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ABSTRACT

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE
EVOLUTION OF PIPING AND RESULTING BREACH IN EARTH-
FILL DAMS

Earth-fill dams have been constructed for decades by compacting natural soil
materials near the dam site. Piping is of the most important causes of their failure.

In the scope of this thesis, 2 m in length homogenous earth-fill dams were
constructed in a rectangular flume in the laboratory of the Izmir University of Economics.
The experimental and numerical investigations on a breach by generating piping were
realized with different weak zone scenarios. Three experiments were performed by
placing a weak layer cross-section 5x5 cm? at the dam bottom center. One scenario was
performed by locating a weak layer of 2x2 cm?, 28 cm above the bottom.

Temporal breach areas and the breach-wetted areas are evaluated on scaled
screenshots by using Gauss’s area formulation. The Temporal breach discharges were
calculated from the continuity equation.

Furthermore, finite element analyses on the breaching of homogenous earth-fill
dams in different scenarios were performed by comparing the hydraulic gradient with the
critical value. In addition to the bottom and middle scenarios, two upper scenarios were
also modeled. The water depths were used for each scenario to represent the experimental
conditions, and some approaches were made for the weak zones. To simulate the breach
mechanism with different loops, a python algorithm was integrated with the Jupyter
console. As a result of the simulations, it has been observed that the findings obtained by
simulations were in accord with the experimental studies, and the dams were exposed to

backward piping starting from downstream towards upstream.



OZET

TOPRAK DOLGU BARAJLARDA BORULANMA VE BORULANMA
NEDENLI GEDIK OLUSUMUNUN DENEYSEL VE SAYISAL
ARASTIRILMASI

Toprak dolgu barajlar, onlarca yildir baraj sahasinin yakininda dogal toprak
malzemelerinin sikigtirilmasiyla insa edilmistir. Borulama, baraj yikilmalariin en 6nemli
nedenlerinden biridir.

Bu tez kapsaminda, Izmir Ekonomi Universitesi laboratuvarinda dikddrtgen bir
kanal igine 2 m uzunlugunda homojen toprak dolgu barajlari insa edilmistir. Farkli zayif
bolge senaryolar ile borulama olusturularak bir gediklenmenin deneysel ve sayisal
incelemeleri gerceklestirilmistir. Baraj tabani ve ortasinda 5x5 cm? en kesitinde bir zay1f
bélge yerlestirilerek ii¢ deney, tabandan 28 cm yukariya 2x2 cm?lik bir zayif bir bolge
yerlestirilerek bir deney gerceklestirildi.

Zamansal gedik alanlar1 ve gedik-1slak alanlar1 Gauss alan formulasyonu
kullanilarak 6lgekli ekran gorintuleri Uzerinde degerlendirildi. Zamansal gedik debileri
ise stireklilik denkleminden hesaplandi.

Deneysel galismalara ilaveten, hidrolik egim ile kritik egim karsilastirilarak farkli
senaryolarda homojen toprak dolgu barajlarda borulanma Uzerine sonlu elemanlar
analizleri yapilmistir. Alt ve orta senaryolara ilaveten, iki adet Ust senaryo da
modellenmistir. Deneysel kosullar1 gergeklestirmek etmek icin her senaryoda zamana
bagli su derinlikleri kullanilmig ve zayif bolgeler i¢in bazi yaklagimlar yapilmistir. Gedik
mekanizmasini farkli dongiilerle simiile etmek igin Jupyter konsoluna bir python
algoritmasi gelistirildi. Simiilasyonlar sonucunda simiilasyonlarla elde edilen bulgularin
deneysel calismalarla uyumlu oldugu ve barajlarin mansaptan baslayarak membaya dogru

geriye dogru borulamaya maruz kaldig1 goriilmistiir.
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CHAPTER 1

INTRODUCTION

1.1. Background

Dams are hydraulic structures having a variety of beneficial purposes such as

flood control, irrigation, water supply, hydroelectric energy production, and reservoir

water management. An earth-fill dam is a type of artificial water barrier that can be

homogeneous or non-homogeneous (with a clay core or impervious layer) and is made

up of a compacted mixture of soil (sand, clay, and silt or rock). Earth-fill dams were used

for years, and they continue to be used nowadays. Some advantages of earth-fill dams are
as follows (Okan, 2022):

well:

They can be easily built using soil materials that are readily available nearby.
Their design is relatively easy by allowing a range of materials to be employed in
their construction.

They are economical to construct with locally available soil materials.

Their compaction styles are suitable to be improved by technological
developments.

The earth-fill dams are environmentally friendly dam types because of consisting

of natural and organic soil materials.

Although earth-fill dams have some advantages, there are some disadvantages, as

It is possible to occur miscalculations in the project or construction stages caused
by human factors, machines, or due to environmental factors such.

Before the construction stages, laboratory tests needed to be performed that
means, compared to concrete gravity dams, it has additional labor costs.

They may have unexpected behavior in the case of choosing improper soil

material.



e After the construction, they need to be maintained, controlled, and observed since
one of the most common problems is internal erosion caused by improper soil
material or lack of maintenance.

e The seismic activities may result in liquefaction within the dam body, creating
stability issues that could eventually lead to seepage and failure.

In the literature, there are many tragic examples. One of the most prominent is the
Teton dam. Teton earth-fill dam was constructed on Teton river, Idaho with a geometry
of 93 m in height, 940 m in length, and 520 m in bottom width. After the construction of
the dam in November 1975, the reservoir started to be filled 30 cm per day. One month
later, the filling process was increased up to 1.2 m per day, due to the groundwater flow
being greater than expected (Perrow, 1984). When the reservoir was nearly full-on June
3and 4, 1976, three minor leaks were seen on the dam's downstream side. A wet spot was
observed at the downstream side of the dam on June 5, 1976. Then, the downstream soil
material started to erode, while seepage discharges were measured at less than 1 m® per
second. On the same day, the breach developed toward the upstream sides and a sudden
failure occurred with an estimated discharge of about 57,000 m®/s that resulted in the
sediment being reached more than 10 km from the dam location (No Finger in the Dike
Could Have Stopped It!, 2018). The failure resulted in up to $2 billion in losses (Reisner,
1993).

New Orleans levee failure (Sills et al., 2008), the Horse Creek Dam (Hinderlider,
1914), Davis Reservoir Dam (Justin, 1932), Lyman Dam (Babb, 1968), Baldwin Hills
Dam (Sharma et al., 2013), Tunbridge Dam (Fisher et al., 2017) and Sparmos Dam
(Tournier et al., 2019) are some known and documented dam failures.

Internal erosion is one of the major causes of dam failures and incidents,
accounting for 28% of earthen embankment failures (Costa, 1985).

Foster et al. (2000a) concluded that homogenous earth-fill dams built before 1900
tend to fail roughly ten times higher than dams built after 1950.
According to Chen et al (2019), piping was the cause of more than 30% of dam

failures that occurred between 1954 and 2018.



1.2. Problem Statement

As a result of being washed out of the soil by the effects of the groundwater,
voids are created in the dam body (Van Beek et al., 2015). Backward erosion causes the
soil particles to be transported out of the structure by forming a pipe or tunnel shape.
Backward erosion piping might occur because of cracks, soil properties, environmental
factors, and practical failures. Some studies show that initiation and progression may take
several days or weeks.

The parameters that cause piping are not yet fully understood due to the behavior
of the cohesive soil used in the dam body and many environmental factors. The
investigations are limited because the development of the piping mechanism is difficult
to visualize and its progress in the structure can not be accurately followed by
experimental and numerical studies.

Although there have been few studies, piping is one of the major reasons that
earthen dams fail. Since the initiation of piping cannot be parameterized individually, the
most dominant and complex factors are geotechnical and hydraulic parameters, such as
geometry and type of structure, erodibility of the soil, water level, compaction densities,
reservoir volume, particle size distribution, sample aspect ratio, friction coefficients,
hydraulic gradient, groundwater flow, permeability, void ratio, porosity, unit weights of
soil, cohesion, internal friction, specific gravity, and others.

The dominant factors governing the mechanism of erosion are influenced by
different geotechnical characteristics of the soil (Sharif, 2013). Cohesive soil mixtures
used in dam bodies consist of fine or very fine materials such as sand or clay and silt,
which play an important role in the behavior of piping and breach according to the
compaction rate and water content. Therefore, it is important to fully understand the

determination of geotechnical parameters to predict piping erosion mechanisms.

1.3. Research Objectives

Dam failures not only jeopardize public safety but also have the potential to cost

the economy millions of dollars. Dam failures not only affect the dam site but also have



the potential to degrade several other facilities, including roads, bridges, and water
systems.

The objective of this research is to conduct experiments at the Hydraulic Laboratory
of Izmir University of Economics (IEU) by generating piping via weak layers at two
different locations and dimensions of the homogenous earth-fill dams.

In addition, this research involves the realization of numerical analyses and the
comparison of the numerical results with experimental findings. The numerical analyses
were performed by using a commercial software, PLAXIS 3D by integrating a python
algorithm with the Jupyter console. The so-integrated python algorithm searches for the
hydraulic gradient within the dam body and compares it with the critical hydraulic
gradient (threshold). Once the hydraulic gradient reached the threshold, the breached soil

volumes were defined in that region by considering that the piping was initiated.

1.4. Dissertation Outline

In the scope of this thesis, The piping mechanism resulting in a breach in the
homogenous earth-fill dams is investigated by creating a weak zone at different locations.
This thesis is composed of 7 chapters in total.

In Chapter 1, the description of the earth-fill dams, their purposes, advantages, and
shortcomings are discussed. The problem definition was stated by giving historical cases
and statistical information about the dam failures due to piping.

The previous relevant studies are summarized in Chapter 2.

Chapter 3 contains the description of the experimental setup and the soil mechanics
tests performed before the piping experiments.

The different scenarios are presented in Chapter 4, together with construction and
experimental procedures.

Experimental findings are presented in Chapter 5.

Chapter 6 involves numerical investigations.

Conclusions and recommendations are given in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

The literature reviews are composed of two sections. The first section focuses on
experimental studies on piping and its mechanism while the second focuses on numerical

studies on piping and breach mechanism initiation.

2.1. Experimental Studies

There has been a lot of research on dam failures, especially about overtopping.
However, because it is very challenging the monitoring the erosion and carry out
experiments, there have only been a few surveys on piping and breach mechanism:
(Khilar et al. 1985; Ojha et al. 2003; Okeke et al. 2012; Richards and Reddy 2012; Sharif
2013; Borragan 2014; Elkholy et al. 2015; Sharif et al. 2015b; Zhenzhen 2015; Chen et al.
2019; Shin et al. 2019; Al-Janabi et al. 2020; Ke and Takahashi, 2022).

Khilar et al. (1985) created a capillary model of plugging as a result of their
experimental observations to predict the piping in what conditions are likely to occur.

Ojhaet al. (2003) developed an analytical model to estimate critical heads obtained
from their laboratory test. They found that the length of the structure, soil types, and fluid
properties affect the critical head.

Okeke et al. (2012) carried out twelve experiments on a homogenous dam by
triggering the piping by using a horizontal pipe with different lengths and positions. They
build a homogenous dam with a height ranging from 20 cm to 35 cm, a constant width of
45 cm, and various side slopes of 35° to 45° in a 5° degree slope rectangular flume with
2 m long, 0.45 m high, and 0.45 m wide. They observed four failure processes in their
backward erosion piping experimental study, including forming a wet spot, continuation,
progression, and breach. Once erosion reached the downstream face, wet spot formation
was apparent to such an extent that pipe enlargement, progression, and breach occurred

consequently. They assumed that the erosion started when the wet spot appeared at the



downstream face of the dam (Figure 2.1 (a)). It took an early decrease in the water level
with the enlargement of the erosion due to piping (Figure 2.1 (b)). Water levels continue
to decrease during piping progress in terms of downstream slope angle, reservoir, and
dam volume (Figure 2.1 (c)). After the piping progression, the breach results in the
collapse of the roof of the dam. Consequently, the presence of the removal soil did not
allow enough water to flow through the dam, the water level increased (Figure 2.1 (d))

and the breach became its final form (Figure 2.1 (e)).

(a) (b) (c)

(d)

Figure 2.1. Piping failure processes resulted in a breach, a) initiation, b) continuation,
c) progression, d) the collapsing of the dam roof, e) final breach formation
(Okeke et al, 2012)

Richards and Reddy (2012) conducted experiments on field and laboratory mixed
soils in a new true-triaxial test apparatus to observe the factors influencing piping
initiation in non-cohesive and cohesive soils.

Sharif (2013) and Elkholy et al. (2015) used different compositions of mixture
which consists of sand, silt, and clay with various rates of compaction by constructing a
15 cm high dam in a laboratory flume to investigate the erosion process.

Borragan (2014) studied the failure mechanisms of an embankment dam to validate
the reliability of a risk analysis upon a dam breach.

In the research of Sharif et al. (2015b), the behavior of soil material changed during
internal erosion, and they stated that the characteristics of soil have a significant impact

on earth-fill dam failure, the proper compaction being the major component.



Zhenzhen (2015) defined backward erosion as the erosion induced by washing soil
particles out and she defined erosion as the erosion caused by a concentrated leak where a
pipe is formed due to a fracture, hollow, or void.

Chen et al. (2019) performed a sensitivity study on soil erodibility by different
initial pipe positions. They found that soil erodibility can have an impact on breach
evolution.

Shin et al. (2019) performed experiments by creating a weak zone in the middle of
the earthen dam model to characterize temporal changes in sub-surfaces via a sandbox.

Al-Janabi et al. (2020) investigated seepage through a homogenous earth-fill dam
with toe drains in different positions.

Ke and Takahashi (2022) performed a series of seepage tests on different soil
compositions, densities, and hydraulic gradients by executing the cone penetration test.
They found that the internal erosion affected the void ratio and the permeability resulting

in a decrease in soil strength.

2.2. Theoretical and Numerical Studies

Different numerical methods such as finite element methods (FEM), discrete
element methods (DEM), material point methods (MPM), finite difference methods
(FDM), and computational fluid dynamics (CFD) are used to investigate the piping
phenomenon:

Greco et al. (2008) simulated a 2D depth-averaged numerical model to investigate
breach evolution in an earthen dam.

Lachouette et al. (2008) performed a numerical analysis to show that the particle
concentration can be a significant factor at the beginning of the erosion process, resulting
in the enlargement of the hole at the exit.

Gattinoni and Francani (2009) considered the phenomenon of backward piping
evolution in the analysis of a slope, where for each simulation the corresponding
hydraulic gradient in the nearby area was increased.

Kermani and Barani (2012) used a five-point approximation technique and
compared it with the finite difference method.

Xu and Zhang (2013) used a physical-based numerical model for simulating piping

in earth dams due to concentrated leak erosion.



Vandenboer et al. (2014) demonstrated and discussed a numerical methodology
using the 3D finite element method for the groundwater flow that results in backward
erosion piping.

Athani et al. (2015) used finite element analysis to investigate the seepage and
stability with different withdrawal water level effects on the earth-fill dam to obtain the
water head levels within the dam body.

Sazzad et al. (2015); Aslan and Temel (2022) used both analytical and numerical
methods to analyze seepage discharge rates at different dam bodies.

Tao and Tao (2017) performed a numerical investigation to understand the factors
of the piping resistance by using both coupled computational fluid dynamics (CFD) and
the discrete element method (DEM). Additionally, they considered the equilibrium of a
soil column at various soil properties such as hydraulic critical states, soil specific gravity,
initial void ratio, particle size distribution, and friction coefficients, a concise model of
piping resistance.

Zhong et al. (2018) performed a numerical simulation to improve the prediction of
breach hydrograph and evaluate the breach morphology during the breaching

Chen et al. (2019) developed a numerical model by assuming the bottom, the top,
and the channel of the pipe are an arch, rectangular, and a semicircle.

Saliba et al. (2019) performed finite element analysis to observe the piping path in
steady conditions by using an iterative approach based on the simulated hydraulic
gradient exceeding or reaching the threshold value

Al-Janabi et al. (2020) performed a series of finite element analyses with different
types of toe drains to prevent seepage flow within both homogenous and clay-core earth-
fill dams.

Al-Mansori et al. (2020) performed a seepage analysis to determine the quantity of
seepage through the earth-fill dam by using the combination of the finite element method
and artificial neural network.

Li et al. (2021) performed a combination of discrete element method (DEM) and
computational fluid dynamics (CFD) analyses to investigate the longitudinal breach
process of landslide dams.

Ghonim et al. (2022) performed computational fluid dynamics analyses (CFD) to
investigate and compare the effects of initial artificial breach dimensions and locations

on the peak outflow through the earth-fill dam.



Foster and Fell (1999) described how soil erosion might happen through an
embankment, a foundation, or from an embankment to a foundation in earth structures,
notably in earth dams and levees. He defined the processes as initiation, continuation,
progression, and breach formation.

Bonelli (2013) described the four key mechanisms which initiate the backward
erosion piping in earth-fill dams: concentrated leak erosion, backward erosion, contact
erosion, and suffusion.

According to ICOLD (2017), suffusion can happen when seepage flow causes fine soil
particle movements through the pores of coarse soil particles, whereas contact erosion
happens when soil gradations come into contact and fine soils are washed away by the action
of the water to the coarse particles.

Insufficient compaction of soil, different settings in the dam body, seismic hazards,

and cracks caused by trees and animals also cause the piping (Hanson et al. 2010).



CHAPTER 3

SOIL MECHANICS TESTS AND EXPERIMENTAL SETUP

Before constructing the dam, soil mechanics tests were conducted. The ASTM

requirements were followed during the realization of the soil mechanics tests. The

required soil parameters were determined from specific weight tests, hydrometer

analyses, wet sieve analyses, permeability tests, direct shear tests, consolidation tests as

well as the standard proctor tests.

3.1. Soil Mechanics Tests

Mixture 1 consisted of 85 % (0-1 mm) sand-15 % clay while mixture 2 consisted

of 85 % (0-0.4 mm) sand-15 % clay. Figure 3.1 shows distributions of grain sizes for two

mixtures as determined by the wet sieve and hydrometer analyses.

100 \ \\ Mixture 1
—~ \ - - NMixtire 2
5 80 \ M Mixture 2
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Figure 3.1. The distributions of grain size of the mixtures

From Figure 3.1, for mixture 1, D1o= 0.006 mm, D3zo= 0.075 mm, Dso= 0.3 mm,

and Deo= 0.4 mm. The coefficient of uniformity, Cy, and the coefficient of curvature, C,

are found to be 66.7 and 2.34, respectively.
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According to Figure 3.1, for mixture 2, D1o= 0.078 mm, D3o= 0.13 mm, Dso= 0.17
mm, and De= 0.21 mm. The coefficient of uniformity, Cy, and the coefficient of
curvature, Cc, are found to be 2.69 and 1.03, respectively.

From Figure 3.1, for mixture 1, D1o= 0.006 mm, D3zo= 0.075 mm, Dso= 0.3 mm,
and Deo= 0.4 mm. The coefficient of uniformity, Cy, and the coefficient of curvature, C,
are found to be 66.7 and 2.34, respectively.

According to Figure 3.1, for mixture 2, D1o= 0.078 mm, D3o= 0.13 mm Dso= 0.17
mm, and De= 0.21 mm. The coefficient of uniformity, Cy, and the coefficient of
curvature, Cc, are found to be 2.69 and 1.03, respectively.

The ASTM DB854-14 test was applied to obtain the specific weights of the
mixtures, as Gs1= 2.63 and Gs= 2.67.

In order to facilitate the piping process, the standard proctor test (ASTM-698) was
used, by reducing the applied energy by 50 % (13 blows instead of 25). The obtained
curves mixture 1 and mixture 2 are given in Figure 3.2 and Figure 3.3, respectively.

From Figure 3.2, the maximum dry density was found to be 1.79 g/cm?® at
Wopt=12.5% for mixture 1.

From Figure 3.3, the maximum dry density was found to be 1.65 g/cm?® at

Wopt=15.4% for mixture 2.
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Figure 3.2. 13 blows proctor test curve for mixture 1
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Figure 3.3. 13 blows proctor test curve for mixture 2

The permeability was obtained from the falling head permeability test. The soil

parameters used in different experiments are given Table 3.1.

Table 3.1. The soil parameters used in different experiments

Dry Density Water Bulk density Void ratio Permeability
Experiment (pdry) Content Poute = Pgy, - (1 + %) ( Gs 1 (k)
T e = —
(g/cmd) w(%) (g/cm®) Pary (m/s)
First and Second
) 1.79 12.5 2.0 0.47 4.66-107
Experiments
Third Experiment 1.50 125 1.7 0.75 6.24-10°
Fourth Experiment 1.79 125 2.0 0.49 1.18-10

Although the first two experiments were conducted by using mixture 1, the dam

heights differed from each other.

The third experiment was conducted with lower density, while the fourth

experiment was carried out by mixture 2.

The direct shear test was applied by satisfying the requirements of ASTM D3080,

and the so obtained internal friction angle (¢°) and cohesion (¢’) parameters for different

conducted experiments are given in Table 3.2.
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Table 3.2. Direct shear test results

Experiment Internal Friction Angle (¢°) Cohesion (c’) kN/m?
First and Second Experiments 33.9 15.3
Third Experiment 28.4 12.8
Fourth Experiment 39.8 11.7

The consolidation test results by following ASTM D2435 standards are given in
Table 3.3.

Table 3.3. Consolidation test results

Eodemetric Swelling Recompression Compression
Experiment Modulus Index Index Index
(Eoed) kN/m? (Co) (Cy (Co)
First and Second

) 35,700 0.01 0.01 0.1

Experiments
Third Experiment 26,700 0.02 0.03 0.18
Fourth Experiment 13,800 0.02 0.02 0.13

3.2. Experimental Setup

Experiments were conducted in the rectangular flume 1 m wide and consisting of
two channels. The dams are built in the upper channel, and the lower channel contains
the required water pumped by means of a centrifugal pump.

The upper channel is 5.44 m long, and 0.81 m high. A double honeycomb and a
mini tank were set to tranquil the water.

An electromagnetic sensor was placed to provide a constant water level.
Tempered glass of 2 cm thickness was used on the side walls.

The sinking pool and water tank are divided with a 0.6 m high obstacle to avoid
mixing the fresh water and collected sediment as much as possible.

The transmission line involves a pump, a check valve, a regulating valve, and a

magnetic flowmeter. The experimental setup is given in Figure 3.4.
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CHAPTER 4

EXPERIMENTAL PROCEDURE

4.1. Construction Procedure

Before preparing the dry mixture of the earth-fill dams, the soil mixture amounts
for each 10 cm layer were determined for different bulk densities considering the dam
heights.

The dry mixtures were mixed by using the concrete machine for 10 minutes to be
sure the sand and clay particles are mixed uniformly (Figure 4.1 (a)). Then the dry mixture
was poured into a wheelbarrow.

After adding 12.5 % water to the dry mixture, the wetted soil mixture was prepared
by using shovels so that any dry part does not exist (Figure 4.1 (b)).

The dam body was constructed by layers of 10 cm. Since the compaction of the
10 cm layers may bring up homogeneity problems, each layer was built in four sub-layers
of 2.5 cm thick.

After the construction of the first two sub-layers was completed, the 5x5 cm? area
on the dam bottom center axis was dug up and the rock salt was poured to create the weak
zone (Figure 4.1 (b) and Figure 4.2 (¢)).

The surfaces of the compacted sub-layers were scraped by means of a brush
(Figure 4.1 (e)).

The constructed third layer is given in Figure 4.1 (f). The construction of the
fourth layer is given in Figure 4.1 (g). The pouring and grinding procedure at the fifth
layer is given in Figure 4.1 (h). The compaction of the sixth layer is given in Figure 4.1
(i). The constructed dam body before trimming is given in Figure 4.1 (j).

The same construction procedures were followed for the middle-middle scenario.
After the construction of the first three layers, a 2x2 cm? area was dug up along the dam
center axis at 28 cm above the bottom. Then the area was filled with rock salt and the
construction was continued. The final dams are 2 m in length, 1 m in width, and 0.6 m

and 0.65 m in height, respectively.
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Figure 4.1. The construction process (a) dry mixing, (b) preparation of soil mixture, (c)
creating the weak zone, (d) construction of the first 10 cm layer, (e) scraping
the second layer, (f) the constructed third layer, (g) construction in the fourth
layer, (h) pouring and grinding at the fifth layer, (i) compaction at the sixth
layer, (j) before the trimming

(cont. on next page)
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Figure 4.1. (cont.)

Green spray paint was used for both sides to prevent the reservoir from appearing
turbidity.
While filling the reservoir, a trowel was placed at the exit of the weak zone, once

the reservoir reached the desired level the trowel was withdrawn, and experiments started.

4.2. Evaluation of the Experiments

The experiments were conducted in the laboratory of Izmir University of
Economics by using the soil mixture of 85% sand and 15% clay with different weak zone
scenarios in the rectangular flume 81 cm high, 614 cm long, and 100 cm wide. The
downstream and upstream slopes are the same at 1: vertical to 1.5: horizontal (Figure 3.4).

Six cameras placed at various locations monitored the progression of the breach.
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An electromagnetic sensor was located in the channel to make start the pump
when the initial water level decreases by 1.5 cm.

The temporal breach discharges, the time-dependent flow velocities, time-varied
wetted areas, and temporal breach developments were calculated.

The temporal discharges through the breach were calculated by using the
continuity equation which is given in Equation (4.1).

ASZ(qump_Qbreach)'At (41)

where Q is the pump flow rate, Q, .. .. is the temporal breach discharges, AS is the

pump

storage in the channel during the time interval At.

The velocity V at the entrance and exit of the breach were approximately

calculated by using Equation 4.2,

4.2
V= Qbreach ( )

A

where A4 denotes the wetted area at the entrance or exit of the breach.

The experimental findings were recorded by means of high-resolution cameras. To
obtain flatted recordings, the software Hitfilm Express v.2021.2 was used by selecting
suitable preset options and rotation in the z-direction for each recording until the real
boundaries fit the scale. Then, the flatted recording was used to obtain the changes in
channel water level.

The Get-Data Graph Digitizer 2.26 software was used to evaluate the breach areas
and wetted areas. The software can scale each recording by defining the dam boundaries
at both the upstream and downstream sides.

Gauss’s area Formulation was used to obtain the coordinates of the breach and its
wetted areas.

The cartesian coordinates of all vertices are required to use the formula for cross

multiplication (Figure 4.2).
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Figure 4.2. n-sided polygons on Get-data Graph Digitizer 2.26

Gauss’s area formula also known as the Shoelace formula (Dahlke, 2017),
calculates the area of a polygon whose vertices are specified by their cartesian
coordinates. The formulation was described by Albrecht Ludwig Friedrich Meister in
1769 (Meister,1769) as follows:

The expressions of n-sided polygons area (X1, Y1), (X2, ¥2), (X3, Y3), .... (Xn, ¥n) in

Gauss’s area formula is given in Equation 4.3.

1 (4.3)
Area = > |(X1Y2-X2V14 X2Y3-X3Y 04 v v FXn Y1 — X1 V)|

The formula can be written briefly,

1% (4.4)
Area = Ez xi (Vi+1-Yi-1)
i=1
or

(4.5)

n
1
Area = EZ Vi (Xi—1-Xi4+1)
i=1

where n is the number of the coordinates, x; and y; are abscissa and ordinate.
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CHAPTER 5

EXPERIMENTAL FINDINGS

The experiments were performed with different high dams and various bulk

densities. The details of different experiments are given in Table 5.1. All the weak zones

consisted of rock salt.

Table 5.1. The details of different experiments

Weak Zone Mixt The bulk Dam Water Input
ixture
Experiment | Dimensions T density Heights Level Discharge
ypes
(cm?) (g/lcmd) (cm) (cm) (m3h)
Mixture
1 5x5 L 2.0 60 55.5 9.0
Mixture
2 5x5 . 2.0 65 61 29.6
Mixture
3 5x5 . 1.7 65 61 6.2
Mixture
4 2x2 ) 2.0 65 61 2.5

5.1. First Experiment

The final views of the constructed 60 cm high dam, the bulk density of 2 g/cm?, and

the weak zone of 5x5 cm? located at the bottom are given in Figure 5.1.
After the dam was constructed, the reservoir was filled with water via the pump

until the electromagnetic sensor was activated at 55.5 cm.
Figures 5.2 shows the downstream temporal breach developments before the breach

appeared at the upstream face (until the time t=192 hours).
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(©) (d)

Figure 5.1. View of the dam from (a) upstream, (b) downstream, (c) side, (d) top

(©) (d)
Figure 5.2. The downstream temporal breach developments a) t=0 h, b) t=24 h, c) t= 48
h,d) t=192 h
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With the removal of the eroded soil material from the dam boundary, the surface
area of the breach did not change significantly, but it gained length backward.

When t=193 h, it was seen that the exit of the breach was filled again with the
eroded soil material coming from inside (Figure 5.3 (a)). The length of the breach was
measured at 26 cm.

When t=194 h, with the removal of the eroded soil material, it was observed that
the surface area of the breach was not changed, and the length of the pipe was measured
as 34 cm (Figure 5.3 (b)).

(a) (b)
Figure 5.3. Downstream breach surfaces at (a) t=193 h (b) t=194 h

When t=196 h, although there was not significant eroded soil material, the

material coming from the breach was piled on top of each other (Figure 5.4).

(a) (b)

Figure 5.4. Downstream breach surfaces at t=196 h (a) downstream view, (b) close-up

view of the breach
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A slight increase in the length of the breach was observed as shown in Figure 5.4
(@), while the change in the surface area was limited. The close-up view of the breach is
given in Figure 5.4 (b). The length of the breach was measured as 39 cm.

When t =208 h, the eroded soil material accumulated in front of the dam continued
to be removed without disturbing the breach. The breach length was measured by a laser
meter, and it became 65 cm. The view of the breach at t=208 h is given in Figure 5.5.

Figure 5.5. Downstream breach surfaces at t=208 h (a) downstream view, (b) close-up

view of the breach

At t=216 h, not a significant change in the breach area was observed. The breach

length was measured as 91 cm. Downstream views of the breach are given in Figure 5.6.

(@) (b) (©

Figure 5.6. Downstream breach surfaces at t= 216 h (a) downstream view, (b) close-up
view of the breach (c) eroded and transported soil materials due to the seepage
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At t=230 h (12 minutes before the breach reached the upstream face), although
there was not a significant difference in the breach surface area, the seepage discharge
was measured as 6.3 cm®/s. The length of the breach was measured as 119.9 cm.

12 minutes later, the breach reached the upstream side of the dam as shown in
Figure 5.7.

The time-dependent discharge values corresponding to the interval at which the

breach reached the upstream face are given in Figure 5.8.

(b)

Figure 5.7. The breach developments at t= 230 h (a) downstream, (b) upstream
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Figure 5.8. The seepage discharges before the breach did not reach the upstream face.

The breach views corresponding to different times are given from Figure 5.9 to

Figure 5.11. The time t=0 represents when the breach appeared upstream.
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(a) (b)

()
Figure 5.9. The breach views from downstream (a) t=0 s, (b) t=5s, (c) t=10 s, (d) t=20
s, (e) t=50s, (f)t=315s
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(@) (b)

Figure 5.10. The breach views from upstream (a) t=0s, (b) t=5s, (c) t=10 s, (d) t=20 s,
(e) t=50s, (f) t=315s
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Figure 5.11. The breach views from top (a) t=0's, (b) t=5+, (c) t=10s, (d) t=20 s, (e) t=50
s, (f)t=315s
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The temporal changes in water depth during the experiment are shown in Figure

5.12
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Figure 5.12. Temporal changes in water depths in the channel
The temporal breach developments at both sides are given together in Figure 5.13.
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Figure 5.13. The upstream and downstream temporal breach developments

The temporal variations of the breach-wetted areas at upstream and downstream are

shown in Figure 5.14.
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Figure 5.14. The upstream and downstream temporal variations of the breach-wetted

areas

The temporal breach discharges calculated from Equation (4.1) are presented in
Figure 5.15.
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Figure 5.15. Temporal breach discharges

The time-varied upstream and downstream breach velocities, calculated by using

Equation 4.2, are shown in Figure 5.16.
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Figure 5.16. The time-varied upstream and downstream breach velocities

5.2. Second Experiment

The final views of the second experiment are given in Figure 5.17.

(©) (d)

Figure 5.17. The final views of the second experiment, (a) upstream, (b) downstream, (c)
left side, (d) top side
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The breach views from the downstream and top are given in Figure 5.18 and Figure
5.19 for the downstream and top sides, separately. The time t=0 s represents the seepage
initiation.

Figure 5.18. The breach views from downstream (a) t=0 h, (b) t=1.1 h, (c) t=2 h, (d) t=3
h, (e) t=4 h, (f)t=4.8 h
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Figure 5.19. The breach views from the top (a) t=0 h, (b) t=1.1 h, (c) t=2 h, (d) t=3 h, (e)
t=4 h, (f)t=4.8 h

The breach views corresponding to different times are given from Figure 5.20 to

Figure 5.22. The time t=0 represents when the breach appeared upstream side.
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(e) ()
Figure 5.20. The breach views from downstream a) t=0 s, b) t=20 s, ¢) t=60 s, d) t=80 s,
e) t=120s, f) t=150 s
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Figure 5.21. The breach views from upstream a) t=0 s, b) t=20 s, ¢) t=60 s, d) t=80 s, €)
t=120s, f) t=150 s
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Figure 5.22. The breach views from top a) t=0 s, b) t=20 s, ¢) t=60 s, d) t=80 s, €) t=120
s, f)t=150s
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The temporal changes in water depth during the experiment are shown in Figure

5.23.
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Figure 5.23. Temporal changes in water depths in the channel
The temporal breach developments at both sides are given together in Figure 5.24.
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Figure 5.24. The upstream and downstream temporal breach developments

The temporal variations of the breach-wetted areas at upstream and downstream are
shown in Figure 5.25.
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Figure 5.25. The upstream and downstream temporal variations of the breach-wetted

areas

The temporal breach discharges calculated from Equation (4.1) are presented in
Figure 5.26.
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Figure 5.26.Temporal breach discharges

The time-varied upstream and downstream breach velocities, calculated by using

Equation 4.2 are shown in Figure 5.27.
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Figure 5.27. The time-varied upstream and downstream breach velocities

5.3. Third Experiment

In the third scenario, the dam height was 65 cm, and the water level was 61 cm. The

bulk density, pouik, is 1.7 g/lcm?®. The final view of the third experiment is given in Figure
5.28.

Figure 5.28. The final view of the dam

The breach views from downstream and top corresponding to different times are

given in Figure 5.29 and Figure 5.30, respectively. The time t=0 represents when the
breach appeared upstream.
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Figure 5.29. The breach views from downstream a) t=0s, b) t=50's, ¢) t=1710 s, d) t=2230
S, e) t=2410s, f) t=2485 s
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(e) (f)
Figure 5.30. The breach views from top a) t=0 s, b) t=50 s, ¢) t=1710 s, d) t=2230 s, €)
t=2410s, f) t=2485 s

At the time t=0, the seepage started from the weak area and turned into a breach,
then reached the upstream side in less than 1 hour. For the evaluation of the experimental
findings, when the breach reached the upstream was taken t=0 s. The breach views
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corresponding to different times are given from Figure 5.31 to Figure 5.33. The time t=0
represents when the breach appeared upstream.

Figure 5.31. The breach views from downstream a) t=0 s, b) t=10 s, ¢) t=30 s, d) t=40 s,
e) t=60s, f) t=150 s
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(e) (f)
Figure 5.32. The breach views from upstream a) t=0 s, b) t=10s, ) t=30 s, d) t=40 s, €)
t=60 s, f) t=150 s
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Figure 5.33. The breach views from top a) t=0 s, b) t=10 s, ¢) t=30's, d) t=40 s, €) t=60 s,
f) t=150 s
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The temporal changes in water depth during the experiment are shown in Figure

5.34.
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Figure 5.34. Temporal changes in water depths in the channel
The upstream temporal breach developments are given in Figure 5.35.
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Figure 5.35. The upstream temporal breach developments

The upstream temporal variations of the breach-wetted areas are presented in Figure
5.36
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Figure 5.36. The upstream temporal variations of the breach-wetted areas

The temporal breach discharges calculated from Equation (4.1) are presented in

Figure 5.37.
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Figure 5.37. Temporal breach discharges

The time-varied upstream and downstream breach velocities, calculated by using

Equation 4.2, are shown in Figure 5.38.
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Figure 5.38. The time-varied upstream breach velocities

5.4. Fourth Experiment

In the fourth experiment, the dam high was 65 cm, and the water level was 61 cm.
The bulk density, pouik, is 2 g/cm?. The dam was constructed by mixture 2 and created

2x2 cm? weak layer at 28 cm above the bottom. The final views are given in Figure 5.39.

(a) (b)

Figure 5.39. The final view of the dam from (a) top (b) downstream

The breach views corresponding to different times are given from Figure 5.40 to
Figure 5.46. The time t=0 represents when the breach appeared upstream.
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Figure 5.40. The breach views at t=0 s a) upstream of the first dam, b) upstream of the
second dam, c¢) downstream of the first dam, d) downstream of the second
dam
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Figure 5.41. The breach views at t=15 s a) upstream of the first dam, b) upstream of the
second dam, c¢) downstream of the first dam, d) downstream of the second
dam

48



Figure 5.42. The breach views at t=25 s a) upstream of the first dam, b) upstream of the
second dam, c) downstream of the first dam, d) downstream of the second

dam
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Figure 5.43. The breach views at t=40 s a) upstream of the first dam, b) upstream of the
second dam, c¢) downstream of the first dam, d) downstream of the second
dam
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Figure 5.44. The breach views at t=60 s a) upstream of the first dam, b) upstream of the
second dam, c¢) downstream of the first dam, d) downstream of the second

dam

51



Figure 5.45. The breach views at t=90 s a) upstream of the first dam, b) upstream of the
second dam, c¢) downstream of the first dam, d) downstream of the second
dam
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Figure 5.46. The breach views at t=134 s a) upstream of the first dam, b) upstream of the
second dam, c¢) downstream of the first dam, d) downstream of the second
dam
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The temporal changes in water depth during the experiment are shown in Figure

5.417.
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Figure 5.47. Temporal changes in water depths in the channel

The temporal breach developments at downstream and upstream sides together with

the first and second experiment are given in Figure 5.48 and Figure 5.49, respectively.

The temporal variations of the breach-wetted areas at downstream and upstream

are shown in Figure 5.50 and Figure 5.51, respectively.
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Figure 5.48. The downstream temporal breach developments

54



First Experiment = = =Second Experiment

1600

1200

800

400

Breach Area (cm?)

0 20 40 60 80 100 120 140 160
Time (s)

Figure 5.49. The upstream temporal breach developments
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Figure 5.50. The temporal variations of the breach-wetted areas at downstream
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Figure 5.51. The temporal variations of the breach-wetted areas at upstream

The temporal breach discharges calculated from Equation (4.1) are presented in

Figure 5.52.
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Figure 5.52. Temporal breach discharges
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The time-varied downstream and upstream breach velocities, calculated by using

Equation 4.2, are shown in Figure 5.53 and Figure 5.54, respectively.
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Figure 5.53. The time-varied downstream breach velocities
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Figure 5.54. The time-varied upstream breach velocities
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5.5. The compaction density effects

The experiments were conducted in the Izmir University of Economics laboratory
by using mixture 1. For investigating the compaction density effect on the piping
mechanism, the second and the third scenarios were compared to each other for the first
t=37 s. Both dams have the same geometry, 65 cm height, and the same reservoir level,
61 cm. The second experiment (Chapter 6.2) was constructed with 26 proctor hammer
blows to obtain a 2.5 cm sub-layer by providing the bulk density, pbui, 2.0 g/lcm? (higher
density) while the third experiment (Chapter 6.3) was conducted with 9 proctor hammer
blows to obtain a 2.5 cm sub-layer by, pouik, 1.7 g/cm® (lower density) after pouring the
soil material in the same volume.

Each dam has a 5x5 cm? weak zone which consists of rock salt along the dam axis.
The slopes of the downstream and upstream of the scenarios are 1 vertical to 1.5
horizontal. Once the water reached the desired levels, the experiments were started.

The experiments were conducted by arranging the input discharges of 29.6 m%/h for
the higher-density dam body, and 6.2 m®h for the lower-density dam body.

The temporal changes in water depths in the channel together with lower and higher
density dams during the experiments are shown in Figure 5.55.
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Figure 5.55. Temporal changes in water depths in the channel together with lower and

higher density dams
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The temporal breach developments at upstream together with the lower density and
higher density dams are given in Figure 5.56.
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Figure 5.56. The temporal breach developments at upstream together with the lower

density and higher density dams

The temporal variations of the breach-wetted areas at upstream together with the

lower density and higher density dams are given in Figure 5.57.
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Figure 5.57. The temporal variations of the breach-wetted areas at upstream together

with the lower density and higher density dams



The temporal breach discharges calculated from Equation (4.1) together with the
lower density and higher density dams are presented in Figure 5.58.
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Figure 5.58. The temporal breach discharges together with the lower density and higher
density dams

The time-varied upstream breach velocities, calculated by using Equation 4.2,

together with the lower density and higher density dams are presented in Figure 5.59.
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Figure 5.59. The time-varied upstream breach velocities together with the lower

density and higher density dams



5.6. Results and Discussions

The experimental findings are commented on by taking into consideration the
values corresponding to the interval where the initial water level decreased at most 10 %
(to%). The so-obtained comparative results are given in Table 5.2. In this table,
Areadown10% and Areaupiox are the areas at downstream and upstream sides, respectively.
Wetgown10% and Wetupioss denote the wetted areas at downstream and upstream sides,
respectively. Qo represents the flow rate through the breach. The velocities at

downstream and upstream are denoted by Velocitydown1o% and VVelocityup1o%, respectively.

Table 5.2. The so-obtained comparative results for at most 10 %

Findings Experiment

1 2 3 4
t10% (S) 19 37 37 33
Areagownion (CM?) 721 2711 - 1890
Areaypion (CM?) 365 452 1370 88.9
Wetgown0% (CM?) 398 165 - 174
Wetypio0 (CM?) 365 183 233 88.9
Dischargeiow (L/s) 28.6 28.3 28.8 24.2
Velocitydowno% (CM/S) 72 170 - 127
Velocityupiov (CM/s) 78 155 124 248

The flow rates values corresponding to the times t=10 s, t=20 s, and t=30 s are given

in Table 5.3

Table 5.3. The temporal discharges for different time intervals

. Experiment
Discharge (L/s) 1 > 3 2
Q1o 12.5 1.7 1.7 2
Q20 25.2 8.8 6.24 7.2
Q30 30.5 21.8 22.6 19
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The downstream and upstream breach areas corresponding to the times, t=10 s,

t=20 s, and t=30 s are given in Table 5.4 and Table 5.5, respectively.

Table 5.4. The temporal breach developments at downstream for different time intervals

Downstream Breach Area Experiment
(cm?) 1 2 3 4
Adown-10 551 1453 - 322
Adown-20 721 2145 - 1120
Adown-30 871 2406 - 1744

Table 5.5. The temporal breach developments at upstream for different time intervals

Upstream Breach Area Experiment
(cm?) 1 2 3 4
Aup-10 144 58 118 27
Aup-20 365 148 553 54
Aup-30 753 290 703 81

The temporal variations of downstream and upstream breach-wetted areas
corresponding to the times, t=10s, t=20 s, and t=30 s are presented in Table 5.6 and Table

5.7, respectively.

Table 5.6. The temporal variations of downstream breach-wetted areas for different time

intervals
Downstream Breach-wetted Area Experiment
(cm?) 1 2 3 4
Wetteddownstream-10 242 124 - 60
Wetteddownstream-20 462 135 - 125
Wetteddownstream-30 441 152 - 152
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Table 5.7. The temporal variations of upstream breach-wetted areas for different time

intervals
Upstream Breach-wetted Area Experiment
(cm?) 1 2 3 4
Wetted.upstream-10 144 | 32 29 27
Wetted.upstream-20 365 | 99 82 54
Wetted,upsiream-30 451 | 146 207 81

The time-varied of downstream and upstream breach velocities corresponding to

the times, t=10 s, t=20 s, and t=30 s are given in Table 5.6 and Table 5.7.

Table 5.8. The time-varied downstream breach velocities for different time intervals

Downstream Experiment
Velocity (cm/s) 1 2 3 4
Vdown—lo 52 14 - 34
Vdown—20 58 64 - 57
Vdown—30 64 143 - 152

Table 5.9. The time-varied upstream breach velocities for different time intervals

Upstream Velocity Experiment
(cm/s) 1 2 3 4
Vip-10 87 54 58 75
Vup-20 69 86 76 151
Vup3o 68 149 108 226

The time interval corresponding to the decrease of the initial water by 10% was

found to be nearly the same for the last three experiments, this time being nearly twice

that of the first experiment.

The flow rates are found to be nearly equal.

In all experiments, the downstream areas were found to be greater than the

upstream ones.
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The orders of magnitude of the wetted areas were found to be similar for the dams
of heigh 60 cm and 65 cm.
The temporal changes of downstream breach areas are likely linear.

The breach areas at upstream were influenced significantly by the compaction
density, the compaction decreasing the breach areas.

It was revealed, the increase of the dam height and consequently the water head
resulted in increase of the breach areas at downstream and upstream sides.

The wetted areas were found to be larger in the dam 60 cm high compared to those

corresponding to the dam 65 cm high.
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CHAPTER 6

3D FINITE ELEMENT ANALYSIS OF BREACHING OF
HOMOGENOUS EARTH-FILL DAMS

Numerical simulations were performed using PLAXIS 3D to compare with the

experimental findings.

The seepage forces can cause transportation according to the value of the hydraulic
gradient, i, defined in Darcy’s equation (V=k-i). The critical hydraulic gradient, i.,,
which causes the erosion is given in Equation 6.1.

_ O/sat - )/w)' (1 - n) (61)

cr
Yw

where y,; is the saturated unit weight, y,, is the unit weight of water, and n denotes the

porosity.

6.1. Finite Element Method

6.1.1. Methodology

During the numerical analyses, after completing the dam geometry, mesh
generation was accomplished by selecting as 0.4 for the relative element size and 0.4635
m for element dimension. Enhanced mesh options were utilized by arranging the global
scale factor to 0.5 and the minimum element size factor to 5-10° m.

The surface groundwater flow boundary condition (Surface GWFlowBC) was
defined. The behavior was set as head option then the reference level was described as

initial water level.
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The general subtree in the staged construction tab was arranged to represent the
experiment conditions. The water levels were arranged in steady-state calculation types
when the levels remain unchanged. The fully coupled flow deformations option was used
when the change in the water level occurred. For the simulations in time-dependent flow
conditions, the temporal changes in water level in each scenario were transferred to the
PLAXIS 3D as a table by assigning flow functions.

The flows within the dam body were obtained as a result of the simulations. To
obtain the average velocity values, the relevant soil numbers at the upstream and
downstream sides of the breach were considered. The values and corresponding soil
numbers were reached as a table sheet in the output file.

The wetted areas were considered as flow distributions at the breach upstream and
downstream sides and calculated by using Gauss’s area method. The surface areas are
calculated when hydraulic gradient values reach or exceed the threshold value at the dam.

Discharges at different time intervals are calculated by considering the wetted
areas and the average velocity at the downstream and upstream sides of the breach. They
calculated from Equation 4.2. The discharges are calculated for both downstream and
upstream sides and the average values were determined. Since the bottom and the lateral
sides of the dams were impermeable, the boundary conditions were selected as closed.
Consequently, the boundary conditions were Zmin=Closed, Zmax=0pen, Ymin=Y max=
Closed, and Xmin=Xmax= Open. The representation of wetted areas together with the

phreatic level is given in Figure 6.1.

L .x

Dam body

Breached Zone

- Phreatic Line
Flow Distribution _

Figure 6.1. The representation of wetted area together with phreatic surface

66



The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), given in
following equations, were used to evaluate the compatibility between experimental and

numerical studies.

(6.2)

n 2
RMSE = Z (Qexperimental - Qnumerical)
n
i=1

& (6.3)
MAE = Ez | Qexperimental—Qnumerical
i=1

where n is the number of data.

6.1.2. The Soil Properties

For the simulations, it is essential to define soil properties in each soil volume.
The dam soil properties have been obtained from the soil mechanics tests (see Chapter
3.1). Since air parameters can not be defined, an estimation was performed to describe
the properties of the weak zones such as hole or rock salt.

The H.S. Model-Undrained A model was used for the dam soil properties while
the H.S. model-Undrained B model was chosen for the weak and breached zones model
types.

The initial void ratio of the breach volume was selected as 0.9. Since the hole was
considered as the filled by the air, the unsaturated (Yunsat-weak) Was taken as air density.
When the hole was filled with water, the saturated unit weight (Ysatweak) Was taken
because of considering filled by the water. The undrained shear strength (Su-weak) value
was taken as 0.1 kN/m? to avoid numerical errors.

The oedometric modulus of deformation (Eceq) Was obtained according to the
consolidation test. As average values for various soil types, Eur = 3-Espand Eqed = Esp are
suggested as default settings. (PLAXIS user manual, 2022).

The permeability coefficients in the breach were calibrated according to the first

velocity measurement at the breach downstream. The permeability of the rock salt was
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calibrated according to the first seepage discharge. When the erosion existed, the second
calibration was performed to satisfy the next seepage discharge measurement. When the

breached soil reached the upstream face, the third calibration was made to adjust the

downstream velocity at the experiment.

The soil properties used in the numerical analyses are given in Table 6.1.

Table 6.1. The soil properties used in the finite element analyses

Input Mixture 1 | Mixture 2 gpper breach Middle breach Bottom breach
Upper-middle | Upper-corner | Breach zone |Breach zone| Rocksalt
Material Hardening Soil
Drainage type UND-A UND-B
Yunsat (kN/m®) 20 0.012 !
Ysat (kN/m®) 21.2 10
init 0.469 0.488 0.9
Eso, rer (KN/M?) | 35,714 13,810 1000
Eoeq ret (KN/M?) | 35,714 13,810 1000
Eur ref (KN/M?) | 107,142 | 41,430 3000
¢ (kN/m?) 15.33 11.68
) 33.9 39.84
S, (kN/m?) - - 0.1
k (m/s) 470-107 | 1.18-10°° 0.47 0.32 1 0.054/1.1 | 0.022

6.1.3. Modelling of Piping Evolution

The critical hydraulic gradients, i, for mixture 1 and mixture 2 were calculated
from Equation 3.1 and found to be 0.76 and 0.74, respectively.

The locations where is> icr were determined by means of a 3D python algorithm
integrated with the Jupyter console after the manual calculation at time t=0. If the
simulated hydraulic gradient reaches or exceeds the critical hydraulic threshold (i.,), then
localized piping is initiated and developed in these locations (Saliba et al., 2019).

The dam geometries were defined as 2 m in length, 0.6 m or 0.65 m in height, and
1 m in width. After setting the boundary and initial conditions, the first simulation is
started manually, then the python algorithm takes over the analysis. After the
determination of the coordinates of the region where is= i¢r, X coordinates are sorted by
number starting from the downstream side with different intervals, dx, ranging from 5 to
10 cm. They were denoted by Xa, Xb, Xc... (Xa>Xb). Afterward, the y and z coordinates

at each corresponding x coordinate are sorted to create surfaces.
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Surfaces are created from the starting point (Ymin, Zmax) to the endpoint (Ymax,
Zmax) in the counterclockwise direction to cover the higher hydraulic gradient values by

obtaining Ymax and Ymin values at Zmin and Zmax and vice versa, respectively.

The simple and not scaled representation of the creation of breach surfaces is

given in Figure 6.2.

[] ereached sont
I Eroded soit
Surtace

(Xa. len at zmin» me) Xa' Ymax at zmin» me)

Figure 6.2. Not scaled representation of the creation of breach surfaces

The so obtained surfaces were linked to each other by extruding them in the x
direction via the intersection and re-cluster command to create the breached soil volume.
Since the created breached soil volumes have complex geometry, sometimes small or
external distances appeared in the intersection zone. In such cases, “check the geometry”
command was used to detect their locations. To do so, the locations partitioned with a
closed box for isolating each partition to mesh generation (Error When Generating 3D
Mesh - GeoStudio | PLAXIS Wiki - GeoStudio | PLAXIS - Bentley Communities, 2019b,
accessed on December 4™ 2022). After the definition of the soil parameters into the
breached soil volumes, the mesh generation was accomplished for the next time steps and
the input files were saved.

The flow chart corresponding to the python algorithm is given in Figure 6.3. For
the continuation of the simulation at new time steps, the initial flow boundary conditions
were set. Therefore, the python algorithm completes the loops until the criteria was no

longer satisfied.
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Figure 6.3. Flow chart of the applied 3D python algorithm
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6.2. Numerical Simulation of the Experimented Dams

6.2.1. Numerical analysis corresponding to the first experiment

The details of the experiment are given in Chapter 5.1. The final geometry of the

dam corresponding to the first experiment is given in Figure 6.4. The red color represents

the weak zone.

Figure 6.4. The final geometry of the first experiment

6.2.1.1. When the breach was not reached the upstream face

The experimental and numerical seepage discharges are given in Figure 6.5.

Seepage discharge
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o N b~ OO 0
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35
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70
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A
. &
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Time (h)

2
.

Figure 6.5. Experimental and numerical seepage discharges before the breach reached

upstream face
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The longitudinal views of the hydraulic gradient distributions together with cross

sections when the breach did not reach the upstream are given in Figure 6.6.

Hydraulic Gradient lil, (Time = 0.01 s), Maximum value =1.28, Minimum value = 0.76
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Figure 6.6. Hydraulic gradient distribution along the dam before the breach did not reach

the upstream face for a) 0 days, b) 4 days

(cont. on next page)
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Hydraulic Gradient lil, (Time = 9.0 days), Maximum value = 1.69, Minimum value = 0.76
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Figure 6.6. (cont.)
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The numerical simulation was performed by considering the temporal changes in
the water level in Figure 5.12 and defined as time-dependent flow conditions in fully
coupled flow deformations.

6.2.1.2. When the breach reached the upstream face

When the breach reached the upstream side, the longitudinal hydraulic gradient

distributions in color scale with maximum and minimum values are given in Figure 6.7.

Hydraulic Gradient lil (Time = 10.0 s)
Maximum value = 1,722
Minimum value = 0.76

Hydraulic Gradient lil (t=20 s)
Maximum value = 1,851
Minimum value = 0.76

Figure 6.7. Hydraulic gradient distribution along the dam after the breach reached the
upstream face for (a) 10 s (b) 20 (c) 30 s (d) 120

(cont. on next page)
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Hydraulic Gradient lil (Time = 30.0 s)
Maximum value = 4.33
Minimum value = 0.76

- I_- l
(©)
Hydraulic Gradient lil (Time = 120.0 s)
Maximum value = 0.7022 T
(d)

Figure 6.7. (cont.)
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values are given in Figure 6.8.

The flow through the breach together with upstream and downstream average

Groundwater flow Iql (Time = 10.0 s)
Upstream average value = 63.5 cm/s
Downstream average value = 54.0 cm/s

(a)

Groundwater flow Iql (Time = 20.0 s)
Upstream average value = 58.3 cm/s
Downstream average value = 61.1 cm/s

(b)

Groundwater flow Igl (Time = 30.0 s)
Upstream average value = 38.0 cm/s
Downstream average value = 43.4 cm/s

(©

Figure 6.8. Flow distributions along the dam for a) 10 s (b) 20 s (¢) 30 s (d) 120 s

(cont. on next page)
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Groundwater flow Iql (Time = 120.0 s) o
Upstream average value = 27.5 cm/s e
Downstream average value = 26.3 cm/s

_ T

Figure 6.8. (cont.)

The downstream and upstream temporal breach developments in the experiment
together with those obtained from the numerical analysis are given in Figure 6.9 and
Figure 6.10, respectively. The time t=0 s indicates the initiation of seepage.

(©)

Figure 6.9. The downstream temporal breach developmentsa) 0s, b) 10 s, ¢) 120 s
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(d)
Figure 6.10. The upstream temporal breach developments a) 0 s, b) 10, ¢) 30 s,d) 120 s

The experimental and numerical temporal breach developments are presented in
Figure 6.11 and Figure 6.12 for downstream and upstream, respectively.

The experimental and numerical time-varied breach velocities are presented in
Figure 6.13 and Figure 6.14 for downstream and upstream, respectively.
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Figure 6.11. The downstream temporal breach developments together with experimental

and numerical
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Figure 6.12. The upstream temporal breach developments together with experimental and

numerical
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Figure 6.13. The time-varied downstream breach velocities together with experimental

and numerical
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Figure 6.14. The time-varied upstream breach velocities together with experimental and

numerical

The temporal variations of wetted areas for downstream and upstream together

with experimental and numerical are given in Figure 6.15 and Figure 6.16, respectively.
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Figure 6.15. The temporal changes in downstream breach-wetted areas together with

experimental and numerical

E i tal X N ical
&\ 600 xxperlmena umerica
£ 500 X
= 400 x
(48}
® 300 . S
X
< 200 X X _x
£ 100
3 0
0 20 40 60 80 100 120 140
Time (s)

Figure 6.16. The temporal changes in upstream breach-wetted areas together with

experimental and numerical
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The calculated temporal discharge values together with experimental and numerical

are given in Figure 6.17.

Discharge (L/s)

2N W b
o O o o o

0 20

Experimental X Numerical

X

X X
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Figure 6.17. The temporal discharge values together with experimental and numerical

The calculated RMSE and MAE values to evaluate each error for each station are

given in Table 6

2.

Table 6.2. RMSE and MAE values for each finding at the bottom-middle scenario

Findings Unit Root Mean Square Error Mean Absolute Error

(RMSE) (MAE)

V downstream (Cm/S) 6.3 4.3

Vupstream (Cm/ S) 13.8 98

Wettedgownstream (sz) 101.8 84.3

Wettedupstream (cm?) 127.3 107.1

Surfacedownstream (sz) 238.9 236.3

Surfaceupstream (cm?) 398.9 330.1

Discharge (L/s) 4.6 3.1

The RMSE and MAE values are calculated for each finding. For the middle-bottom

part, RMSE and MAE values of the average value are calculated as 18.3% and 12.7% for
Vdownstream, 32.8% and 23.3% for Vupstream, 37.1% and 30.1% for Wetteddownstream, 54.6%
and 45.9% for Wettedypstream, 27.5% and 27.2% for Surfacedownstream, 30.8% and 25.5% for

Surfaceupstream, 35.4% and 23.3% for discharge, respectively.

81



6.2.2. Numerical analysis corresponding to the fourth experiment

In the scope of this thesis, the middle-middle scenario was performed by building
a dam 65 cm high, 200 cm long, and 5 cm crest by creating a 2x2 cm? weak zone at the
middle center along the dam to investigate the temporal changes in breach and the breach
discharge caused by piping.
The dam was constructed by mixture 2. The soil mechanics tests of mixture 2 and
the experimental findings can be found in Chapter 3.1 and Chapter 5.4, respectively.

The final geometry of the middle-middle scenario is given in Figure 6.18.

Figure 6.18. The final geometry of the middle-middle scenario

The defined dam body soil properties for the middle-middle part are given in
Table 6.1. The numerical analysis was performed by defining the flow functions
according to the temporal water depths in the experiment which was given in Figure 5.47.

During the numerical analysis, the first 10 s were performed as steady-state flow
calculation types since the water level was continuous and it does not change on time.
The rest of the analysis was performed as a time-dependent flow function by tabulating
the water level table at each corresponding time.

After starting the simulation, the obtained longitudinal hydraulic gradient
distributions in one color scale (green) with their maximum and minimum values are

given in Figure 6.19.
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Hydraulic Gradient lil, (Time = 0.01 s), Maximum value = 0.98, Minimum value = 0.74
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Figure 6.19. Hydraulic gradient distribution along the dam for (a) 0 s (b) 10 s (c) 40 s (d)
80s
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Hydraulic Gradient lil, (Time =40.0 s), Maximum value =7.70, Minimum value = 0.74
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Figure 6.19. (cont.)
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The flow through the breach together with upstream and downstream average

values are given in Figure 6.20.

Groundwater Igl (Time = 10.0 s)
Upstream average value = 51.5 cm/s o)
Downstream average value = 52.2 cm/s

(a)

Groundwater Igl (Time = 40.0 s)
Upstream average value = 172.6 cm/s imh]
Downstream average value = 127.2 cm/s

* om
4
z
.

Groundwater Iql (Time = 80.0 s)
Upstream average value = 40.5 cm/s o
Downstream average value = 38.5 cm/s

(©)

Figure 6.20. Flow through the breach a) 10 s, b) 40s,¢) 80 s



The downstream and upstream temporal breach developments in the experiment
together with those obtained from the numerical analysis are given in Figure 6.21 and

Figure 6.22, respectively. The time t=0 s indicates the initiation of seepage.

(©)

Figure 6.21. The downstream temporal breach developmentsa) 0s, b) 40s, c) 80 s
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Figure 6.22. The upstream temporal breach developmentsa) 0s, b) 40s,¢) 80 s
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The numerical temporal breach developments together with experimental

averaged values are presented in Figure 6.23 and Figure 6.24, respectively.
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Figure 6.23. The downstream temporal breach developments together with experimental

average and numerical
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Figure 6.24. The upstream temporal breach developments together with experimental

average and numerical

The experimental and numerical time-varied average velocities are presented

Figure 6.25 and Figure 6.26 for downstream and upstream, respectively.
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Figure 6.25. The time-varied downstream breach velocities together with experimental

average and numerical
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Figure 6.26. The time-varied upstream breach velocities together with experimental

average and numerical

The temporal variations of the downstream and upstream wetted areas together
with experimental average values and numerical are given in Figure 6.27 and Figure 6.28,

respectively.
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Figure 6.27. The temporal changes in downstream breach-wetted areas together with

experimental and numerical
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Figure 6.28. The temporal changes in upstream breach-wetted areas together with

experimental and numerical

The average temporal discharge values for both the experimental and numerical are
given in Figure 6.29.
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Figure 6.29. The average temporal discharge values together with experimental and

numerical

The calculated and compared the RMSE and MAE values for each finding are given

in Table 6.3.

Table 6.3. RMSE and MAE values for each finding at the middle-middle part

Root Mean Square Error

Mean Absolute Error

Findings Unit (RMSE) (MAE)

V downstream (Cm/S) 23.1 18.5
Vupstream (Cm/ S) 43.9 30.7
Wettedgownstream (sz) 27.0 20.1
Wettedupsiream (cm?) 51.2 40.9
Surfacegownstream (sz) 426.1 356.8
SUrfftu-‘:eupstream (sz) 102.1 71.8
Discharge (L/s) 35 2.8

The RMSE and MAE values are calculated for each finding. For the middle-

middle scenario, RMSE and MAE values of the average value are calculated as 30.0%
and 24.0% for Vdownstream, 58.4% and 40.8% for Vypstream, 23.2% and 17.2% for

Wetteddownstream,

39.1% and 31.3% for Wettedypstream,

225% and 18.8% for

Surfacedownstream, 14.1% and 9.9% for Surfaceypstream, 36.0% and 28.2% for discharge,

respectively.
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6.2.3. Case 1: Seepage Starting at the Upper-Middle

In the scope of the project TUBITAK 119M609, (Guney et al., 2022a and Okan,
2022) performed an experiment by building a 60 cm in height, 200 cm in length, and 20
cm in crest width dam. A tunnel of 2 cm diameter located 6 cm below the crest to

investigate temporal breach developments and the discharge through the breach caused

by piping.

6.1.1.1. Construction procedures and Experiment

During the construction of the earth-fill dam, the bulk density was used as 2 g/cm?®

and in 12.5% optimum water content by the standard proctor test from Figure 3.2. The

construction stages of the upper-middle scenario are given in Figure 6.30.

Figure 6.30. The construction stages of the upper-middle scenario (a) Top view of the
third layer during construction, (b) Left view of the third layer during
construction, (c) final upstream view, (d) final downstream view (Guney et
al., 2022a and Okan, 2022)
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The experimental processes of the upper-middle scenario are given in Figure 6.31.

(@) (b)

(©) (d)
Figure 6.31. The experiment process for the upper-middle scenario (a) downstream
beginning, (b) downstream ending, (c) upstream beginning, (d) upstream
ending (Guney et al., 2022a and Okan, 2022)

The temporal water depth is given in Figure 6.32.
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Figure 6.32. The temporal water depths of the upper-middle scenario (Guney et al., 2022a
and Okan, 2022)
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The numerical analysis was performed by defining the flow functions according
to the temporal water depths corresponding to the experiment in the laboratory. During
the numerical analysis, the first 200 s are performed as steady-state flow calculation type.
The rest of the 200 s parts were performed as a time-dependent flow function by
tabulating the water level table at each corresponding time. The geometry of the upper-
middle scenario in PLAXIS 3D is given in Figure 6.33.

Figure 6.33. The final geometry of the upper-middle scenario

The longitudinal one-color scale (green) hydraulic gradient distributions at y=0.5

m together with four cross-sectional views at different time steps are given in Figure 6.34.
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Figure 6.34. Hydraulic gradient distribution along the dam (a) 0 s (b) 40 s (c) 160 s (d)
240 s (e) 380s

(cont. on next page)
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Hydraulic Gradient lil, (Time = 40.0 s), Maximum value = 1.78, Minimum value = 0.76
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Hydraulic Gradient lil, (Time = 380.0 s), Maximum value = 2.24, Minimum value = 0.76

Figure 6.34. (cont.)

The flow through the breach together with upstream and downstream average

values are given in Figure 6.35.

Groundwater flow Igl (Time = 40.0's)
Upstream average value = 8.9 cmis o0 mrl
Downstream average value = 18.4 cmis o

(a)

Groundwater flow Igl (Time = 160.0 s)
Upstream average value = 30.9 cm/s -l
Downstream average value = 38.2 cm/s o

(b)
Figure 6.35. Flow through the breach a) 40 s, b) 160s, ¢) 240 s

(cont. on next page)
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Figure 6.35. (cont.)

The downstream and upstream temporal breach developments in the experiment
together with those obtained from the numerical analysis are given in Figure 6.36 and

Figure 6.37, respectively. The time t=0 s indicates the initiation of seepage.

«)mg( S

(b)
Figure 6.36. The downstream temporal breach developments (a) 0 s, b) 40 s, ¢) 240 s, d)

380
(cont. on next page)
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(d)

(b)
Figure 6.37. The upstream temporal breach developments (a) 0 s, (b) 40, (c) 240 s, (d)

380s
(cont. on next page)
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Figure 6.37. (cont.)

The numerical temporal breach developments together with experimental
averaged values are presented in Figure 6.38 and Figure 6.39 for the downstream and the
upstream sides, respectively.
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Figure 6.38. The downstream temporal breach developments together with experimental

and numerical
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Figure 6.39. The upstream temporal breach developments together with experimental and

numerical

The experimental and numerical time-varied average velocities are presented in

Figure 6.40 and Figure 6.41 for downstream and upstream, respectively.
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Figure 6.40. The time-varied downstream breach velocities together with experimental

and numerical
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Figure 6.41. The time-varied upstream breach velocities together with experimental and

numerical

The temporal variations of downstream and upstream wetted areas together with

experimental and numerical are given in Figure 6.42 and Figure 6.43 respectively.
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Figure 6.42. The temporal variations of downstream wetted areas together

experimental and numerical

with
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Figure 6.43. The temporal variations of upstream wetted areas together with experimental

and numerical

The average temporal discharge values for both the experimental and numerical

are given in Figure 6.44.
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Figure 6.44. The temporal discharges together with experimental and numerical
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The calculated RMSE and MAE values for each finding are given in Table 6.4.

Table 6.4. RMSE and MAE values for each finding at the upper-middle part

Findings Unit Root Mean Square Error Mean Absolute Error
(RMSE) (MAE)
Vdownstream (Cm/S) 5.6 4.7
Vupstream (cm/ S) 6.7 6.0
Wettedgownstream (sz) 24.9 19.1
Wettedupstream (cm?) 418 32.5
Surfacedownstream (cm?) 316.8 224.8
Surfaceypstream (cm?) 143.6 100.6
Discharge (L/s) 1.7 1.2

The RMSE and MAE values are calculated for each finding. For the upper-middle
part, RMSE and MAE values of the average value are calculated as 19.7% and 16.6% for
Vdownstream, 25.9% and 23.2% for Vypstream, 23.0% and 17.7% for Wetteddownstream, %036.0
and 28.1% for Wettedupstream, 27.4% and 19.4% for Surfacedownstream, 31.2% and 26.1% for

Surfaceupstream, 59.6% and 42.1% for discharge, respectively.

6.2.4. Case 2: Seepage Starting at the Upper-Corner

In the scope of the project TUBITAK 119M609, (Guney et al., 2022b and Okan,
2022) experimented by building a 60 cm in height, 200 cm in length, and 20 cm in crest
width dam which has a tunnel of 2 cm diameter located 6 cm below the crest corner to

investigate temporal breach developments and the discharge through the breach caused
by piping.

6.1.1.2. Construction procedures and Experiment

During the construction of the earth-fill dam, the bulk density was used as 2 g/cm?®

and in 12.5% optimum water content by the standard proctor test from Figure 3.2.
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The construction stages of the upper-corner section are given in Figure 6.45.

(©) (d)

Figure 6.45. The constructions of the upper-corner scenario (a) the first layer from top
view (b) the first layer from left view (c) final upstream view (d) final
downstream view (Guney et al., 2022b and Okan, 2022)

The experimental processes of the upper-corner scenario for the downstream,
right side, and upstream are given in Figure 6.46, respectively.

(@) ()

Figure 6.46. The experiment process for the upper-corner scenario (a) downstream

beginning (b) downstream ending (c) right side beginning (d) right side
ending (e) upstream beginning (f) upstream ending

(cont. on next page)
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Figure 6.46. (cont.)

Once the dam geometry was defined, a 2 cm diameter hole was created by using
the poly curve at 6 cm below the dam crest corner. The final geometry of the upper-corner

scenario in PLAXIS 3D is given in Figure 6.47.

Figure 6.47. The final geometry of the upper-corner scenario

The numerical analysis was performed by defining the flow functions according to
the temporal water depths corresponding to the experiment in the laboratory which is
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given in Figure 6.48. The first 230 seconds were simulated steady-state flow calculation
types while the rest of the analysis was simulated time-dependent.
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e <
£ 45 >~ —
© —~ - L
330
|-
§ 15

0

0 100 200 300 400 500 600 700 800
Time (s)

Figure 6.48. The changes in water level in time for the upper-corner scenario (Guney et
al., 2022b and Okan, 2022)

The longitudinal one-color scale (green) hydraulic gradient distributions at y=0.98
m together with four cross-sectional views at different time steps are given in Figure 6.49.
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Figure 6.49. Hydraulic gradient distribution along the dam fora) 0s, b) 40 s, ¢) 160 s, d)
500s,e)640s

(cont. on next page)
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Hydraulic Gradient lil, (Time = 40.0 s), Maximum value = 1.49, Minimum value = 0.76
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Hydraulic Gradient lil, (Time = 500.0 s), Maximum value = 2.92, Minimum value = 0.76
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The flow through the breach is given in Figure 6.50.

Groundwater flow Iql (Time = 40.0 s) y )
Upstream average value = 9.1 cm/s ol
Downstream average value = 18.5

Groundwater flow Iql (Time = 160.0 s) !
Upstream average value = 21.1 cm/s "o
Downstream average value = 50.1 cm/s

Groundwater flow Iql (Time = 500.0 s) ool
Upstream average value = 22.1 cm/s 8.0
Downstream average value = 43.9 cm/s

755.20
67290

589.60

()
Figure 6.50. Flow through the breach a) 40 s a) 40 s, b) 160 s, c) 500
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The downstream and upstream temporal breach developments in the experiment
together with those obtained from the numerical analysis are given in Figure 6.51 and
Figure 6.52, respectively. The time t=0 s indicates the initiation of seepage.

(d)
Figure 6.51. The downstream temporal breach developments a) 0 s, b) 40 s, ¢) 500 s, d)
640 s
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(d)
Figure 6.52. The upstream temporal breach developments (a) 0 s (b) 300 (c) 500 s (d)
640 s

The numerical temporal breach developments together with experimental are
presented Figure 6.53 and Figure 6.54 for the downstream and the upstream sides,
respectively.
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Figure 6.53. The downstream temporal breach developments together with experimental

and numerical
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Figure 6.54. The upstream temporal breach developments together with experimental and

numerical

The experimental and numerical time-varied average velocities are presented

Figure 6.55 and Figure 6.56 for downstream and upstream, respectively.
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Figure 6.55. The time-varied downstream breach velocities together with experimental

and numerical
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Figure 6.56. The time-varied upstream breach velocities together with experimental and

numerical

The temporal variations of the downstream and upstream wetted areas together with

experimental and numerical are given Figure 6.57 and Figure 6.58, respectively.
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Figure 6.57. The temporal variations of the downstream wetted areas together with

experimental and numerical
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Figure 6.58. The temporal variations of the upstream wetted areas together with

experimental and numerical

The average temporal discharge values for both the experimental and numerical

are given in Figure 6.59.
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Figure 6.59. The temporal discharges together with experimental and numerical

The calculated RMSE and MAE values for each finding are given in Table 6.5.

Table 6.5. RMSE and MAE values for each finding at the upper-corner part

Root Mean Square Error

Mean Absolute Error

Findings
(RMSE) (MAE)
V downstream (cm/s) 27.5 25.2
V upstream (cm/s) 5.2 3.9
Wettedgownstream ~ (CM?) 5.2 4.5
Wettedupstream (cm?) 311 26.3
Surfacedownstream  (CM?) 136.2 124.2
Surfaceupstream (cm?) 198.8 160.6
Discharge (L/s) 0.5 0.4

For the upper corner scenario RMSE and MAE values of the average value are
calculated as 36.9% and 34.1% for Vdownstream, 29.2% and 21.5% for Vupstream, 24.5% and
21.2% for Wettedgownstream, %030.0 and 25.4% for Wettedypstream, 31.0% and 28.5% for
Surfacedownstream, 32.4% and 26.2% for Surfaceypstream, 27.5% and 21.9% for discharge.
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6.3. Results and Discussions

The numerical analyses were performed to realize the experimental conditions. In
the simulation of the first experiment, the piping process was started at the interaction
zone with the rock salt and the dam body, and it was continued to both sides, upstream
and downstream, respectively. The breached soil zone headed upstream side in t=4 days
and reached the upstream face after 11 days at 27 cm below the water surface. However,
the process took about 9 days and 16 cm below the water surfaces in the experiments.

The temporal discharge values were underestimated during the first 30 seconds
then, they decreased to the close parallel with the experiments. The time-dependent
upstream and downstream wetted areas were continued closely parallel to the
experiments, then it was overestimated during the numerical analysis. The time-related
velocities were underestimated for the first 50 seconds then they continued to closely
parallel the experiments. The downstream and upstream breach developments were
underestimated during the numerical analysis. The minimum error was found for the
downstream velocity while the maximum error was found for the wetted area upstream.

In the simulation of the fourth experiment, a similar breach formation was
observed. The piping was initiated at the interaction zone, and it continued and progressed
on both sides.

The temporal discharge values were calculated, and they were underestimated
until they reached their peak value of 24.35 cm®/s at t=50 s then the values were continued
closely in accord with the experiments. The changes in upstream breach-wetted areas
were underestimated during the analysis. However, the downstream sides continued
closely with the experimental findings. The downstream time-varied velocity values were
found close to the experiments while the upstream velocities were found to be
underestimated. The upstream temporal breach developments were found to be fairly in
accord with the experiment, however, the downstream sides were obtained as totally
underestimated.

The breach mechanism in the upper simulations were found to be similar for the
first t=160 s. In both simulations, the breach appeared on the upstream face at the same
interval. Then the peak discharges were occurred. In the upper-middle simulation, the
downstream temporal breach developments, downstream breach-wetted areas, and

downstream breach velocities are found the lowest errors, while the highest was found in
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the temporal breach discharges. In the upper-corner simulation, The minimum error was
found in downstream wetted areas, while the maximum error was found to be downstream

velocities.
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CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

In the scope of this thesis, homogenous earth-fill dams 0.6 m high having a bottom
width of 2 m and side slopes 1 vertical to 1.5 horizontal were constructed in a rectangular
flume 1 m wide, 6.14 m long, and 0.81 m high, in the laboratory of the Izmir University
of Economics. Experimental and numerical investigation related to piping and resulting
breaches in the homogenous earth-fill dams were realized with different experiments. A
mixture consisting of 85 % sand and 15 % clay was used in the construction of the dams.
The piping was generated by locating weak layers at different locations of the dams. Three
experiments were performed by placing a weak layer of cross-section 5x5 cm? at the
bottom of the dam along the centerline. One scenario was performed by locating a weak
layer of 2x2 cm?, 28 cm above the dam bottom. To facilitate the piping, each weak layer
consisted of rock salt.

The breaches started at the weak zone and progressed and continued backward, as
expected. The backward erosion within the first dam body was slower compared to other
experiments. The weak zones were located at the dam bottom during the first three
experiments while the fourth experiment was performed by placing the weak zone 28 cm
above the dam bottom.

The first two dams were constructed with a mixture of bulk density of 2 g/cm?®.

The first dam height was 60 cm, and the water level in the channel was 55.5 cm.
The experiment took about 9 days for the breach to reach the upstream face,
approximately 16 cm below the water surface. In the first scenario, since the breach
appeared under the water, the upstream surface area increased equally with the wetted
area until the water level decreased. For these reasons, the obtained wetted areas in the
first experiment for the first t=20 s were found to be the greatest relative to the other
scenarios.

The second dam height was 65 cm, and the water level in the channel was 61 cm.

The experiment took about 8 hours for the breach to reach the upstream face. The
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experiment took about 8 hours for the breach to reach the upstream face at water surface,
and the complete failure of the dam was observed.

The third dam was constructed with a mixture of bulk density of 1.7 g/cm®. The
dam height was 65 cm, and the water level in the channel was 61 cm. The soil erosion
was initiated at different locations of the downstream face. The experiment lasted
approximately 42 minutes and collapsed the dam crest, and the complete failure of the
dam was observed.

For the second and third scenarios, the first 37 seconds were compared. The
upstream breach area was eroded greater than in the second scenario. In conclusion, as
the compaction density decreases, the upstream breach erodes more rapidly.

The fourth dam height was 65 cm and the water level in the channel was 61 cm.
The experiment lasted approximately 2 minutes, being the experiment of the shorter
duration.

The simulations were performed by commercial software, PLAXIS 3D. The use of
the software by incorporating the python algorithm and the Jupyter console provided the
satisfactory compatibility between experimental findings and the numerical results. The
RMSE and MAE error parameters justified the accord between experimental findings and
numerical results.

The backward erosion piping was observed in numerical analysis as well as
experimental studies.

In the simulation of the first and fourth experiments, the piping initiated the
interaction between the weak zone and the dam body.

The numerical analyses were performed by using constant soil parameters such as
unit weights, void ratio, internal friction angle, oedometric modulus, permeability.

It is known that geotechnical parameters are affected by soil erosion resulting from
the piping. More realistic results can be obtained by performing numerical analyses with

time-dependent properties of geotechnical parameters.
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