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ABSTRACT
In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid
light–matter states exhibit energy level shifts, are delocalized over many molecular units, and have a different excited-state potential energy
landscape, which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited
states of molecules coupled to surface plasmons (i.e., plexcitons), and these operators have been successfully used in the description of linear
and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of
nonlinear spectroscopy by means of Feshbach operators and apply them to explore spectroscopic signatures of plexcitons. In particular, we
analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular
components and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and
Rabi splitting in linear spectroscopy and a qualitative change in the symmetry of the line shape of the nonlinear signal when crossing the
exceptional point. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach
for simulating the optical response of sublevels within an electronic system and opens new applications of nonlinear spectroscopy to examine
the different regimes of the spectrum of non-Hermitian Hamiltonians.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0130287

INTRODUCTION

The coupling between light modes and radiative transitions of
matter creates exciton polariton states, i.e., half-light and half-matter
states. These were first demonstrated in atoms inside a microwave
cavity and were used to study decoherence and quantum logic
operations in atoms.1–4 More recently, polaritonic states have also
been observed in molecules in microcavities, having both infrared
and visible wavelengths. They open new paradigms to influence
chemical processes.5–16 For example, the delocalization of polari-
tonic states is advantageous for long-distance energy transfer,11,17–22

polaritonic chemistry,23–26 and photocatalysis.27,28 They can also be

used for lasing and to study nonequilibrium condensates and phase
transitions.5,29 Using plasmonic nanoparticles instead of cavities
confines the light to subwavelength dimensions. This allows creat-
ing billions of polaritonic systems in solution.30 It allows many more
interesting arrangements that exhibit strong coupling in the single or
few molecule limit.31

The number of molecules in the interaction volume and
the properties of the cavity determine the light–matter coupling
strength, while the quality of the cavity and the molecular dissipative
processes determine the coherence lifetime. The coupling strength
and coherence lifetimes span a large parameter space that can be bro-
ken into different regimes, which are also associated with different
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phenomena.32,33 For example, for weak coupling, we observe a Pur-
cell enhancement of the fluorescence rate, while for strong coupling,
we see a Rabi splitting, which is reflected in a splitting of the absorp-
tion into two peaks termed upper and lower polariton branches.
However, such an apparent splitting is also possible in the presence
of an interference that appears already in the weak coupling regime
(also called electromagnetically induced transparency or a Fano
interference33). Finally, the ultrastrong coupling and deep strong
coupling regimes are associated with the breaking of the rotating-
wave approximation and are difficult to reach using molecules in
cavities but have been observed with plasmonic lattices.34

It is important to discuss dissipation when considering polari-
ton transitions. While in atoms, the sources of dissipation are few
and well understood, an intense experimental and theoretical effort
has been necessary to assign the timescale and processes of coher-
ent and incoherent dynamics in molecular polaritons.30,35–40 Briefly,
time-resolved spectroscopy experiments have detected coherent
dynamics in the form of Rabi oscillations via transient absorp-
tion37 and established the possible relaxation pathways: the upper
branch can decay via radiation damping to the ground state,41 inject
into the dark plexciton states,42,43 or decay directly into the lower
branch.44 The dark states themselves can decay to the lower polari-
ton branch, with some degree of back-transfer (from lower polariton
to dark reservoir) taking place.45 The long lifetime of the dark states
is responsible for the excited state stabilization with decay times
for up to several μs.42,46,47 In systems, where the cavity mode is
confined to a plasmonic nanoparticle, the dynamics are strongly
influenced by electron–electron and electron–phonon scattering
inside the metal nanoparticle. Notably, a direct coupling between the
molecular dark states and metal surface states appears to limit the
lifetime of the dark states to that of the electron–electron scattering
time.40

Simulations of the optical response are crucial to correctly
interpret the experiments and more so in time-resolved spec-
troscopy experiments, such as two-dimensional coherent spec-
troscopy (2DCS) or transient absorption. Coupled oscillator models
work well to understand linear optical absorption.44 For transient
absorption, they can also work as long as the experiment can be
simulated as two linear experiments: the bleach of the ground state
and the absorption of an excited state dominated by the signal from
the remaining molecules in the ground state. This is true when the
main nonlinearity is a Rabi contraction whereby the Rabi splitting of
the ground state is reduced because of the molecules that have been
excited.37 However, they are not sufficient for simulating a third-
order signal as, in general, all orders of the field appear together,
and it is not straightforward to disentangle them. Input–output
theory has also been used to compute with a very good agreement
the experimental two-dimensional infrared spectroscopy (2DIR)
signal of molecules in infrared cavities.25 The Rabi contraction
and softening of the vibrational mode (for 2DIR) have been pro-
posed as the mechanisms of nonlinearity. Similar physics has been
found in polaritons formed from molecules adsorbed on plasmonic
lattices.37 In an earlier work, we have simulated the two-dimensional
electronic spectroscopy response of molecules coupled to plasmonic
nanoparticles using an extension of the response function formalism
to non-diagonal non-Hermitian Hamiltonians, successfully repro-
ducing the spectra at early times using a Rabi contraction nonlinear-
ity and at late times using a thermal expansion of the nanoparticle.40

Gu et al. also employed a non-Hermitian Hamiltonian to calculate
several nonlinear experiments, finding significant modifications of
the energy levels as well as the selection rules.48 Models of disordered
polaritons have suggested the existence of exceptional points in these
non-Hermitian Hamiltonians, which vary according to the degree of
disorder,49 and these have been measured experimentally in infrared
cavities.50 Non-Hemiticity of the Hamiltonian can arise from a num-
ber of different scenarios not only due to energy relaxation but
also from particle decay, for example, in photoionization. Moiseyev
et al. proposed a more realistic model of molecules, including the
ionized continuum states, and studied their modification inside
a cavity.51

There are two difficulties related to the description of the
dynamics of hybrid plasmonic systems. First, the description of the
optical response in terms of non-diagonal non-Hermitian Hamil-
tonians is not typical in the approach for calculating 2D spectra in
molecular systems. Usually an excitonic basis is used, where diago-
nal fluctuations induced by the bath are added and result in a line
shape function after bath-averaging.52 Second, plasmonic systems
add a rich dimension of dynamics in terms of the non-equilibrium
distribution of hot electron–hole pairs, formed inside the metal-
lic band structure after plasmon decay. The dynamics inside the
metallic band observed in transient absorption experiments has been
beautifully demonstrated in pure metals;53 however, the descrip-
tion has not yet been extended to mixed molecule-metal systems.
One complication is the co-existence of coherent effects related to
the Rabi oscillation between two discrete transitions along with the
incoherent scattering of continuous non-equilibrium distribution of
electrons in the metal. The latter phenomena is described by the
dielectric constant of an electron gas whose temperature is described
by the two-temperature model54 and has not been adapted to handle
the molecular states.

In this work, we consider the linear and nonlinear optical
response of non-diagonal non-Hermitian Hamiltonians. We begin
by providing a derivation of the non-Hermitian Hamiltonian and
discuss its regime of validity. We then describe the decomposition
of the linear and third-order optical response using double-sided
Feynman diagrams. We conclude with a discussion of the polariton
branch energy structure in the weak and strong coupling regimes
and their distinctive spectral signatures.

THEORETICAL DESCRIPTION
Effective operators

Non-Hermitian Hamiltonians have been derived as effective
operators for molecules coupled to plasmonic nanoparticles from
ab initio considerations.55 The non-Hermiticity arises from an
implicit inclusion of certain degrees of freedom of the system.
Regardless of the procedure to obtain the effective operators, one
is left with a 2 × 2 Hamiltonian describing a plasmon excitation cou-
pled to a molecular excitation where each of these two transitions
is associated with a separate decay channel. In the site basis, con-
sisting of the molecular bright state and the plasmon transition, the
Hamiltonian is (setting hbar=1):

Heff =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ωJ − iγJ g

g ωP − iγP

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (1)
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where g is the coupling between the bright molecular transition
and the plasmon transition, the P and J indices denote plasmon
or molecular J-aggregate, and ωi and γi relate to the transition
frequencies and dephasing rates, respectively. We impose γJ < γP.
The Hamiltonian of Eq. (1) admits an exceptional point when
ωJ = ωP ≡ ω0 and g = Δγ

2 , where Δγ = γP − γJ ,
56 and which sets the

limit between weak and strong coupling.
We can easily solve for the eigenvalues ω± and eigenvectors v⃗±

of the Hamiltonian as

ω± = ω0 − i
γJ + γP

2
±
√

g2 − (Δγ/2)2 ≡ ω0 − iγ̄ ± ξ (2)

and

v⃗± =
1

√
(±ξ + iΔγ/2)2 + g2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

±ξ + iΔγ/2

g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3)

where we will denote by + and − the upper and lower polariton
branches, respectively. The transition dipole moments are calculated

as μ±g = v⃗
T
±[

μJ

μP
], where μP and μJ are the transition dipole moments

of the plasmon and bright molecular transition, respectively. We
assume that the coupling g is real. ξ can be real or imaginary, and
the transition from one to the other appears at the exceptional point.
Given that the matrix in Eq. (1) is symmetric, we have μ±g = μg±
≡ μ±. For μP ≠ 0, μJ = 0, we have μ± = μP

g√
(±ξ+iΔγ/2)2+g2 . The

denominator can be rewritten as g
√

(−iδ ±
√

1 − δ2)2 + 1, where
δ = Δγ

2g . Doing a perturbative expansion on either side of the
exceptional point δ = 1 ± ϵ for small ϵ, we have to leading order
μ± ≈ g

√
±
√

2ϵ in the weak coupling regime, making one transition
dipole moment purely real, and the other purely imaginary. In the
strong coupling limit, to leading order, we have μ± ≈ g

√
2ϵ ∓ i

√
2ϵ,

which leads to the relation μ2
+ = (μ2

−)
∗. These relations will be

important when deriving the symmetries of the signals. The limits
presented here, either μJ = 0 or μP = 0, should be physically under-
stood as μJ ≪ μP or μP ≪ μJ since otherwise there would be no
dipolar coupling between molecules and plasmons.

The Hamiltonian from Eq. (1) can be derived from classical
arguments56 or obtained from the quantization of the modes of the
electromagnetic field sustained by a spherical metallic particle.55 In
Appendix A, we show a derivation suitable for the parameters of
plexcitons explored earlier,40 while in Appendix B, we show a deriva-
tion obtained by projecting out continuum states. However, the
effective non-Hermitian operator remains an incomplete descrip-
tion for time-resolved experiments as it cannot capture the dynamics
occurring in the implicit degrees of freedom, i.e., the degrees of free-
dom that when removed induce the non-Hermiticity. In our case,
these correspond to the excited electron–hole pairs in the metallic
conduction band. The non-Hermitian Hamiltonian can be used for
calculating the linear response, but it is not justified for higher-order
signals. The dephasing of the optical coherence can give a width to
the line shape; however, when this width arises, for instance, from
decay into a different excitation (i.e., electron–hole states), these will
contribute to the excited-state absorption in a way that cannot be
handled by non-Hermiticity alone. We provide a justification for its

use under restricted conditions in the next section [optical response,
Eq. (8)] and derive the expressions applicable to the general case.

Optical response

The density matrix to nth order in the light–matter interaction
ρ(n)
(t) is given by (omitting the hat symbol for operators57)

ρ(n)(t) = in
∫ dtn ∫ dtn−1 ⋅ ⋅ ⋅∫ dt1E(t − tn)

× E(t − tn − tn−1) . . .E(t − tn − ⋅ ⋅ ⋅ − t1)

× ⟨[μ(tn), [μ(tn−1), . . . [μ(t1), ρ(0)]]]⟩B, (4)

where μ(t) = e+iH0tμe−iH0t is the transition dipole moment operators
in the interaction picture, H0 is the field-free Hamiltonian, E(t) is
the electric field from the impinging radiation, and ⟨⟩B is the average
over the realizations of the bath. We define the Feshbach operators P
and Q for the bright and dark partitions, respectively. An illustration
of the transformation from molecular and plasmonic partitions to
bright and dark partitions is shown in Fig. 1 (details are found in
Appendix A).

To remove the explicit description of the dark modes in Eq. (4),
we derive the elements needed to calculate the nested commuta-
tors in terms of effective operators. Because P delimits the bright

FIG. 1. Energy level structure. (a) Before diagonalization of the molecular
component and (b) after diagonalization. Details are found in Appendix A.
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partition, the optical response function will be contained in this
partition. The needed terms of the nth order response are of the
form Pμ(tn) . . .μ(t1)Pρ(t0)Pμ(t1) . . .μ(tn)P, which involve calcu-
lating terms of the form Pμ(tn) . . .μ(t1)P. We only need to calculate
explicitly the first two terms (and the rest follow straightforwardly).
Recognizing that μ = PμP (i.e., that μ is entirely contained in P),

Pμ(t1)P = PeiH0t1 PμPe−iH0t1 P,

Pμ(t2)μ(t1)P = PeiH0t2 PμPe−iH0t2(P +Q)eiH0t1 PμPe−iH0t1 P.
(5)

The required evolution operator e−iH0t can more easily be calculated
in its resolvent form,

e−iH0t
=
−1
2πi ∮

dzG(z)e−izt , (6)

where G(z) = [z −H]−1, and then, for the terms appearing in
Eq. (5),

Pe−iH0tP =
−1
2πi ∮

dzPG(z)Pe−izt ,

Pe−iH0tQe−iH0t1 P =
−1
4π2 ∮ dz∮ dz′PG(z)Qe−iztQG(z′)Pe−iz′t1.

(7)

The resolvent approach allows us to calculate PG(z)P and PG(z)Q
of the Hamiltonian in Eq. (A6) using Lippman–Schwinger series.
As we have done before,58 we express all of the operators in terms
of Heff(z) = PHeff(z)P = PHP + PHQG0(z)QHP, where PG(z)P
= [z −Heff(z)]−1. In principle, all of the processes that can occur
inside the band structure, such as electron–electron scattering,

FIG. 2. Main regime for a plexciton systems with isoenergetic transitions
ωJ = ωP = ω0. We show in orange and blue the curves for S = 1 and C = 1, which
separate the different regimes. The parameters of coupling strength g and plas-
mon dissipation strength γp are normalized to the molecular transition frequency
ω0. We choose three representative points A, B, and C to simulate the linear and
nonlinear optical response in the main text. The points D, E (unlabeled point), and
F are explored in Appendix C to characterize the region where S > 1 but C < 1)
(which is obtained for point E, while D and F are provided as references).

electron–phonon scattering, appear in the operators that describe
the metallic band QG0(z)Q. However, they are difficult to solve
explicitly and go beyond the scope of this work, where we will con-
strain ourselves to the nonlinear response functions at the delay
time between pump and probe T = 0. We thus neglect any scatter-
ing between two states k and k′ of the metal. This means that QG0Q
= [z −QH0Q]−1 is diagonal and, thus, easily invertible. To first
order, we can make an approximation regarding the energy depen-
dence of the states in partition Q referred to as the wideband
approximation that involves an infinite flat continuum with energy
independent couplings and a linear dispersion.59 Within these
approximations, terms containing PG(z)QG(z′)P all vanish, and
Heff(z) becomes z-independent. We can then express the optical
response exclusively in terms of the effective operators in the bright
partition as

μ(t) = Pμ(t)P = PeiH0tPμPe−iH0tP = eiH†
efftμe−iHefft. (8)

In general, the effective operator Heff(z) is nonlinear in that
it depends on the frequency parameter z. The physical meaning
of this is that the particle density can transfer from the P parti-
tion to the Q partition (and back), which can play a role in the
dynamics. This goes beyond the scope of this article, although the
description in the wideband approximation will be valid at short
enough times. Before understanding the spectral signatures depend-
ing on the non-Hermiticity, we isolate the important regimes of

FIG. 3. (a) Eigenvalues and (b) eigenvectors of the non-Hermitian Hamiltonian.
Vertical dashed lines show the dipolar coupling strength corresponding to points
A, B, and C of Fig. 2.
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Eq. (1), which can correspond to different symmetries of the eigen-
values. As mentioned, non-Hermiticity can arise in a number of
settings and is usually connected with a manifold of states that are
not explicitly described. The physical effect of the imaginary part of
the energy is to destroy (when negative) or create (when positive)
particle density. The linear response of a system is not sensitive to
what happens to the particle density that the non-Hermitian part
of the Hamiltonian destroys. The fate of the particle density only
becomes important in nonlinear response (most easily accessible in
time-resolved experiments) when the particle density that leaves the
system can come back into it. This can be captured exactly by Eqs. (6)
and (7), provided that the effective operators can be calculated
exactly.

Phenomenology in different coupling
strength regimes

The behavior of polaritonic states can be categorized in
regimes according to the strength of the light–matter coupling, the

magnitude of the dephasing rates, and detuning.32 We limit our-
selves to coupling strengths for which the rotating-wave approxima-
tion is valid. For isoenergetic plasmonic and molecular transitions
(ωP = ωJ), the non-Hermitian Hamiltonian [see Eq. (A1)] has an
exceptional point at S = 2g/(γP − γJ) = 1,56 taken as a boundary
between the weak (S < 1) and strong (S > 1) coupling regimes. An
additional dimensionless parameter, the cooperativity C = g2

/γPγJ ,
has been proposed to separate the region of weak coupling C < 1 and
the region where interference processes are present C > 1.33,60 We
will systematically analyze the first and third-order optical response
above and below the exceptional point with six parameter families
cases marked in Fig. 2(a). Point A (red) corresponds to the weak
coupling regime for C = 0.20 and S = 0.21, point B (green) corre-
sponds to the interference regime with C = 1.8 and S = 0.63, and
point C (blue) corresponds to the strong coupling with C = 11.25
and S = 1.58. Points D (C = 0.25, S = 0.67), E (C = 0.44, S = 1.6),
and F (C = 1.78, S = 3.2) are meant to explore a small region where
we can have condition S > 1 but C < 1 and is outlined in Appendix C.

FIG. 4. Decomposition of the absorption spectra into polariton branches contributions (yellow dotted and blue dotted lines give the total contribution for the total absorption
shown in green). We show the cases for μj = 0 (a)–(c) and μp = 0 (d)–(f). The transition dipole moments to each branch are displayed in the complex plane. We illus-
trate the regimes of weak cooperativity and weak coupling (a) and (d), strong cooperativity and weak coupling (b) and (e), and strong cooperativity and strong coupling
(c) and (f).
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In all cases, the molecular dephasing is set at γJ/ω0 = 0.01. As
mentioned previously, we consider two limiting cases where the
plasmonic transition couples predominantly to the far field (i.e.,
μJ = 0) and where the molecular transition couples to the far field
(μP = 0).

As has been pointed out, for example, in Ref. 56, the behav-
ior is different on either side of the exceptional point. We make this
explicit by plotting the eigenvalues of Hamiltonian (A10) and eigen-
vectors as a function of the coupling strength (Fig. 3). For S < 1,
the real part of the eigenvalues (i.e., the transition frequencies) is
equal, while the imaginary part (i.e., the dissipation) is not. The two
polariton branches are either predominantly plasmonic or predom-
inantly molecular, and the distinction is carried by the dephasing
rate of the branch (imaginary part of the eigenvalue). At the excep-
tional point, both eigenvalues and eigenvectors coalesce and become
indistinguishable. For S > 1, the real part of the eigenvalues begins
to split (i.e., Rabi splitting), while the imaginary part is now iden-
tical for both branches. The two polariton branches are now (and
for all stronger couplings) an equal mixture of plasmon and exci-
ton. We analyze in more detail the first and third order optical
response of the non-Hermitian Hamiltonian from Eq. (A1) using
the double-sided Feynman diagram formalism58 in order to analyze
the expected spectral signatures.

SIMULATIONS

We consider the nth order response of the density matrix
using Eq. (4) and calculate the signal of two-dimensional electronic
spectroscopy and linear absorption in the impulsive limit.57

Linear absorption

Linear optical absorption is a routine measurement for nano-
particles and can yield a wealth of information at a relatively inex-
pensive cost, compared to more advanced spectroscopies. In the case
of plexcitons, it can reveal the coupling strength, relative magnitude
of transition dipole moments, and dephasing rates of each individual
component. The signal can be obtained from40

S(1) ∝ Re(∫ dteiωt t
∑
a=±

μ2
ae−iωat

)

= Re(∑
a=±

−μ2
a

i(ωt − Re(ωa)) + Im(ωa)
)

=∑
a=±

−Re(μ2
a) Im(ωa) − Im(μ2

a)(ωt − Reωa)

(ωt − Re(ωa))2 + ( Im(ωa))2 , (9)

FIG. 5. Role of the magnitude of the tran-
sition dipole moment of the discrete sys-
tem μJ for a three-level system (a) and a
Fano system (b). Traces have been off-
set by 1.2 for clarity. The characteristic
asymmetry of the Fano model is clearly
missing from the three-level system.
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where ∣+⟩, ∣−⟩ are the eigenstates of the non-Hermitian Hamiltonian
[Eq. (1)] (or upper and lower polariton branches).

We can decompose the absorption spectra into each polariton
contribution, i.e., plot each term of the sum in Eq. (9) separately.
In Fig. 4, we show the total absorption (green, solid) decomposed
into the upper (blue, dotted) and lower (yellow, dashed) polaritons
for different values of the coupling corresponding to points A, B,
and C of Fig. 2. We consider two limiting cases, one where the
plasmon predominantly couples to the far field (top row) and one
where the J-aggregate predominantly couples to the far field (bot-
tom row). The Euler plane of the insets show the transition dipole
moments for each polariton branch, μ−, μ+. We first consider the
case where the plasmon couples to the far field (top row). We can
see that for all parameters, there is the appearance of a peak splitting;
however, below the exceptional point, it arises from the destruc-
tive interference of a broad transition and a narrow transition, while
above the exceptional point, it arises from a Rabi splitting. Below
the exceptional point (A and B), μ+ is purely real, while μ− is purely
imaginary. The branch with the purely imaginary transition dipole
moment will have a negative contribution to the total absorption and
cause an interference dip. We note that the individual contributions
of the branches are not physical by themselves so that a nega-
tive contribution does not mean a stimulated emission but rather
intuitively describes the interference process. The dip is clearly seen
for spectra (a) and (b) where the yellow (dotted) line cancels the
plasmonic absorptive contribution. This results in a spectrum that
seems to have two apparently separate peaks well below the condi-
tion for Rabi splitting. However, while the spectra might look similar
above and below the exceptional point, the nature of the excitation
and consequently the excited state dynamics are expected to be very
different. As the coupling increases, the transition dipole moments
are no longer purely real or purely imaginary but have both real and
imaginary components (see the Euler plane insets of Fig. 4). The
contribution of each branch now amounts to two true peaks sep-
arated by Rabi splitting. While qualitatively the final spectra look
similar, the nature of the resonances is not. For example, exciting
on the right or left of the dip in the interference regime excites
the same homogeneously broadened excited state, while in the Rabi
splitting regime, exciting on the right or left addresses a different
excited state (upper polariton or lower polariton). This has been
recognized theoretically and experimentally in the fluorescence sig-
natures of quantum dots coupled to plasmons.61 The case where the
J-aggregate couples predominantly to the far field is strikingly differ-
ent. Below the exceptional point, we see no evidence of peak splitting
since the negative contribution is too broad. Above the exceptional
point, we see the expected Rabi splitting although with less contrast
than when the plasmon couples to the far-field [Figs. 4(d) and 4(e)].
The interference dip is only observed if it is the plasmon that couples
predominantly to the far-field (as is usually the case). The depth of
the minimum is modulated by the molecular dephasing rate and the
degree to which the molecular aggregate also couples to the far-field.
The set of points D, E, and F show that having the condition S > 1
is not enough to observe a peak splitting. In the region where S > 1
but C < 1, the system where the molecular aggregate couples more
strongly to the field does not show a Rabi splitting (see Appendix
E, Fig. 8). While the features of destructive interference are more
easily identified, there will also be regions of constructive interfer-
ence away from the dip. Thus, both the cooperativity and strength

parameters are important for classifying the features of the spec-
tra. The difference between interference and Rabi splitting has also
been observed in simulations with disordered molecules.49 There,
the narrower cavity absorption generates an interference pattern in
the heterogeneously broadened molecular absorption, while in the
case presented here, the narrow molecular absorption generates an
interference pattern in the homogeneously broadened plasmonic
absorption.

Fano interferences vs electromagnetically induced
transparency

It is appropriate to clarify an important point concerning the
interference process. This dip is often referred to either as a Fano
interference or an electromagnetically induced transparency (EIT),
and both processes denote different physics and spectral signatures.
The simplest system where EIT is observed is a three-level Λ sys-
tem consisting of a ground state manifold with two levels and one
discrete excited state. Its spectral signature is a frequency region of
suppressed absorption. The Fano interference appears in a structure
akin to the Λ system where one of the levels becomes a continu-
ous manifold of levels and the Fano line shape is characterized by a
distinctive asymmetric line shape which also includes a frequency
region of suppressed absorption.62 The plexciton Hamiltonian is
more closely related to a Λ system where instead of having two light-
fields coupling each ground state with the excited state, we have
an external light field coupling the ground state with the plasmon

FIG. 6. Feynman diagrams during the coherent evolution (top) and after dephasing
of the plasmon transition. The excited state ei,j , i, j ∈ LP, UP, corresponds to the
polariton branches.
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FIG. 7. Decomposition of the GSB contribution for the case of weak coupling (top) and strong coupling (bottom). Each panel shows the individual contributions corresponding
to the different permutations ei , ej = LP, UP of the diagram in Fig. 6.
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excitation and radiative coupling connecting the excited plasmon
with the excited J-aggregate [Fig. 5(a)].

Figure 5 shows the absorption spectrum for a Λ system and a
Fano system as a function of the asymmetry parameter, which is
related to the ratio of the different coupling elements.62 For Fano,
the asymmetry parameter is q = μJ

πμPg . We choose the same definition
for an effective asymmetry parameter for the Λ system although its
physical meaning is not exactly the same.58 For the Fano model, the
limiting cases μJ = 0 (q = 0) and μJ →∞ (q→∞) correspond to
anti-Lorentzian and Lorentzian line shapes, respectively. For finite
values of μJ (or q), the Fano system shows distinctive asymmetries
that reverse sign as the sign of q is reversed (middle panel) while
shifting the condition of destructive interference to the left or right
of the zero detuning condition. The Λ system [Fig. 5(a)] shows a
similar behavior for the limiting cases q = 0 and q =∞ if we allow
that far away from the resonance condition, the absorbance vanishes
instead of going to a finite value as in the Fano model. However,
for finite values of the effective asymmetry parameter and unlike
the Fano model, we do not find an asymmetry. For finite q, the
contrast at the point of destructive interference is reduced, and the
plots are identical for q and −q. This point will become important
in the analysis of nonlinear signals. We mention that real systems
often do show asymmetries, although this is due more to the detun-
ing of the plasmonic transition with respect to the molecular bright
transition, and not a true Fano asymmetry.

We now turn to a more detailed analysis of the different features
that appear in the spectrum of third-order spectroscopies of non-
Hermitian Hamiltonians.

Third order response

Two-dimensional electronic spectroscopy (2DES) is the most
complete third-order spectroscopy. During the experiment, three
pulses interact with a sample and an echo is detected (photon-
echo 2DES63), or alternatively four-pulses interact with the sample
and an excited state observable is detected, most often fluorescence
(action-detected 2D64,65). Of the three characteristic times between
the pulses in action detected 2D, the first and last can be Fourier-
transformed to obtain two-dimensional plots of the system that
show the correlation between excited and detected states at different
population times (in photon-echo 2DES, the echo is dispersed by a
grating and one Fourier transforms along the first delay). By scan-
ning the population time, we can reconstruct the dynamics of the
excited state. The complexity of the signal makes simulations cru-
cial for their understanding, in particular, for plasmonic-molecule
systems where the signals can be unintuitive.58 The induced polar-
ization can be calculated by the same perturbative approach
P(t) = Tr(μρ(3)

(t)), where

ρ(3) = i3
∭ dt1dt2dt3E(t − t3)E(t − t3 − t2)

× E(t − t3 − t2 − t1)⟨[μ(t3), [μ(t2), [μ(t1), ρ(0)]⟩. (10)

The nested commutator implied by Eq. (10) is now represented by
six double-sided Feynman diagrams that are grouped into contri-
butions denoted ground state bleach (GSB), stimulated emission
(SE), and excited state absorption (ESA) (see Fig. 6). The ground
state bleach can be simulated using the fits from the ground state

absorption spectrum, while the other two reflect properties of the
excited state. The physics captured by the ESA is crucial for the
observation of a non-zero nonlinear signal, since it exactly cancels
the GSB and SE in linear (harmonic) systems.57

We address in this article the effects of using a non-Hermitian
Hamiltonian and not the physics behind the optical nonlinearities in
plexcitons or polaritons, which have been addressed by others.25,42

Consequently, we will focus on the GSB contribution and analyze
its structure for the different regimes exemplified by points A, B,
and C of Fig. 2 and of points D, E, and F in Appendix C. The
other pathways SE and ESA, however, share similar features, and
the conclusions related to the symmetry of the final signal remain
unchanged (see Fig. 8 in Appendix D for the real part of the total sig-
nal in the case of the Rabi contraction nonlinearity shown in Fig. 6).
In addition, we only consider the case where the plasmon couples
predominantly to the far-field so that we can contrast the line shapes
of interferences with that of Rabi splitting. We can write the GSB
contribution as

S(3)∝∑
i,a=±

Im(ωa)(Im(μ2
i μ2

a)(ωt − Re(ωi)) + Re(μ2
i μ2

a) Im(ωi))

((ωt − Re(ωi))2+ Im(ωi)2)((ωτ − Re(ωa))2+ Im(ωa)2)
.

(11)
Figure 7 shows the spectrum for weak 7(a) and strong 7(b)

coupling along with their decomposition into diagonal elements
((UP,UP) and (LP,LP)) and cross-terms ((UP,LP) and (LP,UP)). For
the weak coupling case, the diagonal elements are positive while
it is the cross-terms that provide the negative signal and split the
main plasmonic resonance into four regions. That the negative fea-
tures arise from the cross-terms between upper and lower branch
is another indication that the dips are a result of an interference
process between the plasmonic resonance and the molecular reso-
nance and not a splitting of the energies. Having transition dipole
moment pairs μ±g, μg± which are not complex conjugates of each
other introduces phase shifts in the resonances. As a result they
acquire dispersive character along with the negative features. These
negative features do not appear in the GSB and SE contributions in
molecular systems where non-diagonal non-Hermitian Hamiltoni-
ans are not common. However, they should not be interpreted as
ESA features. In the linear response, the negative features are always
compensated by positive ones so that absorption is always positive.
Instead, our physical picture is that they are the inevitable expression
of destructive interferences when we decompose the spectrum into
some contributions that are strictly positive, and so require some
negative contributions to suppress the absorption (this is also more
clearly seen in the linear optical absorption case).

The strong coupling regime is qualitatively different. Each of
the four contributions now appear at a different position in the spec-
trum because of the Rabi splitting. A notable difference between the
GSB signal between the two regimes is that the interference regime
has a D4 fourfold reflection symmetry, while the strong coupling
regime possesses a C2 rotational symmetry (as we show later when
both μJ ≠ 0 and μP ≠ 0 some symmetries are lost).

We now analyze the effect of having both μP ≠ 0 and μJ ≠ 0.
Figure 9 shows the GSB for different values of the coupling strength
g (columns) and also different values of the ratio μJ/μP (rows). Along
the columns, we observe the same qualitative difference between
weak and strong coupling, namely, the transition in the symmetry
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FIG. 8. Dependence of the spectral asymmetry for GSB and ESA along the detection dimension as a function of the ratio μJ/μP = −0.2 (top row), 0 (middle row), and 0.2
(bottom row). The coupling strength increases from left to right.
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FIG. 9. Dependence of the spectral asymmetry along the detection dimension as a function of the ratio μJ/μP = −0.2 (top row), 0 (middle row), and 0.2 (bottom row). The
coupling strength increases from left to right.
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of the line shape. In this case when μJ ≠ 0, we lose some sym-
metries. Strikingly, while the linear response for different values
of μJ/μP does not show an asymmetry as the effective asymmetry
parameter changes, the third-order response shows a clear asymme-
try along the detection dimension. Projections along the excitation
dimension (lower row of Fig. 9) show that this asymmetry will be
visible in transient absorption. This suggests that differences in the
linear spectrum and the 2D projection onto the detection dimen-
sion can reveal information on the Hamiltonian. Asymmetries in the
linear response will denote different transition frequencies between
the plasmonic and molecular parts, while additional asymmetries in
the transient absorption will indicate finite values of μJ .

DISCUSSION
General comment on non-Hermitian Hamiltonians

The description of physical phenomena using non-Hermitian
Hamiltonians is pervasive and extends far beyond the physical
systems described here.66 These can exist in metamaterials, engi-
neered Floquet states, and gain/loss media, in general. The treatment
described in the previous section (Third order response) applies
to all of these systems as long as they have a non-zero nonlinear
response. Our findings suggest that it is interesting to consider two-
dimensional spectroscopy (or more generally higher orders) as tools
that can distinguish between different symmetries of the eigenvalues
by encoding them in symmetries of the signal.

Rigorously, a Lindblad operator should be used instead of a
non-Hermitian Hamiltonian. However, the quantum jump opera-
tor that restores the particle density back to the ground state can be
encoded by a judicious choice of Feynman diagrams.

Comparison to other models in the literature

There exist many models to describe the response of emitters
coupled to plasmonic resonances, which can fit absorption spec-
troscopy, scattering, or photoluminescence data well. For example,
the coupled oscillators model can explain the regimes of interference
and Rabi splitting and reproduce the measured line shapes. How-
ever, the formalism is not apt to describe nonlinear spectroscopy
because of the impossibility of isolating the signals to a certain
order in the field. Ab initio approaches involving the solution of
Maxwell’s equations around a metallic nanoparticle result in Fano-
like equations with slightly modified detunings or in non-Hermitian
Hamiltonians for molecules coupled to plasmonic resonances. These
expressions are sometimes reflective of scattered signals and not
absorptive signals,33,67,68 as such they are suitable for linear response
but not nonlinear signals. The use of non-Hermitian Hamiltoni-
ans as justified above solves this problem and allows the use of the
response function formalism and double-sided Feynman diagrams
to describe interference phenomena and, in particular, to suggest
its use for discerning between interference processes and Rabi split-
ting. We mention that it is not the only option, and previous works
that compare scattering and photoluminescence (PL) show a marked
difference in the Rabi splitting with significant reductions in the PL
spectra compared to the scattered light.33 For regions of interference,
the peak splitting entirely disappears from the PL spectrum, while
it is visible in the scattered spectrum,61,69 resulting in a diagnostic

tool, which can be applied in the case of few emitters coupled to a
plasmonic nanoparticle.

Symmetries of the eigenvalues
and symmetries of the signal

One of the findings of this paper is that the third-order signal is
qualitatively sensitive to changes in the symmetry of the eigenvalues,
unlike the first order signal. The symmetry of the linear and nonlin-
ear signal with respect to reflection along ωτ = ω0 and ωt = ω0 can
be analytically obtained by the symmetries in the eigenvalues and
eigenvectors below and above the exceptional point. We define the
detunings with respect to the transition frequencies as δi = ωi − ω0
and the reflection operations that take δτ → −δτ and δt → −δt as
Oτ() and Ot(), respectively. Below the exceptional point, we have
the following properties of the eigenvalues and transition dipole
moments: δ+ = δ− = 0, μ+ is purely real, and μ− purely imaginary. It
is straightforward to verify that Ot(S(1)) = S(1). In the strong cou-
pling limit, we have that μ2

− = (μ2
+)
∗ so that it is also verified that

because δ− = −δ+, Ot(S(1)) = S(1), and the signal is symmetric with
respect to the central transition frequency ω0.

In a similar fashion, we can calculate the symmetries of the
third order signal described by Eq. (11) using Eqs. (2) and (3). Below
the exceptional point, we have that Ot(S(3)) = Oτ(S(3)) = S(3), and
above it, we recover that Ot(Oτ(S(3))) = S(3). This work raises the
possibility of using the symmetry of the line shape of nonlinear
spectroscopy to study the symmetry of the eigenvalues of the Hamil-
tonian. In real systems, we expect to have deviations from these
idealized Hamiltonian; however, we do expect the symmetries of the
spectra to be recognizable.

CONCLUSION

We have derived a non-Hermitian Hamiltonian for the calcula-
tion of the linear and nonlinear optical response. Decomposing the
Hamiltonian into bright and dark partitions and expressing the lin-
ear and nonlinear optical response in terms of effective operators
provide a new framework for systems with large manifolds of dark
states. An analysis of the linear optical absorption reveals that the
exceptional point separating weak from strong coupling regime is
clearly illustrated when decomposing the total signal into individ-
ual Feynman diagram contributions. Below the exceptional point
interference effects are indicated by negative contributions to the
absorbance, while the Rabi splitting appears above the exceptional
point. The decomposition of the nonlinear signal also provides addi-
tional insight. We find that interference and Rabi splitting regimes
have different symmetries in the two-dimensional maps, an indi-
cation that cannot be obtained from linear absorption alone. The
connections outlined in this article between the symmetry of the
spectral signatures and the nonlinear response can open new ways
of thinking for classifying symmetries in the eigenvalue/exciton
structure of complex materials.
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APPENDIX A: DERIVATION OF A NON-HERMITIAN
HAMILTONIAN FOR PLEXCITONS

In this appendix, we derive the effective Hamiltonian cor-
responding to a plexciton. We consider similar parameters to
a physical sample we have measured previously and base our
approximations on its values (see Ref. 40 for the parameters),

H = Hmolecule +Hmetal +Hmolecular−metal +Hfield +Hfluctuations(t),

Hmolecule =
N

∑
i

ω0a†
J,iaJ,i + ∑

i,j∈n.n.
Ka†

J,iaJ,j,

Hmetal = ωPa†
PaP + ∫ dkωka†

kak + ∫ dk(Vka†
kaP + V∗k a†

Pak),

Hmetal−molecule =∑
i

g0(a†
J,iaP + a†

PaJ,i),

HField = E(t)∑
i

μ0(a†
J,i + aJ,i) + μP(a†

P + aP),

Hfluctuation(t) =∑
i

Δωii(t)a†
J,iaJ,i,

(A1)

where a†
Ji
(aJi) are the creation (annihilation) operators for the ith

molecule and K is the nearest neighbor coupling between molecules,
a†

P (aP) are the creation (annihilation) operators for the plas-
mon mode, a†

k (ak) are those of the manifold of continuum states
in the metal band structure with momentum k, and Vk is the
plasmon–electron coupling responsible for Landau decay. g0 is the
dipolar coupling between the molecular transitions and the plasmon
mode, which we assume to be identical for all molecules. HField is
the light–matter interaction with an external field E, where μ0 is the
transition dipole moment of a molecule and μP is that of the plas-
mon. Hfluctuation(t) represents the fluctuations induced by the bath,
where we have only considered the modulation of the transition fre-
quency of the ith molecule with amplitude Δωii(t). The Hamiltonian
is depicted in Fig. 1(a).

There are two main line-broadening mechanisms. On the one
hand, the optical coherence of the molecular component dephases
with fluctuations of the transition frequency (with a time constant

of 40 fs40 for TDBC, which is much faster than the decay induced
dephasing into molecular dark states). To capture this dephasing
mechanism, it is enough to consider the stochastic fluctuation of
the transition frequency of the molecules. The plasmon coherence,
on the other hand, dephases via Landau damping whereby the plas-
mon decays into neutral hot electron–hole states inside the metal.
For this process, we can consider the coupling of the plasmon tran-
sition to a continuum of electron–hole states via a plasmon–electron
coupling element.70 These two are very different mechanisms. The
lifetime induced broadening due to decay of the plasmon into hot
electron–hole states is not a thermal process and has negligible
temperature dependence, in stark contrast to line broadening in
molecules induced by fluctuations of the bath, which have strong
temperature dependence and can be significantly reduced at low
temperatures.

With Eq. (A1), we model the molecular aggregate as N two-
level systems, which are coupled to their nearest neighbor with
strength K. The plasmon is represented by a boson coupled to
each two-level system with a coupling strength g0. The plasmon
excitation can decay into hot electron–hole pairs that form a
continuum we label by its momentum k. The decay is mediated by
the plasmon–electron interaction Vk.70 Both the molecules and the
plasmon couple to the far-field with transition dipole moments μ0
and μP, respectively (see Fig. 1). These couplings to the light field are
analyzed in the main text for the two limiting cases when μ0 = 0 and
when μP = 0.

There are three energy scales of the problem: the coupling
strength g = g0

√
N, the nearest neighbor coupling K, and the tran-

sition energy fluctuation amplitudes Δωii. To derive the current
effective Hamiltonian, we assume the limit Δωii ≫ g, K, which is
appropriate for the study of interference effects. For simplicity, we
also assume here the limit of vanishing intermolecular coupling K.
The approach is to diagonalize the Hamiltonian for the molecular
component, average over fluctuations over the bath, couple to the
plasmonic part, and project onto the bright states.

In the molecular basis, the transition frequency of molecule i is
modulated by the bath by an amount Δωii(t). We transform H from
the molecular basis to the molecular exciton basis via the unitary
transformation W to obtain a diagonal Hamiltonian D,

D =WHW−1, (A2)

where W are the eigenvectors of the Hamiltonian without fluc-
tuations. We index the new eigenstates by q and transform the
fluctuations into the molecular exciton basis as well. Then,

Hexciton = H −Hmetal −Hmetal−molecule

=
N

∑
q=0

ωqa†
qaq +

N

∑
q=0

N

∑
l=0

δql(t)a
†
qal. (A3)

The q = 0 is bright and is responsible for coupling to the far field as
well as for the coupling to the plasmonic transition. The fluctuations
in the new basis are given by

δql(t) =WqiΔωii(t)W−1
il . (A4)

We can neglect the off-diagonal terms δql for q ≠ l so that only
the diagonal fluctuations of the eigenstates survive.52 The cumulant
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expansion of the evolution operator ⟨e−i ∫ dt′H(t′)
⟩B = e−i⟨H⟩t can be

carried out straightforwardly,

⟨e−i ∫ dt′H(t′)
⟩ ≈ e−iHmt−Γt (A5)

where Hm = Hexc −Hfluctuations and Γ = ∑qγqa†
qaq and γq = ∫ dt′eiωt

δqq(t′)δqq(0) is obtained from the two-time correlation function.
Assuming the Markovian limit, γq is real, and each excitonic state
dephases with a different time constant. We will only concern
ourselves with the q = 0 level corresponding to the bright state.

The new Hamiltonian to be used in the cumulant expansion is

H = Hbright +Hdark +Hbright−dark +HField + ⟨Hfluctuation⟩,

Hbright = ωJa†
J aJ + ωPa†

PaP +∑
i

g(a†
J aP + a†

PaJ),

Hdark =
N

∑
q=1

ωqa†
qaq + ∫

+∞

−∞
dkωka†

kak,

Hbright−dark = ∫ dk(Vka†
kaP + V∗k a†

Pak),

HField = E(t)(μJ(a†
J + aJ) + μP(a†

P + aP)),

⟨Hfluctuation⟩ = −i
N

∑
q=0

γqa†
qaq,

(A6)

where g =
√

Ng0 Assuming a tight-binding model with iden-
tical site energies and identical nearest neighbor coupling K,
the dispersion relation for the molecular component is ωq = ω0

−

√

K2(2 cos( 2π
N q) + 2).71

The Hamiltonian [Eq. (A6)] can be already used to calculate
the optical response of the plexcitons; however, the resulting expres-
sion for the signal will contain an explicit description of dark states
that do not couple to the far-field and so is inefficient. In order
to transform to a fully excitonic picture, we must also diagonalize
the plasmon-metal Hamiltonian. However, it is much more prefer-
able and transparent to obtain effective operators for the bright
transitions.

Effective operators

We have obtained the Hamiltonian after bath averaging in the
limit of vanishing dipolar interaction and now proceed to calculate
the effective operators for the bright and dark parts. We have58

Heff(z) = PHP + PHQG0(z)QHP, (A7)

where QG0(z)Q = [z −QHQ]−1. For the evaluation of Heff(z), we
assume the wideband approximation where ωk =

k
n , with n being a

density of states and Vk is k-independent. Then, considering that
only the metallic dark states are the only ones to affect significantly
the optical transitions, we have

PHQG0(z)QHP = ∫ dk
∣Vk∣

2

z − k/n
= −inπ∣Vk∣

2. (A8)

We also include here the calculation of terms needed to calculate the
most general form of the optical response,

PG(z)Qe−iztQG(z′)Pe−iz′t1 = PG(z)P∫ dkPHQ
Q

z − k/n

×
Q

z′ − k/n
e−izte−iz′t1 QHPG(z′)P = 0, (A9)

which vanishes due to the wideband approximation. We then obtain
the effective Hamiltonian in P,

Heff = (ωJ − iγJ)a†
J aJ + (ωP − iγP)a†

PaP + g(a†
J aP + a†

PaJ), (A10)

where γP = nπ∣Vk∣
2 and γJ = ∫ dteiωJ t

⟨δ00(t)δ00(0)⟩. The non-
Hermitian model presented accounts for plasmon–electron cou-
pling, as well as fluctuation of the energy levels. It is expected
that more complicated relaxation schemes, notably relaxation from
upper to lower polariton branch in concert with pure dephasing, are
not fully described. The effect of these pathways will be explored in
future work.

APPENDIX B: DERIVATION OF NON-HERMITIAN
OPERATORS OF LEVELS COUPLED TO CONTINUA

The non-Hermitian Hamiltonian of Eq. (A10) appears only
under some limiting conditions of the magnitudes of molecular
line broadening induced by fluctuations of the bath, the decay rate
into continuum states, and dipolar coupling. More general cases
quickly become complicated and untractable analytically.72 How-
ever, other extended Hamiltonians reduce to the same expression,
the simplest of them being two coupled excited states, each one cou-
pled to its own set of continuum states. In general, for a set of N
discrete states coupled to each other and to M continua via cou-
plings V(a)i (corresponding to the coupling of level i with continuum
a) gives59

H0 =
N

∑
i=1

ωi∣i⟩⟨i∣ +
N

∑
i,j=1
i≠j

gij∣i⟩⟨j∣,

Heff −H0 = −i
M

∑
a=1

N

∑
i,j=1

n(a)πV(a)i V(a)j ∣i⟩⟨j∣,

(B1)

where V(a)i is the coupling (including radiative coupling) between
level i and the continuum (a) and which reduces to Eq. (A10)

with γP = nπ∣V(1)P ∣
2

and γJ = nπ∣V(2)J ∣
2
, where we have labeled

the individual continua as (1) and (2) for the plasmon and J-
aggregate, respectively. Note that if two levels are coupled to the
same continuum, we obtain off-diagonal non-Hermitian terms.

APPENDIX C: EXTENDED PARAMETER SPACE
FOR S > 1 BUT C < 1

In this appendix, we explore the region marked by points D, E,
and F of Fig. 2 that are in the strong coupling regime (S > 1) but not
in the weak coupling regime with respect to the interference para-
meter (C < 1). Figure 10 shows that point E shows the presence of
Rabi splitting for the case where the plasmon couples to the far field
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FIG. 10. Decomposition of the absorption spectra into polariton branches contributions (yellow dotted and blue dotted lines give the total contribution for the total absorption
shown in green). We show the cases for μj = 0 (a)–(c) and μp = 0 (d)–(f) for points D, E, and F of Fig. 2. We illustrate the regimes of weak cooperativity and weak coupling
(a) and (d), weak cooperativity and strong coupling (b) and (e), and strong cooperativity and strong coupling (c) and (f).

but not for the case where the molecular aggregate couples to the
far field. We see here the value of the cooperativity parameter. In
the case where the molecular component couples predominantly to
the far field, the Rabi splitting is absent even though we are in the
strong coupling limit if we are in the low cooperativity regime. It
takes both parameters to be larger than one to observe some the Rabi
splitting.

APPENDIX D: INCLUSION OF ESA

We can simulate the full spectrum by choosing a model for
the excited state absorption (ESA). If the excited state absorption is
dominated by the molecules remaining in the ground state after the
pump pulse pair, we can simulate the full spectrum by the Feynman
diagrams shown in Fig. 6. The differences found with experimen-
tal measurements can be ascribed to the finite bandwidth of the
pulses.
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