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A B S T R A C T
Stiffness model acquisition of over-constrained parallel mechanisms is relatively difficult since
they have more than necessary kinematic loops. In this study, a stiffness modeling solution for
over-constrained parallel mechanisms is proposed while considering the computational cost ef-
ficiency. Three contributions of the paper are: (1) Presenting the stiffness modeling procedure
for serially connected closed-loop structures by using the Virtual Joint Method (2) Consider-
ing the effect of dynamic auxiliary forces and dynamic external forces on the mobile platform’s
deflection and achieving a direct solution by using superposition principle (3) A model fitting
procedure for modifying the stiffness coefficients to comply with the experimental data. A 2
degrees-of-freedom over-constrained parallel mechanism is investigated as a case study. How-
ever, the proposed stiffness model is 6-DoF since compliant deflections occur in any direction.
A finite element analysis and an experimental study verify the model’s results.

1. Introduction
Linkages with high stiffness are desired in the construction of industrial mechanisms to minimize compliant deflec-

tions for maintaining accuracy and precision. Stiff linkages result in bulky structures. In return, the system’s inertia,
power requirements, and electricity cost increase. On the other hand, low-power actuators limit the acceleration of the
mechanism and increase the operation time. A solution is to utilize lightweight linkages and address the compliance
problem by incorporating the stiffness characteristics of the mechanism in the control system. This work explores the
possibility of using a stiffness model within the control system in real time.

Researchers have focused on three stiffness analysis methods of mechanisms. These are the finite element analy-
sis (FEA), the structural matrix analysis (SMA), and the virtual joint method (VJM). The FEA is the most accurate
method due to its higher number of meshes and iterative computation methodology. However, the FEA is computa-
tionally intensive and not applicable in a real-time control loop. In addition, each linkage must be re-meshed in every
configuration change [1]. The SMA is a faster method with fewer meshes and nodes [2]. A simple beam can be mod-
eled with nodes represented by a 12 × 12 stiffness matrix. A higher number of nodes and several limbs of a parallel
manipulator may result in higher dimensional matrices which are challenging in analytical computations [3, 4].

The VJM locates a single node on each link resulting in a 6 × 6 stiffness matrix per link. Therefore, it is also
called lumped method approach. The stiffness properties are lumped on a 6 degrees-of-freedom (DoF) virtual joint (or
virtual spring) [4–9]. The smaller size of local stiffness matrices and fewer variables make the VJM the simplest and
the fastest method. It is also easier to obtain an analytic stiffness model. This way, a small force-to-deflection ratio
can be computed in one computation step. Both the SMA and the VJM generally adopt coordinate transformations;
however, strain energy with Castigliano’s theorem is used to avoid these transformations. The loss in the computation
accuracy with the VJM and the SMA versus the FEA is about 1%, as reported in [10–12]. The gain in computation
efficiency for 1% of accuracy loss is about 99.998% as reported in [10] in which the VJM is used to compute the
deflections in 0.5 ms. Similarly, a solution of the SMA is obtained in 10 ms in [13].

Stiffness modeling methods have been well-established for serial manipulators which have a single kinematic chain.
On the other hand, parallel manipulators have internal stresses, passive joints, and several closed kinematic loops.
These increase the complexity of the problem because the contribution of each limb to the stiffness must be considered
simultaneously [4, 14, 15]. In addition, auxiliary wrenches on each link should be distributed throughout the bodies of
the manipulator that are solved by iterative computations [3]. Nonetheless, parallel mechanisms are known to possess
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high positioning accuracy compared to serial mechanisms [16, 17]. Over-constrained parallel mechanisms (OCPM)
are usually preferred over simply-constrained parallel mechanisms (SCPM) for their higher stiffness [4, 18, 19]. It
is also reported that OCPMs have good repeatability [20]. OCPMs have more joints/links than required, which may
increase the number of closed kinematic loops, internal stresses, and the number of joints when compared to SCPMs.
Also, the manipulator becomes statically indeterminate, which makes it challenging to compute the distribution of the
external load on the links; thus, the compliant deflections.

In [21], Hu and Huang obtained the stiffness model of a 2RPU-UPR (U=universal joint, P=prismatic joint, R=re-
volute joint) OCPMs. Stiffness analysis for a class of OCPMs with US (S=spherical joint) and UPS limbs is formulated
in [22]. Ding et al. [23] analyzed the accuracy of an over-constrained Stewart platform with actuation stiffness. Yang
et al. [11, 12] obtained the stiffness model of 2UPR-RPU and 2PUR-PSR OCPMs via strain energy computation
by achieving 0.8% and 1.3% accuracy loss compared to the FEA. Cao et al. [24, 25] obtained the stiffness model of
OCPMs by using an energy method with less than 3% accuracy loss. Cao et al. [26] extended the approach considering
the weights of the links in which the weight of each limb is distributed between the mobile platform frame and the
base.

The manipulators in the studies above have serial kinematic structures in their limbs. Differently, Sun et al. [27]
acquired the stiffness model of a 2-DoF rotational parallel mechanism in which each limb has a closed-loop kinematic
chain considering the external wrenches and link weights. Cammatra [28] included the joint flexibility and pre-loading
at joints for the manipulators with closed-loop chains such as parallelograms in their limbs resulting in 3% accuracy
loss. Pashkevich et al. [4] derived the stiffness model of the 3-DoF Orthoglide parallel manipulator in which each limb
has a single parallelogram. Nonetheless, the case for consecutive connections of closed-loop chains is not investigated.
Later, auxiliary forces on each link are considered, and the effect of each force on the mobile platform’s compliant
deflection is determined via an iterative solution since the interaction between the limbs must be considered [3]. Finally,
Klimchik et al. [29] derived the stiffness model of NAVARO II. In [29], the connection method of multiple closed-loop
chains is illustrated for an external wrench on the mobile platform via SMA; however, the dimensions of the matrices
to be computed were relatively high. The fundamentals of the SMA methodology are given in [13].

In this paper, we focus on the stiffness formulation of a 2-DoF planar OCPM by using the VJM. However, the
stiffness model is 6-DoF since the compliance may occur in any direction. The novelty and the contribution of this
work to the literature on mechanisms and machine science are explained as follows:

(1) The inspected mechanism contains a serial connection of closed loops at its limbs, namely, the serial connection
of two parallelograms. To our knowledge, the VJM is applied for a parallelogram loop connected to a distal link at one
node, but a serial connection of two parallelograms in which the connection occurs at two nodes is not studied. This
proposed stiffness modeling solution method constructs the basis for the serial connection of closed-loop sub-chains.

(2) In the literature, external wrenches at the mobile platform and auxiliary forces on the links are assumed to be
caused by the payload/physical interaction and the weight of the links, respectively. In this study, auxiliary loads due
to the acceleration of bodies are considered. In [3], weights of the links are considered which can be extended for the
dynamic cases. However, the solution relies on iterative computations to converge an equal deflection of all limbs at
the mobile platform frame. Without iteration, there is no way to conclude how the weight of a limb affects the other
limbs’ deflection. In our proposed method, we construct a stiffness model for each auxiliary frame and compute their
deflections. Since the joint space deflections are directly obtained, the deflection of all limbs and mobile platform
frame are directly computed. Finally, the superposition principle is adopted to compute the resultant deflection. In
addition, deflections caused by gravity generally refer to a static case problem. Our aim is to use the stiffness model
in a control loop to enhance the deflection performance caused by non-gravitational acceleration. Hence, developing
a computationally efficient model is necessary. We also show how to lump the masses directly on the loading frames.
In our case study, 11 moving bodies’ masses are lumped on two auxiliary and one mobile platform frame.

(3) A model fitting procedure to comply with the experimental load/deflection tests is introduced. Several unknown
correction gain parameters are defined for model fitting, in which their values are determined via an optimization
process. These gain parameters are formed so that the configuration and non-configuration-dependent values of the
stiffness matrix elements can be captured.

This work aims to acquire a compliance model of OCPMs that is computationally efficient and can be used in
a real-time control loop. The application of the proposed methodology is straightforward once the initially required
matrices and vectors are defined. The procedure avoids defining a specific stiffness matrix for each link depending
on its DoF and constraints. The results of the FEA and the VJM are compared to validate the stiffness model and to
evaluate the computation time performance. Finally, the stiffness model parameters are updated via an experimental
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procedure. The results indicate a good model fit for the mechanism’s stiffness characteristics.

2. Stiffness Modeling via the Virtual Joint Method
This section gives brief information for the stiffness modeling of parallel mechanisms via the VJM as explained in

detail in [14] and a glossary given in below. This generic formulation may be adapted to the exceptional cases of the
problem at hand. These are highlighted in the case study in Section 3.

Nomenclature
Variables Notation
𝜃 Virtual joint variable 𝑀 A scalar M variable
𝜑 Rotary joint variable 𝑀̄ M in column matrix form
𝑑 Distance 𝑴 M in matrix Form
𝑙 Link length Δ𝑀̄ Change in 𝑀̄
𝑘 Stiffness coefficient
Column Matrices (CM) Matrices
𝑋̄ Task space position in Cartesian coordinates 𝑱 Jacobian
𝐹 Force and torque components 𝑲 Stiffness
𝑞𝑎 CM of active joints variables 𝑪 Compliance
𝑞𝑝 CM of passive joint variables 𝑯 Homogeneous Transformation
𝜃̄ CM of virtual joint variables 𝑹 Homogeneous Pure Rotation
𝑄̄ CM of all joint variables 𝑻 Homogeneous Pure Translation
Sub-indices indicate the component is belong to or derived with respect to
𝑖 ith limb 𝐴 Frame A
𝑝 Passive joint 𝐵 Frame B
𝑎 Active joint 𝐸 Mobile platform frame E
𝜃 Virtual joint 𝐸𝑞. Equivalent model
𝐿 Kinematic loop 𝐸𝑞(𝐴𝑐𝑡𝑖𝑣𝑒) Eq. Active Parallelogram
𝑥, 𝑦, 𝑧 x, y, and z coordinate axes 𝐸𝑞(𝑃𝑎𝑠𝑠𝑖𝑣𝑒) Eq. Passive Parallelogram

In the VJM, compliant deflections are small enough to assume Δ𝑋̄𝑖 ≈ 𝑱 𝑖Δ𝑄̄𝑖 where Δ𝑋̄𝑖 is the change in position
vector of the inspected frame, Δ𝑄̄𝑖 is the change in joint space variables, and 𝑱 𝑖 is the Jacobian matrix of the 𝑖th limb
in a parallel manipulator. Bar notations indicate the column matrix format. The compliant deflection, applied load,
and passive joint’s zero-stiffness-effect for the 𝑖th limb are constructed in the following block matrix format:

[

(𝑱 𝜃𝑖𝑲−1
𝜃𝑖 𝑱

𝑇
𝜃𝑖) 𝑱 𝑝𝑖

𝑱 𝑇
𝑝𝑖 𝟎

] [

𝐹𝑖,𝑒𝑥𝑡
Δ𝑞𝑝𝑖

]

=
[

Δ𝑋̄𝑖
0̄

]

(1)

where 𝑱 𝜃𝑖, and 𝑱 𝑝𝑖 are the Jacobian matrices that are obtained by taking the partial derivative of the forward kinematic
with respect to virtual, and passive joint variables. Accordingly, 𝜃 and 𝑝 subscripts reflect the relation for virtual, and
passive joint variables. [𝑲𝜃𝑖]6𝑛×6𝑛 denotes the non-diagonal structural stiffness matrix belonging to the 𝑖th limb that
has 𝑛 links each defined in their respective link’s frame. [𝐹𝑖,𝑒𝑥𝑡]6×1 is the external force/torque vector carried by the 𝑖th
limb. 𝑞𝑝𝑖 contains passive joint variables. 𝟎 in the left-hand side matrix contributes the zero-stiffness effect of passive
joints.

The matrix at the left-hand side of Eq. 1 is a compliance matrix of the virtual and passive joints, namely 𝑪 𝑖. Taking
the inverse of this matrix produces a stiffness matrix including the combined characteristics of the virtual and passive
joints. A sub-matrix is extracted from the inverted 𝑪 𝑖 matrix which is a rank-deficient structural stiffness matrix, 𝑲 𝑖.This rank deficiency is a result of passive joints’ zero-stiffness effect. The inversion is shown as follows:

𝑪 𝑖 =
[

(𝑱 𝜃𝑖𝑲−1
𝜃𝑖 𝑱

𝑇
𝜃𝑖) 𝑱 𝑝𝑖

𝑱 𝑇
𝑝𝑖 𝟎

]

⇒ 𝑪−1
𝑖 =

[

[𝑲 𝑖]6×6 ∼
[𝑲𝑝𝑖] ∼

]

(2)

where upper-left 6 × 6 sub-part of the above inversion contains the desired Cartesian stiffness matrix, 𝑲 𝑖. 𝑲𝑝𝑖 gives
the relation between the compliant deflections and passive joint motion. The compliance matrix is a function of joint
variables. If the manipulator is not in a singular configuration or does not go into a singular pose after a compliant
deflection, 𝑪 𝑖 is always invertible. The latter can occur in an iterative solution process.
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In parallel mechanisms, limbs are represented as a 6-DoF spring. Parallel connected springs are directly summed
up to compute the equivalent spring model as shown in Eq. 3. It is assumed that external force 𝐹𝑒𝑥𝑡 is known but
the distribution of this force on the limbs is yet to be determined. Since all the limbs are connected at one node, the
deflections are all equal. After solving Eq. 4 for Δ𝑋̄, loads carried by each limb are computed as shown in Eq. 5.

𝑲 =
𝑛
∑

𝑖=1
𝑲 𝑖, 𝐹𝑒𝑥𝑡 =

𝑛
∑

𝑖=1
𝐹𝑖,𝑒𝑥𝑡, Δ𝑋̄ = Δ𝑋̄1 = Δ𝑋̄2 = ... = Δ𝑋̄𝑛 (3)

𝐹𝑒𝑥𝑡 = 𝑲Δ𝑋̄ (4)
𝐹𝑖,𝑒𝑥𝑡 = 𝑲 𝑖Δ𝑋̄ (5)

where 𝐹𝑒𝑥𝑡 external wrench applied on the mobile platform. 𝑲 is the structural stiffness matrix of the manipulator.
Note that the matrix 𝑪 𝑖 is expressed symbolically. Computers may not handle this inversion operation. To obtain

a quick solution, a numeric recursive computation is required.
The initial computation step of virtual joint variable column matrix, 𝜃̄𝑖 = 0̄ in 𝑱 𝜃𝑖.This first assignment gives a solution in which the external force/torque is distributed on the flexible bodies with

respect to the undeflected states of the links. As the manipulator experiences a compliant displacement, the force/torque
distribution changes accordingly. A back-substitution of the virtual and passive joint variables is required to consider
this effect.

Once the compliant deflection, Δ𝑋̄, is computed, Eq. 5 can be used. Solution of Eq. 6 gives the new 𝜃̄(𝑘+1)𝑖 where
𝑘 is the iteration number for 𝑘 = 0, 1, .... Superscript (0) denotes the state when there is no load on the manipulator.
Finally, Eq. 7 gives the relaxation of passive joints.

𝑲𝜃𝑖(𝜃̄
(𝑘)
𝑖 , 𝑞(0)𝑎𝑖 , 𝑞

(𝑘)
𝑝𝑖 )[𝜃̄

(𝑘+1)
𝑖 − 𝜃̄(0)𝑖 ] = [𝑱 𝑇

𝑖 (𝜃̄
(𝑘)
𝑖 , 𝑞(0)𝑎𝑖 , 𝑞

(𝑘)
𝑝𝑖 )]𝐹

(𝑘)
𝑖,𝑒𝑥𝑡 (6)

𝑞(𝑘+1)𝑝𝑖 − 𝑞(0)𝑝𝑖 = 𝑲 (𝑝𝑖)(𝜃̄
(𝑘)
𝑖 , 𝑞(0)𝑎𝑖 , 𝑞

(𝑘)
𝑝𝑖 )𝑋̄

(𝑘)
𝑖 (7)

where 𝑞𝑎𝑖 is a column matrix that contains active joint variables. Generally, it has only one element for parallel
manipulators with a single actuator at each limb.

In a static loading case on the mobile platform, an iterative solution is obtained within 3 to 5 iterations [4]. However,
this accuracy improvement is limited for simply-constrained and over-constrained parallel manipulators. Hence, direct
computation is preferred.

3. Case study: Modified 6R Over-Constrained Parallel Mechanism
The over-constrained structure makes the stiffness modeling process more challenging due to several kinematic

loop closures. Hence, a systematic modeling approach needs to be developed. Before the modeling process, some
simplifications and assumptions must be made.
3.1. The Mechanism’s Insight

A drawing of the mechanism is given in Fig. 1. There are 4 different types of links as shown in the Fig. 2. While
Link 1 and Link 4 are made of aluminium alloy, Link 2 and Link 3 are combinations of aluminium parts and carbon
fiber tubes to have a lighter manipulator. The tubes and aluminium parts are attached via pins and industrial glues.
Bearings and retaining rings are made of stainless steel and assembled to Links 2 and 3. Multiple bearings are used
on both sides of the aluminium parts for these links to minimize joint clearances. Thus, the following simplifications
and assumptions are made in the stiffness model computations:

• The base and the mobile platform are made of thick aluminium alloy. Therefore, they are assumed to be rigid.
• Link 4 is made of aluminium and exposed to tension/compression forces. Therefore, it is assumed to be rigid

since the part is highly stiff against these force types. It should be noted that this is not a general case for all
parallelogram loops. If there is an assembly arrangement such as the one presented in [13], then all the links of
a parallelogram may be considered as flexible.

• Links 2 and 3 are flexible due to thin carbon fiber tubes and the glue used for fixing the tubes and the aluminium
parts.
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b)a)

Link 2

Link 1

Mobile Platform

Base

Link 3
Link 4

Figure 1: a) CAD sketch and link types of the manipulator, b) the manipulator.

a) Link 1

Aluminium

d) Link 4

Aluminium

b) Link 2

Carbon Fiber Part

Pin Holes
Aluminium Parts

Bearings
Retaining Ring

c) Link 3

Carbon Fiber Part
Pin Holes

Aluminium Parts
Bearings

Retaining Ring

Figure 2: 4 types of links.

• The bearing/retaining rings are stiffened stainless steel. Therefore, these parts are assumed to be rigid.
• The manipulator is over-constrained. Therefore, the joint clearances are assumed to be negligible.
• Link 1 is the actuated link. However, this link is considerably thicker in the link group. Hence, it is relatively

rigid. Nonetheless, the link is considered flexible to preserve the generality of the formulation. Its rigidity is
achieved by assigning a high stiffness value which did not result in an observable effect in computations.

• Our main focus in this paper is the structural stiffness modeling of this mechanism. In a wider aspect, the stiffness
of the actuation, bearings, balancing springs, and series elastic actuators can be considered. Those can be the
subject of another research as a future study.

Next, we classify the forces/torques that are considered to compute compliant deflections. Since the manipulator
has no force/torque interaction with an external object, effective force/torques are caused by dynamic effects and gravity.
These are related to inertia. Hence, the followings are considered for mass and mass moment of inertia distribution:

• Accelerations at the mobile platform are up to 5g. Since dynamic effects are dominant, gravitational effects are
excluded.

• Carbon fiber tubes of Links 2 and 3 are lightweight compared to their aluminium parts and bearings. Therefore,
it can be assumed that the masses are accumulated at the proximal and distal ends of the links instead of the geo-
metric center of the link. As a result, dynamic and gravitational forces/moments are generated at the connection
nodes/joints of these links.

• Accumulated masses have a limited rotation, but linear accelerations of these masses are dominant. So, the
inertial effects due to rotational motion can be neglected.
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𝑥(𝑂)

𝑦(𝐸)
𝑥(𝐸)

𝑦(𝑂)

𝑥(𝐵)

𝑦(𝐵)
𝑥(𝐴)

𝑦(𝐴)

𝐸

𝐵 𝐴

𝑂𝐵11𝐵21

𝐵12𝐵22

𝐵13𝐵23

𝐴11 𝐴12

𝐴12 𝐴22

𝐴13 𝐴23

LoopReference
Frame

BaseActive JointPassive
Joint

Rigid
Link

Flexible
Link

Loop 4

Loop 3

Loop 1

Loop 2

Figure 3: Kinematic sketch of modified 6R manipulator and its components.

• The mobile platform is assumed to have no rotation since the joint clearances are relatively small.
• Link 4 is assumed to have no rotation, and its mass is equally distributed on the connection nodes/joints.
• Compared to force/moment on the distal end of Link 1 that is caused by the motion of the mobile platform,

dynamic forces/moments of Link 1, due to its inertial properties, are negligible.
• The kinematic motion of the manipulator is planar. Consequently, only two components of the resulting dynamic

forces acting on the plane and the moment about the normal of this plane can be considered.
3.2. Stiffness Modeling Objectives

After all these analyses, it is possible to construct a simplified sketch of the manipulator for stiffness model com-
putations as shown in Fig. 3. The main objective is to compute the compliant deflection of the mobile platform frame,
 (𝐸).

Note that the masses of the links are accumulated on the joints. The masses at the joints 𝐵21, and 𝐴21 are not
considered since they are at the base. Masses on 𝐵22-𝐵12, and 𝐴12-𝐴22 pairs are rigidly connected to each other. In
addition to the mobile platform mass, distributed mass groups of the links at 𝐵23, 𝐵13, 𝐴13, and 𝐵23 joints are rigidly
connected. The mass centers and also the geometric centers of these connections are located at the origins of frames
 (𝐸),  (𝐵), and  (𝐴) as shown in Fig. 3. These frames are the frames where the external forces/torques are generated
due to the dynamic motion and the gravity. Even if there is only one force/torque on one of these frames, not only this
frame’s location, but also the other frame locations are affected since all links are connected. To compute this effect,
there should be 3 stiffness models for all 3 frames. To compute these 3 stiffness models, a solution approach may adopt
the divide-and-conquer strategy to overcome the modeling difficulties.

Considering the smallest sub-structures in Fig. 3, there are 4 sub-loops that are composed of parallelograms. Loops
1 and 4 are active loops that are connected to actuators. Loops 2 and 3 are the passive loops. Loop pair 1-4, and loop
pair 2-3 have the same stiffness properties. If the stiffness model of each loop is obtained by connecting them first
serially and then parallel to each other, it is possible to get stiffness matrices of the frames  (𝐸),  (𝐵), and  (𝐴).

Let us name the stiffness matrices of the loops 1, 2, 3, and 4 as 𝑲𝐿1, 𝑲𝐿2, 𝑲𝐿3, and 𝑲𝐿4, respectively. Also,
the resulting stiffness matrices for the frames  (𝐸),  (𝐵), and  (𝐴) are called 𝑲𝐸 , 𝑲𝐵 , and 𝑲𝐴, respectively. By
considering the serial/parallel connections of the loops, desired stiffness models are represented in Fig. 4.

In summary, the sub-tasks that should be completed to obtain stiffness models can be listed as follows:
• Divide the mechanism into smaller parallelogram sub-loops.
• Obtain the stiffness model of each sub-loop. (Parallelogram loop level stiffness model)
• Obtain the stiffness model of each serial limb made up of serial connection of these sub-loops.
• Obtain the stiffness model of the entire mechanism by composing the stiffness models of each serial limb. (6R

loop level stiffness model)
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(𝑲𝐿1 → 𝑲𝐿2) + (𝑲𝐿4 → 𝑲𝐿3) = 𝑲𝐸
b) 𝑲𝐸 Loop

(𝑲𝐿1 → 𝑲𝐿2 → 𝑲𝐿3) +𝑲𝐿4 = 𝑲𝐵
a) 𝑲𝐵 Loop

(𝑲𝐿1) + (𝑲𝐿4 → 𝑲𝐿3 → 𝑲𝐿2) = 𝑲𝐴
c) 𝑲𝐴 Loop

Figure 4: Stiffness loops of the frames where “→” and “+” show the serial and parallel connections, respectively.

3.3. Stiffness Model of the Parallelogram Loops
The first sub-task is to obtain stiffness matrices of both passive and active parallelograms. Fig. 5 shows a generic

sketch of a parallelogram. Fig. 5 a) shows the actual VJM representation while b) shows the equivalent VJM stiffness
model we seek. One important thing that should be noticed is the connection sequence of the joints and virtual joints
(or virtual springs). As shown in Fig. 5 a), the virtual joints/springs are always located at the distal end of the link, but
before the regular joint even-though both are coincident. However, these virtual joints do not contain any kinematic
information, which means their stiffness information is given with respect to the local frames of the links. A stiffness
model combined with the kinematic model is obtained when the stiffness model of the parallelogram is formulated
relative to the fixed frame. Then, it can be represented as a single 6-DoF spring as shown in Fig. 5 b). Note that this
is a virtual kinematic chain representing the stiffness properties as the actual one.

The compliant kinematics of parallelogram is formulated by Eqs. 8 and 9. Eq. 10 shows the compliant kinematic
model equivalent of the parallelogram. In Eq. 11, kinematic constraints are given.

𝑯1 = 𝑻 𝑦(𝑑∕2)𝑹𝑧(𝜑11)𝑻 𝑥(𝑙1)𝑯𝑣(𝜃̄11′ )𝑹𝑧(𝜑12)𝑻 𝑦(−𝑑∕2) (8)
𝑯2 = 𝑻 𝑦(−𝑑∕2)𝑹𝑧(𝜑21)𝑻 𝑥(𝑙1)𝑯𝑣(𝜃̄21′ )𝑹𝑧(𝜑22)𝑻 𝑦(𝑑∕2) (9)
𝑯𝐸𝑞 = 𝑹𝑧(𝜑1)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑1)𝑯𝑣(𝜃̄2′ ) (10)

𝑥(0)

𝑦(0)

𝑥(20)

𝑦(20)

𝑥(10)

𝑦(10)

𝑥(11′)
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𝑥(3)
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𝑥(21′)

𝑦(21′) 𝑥(21)

𝑦(21)

𝑥(22)
𝑥(0)

𝑦(0)
𝑥(1)

𝑦(1) 𝑥(2)

𝑦(2)

𝑥(2′)

𝑦(2′)

𝜑21

𝜑12𝜑11

𝜑22 𝜑1

−𝜑1

𝐽21

𝐽11

𝐽12

𝐽22 𝐽1

𝐽2

𝑥(21)

𝑥(11)

𝑥(1)

Virtual Joint/Spring

𝑑

𝑙1

a) b)

Figure 5: Stiffness model sketches. a) Actual the VJM sketch of the parallelogram b) Resultant the VJM equivalent of the
parallelogram. Superscripts and subscripts (𝑖𝑗), and (𝑗) denote the 𝑗th joint frame in 𝑖th limb for 𝑖, 𝑗 = 1, 2, and ′ represents
the virtual joint frame.
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𝜑11 = 𝜑21, 𝜑12 = 𝜑22, 𝜑11 + 𝜑12 = 𝜑21 + 𝜑22 = 2𝜋𝑘 for 𝑘 = 1, 2, ... (11)
where𝑯1, 𝑯2, and𝑯𝐸𝑞 are the compliant kinematic models of upper, and lower limbs and parallelogram’s equivalent.
𝑹𝑥,𝑦,𝑧 and 𝑻 𝑥,𝑦,𝑧 denote the pure rotation and translation homogeneous transformation matrices about/along 𝑥, 𝑦, 𝑧
axes. 𝑑 is the distance between the joints 𝐽11 and 𝐽21, while 𝑙1 is the link length. 𝜑11, 𝜑12, 𝜑21, and 𝜑22 are the joint
variables. Depending on the computed parallelogram loop, 𝜑11 and/or 𝜑21 might be active or passive joints. 𝜃̄11′ , 𝜃̄21′ ,and 𝜃̄2′ denote the column matrices of 6 virtual joint variables in their respective limbs. Due to the rigid connections
at the connection frame  (3) in Fig. 5 a), 𝑯1 = 𝑯2 = 𝑯𝐸𝑞 and also, compliant displacements of these frames for
both limbs are the same, Δ𝑯1 = Δ𝑯2 = Δ𝑯𝐸𝑞 .

The stiffness model computations differ depending on whether there are active and/or passive joints, or not. In the
following sections, the formulations are given.
3.3.1. Stiffness of an Active Parallelogram Loop

In this section, the stiffness model of the active parallelogram loop, 𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒), is given. This matrix corresponds
to our 𝑲𝐿1 and 𝑲𝐿4 loops’ stiffness matrices. The joint 𝐽11 is taken as the active joint. Given this statement, the joint
variables are re-organized in column matrix form as follows:

𝑄̄1 =
[

𝜃̄𝑇11′ 𝑞𝑎1 𝑞𝑝1
]𝑇
8×1 , 𝑞𝑎1 =

[

𝜑11
]

1×1 , 𝑞𝑝1 =
[

𝜑12
]

1×1 (12)
𝑄̄2 =

[

𝜃̄𝑇21′ 𝑞𝑝2
]𝑇
8×1 , 𝑞𝑝2 =

[

𝜑21 𝜑22
]𝑇
2×1 (13)

𝑄̄𝐸𝑞 =
[

𝜃̄𝑇2′ 𝜑1
]𝑇
7×1 (14)

Next, Jacobian matrices 𝑱 𝜃1, 𝑱 𝜃2, 𝑱 𝜃𝐸𝑞 , 𝐽𝑎1, 𝐽𝑝1, 𝑱 𝑝2, 𝐽𝑎𝐸𝑞 , 𝑱 1, 𝑱 2, and 𝐽𝐸𝑞 are computed considering the forward
kinematics equation given in Eqs. 8 to 10, and joint variables presented Eqs. 12 to 14.

Active, passive, and virtual joint-related Jacobian matrices of the upper chain and equivalent model of the paral-
lelogram are presented in Eq. 15, assuming that 𝜃̄11′ = 0̄. Considering 𝜃̄2′ = 0̄, 𝐽𝜃𝐸𝑞 is computed as 6 × 6 identity
matrix meaning that it emulates the DoF of its equivalent spring. This is logical since the equivalent model merely
represents the actual one.

𝑱 𝜃1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐𝑎1 −𝑠𝑎1 0 0 0 𝑑
2

𝑠𝑎1 𝑐𝑎1 0 0 0 0
0 0 1 −𝑑𝑐𝑎1

2
𝑑𝑠𝑎1
2 0

0 0 0 𝑐𝑎1 −𝑠𝑎1 0
0 0 0 𝑠𝑎1 𝑐𝑎1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
[

𝐽𝑎1 𝐽𝑝1
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑
2 − 𝑙1𝑠𝑎1

−𝑑
2

𝑙1𝑐𝑎1 0
0 0
0 0
0 0
1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐽𝑎𝐸𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑙1 sin
(

𝜑1
)

𝑙1 cos
(

𝜑1
)

0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

In Eq. 15, 𝑐𝑎1 and 𝑠𝑎1 denote the cosine(𝜑11) and sine(𝜑11) functions, respectively. 𝑱 𝜃2 and 𝑱 𝑝2 are similar to 𝑱 𝜃1
and [

𝐽𝑎1 𝐽𝑝1
] matrices but 𝑑 and 𝜑11 are replaced with −𝑑 and 𝜑21, respectively. 𝐽𝑎𝐸𝑞 indicates that the distal end

of the single link equivalence has no rotational property but linear displacements in 𝑥𝑦-plane, only. This means that
the equivalent model only positions the virtual spring at the distal end.

Inversion operation in Eq. 2 for both upper and lower limbs is carried out to obtain the stiffness matrices 𝑲1 and
𝑲2. When the lower limb is individually considered with its kinematic constraints, it has 1 DoF that is uncontrollable
due to the passive joints. This generates a zero-resistance direction. Hence, it can freely move when a force is applied
that is tangent to its path. Therefore, the rank of 𝑲2 is 5. However, 𝑲1 is full rank. Finally, 𝑲1 and 𝑲2 stiffness
matrices are summed to obtain 𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒) according to Eq. 3 and given as follows:

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒) = 𝑲1 +𝑲2 (16)
Equivalent stiffness matrices of upper and lower limbs, 𝑲1 and 𝑲2, can be procured experimentally or by perform-

ing finite element analysis. A parametric definition of these matrices is possible, but the inversion operation in Eq. 2
may not be succeeded. Yet, it is still possible to obtain an inversion for 𝜃̄11′ = 0̄, 𝜃̄21′ = 0̄ and a specific set of values
for the angles 𝜑11 and 𝜑21. For 𝜑11 = 0, the stiffness of the upper limb, 𝑲1, is represented in Eq. 17 where the 𝑘
terms are the elements of 𝑲1. The stiffness matrix 𝑲2 is similar to 𝑲1 but the variable 𝑑 is replaced with −𝑑, and the
element in 2nd row-2nd column is zero, and elements 𝑘 are updated according to the stiffness of the lower limb.
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𝑲1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘(1)11 0 0 0 0 − 𝑑
2𝑘

(1)
11

0 𝑘(1)22 −
(𝑘(1)26 )

2

𝑘(1)66

0 0 0 0

0 0 𝑘(1)33
𝑑
2
𝑘(1)33 𝑘(1)35 0

0 0 𝑑
2
𝑘(1)33

𝑑2

4
𝑘(1)33 + 𝑘(1)44

𝑑
2
𝑘(1)35 0

0 0 𝑘(1)35
𝑑
2
𝑘(1)35 𝑘(1)55 0

−𝑑
2
𝑘(1)11 0 0 0 0 𝑑2

4
𝑘(1)11

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

3.3.2. Stiffness of a Passive Parallelogram Loop
In this section, the stiffness model of the passive parallelogram loop, 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒), is given. This matrix corresponds

to our 𝑲𝐿2 and 𝑲𝐿3 loops’ stiffness matrices. Compared to the active parallelogram, the computation of the stiffness
of a passive parallelogram changes only by taking 𝐽11 as a passive joint. The corresponding joint variables are updated
as follows:

𝑄̄1 =
[

𝜃̄𝑇11′ 𝑞𝑇𝑝1
]𝑇

8×1
, 𝑞𝑝1 =

[

𝜑11 𝜑12
]𝑇
2×1 (18)

Calculations of Eqs. 2 and 3 are straightforward for generating stiffness matrix for passive parallelogram𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒).This matrix is a rank-deficient matrix with a rank of 5.
While computing the stiffness of the parallelograms, stiffness matrices of the links are treated as joint space stiffness

matrices since the links are the sub-structures of the parallelograms. Similarly, parallelograms are the sub-loops of the
whole manipulator. Hence, their stiffness matrices are treated as joint space stiffness matrices of the manipulator. If
the stiffness matrices of parallelograms have full rank, the computation in Eq. 2 would be applicable. However, this
computation for passive sub-loops is not possible since they are rank deficient. To overcome this problem, a fictitious
stiffness element can be included for the component of 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒) to deal with the rank deficiency. Another approach
is to reduce the virtual joint DoF from 6 to 5 for the passive manipulators’ equivalent model. Both methods require
manual modification in stiffness and Jacobian matrix elements. This process can be tedious if there are several passive
loops as sub-loops. To preserve the straightforward methodology, 𝐽11 and 𝐽21 are both considered as active joints
to obtain a full rank stiffness matrix of 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒). The passive joint effect is later viewed in the stiffness model
computation of the whole manipulator when connecting the loops [4]. Consequently, the following joint variable set
is constructed:

𝑄̄1 =
[

𝜃̄𝑇11′ 𝑞𝑎1 𝑞𝑝1
]𝑇
8×1 , 𝑞𝑎1 =

[

𝜑11
]

1×1 , 𝑞𝑝1 =
[

𝜑12
]

1×1 (19)
𝑄̄2 =

[

𝜃̄𝑇21′ 𝑞𝑎2 𝑞𝑝2
]𝑇
8×1 , 𝑞𝑎2 =

[

𝜑21
]

1×1 , 𝑞𝑝2 =
[

𝜑22
]

1×1 (20)
Next, the new stiffness matrix, 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒), is computed assuming both upper and lower limbs have active first

joints 𝐽11 and 𝐽21. The new stiffness matrix, 𝑲2, is similar to 𝑲1 in Eq. 17 except the variable 𝑑 is replaced with −𝑑.
If both the upper and lower links have the same link designs, 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒) = 𝑲1 + 𝑲2 summation results in 2𝑲1 but
the parameters with 𝑑 vanishes due to ± signs and the elements without 𝑑 and with 𝑑2 are doubled. In our case study,
this is not necessary since upper and lower limbs have different designs.
3.4. Stiffness Model of the Manipulator

In this section, it is shown how 𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒) and 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒) matrices are correlated with each other to obtain the
stiffness model of the manipulator. The stiffness matrices belonging to the frames (𝐸),  (𝐵), and (𝐴) are presented.
These matrices are𝑲𝐸 , 𝑲𝐵 , and𝑲𝐴 matrices, respectively. Using the equivalent stiffness model of the parallelograms,
the compliant kinematics of these frames are illustrated in Fig. 6. The steps are listed below, and a flow chart is shown
in Fig. 7..

1. In Eqs. 21-27, the compliant forward kinematics are constructed. 𝑯 is the kinematic model. Sub-indices𝐴,𝐵,𝐸
indicate the belonging frames of the kinematic models. Sub-indices 1, 2 denote the right and left limbs up to
these frames, respectively.
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Figure 6: Stiffness model illustrations of the frames: a)  (𝐵) b)  (𝐸) c)  (𝐴).

2. In Eqs. 28-33, the joint variable column matrices are defined, and passive/active joint variables are grouped.
3. The forward kinematic models and grouped joint variables are used to obtain the required Jacobian matrices.

These Jacobian matrices are 𝑱 𝜃𝐵1, 𝑱 𝜃𝐵2, 𝑱 𝜃𝐴1, 𝑱 𝜃𝐴2, 𝑱 𝜃𝐸1, 𝑱 𝜃𝐸2, 𝐽𝑎𝐵1, 𝐽𝑎𝐵2, 𝐽𝑎𝐴1, 𝐽𝑎𝐴2, 𝐽𝑎𝐸1, 𝐽𝑎𝐸2, 𝑱 𝑝𝐵1,
𝐽𝑝𝐸1, 𝐽𝑝𝐸2, and 𝑱 𝑝𝐴2 are obtained. Again, sub-indices 𝜃, 𝑎, 𝑝 denote that the Jacobian matrix is derived with
respect to the virtual, active, and passive joint variables. Here, 𝑞𝑝 column matrices help us to obtain 𝐽𝑝 Jacobian
matrices. These Jacobian matrices consider the passive joints’ zero stiffness effect in the further computation
steps. Therefore, we can correct the mathematical manipulation of 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒) being full rank.

4. In Eqs. 34-39, stiffness matrices of 𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒) and 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒) are used to obtain the joint space stiffness
matrices of the limbs. Since each parallelogram is reduced to a single link representation, each limb’s joint
space stiffness matrix contains a number of these 𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒) and 𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒) matrices. 𝑲𝜃 denotes that the
matrix is the joint space stiffness matrix, and the remaining sub-indices show the belonging frame and followed
limb route.

5. Now, the inversion operation in Eq. 2 can be held by relating the Jacobian matrices in step 3 and Joint space
stiffness matrices in Eqs. 34-39. This inversion produces 𝑲𝐴1, 𝑲𝐴2, 𝑲𝐵1, 𝑲𝐵2, 𝑲𝐸1, and 𝑲𝐸2 stiffness
matrices of each limb in Cartesian space. Finally, by connecting each limb at its respective frame, in Eq. 40, the
Cartesian space stiffness matrix of each frame 𝑲𝐴, 𝑲𝐵 , and 𝑲𝐸 are obtained.

Note that the serial connection of parallelogram loops is mathematically represented by Eq. 2. This equation
provides the mathematical basis for connecting the  (3) frame of the proximal loop to  (0) frame of the distal loop
in Fig. 5 a). In other words, the coupler link of the proximal loop becomes coincident with the base link of the distal
loop at  (0) −  (3) frames.

𝑯𝐵1 = 𝑻 𝑦(−𝑑∕2)𝑹𝑧(−𝜑11)𝑻 𝑥(𝑙1)𝑹𝑧(𝜑11)𝑯𝑣(𝜃̄12′ )𝑹𝑧(𝜑12)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑12)𝑯𝑣(𝜃̄15′ )... (21)
...𝑻 𝑦(𝑑)𝑹𝑧(𝜑13)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑13)𝑯𝑣(𝜃̄18′ )

𝑯𝐵2 = 𝑻 𝑦(𝑑∕2)𝑹𝑧(𝜑21)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑21)𝑯𝑣(𝜃̄22′ ) (22)
𝑯𝐸1 = 𝑻 𝑦(−𝑑∕2)𝑹𝑧(−𝜑11)𝑻 𝑥(𝑙1)𝑹𝑧(𝜑11)𝑯𝑣(𝜃̄12′ )𝑹𝑧(𝜑12)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑12)𝑯𝑣(𝜃̄15′ )𝑻 𝑦(𝑑∕2) (23)
𝑯𝐸2 = 𝑻 𝑦(𝑑∕2)𝑹𝑧(𝜑21)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑21)𝑯𝑣(𝜃̄22′ )𝑹𝑧(−𝜑22)𝑻 𝑥(𝑙1)𝑹𝑧(𝜑22)𝑯𝑣(𝜃̄25′ )𝑻 𝑦(−𝑑∕2) (24)
𝑯𝐴1 = 𝑻 𝑦(−𝑑∕2)𝑹𝑧(−𝜑11)𝑻 𝑥(𝑙1)𝑹𝑧(𝜑11)𝑯𝑣(𝜃̄12′ ) (25)
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𝑯𝐴2 = 𝑻 𝑦(𝑑∕2)𝑹𝑧(𝜑21)𝑻 𝑥(𝑙1)𝑹𝑧(−𝜑21)𝑯𝑣(𝜃̄22′ )𝑹𝑧(−𝜑22)𝑻 𝑥(𝑙1)𝑹𝑧(𝜑22)𝑯𝑣(𝜃̄25′ )... (26)
...𝑻 𝑦(−𝑑)𝑹𝑧(−𝜑23)𝑻 𝑥(𝑙1)𝑹𝑧(𝜑23)𝑯𝑣(𝜃̄28′ )

𝑯𝐵1 = 𝑯𝐵2, 𝑯𝐸1 = 𝑯𝐸2, 𝑯𝐴1 = 𝑯𝐴2, 𝜑21 = 𝜑12, 𝜑11 = 𝜑22, 𝜑13 + 𝜑11 = 𝜑23 + 𝜑21 = 𝜋
(27)

𝑄̄𝐵1 =
[

𝜃̄𝑇𝐵1 𝑞𝑎𝐵1 𝑞𝑇𝑝𝐵1
]𝑇

21×1
, 𝑞𝑎𝐵1 = 𝜑11, 𝑞𝑇𝑝𝐵1 =

[

𝜑12 𝜑13
]𝑇 , 𝜃̄𝐵1 =

[

𝜃̄𝑇12′ 𝜃̄𝑇15′ 𝜃̄𝑇18′
]𝑇
18×1 (28)

𝑄̄𝐵2 =
[

𝜃̄𝑇𝐵2 𝑞𝑎𝐵2
]𝑇
7×1 , 𝑞𝑎𝐵2 = 𝜑21, 𝜃̄𝐵2 = 𝜃̄22′ (29)

𝑄̄𝐸1 =
[

𝜃̄𝑇𝐸1 𝑞𝑎𝐸1 𝑞𝑝𝐸1
]𝑇
14×1 , 𝑞𝑎𝐸1 = 𝜑11, 𝑞𝑝𝐸1 = 𝜑12, 𝜃̄𝐸1 =

[

𝜃̄𝑇12′ 𝜃̄𝑇15′
]𝑇
12×1 (30)

𝑄̄𝐸2 =
[

𝜃̄𝑇𝐸2 𝑞𝑎𝐸2 𝑞𝑝𝐸2
]𝑇
14×1 , 𝑞𝑎𝐸2 = 𝜑21, 𝑞𝑝𝐸2 = 𝜑22, 𝜃̄𝐸2 =

[

𝜃̄𝑇22′ 𝜃̄𝑇25′
]𝑇
12×1 (31)

𝑄̄𝐴1 =
[

𝜃̄𝑇𝐴1 𝑞𝑎𝐴1
]𝑇
7×1 , 𝑞𝑎𝐴1 = 𝜑11, 𝜃̄𝐴1 = 𝜃̄12′ (32)

𝑄̄𝐴2 =
[

𝜃̄𝑇𝐴2 𝑞𝑎𝐴2 𝑞𝑇𝑝𝐴2
]𝑇

21×1
, 𝑞𝑎𝐴2 = 𝜑21, 𝑞𝑇𝑝𝐴2 =

[

𝜑22 𝜑23
]𝑇 , 𝜃̄𝐴2 =

[

𝜃̄𝑇22′ 𝜃̄𝑇25′ 𝜃̄𝑇28′
]𝑇
18×1 (33)

𝑲𝜃𝐵1 = 𝑑𝑖𝑎𝑔
(

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒),𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒),𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒)
)

18×18 (34)
𝑲𝜃𝐵2 = 𝑑𝑖𝑎𝑔

(

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒)
)

6×6 (35)
𝑲𝜃𝐸1 = 𝑑𝑖𝑎𝑔

(

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒),𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒)
)

12×12 (36)
𝑲𝜃𝐸2 = 𝑑𝑖𝑎𝑔

(

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒),𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒)
)

12×12 (37)
𝑲𝜃𝐴1 = 𝑑𝑖𝑎𝑔

(

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒)
)

6×6 (38)
𝑲𝜃𝐴2 = 𝑑𝑖𝑎𝑔

(

𝑲𝐸𝑞(𝑎𝑐𝑡𝑖𝑣𝑒),𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒),𝑲𝐸𝑞(𝑝𝑎𝑠𝑠𝑖𝑣𝑒)
)

18×18 (39)
𝑲𝐵 = 𝑲𝐵1 +𝑲𝐵2, 𝑲𝐸 = 𝑲𝐸1 +𝑲𝐸2, 𝑲𝐴 = 𝑲𝐴1 +𝑲𝐴2 (40)

3.5. The Displacement of the Mobile Platform due to Compliant Deflections of Flexible Links
The deflection of the coordinate frame of the mobile platform  (𝐸), that is caused by the forces acting on this

frame, 𝐹𝐸 , is defined as Δ𝑋̄(𝐸)
𝐸 . The lower index indicates the frame where the deflections occur, and the upper index

shows the location of the force causing this deflection. In this regard, loads acting on  (𝐴) and  (𝐵) frames cause
Δ𝑋̄(𝐴)

𝐸 and Δ𝑋̄(𝐵)
𝐸 deflections in the  (𝐸) frame.

To compute the deflection contribution of the forces acting on  (𝐴) and  (𝐵) to the frame  (𝐸), first, the deflec-
tions in joint space (virtual and passive) are computed. The virtual and passive joint variables are [𝜃̄𝐵1, 𝑞𝑝𝐵1] for  (𝐵)
and [𝜃̄𝐴2𝑞𝑝𝐴2] for  (𝐴) frames.

The resulting total deflection in  (𝐸) is computed by superposing all these deflections as follows:
Δ𝑋̄𝐸 = Δ𝑋̄(𝐸)

𝐸 + Δ𝑋̄(𝐵)
𝐸 + Δ𝑋̄(𝐴)

𝐸 (41)
The computation of each element is listed as follows:
1. Δ𝑋̄(𝐸)

𝐸 is computed as shown in Eq. 42.
2. Eq. 43 shows the deflection of the frame  (𝐴) that is caused by the forces acting on this frame. The frame  (𝐸)

is included in the 2nd limb of  (𝐴). Therefore, compliant kinematics of this limb is used.
3. Eq. 44 shows the deflections in 2nd limb’s passive joints, Δ𝑞𝑝𝐴2, of  (𝐴). Here, 𝑲𝑝𝐴2 is computed via Eq. 2.
4. In Eq. 45, 𝑲𝐴2Δ𝑋̄𝐴 represents the distributed force of 𝐹𝐴 on 2nd limb. By multiplying this force with 𝑱 𝑇

𝜃𝐴2, it
is transformed into joint space indicated as 𝑱 𝑇

𝜃𝐴2𝑲𝐴2Δ𝑋̄𝐴. Then, change in virtual joints, Δ𝜃̄𝐴2, are computed
by multiplying the joint space force with 𝑲−1

𝜃𝐴2.
5. After obtaining both passive and virtual joint values of 2nd limb, they are used in compliant forward kinematics

to acquire the deflection in  (𝐸) caused by the forces acting on  (𝐴).
6. However, 𝜃̄𝐴2 has 18 virtual joint variables and 𝑞𝑝𝐴2 has 2 passive joint variables. To conduct the computation,

variables in 𝜃̄𝐴2 and 𝑞𝑝𝐴2 should be chosen that corresponds to 2nd limb. The first 12 variables of 𝜃̄𝐴2 are selected
and shown as 𝜃̄𝐴2,1−12. Similarly, the first element of 𝑞𝑝𝐴2 is shown by 𝑞𝑝𝐴2(1).
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7. Finally, the deflection, Δ𝑋̄(𝐴)
𝐸 , is calculated in Eq. 46. 𝑱𝐸2 is the Jacobian matrix of 2nd limb that is defined up

to  (𝐸) which includes 12 virtual joints and 1 passive joint.
8. Computations for Δ𝑋̄(𝐵)

𝐸 are given in Eqs. 47-50.

Δ𝑋̄(𝐸)
𝐸 = 𝑲−1

𝐸 𝐹𝐸 (42)
Δ𝑋̄(𝐴)

𝐴 = 𝑲−1
𝐴 𝐹𝐴 (43)

Δ𝑞𝑝𝐴2 = 𝑲𝑝𝐴2Δ𝑋̄𝐴 (44)
Δ𝜃̄𝐴2 = 𝑲−1

𝜃𝐴2𝑱
𝑇
𝜃𝐴2𝑲𝐴2Δ𝑋̄𝐴 (45)

Δ𝑋̄(𝐴)
𝐸 = 𝑱𝐸2Δ𝜃̄𝐴2,1−12 + 𝑱 𝑝𝐸2Δ𝑞𝑝𝐴2,1 (46)

Δ𝑋̄(𝐵)
𝐵 = 𝑲−1

𝐵 𝐹𝐵 (47)
Δ𝑞𝑝𝐵1 = 𝑲𝑝𝐵1Δ𝑋̄𝐵 (48)
Δ𝜃̄𝐵1 = 𝑲−1

𝜃𝐵1𝑱
𝑇
𝜃𝐵1𝑲𝐵1Δ𝑋̄𝐵 (49)

Δ𝑋̄(𝐵)
𝐸 = 𝑱𝐸1Δ𝜃̄𝐵1,1−12 + 𝑱 𝑝𝐸1Δ𝑞𝑝𝐵1,1 (50)

3.6. Summary of Stiffness Modelling
A brief summary of the computation steps is given as follows:

1. Determine the active and the passive sub-loops. Active loops are attached to the base frame, and passive loops
are located between the active loops and the mobile platform.

2. Calculate the stiffness matrices of active and passive loops as described in Sections 3.3.1 and 3.3.2. Now, the
parallelograms are reduced to a single-link representation.

3. Determine the frames at which loads are applied. There are two auxiliary frames (𝐴) and (𝐵), and one mobile
platform frame  (𝐸) as shown in Fig. 6.

4. Perform a serial connection representation of an active and a number of passive loops until these frames. It is
a serial connection of an active and a passive loop for the mobile platform frame for both limbs. For auxiliary
frames, an active loop is followed by two passive loops at one limb, while the other limb only consists of a single
active loop. Serial connection is denoted by "→" in Figs. 4 and 7.

5. For each limb, construct the forward kinematics of reduced parallelograms up to these frames as given in Eqs. 21
to 27 including the active, passive, and virtual joints of reduced parallelograms. We need to develop two forward
kinematics formulations for each loading frame since each frame has 2 limbs. In total, 6 forward kinematic
models are acquired. Next, construct the Jacobian matrices of these forward kinematic models of each limb.

6. Construct the diagonal stiffness matrix model of serially connected reduced parallelograms as given in Eqs. 34
to 39.

7. Connect each limb parallel to the other. This is a simple summation of stiffness models obtained in the previous
step and shown in Eq. 40. Now, 𝑲𝐸 , 𝑲𝐴, and 𝑲𝐵 are obtained. This parallel connection is denoted by "+" in
Figs. 4 and 7. The first column in Fig. 7 summarizes all the computations including this step..

8. Compute the compliant deflection of each loading frame as shown in the second column of Fig. 7.
9. Perform the computations in Section 3.5 to obtain the compliant deflection of the mobile platform caused by the

loads applied at the loading frames. This is the final column of Fig. 7.

4. Simulation, Results, and Discussion
The procured stiffness model is coded in MATLAB Simulink, and simulation tests are conducted. Then, the ob-

tained results are compared with the finite element analysis (FEA) results considering the results obtained via ANSYS
Workbench. This section presents the results of this verification via comparison.

The stiffness parameters of the links (shown in Fig. 2) are determined via experiments by applying loads and
measuring the compliant deflections with a coordinate measuring machine (CMM) FARO Prime Arm 1.2. Forcing
combinations along 3-axes are applied to generate deflections at the distal ends of each link. Complaint deflections at
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𝑲𝐸 = (𝑲𝐿1 → 𝑲𝐿2) + (𝑲𝐿4 → 𝑲𝐿3)

𝑲𝐴 = 𝑲𝐿1 + (𝑲𝐿4 → 𝑲𝐿3 → 𝑲𝐿2)

𝑲𝐵 = (𝑲𝐿1 → 𝑲𝐿2 → 𝑲𝐿3) + 𝑲𝐿4

Δ𝑋̄(𝐴)
𝐴 = 𝑲−1

𝐴 𝐹𝐴

Δ𝑋̄(𝐸)
𝐸 = 𝑲−1

𝐸 𝐹𝐸

Δ𝑋̄(𝐵)
𝐵 = 𝑲−1

𝐵 𝐹𝐵

Δ𝑋̄(𝐴)
𝐸

Δ𝑋̄(𝐵)
𝐸

+ Δ𝑋̄𝐸

Figure 7: Computation chart to obtain the deflections in frame  (𝐸).

distal ends are captured via CMM (see Fig. 10 a) and b)). Deflections in Link 1 are smaller than the tolerance range
of the CMM (±0.023 mm); hence, a high stiffness value is assigned to this link’s stiffness matrix, 𝑲𝜃1. Also, it is
considered as a rigid body in the FEM. Based on the experimental data, the local stiffness matrices of Link 2,𝑲𝜃2, and
Link 3, 𝑲𝜃3, are computed as given below by relating the deflections to the forcing. The computation is achieved by
minimizing Δ𝐹 − 𝑲Δ𝑋̄ for each test data. Since the format of 𝑲 is known, optimization for 8 elements of 𝑲 was
sufficient. The units of the stiffness matrix components for upper left-right and lower left-right 3× 3 sub-matrices are
N/m, N/rad, N⋅m/m, and N⋅m/rad, respectively.

𝑲𝜃2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

92317585 0 0 0 0 0
0 418506 0 0 0 −31388
0 0 418506 0 31388 0
0 0 0 604 0 0
0 0 31388 0 3139 0
0 −31388 0 0 0 3139

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

𝑲𝜃3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

17040334 0 0 0 0 0
0 77250 0 0 0 −5794
0 0 77250 0 5794 0
0 0 0 111 0 0
0 0 5794 0 579 0
0 −5794 0 0 0 579

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(52)

𝑲𝜃1 = 106 ⋅𝑲𝜃2 (53)
The manipulator’s stiffness model is analyzed at 9 test points. Since the manipulator has a symmetric behaviour

about the 𝑥-axis, the test points are chosen at one side of the workspace, namely, along the positive 𝑦-axis (see Fig. 3).
The workspace dimensions are 100 mm × 150 mm along 𝑥-𝑦 axes. The home position of the workspace is located at
(212.3 mm, 0 mm) with respect to  (𝑂) which corresponds to the 𝜑21 = 45◦, 𝜑11 = −45◦ values of the active joint
angles. The test points and the joint angles are given in Fig. 8.

The manipulator is designed to work at 5g acceleration range. With the laser emitter mounted on the mobile
platform, the combined mass is 5 kg. The mass of the Link 4 group is 1 kg. By taking the gravitational acceleration
𝑔 = 10𝑚∕𝑠2 as numerical simplification, the maximum external forces on the bodies are 250 N for the mobile platform
and 25 N for the intermediate link group. The values of force assignments are insignificant for comparing the FEA and
the VJM results. The aim is to analyze the stiffness model at an instant in which the maximum dynamic forces occur
by making use of D’Alembert’s principle. Analyses are conducted for dynamic forces acting on 2 intermediate ((𝐴),
(𝐵)) and 1 mobile platform ((𝐸)) terminals on 𝑥𝑦-plane, simultaneously. These 3 force vectors are parallel to each
other. The forces are applied in 6 different directions. These vectors start along the 𝑥-axis and divide a half rotation
into 6 parts. Hence, between each consecutive force vector, there is 30◦ difference.

The FEA was conducted in the “Static Structural” tool of ANSYS Workbench. To match the experimentally iden-
tified stiffness matrices 𝑲𝜃2, and 𝑲𝜃3 a new material was defined via assigning Young’s modulus value in ANSYS
Workbench. Another option could have been to change the link designs to comply with the stiffness values. The base,
mobile platform, Link 4, and Link 1 are defined as rigid bodies under the “Geometry” section of “Static Structural”,
while the remaining bodies were elastic. At each link’s distal and proximal ends, “Remote Point” was defined. These
nodes were fixed to meshes at the distal and proximal ends. This helps us to track the compliant deflections of distal
and proximal ends of each link in 6-DoF. The connection of the links was utilized over the remote points by defining
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(262 mm, 0 mm)

TP1

(212 mm, 0 mm)

TP2

(162 mm, 0 mm)

TP3

(162 mm, 37 mm)

TP4

(212 mm, 37 mm)

TP5

(262 mm, 37 mm)

TP6

(262 mm, 75 mm)

TP7

(212 mm, 75 mm)

TP8

(162 mm, 75 mm)

TP9

TP 𝜑11(◦) 𝜑21(◦) 𝑥 (mm) 𝑦 (mm)
1 -29 29 262 0
2 -45 45 212 0
3 -57.3 57.3 162 0
4 -43.3 69.3 162 37
5 -34.1 54.1 212 37
6 -19.9 36.1 262 37
7 -8.7 40.6 262 75
8 -22 60.9 212 75
9 -28.6 78.3 162 75

Figure 8: Illustration of test points (TP) and their corresponding active joint angles.

Table 1
The FEA setup details of ANSYS Workbench.

Mesh Properties
Size Function Curvature
Relevance Center Fine
Transition Slow
Span Angle Center Fine
Curvature Normal Angle 18◦
Min Size 2mm
Max Face Size 4mm
Max Tet Size 5mm
Growth Rate Default
Remaining Parameters Default
Element Type Quad4

SHELL181

Analysis Settings
Solver Target Mechanical APDL
Solver Type Iterative
Weak Springs On
Spring Stiffness Program Controlled
Solver Pivot Check Program Controlled
Large Deflection On
Newton-Raphson Program Controlled
Force Convergence On
Moment Convergence On
Displacement Convergence On
Rotation Convergence On
Tolerance 0.05%
Minimum Reference 0.001N, 0.001Nm, 0m, 0◦

the “Revolute” joint option. To use the FEA in its highest accuracy, the “Iterative” solver option was selected, and
“Large Deflections” were activated. Further details are given in Table 1.

The compliant deflections calculated via the FEA for forces acting on (𝐴), (𝐵), and (𝐸) are grouped under
FEAEAB label, and compliant deflections calculated via the VJM are labeled as VJMEAB. In addition, VJME is con-
sidered a force acting on (𝐸) only. By comparing these three compliant deflection results, we can comment on the
performance of the proposed superposition methodology, VJMEAB, over the traditional one, VJME. The results are
given in Appendix A. To evaluate the performance more practically, the results are further summarized by averaging
the magnitudes of the compliant deflections for all force directions. The summarized results are given in Table 2. A
percent error term is defined below to determine if the superposition methodology, VJMEAB, is superior with respect
to VJME, or not.

𝑒𝐸 = (|𝐹𝐸𝐴EAB − 𝑉 𝐽𝑀E|∕𝐹𝐸𝐴EAB) × 100 (54)
𝑒𝐸𝐴𝐵 = (|𝐹𝐸𝐴EAB − 𝑉 𝐽𝑀EAB|∕𝐹𝐸𝐴EAB) × 100 (55)

It can be observed in Table 2 that overall accuracy for the calculation of 𝑦-axis deflections via VJMEAB compared
to VJME is better while 𝑥-axis deflection estimation accuracy of VJMEAB is relatively worse. Specifically, 𝑥-axis
performance of VJMEAB is lower at test points 1, 2, 3, and 9. The first three points are located along the symmetry
axis, and the 9th point is positioned at a corner of the workspace. A point on the symmetry axis corresponds to a special
configuration, and a corner point is closer to the singular configuration of the manipulator. Hence, extreme performance
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Table 2
Summarized deflection results for the FEA and the VJM.

Test
Point

FEAEAB
Δ𝑥(𝜇𝑚)

VJME
Δ𝑥(𝜇𝑚)

VJMEAB
Δ𝑥(𝜇𝑚)

𝑒𝑥𝐸
%

𝑒𝑥𝐸𝐴𝐵
%

FEAEAB
Δ𝑦(𝜇𝑚)

VJME
Δ𝑦(𝜇𝑚)

VJMEAB
Δ𝑦(𝜇𝑚)

𝑒𝑦𝐸
%

𝑒𝑦𝐸𝐴𝐵
%

1 1.1 1 1.2 4.7 14.1 41.6 41.7 41.7 0.2 0.2
2 1.6 1.5 1.8 5.2 10.3 20.8 20.9 20.9 0.3 0.3
3 2.8 2.7 3.1 3.6 12.1 14.7 14.7 14.7 0.1 0.1
4 15.8 16.2 16 2.5 1.2 19.1 19.7 19.1 3.2 0.1
5 7.5 7.5 7.5 0.2 0.7 23.1 23.2 23.1 0.7 0.1
6 8.7 8.7 8.7 0.0 0.4 48.6 48.8 48.7 0.3 0.2
7 20.7 20.8 20.8 0.2 0.2 61.1 61.3 61.3 0.4 0.2
8 17.6 17.9 17.7 1.6 0.8 26.6 27.1 26.6 2.1 0.2
9 71 72.4 68.6 2.0 3.4 35.5 36.6 34.8 2.9 2.2

increments/decrements or no contribution might be expected at these points. Compared to VJME, VJMEAB did not
improve further the error term at test points 5, 6, 7 for 𝑥-axis and 1, 2, 3 for 𝑦-axis. Finally, 𝑥-axis performance at
test points 4, 8, and 𝑦-axis performance at test points 4 to 9 are increased when the proposed methodology is used. In
short, when the new method (VJMEAB) was used, performance increased in eight conditions, remained the same in six
conditions, and got worse in four conditions among the nine 𝑥 and nine 𝑦-axis deflections conditions. It is possible to
use the superposition methodology for 𝑦-axis deflections and the regular methodology (VJME) for 𝑥-axis deflection
computation. Note that the stiffness model computation of serially connected parallelograms presented in this paper
are still used in both cases. The computation cost for running the stiffness model for one node (i.e. (𝐸)) is examined.
It is measured that it can run at 10kHz on a computer with Dual Intel Xeon E5-2600 processor and 16GB ECC RDIMM
Memory at running at 1600MHz.

Note that the manipulator operates in a 2-DoF motion space (2 translations). However, the actual manipulator has
loop assemblies at different heights (see Fig. 1 b) and 9 b)). The height difference between the distal and proximal
parallelograms are not considered in this part. Nonetheless, the presented calculation procedure and acquired stiffness
model via the VJM are developed using 6-DoF virtual joints. Since the VJM model and the FEA simulation model are
developed with this procedure, their results validate each other.

5. Experimental Procedure for Model Parameter Update
In the experimental study, the mobile platform is subjected to external static loads to generate compliant deflections.

Only the static forces acting at the end-effector are considered; hence, no dynamic loads acts on the manipulator
resulting in auxiliary forces at A and B nodes. Consequently, VJME model is found to be suitable for tuning its
parameters via this experimental study since it excludes the other A and B nodes and superposition methodology. In
the actuator system, Kollmorgen AKM33E brushless servo motors with built-in brake and Sumitomo Fine Cyclo F1C-
A15 gearbox are used. Built-in brakes of the servo motor are used to lock the mechanism. At the loading conditions,
the brakes of the actuator are on and actuation stiffness is not considered. Next, measurements are taken via FARO
Prime Arm 1.2 model CMM. Then, the stiffness parameters are optimized to minimize the error between the model
and experiment data. The mobile platform location has two conditions: pre-load and post-load. Pre-load condition is
formulated as shown below

𝑋̄(1)
𝑀 = 𝑋̄(1)

𝑅 + 𝑋̄(1)
𝐺 + 𝑋̄(1)

𝐼 + 𝑋̄(1)
𝐽 (56)

where 𝑋̄(1)
𝑀 is the position vector of the mobile platform frame with respect to the base frame. This vector is computed

via CMM measurements, and it can be decomposed into a set of vector summations. 𝑋̄(1)
𝑅 is the position vector

computed by rigid body forward kinematics. 𝑋̄(1)
𝐺 is the deflection caused by gravity. 𝑋̄(1)

𝐼 is the compliant deflection
contribution of internal stresses due to the over-constrained structure. 𝑋̄(1)

𝐽 is the joint clearance contributions. The
upper index 1 indicates the initial state, i.e., pre-load state.

When the load is applied on the mobile platform, the mechanism switches from state 1 to state 2 which can be
expressed as follows:

𝑋̄(2)
𝑀 = 𝑋̄(2)

𝑅 + 𝑋̄(2)
𝐺 + 𝑋̄(2)

𝐼 + 𝑋̄(2)
𝐽 + 𝑋̄(2)

𝐸 (57)
Δ𝑋̄𝑀 = 𝑋̄(2)

𝑀 − 𝑋̄(1)
𝑀 (58)
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𝑋̄𝐸 is deflection caused by external force applied on the mobile platform. Superscript 2 indicates the post-load state.
Δ𝑋̄𝑀 suggests the change in position between the states. 𝑋̄𝑅 is calculated by using the encoder data connected to the
actuator. Since the actuators are locked, Δ𝑋̄𝑅 = 0̄. It is known that parallel mechanisms reduce the adverse effect of
joint clearances; hence, Δ𝑋̄𝐽 = 0̄ is assumed. The most significant drawback of an over-constrained mechanism is
its high internal stresses. These internal stresses are caused by the geometrical errors of the manufactured parts. Our
mechanism was produced with high production precision. In addition, special hinge construction is used to tolerate
a possible geometric error, and a particular assembling procedure is followed when fastening the connection screws.
Although these precautions help reduce internal stresses, they cannot be fully neglected. Hence, Δ𝑋̄𝐼 ≠ 0̄. Due to the
compliant kinematic state change, the compliant deflection caused by gravity differs in the first and second position
states. Since the applied load on the mobile platform is much greater than the change in gravitational loading from
the first to second position state, Δ𝑋̄𝐺 = 0̄ can be assumed. As a result, the first and second position states are
simplified,and a force/compliant deflection equation is written as follows:

𝐹 = 𝑲𝐶Δ𝑋̄𝑀 = 𝑲𝐶 (Δ𝑋̄𝐼 + 𝑋̄𝐸) (59)
Stiffness model 𝑲𝐶 is a function of the local stiffness matrices 𝑲𝜃1, 𝑲𝜃2, and 𝑲𝜃3, and the joint variables 𝜑11and 𝜑21. 𝜑11, 𝜑21 variables are determined by the controller for the desired trajectory. The parameters of these local

stiffness matrices need to be updated in accordance with the compliant deflection of the mobile platform. This update
is achieved by adding a symmetric modification matrix to the local stiffness matrices, which has 21 parameters to be
determined. The modification matrix can also be considered a measure of deviation from the original stiffness values
of the link. This deviation can be caused by the contribution of the shaft, bearing, bolt, fastening torque of the screws,
and internal stresses. As mentioned earlier, 𝑲𝜃1 is assumed to be highly stiff. Therefore, a total of 42 parameters must
be determined for 𝑲𝜃2, and 𝑲𝜃3. The parameter update is defined as follows:

𝑲 ′
𝜃2 = 𝑲𝜃2 +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘1 𝑘7 𝑘12 𝑘16 𝑘19 𝑘21
𝑘7 𝑘2 𝑘8 𝑘13 𝑘17 𝑘20
𝑘12 𝑘8 𝑘3 𝑘9 𝑘14 𝑘18
𝑘16 𝑘13 𝑘9 𝑘4 𝑘10 𝑘15
𝑘19 𝑘17 𝑘14 𝑘10 𝑘5 𝑘11
𝑘21 𝑘20 𝑘18 𝑘15 𝑘11 𝑘6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑲 ′
𝜃3 = 𝑲𝜃3 +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘22 𝑘28 𝑘33 𝑘37 𝑘40 𝑘42
𝑘28 𝑘23 𝑘29 𝑘34 𝑘38 𝑘41
𝑘33 𝑘29 𝑘24 𝑘30 𝑘35 𝑘39
𝑘37 𝑘34 𝑘30 𝑘25 𝑘31 𝑘36
𝑘40 𝑘38 𝑘35 𝑘31 𝑘26 𝑘32
𝑘42 𝑘41 𝑘39 𝑘36 𝑘32 𝑘27

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(60)

where superscript ′ denotes the updated stiffness matrices. The units of the modification matrix components for upper
left-right and lower left-right 3 × 3 sub-matrices are N/m, N/rad, N⋅m/m, and N⋅m/rad, respectively. The links of the
manipulator are located at different positions along the 𝑧-axis, as shown in Fig. 9 b). These position differences are
not considered in the modeling. Since the position along 𝑧-axis is constant for all parts, connection shafts along the
𝑧-axis make a constant contribution to local stiffness matrices and they are not a function of joint variables. The effect
of this continious contribution of 𝑧-axis offset can be carried out by the modification matrices necessary to comply
with the experiment data. Hence, the existing model can be used.

Another contribution of the modification matrices is acquiring the internal stress-related stiffness model. Internal
stress behaves like a compressed/stretched spring that depends on the kinematic states of the manipulator. In addition,
applied external force contributes to the internal stresses by further compression/tension. Therefore, 𝑲𝐶 in Eq. 59 can
be updated to contain internal stiffness parameters, 𝑲𝐼 , as follows:

𝑲 ′
𝐶 = 𝑲𝐶 +𝑲𝐼 (61)

Acquisition of 𝑲𝐼 requires an additional stiffness model for internal stresses as a function of kinematics which is
a tedious process. Instead, we separate the stiffness model 𝑲𝐼 into two parts. The first part, 𝑲𝐼𝑣, is the variable part
that changes with the mechanism’s configuration. 𝑲𝐼𝑐 is the constant part, and 𝑲𝐼 = 𝑲𝐼𝑣 +𝑲𝐼𝑐 . 𝑲𝐼𝑣 part is already
infused in 𝑲 ′

𝜃2 and 𝑲 ′
𝜃3 while determining the modification matrix. For the constant 𝑲𝐼𝑐 part, a new symmetric set of

stiffness coefficients with 21 elements are defined. These coefficients are specified in the optimization process along
with modification matrices.
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𝑲 ′
𝐶 = 𝑲𝐶 (𝑲𝜃1,𝑲 ′

𝜃2,𝑲
′
𝜃3) +𝑲𝐼𝑐 , 𝑲𝐼𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘43 𝑘49 𝑘54 𝑘58 𝑘61 𝑘63
𝑘49 𝑘44 𝑘50 𝑘55 𝑘59 𝑘62
𝑘54 𝑘50 𝑘45 𝑘51 𝑘56 𝑘60
𝑘58 𝑘55 𝑘51 𝑘46 𝑘52 𝑘57
𝑘61 𝑘59 𝑘56 𝑘52 𝑘47 𝑘53
𝑘63 𝑘62 𝑘60 𝑘57 𝑘53 𝑘48

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(62)

A final modification is issued for the external force applied on the mobile platform. Since there is a positional
difference along the 𝑧-axis between the links, as shown in Fig. 9 b), external force, 𝐹 , generates a moment on the
links. Our planar stiffness model cannot capture this effect. Nonetheless, the external force can be adapted for the
stiffness model by introducing virtual vertical moment arms that will generate the same torsional effect on the links.
Hence, the external force is updated as follows:

𝐹 =
[

𝐹𝑥 𝐹𝑦 0 0 0 0
]𝑇

→ 𝐹 ′ =
[

𝐹𝑥 𝐹𝑦 0 ℎ1𝐹𝑦 ℎ2𝐹𝑥 0
]𝑇 (63)

where 𝐹 is the actual external force applied on the mobile platform, and 𝐹 ′ is the modified force. ℎ1 and ℎ2 are the
moment arms in m determined in the model fitting process along with modification matrices. Including the stiffness
matrix coefficients and moment arms, there are 65 parameters to be determined by the model-fitting algorithm.

The objective function to fit the model to the experimental data is defined as follows:

𝑒 = 𝑲 ′−1
𝐶 𝐹 ′ − Δ𝑋̄Measured, 𝐸 = ‖

‖

𝑒1−5‖‖, 𝐸𝑛𝑒𝑡 =
45
∑

1
𝐸 (64)

where 𝑒 is the error vector between the modeled and measured deflection. 𝐸 is the norm of the error vector’s first 5
elements. The final element for 𝑧-axis rotation is excluded since it is not possible to measure the rotation of this axis
with the measurement points in Fig. 9 b) which are aligned along the 𝑧-axis. Note that this introduces redundancy to
the optimization, which searches for a suitable parameter set for the 5-DoF system using the 6-DoF stiffness model.
Hence, the obtained result may not be unique. 𝐸𝑛𝑒𝑡 is the objective function to be minimized, which is the summation
of error norms through 45 measurements. The solution of the objective function is achieved via MATLAB by using
fmincon and fminsearch functions. Initial values for parameters are defined between 0-1 randomly.
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Measurement
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Sphere
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Measurement
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Computed
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Actual
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Measured
Positions
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b)a)

Figure 9: a) Illustration of measurements from the apparatus, b) −𝑦-axis view of the manipulator.

5.1. Processing the Experiment Data
Experiment measurements need to be collected from the mobile platform frame origin, but it is impossible to reach

this point with the CMM tip (ceramic spherical measuring tip). Therefore, a measurement apparatus was designed
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a) b) c)

Figure 10: a) Measurement of linear deflection via CMM for force load, b) applied torsion with a moment arm, c) load
applied on the manipulator [30].

as a dummy tool for the mobile platform. There are upper and lower measurement points on the apparatus. With the
location data collected from these points, the position of the mobile platform frame can be calculated. The resolution
of the FARO Prime Arm 1.2 CMM, on which the test measurements were made, is ±0.023 mm. This means that the
actual location of a point measured in space can be anywhere within a sphere with a radius of 0.023 mm. So when
calculating the position of the mobile platform frame, this calculation has a margin of error of ±0.023 mm. The actual
center of the mobile platform and the calculated centers are visualized in Fig. 9 a).

15 test points are determined in the workspace. Blocks with 5, 10, 15, 20, and 25 kg masses are used for loading
and applied separately along 𝑥- and 𝑦-axes. These masses generate 49.05, 98.1, 147.15, 196.2, and 245.25 N loads,
respectively. The coordinates of the mobile platform frame are measured via CMM once at each test point and for each
loading case. Including the no-load case measurement, 6 measurements are recorded at each test point. By subtracting
the measured coordinates of the dummy tool during the loaded case from measurements during the no-load case, 5
compliant deflection values are obtained for 5 to 25 kg loading cases. Thus, 75 deflection data are obtained for each
𝑥- and 𝑦-axes loading case. The experiment setup is shown in Fig. 10 and details are described in [30].

The stiffness model of this manipulator has the same absolute eigenvalues about the 𝑥-axis at the symmetric po-
sitions. For example, the absolute eigenvalue is the same at the (220 mm, -50 mm) and (220 mm, 50 mm) positions,
meaning the same amount of compliant deflection should be observed for the same loading from the mobile platform
frame. Nevertheless, the experimental data do not show a symmetrical feature. This is because the measurement ac-
curacy of the CMM is not high enough. If a post-processing procedure is carried out to make the data obtained around
the 𝑥-axis symmetrical, it is seen that the most significant error between the symmetric data set and the actual data set
is smaller than ±0.023 mm. The amount of correction required for this process is defined as:

𝑊 =
(

|

|

|

|𝑉Measured,Left| − |𝑉 Measured,Right|
|

|

|

)

∕2 (65)
𝑉Measured,Left ±𝑊 = 𝑉Measured,Right ∓𝑊 (66)

Here 𝑊 is the symmetry correction value, and 𝑉 is the measured data. Measurements made on the right and left
sides of the 𝑥-axis are compared with each other’s kinematic symmetry, and new symmetrical values are obtained.
When this correction is applied, the most considerable modification required to make the data obtained in the 𝑥-
axis deflection experiments symmetrical is 0.0098 mm and 0.0217 mm for the 𝑦-axis. The largest change in angular
deflections is 0.005◦ for 𝑥-axis rotation and 0.0085◦ for 𝑦-axis rotation. Therefore, it can be concluded that the cause
of the symmetry error is due to the low resolution of the CMM. The symmetrical data set significantly facilitates fitting
the model to the data. There are two reasons for this. The first is that the symmetrical state is closer to the ideal state,
thus more mathematically suitable for calculations. The second is that about half of the data required to update the
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Table 3
Average RMS error of model output and experimental data with updated and non-updated stiffness model parameters at
loading conditions.

Updated Model - 𝐹𝑥 Load Updated Model - 𝐹𝑦 Load
Load
(N)

Δ𝑥
(𝜇𝑚)

Δ𝑦
(𝜇𝑚)

Δ𝑧
(𝜇𝑚)

Δ𝜃𝑦
(◦)

Δ𝑥
(𝜇𝑚)

Δ𝑦
(𝜇𝑚)

Δ𝑧
(𝜇𝑚)

Δ𝜃𝑥
(◦)

49.05 4.2 4.6 8.6 2×10-3 5.1 5.7 5.0 3×10-3

98.1 4.0 3.7 5.7 2×10-3 5.5 2.2 10.3 2×10-3

147.15 5.7 8.1 8.6 2×10-3 7.6 5.2 11.2 2×10-3

196.2 7.1 10.0 6.8 1×10-3 8.1 5.5 11.5 2×10-3

245.25 8.3 10.7 5.6 2×10-3 10.7 5.9 13.6 2×10-3

Non-Updated Model - 𝐹𝑥 Load Non-Updated Model - 𝐹𝑦 Load
Load
(N)

Δ𝑥
(𝜇𝑚)

Δ𝑦
(𝜇𝑚)

Δ𝑧
(𝜇𝑚)

Δ𝜃𝑦
(◦)

Δ𝑥
(𝜇𝑚)

Δ𝑦
(𝜇𝑚)

Δ𝑧
(𝜇𝑚)

Δ𝜃𝑥
(◦)

49.05 42.3 39.0 18.8 20×10-3 39.6 172.7 4.9 10×10-3

98.1 86.4 77.5 33.6 30×10-3 78.9 351.4 10.6 20×10-3

147.15 130.8 118.3 50.6 50×10-3 121.6 526.4 11.7 20×10-3

196.2 175.3 151.6 66.9 70×10-3 159.5 699.8 11.9 30×10-3

245.25 217.7 188.9 83.8 80×10-3 201.0 879.5 13.8 40×10-3

Table 4
Average absolute error between the model and experimental data for all loading conditions. The same upper index symbol
indicates the symmetric test points.

𝐹𝑥 Load 𝐹𝑦 Load
Test Point 𝜑11(◦) 𝜑21(◦) 𝑒𝑥(𝜇𝑚) 𝑒𝑦(𝜇𝑚) 𝑒𝑧(𝜇𝑚) 𝑒𝜃𝑦(◦) 𝑒𝑥(𝜇𝑚) 𝑒𝑦(𝜇𝑚) 𝑒𝑧(𝜇𝑚) 𝑒𝜃𝑥(◦)

1† -27.7 74.8 1.37 5.43 4.45 2×10-3 2.45 5.38 15.24 1×10-3

2⋆ -19.9 57.3 6.71 4.15 1.18 1×10-3 7.30 2.48 12.26 2×10-3

3∙ -4.4 35.2 3.59 4.59 2.94 1×10-3 6.56 2.78 8.12 3×10-3

4⊗ -15.9 31.6 1.64 2.44 3.11 1×10-3 7.41 3.85 8.37 3×10-3

5△ -31.7 50.9 4.22 13.69 12.89 3×10-3 3.52 1.67 5.75 2×10-3

6⋄ -41.7 66.3 2.44 7.11 1.76 1×10-3 3.52 2.67 6.40 1×10-3

7 -55.0 55.0 7.81 0.86 5.43 1×10-3 13.12 8.56 6.46 1×10-3

8 -42.2 42.2 12.09 0.69 6.48 1×10-3 2.81 6.34 9.09 2×10-3

9 -24.9 24.9 5.04 0.46 4.31 2×10-3 8.10 5.54 10.21 3×10-3

10⋄ -66.3 41.7 2.59 7.45 1.86 1×10-3 7.36 2.91 5.14 1×10-3

11△ -50.9 31.7 4.38 14.69 16.62 3×10-3 3.40 1.45 5.70 2×10-3

12⊗ -31.6 15.9 1.65 2.38 3.06 1×10-3 5.49 3.79 6.28 3×10-3

13∙ -35.2 4.4 5.03 4.52 3.07 1×10-3 9.59 3.86 11.67 3×10-3

14⋆ -57.3 19.9 7.30 4.51 1.78 1×10-3 5.71 1.48 12.17 2×10-3

15† -74.8 27.7 1.24 5.27 5.36 2×10-3 2.25 3.24 15.68 1×10-3

model parameters is sufficient, thanks to symmetry. Therefore, it is possible to obtain a faster solution.
5.2. Experimental Results and Discussion

The optimized modification matrix parameters are presented in Appendix B. If these parameters are closer to zero,
less modification is required, and our initial guess is accurate. As described in Eq. 63, the loading conditions from
the mobile platform frame have zero components for 𝑧-axis force and moment. It means 3rd and 6th columns of the
inverse of the stiffness matrix 𝑲 ′

𝐶 are multiplied with zero values during optimization of the modification matrix. This
introduces redundancy in optimizing the modification matrix; hence, this set of parameters is not unique. Furthermore,
this redundancy fits the model to the experimental data as if it is reserved for fine adjustment. In this regard, the
computed modification matrix is a solution of a Pareto-front optimal set.

Table 3 presents the average root-mean-square (RMS) of the errors between the model and experimental data
with updated and non-updated stiffness matrix parameters for all loads. The effectiveness of parameter update can
be easily seen by comparing the 𝐹𝑦∕Δ𝑦 load/deflection relation at 25 kg of mass loading condition for updated and
non-updated results. A reduction from 879.5 µm RMS error to 5.9 µm RMS error is achieved. The error set of
𝐹𝑦∕Δ𝑦 shows the best performance enhancement and has the minimum error set after the parameter update, even
though other loads/deflection sets have lower errors before the parameter update. The reason for this behavior lies
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in the definition of the objective function in Eq. 64. Since the large loads and large deflections are related to the
stiffness parameters, a slight modification in these parameters is amplified by the large load/deflection relation, which
results in a greater error achieved from the model. Therefore, the optimization algorithm prioritizes reducing the large
deflection errors by adjusting their related stiffness parameters. It can be said that large load/deflection relation defines
a weight on the objective function. As a result, small load/deflection relations become less critical. It can be proved
by comparing 𝐹𝑦∕Δ𝑧 RMS errors before and after the parameter updates. The error remains the same because 𝐹𝑦∕Δ𝑧has the minimum load/deflection values as shown in Table 3.
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Figure 11: Linear deflections for loads along 𝐹𝑥.

Table 4 shows absolute deflection errors between the model and the experimental data. The presented results are
the average errors considering all loading conditions from 49.05 N to 245.25 N at each test point. The same upper
index symbol indicates symmetric test points. 𝑥-axis deflections for 𝐹𝑥 load and 𝑦-axis deflections for 𝐹𝑦 load show
smaller average error than 10 𝜇𝑚, but only in one occurrence for 𝐹𝑥∕Δ𝑥 load/deflection relation at test point 8 the
error surpasses 10 𝜇𝑚. 𝐹𝑥∕Δ𝑦 and 𝐹𝑦∕Δ𝑥 load/deflection relations also present a smaller error performance than 10
𝜇𝑚 except at three occurrences at test points 5, 11, and 6.

In Fig. 11, 12, and 13, measured deflections and the model’s output, which is updated by the modification matrix,
are illustrated. When the obtained model is compared with the experimental data, a good overlap is observed even
for large deflection values. If the joint clearances were more significant than anticipated or the internal stresses were
higher than predicted, the stiffness problem would take on a much more non-linear mathematical nature. In this case,
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Figure 12: Linear deflections for loads along 𝐹𝑦.

the obtained model and the designed parameters would be insufficient to solve the problem. After its parameters are
updated correctly, we conclude that the stiffness model captures the manipulator’s general characteristics. In Fig. 11
and 12, 𝑥-axis deflections for 𝐹𝑥 load and 𝑦-axis deflections for 𝐹𝑦 load display the greatest deflection values. 0.5 mm
and 1.7 mm maximum deflections are recorded for 𝐹𝑥∕Δ𝑥 and 𝐹𝑦∕Δ𝑦 load/deflection relations, respectively. Since
there is no force component along 𝑧-axis, minimal deflection values are recorded along this axis. When the model’s
performance for angular deflections is examined, it provides a good match for the angular deflections about 𝑦- and
𝑥-axes. Maximum angular deflections are smaller than 1.6◦ for 𝑦-axis rotation under 𝐹𝑥 load and 1◦ for 𝑥-axis rotation
under 𝐹𝑦 load.

In this part, a model fitting process was applied to the existing stiffness model from the previous section. It is
possible to update the model considering the height difference between the distal and proximal parallelograms. In that
case, distal parallelograms would experience only forces since their links are at the same height level with the mobile
platform. However, the proximal parallelograms would experience both force and moment due to the height difference.
This moment can be computed considering the load distribution in the joint space. This computation is explained in
Eq. 63. This modified force and moment vector is computed using the virtual moment arm parameters obtained during
the model fitting process to comply with the experiment results.
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Figure 13: Angular deflections about 𝑥- and 𝑦- axes.

6. Conclusion and Discussion
This paper uses a case study to present stiffness model acquisition via the virtual joint method (VJM) of parallel

manipulators with serially connected sub-loops in their limbs. Auxiliary force effects on the end-effector’s compliant
deflection are considered via the superposition principle. In order to investigate the performance of the auxiliary force
consideration method, two VJM models of the manipulator are acquired in which one is only subjected to forces at the
end-effector, and the other one is subjected to auxiliary forces and end-effector forces. Auxiliary forces are calculated
to be one-tenth of the end-effector forces; hence, minimal differences between the two models are expected. The
outputs are compared with a finite element model subjected to auxiliary and end-effector forces. Nine test points are
determined within the manipulator’s workspace, and compliant deflections are obtained for each 𝑥- and 𝑦-axes in the
simulation environment. 18 simulation test results are obtained with the proposed methodology. Among these results,
(1) in 8 tests, the proposed method produced better results compared to the case where only the forces at the end-
effector are considered, (2) in 6 tests, both methods produced the same results and (3) in 4 tests, the proposed method
produced relatively worse results. The proposed method (VJMEAB) may output better results if an iterative method
is adopted. Nevertheless, both VJM models have captured the configuration-dependent stiffness characteristics of the
manipulator. Hence, it can be concluded that the proposed VJM model acquisition procedure for parallel manipulators
that have serially connected sub-loops is applicable. Also, we conclude that the proposed superposition methodology
works when considering the auxiliary forces; however, this feature calls for further investigation. In addition, the 6-
DoF VJM model runs at 10 kHz in a Matlab environment and can even run faster if the size of the stiffness matrix is
made smaller by discarding the columns and rows of unneeded deflection axes.

The VJM model accuracy and performance are also compared with the experimental results obtained from the
actual manipulator. 49.05 N to 245.25 N loads are applied to the real manipulator along 𝑥- and 𝑦-axes, and compliant
deflection results are obtained. Next, a modification matrix is proposed to update the VJM model parameters using
experimental data. It was able to capture configuration-dependent and configuration-independent gain values for en-
hancing the accuracy of the stiffness model. Then, the VJM model output is compared with the experiment results.
The maximum average RMS error of 879.5 µm is reduced to 5.9 µm. Hence, the ability of the proposed VJM method to
represent the configuration-dependent stiffness behavior of the manipulator is experimentally verified. This proves the
soundness of our proposed stiffness modeling solution of having serially connected sub-loops at the limbs of parallel
manipulators and the vitality of the modification matrix for the stiffness parameter update process.
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Appendix A

Table A1
Finite Element Analysis (FEA) and Virtual Joint Method (VJM). The compliant deflection unit is 𝜇𝑚. Sub-indices E, A,
and B indicate the force is applied from the frames  (𝐸),  (𝐴), and  (𝐵).

Test Point 1 Test Point 2 Test Point 3
FEAEAB VJME VJMEAB FEAEAB VJME VJMEAB FEAEAB VJME VJMEAB

Force
Direction 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦

0◦ 1.7 0 1.7 0 1.9 0 2.6 0 2.5 0 2.9 0 4.4 0 4.3 0 4.9 0
30◦ 1.5 33.4 1.4 33.5 1.7 33.5 2.2 16.7 2.2 16.8 2.5 16.8 3.8 11.8 3.7 11.8 4.3 11.8
60◦ 0.8 57.9 0.8 58.1 1 58.1 1.3 29 1.2 29.1 1.4 29.1 2.2 20.5 2.1 20.5 2.5 20.5
90◦ 0 66.9 0 67.1 0 67.1 0 33.5 0 33.5 0 33.5 0 23.6 0 23.7 0 23.7
120◦ -0.9 58 -0.8 58.1 -1 58.1 -1.3 29 -1.2 29.1 -1.4 29.1 -2.2 20.5 -2.1 20.5 -2.5 20.5
150◦ -1.5 33.5 -1.4 33.5 -1.7 33.5 -2.3 16.7 -2.1 16.8 -2.5 16.8 -3.9 11.8 -3.7 11.8 -4.3 11.8

Test Point 4 Test Point 5 Test Point 6
FEAEAB VJME VJMEAB FEAEAB VJME VJMEAB FEAEAB VJME VJMEAB

Force
Direction 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦

0◦ 16.9 -16.3 17.8 -17.7 17.4 -16.4 5.7 -9.9 5.8 -10.5 6 -9.9 3.9 -12.6 3.9 -12.9 4.1 -12.6
30◦ 5.83 -1.44 6.6 -2.6 6.2 -1.4 -0.3 8.6 -0.2 8.2 0 8.6 -3.1 26.5 -3.1 26.3 -2.9 26.6
60◦ -6.84 13.9 -6.4 13.2 -6.6 13.9 -6.2 24.8 -6.2 24.6 -6.1 24.9 -9.2 58.5 -9.2 58.5 -9.1 58.6
90◦ -17.7 25.5 -17.7 25.5 -17.7 25.5 -10.5 34.4 -10.5 34.5 -10.5 34.5 -12.9 74.8 -12.9 75 -12.9 75
120◦ -23.9 30.3 -24.3 31 -24.1 30.3 -12 34.8 -12 35.1 -12.1 34.8 -13.1 71.1 -13.1 71.4 -13.2 71.2
150◦ -23.6 27 -24.3 28.1 -23.9 27 -10.2 25.8 -10.3 26.3 -10.5 25.8 -9.8 48.3 -9.8 48.7 -10 48.4

Test Point 7 Test Point 8 Test Point 9
FEAEAB VJME VJMEAB FEAEAB VJME VJMEAB FEAEAB VJME VJMEAB

Force
Direction 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦

0◦ 11.6 -29.6 11.8 -30.2 11.8 -29.7 16.1 -21.4 16.7 -22.5 16.4 -21.4 97.6 -48.1 101.9 -50.5 96.7 -47.6
30◦ -5 19.5 -4.9 19.1 -4.9 19.6 2.7 0 3.2 -1 2.9 0 59.3 -27.4 63.1 -29.6 58.3 -26.8
60◦ -20.3 63.4 -20.3 63.3 -20.2 63.6 -11.4 21.3 -11.1 20.8 -11.3 21.4 4.7 0.7 7.2 -0.6 4.3 1.1
90◦ -30.2 90.3 -30.2 90.5 -30.2 90.5 -22.5 37 -22.5 37.1 -22.5 37 -52.5 29.1 -51.1 28.9 -50.9 28.7
120◦ -32 93 -32 93.5 -32.1 93.2 -27.6 42.7 -27.9 43.4 -27.7 42.8 -96.8 50.1 -96.1 50.7 -92.4 48.7
150◦ -25.2 70.8 -25.3 71.4 -25.3 70.9 -25.2 37 -25.8 38 -25.5 37.1 -115.3 57.8 -115.2 59 -109.2 55.6

Appendix B

Table B1
Optimized modification matrix and virtual moment arms parameters. (N⋅m/m and N/rad units are simplified to N.)

𝑘1 −682581.69 N/m 𝑘18 −9860.23 N 𝑘35 −133839.70 N 𝑘52 −12712.36 N⋅m/rad
𝑘2 −176694.31 N/m 𝑘19 445958.51 N 𝑘36 455.36 N⋅m/rad 𝑘53 −1229.68 N⋅m/rad
𝑘3 6931081.96 N/m 𝑘20 36396.56 N 𝑘37 297044.99 N 𝑘54 1353507.83 N/m
𝑘4 305814.59 N⋅m/rad 𝑘21 448089.83 N 𝑘38 −6789.15 N 𝑘55 110128.52 N
𝑘5 319756.95 N⋅m/rad 𝑘22 −2013299.99 N/m 𝑘39 −472.10 N 𝑘56 1181559.95 N
𝑘6 −614.58 N⋅m/rad 𝑘23 −6392.84 N/m 𝑘40 −412917.17 N 𝑘57 −27232.35 N⋅m/rad
𝑘7 −585347.64 N/m 𝑘24 1166028.11 N/m 𝑘41 −192.70 N 𝑘58 −10081.42 N
𝑘8 −538600.05 N/m 𝑘25 271346.39 N⋅m/rad 𝑘42 −10199.16 N 𝑘59 −19382.79 N
𝑘9 −38045.02 N 𝑘26 367542.60 N⋅m/rad 𝑘43 −62556.25 N/m 𝑘60 2427.17 N
𝑘10 −172485.58 N⋅m/rad 𝑘27 −62.95 N⋅m/rad 𝑘44 −28711.40 N/m 𝑘61 −12128.66 N
𝑘11 5288.43 N⋅m/rad 𝑘28 −23459.22 N/m 𝑘45 48277184.32 N/m 𝑘62 −36977.22 N
𝑘12 −2463245.79 N/m 𝑘29 −16845.07 N/m 𝑘46 262364.31 N⋅m/rad 𝑘63 1214.03 N
𝑘13 −19527.29 N 𝑘30 89855.32 N 𝑘47 401376.50 N⋅m/rad ℎ1 7.68 m
𝑘14 2021068.50 N 𝑘31 167530.02 N⋅m/rad 𝑘48 308.36 N⋅m/rad ℎ2 3.54 m
𝑘15 1114.64 N⋅m/rad 𝑘32 605.51 N⋅m/rad 𝑘49 −2332.49 N/m
𝑘16 326089.54 N 𝑘33 857749.02 N/m 𝑘50 −253469.03 N/m
𝑘17 57396.59 N 𝑘34 −8392.46 N 𝑘51 −161419.91 N
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