data are found to be similar to 

FTIR-ATR study. For most of the parameters, GILS method has resulted in lower SEP 

values compared to PLS models. However, for API, PLS was selected while for flash 

point GILS results are found to have lower SEP values. 

After development of different multivariate calibration models using different 

spectral data, all models for each parameter were compared and best model for selected 

parameter was chosen according to SEP values. Table 4.13 shows selected multivariate 

calibration method and spectroscopic measurements for each parameter. 
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Table 4.13. Multivariate calibration results of heavy diesel samples along with selected 
algorithm and spectroscopic analysis. 

 
Data Range Multivariate Calibration Results 

Method Spectroscopy 
Max Min Range SECV SEP  R2 LVs 

IBP,oC  233.6 247.8 14.2 2.069 2.431 0.711  - GILS UV-Vis 

T5, oC  246.2 267.7 21.5 3.004 1.894 0.642 -  GILS FT-NIR 

T10, oC  258.4 274.0 15.6 0.884 1.385 0.946  - GILS FT-NIR 

T20, oC  268.9 281.6 12.7 0.991 0.834 0.919  - GILS FT-NIR 

T30, oC  274.9 288.0 13.1 0.307 0.939 0.992 13 PLS FT-NIR 

T40, oC  279.6 294.2 14.6 0.355 0.719 0.992 12 PLS FT-NIR 

T50, oC  284.0 299.5 15.5 0.583 0.765 0.980 -  GILS FTIR 

T60, oC  287.9 304.8 16.9 0.537 0.777 0.988  - GILS FTIR 

T70, oC  291.8 310.4 18.6 0.804 0.866 0.973  - GILS FTIR 

T80, oC  296.3 317.4 21.1 0.450 1.055 0.993 12 PLS FT-NIR 

T90, oC  299.2 327.5 28.3 1.313 1.629 0.959  - GILS FTIR 

T95, oC  307.2 338.0 30.8 0.746 2.086 0.989 12 PLS FT-NIR 

FBP, oC  312.4 346.4 34.0 1.807 2.205 0.946 6 PLS FTIR 

API 32.0 36.8 4.8 0.057 0.096 0.997 12 PLS FT-NIR 

Flash P., 
oC  

107.5 130.0 22.5 2.418 4.622 0.810  - GILS UV-Vis 

 

 

Results shown in Table 4.13 shows some similarity to Table 4.5, in which 

multivariate calibration results of heavy diesel samples are shown. First of all, for both 

sample groups, GILS applied to UV-Vis data and PLS applied to FT-NIR data has 

resulted in better models for IBP and API, respectively. On the other hand, for the rest of 

the parameters no same combination was selected. Since light diesel and heavy diesel 

samples are very similar composition to each other, selection of different methods and 

spectroscopic analysis are not expected. Main reason of this difference can be because of 

difference in standard method analysis. Standard analysis of distillation point analysis of 

heavy diesel samples is ASTM D2887 which analyzed ana give results in weight percent 

while standard analyses of light diesel samples are reported in volumetric percent. This 

difference also can be seen in different reproducibility values as well as initial boiling 

point temperatures. As light diesel samples have lower number of hydrocarbon chains 

compared to heavy diesel, it is expected that initial boiling point temperature of light 

diesel should be lower than heavy diesel. However, as can be seen in Table 4.4 and Table 

4.13 in data range section, IBP value of light diesel is higher than heavy diesel. This 

difference also because of difference in ASTM methods. Standard method results vs 

selected model prediction values of developed models are given in Figure 4.17. 
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Figure 4.17. Standard analysis vs model prediction results obtained from three different 
spectroscopic analysis. 
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Figure 4.17. Standard analysis vs model prediction results obtained from three different 
spectroscopic analysis. (cont’d) 

 

Although the lowest temperature in T5 parameter increases the dynamic range of 

calibration model and increases the R2 value shown in Figure 4.17, lowest R2 was 

obtained from the developed model for T5. Additionally, calibration graph of T5 shows 

nonlinear behavior in low temperatures. Most scattered graphs and as a result less 

successful models were obtained for IBP, T5 and flash point parameters.  

 

4.2.2. Fluorescence Analysis 

 

In this section, studies that have been conducted with light diesel samples obtained 

from crude distillation unit in İzmit Refinery.  

A total of 116 light diesel samples obtained from crude distillation unit were 

collected over a year. Distillation temperatures, API gravity and flash point of samples 

were analyzed in quality control laboratory in İzmit Refinery according to their respective 

ASTM methods. Summary of primary analysis results of collected samples is shown in 

Table 4.14.  
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Table 4.14. Data range, mean, median and standard deviation of physical properties of 
light diesel samples. 

 
Min  Max Mean Median Stdev 

IBP, oC 191.4 223.6 205.0 204.5 6.8 

T5, oC 217.3 242.2 228.1 227.5 5.4 

T10, oC 227.2 250.9 238.2 237.8 5.1 

T30, oC 246.8 267.2 257.7 257.9 4.3 

T50, oC 257.7 280.7 271.0 271.1 4.5 

T70, oC 262.1 293.4 282.5 282.7 5.5 

T90, oC 279.2 313.3 299.1 299.5 6.9 

T95, oC 281.5 326.3 308.0 308.2 8.5 

FBP, oC 291.6 338.1 318.4 317.9 9.6 

API, at 60F 34.0 39.1 37.3 37.7 1.2 

Flash Point, oC 81.0 104.0 91.1 91.0 4.8 

 

Table 4.14 indicates that properties of samples have changed during the year. 

Standard deviation of each parameter shows that lower (such as initial boiling point, IBP 

and T5) and higher cut point (T95 and FBP) of light diesel samples are the most changed 

parameters. Mean and median values show the data set has a symmetrical distribution. 

Fluorescence analysis of diesel samples were carried out in two different mode 

which are total fluorescence and synchronous fluorescence modes.  

In total fluorescence mode, emission spectrum at different excitation wavelengths 

were recorded. Since diesel samples have complex hydrocarbon molecules, emission 

spectra can change while changing the excitation wavelength. In synchronous 

fluorescence mode, both the emission and excitation wavelengths are scanned 

simultaneously. Emission and excitation wavelength are chosen at the beginning of the 

measurement along with wavelength difference which specifies increment number of 

wavelength after each scan.   

As stated in the literature lighter petroleum oils exhibit more intense emission then 

the heavier oils because of quenching process.51,52 The reason of that samples has the 

highest and lowest API values were selected to be shown. The TFS results of these two 

samples are depicted in Figure 4.18 and 4.19. 
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Figure 4.18. Total Fluorescence Spectra of light diesel sample with highest API value 

(a) 3D topographical diagram (b) contour map 

 

  

Figure 4.19. Total Fluorescence Spectra of light diesel sample with lowest API value 
(a) 3D topographical diagram (b) contour map. 

 

Although studies in literature states that lighter crude oil with higher API values 

exhibit stronger fluorescence emissions than heavier crude oils with lower API values, 

Figure 4.18 and 4.19 show the opposite. It is also stated that fluorescence emission of 

sample is not only depend on API grade, but also depend on fluorescent aromatic 

compounds.  As shown in also Figure 4.18 and 4.19, fluorescence intensity of light diesel 

sample with lowest API (Figure 4.19.a.) is higher than the sample with highest API 

(Figure 4.19.b.) Contour maps shown in Figure 4.18.b and 4.19b indicates the red-shift in 

emission maximum. The emission maximum of Figure 4.18b is located in 408 nm While 

emission maximum of Figure 4.19.b. is located around 420 nm because of enhanced 

energy transfer.  

 

 

(a) 
(

b) 

(a) 
(b) 

(b) 
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Figure 4.20. Synchronous Fluorescence Spectra of light diesel sample with highest API 
value (a) 3D topographical diagram (b) contour map. 

 

  

Figure 4.21. Synchronous Fluorescence Spectra of light diesel sample with lowest API 
value (a) 3D topographical diagram (b) contour map.  

 

The trend of a net increase in fluorescence intensity for heavier product observed 

in total fluorescence spectra is also observed in synchronous fluorescence shown in 

Figure 4.20 and Figure 4.21.  Unlike total fluorescence, synchronous fluorescence spectra 

show better defined shoulders which might contain valuable information that will be 

discussed in multivariate calibration section. This phenomenon is also stated in literature 

as in synchronous mode sample spectra does not present the artifacts due to Rayleigh and 

Raman scattering.  Similar to total fluorescence, red shift in the emission is observed upon 

going from lighter to heaver product.  

Both data sets, total fluorescence spectra and synchronous spectra, were arranged 

into matrix characterized by samples as columns and fluorescence intensities as rows to 

proceed with multivariate calibration process.  

Two different calibration approaches were performed which are Genetic Inverse 

Least squares (GILS) and Partial Least Squares (PLS) Regression. From 116 samples, a 

total of 86 were assigned as calibration set to develop model and the rest of 71 samples 

were used as independent validation set to observed prediction ability of the model.  After 

(b) 

(a) 

(b) 
(a) 
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developing PLS and GILS models for each data set, standard error of cross-validation 

(SECV), standard error of prediction (SEP) and the correlation coefficient of calibration 

curve, R2, of each parameter were calculated and compared.  Table 4.15 show multivariate 

calibration results obtained from total fluorescence spectra while Table 4.16 shows results 

obtained from synchronous fluorescence spectra of light diesel samples. 

 

Table 4.15. Multivariate calibration results of total fluorescence spectra of light diesel 
samples. 

TFS 

Mode 

Data Range 
Multivariate Calibration Results 

R
 (

A
v

g
) 

PLS GILS 

Min Max Range SECV SEP R2 LVs SECV SEP R2 

IBP, oC 191.4 223.6 28.7 3.078 4.797 0.782 8 2.191 4.635 0.893 11.3 

T5, oC 217.3 242.2 24.9 2.017 2.509 0.871 13 1.653 2.771 0.918 6.9 

T10, oC 227.2 250.9 23.7 1.491 2.289 0.920 14 1.351 2.474 0.937 5.3 

T30, oC 246.8 267.2 20.4 0.577 1.364 0.983 20 1.335 1.520 0.916 4.2 

T50, oC 257.7 280.7 23.0 0.716 1.208 0.976 17 1.031 1.351 0.952 3.0 

T70, oC 262.1 293.4 31.3 0.898 1.694 0.974 17 1.324 1.962 0.946 3.5 

T90, oC 279.2 313.3 34.1 0.748 1.434 0.988 17 1.079 1.559 0.976 4.4 

T95, oC 281.5 326.3 44.8 1.139 1.949 0.982 16 1.296 1.738 0.977 6.7 

FBP, oC 291.6 338.1 46.5 0.463 0.901 0.998 19 0.942 1.159 0.990 7.1 

API 34.0 39.1 4.9 0.161 0.332 0.982 17 0.244 0.355 0.961 3.3 

Flash 
Point, oC 

81.0 104.0 23.0 1.174 1.751 0.941 17 1.833 1.862 0.863 6.6 

 

Table 4.16. Multivariate calibration results of synchronous fluorescence spectra of light 
diesel samples. 

SFS  
Mode 

Data Range 
Multivariate Calibration Results 

R
 (

A
v

g
) 

PLS GILS 

Min Max Range SECV SEP R2 LVs SECV SEP R2 

IBP, oC 191.4 223.6 28.7 3.931 4.007 0.674 8 3.142 4.168 0.796 11.3 

T5, oC 217.3 242.2 24.9 1.762 2.614 0.893 13 1.643 2.386 0.910 6.9 

T10, oC 227.2 250.9 23.7 1.672 1.918 0.900 13 1.440 2.021 0.928 5.3 

T30, oC 246.8 267.2 20.4 0.950 1.332 0.953 16 1.175 1.169 0.931 4.2 

T50, oC 257.7 280.7 23.0 0.853 1.220 0.966 17 1.183 1.208 0.936 3.0 

T70, oC 262.1 293.4 31.3 0.860 1.667 0.967 15 1.019 1.719 0.956 3.5 

T90, oC 279.2 313.3 34.1 0.888 1.462 0.984 15 1.210 1.495 0.970 4.4 

T95, oC 281.5 326.3 44.8 1.482 1.655 0.967 12 1.387 1.652 0.972 6.7 

FBP, oC 291.6 338.1 46.5 1.545 1.063 0.974 12 1.233 1.519 0.984 7.1 

API 34.0 39.1 4.9 0.169 0.298 0.982 17 0.251 0.333 0.961 3.3 

Flash 
Point, oC 

81.0 104.0 23.0 1.627 2.221 0.893 15 1.731 2.394 0.885 6.6 
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For both total fluorescence and synchronous measurements, almost for all of the 

parameters, PLS multivariate calibration results resulted in lower standard error of 

prediction values than GILS results. When both calibration and prediction standard errors 

were analyzed separately, highest prediction errors were observed in parameters have 

higher reproducibility values. It is an expected outcome as developed models highly based 

on primary analysis results.  

When calibration results of two different fluorescence mode were compared, 

models developed from synchronous fluorescence spectra has resulted in lower 

calibration and prediction errors. This might be the results of better-defined contours with 

shoulders shown in Figure 4.20 and Figure 4.21. Standard method results vs selected 

model prediction values of developed models are given in Figure 4.22. 

 

   

   

Figure 4.22. Standard analysis vs model prediction results obtained from two different 

measurement mode of fluorescence spectroscopy.  
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Figure 4.22. Standard analysis vs model prediction results obtained from two different 
measurement mode of fluorescence spectroscopy (cont'd). 

 

Figure 4.22 shows the actual versus model prediction graphs of selected 

measurement mode and multivariate calibration algorithm for all parameters. Developed 

model of IBP are observed to have lowest R2 value which can be explained by 

reproducibility value of IBP. However, although the reproducibility value of FBP is high 

and close to reproducibility value of T5, TFS mode measurement combined with PLS 

model has resulted in best calibration models of all distillation temperatures considering 

R2 and SEP values.    

 

4.3. Straight Run Naphtha Samples 

 

In this section, studies that have been conducted with heavy straight run naphtha 

(HSRN) and light straight run naphtha (LSRN) samples obtained from three different 

crude distillation units belonging to three different refineries which are İzmit Refinery, 

İzmir Refinery and Kırıkkale Refinery. Naphtha is colorless, volatile, and flammable 

liquid obtained by distillation of crude oil in atmospheric distillation column. It is an 
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important light distillate and used as feedstock in petroleum and petrochemical industry 

such as in gasoline blending and monomer synthesis for the polymers.  

Two different types of naphtha are obtained in the process regarding as cut point 

temperatures: the first type having five to six carbon containing hydrocarbons is called 

Light Straight Run Naphtha (LSRN), the second type called Heavy Straight Run Naphtha 

(HSRN) could have six to ten carbon atoms in the molecular structure. LSRN can be used 

as a feedstock for isomerization unit while HSRN can be used as a feedstock for 

platformer unit. Both two units are designed to increase octane number of the gasoline.   

HSRN and LSRN samples were collected daily from three different crude oil units 

in three different refineries. Distillation temperatures, API gravity and vapor pressure of 

the samples were analyzed in quality control laboratory located in each refinery, 

according to their respective ASTM methods.  

In İzmit refinery, a total of 301 HSRN samples and a total of 276 LSRN samples 

were collected between May 2018 and July 2021. In İzmir refinery, a total of 281 HSRN 

samples and a total of 256 LSRN samples and were collected between August 2019 and 

September 2021. Lastly, in Kırıkkale refinery, and a total of 231 HSRN samples and a 

total of 232 LSRN samples were collected between April 2019 and September 2021. The 

distillation temperatures ranges at different recovery level (from initial boiling point (IBP) 

to final boiling point (FBP)) along with API gravity and vapor pressure are summarized 

in Table 4.8.  Distillation temperatures was obtained using ASTM D86 method, while 

API values were measured EN ISO 2719 and vapor pressure values were obtained using 

IP 394 method.  

As shown in Table 4.17, although the name of samples is the same for each 

refinery, the physical properties of samples differ from each other. When the distillation 

curves were investigated, although HSRN samples of İzmir refinery has the lowest initial 

boiling point, final boiling point of HSRN samples is not much different from other 

refineries. The HSRN samples produced by İzmir refinery contain a wider variety of 

chemical structures than other refineries when considering the difference between the 

initial boiling point and final boiling point. Considering standard deviation of each sample 

groups, there is less production variation in Kırıkkale refinery. Distillation temperatures 

of HSRN samples are expected to be higher than LSRN samples, since they obtain 

hydrocarbons with a higher carbon number. However, in İzmir refinery, final boiling 

point of LSRN samples is higher than HSRN samples. The reason of that is the design of 

naphtha splitter in CDU have been designed differently in İzmir refinery in accordance 
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with the production. It is also known that, in İzmit and İzmit refinery, number of different 

crude oil which are processed in crude distillation units higher than Kırıkkale Refinery. 

Because of this reason, physical properties of samples produced in Kırıkkale refinery do 

not change as much as other refineries.   
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Table 4.17. Data range, average and standard deviation of physical parameters of all refinery’s naphtha samples. 

    Min Max Mean 
Standard 
deviation 

  Min Max Mean 
Standard 

deviation 
  Min Max Mean 

Standard 

deviation 

 

IBP, oC 
İz

m
it

 H
S

R
N

 
81 107.6 93.5 4.9 

İz
m

ir
 H

S
R

N
 

35.3 65.5 45.8 3.9 

K
ır

ık
k

a
le

 H
S

R
N

 

84.4 102.5 93.2 3.3 

T5, oC 93.1 112 101.8 3.2 66.4 87 76.1 3.5 96.1 110.3 102.9 2.4 

T10, oC 96.5 113.4 103.9 2.9 77.5 94.5 84.1 3.1 99.6 112.4 105.2 2.2 

T30, oC 103.7 117.2 109.9 2.5 89 115.5 97.5 4.1 106.2 119 111.7 2.2 

T50, oC 111.2 124.1 117.2 2.6 95.7 132 107.2 5.4 113.5 128.1 120.5 2.5 

T70, oC 119.4 135.1 126.6 3.4 101.8 147.7 116.1 6.6 122.8 142.4 132.6 3.3 

T90, oC 130.9 150.5 139.5 4.3 110 171.7 126.6 7.9 136.5 160.6 148.9 3.9 

T95, oC 135.8 157.1 144.6 4.7 113.8 184.5 130.7 8.7 141.8 167.6 155.6 4.1 

FBP, oC 144.4 172.3 155.3 5.2 124.6 206.3 140.5 10 151.6 183.1 167.5 4.1 

API 55.4 61.8 59.3 1.1 56.3 66.7 63.2 1.4 56.2 60.2 58.4 0.8 

IBP, oC 

İz
m

it
 L

S
R

N
 

25.9 37.5 33 2.1 

İz
m

ir
 L

S
R

N
 

30.8 43.9 37.5 2.6 

K
ır

ık
k

a
le

 L
S

R
N

 

22 35.5 29.7 1.6 

T5, oC 33.4 46.7 42 2 43.6 62.2 55.7 3.6 30 44.2 36.8 1.8 

T10, oC 36 48.4 43.9 1.9 50.8 68.5 62.3 3.2 40 46.1 38.7 2.8 

T30, oC 41.1 53.1 48.2 2.1 69.7 86.8 80 3 35.5 50.3 43.8 1.5 

T50, oC 45.2 60.9 53.4 2.7 89.8 106.2 98.6 3.3 40.1 55.2 49.1 1.5 

T70, oC 49.2 70.4 61 3.4 108.5 126.2 117.3 4.1 45.8 61.3 55.4 1.7 

T90, oC 59.8 86.8 73.3 4.5 130 161.7 141.1 6.9 57.1 68.4 63.7 1.2 

T95, oC 64.6 97.8 79.5 6 138 178.7 151.4 8.3 62 70.9 65.8 1.2 

FBP, oC 67.9 115.7 91.9 7.4 148.6 195.3 167.7 9.8 66.1 80.7 70.8 2.4 

API 79.2 86.7 82.7 1.4 63 73.1 67.8 1.2 81.4 89.7 85.8 0.9 

V.P.,  oC 69.5 106.9 80.9 5.5 32.9 66.1 44.3 5.4 82.6 122.9 97.7 5.3 
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4.3.1. FT-NIR Spectroscopic Analysis Results 

 
Figure 4.23, 4.24 and 4.25 shows raw FT-NIR spectra of İzmit, İzmir and 

Kırıkkale refinery, respectively, in each figure, spectra on the left side belongs to HSRN 

samples while on the right side belongs to LSRN samples.  

 

Figure 4.23. FT-NIR spectra HSRN(a) and LSRN(b) samples belongs to İzmit Refinery. 
 

 

  

Figure 4.24. FT-NIR spectra HSRN(a) and LSRN(b) samples belongs to İzmir Refinery. 
 

 

  

(a) 
(b) 

(a) (b) 



 

64 
 

  

Figure 4.25. FT-NIR spectra HSRN(a) and LSRN(b) samples belongs to İzmir Refinery. 

 

 

When FT-NIR samples of naphtha samples were investigated, some differences 

were observed as shown in Figure 4.23, 4.24 and 4.25. Firstly, in Figure 4.24, which 

belongs to samples in İzmit refinery, although 4500-4000 cm-1 spectral range shows 

significant spectral variations, it contains no useful spectral information due to the strong 

saturation of NIR radiation. However, in Figure 4.24 and 4.25, no such strong saturation 

was observed. The main reason of the difference is that two differen t brands of 

spectroscopy were used in this study which are Bruker and Perkin Elmer.  Due to strong 

saturation, spectral range of 4500-4000 cm-1 were removed from data set belongs to İzmit 

refinery. Also, 12000-9000 cm-1 ranges were also removed from the same data set since 

no infrared absorption was observed between these spectral ranges. 

In addition, in each obtained spectrum, significant baseline shifts were observed. 

However, effect of baseline shifts was also differing from refinery to refinery. Baseline 

shift is observed more in refineries, where product composition changes more. That is 

why, among the sample measurements, the least baseline shift problem is seen in the 

sample measurements obtained from Kırıkkale refinery. Extended Multiplicative Scatter 

Correction (EMSC) pre-processing method was applied to each data set to enhance signal 

properties and suppress unwanted variations before multivariate calibration and shown in 

Figure 4.26, 4.27 and 4.28. 

 

 

 

(a) (b) 
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Figure 4.26. EMSC corrected FT-NIR spectra HSRN(a) and LSRN(b) samples belongs 
to İzmit Refinery 

 

 

  

Figure 4.27. EMSC corrected FT-NIR spectra HSRN(a) and LSRN(b) samples belongs 

to İzmir Refinery 
 

  

Figure 4.28. EMSC corrected FT-NIR spectra HSRN(a) and LSRN(b) samples belongs 
to Kırıkkale Refinery 

 

(a) 
(b) 

(a) 
(b) 

(a) 
(b) 
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To EMSC corrected spectral data shown in Figure 4.26, 4.27 and 4.28 two 

different calibration approached were performed which are Genetic Inverse Least squares 

(GILS) and Partial Least Squares (PLS) Regression.  

From 301 HSRN samples belongs to İzmit Refinery, a total of 230 samples were 

assigned as calibration set to develop model and the rest of 71 samples were used as 

independent validation set to observed prediction ability of the model.  From 276 LSRN 

samples belongs to İzmit Refinery, a total of 210 samples were assigned as calibration set 

to develop model and the rest of 66 samples were used as independent validation set to 

observed prediction ability of the model 

From 281 HSRN samples belongs to İzmir Refinery, a total of 210 samples were 

assigned as calibration set to develop model and the rest of 71 samples were used as 

independent validation set to observed prediction ability of the model.  From 256 LSRN 

samples, a total of 192 samples were assigned as calibration set to develop model and the 

rest of 64 samples were used as independent validation set to observed prediction ability 

of the model 

From 231 HSRN samples belongs to Kırıkkale Refinery, a total of 175 samples 

were assigned as calibration set to develop model and the rest of 56 samples were used as 

independent validation set to observed prediction ability of the model.  From 232 LSRN 

samples a total of 175 samples were assigned as calibration set to develop model and the 

rest of 57 samples were used as independent validation set to observed prediction ability 

of the model. 

After developing PLS and GILS models for each data set, standard error of cross-

validation (SECV) and standard error of prediction (SEP) values of each parameter were 

calculated and compared. For each parameter, best multivariate calibration method was 

chosen according to lowest SECV and SEP values. Calculated standard error of 

calibration and standard error of validation parameters along with name of the standard 

method and reproducibility values for final selected models for EMSC pre-processed  

FT-NIR spectra for HSRN and LSRN samples of each refinery is given in Table 4.18. 

Calculated reproducibility values for straight run naphtha based on standard method are 

given in Table 4.19. Letter i in Table 4.19 represents ith sample for calculation. In Table 

4.18, parameters those with LV means PLS models were selected. 
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Table 4.18. Multivariate Calibration results along with name of the standard method and number of latent variables. 

Parameters 
 

SECV SEP R2  LV  
  

SECV SEP R2 LV  
  

SECV SEP R2 LV  
  

IBP, oC 
İz

m
it

 H
S

R
N

 
0.966 1.482 0.962 - 

İz
m

ir
 H

S
R

N
 

1.834 2.688 0.711 - 

K
ır

ık
k

a
le

 H
S

R
N

 

0.708 1.295 0.959 12 

T5, oC 0.553 0.787 0.972 - 1.204 1.658 0.868 - 0.405 0.799 0.977 - 

T10, oC 0.462 0.625 0.976 - 0.571 0.832 0.964 - 0.268 0.688 0.988 - 

T30, oC 0.315 0.507 0.985 - 0.292 0.461 0.995 - 0.278 0.531 0.986 - 

T50, oC 0.268 0.511 0.990 - 0.276 0.467 0.997 - 0.219 0.480 0.993 - 

T70, oC 0.330 0.808 0.991 - 0.361 0.538 0.997 - 0.207 0.519 0.996 - 

T90, oC 0.457 0.967 0.989 - 0.428 0.741 0.997 - 0.387 0.637 0.990 - 

T95, oC 0.605 1.293 0.984 - 0.550 0.910 0.995 - 0.573 0.785 0.979 - 

FBP, oC 1.134 1.968 0.951 - 1.764 3.031 0.949 - 1.258 1.507 0.895 - 

API 0.075 0.135 0.996 - 0.146 0.312 0.988 - 0.082 0.131 0.988 - 

IBP, oC 

İz
m

it
 L

S
R

N
 

0.642 0.810 0.905 11 

İz
m

ir
 L

S
R

N
 

0.660 1.051 0.938 - 

K
ır

ık
k

a
le

 L
S

R
N

 

0.791 0.942 0.722 - 

T5, oC 0.293 0.458 0.980 - 0.788 1.084 0.945 11 0.263 0.468 0.977 - 

T10, oC 0.256 0.368 0.983 - 0.591 0.730 0.967 11 0.173 0.336 0.988 - 

T30, oC 0.230 0.353 0.988 - 0.383 0.686 0.985 - 0.122 0.252 0.994 - 

T50, oC 0.239 0.391 0.993 - 0.341 0.665 0.990 - 0.158 0.397 0.992 - 

T70, oC 0.262 0.422 0.995 - 0.302 0.643 0.995 - 0.146 0.390 0.993 - 

T90, oC 0.485 0.903 0.989 - 0.773 1.463 0.989 - 0.158 0.326 0.983 - 

T95, oC 0.721 1.261 0.986 - 0.955 1.950 0.989 - 0.211 0.411 0.972 - 

FBP, oC 0.821 2.176 0.987 17 2.451 3.519 0.933 - 1.117 1.661 0.761 - 

API 0.124 0.185 0.992 - 0.060 0.183 0.997 - 0.104 0.212 0.989 - 

V.P., oC  0.570 0.896 0.990 - 1.036 1.834 0.964 - 0.972 1.448 0.967 - 
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Table 4.19. Reproducibility value calculation for naphtha calculations based on standard 
method. 

Parameters 
Straight Run Naphtha 

Reproducibility, oC 

IBP 4.7 

T5 2.5+2.8(0.43((T10i - IBPi) /10) +0.24) 

T10 1.9+2.8(0.43((T20i - T5i)/15) +0.24) 

T20 1.9+2.8 (0.43 ((T30i - T10i)/15) +0.24) 

T30 1.8+2.8(0.43((T40i- T20i)/20) +0.24) 

T40 1.8+2.8(0.43((T50i- T30i)/20) +0.24) 

T50 1.9+2.8(0.43((T60i- T40i)/20) +0.24) 

T60 1.9+2.8(0.43((T70i- T50i)/20) +0.24) 

T70 2.1+2.8(0.43((T80i- T60i)/20) +0.24) 

T80 2.1+2.8(0.43((T90i- T70i)/20) +0.24) 

T90 2.8+2.8(0.43((T95i- T80i)/15) +0.24) 

T95 3.6+2.8(0.43((FBPi - T90i)/8) +0.24) 

FBP 7.1 

API 0.5 

Vapor P. 0.01014(Vapor P.i +160) 

 

As shown in Table 4.18, for most of the parameters, GILS models have been found 

as the best model. When three refineries were compared, for almost all parameters, lowest 

error values were found in samples which belongs to İzmit refinery. This can be explained 

by the sample collection times. Measurements in İzmit refinery have been performed 

daily for three years, which is a year longer than other refineries. Since extending 

sampling time results in more sample variation in data set, more robust models are 

obtained in İzmit refinery samples than other refineries. Highest SEP values are observed 

in IBP and FBP. This can be explained by reproducibility values of standard methods. 

Reproducibility values of IBP and FBP are higher than other parameters hence these 

models give the highest standard errors.  

After developing multivariate calibration models for HSRN and LSRN samples 

for each refinery, models were uploaded to each laboratory and performance of model 

predictions has started to be observed. Predictions were made with new samples produced 

in refineries daily. Developed model performances with blind unknown samples are 

presented in the graphs below. For each sample group, two different graphs are presented. 

Graphs on the left side represent the laboratory results for given parameters. Orange 
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points represent reference values obtained from standard method while blue points 

represent model predictions. Graphs on the right side shows the difference between actual 

and model prediction values. Red lines represent the reproducibility value of standard 

method. Model performance of given parameters have been evaluated with 

reproducibility value of standard methods. 

Considering the multitude of graphics, the results are presented under the headings 

in order to avoid confusion. 

 

4.3.1.1. İzmit Refinery – Sample Predictions 

 
In İzmit refinery, predictions of developed multivariate calibration models for 

HSRN and LSRN samples had been observed for 87 days and results are shown in Figure 

4.29 for HSRN samples and in Figure 4.30 for LSRN samples.  

 
 

 
 

 
 

 
 

Figure 4.29. Model predictions of HSRN samples belongs to İzmit Refinery.  
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Figure 4.29. Model predictions of HSRN samples belongs to İzmit Refinery (cont’d). 
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Figure 4.30. Model predictions of LSRN samples belongs to İzmit Refinery. 
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Figure 4.30. Model predictions of LSRN samples belonging to İzmit Refinery (cont’d). 
 

In HSRN sample predictions, except for a few samples, it was observed that the 

difference between the laboratory result and the model estimates never exceeded the 

laboratory reproducibility value, which is shown as a red line on the left side. When the 

results are examined closely, it was observed that high erroneous results were obtained in 

distillation temperature and API predictions on the same days which are day 43 and day 

46. and unusual spectra, compared to other samples, was observed for both days wh ich 

indicated that a human error was made during the spectroscopic measurements.   

When all parameters were examined in LSRN sample predictions, successful 

predictions have been obtained for all 87 days.  
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4.3.1.2. İzmir Refinery –Sample Predictions 

 
In İzmir refinery, predictions of developed multivariate calibration models for 

HSRN and LSRN samples had been observed for 76 days and results are shown in Figure 

4.31 for HSRN samples and in Figure 4.32 for LSRN samples.  

 

 

 
 

 
 

 
 

 
 

 
 

Figure 4.31. Model predictions of HSRN samples belongs to İzmir Refinery .  
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Figure 4.31. Model predictions of HSRN samples belongs to İzmir Refinery (cont’d). 
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Figure 4.32. Model predictions of LSRN samples belongs to İzmir Refinery. 
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Figure 4.32. Model predictions of LSRN samples belongs to İzmir Refinery (cont’d). 
 

In HSRN sample predictions, except for final boiling point predictions, successful 

predictions were obtained when difference between reference analysis and model 

predictions compared to reproducibility value. However, in initial boiling point, it has 

been observed that systematic errors are obtained, and the results always give positive or 

negative errors. The model is not completely reliable because the errors do not come in a 

normal distribution. When final boiling point predictions were observed, high error in 

some days was observed. Considering high SEP values shown in Table 4.18 for İzmir 

HSRN multivariate calibration results, low prediction ability for this parameter can be 

explained.  

Similar to HSRN samples, predictions of FBP of LSRN samples also have higher 

residuals than reproducibility values. Until day 54, reference values and predictions of 

vapor pressure are not always compatible with each other, and their difference is obtained 
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more than the reproducibility value. This situation had been studied closely. First, sample 

spectra were examined, and no significant difference was observed. It was expected since 

if the wrong spectrum was taken that day, we should have seen high error values on other 

days as well. Another possibility was that dynamic range of developed models did not 

cover this range. When max and min values of vapor pressure in Table 4.18it can be seen 

that reference values were obtained between these values. The other possibility is that 

unsuccessful multivariate calibration models have been installed.  The models were 

revised by adding samples with high deviation, but these values still gave a high cross 

validation error in the model. Lastly, laboratory reference analysis was check. Before 

performing the vapor pressure analysis, the sample bottle needs to be cooled in cooling 

cabinet for a few hours. It was noticed that on some days the analysis took place without 

cooling the sample sufficiently. Starting from day 54, before performing laboratory 

analysis, it was ensured that the sample bottle was cold and as can be seen in the last 

graph in Figure 4.32, successful predictions had been obtained since then. 

 

4.3.1.3. Kırıkkale Refinery –Sample Predictions 

 
In Kırıkkale refinery, predictions of developed multivariate calibration models for 

HSRN and LSRN samples had been observed for 60 days and results are shown in Figure 

4.33 for HSRN samples and in Figure 4.34 for LSRN samples. 

 

 
 

 
 

Figure 4.33. Model predictions of HSRN samples belongs to Kırıkkale Refinery. 
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Figure 4.33. Model predictions of HSRN samples belongs to Kırıkkale Refinery (cont’d). 
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Figure 4.33. Model predictions of HSRN samples belongs to Kırıkkale Refinery (cont’d) 
 

 

 
 

 
 

 
 

 
 

 
 

Figure 4.34. Model predictions of LSRN samples belongs to Kırıkkale Refinery.  
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Figure 4.34. Model predictions of LSRN samples belongs to Kırıkkale Refinery (cont’d) 
 

In HSRN samples, successful predictions had been obtained until day 36. Except 

for T5 and API, residuals between reference values and predictions were started to 

increase day by day. While the IBP model started to give result in lower values, the other 
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parameter model results were systematically reported always higher than the reference 

values. When the same trend is observed in LSRN samples, it was assumed that the 

product composition has changed due to different crude oil is started to be processed. 

However, planning instructions were reviewed, and it was found that no new crude oil 

was processed at the refinery. Sample spectra was also observed and PCA analysis was 

performed. It was observed that sample spectra of those days were grouped in a different 

place on the PCA score graph. This proved that these sample spectra were 

compositionally different. Reason of compositional change was investigated, and it was 

realized that the solvent, which is used in cell cleaning between sample measurements, 

has run out and a new one has not been placed. It is also known that, beside naphtha 

samples, also spectra of kerosene samples are collected in the same FT-NIR spectroscopy. 

Since the cell cannot be cleaned sufficiently, the kerosene sample remains inside, and the 

model results report high values because the kerosene sample is a heavier product than 

naphtha. when the solvent bottle is replaced with a new one, successful predictions began 

to be obtained again. 

As a result of successful model predictions, laboratory reference analyzes were 

reduced in each refinery and reporting with model results began. Physical properties of 

HSRN and LSRN samples which are produced daily in crude distillation units are now 

reported using developed multivariate calibration models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

82 
 

CHAPTER 5 

 

CONCLUSION 

 

In this thesis, a new methodology to determine physical and chemical properties 

of petroleum products obtained from actual refining process crude distillation units using 

different spectroscopic methods along with chemometrics were developed.   

Three different spectral analyses were conducted and developed multivariate 

calibration models were compared for heavy and light diesel samples, separately. Having 

a more complex chemical composition resulted in successful calibration models that have 

high predictive ability for most of the quality parameters of UV-Vis spectroscopy for 

heavy diesel samples. However, when same comparison was performed with light diesel 

samples, vibrational spectroscopy, FT-NIR and FTIR-ATR, was found to have low 

prediction errors. In both cases, GILS algorithm showed better predictive ability 

compared to PLS algorithm for low distillation temperatures and FT-NIR spectral data 

were selected to develop API gravity.  

Fluorescence spectroscopy had been used in two different modes for measurement 

of light diesel samples obtained from crude distillation unit. It was observed that 

fluorescence intensity of samples with lower API grade show high fluorescence intensity 

in both measurement mode. Since there is no information about chemical composition of 

samples, it can be only assumed that samples with low API value have more fluorescent 

aromatic compounds. Synchronous fluorescence spectra showed more sharped and 

detailed information of light diesel samples. Multivariate calibration results were both 

compared as well as fluorescence measurement modes. PLS multivariate calibration 

results for both spectral analysis modes have resulted in lower standard error o f prediction 

for most of the parameters. It was also concluded that better calibration models obtained 

from synchronous fluorescence spectra.  

Studies that have been conducted with heavy straight run naphtha (HSRN) and 

light straight run naphtha (LSRN) samples obtained from three different crude distillation 

units belonging to three different refineries which are İzmit Refinery, İzmir Refinery and  

Kırıkkale Refinery have been also presented. Spectroscopic measurements and laboratory 
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analysis were carried out in refineries where naphtha products are produced. A total of 

six different data sets were obtained from two different naphtha and 3 different refineries. 

Two different multivariate calibration approached were applied to EMSC corrected  

FT-NIR spectra of six different data set and best model for each parameter was chosen 

according to lower SECV and SEP values. Each developed model was used to predict 

features of new samples produced in refineries. These predictions, made with blind 

unknown samples, were followed daily at each refinery and prediction performance of 

multivariate calibration models were observed. In every refinery, successful model 

predictions were obtained for HSRN and LSRN samples. 

The successful results obtained from the developed models were found suitable 

for use as an alternative method to routine analyzes in Tüpraş refinery laboratories.  While 

reporting with model results, it is important to monitor whether there is a significant 

change in the type of crude oil processed in the crude oil distillation unit, the dynamic 

ranges of the parameters and the operational conditions. Important operational changes 

may cause the model prediction success to decrease, the models should be revised and 

the change in the product should be introduced to the new models. 
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