
Received 1 January 2023, accepted 8 January 2023, date of publication 16 January 2023, date of current version 31 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237643

A Privacy-Preserving Scheme for Smart Grid
Using Trusted Execution Environment
METE AKGÜN1,2,3, ELIF USTUNDAG SOYKAN 4, (Member, IEEE),
AND GURKAN SOYKAN5, (Member, IEEE)
1Medical Data Privacy and Privacy-Preserving ML on Healthcare Data, Department of Computer Science, University of Tübingen, 72070 Tübingen, Germany
2Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72070 Tübingen, Germany
3Computer Engineering Department, Izmir Institute of Technology, 35430 Izmir, Türkiye
4Ericsson Product Security, 164 83 Stockholm, Sweden
5Energy Systems Engineering Department, Bahcesehir University, 34349 Istanbul, Türkiye

Corresponding author: Elif Ustundag Soykan (elif.ustundag.soykan@ericsson.com)

This work was supported by the Open Access Publishing Fund of the University of Tübingen.

ABSTRACT The increasing transformation from the legacy power grid to the smart grid brings new
opportunities and challenges to power system operations. Bidirectional communications between home-area
devices and the distribution system empower smart grid functionalities. More granular energy consumption
data flows through the grid and enables better smart grid applications. Thismay also lead to privacy violations
since the data can be used to infer the consumer’s residential behavior, so-called power signature. Energy
utilities mostly aggregate the data, especially if the data is shared with stakeholders for the management
of market operations. Although this is a privacy-friendly approach, recent works show that this does not
fully protect privacy. On the other hand, some applications, like nonintrusive load monitoring, require
disaggregated data. Hence, the challenging problem is to find an efficient way to facilitate smart grid
operations without sacrificing privacy. In this paper, we propose a privacy-preserving scheme that leverages
consumer privacywithout reducing accuracy for smart grid applications like loadmonitoring. In the proposed
scheme, we use a trusted execution environment (TEE) to protect the privacy of the data collected from smart
appliances (SAs). The scheme allows customer-oriented smart grid applications as the scheme does not use
regular aggregation methods but instead uses customer-oriented aggregation to provide privacy. Hence the
accuracy loss stemming from disaggregation is prevented. Our scheme protects the transferred consumption
data all the way from SAs to Utility so that possible false data injection attacks on the smart meter that
aims to deceive the energy request from the grid are also prevented. We conduct security and game-based
privacy analysis under the threat model and provide performance analysis of our implementation. Our results
demonstrate that the proposed method overperforms other privacy methods in terms of communication and
computation cost. The execution time of aggregation for 10,000 customers, each has 20 SAs is approximately
1 second. The decryption operations performed on the TEE have a linear complexity e.g., 172800 operations
take around 1 second while 1728000 operations take around 10 seconds. These results can scale up using
cloud or hyper-scalers for real-world applications as our scheme performs offline aggregation.

INDEX TERMS Smart grid, load monitoring, privacy, security, trusted execution environment.

I. INTRODUCTION
Smart grid is a paradigm shift as it enables digitalized,
dynamic, and the more intelligent electric grid. With the
advent of smart grid, the bi-directional flow of information
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is supported among appliances, devices, and the grid. Data-
driven operations like advanced metering and load moni-
toring in smart grid have become an inevitable feature as
they increase customer involvement in sustainable and clean
energy by making them prosumers who produce energy and
sell it back on the energy market. It is also essential for
the distribution system operators (DSO, will be referred as
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Utility from now on) which eager to have improved customer
satisfaction and balanced load.

In smart grid, there are a lot of data producing and transfer-
ring points, including the home area network. If the data is
not adequately protected on the communication line or where
it is stored, unauthorized access to data might end up with
privacy violations [1], [2]. Since the data can be linked with
the natural person using the metering identifiers, it reveals
daily behavior, physical presence, and socio-economic status
of the person. The data can be used as a valuable asset
for consumer profiling that will create competence between
energy companies. Therefore, it is crucial to build trust and
confidence in applying the proper protection mechanisms for
data protection.

From the regulative perspective, general data privacy is
covered by regulations e.g., in the EU by GDPR (General
Data Protection Regulation) [3] which stipulates among oth-
ers the responsibility for the energy data. On the other hand,
a domain-specific data protection framework is required for
smart grid data. To fulfill this need, the recast version of
the Energy Directive was drafted by the commission aim-
ing at the integration of the relevant GDPR provisions to
ensure customer data protection. Although these legislative
frameworks put the measures and principles to protect data,
actual solutions must be developed providing functionalities
to meet these provisions, which lead us to privacy-preserving
techniques, which is also pointed out by the ‘‘data protection
by design’’ in the Article 25 of the GDPR.

A. RELATED WORK
In the literature, privacy-preserving techniques for smart grid
are proposed by several researchers with different perspec-
tives [1], [4]. Many solutions have been proposed in the
literature to protect customer privacy in smart grids. We can
evaluate these in two categories. In the first category, the
intention is to provide privacy without changing the real
energy consumption data. For this purpose, anonymization,
aggregation, and obfuscation techniques are applied. In [5],
anonymization is provided using a trusted third party (TTP).
TTP sends the data received over the secure channel to the
Utility after making anonymization. However, TTP knows the
measurement data and data source. This problem was solved
in [6] by sending the measurement data in encrypted form
with pseudo identifiers. In [7], each smart meter first splits
the measurement data into shares and then sends each share to
a different concentrator. The concentrator replaces the actual
identifier with a pseudonym and sends the data to the Utility.
Thus, the concentrators do not learn the measurement data,
and the data source is hidden from the Utility. Bohli et al. [8]
use TTP as an aggregator. After TTP receives the datawith the
pseudonym from the secure channel, it performs summations
and sends them to the Utility. TTP can not learn the data
source. After the data is divided into shares, aggregation can
be performed on multiple TTPs [9]. Thus, data privacy is pro-
vided against TTPs, and the Utility has to make aggregation
to obtain total consumption.

There are several studies in which the measurement data
is included in the aggregation by homomorphic encryption
without disclosing it to other users. In [10], TTP realizes
the aggregation process on the encrypted measurement data
and sends the encrypted aggregation data to the Utility. The
Utility obtains the aggregated data by decrypting. In [11],
aggregation is performed in the Utility. Each smart meter
picks a random key, and the aggregator is selected randomly
from the group of smart meters in each round. The aggregated
key is sent to theUtilitymanager. Smart meters have to update
their keys after each aggregation round.

In [12], multi-party computation for data aggregation is
carried out using homomorphic encryption. However, the
computation and communication costs of this scheme are
very high. It is also vulnerable to data forgery attacks
due to the malleability property of homomorphic encryp-
tion. Mustafa et al. [13] apply selective data aggregation
with homomorphic encryption. Lattice-based homomorphic
encryption [14] is used for aggregation to be performed
between smart appliances [15], [16]. This provides data con-
fidentiality and customer privacy. Smart meters and base
stations control the authenticity of the received encrypted
messages before forwarding them to the control center. Many
more studies have been proposed to make smart grid systems
more secure and protect users’ privacy using cryptographic
systems like Paillier cryptosystem [17] and Lattice-based
cryptography. However, all of them suffer from high com-
putation and communication costs. In [18], the authors use
Intel SGX to prevent leakage of customers’ private data by
protecting aggregated data on the intermediate gateway and
the central control center. They provide secure key establish-
ment between parties using remote attestation functionality
of the SGX architecture. Their results are demonstrated for
three scenarios; data aggregation, dynamic pricing, and load
forecasting, and they present the trade-off between privacy
and accuracy.

In the second approach, privacy is provided by using
energy storage units and alternative energy sources and apply-
ing changes and irregularities in measurement sampling fre-
quency. In [19], alternative energy sources are used to conceal
the energy demand. The energy demanded and spent are
different from each other. The difference is covered by the
alternative energy source. Energy storage units are used in
conjunction with selective privacy protection algorithms [20].
These algorithms satisfy some consumption determined by
the user preference from the storage unit or simulate some
consumption to fill the storage unit. Danezis et al. [21] apply
differential privacy techniques [22] by adding noise to the
measurement data. Acs et al. [23] apply differential privacy
on smart metering data level where noise is added before
aggregation. In [24], Soykan et al. use differential privacy on
load forecasting application.

Several privacy proofing models have been proposed
to determine the privacy of smart metering systems.
Bohli et al. [8] define a privacy game to separate two smart
meter groups. In [25], a privacy model that measures
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information disclosure is proposed. In [26], the F-Test is
applied to show the privacy differences between normal and
noise-added consumption profiles. Buescher et al. [27] pro-
pose a privacy game to measure the privacy of a single load
profile contained in an aggregate. This privacy game tries to
distinguish the individual load profile from the aggregated
data. In this article, all privacy measurements were made
using real consumption data sets.

Readers are recommended to read surveys in [4], [28],
and [29] for more information on this topic.

B. MOTIVATION AND OUR CONTRIBUTIONS
There are several privacy preserving schemes proposing
homomorphic encryption techniques based on computation-
ally expensive operations which are too expensive to be real-
istically employed by resource constrained smart meters or
home appliances. Approaches that aim to mask the consump-
tion data via integrating energy storage add extra hardware
costs to Utility which are eventually passed on the consumer.
Solutions that offer privacy on the aggregated data can not
enable fine-grained data management; e.g., when a con-
sumer wants to delete specific appliance data from the Utility
databases, it is not possible to accurately extract and delete
the desired data since it is aggregated. Aggregating data at
the home area level also prevents accurate load management.
Trust models that is adopted by most of the studies assume
that the smart meter - smart appliance interface is trusted.
These approaches ignore the fact that the device is physically
accessible. Therefore, privacy protection starts from the smart
meters in end-to-end communication.

In this study, we propose a privacy preserving solution for
smart grid applications like load profiling. Main contribution
of the study are as follows:

• A new customer-oriented aggregation method is pro-
posed. The method allows the aggregation over the
selected customer within the selected time frame. Con-
sumption data is not aggregated at home area or sub-
station level, rather the data is aggregated for a specific
customer on the Utility site when it is required for load
monitoring, billing or other types of added value services
using the TEE e.g., providing information about user’s
SA level consumption. As privacy protection starts in
smart appliances, protected consumption data is con-
veyed through the smart grid connection without any
interference and stored in the encrypted database. Con-
sumption data can not be retrieved as plaintext by any
parties since decryption operation can only be performed
by TEE.

• A novel key initialization mechanism is provided so that
SA credentials can not be inferred during the initializa-
tion process by any party except the trusted TEE.

• The scheme leverages the accuracy of smart grid appli-
cations that use load disaggregation since the data is
aggregated on the TEE, e.g., the Utility can program

TEE to perform the required tasks without losing any
accuracy resulting from disaggregation.

• The scheme enables the Utility to fulfill the data privacy
requirements when households request data rights like
deletion and give consumer’s better control over their
data.

The paper continues as follows; we explain the system
model and requirements in Section II.We provide the solution
architecture in Section III and security and privacy analysis in
Section IV. Performance evaluation of the solution is given in
Section V-A. Then we conclude the paper in Section VI.

II. SYSTEM MODEL AND REQUIREMENTS
The proposed system model provides services to measure
and analyze energy consumption data on the smart grid with
the aim of remote management of the metering, balanced
power usage, and running diagnostics for a healthy grid and
customer satisfaction. The key components in the system
are DistributionManagement System (DMS), Computational
Service Provider (CSP), Short Message Service (SMS) Gate-
way, Smart Meter (SM), and Smart Appliances (SAs). The
relation between actors are depicted in Figure 1. A brief
description of their roles is given as such:

• Utility: As stated in [30], ‘‘a natural or legal person
responsible for operating, ensuring the maintenance of
and, if necessary, developing the distribution system in
a given area and, where applicable, its interconnections
with other systems and for ensuring the long-term ability
of the system to meet reasonable demands for the distri-
bution of electricity.’’

• DMS: A system that provides services to monitor and
control a distribution grid from a centralized center.

• CSP: A system that provides computational services to
the DMS. It comprises a Trusted Execution Environment
which is an isolated and encrypted computation platform
and a database to store encrypted consumption data.

• SM: Utility’s metering end device at customer’s
premises that has bidirectional communication function-
ality.

• SA: It is a connected smart device (dishwasher, ventila-
tion, refrigerator, etc.) that has bidirectional communi-
cation capability with smart meter.

• SMS Gateway: Provides SMS services to the Utility to
communicate with the Customer.

A. PRIVACY REQUIREMENTS
In this section, we would like to highlight the privacy
concerns of smart grids. Smart grid systems are deemed
multi-directional networks for communications and energy
transfer, allowing electricity service providers, consumers,
or third-party energy management programs to access con-
sumption data. In this context, smart grid systems with a high
frequency of data collection can generate large amounts of
information. Since this data contains sensitive information,
utilities must ensure it is stored in secure, disaster-proof
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FIGURE 1. High level system view of distribution grid with its actors and their interactions.

facilities and have business continuity and contingency plans.
However, even if the data is kept secure, analyzing customers’
consumption data can reveal detailed information about their
private lives, such as their time spent at home, work sched-
ule, vacations, specific appliance usage, and habits, known
as ‘‘consumer profiling’’. This information is valuable to
third parties, such as insurance companies. On the other
hand, misuse of the information may lead to targeted home
invasions, unwanted surveillance, or tracking threats and put
individuals’ privacy at risk.

The power data flowing in the grid is required for several
reasons but can be classified mainly into billing and opera-
tional purposes. From the operational perspective, especially
for load management, the granularity of the data is important
for the quality of grid operations. A high frequency of data
gathering paves the way to the accurate monitoring of the
grid, like detection of power failures, balancing the demand,
and reacting to sudden changes in consumption. This also
enables Utilities to provide services to consumers to optimize
their energy consumption and offer better tariffs. Although
these functions are crucial for the health of the grid, they
also pose a risk to the privacy of the consumer and may
lead to unwanted malicious events. Nonintrusive load mon-
itoring (NILM), [31], [32], is a methodology to interpret
aggregated consumption data so that distinguishing loads of
the individual appliances is possible. NILM allows extracting
when the appliances are on/off. In other words, one can say
that when the residents use the kettle, have breakfast or if
they are at home or on vacation. It is easy to guess that
this information can be of use for thieves and other people
aiming to harm. Most innocently, marketing activities can
be performed. Therefore, protecting residential data from
untrusted entities is a must.

Taking the above-mentioned considerations into account,
we elaborate the privacy requirements into four categories as
follows:

Linkability: An adversary should not be able to connect
separate consumption data without knowing the identity of
the customer.

Identifiability: An adversary should not be able to identify
a customer’s behaviour from consumption data.

Disclosure of Information: An adversary should not be able
to learn the consumption data of a specific customer.

Compliance: The handling of consumption data should
comply with legislation, regulation, or data protection policy.

B. SECURITY REQUIREMENTS
Although we mainly focus on privacy needs in the scope of
this study, there are obvious security requirements to sustain
a reliable system. We briefly give these requirements and our
position to meet them as such:

End-to-end confidentiality: The data-in-transit over the
system should be protected from unauthorized access with
proper encryption techniques. Since each component in
the smart grid communicates with different standards, like
DLSM/COSEM or IEC 61334 between the smart meter and
the Utility, Zigbee for SAs, there is no unique network level
protection mechanism that can apply for all. Besides that,
consumption data should not be disclosed in cleartext to
intermediary data concentrators. Having these objectives in
mind, we designed our security scheme on an end-to-end
basis such that encryption is performed on the SAs and only
the DMS can use the data. Our scheme does not rely on
network layer protections, but provides confidentiality at the
application level.

Integrity: The data-in-transit over the system should be
protected from unauthorized changes. This means that the
security scheme should provide a detection mechanism if any
unwanted changes occur. We provide this protection implic-
itly with the authenticated encryption scheme so that we do
not need to put an additional integrity mechanism that will
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bring extra computational and communication costs to the
system.

False Data Injection Attacks: The lack of end-to-end con-
fidentiality and integrity causes the system to be vulnerable
to false data injection attacks. False data injection attacks can
be classified as (i) False data injection attacks against grid
system state estimation and (ii) False data injection attacks
against energy distribution. In the first category, the adversary
targets the operational health of the grid to create instabilities
by injecting bad data in both alternating and direct current
state estimations. In this study, we do not focus on the state
estimation data collected for operational purposes; rather
focus on the energy consumption data. On the other hand, pre-
venting and detecting these malformed activities is an active
research area [33]. In the second category of attacks, also
called energy-request deceiving attacks [34], the adversary
compromises smart meters and injects a modified demand
request. In the case of several smart meters compromised
and controlled by the attacker, the Utility may be misled into
making awrong decision on the requested demand of the area.
In our solution, compromising smart meters does not give any
advantage to the attacker as the data is already protectedwhile
it is being conveyed over the smart meters. Hence our solution
prevents energy-request deceiving attacks caused by forging
the demand request of a smart meter by providing end-to-end
confidentiality and integrity.

III. THE PROPOSED SOLUTION
In the proposed solution, consumption data is encrypted in
the household smart appliances and sent to the encrypted
database through the Utility’s network. The encrypted
database’s keys are protected by the TEE. Hence, during
the reading process, no intermediary device is aware of the
actual content since only the intended parties can access the
metering data. The solution does not require any change on
the smart meters as meters do not play a part in the encryption
process. Therefore, the adoption of the solution does not
bring any extra cost to Utility as it does not require meter
replacement.

The cryptographic architecture of the solution uses asym-
metric, symmetric algorithms and keyed hash function for
key distribution. A symmetric block cipher algorithm is used
for encryption in authenticated encryption mode so that any
additional integrity mechanism is not needed. The whole
process comprises key distribution, consumption data read-
ing, and consumption data usage protocols. Next, preliminary
information about the cryptographic building blocks that are
used in the protocols is given.

A. PRELIMINARIES
Definitions of asymmetric encryption function, keyed hash
function, and authenticated encryption scheme (AEAD) [35]
based on a symmetric block cipher are given as follow:
Definition 1: EPUB() is an asymmetric function that

encrypts a message M under the public key PK and decrypts
a ciphertext C under the private key PrK.

Definition 2: H() is a one-way keyed hash function that is
based on a cryptographic hash function. H() takes two inputs
(Source Key (SK), Context specific data (CTX)) and produces
one output (Derived key (K)), K = H (SK ,CTX )
Definition 3: AEAD provides both confidentiality and

authenticity of the plaintext. It consists of one authenticated
encryption and one inverse function of encryption which is
authenticated decryption function.
Inputs:

• Encryption key, K of size k bits
• Data subject to encryption, called plaintext P,
• Initialization vector, IV,
• Additional authentication data, A, optional

Outputs: Encrypted text, C, and Authentication tag, T.
Then the AEAD function is defined as:

Ẽ(K ,P, IV ,A) = C||T (C,A, IV )

where C = E(K ,P, IV )

B. THREAT MODEL
Here, we give the adversarial assumptions and considerations
we made while designing the security posture of our system.

We consider a malicious adversary that controls the full
software stack on CSP, except the code inside TEE. This
includes all security threats from the system administrator
controlling all systems, including the operating system and
database server. The adversary can make any changes to data
on disk and data over the network. The adversary can also
make arbitrary numbers of queries to TEE.

We assume that TEE is trusted. This means the adversary
can not extract any secrets inside TEE. The code inside
TEE is assumed to be trusted. Note that TEEs may subject
to side-channel attacks [36], [37], [38], [39] but this is out
of our scope as we rely on TEE vendors’ security claims.
We consider that being trusted against these attacks is still
an open problem. We consider that TEE has the ability to
communicate securely over TLS, which is the case for Intel
SGX. So all interactions with TEE will be carried out over
TLS. We also assume that SMs and SAs are malicious. The
adversary corrupting a SA can extract its secrets and use
them to get access to previous consumption data of the SA.
In this case, the adversary has also to corrupt CSP or make
collaboration with the administrator of the CSP, that is a rare
situation to happen. We assume that DMS is trusted which
means that the DMS does not send crafted queries to CSP to
abuse the information provided by TEE.

The home area network is assumed to be a trusted and
personal space. So we assume the customer premise is pro-
tected from external actors. Moreover, we expect that the
households do not violate or launch attacks on their own
appliances to manipulate the consumption data. In case the
households act malicious, they need to obtain the keys of the
SA to modify the information on the SA. This issue can be
resolved by using tamper-proof hardware, but the costs of
SAs will increase. The prevention of this attack is not in the
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scope of this paper because it does not leak any privacy related
information about the household.

We also do not focus on possible faults or vulnerabilities
that may exist on smart appliances either by design or via their
external interfaces e.g., if there are weak web or mobile appli-
cations for appliance management or monitoring. We assume
the mobile application (provisioning app) used for SA key
provisioning is served and maintained securely and commu-
nicates with CSP over a secure TLS channel. In addition,
our scheme does not try to solve all cyber-security issues
that may occur in the smart grid, e.g., a threat to SCADA
system or False data injection attacks against power system
state estimation. Our solution guarantees that the privacy,
confidentiality, and integrity of the consumption data are
protected, hence implicitly protecting against energy-request
deceiving attacks.

C. KEY DISTRIBUTION
For setting up a secure system, the first step is to generate
and distribute the keying material to all related devices. In the
proposed architecture, Utility provides a mobile application
for SA provisioning, which we call provisioning app from
now on. Provisioning app pave the way for the key initial-
ization and the re-keying containing the public key of TEE
(PK ). It only takes part in the SA initialization process, is not
involved data reading or data usage processes.

On the Utility side, CSP, which is a component that inter-
faces with TEE and encrypted database, can not access any
credential like the keys or one time password, OTP. Security
functions performed by TEE and served to CSP. We assume
that customers are registered to the Utility with their mobile
phone number, PN . The customer has a unique identifier
given by the Utility, which we call CustomerID, and has
the ability to receive SMS messages via mobile phone. CSP
is governed by Utility. Customer’s mobile phone number
and CustomerID is known by the CSP. We also assume that
each SA has a unique identifier SAID that is given during
the appliance manufacturing phase, e.g., a unique hardware
identifier.

The whole key distribution comprises three phases, indi-
cated as P1, P2, and P3. In the first phase, P1, the customer
initiates the process over provisioning app when an SA joins
the system. Note that the key distribution flow described
below should be performed for each SA in the home.

P1.1 Customer enters his/her mobile phone number (PN )
and a verification text (VT ) of choice via provisioning
app interface.

P1.2 Provisioning app encrypts the customer’s PN and the
VT with TEE’s public key PK . Then it sends the
ciphertext C to the CSP over TLS.
C = EPUB(PK ,PN ||VT )

P1.3 CSP conveys the C to the TEE, along with customer
phone number, PN .

P1.4 Since the private key PrK is only known by TEE,
TEE decrypts the ciphertext and extract mobile phone

number and verification text. Then TEE compares the
extracted PN with the one received from the CSP.
If these are not equal, TEE aborts the process.

P1.5 TEE generates a short-lived OTP, concatenates with
VT , adds a timestamp, T , then sends to SMSGateway
over secure TLS connection to initiate SMS submis-
sion.

P1.6 SMS gateway submits the SMS to the Customer.
P1.7 After receiving the SMS, Customer checks if the VT

is correct and the message is timely.
P1.8 Then customer enters the received OTP, VT , and the

given CustomerID to SA on the SA’s management
interface.

P1.9 Steps above are performed for each SA so that each
SA is initialized with an OTP.

At this point, SA is initialized with the short-lived OTP
via its management interface so that it can receive keying
material for future secure communications. TEE has the
ability to communicate securely over TLS with the SMS
Gateway so that neither CSP nor DMS can interfere with
OTP. After SMS Gateway is invoked by the TEE, OTP
is conveyed via SMS message over the mobile operator’s
network.

In the second phase, P2, TEE proceeds with the key distri-
bution as follows:

P2.1 TEE computes a distribution key for the customer:
KDist = H (OTP,CustomerID).

P2.2 TEE generates a random number using its True Ran-
dom Number Generator for the SA which will be the
SA’s channel encryption key, CKSA.

P2.3 TEE encrypts the CKSA along with the CustomerID
using the KDist and computes the encrypted channel
key ECK .
ECKSA = AEAD(KDist , (CKSA||CustomerID)).

P2.4 TEE sends ECKSA to CSP and CSP dispatches it to
each SA for the associated CustomerID.

P2.5 Steps above are performed for each SA so that each
SA can receive its own ECKSA.

In the third phase, P3, after receiving its ECKSA, each SA
performs the following operations:

P3.1 SA computes the distribution key by using its
CustomerID and the OTP that is entered from the
management interface during initialization:
KDist = H (OTP,CustomerID)

P3.2 SA decrypts the ECKSA using the evaluated KDist ,
checks if the CustomerID matches. If successful,
extracts the CKSA for further communications

P3.3 SA encrypts its SAID and CustomerID with the CKSA
sends to the TEE.
ESAID = AEAD(CKSA, (SAID||CustomerID)).

P3.4 In this state, each SA has its own channel encryption
key CKSA. As a last confirmation step, TEE decrypts
the ESAID extracts the SAID then binds the CKSA
with the SAID and CustomerID values and updates its
registry with these values.
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FIGURE 2. Key distribution flow including three phases.

D. CONSUMPTION DATA READING
The consumption data, CD, measurement proceeds as
follows:
1) Smart meter sends a reading request to each SA
2) Each SA encrypts its consumption data using theirCKSA

with an authenticated symmetric encryptionmechanism.

ECDSA = AEAD(CKSA,CD ||SAID
×||timestamp||CustomerID)

3) The encrypted consumption data ECDSA, SAID,
timestamp, and CustomerID is sent to the smart meter
in the payload of the read response.

4) Smart meter transfers the received payload to the CSP
so that CSP stores ECDSA, SAID, and timestamp into
an encrypted database for the customer identified by
CustomerID.

E. CONSUMPTION DATA USAGE
When DMS needs to do an operation like billing or load
profile monitoring purposes, it triggers the CSP and starts
the process. Then DMS sends a query to TEE along with
the CustomerID of the Customer in question over a protected

tunnel. DMS must specify a time frame for the request. After
receiving the trigger:

1) CSP receives the query from TEE that was sent by DMS.
2) CSP queries the required information from the

encrypted database with the CustomerID for the given
time frame in order to retrieve the encrypted consump-
tion data and pulls all ECDSA’s and SAID’s for the
CustomerID.

3) CSP sends ECDSA’s and SAID’s to the TEE since only
the TEE knows the CKSA.

4) TEE decrypts ECDSA’s, then compares the information
with the query received from DMS to verify whether
CSP provided the expected database record. If success-
ful, TEE aggregates the results and send the aggregated
data to the DMS.

5) DMS then can use aggregated data for the required
processes.

Since the database is encrypted at the record level, data-
at-rest is protected, so customer data will not be leaked
in case of unauthorized physical access. Additionally, TEE
provides data-in-use protection functionality; therefore, data
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FIGURE 3. Consumption data reading.

FIGURE 4. Consumption data usage.

in the memory is protected from vulnerabilities while being
processed.

IV. SECURITY AND PRIVACY ANALYSIS
In this section, we give the security and privacy analysis of our
protocol. We analyze the possibility of an adversary learning
a single of consumption data by monitoring the smart grid
network and tampering with the TEE. We investigate the
privacy of our protocol using an indistinguishability notion by

defining two privacy games in which two consumption data
that are known to the adversary are trying to be distinguished
by the adversary.

A. SECURITY ANALYSIS
Lemma 1: Let A be an adversary. The advantage of A of

obtaining the consumption data without tampering with the
TEE is negligible.
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Proof:We assume that there is an adversaryA who gets
the consumption data without tampering with the TEE. Each
SA encrypts the consumption data and sends it to the CSP.
To obtain consumption data, A must decrypt the encrypted
message. Doing this operation without knowing the encryp-
tion key contradicts with the security of the encryption algo-
rithm. Security of the encryption algorithm as follows:

Consumption data CD is encyrpted with AEAD, imple-
mented as AES-GCM, under keyCKSA that is shared between
SA and TEE. This encryption is IND-CCA2 (INDistinguisha-
bility under adaptive Chosen Ciphertext Attack) [40] and any
p.p.t (probabilistic polynomial-time) adversary cannot break
the confidentiality without knowing the CKSA.
SAs generally do not supply tamper-proof design. A can

obtain the encryption key by tampering with these devices.
On the other hand, SAs are located in the house, which is
a private area for consumers. For this reason, such attacks
against these devices are not very feasible. The proposed
system provides security for all areas outside the home, which
we have considered as personal space.
Lemma 2: Let A be an adversary. The advantage of A of

forging encrypted consumption data by breaking the cipher-
text integrity is negligible.

Proof: AEAD provides ciphertext integrity (CI), mean-
ing that the attacker cannot craft new ciphertexts with encryp-
tion function E that can be successfully decrypted with
decryption function D using the key CKSA, if the Adv
is negligible under encryption oracle Ek (.) for every p.p.t
adversary A.

AdvCI (A, E) def
= P

[
k

R
← K ; c← AEk (.) : Dk (c) ̸=⊥

]
≤ ϵ

Meaning that A cannot find a valid decryption with c result-
ing from oracle using random k [40]. The ciphertext integrity
guarantees that the ECDSA originated from SA. If it is forged,
it will be detected during decryption within the TEE.
Lemma 3: Let A be an adversary. The advantage of A

of acting man-in-the-middle and re-sending the encrypted
consumption data that is obtained from previous sessions is
negligible.

Proof: To prevent replay attacks, the encrypted data
is supported by a timestamp so that the TEE can validate
when the encryption is performed. The timestamp is integrity
protected as it is included the payload of the ECDSA. Hence
the security of the session freshness relies on the Lemma 1
and 2, which are proven to be secure. So if any previously
obtained session content is used by the adversary to lunch
a replay attack on TEE to reveal sensitive information, TEE
will first decrypt and verify the integrity of the content. If it
is successfully verified, then TEE will check the decrypted
content, detect if the timestamp is outdated, and generate an
alarm.
Lemma 4: Let A be an adversary. The advantage of A of

obtaining the consumption data by tampering with the TEE
is negligible.

Proof: We assume that there is an adversary A who
gets the consumption data by tampering with the TEE. When
DMS requires consumption data for any purpose, all com-
putations are secured by TEE. All computations are running
inside TEE, and any data used in the computations do not
leave TEE. In order to get any consumption data, A has to
corrupt TEE, which contradicts the security of TEE.

Intel’s Software Guard Extensions (SGX) is used as
TEE [41], which consists of a set of hardware and software
architectures and provides sensitive data analysis in a pro-
tected area [42].
Lemma 5: Let A be an adversary. The advantage of A of

obtaining the consumption data by intercepting the SMS is
negligible.

Proof:We assume that there is an adversaryA who gets
the consumption data by intercepting the SMS. When the
adversary obtains the short-live OTP, VT , and T from the
SMS content, it cannot use this information to get consump-
tion data without physically accessing and tampering with the
SA. In order to get any consumption data,A has to corrupt SA
and extract CKSA. This contradicts our assumption that SAs
are located in the house, which is a private area for consumers
as explained in Lemma 1.
Lemma 6: Let A be an adversary. The advantage of A of

obtaining the CKSA by breaking the key distribution flow is
negligible.

Proof: Adversary A cannot obtain the SA key CKSA
without breaking the security of TEE, which is proven in
Lemma 4. The adversary may try to analyze ECKSA to extract
CKSA, butA cannot win as proven in Lemma 1 and 2 without
knowing KDist . The adversary then may try to obtain KDist ,
but this contradicts with Lemma 5.

B. PRIVACY ANALYSIS
Many solutions based on the aggregation method have been
proposed to protect customer privacy. In order to analyze
the privacy aspects of these solutions, game-based defini-
tions are very convenient and widely used in the literature.
Two privacy games have been proposed to examine the
aggregation-based methods in [8] and [27]. In these models,
privacy is modeled based on the difficulty of distinguishing
two load profiles known to the attacker in the aggregated
data.

The first privacy game for smart metering [8] is depicted
in Figure 5. The game defines the experiment between the
adversary and the challenger and corresponds to the Linka-
bility requirement given in Section II-A, as follows:

1) The adversary and the challenger agree on the consump-
tion data generator Cgen.

2) The adversary is receiving two consumption scenario
c0 = (e0ij) and c1 = (e1ij) from Cgen. These scenarios
is sent to the challenger.

3) The challenger draws a random bit r ∈ {0, 1} and sends
m← ESA(cr ) to the adversary.
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FIGURE 5. Privacy Game I.

4) The adversary computes decision function fdec(m, c0, c1)
and sends a bit g ∈ {0, 1} which shows the encrypted
value is belonged to c0 or c1.

5) The challenger outputs true if g = r , otherwise false.

In the second privacy game [27] that is shown in Figure 6,
the adversary tries to decide which consumption data is used
in the calculation of analysis function fana. The adversary
knows the result of the analysis. In this game, the adversary,
whose power is not fully known, must define measurement
data from a result of the aggregate function, which takes mul-
tiple consumption data as input. The purpose of the challenger
is to provide privacy by using the aggregation function. The
advantage of the adversary over random guessing is used as
a privacy measure, and it depends on the followings:

• The background knowledge of the adversary (past load
profiles of households, past billing information, weather
conditions and some auxiliary information about house-
hold’s energy consumption) [27].

• The distribution of energy consumption data used in an
aggregate.

• The distinction level of two energy consumption chosen
by the adversary.

• The size of aggregation.

Theorem 1: The proposed solution provides privacy for
each individual consumer if the TEE is a tamper-proof hard-
ware.

Proof:We first model the privacy of our solution based
on PrivacyGame I. An adversaryA chooses two consumption
scenarios c0 = (e0ij) and c1 = (e1ij) where

∑s
i=1 e

0
ij =∑s

i=1 e
1
ij,

∑t
j=1 e

0
ij =

∑t
j=1 e

1
ij, t is the number of time inter-

vals and s is the number of SAs. Assume thatA can eavesdrop
on the communication between SAs and TEE. In this case, the
challenger C gives all encrypted consumption data ESA(erij)
in cr to A. The protocol is secure because all erij values are
encrypted with secure block cipher (Lemma 1). In the second
case, assume that the adversary can not eavesdrop on the
communication between SAs and TEE. The challenger gives

FIGURE 6. Privacy Game II.

∑t
i=1 e

r
ij and

∑s
i=1 e

r
ij to A. It is oblivious that the adversary

can not distinguish c0 and c1 by using
∑t

i=1 e
r
ij and

∑s
i=1 e

r
ij.

In the third case, A may try to corrupt the TEE to obtain the
plain-text value of m. However, A can not obtain any data
from the device TEE (Lemma 4).

The Utility eventually uses the consumption data stored in
the encrypted database for different purposes. An adversary
A at the Utility may try to infer information from the analysis
result. To demonstrate this case, we model the privacy of our
solution based on Privacy Game II, which refers to Identifia-
bility requirement given in Section II-A. In [27], it was shown
that for an aggregate of size 20, A identifies an energy con-
sumption with 50% probability. This is an average advantage
for all consumption. The advantage of the A having some
external information is higher. In our solution, we can control
the distribution of energy consumption in aggregate and the
size of the aggregate and bring some restrictions on them. The
queries that our system support is in the following form:
SELECT f (∗) FROM Consumption_Data

WHERE (AP_ID IN (A1,A2, . . . ,AN )
OR SM_ID IN (S1,2 , . . . , SN )
OR RG_ID IN (R1,R2, . . . ,RN ))
AND DT > dt1 AND DT ≤ dt2

We express a sample query in SQL format. f () could be
any type of aggregate function predetermined by the system.
f () cannot be chosen or controlled by the user. Consumption
data can be searched according to appliance id, smart meter
id or a specific region that is denoted in the query as AP_ID,
SM_ID, RG_ID respectively, and also for a particular time
interval. Different SQL queries can be derived depending on
the need.

From the privacy point of view, the most critical aspect
regarding queries is the size of the aggregate. As the num-
ber of data contributing to the aggregate function and the
time interval increase, the level of privacy, which defines the
degree of indistinguishability of customer behavior, will also
increase. As an example, suppose that there are five houses in
an area, and the adversary, who is navigating around the area,
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knows that only one house consumes in a given time interval.
The adversary can easily explore from the query that the result
will only be related to the data belonging to this house by just
investigating the query. To avoid this, more consumption data
should be used in the queries than the adversary can observe.

In our scheme, we assume that the DMS is a trusted entity.
On the other hand, if DMS is considered an honest-but-
curious entity, it can perform some analysis on the query
results, e.g., by doing a differential analysis of two query
results, it can infer the consumption data for a chosen time
interval of queries. In order to prevent such cases, TEE can
implement a differential privacy method before revealing the
aggregated data to the DMS. The other countermeasures can
restrict the queries so that only a specified set of queries
can be submitted by DMS. The submitted query can then be
validated by the TEE to check if the query is a member of this
set before executing.

In our solution, we have taken privacy by design principle
into account so that GDPR requirements can easily be applied
and the Compliance requirement given in Section II-A can be
met. Appliance and smart meter level data can be used for any
kind of analysis within the scope of the consent to be taken
from the customer. The customer can give these permissions
within the data included in the specified time period. Since
our solution protects the data without aggregation, it will
be straightforward to delete these data at the request of the
customer, which is not possible on the systems working with
aggregated data.

V. PERFORMANCE EVALUATION
In this section, we analyze the performance of our scheme in
terms of computation and communication overhead. In order
to better explain the evaluation results, we highlight the dif-
ferences, given in Table 1 between our aggregation solution
and the most adapted aggregation methods in the literature.

Most of the studies in the related work section employ
aggregation strategies for privacy protection either on SM or
using a dedicated aggregator. The aggregator can behave as a
mediator or trusted third party to collect the data and provide
security functionalities depending on the scheme. Having an
aggregator in the middle of the communication puts an extra
overhead. Moreover, the data has to be sent in bigger chunks
since it is aggregated. In our solution, we do not perform
aggregation during the data reading, so we do not have an
additional actor in our approach. Instead, we transfer each
measurement to the Utility in an encrypted format and let the
Utility perform the aggregationwhenever needed. In our case,
the number of transfers will be more, but the data size sent
over the network will be much less.

In terms of the computation cost of the data reading, the
studies that use aggregation need to encrypt the data on the
SA or the SM using homomorphic encryption techniques
before it arrives at the aggregator. Then aggregator performs
the aggregation on the encrypted data using homomorphic
encryption. When the Utility receives the aggregated data,
it decrypts them. In our scheme, we encrypt the data on the

SA, but we do not use homomorphic encryption to aggregate
the data; rather, we use a symmetric encryption technique that
is less costly than homomorphic encryption. The encrypted
data is stored on the database after being received by the
Utility and aggregated based on the need as a batch process.
Hence aggregation does not affect the data reading cost.

Lastly, we compare the number of aggregations. Since
aggregation is part of the data reading process, it must be
done for every data reading round for studies that rely on
aggregation for privacy protection. In our study, aggregation
functionality is agnostic from data reading. This gives Utili-
ties a lot of flexibility, increased accuracy in operations, and
performance gain. As the data is in disaggregated format,
they can perform aggregation for billing and load forecasting
or directly use the disaggregated data for load monitoring
purposes. Since the aggregation is not part of the data reading,
the computation cost can be optimized using back-end hyper-
scalers if needed.

In the following sections, we give some of the
implementation results. We have implemented the TEE
functionality using Azure confidential computing service,
Standard_DC2s_v2 instance. The machine has a 3.7 GHz
Intel Xeon E-2288G processor with SGX technology, with
two physical cores, and 8 GB Ram. The platform runs
Ubuntu 18.04 LTS. We use the 2019-04-2 Intel SGX Linux
2.5 Release, and the Enclave Page Cache is set to the max-
imum available size of 128 MB. We implemented a SA
simulator on the same Linux machine for SA measurement
encryption. We benefit from publicly available individual
household electric power consumption data set provided
by UCI repository [43], which includes minutely measured
consumption values over four years period.

A. DATA READING
First, we focus on the performance of the data reading phase.
We compare the communication and computation cost of
our scheme’s data reading phase with two previous schemes.
Abdallah et al.’s scheme [15] and Qian et al.’s scheme [16]
use lattice-based homomorphic encryption (HE), and aggre-
gation of encrypted consumption data is done during their
data reading phase with homomorphic operations. Homo-
morphic operations are costly both in terms of computation
and communication due to their intrinsic properties compared
with symmetric encryption schemes. The reasons behind this
are; (i) the cost of the operations, including bootstrapping
step used to reduce the noises in the ciphertext, and (ii)
the big increase in the size of the resulting ciphertext after
encryption. These are the biggest limitations for HE when it
comes to time-critical applications, and reducing them is an
active research area [44]. Thus, as shown in Figure 7 and 8,
our protocol outperforms Abdallah et al.’s scheme and Qian
et al.’s scheme in terms of both communication and computa-
tion performance in the data reading phasewith the increasing
number of customers. The main reason for this difference
is that our scheme uses symmetric encryption and does not
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TABLE 1. Cost comparison for different aggregation models.

FIGURE 7. Comparison of the data reading phase of our scheme with
those of previous protocols in terms of communication cost.

perform aggregation on consumption data during the data
reading. The size of eachmeasurement data encrypted on SAs
fits into 128 bits, corresponding to one block of ciphertext,
128 bits, when we use the AES-GCM as AEAD scheme,
while the ciphertext is around 72k bits in other schemes due to
HE operations. This means that the communication overhead
provided by ciphertext is very low in our approach, as seen
in Figure 8. For computation overhead, we have evaluated
the real-time computation cost for data reading, which is
the sum HE cost, HE aggregation cost, and decryption cost
for the related studies, and the total symmetric encryption
cost is done by SAs for our study. The aggregation cost is
not considered in our case as it is not part of the reading
process but rather done offline when required. The results
demonstrate that the performance of our approach surpasses
due to the fast operation of AES-GCM, as shown in Figure 7.

B. DATA AGGREGATION
In this section, we present the execution times of aggregation
that is performed on encrypted consumption data stored in
the Utility’s database. In our experiment, we assume that each
customer has 20 SAs. Figure 9 shows that the execution time
of aggregation scales linearly with the number of customers.

FIGURE 8. Comparison of the data reading phase of our scheme with
those of previous protocols in terms of computation cost.

The execution time of aggregation for 10,000 customers, each
has 20 SAs is approximately 1 second. These results show the
efficiency and practicality of our scheme. As we pointed out
before, aggregation can be done anytime after the data reading
phase in our scheme. This means aggregation is not part of the
data reading phase. Even if we sum the execution times of the
data reading phase and aggregation, both take approximately
2 seconds in total. This result shows how efficient our scheme
is in terms of computation time compared to homomorphic
encryption-based schemes.

C. DATA AGGREGATION FOR BILLING
In the billing application, DMS sends a query to TEE. In this
experiment, DMS wants to know the total energy consump-
tion of a specific user in a given time interval. In our exper-
iments, we assume that the user has four SAs in the home.
Each SA sends measurements periodically. Measurements
periods in our experiments are minute, 15 min, or hour.
We specify the time interval as 30 days, considering the
billing period. For example, TEE needs to aggregate 172,800
entries in total for four SAs from one consumer, leading
to 172,800 decryption and addition operations as stated in
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FIGURE 9. Execution times of performing aggregation on consumption
data.

TABLE 2. Execution times of computing total energy consumption for a
given time interval for different MPs with the increasing NoC (Time
interval is 30 days and each customer has 4 SAs.).

Equation 1.

NoE = NoSA× NoC × 30× 24× 60
1
MP

(1)

where
NoE = Number of entries in the encrypted database within

a month
NoSA = Number of SAs
NoC = Number of consumers
MP = Measurement period e.g., 1 for minutely, 15 for

quarterly, 60 for hourly measurements
As we can see from our performance evaluation given

in Figure 10, the run-time of the billing application scales
linearly with the NoE by changing NoC. We demonstrate
the run-time complexity in the worst-case scenario in terms
of memory utilization such that we have performed a single
TEE operation for each time, which can be optimized using
batch processing considering the SGX enclave page cache.
In Table 2 we give the exact outcome of our experiments.
The minimum number of operations is 2880 for 1 NoC,
for hourly measurements, and the maximum is 172,800,000
for 10000 NoC for minutely measurements. The measure-
ment period can be selected by theUtility based on the desired
load profiling granularity. In our experiments, we used a
single SGX platform. It is possible to increase throughput by
running queries in parallel on several SGX platforms, or using
hyper-scalers.

FIGURE 10. Execution times of computing total energy consumption for a
given time interval complexity for different MPs with the increasing NoC
(Time interval is 30 days and each customer has 4 SAs.).

VI. CONCLUSION
In this study, we proposed a privacy-preserving method
to protect consumer data without compromising smart
grid functionalities. We provided a novel customer-oriented
aggregation scheme using Trusted Execution Environments.
In the proposed scheme, customer data is protected all the
way from the SAs through the Utility’s trusted server, CSP.
To enable this, we proposed a novel key initialization scheme.
The encrypted database preserves the encrypted customer
data coming from the SAs and serves the CSP when needed
by DMS. TEE acts as a trusted key store for the cryptographic
credentials of the SAs and performs security functions during
consumer data usage for operational purposes like load pro-
filing.

We elaborated on the fundamental security and privacy
requirements and specific requirements to mitigate false data
injection attacks. We presented security, privacy, and perfor-
mance analysis to show that the proposed scheme is secure
and viable. We also indicated how we addressed the identi-
fied requirements. We performed a privacy analysis by using
game-based privacy definitions to formalize the methodol-
ogy. The analysis results in some remarks to the distribution
system operators regarding aggregation size, which affects
the level of privacy. One of the advantages of the scheme
is that it does not affect the smart meter deployment models
of Utilities. Since we adopted end-to-end confidentiality in
our privacy model, no functional change is required on smart
meters or other intermediary devices.

Performance analysis shows the runtime scales linearly
with the number of decryption operations and can scale
up using cloud or hyper-scalers for real-world applications.
We demonstrated that our method outperforms other pri-
vacy methods that use homomorphic encryption in terms of
communication and computation cost. The scheme paves the
way for industry acceptance as smart product designs will
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reach more mature states, and companies will embrace more
privacy-aware techniques. From the legal point of view, the
scheme meets the legally binding data privacy requirements,
such as the right to erasure, as we do not use aggregation.
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