

Metal-Yalıtkan Geçiş Özellikli VO₂ ile Gate Oksitli ve Gate Oksitsiz Alan Etkili Aygıt

Program Kodu: 1001

Proje No: 113F349

Proje Yürütücüsü: Doç. Dr. Gülnur AYGÜN

<u>Araştırmacılar:</u> Yrd. Doç. Dr. Enver TARHAN

> TEMMUZ 2017 İZMİR

ÖNSÖZ

Bu projede yüksek kalitede metal-yalıtkan geçişi gösteren vanadyum dioksit (VO₂) ince filmler üretilmiştir. Üretilen VO₂ ince filmler mikro yapıda alan etkili transistör (FET) üretiminde kanal görevinde kullanılmıştır. Bu yapıda iki farklı FET üretilmiştir. Burada VO₂'nin faz geçişi sıcaklıkla tetiklenmesinin yanı sıra, elektrik alan altında elektrik özelliklerinin değişimi incelenmiştir.

Bu proje kapsamında bütün bilgilerin, etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, çalışmanın TÜBİTAK 1001-Bilimsel ve Teknolojik Araştırma Projeleri Destekleme Programı kapsamında desteklendiğini ve ayrıca yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiz atıf yapıldığı bildiririm. Ayrıca deneysel alt yapısını kullandığım için İzmir Yüksek Teknoloji Enstitüsü, Uygulamalı Kuantum Araştırmaları Merkezi (UKAM)'a teşekkür ederim.

Doç. Dr. Gülnur Aygün Proje Yürütücüsü

İÇİNDEKİLER

TABLO LISTESI	V
ŞEKİL LİSTESİ	vi
ÖZET	ix
ABSTRACT	x
BÖLÜM 1	1
GIRIŞ	1
BÖLÜM 2	3
LİTERATÜR ÖZETİ	3
2.1 Vanadyum Dioksit (VO ₂)	3
2.1.1 VO₂'nin Kristal Yapısı	4
2.1.2 VO2'nin Elektronik Özellikleri	5
2.1.3 VO ₂ Yapısının Faz Diyagramı	6
2.1.4 VO2'nin Faz Geçişi	7
2.1.4.1 Mott-Hubbard Faz Geçişi	7
2.1.4.2 Peierls Faz Geçişi	12
2.2 VO ₂ Uygulamaları	12
2.2.1 Çok Fonksiyonlu Yapay Kaslar	12
2.2.2 Termokromik Akıllı Camlar	13
2.2.3 Kızılötesi Detektörler	13
2.2.4 Alan Etkili Transistörler (FET)	14
BÖLÜM 3	16
GEREÇ VE YÖNTEMLER	16
3.1 İnce Film Büyütme	16
3.2 Saçtırma Metodu	17
3.3 Plazma	17
3.4 Alttaş Üzerine Biriktirme	18
3.5 Saçtırma Sistemleri	19
3.5.1 Direkt Akım (DC) Saçtırma	19
3.5.2 Radyo Frenkansı (RF) Saçtırma	20
3.5.3 Reaktif Saçtırma	21
3.5.4 Mıknatıssal Saçtırma	21
3.6 Deneysel Çalışmalar	21
3.7 C-Düzlem Safir $[A_{12}O_3 (0001)]$ Üzerinde Büyütülen VO ₂ İnce Filmlerin Deneysel Süre	eci .22
3.8 Vanadyum Dioksit İnce Film Üretim Metodu	23
3.8.1 Mıknatıssal Saçtırma Sistemi	23

3.9 Ölçüm Sistemleri	24
3.9.1 Taramalı Elektron Mikroskobu (SEM)	24
3.9.2 X-lşını Kırınımı (XRD)	25
3.9.3 Raman Spektroskopisi	25
3.9.4 X-Işını Fotoelektron Spekroskopisi (XPS)	26
3.9.5 Optiksel Karakterizasyon	27
3.9.6 Elektriksel Karakterizasyon	27
3.10 Şekillendirilen VO ₂ İnce Filmlerin Elektron Demeti Litografi Süreci	28
3.10.1 Temiz Oda Süreci	28
3.10.2 Elektron Demeti Litografisi	28
3.10.3 İyon Demeti Aşındırması	29
BÖLÜM 4	31
BULGULAR VE TARTIŞMA	31
4.1 Büyütülen Vanadyum Dioksit İnce Filmlerin Karakterizasyonu:	31
4.1.1 Optik Analiz Sonuçları	31
4.1.2 Raman Analiz Sonuçları	34
4.1.3 XRD Analiz Sonuçları	36
4.1.4 Elektriksel Analiz Sonuçları	37
4.1.5 XPS Analiz Sonuçları	39
4.1.6 SEM Analiz Sonuçları	40
4.2 FET Üretim Parametreleri ve Analiz Sonuçları	40
4.2.1 İyon Demeti Aşındırma Tekniğinde Maskeleme ile Kapı Oksitli Üretilen FET_1'in Ür	etilme
Adımları ve Elektriksel Karakterizasyonu	41
4.2.1.1 FET_1 Örneğinin Üretimi Amacıyla VO2 Şeritlerin İyon Aşındırma Tekniği ile Üret	ilmesi.
	41
4.2.1.2 VO ₂ Şeritler Üzerinden Alınan Elektriksel Sonuçlar	42
4.2.1.3 Kapı (Gate) Oksitli FET_1 Üretimi İçin VO2 Şeritlerinin Üzerine Dielektrik	HfO ₂
Kaplanması:	43
4.2.1.4 Alüminyumun Kapı Amaçlı olarak HfO2 / VO2 / Al2O3 Üzerine Buharlaştırılması ile	е Карі
Oksitli FET_1 Üretimi	44
4.2.1.5 Elekron Demeti Litografi Tekniği Kullanılmadan Üretilen Kapı Oksitli FE	T_1'in
Elektriksel Analiz Sonuçları	45
4.2.2 Elektron Demeti Litografi tekniği ile Kapı Oksitli FET_2'nin üretilmesi	47
4.2.2.1 VO ₂ şeritler üzerinden alınan elektriksel sonuçlar	47
4.2.2.2 Kapı Oksitli FET_2 Üretimi İçin VO2 Şeritlerinin Üzerine Dielektrik HfO2 Kaplann	nası48

4.2.2.3 Kapı Oksitli FET_2 Üretimi Amacıyla, Alüminyumun HfO2/VO2/Al2O3 Üzerine Kapı
Olarak Buharlaştırılması
4.2.2.4 Elektron Demeti Litografi Tekniği Kullanılarak Üretilen Kapı Oksitli FET_2'nin
Elektriksel Analiz Sonuçları49
4.2.3 Elektron Demeti Litografisi ile Şekillendirilerek Üretilen Kapı Oksitsiz FET_351
4.2.3.1 Kapı Oksitsiz FET_3 Şekillendirilmesi Aşamaları ve Altın (Au) Kapı Buharlaştırılması
4.3 FET_4, FET_5, FET_6, FET_7 Üretim Parametreleri ve Analiz Sonuçları
4.3.1 VO2 İnce Film Elektriksel Analiz Sonucu
4.3.2 Elektron Demeti Litografisi ile Şekillendirilen VO2 İnce Filmin Elektriksel Analiz Sonucu
4.3.3 Elektron Demeti Litografi Tekniği ile Kapı Oksitli FET_4, FET_5, FET_6, FET_7'nin
Üretilmesi ve Analiz Sonuçları
4.3.4 Elektron Demeti Litografi Tekniği ile Kapı Oksitli FET_4, FET_5, FET_6, FET_7'nin
Elektriksel Analiz Sonuçları
4.3.4.1 FET_4'ün Elektriksel Analiz Sonuçları
4.3.4.2 FET_5'in Elektriksel Analiz Sonuçları60
4.3.4.3 FET_6'nın Elektriksel Analiz Sonuçları62
4.3.4.4 FET_7'nin Elektriksel Analiz Sonuçları63
4.4 Alttaşın VO ₂ Fazına Etkisi64
4.4.1 Raman Analiz Sonuçlarının Karşılaştırılması:65
4.4.2 Optik Analiz Sonuçlarının Karşılaştırılması
4.4.3 Elektiksel Analiz Sonuçlarının Karşılaştırılması67
SONUÇ
KAYNAKÇA73

TABLO LİSTESİ

Tablo 2.1.	VOx	bileşenlerinden	bazılarının	oksijen/vanadyum	oranına	bağlı	olarak	geçiş
sıcaklıkları								3
Tablo 4.1.	Üretile	en FET yapılarını	n özellikleri.					41

ŞEKİL LİSTESİ

Şekil 1.1. (a) Kapı oksitsiz, (b) Kapı oksitli FET yapıların şematik gösterimi 2
Şekil 2.1. VO2 metal-yalıtkan geçiş özelliğinin (a) ısıtma (b) UV ışık, (c) elektrik alan ile
tetiklenerek gösterimi 4
Şekil 2.3. Metalik ve yalıtkan VO2'nin elektronik bant yapısı (Imada, Fujimori, ve Tokura 1998)
Şekil 2.4. VO2 malzemesinin gerilme-sıcaklık faz diyagramı7
Şekil 2.5. 2-boyutlu kristaldeki Coulomb itmesi sebebiyle (a) düşük (b) yüksek enerjiye sahip
olan iki farklı elektronik konfigürasyonlar 8
Şekil 2.6 Alt ve üst bandlar ile her birim hücrede bir elektronun içerildiği 1-boyutlu zincirin
şeması
Şekil 2.7. (a) Homojen olmayan sistem için k-uzayından gerçek uzaya ters dönüşüm (b) Örgü
üzerinden ortalama alınmasıyla homojen olmayana bir sistemden homojen olan bir durum .11
Şekil 2.8. (a) Sanal parçacığın etkin kütlesinin eğrisi (b) Boşluk (Hole) katkılanmasıyla Mott
yalıtkan-metal durumu11
Şekil 2.9. Bir lineer zincirdeki Peierls metal yalıtkan geçişinin şematik tanımı12
Şekil 2.10. Vanadyum dioksit temelinde termokromik akıllı camlar13
Şekil 2.11. TCR ölçüm şeması14
Şekil 2.12. Alan etkili transistör (FET) cihazının diyagramı15
Şekil 3.1. Saçtırma Şeması (Yuce, 2015)17
Şekil 3.3. DC saçtırmanın temel sistemi20
Şekil 3.4. RF saçtırmanın temel prensibi20
Şekil 3.5. (a) Mıknatıssal saçtırma sisteminin (b) Büyütme çemberinin resmi
Şekil 3.6. X-ışını kırınımı örneği (Gottimukkala 2005)25
Şekil 3.8. Temiz oda ve elektron demeti sürecinin şematik sunumu
Şekil 3.9. Elektron demeti litografi sistemi
Şekil 3.10. Iyon demeti aşındırma sisteminin şematik görüntüsü
Şekil 3.11. Farklı genişliklerde şekillendirilmiş VO2 kanalları
Şekil 4.1. Farklı oksijen oranlarıyla büyütülen 125 nm kalınlıklarındaki VO2 ince filmlerin, iki
farklı ortam sıcaklığında (oda sıcaklığı ve 80 °C) geçirgenliklerinin dalgaboyuna bağlı değişim
grafikleri
Şekil 4.2. 310 nm kalınlığında %2.00 oksijen oranında büyütülen VO ₂ ince filmin iki farklı ortam
sıcaklığına (oda sıcaklığı ve 80 °C) bağlı geçirgenlik spektrumları

Şekil 4.3. Kalınlıkları verilen ve farklı oksijen oranları ile büyütülen ince vanadyum-oksit
filmlerinin Raman analizleri
Şekil 4.4. 310 nm kalınlığında %2.00 O_2 oranında büyütülen VO_2 ince filmin XRD analizi36
Şekil 4.5. 125 nm kalınlığında %2.25 O_2 oranında büyütülen VO_2 ince filmin XRD analizi36
Şekil 4.6. 310 nm kalınlıklı %2.00 O_2 ve 125 nm kalınlıklı %2.25 O_2 oranında büyütülen VO_2
ince filmlerinin sıcaklığa bağlı özdirenç değişim grafikleri
Şekil 4.7. %2.00 O2 oranında 310 nm kalınlığında büyütülen VO2 ince filmin, elektron demeti
ile şekillendirilme aşaması öncesi sıcaklığa bağlı özdirenç değişimi
Şekil 4.8. Karbon (C) elementinin XPS analiz sonucu Error! Bookmark not defined.
Şekil 4.9. 310 nm kalınlığında ve %2.00 oksijen oranında büyütülen VO ₂ ince filminin XPS
analizi Error! Bookmark not defined.
Şekil 4.10. (a) %2.00 O_2 oranında 310 nm kalınlığında (b) %2.25 O_2 oranında 125 nm
kalınlıklığında VO ₂ ince filmlerin FE-SEM görüntüleri40
Şekil 4.11. (a) Kapı (Gate) oksitli FET_1 üretimi için tasarlanan HY95 kodlu VO2 şeritlerinin
boyutları (b) VO2 ince film şeritlerinin prob istasyonuna yerleştirilmiş ve ölçüm alınma
esnasındaki fotoğrafı42
Şekil 4.12. Kapı oksitli FET_1 üretiminde kullanılacak olan VO2 şeritlerin sıcaklık-özdirenç
grafiği43
Şekil 4.13. HfO2 dielektrik film büyütmesi esnasında uygulanan saçtırma güç değerine bağlı
kırılma indisi43
Şekil 4.14. Buharlaştırma sisteminin (a) fotoğrafı ve (b) şematik çizimi görülmektedir45
Şekil 4.15. Üretilen FET yapıların elektriksel ölçüm devresi46
Şekil 4.16. Kapı oksitili FET_1 için farklı sıcaklıklarda voltaja bağlı özdirenç değişiminin (a)
lineer çizimi (b) logaritmik çizimi46
Şekil 4.17. Kapı oksitli FET_2 üretimi için tasarlanan HY95 kodlu VO ₂ şeritlerinin boyutları. 48
Şekil 4.18. Kapı oksitli FET_2 üretim öncesinde VO_2 şeritleri üzerinden alınan sıcaklık-özdirenç
grafiği48
Şekil 4.19. Kapı oksitli FET_2 üretimi amacıyla şekillendirilmiş VO2 üzerine, kapı dielektrik HfO2
büyütme şeması48
Şekil 4.20. Kapı oksitli FET_2'nin (a) şematik çizimi (b) prob istasyonunda ölçüm alınırken
fotoğrafı49
Şekil 4.21. Kapı oksitili FET_2 üzerinden 100 µm şerite ait olan farklı sıcaklıklarda voltaja bağlı
özdirenç değişiminin (a) lineer (b) logaritmik olarak voltaja bağımlı çizimleri gösterilmektedir.
Şekil 4.22. Kapı oksitili FET_2 için 50 µm şerit üzerinden farklı sıcaklıklarda voltaja bağlı
özdirenç değişiminin (a) lineer çizimi (b) logaritmik çizimi

Şekil 4.23. Kapı oksitli FET_2 için 15 µm şerit üzerinden farklı sıcaklıklarda voltaja bağlı
özdirenç değişiminin (a) lineer çizimi (b) logaritmik çizimi
Şekil 4.24. Kapı Oksitsiz FET_3 üretiminde kullanılan, HY97 kodlu VO ₂ filminin sıcaklığa bağlı
özdirenç değişim grafiği52
Şekil 4.25. Kapı oksitsiz (hava kullanılan) FET_3'ün (a) optik görüntüsü (b) şematik çizimi52
Şekil 4.26. Kapı oksitsiz FET_3 için 100-15 µm şeritler üzerinden farklı sıcaklıklarda voltaja
bağlı özdirenç değişimi
Şekil 4.27. Kapı Oksitli FET_4, FET_5, FET_6, FET_7 üretimlerinde kullanılan, HY121 kodlu
VO ₂ filminin sıcaklığa bağlı özdirenç değişim grafiği54
Şekil 4.28. Kapı Oksitli FET_4, FET_5, FET_6, FET_7 üretimlerinde kullanılan, HY121 kodlu
VO2 filmin elektron demeti litografisi ile şekillendirilmiş alanın optik görüntüsü
Şekil 4.29. Kapı Oksitli FET_4, FET_5, FET_6, FET_7 üretimlerinde kullanılan, HY121 kodlu
VO2 filmin elektron demeti litografisi ile şekillendirilmiş örneklerinin sıcaklığa bağlı elektriksel
analiz sonuçları
Şekil 4.30 Kapı oksitli FET_4, FET_5, FET_6, FET_7'nin şematik çizimi57
Şekil 4.31. Üretilen FET yapıların elektriksel ölçüm devresi
Şekil 4.32 Kapı oksitli FET_4'ün (a) 100 μ m (b) 50 μ m (c) 20 μ m genişliğindeki şeritler
üzerinden alınan elektriksel analiz sonucu59
Şekil 4.34 Kapı oksitli FET_6'nın (a) 100 μ m (b) 50 μ m (c) 20 μ m genişliğindeki şeritler
üzerinden alınan elektriksel analiz sonucu62
Şekil 4.35 Kapı oksitli FET_7'nin (a) 100 µm (b) 50 µm (c) 20 µm genişliğindeki şeritler
üzerinden alınan elektriksel analiz sonucu64
Şekil 4.36. (a) Safir (b) Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin
Raman analiz sonuçları65
Şekil 4.37. (a) Safir (b) Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin
sıcaklığa bağlı optik analiz sonuçları66
Şekil 4.38. (a) Safir (b) Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin NIR-
VIS dalgaboyu için sıcaklığa bağlı optik analiz sonuçları67
Şekil 4.39. Safir ve Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin sıcaklığa
bağlı elektriksel analiz sonuçları67

ÖZET

Vanadyum dioksit (VO₂) yaklaşık olarak 68 °C'de metal-yalıtkan geçiş özelliği göstermektedir. VO₂ düşük sıcaklıklarda yalıtkan fazda bulunurken, geçiş sıcaklığına göre yüksek sıcaklıklarda metalik fazda bulunur. Geçiş sıcaklığında, VO₂'nin özdirenci ani bir şekilde 10⁴ oranında değişim gösterir ve bu özelliğinden dolayı hızlı elektronik cihazlarda kullanılma potansiyeli oldukça yüksektir. VO₂ alan etkili transistör uygulamalarında önemli bir rol oynamaktadır. VO₂ gösterdiği elektriksel özellikler sebebiyle alan etkili transistörlerde kanal görevi görmektedir. VO₂ malzemesinin elektrik alan altında değişen elektriksel özellikleri, VO₂'yi alan etkili transistörlerde kanal malzemesi olarak kullanılmasını mümkün kılmaktadır.

Bu özellikler göz önünde bulundurulduğunda VO₂ kanal görevi görecek şekilde iki farklı tipte FET üretilmiştir.

Birinci tip FET üretiminde, VO₂'ye temas etmeksizin, arada hava bırakılarak VO₂'nin altına ve üstüne iki adet altın kapı tabakası buharlaştırılmıştır. Altın kapı tabakalarının VO₂'ye hiçbir şekilde fiziksel teması olmadığından, VO₂ içerisine malzeme difüz etmesi de söz konusu değildir. Bu ise VO₂'nin MIT özelliğini etkilemeden, e-demeti litografi tekniği sayesinde çok detaylı hatlara sahip olan FET üretebilmemizi sağlamıştır.

İkinci tip FET üretiminde ise VO₂'nin üretilip e-demeti ile şekillendirilmesi aşamasına kadarki yapılacak işlemler birinci tip FET üretimi ile aynıdır. HfO₂ ince filmi kapı dielektrik olarak kullanılmıştır. VO₂ kanalları üzerine, DC saçtırma yöntemi ile HfO₂ kapı dielektrik büyütülmüştür. HfO₂ kapı dielektrik tabakası üzerine Au/Al kapı tabakası buharlaştırılmıştır.

Devamında ise, iki farklı tipte üretilen FET yapılarındaki (tip 1 ve tip 2) VO₂ kanal tabakasının, prob istasyonu kullanılarak vakum ortamında sıcaklığa bağlı olarak, voltaj altında MIT karakterizasyonları yapılmıştır.

ABSTRACT

Vanadium dioxide (VO₂) exhibits metal insulator transition (MIT) at around 68 °C. VO₂ shows insulator phase at low temperature whereas above the transition temperature VO₂ shows metallic phase. The resistivity of this material dramatically changes by a factor of 10^4 at MIT temperature. There are some factors which induce MIT in VO₂ structure such as electric field, the change in temperature or doping. Due to these properties, VO₂ is an interesting candidate for exploring potential applications in high speed electronic devices. VO₂ plays an important role for field effect transistor (FET) applications. VO₂ with its peculiar properties is a good candidate for channel material in FET. Electric field triggered MIT is a desired feature for FET applications.

Given these features, two different types of FETs were fabricated as the channel properties of VO₂.

For the first type of FET production, without any contact to VO_2 , two golden gate layers were evaporated above and under the VO_2 by letting air layer in between VO_2 and Au gates. Since there is not any physical connection between these golden gate layers and VO_2 , it is impossible for the diffusion of any element into VO_2 . That situation leads us to produce FET structures which are precisely shaped by using e-beam lithography without any effect on their MIT characteristics.

For the second type of FET, all processes are the same as the production of first type up to the stage of VO₂ patterning by e-beam. After this stage, HfO_2 was used as gate dielectric. HfO_2 dielectric was grown on VO₂ chanel by DC sputtering technique. Then, Au gate layer was vaporized on HfO_2 gate dielectric layer.

Subsequently, MIT characterization of the VO₂ channel layer for two different types of FET structures (type 1 and type 2) were carried out using the probe station under voltage, depending on the temperature in the vacuum ambiance.

BÖLÜM 1

GİRİŞ

Metal-Oksit yarıiletken alan etkili transistörler (MOSFETs) uzun zamandır elektronik endüstrisinin önemli bir elementidir. Moore kuralları göz önünde bulundurulduğunda, MOSFET boyutlarının azalması bir takım sorunlara yol açacaktır. MOSFET boyutu küçüldükçe, kuantum elektron tünellemesi ve bazı üretim teknikleri açısından sınırlandırmalarla karşılaşılacaktır. Elektronik sistemleri birleştirmek ve performansını arttırmak için alternatif teknik ve yöntemler tasarlanmaya devam etmektedir. Metal-oksit tabanlı elektronik cihazlar, gelişen elektronik sistemler için umut edici yaklaşımlarından biridir. Geçiş metal oksitlerin d-orbital elektronlarının güçlü bir şekilde etkileşimi, kuvvetli elektron-elektron korelasyonlarına yol açar. Bu davranış, metal-yalıtkan geçiş (MIT) mekanizması için önemlidir. MIT özelliğinin elektrik alan ile tetiklenerek gerçekleşmesi, alan etkili transistörlerin (FETs) üretimi için oldukça önemli bir mekanizmadır (Balyaev 2014).

Belli bir sıcaklıkta bir malzemenin iki farklı fazı arasındaki geçişi olan, 1. dereceden faz geçişi, basınç, sıcaklık, manyetik ve elektrik alan gibi bir takım değişkenlerin değişimi sonucunda gerçekleşmektedir. Metal-yalıtkan geçişi, kuantum doğası ve faz geçişinin hızlı bir şekilde gerçekleşmesiyle 1. dereceden faz geçiş özelliği gösterir ve bu geçiş özelliğini gösteren en iyi bilinen malzemelerden biri "vanadyum dioksit (VO₂)" dir.

Tüm vanadyum oksit (VO_x) bileşenleri güçlü bir elektron-elektron korelasyonuna sahiptir ve bu bileşenlerden V₂O₁₃ fazı hariç tüm bileşenler MIT özelliği göstermektedir (Wu, Feng, ve Xie 2013). Vanadyum oksit bileşenleri arasında, VO₂ faz geçişini 68 °C'de gerçekleştirir. Bu sıcaklık, VO_x fazları arasında, oda sıcaklığına en yakın noktada gerçekleşen geçiş sıcaklığıdır. Bu sebepten, vanadyum oksit fazları arasında, VO₂ oldukça büyük önem taşımaktadır (Stefanovich, Pergament, ve Stefanovich 2000, Gopalakrishnan, Ruzmetov, ve Ramanathan 2009). Aynı zamanda VO₂'nin metal yalıtkan geçişi elektrik alan (Ruzmetov ve ark. 2009) ile tetiklenmesinin yanı sıra, VO₂'nin geçiş sıcaklığının (T_{MIT}) üzerindeki sıcaklık değerlerine kadar ısıtılmasıyla da tetiklenebilmektedir. VO₂'nin metal-yalıtkan faz geçişi sırasında özdirenci 10⁴-10⁵ oranında değişmektedir. VO₂, özdirencinde yüksek oranda değişiklik göstererek oda sıcaklığına yakın bir sıcaklıkta metal-yalıtkan faz geçişi göstermesi sebebiyle, geleceğin teknolojik cihazlarında kullanılmak üzere yüksek bir potansiyele sahiptir. Bu özelliklerden yola çıkarak, bu projede, VO₂'yi kanal görevinde kullanarak, iki farklı tip alan etkili transistör üretimi (Şekil 1.1) ve VO₂'nin faz geçişinin elektrik alanın etkisiyle kontrollü olarak sağlanması hedeflenmiştir. Alttaş olarak safir (Al₂O₃) kullanılması ve VO₂ yapısının safir

alttaş üzerine mıknatısal saçtırma tekniği ile büyütülmesi planlanmıştır. Şekil 1.1a'da kapı oksitsiz (1. tip) ve Şekil 1.1b'de kapı oksitli (2. tip) olan iki farklı tipte alan etkili transistör (FET) üretilecektir. Üretilmiş olan FET yapılarda kullanılan VO₂'nin sıcaklık ile faz geçişi sağlandıktan sonraki aşamada ise belirtilen bu geçişinin elektrik alan altında da (E-MIT) gözlenmesi amaçlanmıştır.

Şekil 1.1a'da görüldüğü üzere, 1. tip FET üretiminde safir alttaş üzerine VO₂ büyütülmesi ve devamında da elektron demeti, iyon aşındırma sistemi ve litografi teknikleri sonrasındaki şekillendirme aşamalarını takiben, VO₂ kanallar oluşturulmuştur. VO₂ kanal ile altın kapı arasında dielektrik olarak hava bırakıldıktan sonra, VO₂ kanalların iki yanına Au kapı (kapı) buharlaştırılacaktır. VO₂ kanalın uçlarına ise source (kaynak) ve drain (savak) amaçlı Au buharlaştırılarak, 3-terminalli FET üretimi gerçekleştirilmiş olacaktır.

Şekil 1.1b'de şematik olarak gösterilen 2. tip FET üretiminde ise safir alttaş üzerine büyütülen VO₂ katmanının e-demeti ve iyon aşındırma litografi tekniklerini takiben kanal haline getirildikten sonra üzerine mikro-elektronikte yaygın olarak kullanılmakta olan SiO₂'ya kıyasla çok daha yüksek dielektrik sabiti değerine sahip olan HfO₂ büyütülmüş olup, HfO₂ üzerine ise Au kapı tabakası buharlaştırılmıştır. Son aşamada ise VO₂ şeritlerin uç kısımlarına kaynak ve savak amaçlı Au tabakaları oluşturulmasıyla FET üretimleri gerçekleştirilmiştir.

Şekil 1.1. (a) Kapı (Gate) oksitsiz, (b) Kapı (Gate) oksitli FET yapıların şematik gösterimi.

LİTERATÜR ÖZETİ

2.1 Vanadyum Dioksit (VO₂)

VO₂ malzemesi 1950'li yıllarda F.J. Morin tarafından keşfedilmesiyle, vanadyum bileşenleri yoğun olarak çalışılmaktadır. VO₂, diğer vanadyum oksit bileşenlerine kıyasla oda sıcaklığına en yakın sıcaklıkta faz geçişi göstermesi sebebiyle oldukça önemli bir malzemedir. Vanadyum oksit bileşenlerinin oksijen oranı, geçiş sıcaklığı üzerinde önemli bir rol oynamaktadır. Bu bileşenlerden bazıları Tablo 2.1'de verilmiş olup, bu tablonun üçüncü satırında yer almaktadır.

Tablo 2.1. VO_x bileşenlerinden bazılarının oksijen/vanadyum oranına bağlı olarak geçiş sıcaklıkları.

Malzeme	VO	V_2O_3	V ₇ O ₁₃	VO ₂	V ₆ O ₁₃	V ₂ O ₅
x (VO _x)	1.00	1.50	1.85	2.00	2.16	2.50
T _{MIT}	-147 °C	-105 °C	-	70 °C	-123 °C	375 °C
	(Johansson	(Wu,		(Jordan	(Eguchi	(Filonenko
	2006)]	Feng, ve		ve ark.	ve ark.	ve ark.
		Xie 2013)		2014)	2002)	2004)

Metal-yalıtakan geçiş özelliği gösteren malzemeler arasında, (Tablo 1.1'de bir kısmına kıyasla görüldüğü gibi) geçiş sıcaklığı oda sıcaklığına en yakın malzemenin VO₂ olması ve VO₂ fazının faz geçişi sırasında 10^4 - 10^5 oranı gibi yüksek bir özdirenç değişimi sebebiyle deneysel ve teorik çalışmalar ile VO₂'nin faz geçiş özelliğine odaklanılmıştır. VO₂ oda sıcaklığında yalıtkan fazda olmasına rağmen geçiş sıcaklığından (68 °C) itibaren ısıtılmasıyla metalik faza geçiş yapar. Isıtmanın VO₂'nin faz geçişini tetiklemesine ek olarak, katkılama (Tan ve ark. 2012), UV ışık (Wu ve Liou 2011) ve elektrik alan (Kim ve ark. 2004) tanımlanmaktadır. Şekil 2.1a'da VO₂'nin metal-yalıtkan geçişinin sıcaklıkla tetiklenerek gerçekleştirildiği gösterilmiştir. Aynı zamanda, Şekil 2.1b'de gösterildiği gibi, VO₂, 0.65 eV band aralığıyla UV ışığa maruz bırakılarak faz geçişi gerçekleştirilebilinir. UV ışık altında, VO₂'nin iletkenlik bandında foton ile uyarılmış taşıyıcılar oluşur ve VO₂ artan taşıyı yoğunluğu ile metal olur. Bir başka etki olarak, VO₂'ye elektrik alan uygulandığında yük taşıyıcıları oluşur ve artan elektron/hole yoğunluğu ile faz geçişi sağlanmış olur Şekil 2.1c.

VO₂'nin metal yalıtkan geçiş özelliği göstermesinin altında Peierls ve Mott-Hubbart geçişi olmak üzere iki farklı mekanizma vardır. Peierls geçişine göre, metal-yalıtkan faz geçişi sıcaklığının (68 °C) üzerindeki sıcaklıklarda kristal yapısı değişir, sonrasında band aralığı yok olur ve VO₂ metal olur. Bu görüş, tek elekron üzerinden yapılan tüm görüşler ve teoriler üzerinden açıklanabilir. Mott-Hubbard geçişine göre, VO₂ oda sıcaklığında Mott yalıtkan durumundadır. Oda sıcaklığında, VO₂'nin fermi enerji seviyesi iletkenlik bandını kesmesine rağmen VO₂ yalıtkan fazdadır. Bu durum elektron korelasyon etkisi üzerinde bir ipucu olarak açıklanabilir. Bu durumda, sıcaklığın değişimi etkisiyle bir faz geçişi gerçekleşir ve bu durum sıradan band teorisi ile açıklanamaz. Bu farklı iki görüş göz önünde bulundurulduğunda, henüz açık bir cevap görülmemektedir (Imada, Fujimori, ve Tokura 1998, Basov ve ark. 2011).

Şekil 2.1. VO₂ metal-yalıtkan geçiş özelliğinin (a) ısıtma (b) UV ışık, (c) elektrik alan ile tetiklenerek gösterimi (Nag 2011, Wu ve Liou 2011 ve Kim ve ark. 2004)

2.1.1 VO₂'nin Kristal Yapısı

VO₂ elektronik olarak farklı durumuyla iki farklı kristal yapısına sahiptir. VO₂ oda sıcaklığında monoklinik kristal yapısıyla yalıtkan faz durumunda iken, faz geçiş sıcaklığına göre yüksek sıcaklıklarda metal faza geçiş yaparak, tetragonal kristal yapısına geçer. VO₂'nin kristal yapısı Şekil 2.2'de gösterilmiştir. Bu şekilde oksijen atomları kırmızı renk ile gösterilirken, vanadyum

atomları gri renk ile gösterilmiştir. Bu yapıda iki farklı olabilirlikte V-V uzaklıkları vardır. En yakın V-V atom çiftleri arasındaki uzaklık 0.262 nm olup, c_R-ekseni boyunca zigzag tip V atom zinciri için bu uzaklık 0.316 nm'dir. Aynı zamanda, V-V etkileşimi için kritik uzaklık 0.294 nm'dir (Ohno 1998). Bu durumda, V-V uzaklığı 0.316 nm olup kritik V-V etkileşim mesafesinden daha büyük ise, dimerlerin içindeki d orbital elektronları lokalize olur. Bu durum ise VO₂ malzemesinin yaklaşık olarak 10 Ω .cm özdirenç değeriyle yalıtkan özellik göstermesine yol açar. Metal VO₂ için, V-V atomlarının ortalama uzaklığı 0.288 nm olduğu zaman, tüm V atomları tek bir çizgide dizilirler. Bu yüzden, tüm V atomları d orbital elektronlarıyla üst üste gelir. Bu durum ise VO₂ malzemesinin yaklaşık olarak 10⁻⁴ Ω .cm özdirenç değeriyle metalik özellik kazanmasına yol açar (Wu, Feng, ve Xie 2013).

Şekil 2.2. VO₂'nin (a) monoklinik ve (b) tetragonal kristal yapısı (Wu, Feng, ve Xie 2013)

2.1.2 VO2'nin Elektronik Özellikleri

Goodenough's modeliyle uyumlu olan metalik ve yalıtkan VO₂'nin elektronik band yapısı Şekil 2.3'te gösterilmiştir. VO₂'nin band yapısı O_{2p} ve V_{3d} orbitalleriyle biçimlendirilir. Aynı zamanda, 2p orbitalinib π ve σ bağlarını içermektedir. VO₂ yapısındaki her bir V atomunun d orbitalinde 1 tane elektronu bulunmaktadır.

VO₂'nin tetragonal kristal yapısı için, kristaldeki t_{2g} düzeyleri, metalik faz için Fermi enerji düzeyine yakın elektronik durumunu içeren d_{II} ve π^* düzeylerindeki ayrılmalardır. İletkenlik bandını birbirleri ile biçimlendiren d_{II} orbitalleri hibridize olur. Bir başka deyişle, $d_{3z^2-r^2}$ orbitalleri, O_{2p} orbitalleriyle hibridize olur. V katyonlarındaki d-orbitalleri için, dejenere olmuş t_{2g} durumları $d_{x^2-y^2}$, d_{xz} ve d_{yz} olup ve diğer $d_{3z^2-r^2}$ ve d_{xy} olan e_g^{σ} (σ antibonding, σ ^{*})'dir.

VO₂'nin kristal yapısı monoklinik yapıdan tetragonal yapıya değiştiği zaman, π* enerji düzeyleri, d_{ii} enerji düzeyinden daha yüksek olur (Nazari 2013).

Şekil 2.3. Metalik ve yalıtkan VO₂'nin elektronik bant yapısı (Imada, Fujimori, ve Tokura 1998)

 VO_2 'nin monokilink kristal yapısı için, d_{II} bandları cR yönü boyunca V atomlarının eşleşmesi durumunda, alt ve üst bandlara ayrılırlar. V-V eşleşimi, vanadyum d-orbiral ve oksijen p-orbital hibridleşmesini arttırır. Bu eşleşme, Fermi enerji düzeyinden yüksekte olan π^* enerji düzeyini yükseltir ve 0.65 eV band aralığına sebmeep olur (Imada, Fujimori, ve Tokura 1998).

2.1.3 VO₂ Yapısının Faz Diyagramı

C_R ekseni boyunca çeşitli stres/gerilme veya katkılama gibi farklı özellikler VO₂ malzemesinin farklı fazlarının meydana gelmesini tetikler (Marezio ve ark. 1972, Gu ve ark. 2010). Şekil 2.4 VO₂ yapısının gerilme sıcaklık faz diyagramı göstermektedir. Gerilme ve stres sıkıştırma durumu sebebiyle, VO₂ M₁ (monoklinik_1) fazından R (tetragonal) fazına geçiş yapar.

Bu geçiş ani bir şekilde gerçekleşir. Buna ek olarak, c_R ekseninde sıkıştırma gerilimi ve gerilim etkisi altında geçiş sıcaklığı değişir. M₁ faz içindeki R fazı çekirdeklenme faz geçişi başlangıcına sebep olur. Artan sıcaklık ile yeni faz oluşur ve ana malzemeyi sonlandırır. Böylece faz geçişi gerçekleşmiş olur. Bazı boşluklar ve kusurlar bir diğer fazın çekirdeklenmesine sebep olduğu düşünülebilir. Faz geçişi, Percolation (süzülme) bölge olarak adlandırılan orta bölge üzerindeki VO₂ ince filme bağlıdır. Süzülme bölgesinde, süzülme eşiği oluşur ve VO₂, M₁ fazındaki metalik adacıklar bağlanabilir. Bu durum elektriksel iletkenlik açısından, makroskopik bir yol sağlar. Bu durumda, elektriksel iletkenlik artar ve dikkate değer sapmalar meydana gelir (Nazari ve ark. 2011). M₁-R geçişi için halsizlik (sluggishness)

süzülme bölgesi ile bağlantılı olabilmektedir. C_R yönündeki çekme gerilmesi VO₂ malzemesinin M_2 ve M_3 orta fazını, sıkıştırma gerilmesi ise M_1 -R faz geçişini oluşturur. R fazında M_1 fazına gerçekleşen VO₂'nin faz geçişi geniş bir şekilde olur. Çekme gerilmesindeki artış, orta fazın genişlemesi için başlangıç sıcaklığının azalmasına yol açar. M_3 fazı için, V-V atom zincirinin dizilimi, ani faz geçişine ters olarak, bir stres serisi meydana getirir. M_1 - M_3 faz geçişi, ani bir şekilde meydana gelen M_1 - M_2 faz geçişinden farklıdır. M_1 - M_3 faz geçişi durumunda, kademeli ve sürekli bir geçiş gözlenmektedir (Atkin ve ark. 2012).

Şekil 2.4. VO₂ malzemesinin gerilme-sıcaklık faz diyagramı (Nazari 2013)

2.1.4 VO₂'nin Faz Geçişi

2.1.4.1 Mott-Hubbard Faz Geçişi

Mott yalıtkanı durumunda, elektron-elektron korelasyon etkisi, malzemenin fazını tanımlamak için önemli bir faktördür. Sıradan band teorisine göre, elektron konfigürasyonu, elektronik yapısını tanımlamak için gerekli bir faktör değildir. Şekil 2.5'te gösterildiği gibi, iki farklı elektronik konfigürasyonu vardır. Aslında, uygunsuz yapılandırmadan kaçmak için, elektronlar hareket eder (Şekil 2.5b). Göz ardı edilen elektron-elektron korelasyonu sebebiyle temel durum enerjisi, korelasyon enerjisi olarak bilinir (Zallen ve Penchina 1986). Mott yalıtkanlarında, elektron-elektron korelasyon etkileri sebebiyle, lokalize elektronik dalga fonksiyonlarının bulunması olasıdır. Coulomb itme U (korelasyon enerji) değerine sahip olan geniş band aralığı, 3d band genişliğinden (*W*) daha küçük olmasıyla bir reaksiyon gerçekleşir ve iletkenlik gözlemlenir. Bu reaksiyonun, her bir atomdaki bir elektronuyla, sistem içerisindeki

iki elektronu içerir. Yoksa *W* değerinden daha yüksek U Coulomb enerji düzeyine sahip olan itme enerjisinin düzeyi, 3d bandlarını daha düşük dolu ve daha yüksek boş bandlar olarak ayırmak için yeterlidir. Bu durum yalıtkan bir yapı oluşmasına sebep olmaktadır. Bağlantılı elektronik sistemler için, band yapısı Hubbard Hamiltonian tarafından hesaplanmıştır. Bu görüşte, iki farklı karakteristik enerji sunulur. İlki, tünel sistemi terimi olan "*t*"dir. Bu terim, elektronların kinetik enerjisine bağlı olup, en yakın atom tarafına elektronların tünellemesini tanımlar. Bir diğeri ise; Coulomb korelasyon enerjisi olup "*U*" olarak gösterilir ve bu terim elektronların etkileşim enerjisini tanımlar. *U/t* değerinin yüksek olması durumunda, Hubbard bandı üst ve alt band olarak ikiye ayrılır. Bu durum, lokalize olmuş elektronik dalga fonksiyonlarını ortaya koyar ve böylece sistem yalıtkan olur. Korelasyon etkisine bağlı olan t terimi ile elektronlar, itme kuvveti etkisi altında olamazlar ve elektronlar bir konumu işgal ederler. Elektronlar bir atomik konumdan en yakın başka bir atomik konuma hareket ederler ve bu durum delokalize olmuş elektronik dalga fonksiyonlarına sebep olur. Şekil 2.6, alt ve üst Hubbard bandları ile bir boyutlu atomik konumu göstermektedir.

Şekil 2.5. 2-boyutlu kristaldeki Coulomb itmesi sebebiyle (a) düşük (b) yüksek enerjiye sahip olan iki farklı elektronik konfigürasyonlar (Nazari 2013)

Kuvvetli bir bağlantılı sistem için, MIT kritik Coulomb enerji (*Uc*) olarak, *U/U_c=1*. *U*, elektronlar arasındaki Coulomb enerjisine karşılık gelir. Aslında bu geçişin, sürekli mi yoksa ani bir şekildemi gerçekleştiği açık değildir (Zhang, Rozenberg, ve Kotliar 1993).

Şekil 2.6 Alt ve üst bandlar ile her birim hücrede bir elektronun içerildiği 1-boyutlu zincirin şeması (Yuce 2015)

Morin tarafından, bu geçişin sıcaklığa bağlı olduğu ve birinci dereceden metal-yalıkan geçişi olduğu gözlenmiştir (Morin 1959). Ani bir şekilde gerçekleşen metal-yalıtkan geçişi birinci dereceden Mott geçişine sebep olurken, sürekli bir şekilde gerçekleşen bu geçiş ikinci dereceden Hubbard geçişine sebep olur (Kim ve ark. 2004). Metal-yalıtkan geçişi durumunda, ana bandtaki alt bandlar arasındaki band aralığı bölünür. U terim enerjisi sebebiyle, band aralığı meydana gelir. Mottt'a göre, örgü sabitinin değeri kritik değerden daha büyük ise metal yalıtkan geçişi, ani bir şekilde gerçekleşir (Mott 1990). Brinkman ve Rice (BR) tarafından, elektronun elektronik yapısı ile güçlü bir şekilde bağlantılı metal olarak, $U/U_c=1$ yakınlarında teorik olarak ani gerçekleşen metal-yalıtkan geçişi gösterilmiştir (Brinkman ve Rice 1970). Bu durum Brinkman-Rice (BR) resmi olarak bilinir. Buna ek olarak, BR resminin genişlemesi, band doluluğuyla metal-yalıtkan geçişini geliştirmiştir. Bu durum, genişletilmiş BR resmi olarak bilinir. Homojen olmayan metalik sistemdeki ölçümlere göre, genişletişmiş BR resmi, kesirli yüke dayanır (Kim 2002). Aynı zamanda, Hubbard'a göre, Uc altındaki alt bandların üst üste binmesi durumunda, Fermi enerji düzeyinde sonlu bir minimum değerde olan durum yoğunlukları, U değerinin azalmasına bağlı olarak artar ve sistem metalik hale geçer. Bu süreç, Hubbard tarafından sunulan sürekli metal-yalıtkan geçişine aittir. Sürekli metal-yalıtkan geçişi, sonsuzboyutlu Hubbard modeli için onaylanmıştır (Zhang, Rozenberg, ve Kotliar 1993).

Mott geçişini gözlemlemek için yeni bir metod olarak, *k*-uzayında spektral ağırlık değeri, metalik ve yalıtkan fazlar olmak üzere iki bölgeli homojen olmayan bağlantılı metalik sistem içinde belirlenir. Buna rağmen, homojen olmayan fazlar, belirlenmiş spektral ağırlıktan anlaşılamaz. k-uzayından gerçek uzaya geri dönüşüm Şekil 2.7a'da gösterildiği gibi belirlenememiştir. Bu şekil, *k*-uzayı ve gerçek uzayın matematiksel olarak birbirlerine eşit olmadığını göstermektedir. Homojen olmayan bir sistem, *k* uzayı ve gerçek uzay arasında matematiksel dengede ve herbir atomun bir elektronunun elektronik yapısını içeren metalik sistem ile benzer değildir. Bu problemi çözmek için, alınan dataların ortalamaları dikkate alındı (Kim ve ark. 2004). Ölçülmüş bir homojen olmayan sistem durumunda, taşıyıcı parçacıklar,

tüm bölgenin ortalama örgü üzerine çarpıyor olabilir. Sistem böylece, Şekil 2.7b'de görüldüğü gibi her bir atomun bir etkili yükün elektronik yapısı ile homojen olmayan bir sistemden homojen bir sisteme dönüşür.

Etkili yük $0 < \rho = n/L \le 1$ olması durumunda, $\dot{e} = \rho e$ olarak gözlemlenir ve band doluluğuna karşılık gelir. "*n*" yük taşıyıcı yoğunluğu sayısı olarak bilinirken, "*L*" ölçüm bölgesinin toplam örgü sayısına karşılık gelir. Sadece ölçülen homojen olmayan sistem için, kesirli etkili yükün doğru olduğu kanıtlanmıştır. Kesirli Coulomb enerjisi $U \equiv \langle \dot{e}\dot{e} / r \rangle = \rho^2 U_{true}$ olarak tanımlanır. "*U*" etkili Coulomb enerjisine karşılık gelirken, "*U*_{true}" gerçek Coulomb enerjisine karşılık gelir. U_c koymak için, $U_{true} = \kappa U_c$ olmalıdır. BR resimde kullanılan korelasyon kuvveti " κ " ile gösterilir (Brinkman ve Rice 1970). Burada U, $U = \kappa \rho^2 U_c$ olarak tanımlanır. Atom başına etkili bir yük içeren ortalama bir sistem için, *m**, sanal parçacık için etkili kütleye karşılık gelir ve Gutzwiller varyasyonel teoriden denklem (2.1)'deki gibi hesaplanır (Kim 2002):

$$\frac{m}{m^*} \equiv \frac{1}{1 - (\frac{U}{U_c})^2} = \frac{1}{1 - \kappa^2 \rho^2}$$
(2.1)

Denklem (2.1)'de "*m*" elektronun kütesine karşılık gelir ve $U/U_c = \kappa \rho^2 \neq 1$. Buna ek olarak, band doluluk durumuna yol açan $\rho = 1$ ve $0 < \rho \leq 1$ eşitliklerinde, " κ " Şekil 2.8'de gösterildiği gibi yük taşıyıcılar arasındaki Coulomb enerji kuvvetine karşılık gelir. Homojen olmayan bir sistemde $\rho \neq 1$ olması durumunda, denklem (2.1) hesaplamaların etkisi ve BR resimdeki gerçek etkili kütlenin ortalamasıdır (Kim 2002). Aynı zamanda, elektriksel iletkenlik σ ile tanımlanır ve $(m^*/m)^2$ ile orantılıdır. Bu eşitlik, genişletilmiş BR resmini tanımlar. Denklem (2.1) için, $\kappa \rho^2 = 1$ eşitliğinde olan bir malzeme, paramagnetik yalıtkan veya Mott yalıtkan olarak varsayılabilir.

Kritik ρ (= ρ') değerine sahip olan metal, metalik özelliği oldukça iyi olup, en iyi metalik özellikleri gösterir (Tokura ve ark. 1993). $\kappa \rho^{t_2} \neq 1$ eşitlik özelliği gösteren metalik fazdan, $\kappa \rho_2 = 1$ eşitliğini gösteren yalıtkan faza geçiş, ani bir şekilde gerçekleşmektedir. Bu durum, $U/U_c =$ 1 eşitliği yakınlarında Mott geçişinin gözlenmesine yol açar. Boşluklar (Holes) ρ' ve $\rho=1$ arasındaki değişimle bağlantılıdır. Serbest boşlukların varlığı, elektronların yok olmasını gösterir ve Coulomb enerjinin azalmasına sebep olur. Bu durumdan sonra, enerji boşluğu ayrılır ve uyarılan boşluklar sebebiyle homojen olmayan metalik sistem oluşur. Bu durumda, $n_c^{1/3}\alpha_0 = -0.25$ (Mott ve Transitions 1990) olan Mott kriterinden yola çıkarak Mott tarafından tahmin edidiği gibi, yaklaşık olarak 3.0 x 10^{18} cm⁻³ kritik uyarılmış boşluk (n_c) bulunur (Stefanovich, Pergament, ve Stefanovich 2000). Burada α_0 , Bohr yarıçapı olarak tanımlanır. Uyarılmış boşluklar, birim hücredeki bir electron durumunda yarı dolu bandtaki taşıyıcıların sayısının yaklaşık olarak % 0.018 gibi bir dğerine yol açar. Bu fikir Şekil 2.8'de gösterilmiştir.

Şekil 2.7. (a) Homojen olmayan sistem için k-uzayından gerçek uzaya ters dönüşüm (b) Örgü üzerinden ortalama alınmasıyla homojen olmayana bir sistemden homojen olan bir durum (Kim ve ark. 2004).

Şekil 2.8. (a) Sanal parçacığın etkin kütlesinin eğrisi (b) Boşluk (Hole) katkılanmasıyla Mott yalıtkan-metal durumu (Kim ve ark. 2004)

2.1.4.2 Peierls Faz Geçişi

Peierls mekanizmasında, elektron-fonon etkileşimiyle, kristal yapı yeniden şekillenir ve bu yeni bir periyodik duruma yol açar. Band teorisi, atom başına düşen bir elektronuyla 1-boyutlu dizi için, yarı dolu valans bandını öne sürer. Elektron-fonon etkileşiminden dolayı örgü bozulması meydana gelir ve bu da örgü sabitlerinin katlanmasına sebep olur. Şekil 2.9'da Peierls faz geçişini şematik tanımı gösterilmektedir. Elektron-fonon etkileşimi olmadığı zaman, bu dizi homojen elektronik yük dağılımı gösteren metalik faza yol açar. Atomlar, elektron-fonon etkileşimiyle dimerize olur. Peierls faz geçişinde, elektron-fonon etkileşimi özgül bir sıcaklık değerinde meydana gelir. Bu etkileşim ise metalik fazın Brillouin bölgesindeki yumuşak (soften) fononlara yol açar. Buna ek olarak, fonon yumuşaması titreşimli entropinin artışına sebep olur ve metal-yalıtkan geçişi açısından itici kuvvet olarak önemli bir rol oynar.

2.2 VO₂ Uygulamaları

2.2.1 Çok Fonksiyonlu Yapay Kaslar

Vanadyum dioksit malzemesinin Young's modulus değeri yaklaşık olarak 140 GPa olup yüksek bir değere sahiptir. Aynı zamanda, tek kristal için dönüşüm gerinimi %1-2 oranındadır. Vanadyum dioksitin metal-yalıtkan geçişi süre olarak birkaç pikosaniye mertebesinde meydana gelmektedir. Bu malzemenin volumetrik yoğunluğu ~7 J/cm³ olup bu değer ise insan kaslarıyla karşılaştırıldığında 1000 kattan daha fazla bir değerdedir. Bu özellikler göz önünde bulundurulduğunda, vanadyum dioksit metal-yalıtkan geçişiyle kristal yapısını değiştirerek bir hacim değişimine yol açmasıyla, mikro-yapıda çok fonksiyonlu yapay kaslarda kullanılabilmektedir (Liu ve ark. 2014).

2.2.2 Termokromik Akıllı Camlar

Akıllı camlar ışığa, ısıya ve elektrik akımına karşı duyarlı olarak bu etkiye cevap verir ve yansıtır. Bu camlar güneş ışığının geçirgenliğini kontrol edebilir. Vanadyum dioksit temelindeki termokromik camları düşünürsek, geçiş sıcaklığı olan (68 °C)'nin altındaki sıcaklıklarda, malzeme yalıtkan fazda olmakla birlikte, yakın kızılötesi ışınlarını yüksek oranda geçirmektedir. Buna karşılık yüksek sıcaklıklarda yani vanadyum dioksitin geçiş sıcaklıkları üzerinde, malzemenin metallik hale geçmesiyle birlikte yakın kızılötesi bölgesindeki ışınları çok az miktarda geçirebilmektedir. Bu optik özellikler Şekil 2.10'da gösterilmiştir. Bu özellikler dikkate alındığında, vanadyum dioksitin, termokromik cam uygulamaları için, ideal bir malzeme olduğu görülmektedir (Jiang ve ark. 2014). Farklı malzemeler ile vanadyum dioksit katkılanarak, metal yalıtkan geçiş sıcaklığını oda sıcaklığına yaklaştırılmasıyla, vanadyum dioksit temelinde termokromik camlar sayesinde soğuk havalarda yüksek oranda yakın kızılötesi ışınların yansıtılarak evlerin ısınması ve yazın sıcak havalarda yakın kızılötesi ışınların yansıtılarak evlerin serin olmasına sebep olacaktır. Bu durum da güneş enerjisinden yüksek oranda yararlanmamız açısından bir olanaktır.

Şekil 2.10. Vanadyum dioksit temelinde termokromik akıllı camlar (Du ve ark. 2011)

2.2.3 Kızılötesi Detektörler

Direncin sıcaklık katsayısı (Temperature Coefficient of Resistance-TCR), kızılötesi detektör performansı açısından önemli bir faktördür. Termal duyarlı malzemeler için, TCR değerinin hesaplanması şu şekildedir (Şekil 2.11):

$$\alpha = \frac{\Delta R}{R\Delta T} \tag{2.2}$$

Malzemenin direnci, sıcaklığın bir fonksiyonu olarak değişir. Detektörün performansını belirlemek için, sadece TCR değeri yeterli olmayıp aynı zamanda algılama değeri (D^*), duyarlılık (R_v) ve termal zaman sabiti (τ) de önemli parametrelerdir. Denklem (2.3)'te G ve C sırasıyla termal iletkenlik ve termal kapasiteyi gösterir. Buna ek olarak, η kızılötesi soğurma; I_b cihaza uygulanan akım; R_0 oda sıcaklığındaki bolometre direnci; A_d etkili absorbe alanı; Δf ve V_n sırasıyla bant genişliği ve sinyal gürültü olarak denklem 2.4 ve 2.5' te yer almaktadır (Wang ve ark. 2013, Chen ve ark. 2001).

$$\tau = \frac{C}{G} \tag{2.3}$$

$$R_{\nu} = \frac{\alpha \eta I_b R_0}{G\sqrt{1 + \omega^2 \tau^2}} \tag{2.4}$$

$$D^* = \frac{R_v \sqrt{A_d \Delta f}}{V_n} \tag{2.5}$$

Vanadyum oksit, çoğu metalden 5-10 kat daha yüksek bir TCR değerine sahiptir ve YBaCuO gibi bazı yarıiletkenlere göre daha düşük gürültüye sahiptir (Chen ve diğerleri 2001). Az miktarda vanadyum pentoksit (V₂O₅) katkılı vanadyum dioksit (VO₂), yüksek TCR değerine sahiptir. VO₂, 68 °C'de keskin faz geçişi gösterir. VO₂ yaklaşık 68 °C'de ani metal-yalıtkan geçişi gösterirken; V₂O₅, Au ve V₂O₃ gibi diğer birtakım fazlar ile katkılandığında katkılanan mazlemeler faz geçişini etkileyerek bu ani geçiş sürecini yavaşlatır (Wang ve ark. 2013). Böylece, bu bileşenin direncinde, düşük bir sıcaklık farkına karşılık büyük bir değişim gözlenir. Bu nedenle, detektör her farklı sıcaklığı algılar. Bu özellikleri göz önünde bulundurursak, vanadyum oksit filmler, bolometre için yüksek performans sergilemektedir.

Şekil 2.11. TCR ölçüm şeması

2.2.4 Alan Etkili Transistörler (FET)

Oda sıcaklığında uygulnan yüksek voltaj, vanadyum oksitin metal-yalıtkan geçiş özelliğini tetiklemektedir. Aslında faz geçişine sebep olan etkenin yüksek voltaj veya yüksek voltaj

sebebiyle lokal ısınma olup olmadığı açık değildir (Ruzmetov ve ark. 2010). Vanadyum dioksit metal yalıtkan geçiş özelliği sebebiyle, alan etkili transistörlerde Şekil 2.12'de gösterildiği gibi kaynak (S) ve savak (D) arasında kanal görevi görmektedir. Dolayısıyla vanadyum dioksit elektrik alan ile tetiklendiğinde metalik faza geçer ve kaynak-kavak arasında akım geçişi olur. Buna karşılık elektrik alan uygulanması bırakıldığı zaman, bu vanadyum dioksit kanalı yalıtkan fazda olur ve kaynak savak arasında bir akım geçişi olmaz. Böylece elektrik alan uygulayarak, vanadyum dioksitin 10⁴-10⁵ oranındaki özdirenç azalması durumunda gerçekleşen metal-yalıtkan geçişi sayesinde mantık devlerinde kullanılması açısından oldukça önemlidir.

Şekil 2.12. Alan etkili transistör (FET) cihazının diyagramı (Ruzmetov ve ark. 2010)

GEREÇ VE YÖNTEMLER

3.1 İnce Film Büyütme

İnce film, bir alttaş üzerine büyüyen malzemenin katmanına karşılık gelir ve kalınlığı nanometreden birkaç mikrometreye kadar değişmektedir. Optiksel-elektriksel cihazlar gibi ince film uygulamaları sebebiyle, ince film teknolojisi mikroelekronik üretimler sebebiyle medikal ve güvenlik endüstrileri gibi çeşitli birçok alanda yaygın olarak kullanılmaktadır.

Biriktirme yöntemi ile ince film prosesi 3 temel adım gerektirir. İlki, biriktirme için uygun atomik, moleküler veya iyonik yapıların olması gerekliliğidir. İkincisi, bu yapıların alttaşa taşınabilmesidir. Son olarak, kimyasal veya elektrokimyasal reaksiyon ile bu yapıların alttaş üzerine yapışmasıdır. İnce film üretimi, çekirdeklenme ve büyüme süreci ile oluşur. Deneysel ve teorik sonuçlara göre, ince film biriktirme prosesin meydana gelmesi aşağıdaki adımlarla verilmiştir:

- 1. Kaynaktan gelen iyonlar alttaş yüzeyini ısıtarak kinetik enerjilerini kaybeder. Böylece bu iyonlar alttaş yüzeyi üzerine toplanırlar.
- 2. Alttaş yüzeyine toplanan parçacıklar termal dengede değillerdir. Bu sebepten, yüzey üzerinde taşınırlar ve çekirdek oluştururlar.
- Zaman geçtikçe, çekirdeğe bağlanan parçacık sayısı artar ve çekirdek büyümeye başlar. Çekirdek kritik boyuta ulaşınca termodinamik olarak dengede olurlar ve bu aşama çekirdeklenme olarak adlandırılır.
- 4. Alttaş yüzeyi üzerinde büyüyen birtakım çekirdekler vardır ve onlar adacıklar halinde şekillenir.
- 5. Bu adacıklar büyümeye devam eder ve birleşmeye başlar. Bu aşamada, küçük adacıkların birleşmesi daha büyük adacıkları oluşturur ve bu aşama birleşme aşaması olarak bilinir.
- Daha büyük adacıklarda büyümeye devam eder ve bu sebepten, bu adacıklar alttaş yüzeyi üzerine ince film olarak şekillenir. Adacıkların sınırlarında, sürekli olmayan yapılar meydana gelir.

İnce film büyütme teknikleri, reaktif saçtırma teknikleri gibi fiziksel ve kimyasal prosesleri içerir. DC, RF, reaktif ve mıknatıssal saçtırma tekniği olmak üzere 4 çeşit saçtırma metodu vardır.

3.2 Saçtırma Metodu

Hedefin yüzeyindeki atomlar, gaz parçacıklarıyla bombardıman edilir. Bu duruma saçtırma denir. Saçtırma tekniği, ince film biriktirme metodları arasında bir fiziksel buharlaşma biriktirmesidir (PVD). İnce film üretimi için, saçtırma tekniği en yaygın kullanılan metodlardan biridir. Çarpışma sebebiyle, malzemedeki atomlar ve iyonlar arasında bir momentum değişimi olur. Plazmadaki yüksek enerjili iyonlar, güçlü elektrik alan etkisi ile hedefin yüzeyine yönelir. Plazma iyonları ve hedef yüzeyindeki atomlar arasındaki çarpışma, atomların yüzeyden kopmasına sebep olur ve bu koparılmış atomlar Şekil 3.1'deki gibi alttaşın yüzeyine biriktirilir.

Şekil 3.1. Saçtırma Şeması (Yuce, 2015)

Mıknatıssal saçtırma tekniğinin avantajları aşağıdaki şekilde sıralanabilir:

- 1. Koparılmış atomlar, güçlü bir şekilde alttaş yüzeyine yapışır.
- 2. Büyütülmüş filmlerin kalınlığı tekdüzedir.
- 3. Büyütme süreci kolayca kontrol edilebilir.
- 4. Kaliteli ve tekdüze kalınlıkta büyük alanlara biriktirme yapılabilir.

3.3 Plazma

Kimyasal olarak, malzemenin yüzeyini fonksiyonelleştirmek için ve özelliklerini geliştirmek için reaktif plazma kullanılır. Birleştirilmiş devrelerin üretimi amacıyla, plazma teknolojisi temelinde olan yüzey mekanizması elektronik endüstrilerinde (IC) kullanılmakla beraber tekstil, havacılık, otomobil, gıda ve biyomedikal endüstrilerinde de kullanılmaktadır.

Maddenin dördüncü hali olarak bilinen plazma, elektriksel olarak nötürdür. Plazma serbest elektronlardan ve hareketli yüklü parçacıklardan oluşur. Atomlar değerlik elektronlarını bırakırlar ve pozitif yüklü iyonlar haline dönüşür. Artan sıcaklık veya gaz atomlarının artan enerji seviyeleri sebebiyle, plazmaya katılabilmeleri için çok sayıda atom iyonize olur. Negatif ve pozitif yüklü parçacıkların neredeyse eşit olmaları sebebiyle, plazma durumu dengededir. Plazmayı tanımlayan parametreler; sıcaklık, elektron yoğunluğu ve nötr atomların yoğunluğu veya parçacıkların yoğunluğudur. Plazma durumundaki elektronların sıcaklığı, genel olarak iyonların sıcaklığından daha fazladır.

Plazma sırasında parıltının bazı özellikleri aşağıdaki gibidir:

- 1. Parıltının sürekliliği, elektrik alan etkisi ile sağlanır.
- 2. Yüklü parçacıklarla nötr gaz atomlarının çarpışmasıyla parıltı meydana gelir.
- 3. Yüzeyde parıltı nötralize olmuş olur.
- 4. Nötr gaz atomlarının iyonizasyonu plazma sürecini korur.
- 5. Elektronlar ve iyonlar arasında termal olarak bir denge yoktur.

Plazma oluşabilmesi için, iyonizasyon olmalıdır. Plazma yoğunluğu genel olarak elektron yoğunluğu ile ilişkilidir. Çok az miktarda iyonize olmuş gaz atomları plazma oluşturabilir. İyonizasyon derecesi denklem (3.1)'deki gibi tanımlanmaktadır:

$$\alpha = \frac{n_i}{n_n + n_i} \tag{3.1}$$

Bu eşitlikte, *a* iyonizasyon derecesini gösterirken, n_i ve n_n sırasıyla plazma durumundaki yüklü parçacıkların yoğunluğu ve nötr gaz yoğunluğuna karşılık gelmektedir.

3.4 Alttaş Üzerine Biriktirme

Plazma oluşturmak için, yüksüz bir gaz vakum ortamına girer. Vakum sisteminde kimyasal reaksiyonu önlemek için asal gaz tercih edilir. Bununla birlikte, bazı uygulamalarda hedefteki malzemeden farklı olan, farklı fazlar elde etmek için kimyasal reaksiyon istenir ve plazma oluşturmak için bir reaktif gaz kullanılır. Saçtırma işlemi için çoğunlukla Argon (Ar) gazı kullanılır.

Argonun ilk iyonizasyon potansiyeli 15.7 eV ve argonun ikinci iyonizasyon potansiyeli 27.76 eV'dir. Hesaplamalara göre, oda sıcaklığında 1 mTorr'da argonun ortalama serbest yolu yaklaşık 8 cm'dir. Azot (N₂) veya oksijen gazı atomları, bu reaktif gaz atomlarının vakum ortamında argon atomlarıyla girişi durumunda reaktif saçtırmaya neden olabilir. Anot ve katot

plakalar arasında potansiyel bir fark olduğundan dolayı, elektrik alanı anot (saçtırma kaynağı) ile bir katot arasındaki bu alanı yerine getirir. Negatif voltaj, anottan katotta doğru bir elektrik alan oluşmasına sebep olur. Oda sıcaklığında gaz atomları az miktarda iyon ve birkaç serbest elektron içerir. Gaz atomları vakum sistemine girmeye başladığında, elektrik alan iyonların anoda ve elektronların katota doğru hızlandırılmasına sebep olur. Daha sonra, elektronların gaz atomlarıyla çarpışmaları nedeniyle gerçekleşen daha fazla elektron ve iyonun yanı sıra katot yüzeyinde yeni elektronlar oluşur. İyonların nötr durumunda, elektronlar katottan iyonlara tünelleme sürecini gerçekleştirir. Nötralize edilmiş iyon durumunda, iyonlar enerjilerini serbest bırakır. Daha sonra bu iyonizasyon enerjisi, Auger işlemi ile yüzey elektronlarına verilebilinir. Yüksek enerji transferi durumunda, atomlar iyonize olur ve katoda doğru hızlanır. Bu elektronlara "ikincil elektronlar" denir. Elektrik alan etkisi altında bu elektronlar hızlanır. Bu durum ise yeni iyonlara ve serbest elektronlara neden olur.

Yeterli güç uygulanmasıyla plazma oluşturulur. Elektronlar ve nötr türler arasında bir çarpışma olabilir. İyonizasyon potansiyel enerjisine kıyasla enerji transferi yetersiz olduğunda, atom daha yüksek enerji seviyelerine kadar uyarılabilir. Atomlar uyarılmış halden parlaklık kazandıran optik geçiş yoluyla ilerler.

3.5 Saçtırma Sistemleri

3.5.1 Direkt Akım (DC) Saçtırma

DC saçtırma sisteminde, plazma DC güç kaynağı kullanılarak oluşturulur. Plazma, gazın iyonize edilmesi için yeterli olan yeterli gaz basıncı ve elektrik alanı olan katot ve anot plakaları arasında üretilir (Şekil 3.3). Pozitif gaz iyonları hızlanır ve katot plakasına vurur. Böylece bu vurma sayesinde ikincil elektronlar üretilir. Buna ek olarak, bu ikincil elektronlar geri saçılır ve gaz parçacıklarıyla çarpışır ve onları da iyonize eder. Bu plazma serbest elektronlardan ve pozitif gaz iyonlarından oluşur ve bu pozitif gaz iyonları hedefi bombardıman ettirmek için kullanılır. DC saçtırmanın dezavantajı ise düşük biriktirme oranıdır ve, ayrıca, yalıtkanlar için uygun değildir.

Şekil 3.3. DC saçtırmanın temel sistemi (Yuce 2015)

3.5.2 Radyo Frekansı (RF) Saçtırma

RF saçtırmanın çalışma prensibi DC saçtırmada geçerli olan prensibe benzer. Bununla birlikte, RF saçtırmada bir DC kaynağı yerine bir radyo frekanslı güç kaynağı kullanılır (Şekil 3.4). Plazma iyonlarının hedefe çarpması durumunda, plazma iyonlarının elektrik yükü nötr hale gelir ve bu nötralize edilmiş iyonlar atom olarak geri döner. Bununla birlikte, yalıtkan hedef saçtırma işlemi için kullanıldığında, nötralizasyon işlemi hedefin yüzeyinde pozitif yük ile gerçekleşir. Bu yük, bombardıman iyonları nedeniyle saçtırma işlemini durdurmaya sebep olabilir. Bu süreci korumak için yüzey yükünün giderilmesi amacıyla, plazmadan yeterli elektron geri çekilmelidir. Bu ise, polaritenin ters çevrilmesi ile gerçekleştirilir. Polaritedeki bu periyodik geri dönüşüm, hedef üzerinde uygulanan radyo frekansı (RF) voltajı nedeniyle otomatik olarak gerçekleştirilir. RF saçtırmanın avantajı, anot ve katodun periyodik olarak değişmesidir, böylece yalıtkan alttaşlar yüklenmez. Bu nedenle bu saçtırma tekniğin kıyasla daha yüksek bir birikme oranı vardır. Bu tür saçtırma tekniğine RF saçtırma denir.

Şekil 3.4. RF saçtırmanın temel prensibi (Yuce 2015)

3.5.3 Reaktif Saçtırma

Vakum sisteminde, saçtırılan atomlar ile saçtırma gazı arasında kimyasal reaksiyonlar olabilir. Bu tip kimyasal reaksiyonları önlemek için, iyonizasyon için argon (Ar) gibi asal gaz kullanılır. Bununla birlikte, kimyasal bir bileşik gibi bazı uygulamalar için asal gaza oksijen gibi bir reaktif gaz eklenir. Reaktif gaz hedefle reaksiyona girer ve yüzey üzerinde ince bir film oluşturur. Bu teknik, özellikle oksit ince filmler oluşturmak için kullanılır. Bu tür saçtırma tekniğine reaktif saçtırma denir.

3.5.4 Mıknatıssal Saçtırma

Mıknatıssal saçtırma tekniğinde, mıknatıslar saçtırma işleminin verimliliğini arttırmak için kullanılır. Mıknatıslar, saçtırma tekniği için önemli bir rol oynamakta olup, iyonlaşma işlemine katılan elektron sayısını arttırmaya ve biriktirme oranını arttırmaya yol açar. Güçlü kuvvete sahip mıknatıslar, elektrik alana doğru açı ile gelen manyetik alan yaratmak için hedefin arkasında yer alırlar.

Manyetik alan ve elektrik alan etkileşir; ve elektron sürüklenme yolu hedef yüzeyini oluşturur. Bununla birlikte, iyonlar ve elektronlar, özel olarak hizalanmış elektrik ve manyetik alanlar nedeniyle Lorentz kuvvetinin etkisi altında hareket eder. Bu işlem, yüklü parçacıkların çarpışma ihtimalini arttırır (iyonlaşma ihitmalini geliştirir). Bu nedenle, mıknatıssal konfigürasyonu olmayan saçtırma işlemine kıyasla, mıknatıssal saçtırma işlemindeki biriktirme oranı 10-100 kat daha hızlıdır. Magnetronlardan dolayı, iyonlaşma verimliliğini elde etmek için az sayıda argon atomu yeterlidir. Mıknatıslar, daha fazla çarpışma yaratır ve parıltıya yol açan bir takım iyonlar oluşmasına neden olur. Bu teknik DC ve RF güç kaynakları ile kullanılabilir. Bu nedenle bu saçtırma işlemi, iletken ve yalıtkan hedefler için uygundur.

3.6 Deneysel Çalışmalar

Bu çalışmanın ilk amacı, alan etkili transistor (FET) uygulamaları için kaynak (S) ve savak (D) arasındaki bir kanal olarak DC mıknatıssal saçtırma tekniği ile üretmektir. Sonrasında, taramalı elektron mikroskopisi (SEM), X-ışını kırınımı (XRD), Raman mikroskopisi, X-ışını fotoelektron spektroskopisi (XPS) ve spektrofotometre gibi çeşitli teknikler kullanılarak yapısal ve sıcaklığa bağlı optik özellikleri belirlemek üzere büyütülen VO₂ ince filmler karakterize edilmiştir. Aynı zamanda, büyütülmüş ince filmlerin özdirenci, vakum altında prob istasyonu sisteminde, farklı sıcaklıklarda elektriksel özellikleri belirlemek üzere analiz edilmiştir. Bu karakterizasyondan

sonra, en yüksek kalitede VO₂ örneği, FET cihazının VO₂ kanalını üretmek için elektron ışını litografi ile şekillendirilmiştir. Bu aşamadan sonra Şekil 1.1'de gösterildiği gibi farklı 2 tip FET üretilmiştir. Tüm üretim aşamaları Bölüm 4 Bulgular ve Tartışma kısmında detaylı olarak yer almaktadır.

3.7 C-Düzlem Safir [Al₂O₃ (0001)] Üzerinde Büyütülen VO₂ İnce Filmlerin Deneysel Süreci

Darbeli (Pulsed) lazer birikimi (PLD) (Kim ve Kwok 1994), kimyasal buhar birikimi (CVD) (Maruyama ve Ikuta 1993, Sahana, Subbanna ve Shivashankar 2002), Sol-jel kaplama (Chae, Kim ve Yun 2008), iyon demeti çökelmesi (West ve ark. 2008) ve saçtırma (Ruzmetov ve ark. 2007, Ko ve Ramanathan 2008) gibi farklı VO₂ ince film büyütme yöntemleri vardır. Her ince film büyütme yöntemin avantajları ve dezavantajları vardır.

Bu çalışmada, mıknatıssal saçtırma tekniğinin yüksek kalitede film üretimi, güçlü yapışma ve tekdüzelik sağlayan özellikleri sebebiyle, VO₂ ince filmi üretmek için DC mıknatıssal saçtırma tekniği kullanılmıştır.

- Alttaş olarak, oldukça iyi termal iletkenliğe (300 K'de 27.21 Wm⁻¹K⁻¹) sahip olan safir (c-Al₂O₃) kullanılmıştır.
- Alttaş sırasıyla aseton, metanol ve propanol içinde bir ultrasonik titreşim temizleyicisiyle her aşama için 10 dakika boyunca temizlenmiş olup, ardından saf azot gazı ile kurutulmuştur.
- 3. Hedef olarak 2" saf Vanadyum (V) (%99.9) kullanılmıştır.
- İyi bir kristal yapısı elde etmek için alttaş 550 °C'ye kadar ısıtılmıştır. Aynı zamanda, ince filmlerde homojenlik sağlamak için, alttaş film biriktirme sırasında 15 rpm hız ile döndürülmüştür.
- 5. Vakum basıncı yaklaşık 3.2 x 10⁻⁶ mbar iken, ince film büyütme sırasında vakum basıncı yaklaşık 8.7 mbar'dır.
- 6. VO₂ fazı elde etmek için, biriktirme sırasında vakum sistemi içine Ar ve O₂ gazları gönderilmiştir.
- 7. İnce film büyütme işleminden10 dakika öncesinden, Vanadyum (V) metal hedefinden ön-saçtırma işlemi yapılmıştır.
- 8. Vakum sistemine giren O₂ ve Ar gaz karışımı sayesinde, saçtırılan V parçacıklarının oksidasyonunu gerçekleştirilmiş ve optimum koşullarda VO₂ ince filmi büyütülmüştür.

- Büyüyen ince filmlerin kalınlıkları, biriktirme süresine bağlı olarak 125 nm ve 310 nm olarak değişiklik göstermektedir.
- 10. İnce filmlerin yapısal-optik analizleri, SEM, XRD, Raman, XPS ve spektrofotometre olmak üzere çeşitli tekniklerle gerçekleştirilmiştir.
- 11. VO₂ ince filmlerinin sıcaklığa bağlı özdirenci vakum altında prob istasyonunda ölçülmüştür.
- 12. Büyütülmüş VO₂ ince filmler, VO₂ kanal üretimi için elektron demeti litografi tekniği ile şekillendirilmiştir.
- 13. Şekillendirilmiş VO₂ ince filmler üzerine, üretilecek olan FET yapısına bağlı olarak öncelikle dielektrik tabakası olarak HfO₂ büyütülmüştür. Sonrasında FET kapı görevi görecek olan Al-Au buharlaştırılmıştır. Kapı oksitsiz FET yapısı içinse, HfO₂ dielektrik tabakası yerine hava boşluğu (Air Gap) bırakılmış olup havanın dielektrik özelliği kullanılmıştır.

3.8 Vanadyum Dioksit İnce Film Üretim Metodu

3.8.1 Mıknatıssal Saçtırma Sistemi

Magnetron Püskürtme Sistemi Şekil 3.5'te gösterildiği gibi İYTE Fizik Bölümü İnce Film Laboratuvarı'nda VO₂ ince film üretmek üzere tasarlanmıştır. V hedefi ve alttaş arasında DC gücü uygulandığında, bu anda elektrik alanı oluşur. Güçlü bir potansiyel farkının asal gaz olan argon (Ar) gazına uygulanması sebebiyle Ar atomlarının iyonizasyonuna neden olur ve plazma oluşur. Hedefin altındaki mıknatıslar manyetik alan oluşturur. Bu manyetik alanlar dağınık Ar iyonlarını saptırarak hedefle birden çok çarpışmaya yol açar. Dahası, iyonize olmuş argon atomları potansiyel farklarla hızlandırılır. Böylece, V hedef atomlar saçtırılır ve alttaşa taşınır. Bu durumda Ar gazı ile oksijen atomları nedeniyle V-O atomları arasında kimyasal reaksiyon oluşur.

Alttaşı ısıtmak için, Şekil 3.5.b'de gösterildiği gibi, saçtırma vakum sistemi için bir ısıtıcı tasarlanmıştır. Alt tabaka 24 V - 250 W olmak üzere 4 adet lamba ile 550 ° C'ye kadar ısıtılmıştır. Alttaş sıcaklığı, J tipi termalçift bağlı PID kontrol cihazı ile kontrol edilmiştir. Biriktirme sırasında alttaş Şekil 3.5.b'de gösterildiği gibi, alttaşa bağlı bir dönme mekanizması ile döndürülmüştür.

Şekil 3.5. (a) Mıknatıssal saçtırma sisteminin (b) Büyütme çemberinin resmi (Yuce 2015)

3.9 Ölçüm Sistemleri

3.9.1 Taramalı Elektron Mikroskobu (SEM)

Taramalı elektron mikroskobu (SEM) küçük bir alana odaklanan yüksek enerjili elektronlarla tarama yaparak bir örneğin görüntüsünü meydana getirir. SEM'in çalışma prensibi, optik mikroskopa benzer. Ancak, numunenin SEM görüntüsü elde edilmesi için elektron demeti kullanırken, optik mikroskop görüntüsünde ışık demeti kullanılır.

Elektron ışınları, Auger iyonlaşmaları nedeniyle numunedeki atomların harici yörüngesel elektronlarıyla etkileşime girer. Bu elektronlar, numunenin yüzeyi hakkında bilgi içerir. Yüksek enerji ile gelen elektron ışını nedeniyle, ikincil elektronlar yüzey atomlarından sökülür. Bu ikincil elektronlar, elektronlarının enerjisi 200-300 eV ile 100 keV arasında değişebilen numunenin topografik görüntüsünü ortaya çıkarmaktadır. Yüksek enerjili elektronlar, numuneyi yüksek çözünürlüklü atomik seviyede görmek için bir avantaj sağlar.

Büyütülen filmlerin yapısal ve morfolojik özellikleri, İYTE MAM'da bulunan Philips Quanta donanımlı alan emisyon taramalı elektron mikroskopisi (FE-SEM) ile incelenmiştir.

3.9.2 X-Işını Kırınımı (XRD)

X-ışınları, bir atomun boyutuyla neredeyse aynı olan, yaklaşık 1 Angstrom (Å) dalgaboyundaki elektromanyetik dalgalardır. X-ışını kırınımı (XRD) analitik bir teknik olup, kristal yapıdaki bir maddenin faz tanımlamasını belirlemek ve birim hücre boyutları hakkında bilgi edinmek için kullanılmaktadır. Monokromatik X ışınlarının bir hedefle etkileşime girdiğinde, hedefteki atomlardan X-ışınlarının saçılması olarak meydana gelir. Saçılan X ışınları, düzenli kristal bir yapıya sahip olan materyalde yapıcı ve yıkıcı etkileşimlere neden olarak girişim desenleri oluşturur.

X-ışını kırınımı Bragg Yasası ile tanımlanır:

$$2d\sin\theta = n\lambda \tag{3.3}$$

Bir kristalin atomik tabakaları arasındaki boşluk *d* değişkeni; Θ , gelen ışığın açısı; *n* bir tam sayı; ve λ denklem (3.3)'te (Şekil 3.6) verilen gelen ışığın dalgaboyudur.

Faz tanımlanması ve ince filmlerin kristal yapısı, İYTE MAM'da bulunan XRD cihazı ile incelendi. XRD, Philips X'Pert Pro X-Işını difraktometresi üzerinde geometriyi 10°'den 80°'ye odaklayan Bragg-Brentano'da çalıştırılmış ve bakır hedefi CuK_{α} = 1.5418 Å olan tek kristal kırınım için 0.2 adım büyüklüğü kullanılarak ve 12.5 dakikalık bir zamanda tamamlanmıştır.

Şekil 3.6. X-ışını kırınımı örneği (Gottimukkala 2005)

3.9.3 Raman Spektroskopisi

Raman spektroskopisi malzemenin moleküler titreşimi hakkında bilgi veren bir spektroskopik tekniktir.

Gelen ışık bir molekül veya bir kristalden saçıldığında, fotonların çoğu elastik olarak saçılır. Gelen ışığının dalgaboyu saçılan ışıkla aynıdır. Bu durum Rayleigh veya elastik saçılma olarak bilinir. Gelen ışığın dalgaboyu saçılan ışığın dalgaboyundan farklı olduğunda, Raman etkisi olarak adlandırılan elastik olmayan saçılma gözlenir. Raman saçılımında, lazer ışığının moleküler titreşimler veya fononlarla etkileşime girmesi nedeniyle, az miktarda saçılan ışığın enerjisi kaymaktadır (Turrell ve Corset 1996).

Gelen ve saçılan ışık arasındaki enerji farkı, denklem (3.4)'te gösterilmektedir; Burada \mathcal{V} , dalgaboyundaki Raman kaymasıdır (cm⁻¹); $\lambda_{gelen,saçılan}$ gelen ve saçılan Raman ışığının dalgaboylarıdır.

$$\mathcal{V} = \frac{1}{\lambda_{gelen}} - \frac{1}{\lambda_{saçılan}}$$
(3.4)

Raman analizleri İYTE Fizik Bölümünde bulunan 514.5 nm dalgaboylu uyarıcı ışık kullanılarak gerçekleştirilmiştir ve bu teknik vanadyum oksit ince filmlerinin titreşim modlarını elde etmek için kullanılmıştır.

3.9.4 X-Işını Fotoelektron Spekroskopisi (XPS)

X-ışını fotoelektron spektroskopisi (XPS), numune elementlerinin bileşimi, kimyasal ve elektronik durumu hakkında bilgi veren yüzeye duyarlı bir spektroskopik tekniktir. X-ışını numuneye gelir ve bağlanmış bir elektronu sürekli duruma (continuum) uyarır. Yayılan elektronun kinetik enerjisi, spektrometreye ve numuneye bağlı iş fonksiyonu (Φ) ile ölçülür. Böylece elektronların bağlanma enerjisi elde edilir. Bu enerji, malzemedeki atomların parmak izidir. Herbir element, bağlanma enerjisi değerlerinde karakteristik bir XPS pik noktası sunar. Bu durumun enerji korunumu (3.5) denklemi ile sunulmuştur.

$$E_{bağlanma} = E_{foton} - (E_{kinetik} + \Phi)$$
(3.5)

Burada $E_{bağlanma}$ the elektronun bağlanma enerjisi; E_{foton} , X-ışını fotonlarının enerjisi; $E_{kinetik}$ elektronun kinetik enerjisi; Φ spektrometrenin çalışma fonksiyonudur (Paterson ve Swaffield 1994).

XPS ölçümleri 200 W gücünde tek renkli bir Mg K_a radyasyon kaynağı (hv = 1254 eV) ile yapılmıştır. Analizör geçme enerjisi 30 eV'a ayarlanmış olup, adım boyutu 0.1 eV'dur. CasaXPS yazılımı, spektrumların dekonvolüsyon işlemini yapmak için Shirley kullanılmıştır.

İYTE Fizik Bölümünde bulunan SPECS Phoibos 150 3D-DLD ile ince filmlerin kimyasal bileşimini belirlemek için XPS verileri elde edilmiştir.

3.9.5 Optiksel Karakterizasyon

Morötesi (ultraviyole-UV)/Görünür/Yakın Kızılötesi spektroskopi, bir ultraviyole (UV) görünür, yakın kızılötesi (NIR) bölgede dalgaboyunun bir fonksiyonu olarak numunenin geçirgenlik, yansıma veya soğurmasının niceliksel ölçümüdür (Griffiths ve De Haseth 2007). Işık demetinin dalgaboyunun bir fonksiyonu olarak şiddeti, fotometre ile ölçülebilir. Bu teknikle yapılan analiz sonucunda; spektral bant aralığı genişliği, örneğin geçirgenlik yüzdesi, soğurduğu değerin logaritmik aralığı ve örneğin yansıtma yüzdesi hakkında bilgi edinilebilir. 200 nm - 2500 nm arasında dalgaboylu ışık kullanılmıştır.

İYTE Fizik Bölümü Dielektrik Laboratuvarı'nda bulunan Perkin Elmer Lambda 950 UV/VIS/NIR spektrometresi, optik ölçümler için kullanılmıştır.

3.9.6 Elektriksel Karakterizasyon

Elektrik ölçümleri, İYTE Fizik Bölümü Dielektrik Laboratuarında bulunan Şekil 3.7'de gösterildiği gibi prob istasyonu sisteminde gerçekleştirilmiştir. Prob istasyonunda, vakum altındaki filmlerin direnç değerleri, Keithley 2100 dijital multimetre cihazı kullanılarak ölçülmüştür. Örneğin prob istasyonunda yerleştirildiği alan, VO₂ ince filmlerinin metal-yalıtkan geçiş özelliklerini gözlemlemek için 100 °C'ye kadar ısıtılmıştır. Buna ek olarak, Labview yazılımı, sıcaklığa bağlı özdirenç verilerini okuyarak bu sistemi kontrol etmektedir.

Şekil 3.7. Laboratuvarımızdaki Prob istasyonun fotoğrafı 27

3.10 Şekillendirilen VO₂ İnce Filmlerin Elektron Demeti Litografi Süreci

3.10.1 Temiz Oda Süreci

VO₂ büyütme işleminden sonra bu örnek, elektron demeti litografi ile şekillendirilmek üzere hazırlanmıştır.

Büyütülmüş VO₂ ince filmler, spin kaplama kullanılarak AZ5214 negatif fotoresist (PR) ile temiz odada kaplandı. Bu kaplama 60 saniye sürmekte olup, spin kaplama işleminde 3000 devir / dakika ile döndürülür. Bu kaplamanın kalınlığı 1.5 µm'dir. Kaplama işleminden sonra PR kaplı VO₂ örneği, PR'yi yüzeye yapıştırmak için 30 dakika boyunca 90 °C sıcaklığındaki fırında bekletilmiştir. Devamında ise, elektron demeti litografi ile şekillendirilmiştir. Elektron demeti ile şekil vermek için 10 kV e-demeti kullanıldı. Sonrasında bu örnek 7 saniye UV ışığına maruz bırakıldı. Elektronların çarpmadığı alanı kaldırmak için örnek damıtılmış suya yerleştirildi ve 30 saniye boyunca NaOH (sodyum hidroksit) çözeltisi içinde tutuldu. Ardından, film yüzeyi üzerinde PR dayanıklılığını artırmak için 120 °C'de 30 dakika kadar bekletildi. Bu işlem sıralaması, Şekil 3.8'de gösterilmiştir.

Şekil 3.8. Temiz oda ve elektron demeti sürecinin şematik sunumu (Yuce 2015)

3.10.2 Elektron Demeti Litografisi

Nano-üretim için önemli bir teknik olan elektron demeti litografi (EBL) hassas elektron demeti direncine sahip ince film yüzeyinde, özel şekiller çizmek için kullanılır. Bu tekniğin en önemli avantajı, 10 nm'den daha düşük çözünürlükle (ışığın kırınım sınırının altında) bir örneği yüksek çözünürlükle şekillendirebilmektir. Elektron demeti litografi, klasik fotolitografi yönteminden

farklı olup maske gerektirmeyen bir yöntemdir. Ayrıca maskeyi de oluşturmak için kullanılabilir. Bu tekniğin bir fotolitografi sistemine kıyasla; pahalı olması, sistem karmaşıklığı ve daha fazla maruz kalma süresi gibi bazı dezavantajları vardır. Ayrıca, bu işlem, yüklü elektronlara bağlı olduğundan, maruz kalma süresi boyunca yüksek vakum şartı gerektirir (Demirhan 2014).

Şekil 3.9. Elektron demeti litografi sistemi

Büyütülen ince film, elektron demeti litografi işlemi öncesinde, negatif fotoresist ile kaplanmıştır. Sonrasında, elektron demeti prosesi Şekil 3.9'da gösterildiği gibi e-line programı ile gerçekleştirilmiştir. UV ışını, elektron demetinin ulaşamadığı alanda fotorezist (PR) moleküllerin parçalanmasına yol açar. Bundan sonra, PR'nin dayanıklılığını arttırmak için, NaOH içinde bekletilip ısıtma işlemi gerçekleştirilmiştir.

3.10.3 İyon Demeti Aşındırması

Islak, anizotropik ıslak ve plazma aşındırması gibi mikron-boyutunda FET üretimi için büyütülmüş VO₂ ince filmlerin şekillendirilmesi için birçok teknik vardır. Islak aşındırma, kimyasal veya sıvı etkenliğe ait olmakla birlikte, plazma aşındırma, kuru gaza veya fiziksel kuru aşındırmaya aittir. Islak ve plazma aşındırma arasındaki temel fark aşındırma süresidir. Plazma aşındırmanın aşındırma süresi, ıslak aşındırmaya kıyasla daha yavaştır.

Bu sistemde, aşındırma işlemi sırasında alttaşa yöneltilen iyon kaynağı geniş iyon demetleri oluşturmak için kullanılır. Elektron bombardımanı vakum çemberinde iyonize (Ar) argon atomlarına sebep olur. Elektronlar, katot-anot filamanlar tarafından oluşturulur ve toplanır. Manyetik alan ise elektronların yönlendirilmesine ve aşındırma olasılığının artmasına neden olur. Vakum sisteminde düşük basınç elde etmek için turbo moleküler pompa kullanılır. İyon demeti plazması daha düşük basınçta gerçekleşir ve düşük basınç bu süreç içerisinde alttaşın kirlenmesini önler.

Şekil 3.10. İyon demeti aşındırma sisteminin şematik görüntüsü (Yuce 2015)

Çalışmalarımızda, VO₂ örneği, elektron demeti litografi işlemi sonrasında laboratuvarımızda bulunan argon iyon demeti aşındırma sistemine yerleştirilmektedir (Şekil 3.10). Örnek, tutacağa 67.5° açı ile yerleştirilmiştir. Aşındırma işlemine başlamadan önce, vakum basıncı Turbo Moleküler Pompa (TMP) kullanılarak 10⁻⁶ Torr'a kadar düşürülür. Plazma oluşturmak için vakum sisteminde 30 sccm Ar gazı gönderilmiş olup, aşındırma çemberinde plazmayı oluşturmak için DC voltaj uygulanmıştır. Yüzey üzerinde homojenliği sağlamak için döndürme işlemi gerçekleştirilmiştir. Aşındırma işlemi boyunca hızlandırılmış atomlar ile kristal atomları arasındaki çarpışma ısınmaya neden olur. Bu nedenle, örnek tutucuyu soğutmak için bir soğutma sistemi kullanılmıştır. Böylece korunmasız kısım bu işlemle kaldırılmıştır ve şekillendirilmiş VO₂ kanalları elde edilmiştir (Şekil 3.11).

Şekil 3.11. Farklı genişliklerde şekillendirilmiş VO2 kanalları

BULGULAR VE TARTIŞMA

4.1 Büyütülen Vanadyum Dioksit İnce Filmlerin Karakterizasyonu

Projenin ilk aşamasında, en iyi MIT özelliği sağlamakta olan VO₂ filmler, mıknatıssal saçtırma sisteminde 45 dakikada 310 nm kalınlığında büyütülmüştür. Bu filmleri üretebilmek için kullanılması gereken ideal O₂ oranının %2.00 olduğu tespit edilmiştir.

Ancak proje kapsamında ise, daha ince vanadyum oksit film kullanmayı amaçlamış olduğumuzdan, safir alttaş üzerine biriktirilen film kalınlığı, film büyütme zamanı düşürülerek azaltılmıştır. 125 nm kalınlıklı filmde VO₂ fazının elde edilmesi için, O₂ oranının %2.25 olduğu tespit edilmiştir. Bu bölümde anlatılacağı üzere, kullanılması gerekli olan O₂ oranı, büyütülen filmin kalınlığına bağlı olarak değişiklik göstermektedir.

Bu bölümde, farklı kalınlıkta ve farklı oksijen oranlarına sahip olarak büyütülmüş olan filmlerin ilk aşamada, spektrofotometre ile sıcaklığa bağlı geçirgenlik ölçümleri yer almaktadır. Spektrofotometreden sıcaklığa bağlı olarak elde edilen optik ölçümlere göre, MIT geçişine sahip olan kalınlığa bağlı oksit büyütme parametreleri belirlenip, bu belirlenen parametrelerle büyütülen filmlerin özellikleri, Raman analizleri ile incelenmektedir. Optimum film büyütme şartlarında üretilen VO₂ örneklerinin yapısal analiz amacıyla XRD, faz geçişleri için elektriksel analizler, yüzey morfoloji görüntülemesi için SEM ve kimyasal bağlanma analizleri için ise XPS ve Raman cihazları kullanılmıştır.

4.1.1 Optik Analiz Sonuçları

Literatür çalışmaları, yalıtkan VO₂ ince filmlerin oda sıcaklığında yakın kızılötesi (NIR) dalgaboylu ışınları yüksek oranda geçirirken, yüksek sıcaklıklara ulaşıldığında ise MIT geçişi yaptığından dolayı metalik fazda bulunmakta ve bu nedenle aynı bölgedeki ışınların büyük bir kısmını yansıttığını göstermektedir (Jiang, 2014). Dolayısıyla büyütülen vanadyum-oksit film, VO₂ fazına sahipse, oda sıcaklığında yalıtkan fazda olup kızılötesi dalgaboylu ışının malzemeden geçişi sağlanırken, ~68 °C olan MIT geçiş sıcaklığının üzerinde olduğunda ise metalik faza geçiş yapacaktır. Dolayısıyla malzeme düşük sıcaklıklarda yalıtkan faz durumundayken kızılötesi ışına malzeme üzerinden geçerken, MIT geçiş sıcaklığının üzerindeki sıcaklıklarda metalik fazda olmasından dolayı geçemeyerek yansıtılacaktır. Bu

amaç doğrultusunda, 200 – 2600 nm dalgaboyu aralığında ölçüm yapmamıza olanak sağlayan spektrofotometremizin örnek tutucu kısmına özel olarak hazırladığımız aparat ile örneğimizi oda sıcaklığından başlayarak 100 °C ye kadar ısıtabilmekteyiz. Bu sistemi kullanarak vanadyum-oksit örneğimizi oda sıcaklığında yalıtkan fazda iken ve 80 °C sıcaklığında metalik fazda iken ölçmeyi amaçladık. Dolayısıyla, yakın kızılötesindeki geçirgenlikte, oda sıcaklığı ve 80 °C sıcaklıkta hangi örneğimizde maksimum düzeyde geçirgenlik farkı ölçülebiliniyorsa, belirtilen örneğin VO₂ fazda olduğunu belirleyebildik.

Şekil 4.1. Farklı oksijen oranlarıyla büyütülen 125 nm kalınlıklarındaki VO₂ ince filmlerin, iki farklı ortam sıcaklığında (oda sıcaklığı ve 80 °C) geçirgenliklerinin dalgaboyuna bağlı değişim grafikleri.

Şekil 4.1'de, safir alttaş üzerine farklı O₂ oranlarıyla 125 nm kalınlığında büyütülen VO₂ ince filmlerin, oda sıcaklığı ve 80 °C'de, 200 ile 2600 nm arasında optik geçirgenlik spektrumları verilmektedir. Şekilden de görüldüğü üzere, büyütme esnasında sisteme gönderilen oksijen oranı, %2.00 ile %3.00 arasında değiştirilmekte olup, oksijen miktarının değişimi büyütülen ince filmin geçirgenliğini önemli ölçüde etkilemektedir. En yüksek geçirgenlik ise %2.25 oksijen oranında büyütülen ince filmde gözlenmekte olup, yüksek sıcaklıkta kızılötesi dalgaboylarındaki geçirgenliği ise yaklaşık olarak %39 oranında azalmaktadır. Belirtilen değişim, %2.50 O₂ oranında büyütülen ince film için %15 iken, %3.00 O₂ oranında büyütülen film için ise %10 civarındadır. Dolayısıyla %2.25 oksijen oranlı değere yaklaşıldıkça, geçirgenlikteki değişim miktarı da en fazla miktarda olmaktadır. Büyütülen vanadyum-oksit ince filmlerin sıcaklığa bağlı kızılötesi geçirgenliğindeki bu değişim, filmlerin yapısındaki VO₂ miktarı hakkında bilgi vermektedir ki, burada elde edilen sonuçlar Raman analizinde elde

edilen sonuçları da desteklemektedir. Bunlara ek olarak, dikkat edilecek olunursa, %2.00 oksijen oranında büyütülen ince filmin görünür ve yakın kızılötesi bölgesindeki geçirgenliğinde sıcaklığa bağlı herhangi bir değişim gözlenmemektedir. Bu durum ise %2.00 oranında 125 nm kalınlığında büyütülen filmde, metalik fazın etkin olduğunu (vanadyum oksit filminin büyütülemediğini) ve dolayısıyla vanadyum metal hedeften büyütülmüş olan bu filmin her sıcaklık durumunda geçirgenliğinin metale uygun davranış göstermekte olduğunu, ve bu şartlarda büyütülen ince filmde oksit fazından ziyade metal yapısının etkin olduğu söylenebilir.

Tüm optik analiz sonuçları göz önünde bulundurulduğunda büyütülen 125 nm kalınlıklı vanadyum-oksit filminin, kızılötesi geçirgenliğindeki sıcaklığa bağlı değişimi en fazla %2.25 oksijen oranında büyütülen VO₂ ince filminde gözlenmektedir. Bu sebepten, 125 nm kalınlığında büyütülen filmler arasında en kaliteli MIT geçişinin, %2.25 oksijen içeren VO₂ ince filmine ait olduğu optik analiz sonuçlarına bağlı olarak desteklenmektedir.

Şekil 4.2. 310 nm kalınlığında %2.00 oksijen oranında büyütülen VO₂ ince filmin iki farklı ortam sıcaklığına (oda sıcaklığı ve 80 °C) bağlı geçirgenlik spektrumları.

Vanadyum oksit film büyütme işlemimize MIT geçiş özelliğine sahip olan 310 nm kalınlıklı film büyütülerek başlanılmıştır. Şekil 4.2'de 310 nm kalınlığında %2.00 oksijen oranında büyütülen VO₂ ince filmine ait olan geçirgenliğin dalgaboyuna bağlı olarak değişim grafiği iki farklı ortam sıcaklığında (oda sıcaklığı ve 80 °C) verilmektedir. Dalgaboyuna bağlı olarak sıcaklığa bağımlı geçirgenlik analizi yapıldığında, 310 nm kalınlıklı VO₂ ince filmin, görünür bölge geçirgenliği oda sıcaklığında %0.95 iken geçiş sıcaklığına göre yüksek sıcaklıklarda geçirgenlik %0.73 olup, ortalama geçirgenlik yüzdesi oldukça düşüktür. Yalıtkan VO₂'nin 1600 nm

dalgaboyundaki yakın kızılötesi geçirgenliği %33 iken, metalik VO₂ için bu değer %7'ye düşmektedir. Bununla birlikte, oda sıcaklığındaki yalıtkan VO₂'nun 2500 nm dalgaboyunda yakın kızılötesi geçirgenliği %61 iken, yüksek sıcaklıklarda metalik VO₂'nin geçirgenliği %7'ye kadar düşmektedir. Bu veriler, 310 nm kalınlığında %2.00 oksijen oranı ile büyütülen vanadyum-oksit filminin MIT geçişine sahip olduğunu göstermektedir.

Spektrofotometre ile sıcaklığa bağlı olarak alınan datalara göre 310 nm kalınlığında %2.00 oksijen oranı ve 125 nm kalınlığında %2.25 oksijen oranında vanadyum hedeften reaktif mıknatıssal saçtırma tekniği ile büyütülen vanadyum-oksit filmlerin VO₂ fazına sahip olarak ve dolayısıyla ~68 °C de MIT geçişine sahip oksit formunda büyütüldüğü sonucuna varılmaktadır. Yapılan analizlerde, belirtilen koşullarda büyütülen oksit filmlerin, oda sıcaklığında kızılötesi spektrumu yüksek oranda geçiriyorken, metalik fazda yansıtmasından dolayı MIT geçişine sahip olduğu ve dolayısıyla VO₂ fazında büyütme gerçekleştirildiği sonucuna varılmaktadır.

4.1.2 Raman Analiz Sonuçları

Raman ölçümleri 514 nm dalgaboylu yeşil lazer ile 100x'te gerçekleştirilmiştir. Lazer ısıtması sebebiyle, VO₂'nin faz değişimini engellemek amacıyla, lazerin şiddeti %63'e düşürülmüş olup, yapılan Raman analizleri bu malzemenin oda sıcaklığında sahip olduğu yalıtkan faza aittir.

Şekil 4.3'te 310 nm ve 125 nm kalınlıklarında büyütülen vanadyum-oksit filmlerin farklı oksijen büyütme oranlarındaki Raman analiz sonuçları gösterilmektedir. Analiz edilen örnekler arasında en iyi sonuç, şekilden de görüldüğü üzere, 310 nm kalınlığında ve %2.00 oksijen oranında büyütülen örnekte gözlenmiştir. Zhao ve arkadaşlarının çalışmasından da gözleneceği üzere, 313, 342, 392, 445, 502 ve 617 cm⁻¹'de pikler VO₂'in titreşim modlarıdır (Zhao, 2012). Yine aynı çalışmada belirtildiği üzere üzere, 617 cm⁻¹ de oluşan pik, V-V titreşim modu olup, VO₂ fazının ana pikidir. 310 nm kalınlığında %2.00 oksijen gaz oranı ve 125 nm kalınlığında %2.25 oksijen gaz oranı parametrelerinde büyütülen VO₂ filmlerinin 617 cm⁻¹ de yer alan pik şiddeti farklı parametrelerle büyütülen filmlerle karşılaştırıldığında oldukça yüksektir. Fakat filmin kalınlığının azalmasıyla, 288, 408, 488, 530, 704 ve 997 cm⁻¹ de V₂O₅ fazının titreşim modları gözlenmektedir (Piccirillo, 2007). 125 nm kalınlığında üretilen ince filmlerin oksijen oranı %3.00'ten %2.25'e düşürüldükçe, V₂O₅ fazının karakteristik piklerinin şiddeti azalmakta olup, VO₂ fazının karakteristik piklerinin şiddeti artmaktadır. Aynı zamanda, %2.00 oksijen oranıyla 310 nm olan ince filmde oldukça iyi bir sonuç gözlemlenirken, aynı parametrelerde filmin kalınlığı 125 nm'ye düşmesiyle 617 cm⁻¹ de oluşan VO₂ fazına ait ana

pik ile birlikte VO₂ ve V₂O₅'e ait bazı pikler gözlenememiştir. Diğer büyütülen filmlerden farklı olarak, ~320 cm⁻¹ ve 330 cm⁻¹'de sırasıyla V₂O₅ ve VO₂ fazından gelen karakteristik pikler gözlenmektedir (Öksüzoğlu, 2013; Petrov, 2002). 125 nm kalınlığında %2.00 oksijen oranı ile büyütülen örnekte ise çok hafif şiddetle birkaç tane pik görünmekte olup, bunlarda V₂O₅ modlarına aittir. Optik analiz kısmında da doğrulandığı üzere, 125 nm kalınlığında %2.00 oranında vanadyum hedeften büyütülen filmde oksit fazdan ziyade metalik faz yer almaktadır ki, bu üretim şartları bizim elde etmeye çalıştığımız, MIT geçiş özelliğine sahip olan VO₂ fazından çok uzaktır.

Şekil 4.3. Kalınlıkları verilen ve farklı oksijen oranları ile büyütülen ince vanadyum-oksit filmlerinin Raman analizleri.

Sonuç olarak belirtmek gerekirse, Raman analiz sonuçlarının da doğruladığı üzere, film kalınlığı arttıkça daha iyi bir kristal yapı elde edilmektedir ve 310 nm kalınlığında büyütülen VO₂ ince film için ideal oksijen oranı değeri %2.00 olarak elde edilmiştir. Ancak film kalınlığı 125 nm ye indirildiğinde ise VO₂ fazının karakteristik piklerinin şiddeti azalmaktadır. Oldukça önemli bir sonuç olarak belirtmek gerekirse, büyütülen ince oksit filmlerde VO₂ fazı elde edebilmek için, alttaş sıcaklığına ek olarak, film kalınlığının ve gönderilen oksijen gaz oranının etkisi oldukça fazladır.

4.1.3 XRD Analiz Sonucları

Şekil 4.4'de, %2.00 oksijen oranı kullanılarak 310 nm kalınlığında biriktirilen vanadyum-oksit ince filminin X ışını kırınımı (XRD) analiz sonucu verilmektedir. VO2'nin (011) ve (020) düzleminden gelen siddetli pikler, sırasıyla $2\theta = 29$ ve 39° 'de gözlenmektedir (Zhao, 2012). Bununla birlikte, 36.0°, 39.5° ve 43.3°'deki pikler ise VO₂ fazının sırasıyla (200), (020) ve (210) düzlemlerine karşılık gelmektedir (Kim, 2014). VO₂ fazının yanı sıra miktar olarak oldukça az olan V₂O₃, V₆O₁₃ ve V₂O₅ ikincil fazlara ait piklerin şiddeti ana piklere kıyasla düşüktür (Luo, 2013). 2θ =47.5°'deki pik V₆O₁₃ fazından kaynaklanmakta olup, filmin yapısında gözlenmekte olan V₂O₅ ve V₂O₃ ikincil fazlarından gelen piklerden daha siddetlidir. Büyütülen vanadyum oksit ince filmin içerisinde çok fazla düşük şiddetli pikler olsa dahi, en şiddetlileri VO2 fazına aittir ve elektriksel ölçüm sonuçlarıyla da destekleneceği üzere, şiddetli MIT geçiş özelliğine sahiptir. Burada yapılmakta olan yorumlar, Bölüm 4.1.4 kısmında tartışılan, elektriksel karakterizasyon sonuçlarıyla da desteklenmektedir.

oranında büyütülen VO₂ ince filminin XRD analizi

Şekil 4.4. 310 nm kalınlığında %2.00 O2 Şekil 4.5. 125 nm kalınlığında %2.25 O2 oranında büyütülen VO₂ ince filminin XRD analizi

Şekil 4.5'te ise %2.25 oksijen oranında büyütülen 125 nm kalınlığındaki VO2 ince filminin XRD analizi verilmektedir. Analiz sonucları incelendiğinde $2\theta = 41.6^{\circ}$ 'de ver alan, (0006) safir alttas düzleminden gelen oldukca siddetli bir pik gözlenmektedir (Zhao, 2012). Alttastan gelen piklerin şiddeti filmin kalınlığına ya da geçirgenliğine bağlı olarak değişmektedir. Aynı zamanda, $2\theta=37.5^{\circ}$ ve 39.8° 'de yer alan saçılmalar sırasıyla VO₂ fazının (200) ve (020) düzlemlerine karşılık gelmektedir (Zhou, 2013). 2θ =26.8°'de ise şiddeti çok düşük olan V₂O₅'e ait ikincil faz gözlenmiştir (Kim, 2014).

4.1.4 Elektriksel Analiz Sonuçları

4.1.1 numaralı optik analizler kısmında detaylı incelendiği üzere, büyütülen VO₂ fazına sahip ince filmler, MIT özelliği göstermektedir. Şekil 4.6'da 310 nm kalınlıklı %2.00 O₂ ve 125 nm kalınlıklı %2.25 O₂ oranında büyütülen VO₂ ince filmlerinin sıcaklığa bağlı özdirenç değişim grafikleri yer almaktadır. Şekilden görüldüğü üzere, oda sıcaklığından itibaren 100 °C'ye kadar ısıtılan 310 nm kalınlıklı filmin, bu süreç boyunca özdirenç değişimi yaklaşık olarak 10⁴ mertebesinde olmaktadır. 125 nm kalınlıklı filmin sıcaklığa bağımlı özdirenç değişimi ise 10² mertebesindedir. %2.00 oksijen oranı ile 310 nm kalınlığında büyütülen VO₂ ince filminin oda sıcaklığındaki özdirenci 3.0 Ω .cm olup geçiş sıcaklığının üzerindeki sıcaklıklarda 2.0x10⁻⁴ Ω .cm değerine kadar düşmektedir. Elde edilen bu veriler, literatür çalışmalarıyla da uyum sağlamaktadır (Ruzmetov, 2010).

%2.25 oksijen oranı ile 125 nm kalınlığında büyütülen ince filmin oda sıcaklığında özdirenci $1.5x10^2 \Omega$.cm civarındadır. Bu filmin, yapısal analiz sonuçlarında da elde edildiği üzere, VO₂ fazıyla birlikte V₂O₅ ikincil fazının da gözlendiğini dikkate alırsak; oda sıcaklığındaki özdirencinin VO₂'nin özdirencinden yüksek olmasının sebebi ise vanadyum oksit içerisinde yer alan olası V₂O₅ fazının göstermiş olduğu etki olarak düşünülebilir. Yalıtkan bir malzemenin eklenmesi VO₂ özdirencini artıracak; metalik bir malzeme de ise bu durum özdirenci azaltacaktır. Bununla birlikte, geçiş sıcaklığından yüksek olan sıcaklıklarda VO₂'nin özdirenci 6.7x10⁻¹ Ω.cm'ye düşmektedir ve geçiş süresince özdirenç değişim oranı yaklaşık olarak 10² mertebesindedir. Yalıtkan V₂O₅ ikincil faz sebebiyle, üretilen ince filmin özdirenci belli bir değerden sonra daha fazla düşmemektedir.

Projemizde amaçlanan FET üretimi için üretilmesi hedeflenen VO₂ ince filminin sıcaklığa bağlı yüksek özdirenç değişimi göstermesi, yani MIT geçiş özelliğine sahip olacak karakterde olabilen VO₂ fazında büyütülebilmesi gerekmekteydi. Literatürdeki kaynaklar incelendiğinde bu özdirenç değişim oranı yaklaşık olarak 10⁴'tür. Yaptığımız elektriksel analizler sonucunda, Şekil 4.6'dan da görüldüğü üzere, MIT geçişi esnasında özdirenç değişimi 10⁴ oranındadır. 10⁴ oranında direnç değişimi gösteren film, 310 nm kalınlığındaki %2.00 oksijen gönderilerek büyütülen filme aittir.

%2.00 oksijen oranı ile 310 nm kalınlığında büyütülen VO₂ filmi kullanılarak üretilen FET yapısında, farklı kalınlıklara sahip şeritler (stripe) elektron demeti litografi sistemi kullanılarak işlenmiştir. Vanadyum-oksit film; e-demeti litografi sistemi ile 50, 20, 15 ve 10 μm

kalınlıklarında ve 2.2 mm uzunluğunda şeritler olarak şekillendirilmiştir (Şekil 1.1). Bu şeritler üzerinden, sıcaklığa bağlı özdirenç değişimi ölçülerek sonuçları Şekil 4.7'de gösterilmiştir.

Şekil 4.6. 310 nm kalınlıklı %2.00 O_2 ve 125 nm kalınlıklı %2.25 O_2 oranında büyütülen VO_2 ince filmlerinin sıcaklığa bağlı özdirenç değişim grafikleri.

Şekil 4.7. %2.00 O₂ oranında 310 nm kalınlığında büyütülen VO₂ ince filmin, elektron demeti ile şekillendirilme aşaması öncesi sıcaklığa bağlı özdirenç değişimi.

Üretilen VO₂ ince film, e-demeti ile şekillendirme aşamasından önce 4 mm x 4 mm boyutlarında kare örnek olarak hazırlanmış ve elektriksel analizi yapılmıştır. MIT değişim bölgesi, 4°C (68 ± 2 °C) sıcaklık arasında gerçekleşmektedir. Farklı kalınlıklardaki VO₂ şeritlerinin elektriksel ölçümlerini incelediğimizde, MIT geçişi ile özdirencinin azaldığı görülmektedir. Bu değişim VO₂ kare örneğin özdirenç değişimine oranla daha düşüktür. Bununla birlikte, VO₂ şerit haline getirildiğinde, MIT geçiş sıcaklığının 68 °C'den 50°C'ye düştüğü durumu gözlenmiş olunup, bu sıcaklığın oda sıcaklığına yaklaşmasından dolayı oldukça önemli bir sonuç olduğu tespit edilmiştir. MIT geçiş sıcaklığının oda sıcaklığına yaklaşması olumlu etken olmasına rağmen, şeritlerin özdirenç değişim oranındaki değişim ise 10 kat olacak şeklinde küçülmüştür.

Bu değişimin sebebinin de e-demeti litografi işlemi esnasında, vanadyum-oksit ince filmi, PR şekillendirme süresince, 10⁻⁶ Torr civarında düşük basınç değerlerine ve 10 keV enerjisindeki elektronlara maruz bırakıldığı için bu aşamada kullanılan yüksek enerjili ve oldukça düşük basınçtaki elektron demeti ile oksit filmin şekillendirme basamaklarından kaynaklandığı tahmin edilmektedir. Bunlara ilaveten, ince oksit filmin, vakum içinde Argon iyonlarına maruz kalma sürecinde, filmin yüzeyi 100 °C'nin üzerinde bir sıcaklığa ulaşmış olabilir. Bu durum ise vanadyum-oksit şeritlerinin kimyasal yapısını etkilemiş olabilir.

4.1.5 XPS Analiz Sonuçları

%2.00 oksijen oranı ile 310 nm kalınlığında büyütülen VO₂ ince filminin kimyasal bağlanma analizi, X-ışını Fotoelektron Spektroskopi (XPS) analizi tekniği ile incelenmiştir. XPS ölçümünde, X-ışını kaynağı olarak 200 W gücünde monokromatik Mg K_{α} kullanılmış olup, analizörün fotoelektronları geçirme enerjisi 30 eV'dur. Alınan spektrum, 284.6 eV değerinde olması gereken C *1s* pik değeri baz alınarak kalibre edilmiştir. Shirley geri-planı (background) eklendikten sonra, ölçümü alınan spektrumun alt piklerinin ayrıştırılması esnasında, Gaussian–Lorentzian pik profili kullanılmıştır. C *1s*, O *1s*, V $2p_{1/2}$ ve V $2p_{3/2}$ bölgeleri detaylı olarak incelenmiştir.

Şekil 4.8. Karbon (C) elementinin XPS analiz sonucu.

Şekil 4.9. 310 nm kalınlığında ve %2.00 oksijen oranında büyütülen VO₂ ince filminin XPS analizi.

Şekil 4.8'de gösterildiği gibi C *1s* valans bölgesinin analizi yapılmış olup, 284.6 eV bağlanma enerjiisi değerinde C=C bağı, 286.2 eV'de C-O bağı ve 288.6 eV'de C=O bağı gözlenmiştir (Mortazavi, 2013). O *1s* ve V *2p* birleşik bölgesinin analizleri yapılmış olup sonuçlar Şekil 4.9'da gösterilmektedir. O *1s* bölgesinde iki farklı bağlanma enerjisine sahip olan pikler elde edilmiştir. Bunlardan, 530.2 eV pozisyonunda gözlenen pik oksijenin vanadyum ile yaptığı bağı nitelemektedir (Mendialdua, 1995). 531.3 eV pozisyonunda gözlenen pik ise oksijenin karbon ile yaptığı bağı nitelemektedir (Silversmit, 2004). Oksijen ile karbon arasındaki bağın tayini hem O *1s* bölgesi hem de C *1s* bölgesinin analizlerinde uyum göstermiştir.

V 2p valans bölgesinin analizinde iki farklı vanadyum fazı ile karşılaşılmıştır. V 2p de yer alan pik, spin-orbital etkileşimi sebebiyle ayrışmaya uğrayarak V $2p_{3/2}$ ve V $2p_{1/2}$ olarak birbirlerinden

7.3 eV bağlanma enerji farkıyla gözlenmiştir. 516.2 eV ve 517.5 eV bağlanma enerji değerlerinde gözlenen V $2p_{3/2}$ pik değerleri sırasıyla VO₂ ve V₆O₁₃ fazlarına karşılık gelmektedir (Mendialdua, 1995). Üretilen film, %63.25 oksijen içermektedir. Yapılan miktarsal analizlerde, vanadyumun %10.6'sı VO₂'ye ve %26.15'i V₆O₁₃'a katkıda bulunmaktadır.

4.1.6 SEM Analiz Sonuçları

310 nm ve 125 nm olan iki farklı kalınlıkta, faz geçişini sağlamakta olan ince filmlerin SEM yüzey görüntüleme analizleri gerçekleştirilmiştir. Şekil 4.10'da farklı O₂ oranları ile farklı kalınlıklarda büyütülen, VO₂ ince filmlerin SEM yüzey morfolojisi görüntüleri yer almaktadır. Üretilen ince filmlerin, film biriktirme esnasındaki ortam basıncı, büyütülen filmin kalınlığı, gönderilen oksijen ve argon oranları v.s. filmlerin yüzey morfolojilerini ve tanecik (grain) boyutlarını etkileyen parametreler incelenmiştir.

%2.00 oksijen oranında büyütülen 310 nm VO₂ ince filmin görüntüsünde ayrık duran adacıklar gözlemlenirken (Şekil 4.10a), %2.25 oksijen oranı ile büyütülen 125 nm VO₂ ince filmin görüntüsünde ise labirent şeklinde kıvrımlara rastlanmıştır (Şekil 4.10b). Filmin içerdiği O₂ miktarı azaldıkça, büyütülen ince filmin kıvrımlı oluşumunu adacıklı bir görüntüye çevirmektedir.

Şekil 4.10. (a) %2.00 O₂ oranında 310 nm kalınlığında (b) %2.25 O₂ oranında 125 nm kalınlığında VO₂ ince filmlerin FE-SEM görüntüleri.

4.2 FET Üretim Parametreleri ve Analiz Sonuçları

Şu ana kadar yapılan çalışmalarda, VO₂ fazı elde edebilmek için, oksijen oranının yanı sıra film kalınlığının da önemli olduğu, aynı oksijen oranı kullanılarak büyütülen filmlerin biriktirme süresi değiştirildiğinde aynı oksit fazının elde edilemediğini Şekil 4.1 ve Şekil 4.2'deki optiksel

sonuçlar ve Şekil 4.3'de Raman analiz sonuçlarından görülmektedir. FET aygıt üretimi aşamasında, safir üzerine büyütülen VO₂ ince filmler, %1.5 O₂ oranında 250 nm kalınlığında büyütülmüştür. Üretilen FET yapıların, sıcaklığa bağlı olarak özdirenç değişimleri, vakum altında incelenerek analiz edilmiştir.

FET_numara	FET YAPISI	Şekillendirme	Gate	Analiz Sonuçları
	(Dielektrik)			(Şekil_Numara)
FET_1	Kapı (Gate) Oksitli (HfO ₂)	Makeleme	AI	4.16
FET_2	Kapı Oksitli	E-demeti Litografi	AI	4.21, 4.22, 4.23
	(HfO ₂)			
FET_3	Kapı Oksitsiz	E-demeti Litografi	Au	4.26
	(Hava boşluğu)			
FET_4	Kapı Oksitli	E-demeti Litografi	Au	4.32
	(HfO ₂)			
FET_5	Kapı Oksitli	E-demeti Litografi	Au	4.33
	(HfO ₂)			
FET_6	Kapı Oksitli	E-demeti Litografi	Au	4.34
	(HfO ₂)			
FET_7	Kapı Oksitli	E-demeti Litografi	Au	4.35
	(HfO ₂)			

Tablo 4.1. Üretilen FET yapılarının özellikleri.

4.2.1 İyon Demeti Aşındırma Tekniğinde Maskeleme ile Kapı Oksitli Üretilen FET_1'in Üretilme Adımları ve Elektriksel Karakterizasyonu

Aşağıda verilecek olan kısımları şu şekilde sıralandırabiliriz:

- i) FET_1 Örneğinin Üretimi Amacıyla VO₂ Şeritlerin İyon Aşındırma Tekniği ile Üretilmesi,
- ii) VO₂ Şeritler Üzerinden Alınan Elektriksel Sonuçlar
- iii) Kapı Oksitli FET_1 Üretimi İçin VO₂ Şeritlerinin Üzerine Dielektrik HfO₂ Kaplanması
- iv) Alüminyumun Kapı Amaçlı olarak HfO₂ / VO₂ / Al₂O₃ Üzerine Buharlaştırılması ile Kapı Oksitli FET_1 Üretimi
- v) Elekron Demeti Litografi Tekniği Kullanılmadan Üretilen Kapı Oksitli FET_1'in Elektriksel Analiz Sonuçları

4.2.1.1 FET_1 Örneğinin Üretimi Amacıyla VO₂ Şeritlerin İyon Aşındırma Tekniği ile Üretilmesi:

Elektron demeti litografi sistemi kullanılarak üretilen VO₂ şeritlerin, 4.1.4 bölümünde detaylı anlatıldığı üzere, MIT geçişi esnasındaki direnç değişim değeri azalmıştır. Bu durumun sebebini anlamak amacıyla VO₂ şeritlerin, farklı bir teknik ile üretilmesi hedeflenmiştir.

Şekil 4.11. (a) Kapı oksitli FET_1 üretimi için tasarlanan HY95 kodlu VO₂ şeritlerinin boyutları (b) VO₂ ince film şeritlerinin prob istasyonuna yerleştirilmiş ve ölçüm alınma esnasındaki fotoğrafı.

Bu amaç doğrultusunda, 250 nm kalınlıklı VO₂ film üzerine (%1.5 O₂) (HY95 kodlu örneğimiz), ~220, 210, 100 ve 75 µm çaplarında bakır teller maskeleme amacıyla yerleştirilmiştir (Şekil 4.11.a). Bu filmler iyon demeti sistemine yerleştirilerek, iyon aşındırma işlemine (Şekil 3.6) maruz bırakılmıştır. Belirtilen işlem sonunda, bakır şeritlerin bulunduğu bölgelerin haricindeki kısımlar aşındırılmıştır. Dolayısıyla, iyon aşındırma işleminin tamamlanmasıyla, ~220, 210,100 ve 75 µm genişliklerinde ve 2 mm uzunluğuna sahip olan VO₂ şeritler maskeleme sayesinde iyon aşındırma tekniği ile üretilmiştir.

4.2.1.2 VO₂ Şeritler Üzerinden Alınan Elektriksel Sonuçlar:

Şekil 4.11'de gösterildiği üzere, 2 mm uzunluğunda 250 nm kalınlıklı, ve 75, 100, 210, 220 µm enindeki VO₂ şeritler üretilmiştir. Bahsi geçen yapıların, vakum ortamında prob istasyonunda ölçüm alınması esnasındaki fotoğrafı, Şekil 4.11.b'de gösterilmektedir.

Kare örnek ve VO₂ şeritler üzerinden elektriksel ölçümler gerçekleştirilmiştir. Şekil 4.12'de, VO₂ şeritler için sıcaklığa bağlı özdirenç değişimi grafiği sonuçları yer almaktadır. Bu grafikten gözlendiği üzere, kare örnekte elde edilen 10⁴ oranındaki özdirenç değişimi, VO₂ şeritlerde de gözlenmektedir. Bu sonuca göre, elektron demeti litografi sisteminde elde edilen VO₂ şeritler üzerinden ölçülen elektriksel analiz sonuçlarını, kare örneğinki ile kıyasladığımızda oldukça büyük değişim gözlenmesine rağmen, iyon demeti sistemi ile üretilen örnek üzerinde yapılan

elektriksel ölçümler, kare örnek üzerinden yapılan sonuçlara yakın olmaktadır. Bu bölümde anlatıldığı üzere, maskeleme yöntemi ile iyon demeti aşındırma tekniğinin kullanımıyla üretilen VO₂ şeritler, FET üretimi için uygun elektriksel özelliklere sahiplerdir ve bu sonuç oldukça önemlidir.

Şekil 4.12. Kapı oksitli FET_1 üretiminde kullanılacak olan VO₂ şeritlerin sıcaklık-özdirenç grafiği.

4.2.1.3 Kapı Oksitli FET_1 Üretimi İçin VO₂ Şeritlerinin Üzerine Dielektrik HfO₂ Kaplanması:

Büyütülen ince VO₂ filmler, elektron demeti litografi sistemi kullanılarak, Bölüm 3.14 kısmında anlatıldığı gibi şekillendirilmektedir. Devamında ise Şekil 1.1'de gösterildiği gibi dielektrik katman olarak 1. tipte hava ve 2. tipte ise HfO₂ kullanılarak, FET yapıları oluşturulmuştur.

Şekil 4.13. HfO₂ dielektrik film büyütmesi esnasında uygulanan saçtırma güç değerine bağlı kırılma indisi.

2. tip FET yapısında kapı oksit olarak kullanılan, ve bizim daha önceki bir TÜBİTAK 1001 projemizde (107T117) detaylı incelemiş olduğumuz, HfO₂'nun büyütme parametreleri optimize edilmiştir. Bu amaç doğrultusunda, Si üzerine reaktif mıknatıssal saçtırma tekniği ile HfO₂ oksit tabakası büyütülerek optimizasyon çalışmaları gerçekleştirilmiştir. HfO₂ dielektrik yığın (bulk) malzemesi için literatürde verilen kırılma indisi 2.1'dir, ancak ince film yapısında bu değerde bir miktar düşüş gözlenmektedir (Aygun, 2009). Bu projedeki amacımız ise, büyüttüğümüz hafniyum-oksit filmlerin HfO₂ fazında olması için kırılma indisi değerinin 2.1'e olabildiğince yaklaşması için büyütme parametreleri karakterize edilmiştir (Şekil 4.13).

Öncelikle, p-tipi silisyum (Si) üzerinde kendiliğinden oluşan SiO₂ doğal oksit tabakası, %1 Hf ve de-iyonize su karışımı ile temizlenmiştir (Aygun, 2009). Bu işlemin devamında, Si alttaşı, büyütme esnasında eş-zamanlı elipsometre ile karakterizasyonun sağlanabildiği, film büyütme sistemine yerleştirilerek vakuma alınmıştır. Taban basıncı (base pressure) 8.5 x 10⁻⁷ Torr altında büyütme işlemine başlanılmıştır. Reaktif DC mıknatısal saçtırma tekniğinde Hf hedef kullanımıyla, Si üzerine kontrollü bir şekilde, HfO₂ oksit tabakası büyütülmüştür. Kapı dielektrik HfO₂'nin, homojen bir şekilde üretimi, 40 sccm Ar ve 10 sccm O₂ gazı altında 15 dakikada farklı güçlerde biriktirme yapılmıştır. Biriktirme sonrasında, kırılma indisleri spektroskopik ellipsometre ile ölçülmüştür (Şekil 4.13). 22 W değerinde güç uygulanarak HfO₂ büyütüldüğünde, kırılma indisi (*n*) 2.01 olarak gözlenmiştir. HfO₂ büyütme sürecinde, diğer tüm büyütme parametreleri aynı tutularak, ancak saçtırma gücünün 20 W değerine düşürülmesiyle büyütüldüğünde, kırılma indisi (*n*) değeri oldukça düşerek filmin kalitesinde ciddi bir azalma olduğunu gösteren, 1.57 elde edilmiştir. Bu nedenle en iyi büyütme parametresi olarak 40 sccm Ar ile 10 sccm O₂ gaz karışımı ortamında, DC saçtırma güç değeri 22 W olarak belirlenmiştir.

Büyütülen VO₂ ince film şekillendirildikten sonra, HfO₂ büyütülmesi için belirlenen optimum büyütme şartları ile 45 dakika boyunca HfO₂ kapı dielektrik, kapı oksitli FET üretimi amacıyla büyütülmüştür.

4.2.1.4 Alüminyumun Kapı Amaçlı olarak HfO₂ / VO₂ / Al₂O₃ Üzerine Buharlaştırılması ile Kapı Oksitli FET_1 Üretimi:

Kapı oksitli FET üretimi için son aşama olan, kapı amaçlı Alüminyum (Al) buharlaştırma işlemi, Thin Film Laboratuvarımızda bulunan UNIVEX 300 buharlaştırma sistemi ile gerçekleştirilmiştir (Şekil 4.14).

Al buharlaştırma, 10⁻⁶ Torr basınç altında 124–129 A arasında akım gönderilerek, 0.5 Angstrom/saniye oranında gerçekleştirilmiştir. Böylece üretilen HfO₂/VO₂/Al₂O₃ aşamasından sonra buharlaştırma sisteminde, 100 nm kalınlığında Al buharlaştırılmıştır. Böylece Şekil 1.1.b'de şematik olarak gösterilmekte olunan, kapı oksitli ilk FET üretimimiz gerçekleşmiştir.

Şekil 4.14. Buharlaştırma sisteminin (a) fotoğrafı ve (b) şematik çizimi görülmektedir (Yuce 2015).

4.2.1.5 Elekron Demeti Litografi Tekniği Kullanılmadan Üretilen Kapı Oksitli FET_1'in Elektriksel Analiz Sonuçları:

Kapı oksitli ilk FET üretimini takiben, prob istasyonu kullanılarak, vakum ortamında, voltaja bağlı özdirenç değişimi farklı sıcaklıklarda incelenmiştir. Şekil 4.15'de gösterildiği üzere, öncelikle 75 µm enindeki VO₂ şeriti üzerinden Kaynak-Savak (Source-Drain) arasına 1.0 V değerinde sabit potansiyel farkı uygulanılarak, Kapı-Kaynak (Gate-Source) arasına ise 0 ila 15 V arasında değiştirilmekte olunan voltaj farkı uygulanarak (Şekil 4.15), oda sıcaklığından yüksek sıcaklıklara kadar (30 – 100 °C) olan özdirenç değişimi, tarafımızdan yazılmış olan bilgisayar kontrollü Labview programı ile ölçülmüştür. Elde edilen sonuçlar Şekil 4.16'da gösterilmiştir. İlk üretilen FET yapısında, sadece 75 µm enindeki, VO₂ şeritler üzerinden ölçüm alınabilmiştir.

Öncelikle, oda sıcaklığında değişken voltaj olarak 0 V uygulanması sonucunda, 3 Ω.cm değerinde bir özdirenç gözlenmektedir. Bu değer VO₂'nin özdirenci olması sebebiyle, HfO₂ ve Al kaplamalarının VO₂ yapısına zarar vermeden başarılı bir şekilde büyütüldüğünü göstermektedir.

Şekil 4.15. Üretilen FET yapıların elektriksel ölçüm devresi (Yuce 2015).

Şekil 4.16.a.'da 30 °C'de 0 – 15 V arası değişken voltaj farkı uygulanması sonucunda, özdirenç değişiminde lineer bir azalma görülmüştür. Bu durumda, voltaj farkı uygulanmasıyla VO₂ atomunun değerlik bandındaki elektronlar iletkenlik bandına taşınarak özdirencinin azalmasına sebep olur ve iletkenlik artışı görülür. Üretilen FET_1 için yapılan elektriksel ölçüm sonuçlarında, 0–15 V arasındaki voltaja bağlı olarak özdirenç değişimi (30 °C'den geçiş sıcaklığına kadar alınan ölçümlerde) ~10 kat değerindedir. HfO₂ kapı oksidine zarar vermemek için kapı (gate) ile kaynak (source) arasına maksimum 15 V uygulanmıştır. Projenin ilerleyen dönemlerinde, VO₂ üzerine büyütülen HfO₂'nin kalınlığı farklı tekniklerle analiz edilerek, uygulanan 15 volt değeri üst limitine doğru artırılabilinir.

Şekil 4.16. Kapı oksitili FET_1 için farklı sıcaklıklarda voltaja bağlı özdirenç değişiminin (a) lineer çizimi (b) logaritmik çizimi.

Şekil 4.16'daki grafikler incelenmeye devam edildiğinde, 0 V için sıcaklık arttıkça özdirenç değeri azalmasıyla FET yapısındaki VO₂ metal-yalıtkan geçiş özelliği göstermektedir. Voltaj farkı uygulanmadan, yani 0 V, 30 °C ile 100 °C arasında 10⁴'e yakın bir özdirenç değişimi

gözlenmektedir. Bu değer logaritmik çizimde oldukça net gözlenirken (Şekil 4.16.b de görülebilir), lineer çizimde değerler arası farklar yüksek olması sebebiyle düşük özdirence sahip olan sayısal değerler (VO₂'nin metal yalıtkan geçiş sıcaklığı olan 68 °C ve daha yüksek sıcaklıklarda ölçülen özdirenç değerleri) 0 olarak görülmektedir. Yalıtkan fazdaki VO₂'nin (30 °C – 68 °C) FET ölçümlerinde, her bir sıcaklık için voltaj arttıkça, iletkenlik bandındaki yük taşıyıcıların artmasıyla özdirenç azalmaktadır. Metalik özellikteki (68 °C – 100 °C) VO₂ için FET ölçümlerinde, logaritmik voltaj-özdirenç grafiğini incelediğimizde, belirgin bir değişim görülmemiştir.

Sonuç olarak, ilk deneme amaçlı üretilen kapı oksitli FET_1 için, yapılan ölçümlerde sıcaklıkla (0 V altında 30 °C ve 100 °C arasındaki özdirenç değişimi) yaklaşık olarak 10⁴ ve elektrik alan etkisiyle (yalıtkan VO₂ için 0-15 V farkı uygulanmasıyla) ~10 oranında özdirenç değişimi gözlemlenmiştir. Böylece iyon demeti aşındırma sisteminde gölgeleme tekniği ile ürettiğimiz Gate-oksitli FET_1, sıcaklıkla tetiklenebildiği gibi elektrik alan etkisiyle de tetiklenebilmektedir.

4.2.2 Elektron Demeti Litografi tekniği ile Kapı Oksitli FET_2'nin üretilmesi

Projemizde amaçlanan elektron demeti litografi tekniği kullanılarak şekillendirilecek olan Kapı Oksitli FET üretimi ve elektriksel sonuçları bu bölümde açıklanmıştır. Bu üretim tekniği detaylı olarak "Bölüm 3'te Gereç ve Yöntemler" kısmında **Bölüm 3.14** olarak verilmektedir.

4.2.2.1 VO₂ şeritler üzerinden alınan elektriksel sonuçlar

HY95 kodlu VO₂ ince film, 2.5 mm uzunluğunda 100, 50 ve 15 µm genişlikteki şeritler halinde (Şekil 4.17) elektron demeti litografisi ile Bölüm **3.14**'de verilen aşamalar uygulanarak şekillendirilmiştir. Sonraki aşamada ise, bu şeritler üzerinden sıcaklığa bağlı elektriksel analiz yapılarak, elde edilen sıcaklık-özdirenç grafiği Şekil 4.18'de gösterilmiştir. Sıcaklığa bağlı 10⁴ oranında değişen özdirenç değeri, büyütülen malzemenin kalitesinin yapılan testler sonucunda elektron demeti litografi işleminden sonra değişmediği gözlenmiştir.

Şekil 4.17. Kapı oksitli FET_2 üretimi için tasarlanan HY95 kodlu VO₂ şeritlerinin boyutları.

Şekil 4.18. Kapı oksitli FET_2 üretim öncesinde VO₂ şeritleri üzerinden alınan sıcaklık-özdirenç grafiği.

4.2.2.2 Kapı Oksitli FET_2 Üretimi İçin VO₂ Şeritlerinin Üzerine Dielektrik HfO₂ Kaplanması

2.3x10⁻⁶ mTorr basınç altındaki sisteme, 40 sccm Argon ile 10 sccm O₂ gaz karışımı gönderilerek, VO₂/Al₂O₃ üzerine, 1 saat boyunca 22 W gücünde Hf saçtırılarak reaktif saçtırma yöntemi ile 100 nm kalınlığında HfO₂ kapı dielektrik büyütülmüştür. Büyütülen alanın şematik gösterimi, Şekil 4.19'de verilmektedir. Daha kaliteli kapı dielektrik üretebilmek amacıyla, HfO₂ için biriktirme süresi Kapı oksitli FET_1'e göre daha uzun tutulmuştur. Hf hedef üzerindeki olası oksitlenmenin temizlenmesi amacıyla, büyütme öncesi, 5 dakika ön-saçtırma (pre-sputtering) işlemi gerçekleştirilmiştir.

Şekil 4.19. Kapı oksitli FET_2 üretimi amacıyla şekillendirilmiş VO₂ üzerine, kapı dielektrik HfO₂ büyütme şeması.

4.2.2.3 Kapı Oksitli FET_2 Üretimi Amacıyla, Alüminyumun HfO₂/VO₂/Al₂O₃ Üzerine Kapı Olarak Buharlaştırılması

Şekil 4.14'te gösterilen buharlaştırma sisteminde Kapı Oksitli FET_2 üretimi için kapı amaçlı 150 nm Alüminyum (AI) buharlaştırılmıştır. Buharlaştırma işlemi raporun 4.2.1.4 bölümünde belirtilen parametrelerle (10⁻⁶ Torr basınç altında 124–129 A arasında akım gönderilerek 0.5 Angstrom/saniye oranında) gerçekleştirilmiştir. Buharlaştırılan alan Şekil 4.20.a'da gösterilmektedir.

4.2.2.4 Elektron Demeti Litografi Tekniği Kullanılarak Üretilen Kapı Oksitli FET_2'nin Elektriksel Analiz Sonuçları

FET_2'de, VO₂ kanalı elektron demeti litografi tekniği ile şekillendirilerek, kapı oksitli FET üretimi gerçekleşmiştir. Üretilen kapı oksitli FET_2'nin şematik çizimi Şekil 4.20.a'da gösterilmektedir.

Şekil 4.20. Kapı oksitli FET_2'nin (a) şematik çizimi (b) prob istasyonunda ölçüm alınırken fotoğrafı.

100, 50 ve 15 μ m enindeki VO₂ şeritlerin üzerine 100 nm kalınlığında, HfO₂ kapı dielektrik kaplandıktan sonra, kapı olarak 150 nm Al buharlaştırarak FET_2 üretilmiştir. FET_2 üzerinden, Şekil 4.21'de 100 μ m, Şekil 4.22'de 50 μ m ve Şekil 4.23'te ise 15 μ m şeritler üzerinden alınmış elektriksel analiz sonuçları yer almaktadır.

FET_2 için yapılan elektriksel analiz sonuçları, FET_1 üzerindeki 75 µm enindeki şeritten alınan ölçümlerle oldukça yakındır. Bu durum ise, elektron demeti litografi ile VO₂ ince filminin yapısını bozmadan şekillendirebildiğimizi göstermektedir. Bu değerler şekillerin (a) bölümündeki lineer çizimlerinden açıkça görülmektedir.

Şekil 4.21. Kapı oksitili FET_2 üzerinden 100 µm şerite ait olan farklı sıcaklıklarda voltaja bağlı özdirenç değişiminin (a) lineer (b) logaritmik olarak voltaja bağımlı çizimleri gösterilmektedir.

Şekil 4.21, 4.22 ve 4.23'te oda sıcaklığında ve voltaj farkı uygulanmadan gözlemlenen özdirenç değerleri birbirine oldukça yakındır. Yapılan ölçümlerde, 20 °C – 100 °C ve 0 – 15 V arasında değiştirilen voltaj farkına karşılık gelen özdirenç değişimi incelenmiştir. Bu ölçümler Şekil 4.20'de gösterildiği gibi kaynak-savak arasına sabit 1 V uygulanarak, kapı ile kaynak arasına ise 0 V'tan başlayıp 15 V değerine artırılan, yani 0 – 15 V arasında değişken voltaj farkı uyglanarak ölçüm alınmıştır. Elektriksel analiz sonuçlarında, oda sıcaklığından başlayarak VO₂ MIT geçiş sıcaklığına kadar yapılan ölçümlerde özdirenç değişimi yaklaşık olarak 10 kat değerindedir. Sıcaklığın, VO₂ MIT geçiş sıcaklığına yaklaşmasıyla, belli bir voltaj farkından sonra özdirenç değişiminde lineer azalma durmuş ve sabit olarak devam etmektedir (Şekil 4.21.b 68 °C, Şekil 4.22.b 68 °C ve 70 °C, Şekil 4.23.b 68 °C ve 70 °C).

Şekil 4.22. Kapı oksitili FET_2 için 50 µm şerit üzerinden farklı sıcaklıklarda voltaja bağlı özdirenç değişiminin (a) lineer çizimi (b) logaritmik çizimi.

Şekil 4.23. Kapı oksitli FET_2 için 15 µm şerit üzerinden farklı sıcaklıklarda voltaja bağlı özdirenç değişiminin (a) lineer çizimi (b) logaritmik çizimi.

Bu 3 farklı şerit için, lineer çizimleri incelersek, MIT sıcaklığından sonraki sıcaklıklarda (68-70 °C ve 100 °C arası) VO₂'nin metalik özellik göstermesiyle özdirenci 10⁻⁴ Ω.cm değerine yaklaşmıştır. Oda sıcaklığındaki özdirenç ile yüksek sıcaklıklardaki VO₂ özdirenci arasında yaklaşık 10⁴ oranında düşüş bulunmaktadır. MIT geçiş sıcaklığından sonraki sıcaklıklarda uygulanan voltaj farkı ile, VO₂'de özdirenç değişimi sağlamamıştır. Bunun sebebi ise, VO₂'nin değerlik bandında uyarılabilecek elektronların neredeyse tümünün sıcaklık etkisiyle iletkenlik bandına taşınmış olması durumudur. Bunlara ek olarak belirtmek gerekirse, 20 °C 'de alınan ölçüm için, özdirenç değişiminin tek sebebi uygulanan voltaj farkıyla elektrik alanın bu değişimi tetiklemesidir. VO₂'nin 20 °C'den başlayarak MIT geçiş sıcaklığına gelene kadar ki özdirenç değişimi, 0 V için sıcaklığın tetiklediği iletkenlik bandındaki elektron geçişleri sebebiyle olmaktadır, ancak uyarılabilecek değerlik bandındaki diğer elektronların geçişinin bir kısmı ise 15 V'a kadar uygulanan voltaj farkıyla sağlanmaktadır.

4.2.3 Elektron Demeti Litografisi ile Şekillendirilerek Üretilen Kapı Oksitsiz FET_3

Projemizde hedeflenen kapı oksitsiz FET üretimi için, farklı kalitelerdeki VO₂ ince filmler içeren, kapı dielektrik malzemesi olarak havanın kullanıldığı (air gap) FET yapılar oluşturulmaktadır. Bu şekillendirme aşamasında, elektron demeti litografi sürecinde e-demeti yazma işlemi, e-demeti kaldırma işlemi gibi farklı aşamaların sonucunda hedeflenen şeklin sorunsuz oluşturulabilmesi için birden fazla VO₂ ince film, hava boşluklu FET üretim deneme işleminde kullanılmıştır.

Şekillendirme için 250 nm kalınlığında HY97 kodlu vanadyum oksit (VO_x) ince film kullanılmıştır. HY97 kodlu VO_x ince filmin elektriksel sonucu Şekil 4.24'te gösterilmekte olup, ikincil fazlar sebebiyle ~ 10^2 oranında sıcaklığa bağlı özdirenç değişimi göstermektedir. Oda sıcaklığında özdirencin yüksek olması (~1000 ohm.cm), büyütülen filmin oksijen oranının yüksek olduğu anlamına gelebilmektedir, yani yalıtkanlık özelliği VO₂'ye göre daha yüksektir.

Şekil 4.24. Kapı Oksitsiz FET_3 üretiminde kullanılan, HY97 kodlu VO₂ filminin sıcaklığa bağlı özdirenç değişim grafiği.

4.2.3.1 Kapı Oksitsiz FET_3 Şekillendirilmesi Aşamaları ve Altın (Au) Kapı Buharlaştırılması

Kapı oksitsiz FET_3 üretimi için kullanılan, HY95 kodlu VO₂ ince filmi 100, 50, 20 ve 15 μ m genişliklerinde şeritler halinde şekillendirilek, VO₂ kanalları oluşturulmuştur. Dielektrik malzeme olarak HfO₂ kullanmak yerine havanın dielektriklik özelliğini kullanarak "Air gap" (hava boşluklu FET) oluşturulması planlanmıştır. Bu amaç doğrultusunda, Au kapı ile VO₂ kanal arasına ~20 μ m kadar bir boşluk bırakılmaktadır. Bu işlem sayesinde ise diğer ürettiğimiz FET çeşiti olan ve dielektrik malzeme olarak HfO₂'nin kullanıldığı FET türünde, HfO₂'nin VO₂ içine olası difüz etme durumu engellenmiş olunacaktır.

Şekil 4.25. Kapı oksitsiz (hava kullanılan) FET_3'ün (a) optik görüntüsü (b) şematik çizimi.

Kapı oksitsiz FET üretimi için Au kapı buharlaştırma işlemi, Şekil 4.14'te gösterilen sistemde 10⁻⁶ Torr basınçta ortalama 104 A akım gönderilerek 1.0 Angström/saniye oranında gerçekleştirilmiştir. Bu işlem sonrasında 165 nm kalınlığında Au kapı buharlaştırılmıştır. Böylece kapı oksitsiz ilk FET üretimi tamamlanmıştır.

Üretilen ilk kapı oksitsiz FET'in optik mikroskop görüntüsü Şekil 4.25.a'da, şematik çizimi ise Şekil 4.25.b'de gösterilmektedir. Şematik gösterimde şekil boyutlarıyla belirtildiği üzere, 200 µm x 200 µm büyüklüklerinde üçlü pad'lere sahip olacak şekilde, 100 – 15 µm aralığında değişen farklı genişliklerde ve 900 µm uzunluğunda VO₂ kanallar şekillendirilmiştir. VO₂ kanal ve Au kapı arasında ise 20 µm kalınlıkta olan hava boşluğu bırakılmıştır.

Havanın dielektrik özelliğini kullanarak üretilen Kapı Oksitsiz FET_3 (şekil 4.25) için yapılan elektriksel analiz sonuçları Şekil 4.26'da gösterilmektedir. FET_3 üzerinde uygulanan 0-50 V arasında değişen voltaj farkına bağlı olarak, Kaynak ve Savak arasında bir özdirenç değişimi gözlemlenememiştir. Şekil 4.26'daki grafikte, 0 V için sıcaklığa bağlı olarak değişen özdirenç değerinin 10⁴ oranında olduğu açıkça görülmektedir. Bu sonuç, FET_3 yapısı için sıcaklığa bağlı MIT gerçekleştiğini fakat kapı oksitsiz üretilen FET_3'ün elektrik alana cevap vermediğini göstermektedir. Böylece, VO₂ yapısındaki metal-yalıtkan geçişini elektrik alanın veya uygulanan elektrik alan sebebiyle local-heating (bölgesel ısınma) tetiklemektedir. Bu iki faktörü ayırtetme durumuna karşılık tartışmalar hala devam etmektedir. Bu durumu ayırtedebilmek için, kapı oksitsiz FET yapısında bırakılan hava boşluğunun kalınlığı azaltılarak elektriksel ölçümler yapılmaya devam edilmiş olup, Bölüm 4.3'te HfO₂ dielektrik kullanılarak edinilen deneyim sonrasında, kaliteli örneklerde farklı şerit (stript) kalınlıklarında FET üretimleri gerçekleştirilmiştir.

Şekil 4.26. Kapı oksitsiz FET_3 için 100-15 µm şeritler üzerinden farklı sıcaklıklarda voltaja bağlı özdirenç değişimi.

4.3 FET_4, FET_5, FET_6, FET_7 Üretim Parametreleri ve Analiz Sonuçları

4.3.1 VO₂ İnce Film Elektriksel Analiz Sonucu

Şekil 4.27. Kapı Oksitli FET_4, FET_5, FET_6, FET_7 üretimlerinde kullanılan, HY121 kodlu VO₂ filminin sıcaklığa bağlı özdirenç değişim grafiği verilmiştir. Kırmızı ısıtma esnasındaki, mavi ise soğutma esnasındaki özdirenç – sıcaklık davranışını göstermektedir.

FET üretimlerinde kaliteli bir kıyaslama yapabilmek için, homojenliğinin bozulmaması açısından yüksek kalitede büyütülen HY121 kodlu VO₂ örneği seçilerek, 4 farklı şerit uzunluğu ve 3 farklı şekilde şerit kalınlığı olacak şekilde aynı örnek üzerinde iyon demeti ile şekillendirilmiştir. HY121 kodlu VO₂ örneğinin sıcaklığa bağlı elektriksel analiz sonucu Şekil 4.27'de gösterilmiştir. Yaklaşık olarak 68 °C'de gözlemlenen 10⁴ oranındaki özdirenç değişimi, filmin FET üretimi için oldukça uygun olduğunu göstermektedir.

4.3.2 Elektron Demeti Litografisi ile Şekillendirilen VO₂ İnce Filmin Elektriksel Analiz Sonucu

Bölüm 4.1.4 'de detayları verilmiş olan, HY121 kodlu VO₂ ince film 1935, 960, 680 ve 590 μ m uzunlukluklarında ve herbir uzunluğa bağlı kalarak 100, 50 ve 20 μ m kalınlıklarında olacak şekilde şekillendirilmiştir. Örnek üzerinde şekillendirilen her bölümün optik görüntüsü Şekil 4.28'de gösterilmektedir.

Şekil 4.28. Kapı Oksitli FET_4, FET_5, FET_6, FET_7 üretimlerinde kullanılan, HY121 kodlu VO₂ filmin elektron demeti litografisi ile şekillendirilmiş alanın optik görüntüsü

Şekil 4.28'de optik görüntüsü alınan şekillendirilmiş farklı uzunluk ve genişliklerindeki VO₂ örneklerinin padler üzerinden sıcaklığa bağlı elektriksel analizleri yapılmıştır. Bu analiz sonuçları Şekil 4.29'da gösterilmiştir. Elektriksel analiz sonuçlarını incelediğimizde, genel olarak şerit uzunluğundan bağımsız olarak şerit genişliği azaldıkça, oda sıcaklığında gözlemlenen özdirenç değeri azalmaktadır. Buna karşılık sadece Şekil 4.29a'da gösterilen 20 μm şerit genişliğinde olan şekillendirilmiş VO₂'nin, oda sıcaklığında ölçülen özdirenç değeri olarak daha yüksek bir özdirenç değeri gözlemlenmektedir. Bunun sebebi olarak filmin her noktasının aynı homojenlikte olmadığı öngörülmektedir. Aynı zamanda, 20 μm şerit genişliğinde bu filmin sıcaklığa bağlı özdirenç değişimini incelediğimizde de, 50 ve 100 μm şerit genişliğinde olanlara göre özdirenç değişiminin daha fazla olduğu görülmektedir.

FET üretimlerinde en önemli özellik, filmin sıcaklığa bağlı 10⁴ özdirenç değişimini gözlemleyebilmektir. Bu koşulun sağlanması durumunda metal-yalıtkan geçişini elde ederek mantık devreleri için uygulama alanı açılacaktır. Bu durum göz önünde bulundurulduğunda, kare VO₂ örnek üzerinden alınan (Şekil 4.27) ve bu örneğin elektron demeti litografisi ile

şekillendirilmesinden sonra VO₂ padler üzerinden alınan (Şekil 4.29) elektriksel analiz sonuçları dikkate alındığında her iki aşamadaki sonuç için de 10⁴ oranında özdirenç değişimi gözlemlenmektedir. Bu sonuç ise şekillendirilen filmin FET üretimleri için oldukça uygun olduğunu göstermektedir.

Şekil 4.29. Kapı Oksitli FET_4, FET_5, FET_6, FET_7 üretimlerinde kullanılan, HY121 kodlu VO₂ filmin elektron demeti litografisi ile şekillendirilmiş örneklerinin sıcaklığa bağlı elektriksel analiz sonuçları

4.3.3 Elektron Demeti Litografi Tekniği ile Kapı Oksitli FET_4, FET_5, FET_6, FET_7'nin Üretilmesi ve Analiz Sonuçları

Şekil 4.28a'da gösterilen 250 nm kalınlığında şekillendirilmiş VO₂ şeritlerinin üzerine 100 nm kalınlığında kapı dielektrik tabakası olan HfO₂ ince film kaplanmıştır. HfO₂ büyütme parametreleri Bölüm 4.2.2.2.'de detaylı olarak açıklanmaktadır. Kapı dielektrik tabakasının büyütülmesi sonrasında, HfO₂ filminin bir kısmına kapı tabakası olarak Au buharlaştırılmıştır. Buharlaştırma işlemi Bölüm 4.2.1.4.'de belirtilmekte olup, termal buharlaştırtma sisteminde 90

A akım uygulanarak 100 nm kalınlığında Au buharlaştırılmıştır. Bu aşamalar sonrasında üretilen Kapı oksitli FET_4, FET_5, FET_6, FET_7 yapılarının şematik çizimleri Şekil 4.30'da gösterilmektedir.

Şekil 4.30'daki çizimleri incelediğimizde, farklı şerit uzunlukları ve genişliklerine bağlı olarak tek VO₂ örneğinden üretilen 4 farklı FET yapısı görülmektedir. Böylece uygulanan elektrik alan altında, farklı FET yapılarının elektriksel analiz sonuçları incelenmiştir. Bu aşamada, herbir FET yapısı için VO₂ kanalı (~250 nm), HfO₂ kapı dielektrik tabakası (~100 nm) ve Au kapı tabakasının (~100 nm) kalınlıkları sabit tutulmuştur.

Şekil 4.30 Kapı oksitli FET_4, FET_5, FET_6, FET_7'nin şematik çizimi

Üretilen kapı oksitli FET_4'ün elektriksel analizinin ölçüm devresi Şekil 4.31'de gösterilmiştir. Elektriksel analizlerde, öncesinde kurulan Şekil 4.15'teki ölçüm devresinden farklı olarak, kaynak ve savak arasında direnç okuyabilmek için 1 V'luk voltaj farkı yerine yerel ısınmayı minimuma indirgemek için 0.15 V olacak şekilde sabit bir voltaj farkı uygulanmıştır. Bu aşama sırasında kaynak ile kapı arasında 0-30 V arasında dc voltaj farkı ugulanarak elektrik alan altında özdirenç değişimleri incelenmiştir. Yapılan ölçümler 1935, 960, 680 ve 490 μm

uzunluklarında ve 100, 50 ve 20 μ m olan genişliklerdeki şeritler üzerinden ayrı olarak gerçekleştirilmiştir.

Şekil 4.31. Üretilen FET yapıların elektriksel ölçüm devresi (Yuce 2015)

4.3.4 Elektron Demeti Litografi Tekniği ile Kapı Oksitli FET_4, FET_5, FET_6, FET_7'nin Elektriksel Analiz Sonuçları

4.3.4.1 FET_4'ün Elektriksel Analiz Sonuçları

Bu aşamada, 1935 µm uzunluğunda şeritler halinde 100, 50 ve 20 µm genişliklerinde olan şeritler halinde üretilen FET yapısından kapı-kaynak arasında 0-30 V olacak şekilde değişken voltaj farkı uygulanarak, VO₂ kanalı sayesinde elde edilen faz geçişi altında, özdirenç değişimleri incelenenerek, 0-1 mantık devrelerine uygunluğu araştırılmıştır. Bu işlem, 20-100 °C arasında sıcaklıklar 10 °C artırılarak sıcaklığa bağlı ayrıca analiz yapılmıştır. Geçiş sıcaklığına yakın bölgede 60-65 ve 70 °C'deki sıcaklıklarda ölçüm alınarak, VO₂ kanalının geçiş sıcaklığına yakın bölgelerde, elektrik alan altında FET yapısındaki durumu ayrıca gözlemlenmiştir.

Şekil 4.32.a'da görüldüğü gibi, FET_4 elektriksel analiz sonuçlarında, 0 V altında (kaynak-kapı arasına voltaj farkı uygulanmaması durumunda), 20 °C'de 1.5x10⁻² Ω.cm özdirenci değerindeyken, 100 °C sıcaklıkta özdirenci 6.2x10⁻² Ω.cm değerine kadar düşmektedir. Aynı zamanda, 20-100 °C arasında belli oranlarda değişen her sıcaklıkta, 0-30 V arasında voltaj farkı arttırılarak elektrik alan altında, VO₂ kanalı tabanında üretilen FET yapısındaki faz değişimine bağlı özdirenç değişimi incelenmiştir. Bu aşamada, VO₂'nin faz geçiş sıcaklığına kadar 20 °C'den itibaren arttırıları her sıcaklıkta, kapı-kaynak arasındaki voltaj farkının arttırılmasıyla, özdirenç değerinde eğrisel bir azalma görülmektedir. Bu ölçüm sırasında, sıcaklık etkisiyle VO₂'nin iletkenlik bandında taşıyıcı yoğunluğu artmaktadır. Bu artışın yanı

Şekil 4.32 Kapı oksitli FET_4'ün (a) 100 μ m (b) 50 μ m (c) 20 μ m genişliğindeki şeritler üzerinden alınan elektriksel analiz sonucu

sıra, elektrik alan etkisiyle iletkenlik bandına geçemeyen dış elektronlar hareket haline geçer. Böylece 0 V altında, sıcaklığın sabit sıcaklıkta, 30 V'a kadar artar voltaj farkı sebebiyle de elektrik alanın oluşturduğu etkiyle faz değişim özelliği göstermektedir. FET yapılarının şerit genişliğinden bağımsız olarak, 0 V ve 30 V fark altında kaynak-savak arasında okunan özdirenç değerinde ~10² oranında fark gözlenmektedir. HfO₂'in kırılma voltajına (breakdown) ulaşmamak için belli bir voltaj farkı uygulanabilmektedir. 70 °C'de alınan ölçümü incelediğimizde, VO₂'nin faz geçiş sıcaklığına çok yakın olduğu için 1 V uygulanan voltaj farkı sıcaklık ile iletkenlik bandına geçemeyen elektronları hareket haline geçirmek için yeterlidir. Bu yeterli olan voltaj farkı ise özdirenç değerinde ~3.5 kat kadar bir azalmaya sebep olmuştur. Çünkü sıcaklık zaten faz geçişini tamamlamasını sağlamıştır. Uygulanan, 1 V sonrasında voltaj farkı 30 V'a gitmesiyle, özdirencinde herhangi bir değişim görülmemiştir. Bunun sebebi olarak da sıcaklık ve elektrik alan etkileri VO₂'nin faz geçişini tetikleyebileceği maksimum değere

kadar tetiklemiştir. 80-90 ve 100 °C'de voltaj farkı altındaki ölçümlerde, elektrik alanın özdirenç değişimine sebep olmadığı açıkça görülmektedir. Bu sıcaklıklarda, sıcaklığın etkisiyle VO₂'nin faz geçişi tamamlanmış olup, uygulanan elektrik alan metalik VO₂'nin özdirencini değiştirmemektedir. 1935 µm uzunluğunda şeritlerin, genişliğine bağlı olarak yapılan elektriksel ölçüm sonuçlarında önemli bir fiziksel değişiklik gözlenememiştir. Çok düşük oranda özdirenç değer farklılıkları gözlenmesinin muhtemel sebebi, büyütülen VO₂ ince filminin üzerindeki safsızlıklardır. Bu yapı için elde edilen sonuçlar Şekil 4.32.b ve şekil 4.32.c için de benzerdir (şerit genişliği fiziksel farklılık yaratmamıştır). Üretilen VO₂ film yapısında istenmeyen metalik ikincil faz yapıları, VO₂'nin özdirencini düşürürken yalıtkan ikincil fazlar VO₂'nin özdirencinin olması gerekenden daha yüksek bir değere karşılık gelmesine sebep olmaktadır.

4.3.4.2 FET_5'in Elektriksel Analiz Sonuçları

960 µm uzunluğundaki 100, 50 ve 20 µm genişliğindeki VO₂ kanalları üzerinden alınan FET yapısının elektriksel ölçümleri Şekil 4.33'te gösterilmiştir. Burada, Şekil 4.32'den farklı olarak şerit uzunluğu azaltılmış olup, şerit genişlikleri sıralaması aynı tutulmuştur. 1935 µm uzunluğundaki FET yapısından farklı olarak, 960 µm uzunluğundaki FET yapısında bir takım farklar gözlemlenmiştir. Oda sıcaklığında source-kapı arasına voltaj farkı uygulanmadan, yani 0 V altında oda sıcaklığında gözlemlenen özdirenç değeri 960 µm uzunluğundaki FET yapısında, 1935 µm uzunluğundaki FET yapısına oranla çok az bir farkla daha düşüktür. Bunun sebebi şerit uzunluğunun azaltılmasına dayalıda olabilir veya VO₂ filminin içindeki safsızlıklara bağlıda olabilir, kesin sebebini ayırtetmek oldukça zordur. Çünkü FET_5, FET_6 ve FET 7'nin oda sıcaklığındaki özdirençlerini incelediğimizde FET 4'e oranla bir azalma vardır fakat bu azalma simetrik değildir. Şekil 4.33'te FET 5 yapısının elektriksel özelliklerini incelediğimizde, 20 °C ve 0 V altında 5.4x10 Ω.cm özdirenç değerine sahipken, 30 V değerine kadar source-kapı arasına voltaj farkı uygulanmasıyla 1.6x10⁻¹ Ω.cm özdirenç değerine düsmektedir. Bu sonuc ise VO₂ serit uzunluğunun azalmasıyla FET yapısında elektrik alana bağlı olarak daha yüksek bir tepki verdiğini özdirenç değişimindeki 10² oranından daha fazla olmasıyla göstermektedir. Aynı zamanda, 65 °C'de ölçülen FET yapılarında Şekil 4.32'ye oranla daha keskin bir geçiş görülmektedir. Şekil 4.33.c'de 20 µm genişliğindeki FET yapısından 65 °C'de alınan ölçümde, sıcaklık etkisiyle 0 V durumunda 4.0x10⁻¹ Ω.cm özdirenç değerine sahipken, elektrik alan etkisiyle 8 V'luk voltaj farkı uygulanmasına kadar eğrisel bir şekilde 7.6x10⁻³ Ω.cm özdirenç değerine kadar düşmektedir. Sonrasında, uygulanan bu voltaj farkının 8 V'tan itibaren arttırılmasıyla özdirenç değişimine katkısı olmamıştır. Bu elektrik alan etkisiyle özdirenç değerindeki değişimler 100 ve 50 µm şerit genişliğindeki FET yapıları için

daha düşük olduğu Şekil 33.a ve Şekil 33.b'de görülmektedir. 70 °C için 960 µm uzunluğundaki FET yapılarını incelediğimizde, 100 µm genişliğindeki yapı için, elektrik alanın yok denilecek kadar bir özdirenç azalmasına sebep olduğu, 50 µm için elektrik alanın etkilemediği ve 20 µm için 1.5 V farkına kadar düşük oranda özdirenç değişimine sahip olduğu sonrasında voltaj farkı arttıkça elektrik alanın etkilemeyip sabit bir özdirenç değerinde bulunduğu görülmektedir. Bu uzunluktaki FET yapısı için de, 80-90 ve 100 °C'de alınan ölçümler sıcaklığa bağlı değişiklik gösterdiği 0 V altında gözlemlenen değerden açıkça görülmekte olup, faz geçişinin tamamlaması sebebiyle elektrik alanın artık etkin olmadığı, ve sabit özdirenç değerinde bulunduğu açıktır.

Şekil 4.33 Kapı oksitli FET_5'in (a) 100 μ m (b) 50 μ m (c) 20 μ m genişliğindeki şeritler üzerinden alınan elektriksel analiz sonucu

4.3.4.3 FET_6'nın Elektriksel Analiz Sonuçları

680 µm uzunluğundaki 100, 50 ve 20 µm genişliğindeki FET yapılarının elektriksel analiz sonuçları Şekil 4.34'te gösterilmiştir. 680 µm uzunluğundan alınan ölçümlerde her bir şerit genişliği için, uygulanan elektrik alana bağlı olarak 60 °C'ye kadar eğrisel bir azalma görülmektedir. 1935 ve 960 µm uzunluğundaki FET yapılarından farklı olarak, 680 µm uzunluğundaki FET yapısında, elektriksel alan sebebiyle özdirencinde azalma görülüp belli bir değerde sabitlenme olması 60 °C'de başlamıştır. 60 °C'de yaklaşık olarak 10 V'luk bir voltaj farkından itibaren uygulanan voltaj farkı artmasıyla, bir özdirenç değişimi gözlemlenememekte ve değer sabitlenmektedir. 60 °C için ~10 V'tan sonra özdirenç sabitlenirken, 65 °C'de alınan ölçümleri incelendiğinde 4 V'tan sonra sabitlenmektedir. Bu durumda, sıcaklık arttıkça, uygulanacak olan elektrik alanın tetiklemesini azalttığını doğrulamaktadır. Çünkü sıcaklık artışıyla iletkenlik bandına geçecek olan elektronlar taşınarak, elektrik alanın yük taşıyıcının artışına çok fazla katkıda bulunmasına gerek kalmaz. Sıcaklık etkisiyle geçiş olabildiğince fazla olacaktır. Bu sebepten, elektrik alanın bu FET yapılarını ne kadar etkilediğini, en iyi 20 °C'deki ölçümler verecektir. Artan sıcaklıklarda 0 V'da sıcaklığın etkisi ve 30 V sonunda elektrik alan etkisi gözlenmektedir.

Şekil 4.34 Kapı oksitli FET_6'nın (a) 100 μm (b) 50 μm (c) 20 μm genişliğindeki şeritler üzerinden alınan elektriksel analiz sonucu

4.3.4.4 FET_7'nin Elektriksel Analiz Sonuçları

Üretilen FET yapılarında 1935 µm uzunluğundaki FET'ler için, 20 °C'den itibaren 70 °C'ye kadar ölçülen her sıcaklıkta, elektrik alan ile 30 V'luk voltaj farkı uygulanana kadar özdirenç değişimi gerçekleşebilmektedir. 70 °C'de elektrik alan etkisiyle özdirenç değişimi oldukça düşük olup, sonrasında özdirenç değerinin sabitlendiği Şekil 4.32.a, Şekil 4.32.b ve Şekil 4.32.c'de şerit genişliğinden bağımsız olarak açıkça görülmektedir.

FET uzunluğu azaltıldığında, 960 µm uzunluğundaki FET'ler için uygulanan elektrik alanının 65 °C'ye kadar ölçülen sıcaklıklarda, 30 V'luk voltaj farkından etkilendiği durumu Şekil 4.33'te görülmektedir. 65 °C'de Şekil 4.33.a ve Şekil 4.33.b'de 5 V'luk voltaj farkına kadar özdirenç değişimi gerçekleşirken, bu değişim Şekil 4.33.c'de 8 V'a çıkmaktadır. Bu değerlerden 30 V'a kadar voltaj farkı arttırılmasıyla herhangi bir tetikleme olmamıştır. 70 °C'de ise bu değer özdirenç değişimine sebep olan voltaj değeri oldukça düşük olup, bu özdirenç değişimi de olabildiğince düşüktür.

FET uzunluğu azaltılmaya devam edildiğinde, 680 µm uzunluğundaki FET'ler için elektrik alanın 30 V'a kadar tetikleyebileceği sıcaklık 50 °C'ye kadardır. 50 °C'de maksimum yaklaşık 15 V'a kadar voltaj farkı uygulandığında özdirenç değişimine sebep olmaktadır. 15 V'tan 30 V'a kadar uygulanan voltaj farkına karşılık özdirenç sabit değerdedir. 60 °C için özdirenci değiştiren maksimum voltaj 10 V civarındayken, 65 °C için bu değer ~4 V'a kadar düşmektedir. Böylece artık 70, 80, 90 ve 100 °C'deki sıcaklıklarda elektrik alan bir yük taşıyıcı yoğunluk artışına sebep olamamıştır. Şeritlerin uzunluğu azaldıkça, sıcaklık faz geçişine olabildiğince etkide bulunur ve elektrik alanın tetikleyebileceği serbest elektron geçişi azalır.

Son olarak 490 µm uzunluktaki FET yapıları için aynı elektriksel ölçümler tekrarlanmış olup, analiz sonuçları Şekil 4.35'te gösterilmiştir. Önceki ölçümlere uygun olarak, şerit uzunluğunun kısalmasıyla, elektrik alan 30 V'a kadar voltaj uygulanmasıyla birlikte 40 °C'ye kadar etkileyebilmektedir. 40 °C'de 490 µm uzunluktaki FET yapıları, 25 V'luk voltaj farkına kadar tetiklenebilmektedir. 25 V'tan itibaren 30 V'a kadar uygulanan voltaj farkının artması durumu, özdirenci değiştirmekte olup, sabit bir değer gözlenmektedir. 50 °C'de, simetrik olmamakla birlikte farklı şeritlerde maksimum voltaj farkının özdirenç değişimine sebep olduğu değer 15-20 V arasında değişmektedir. Ölçüm alınan sıcaklığın artmasıyla, elektrik alanın tetikleyebileceği maksimum voltaj farkı azalmakta olup 60 °C'de ~10 V iken, 65 °C'de 4 V civarındadır. 70 °C'de alınan ölçümlerde, şerit genişliğine göre voltaj farkının sebep olduğu özdirenç değişimi önemli bir farkılık göstermektedir. 100 µm şerit genişliğinde (Şekil 4.35.a)

maksimum 1 V'un altında, 50 (Şekil 4.35.b) ve 20 µm (Şekil 4.35.c) genişliğindeki FET için 2.5 V değerinin altında voltaj farkıyla özdirenç değişimi gerçekleşebilmektedir. Bu voltaj farklarının üzerinde voltaj uygulanması herhangi bir değişime sebep olmamaktadır.

Şekil 4.35 Kapı oksitli FET_7'nin (a) 100 μm
(b) 50 μm (c) 20 μm genişliğindeki şeritler
üzerinden alınan elektriksel analiz sonucu

4.4 Alttaşın VO2 Fazına Etkisi

VO₂'nin geçiş özelliği kullanılarak farklı tipteki FET yapılarının yanı sıra, daha ekonomik transistörler üretmek adına daha ucuz alttaş kullanılarak VO₂ film büyütme çalışmaları yapılmıştır ve akademik açıdan alttaşın VO₂ fazına etkisi incelenmiştir.

Safir alttaş üzerine büyütülmüş 310 nm kalınlığında ve 10^4 oranında metal-yalıtkan geçiş özelliğine sahip olan VO₂ ince film ile büyütme koşulları sabit tutularak, aynı parametrelerde fused silika cam üzerine %2.0 O₂ gönderilerek vanadyum oksit (VO_x) büyütülmüştür. Film büyütme aşamasından sonra bu iki farklı filmin Raman, sıcaklığa bağlı olarak optik ve elektriksel analizleri yapılmıştır.

4.4.1 Raman Analiz Sonuçlarının Karşılaştırılması

Raman ölçümleri, 488 nm dalgaboylu mavi lazer ile 100x'te gerçekleştirilmiştir. Şekil 4.36.a'da 194, 224, 262, 309, 342, 390, 445, 499, 617 ve 824 cm⁻¹'de gözlemlenen Raman modlarının hepsi VO₂'ye aittir (Kim, 2005). 514 nm yeşil lazer ile yapılan analize kıyasla, VO₂'nin 194, 224 ve 262 cm⁻¹'deki Raman pikleri gözlenememektedir ve 824 cm⁻¹'deki Raman modunun şiddeti oldukça düşük gözlenmektedir. 514 nm dalgaboyundaki yeşil lazerin enerjisi, frekansı yüksek olan VO₂'nin yüksek frekanstaki Raman modlarını belirleyebilmektedir. Yüksek kalitede büyütülen VO₂/safir ince film ile aynı parametrelerde büyütülen VO_x/fused silika filminin Raman analizler Şekil 4.36.b'de gösterilmiş olup, VO2'ye ait sadece 224, 260 ve 824 cm⁻¹'de Raman saçılmaları gözlenebilmiştir. Bununla birlikte, 293, 409, 488, 527 ve 992 cm⁻¹ de bulunan Raman modları V₂O₅ fazına aittir (Piccirillo, 2007). VO₂ fazının yanında ikincil V₂O₅ fazının da eklenmesinin yanı sıra 688, 872, 923, 974 ve 1023 cm-1'de vanadyum oksit bileşenlerinin piklerine karşılık gelebilmektedir. Literatürde VO, V7O13, V5O9, V8O15 gibi her vanadyum oksit bileşenin Raman analiz sonuçlarının bilinmemesi nedeniyle herbir pik direkt olarak analiz edilememiştir. Fakat yapılan çalışmalar sonucunda tecrübelerimize dayanarak, π ile gösterilen piklerin V_{1-x}O_x fazlarına ait olduğu öngörülmektedir. Böylece Raman analiz sonuçlarına göre, %2.0 O₂ konsantrasyonunun safir alttaş yerine fused silika cam üzerine sağlanması sonucunda VO₂ fazının, yanı sıra ikincil vanadyum oksit bileşenleri oluşmuştur.

Şekil 4.36. (a) Safir (b) Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin Raman analiz sonuçları

4.4.2 Optik Analiz Sonuçlarının Karşılaştırılması

Safir üzerine büyütülen VO₂ ince film yapısının fused silika üzerine büyütülmüş olan VO_x filmlerinin sıcaklığa bağlı optik analiz sonuçları Şekil 4.37'de gösterilmiştir. Safir/VO₂ yapısı için, 68 °C'ye kadar yalıtkan fazda bulunan iken yakın kızılötesi (NIR) geçirgenliği %60 civarındayken, 68 °C'den sonra metalik VO₂'nin yakın kızılötesi geçirgenliği ~%5'e kadar düşmektedir. Buna karşılık, VO_x/Fused silika yapısı için, geçiş sıcaklığından daha düşük sıcaklıklarda VO_x yapısının içerdiği VO₂ fazı sebebiyle, bu yapının yakın kızılötesi geçirgenliği %50 iken, yüksek sıcaklıklarda 0'a yaklaşmaktadır. Sonuç olarak, Safir/VO₂ ince film için, yakın kızılötesi geçirgenliğindeki yüzdelik oranın değişimi metalik-yalıtkan VO₂ için %55 iken, FusedSilika/VO_x için bu değer %55 olarak görülmektedir.

Şekil 4.37. (a) Safir (b) Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin sıcaklığa bağlı optik analiz sonuçları

Şekil 4.37'de gösterilen optik analiz sonrasında, bu iki ayrı ince filmler 2500 ve 1600 nm için yakın kızılötesi ve 550 nm görünür bölge dalgaboylarına bağlı olarak herbir sıcaklık (oda sıcaklığı-80 °C) için geçirgenlikleri Şekil 4.38'de gösterilmiştir. Görünür bölgede 550 nm dalgaboyu için, filmlerin (özellikle Fused silika/VO_x) geçirgenliğinde neredeyse bir değişiklik gözlenmemiştir. Buna rağmen, 2500 nm ve 1600 nm dalgaboyları için, filmler üzerinde sıcaklığa bağlı olarak bir geçiş gözlenmektedir. Yalıtkan VO₂'nin enerji bant aralığı 0.65 eV (~1900 nm) olması, yalıtkan fazda daha düşük enerjili gelen fotonların geçmesine karşılık, geçiş sıcaklığı üzerinde VO₂ metalik faza geçerek bant aralığı kapanır ve artık gelen kızılötesi bölgesindeki fotonların büyük bir kısmı yansırken bir kısmı da soğurulur. Bu durum da, bu bölgede bir geçirgenliğe sebep olur.

Şekil 4.38. (a) Safir (b) Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin NIR-VIS dalgaboyu için sıcaklığa bağlı optik analiz sonuçları

4.4.3 Elektriksel Analiz Sonuçlarının Karşılaştırılması

Safir üzerine büyütülen VO₂ ince film yapısı ile fused silika üzerine büyütülmüş olan VO_x filmlerinin sıcaklığa bağlı elektriksel analiz sonuçları Şekil 4.39'da gösterilmiştir. Safir/VO₂ ince filmi yaklaşık olarak 68 °C'de metal-yalıtkan geçişi göstermekte olup, sıcaklık değişimine bağlı olarak 10⁴ oranında özdirenç değişimi göstermektedir. Bu sonuca karşılık, FusedSilika/VO_x yapısı için, geçiş sıcaklığının 68 °C'den 72 °C'ye kadar olan bölgede açıkça görülmektedir. Aynı zamanda sıcaklığa bağlı özdirenç değişim oranı ~5x10²'dir. Bunun sebebi, Fused silika alttaş üzerine büyütülen vanadyum oksit yapısı içinde istenmeyen ikincil vanadyum oksit bileşenleri bulunmaktadır. Bu durum ise tanecik (grain) boyutunun azalmasına ve tanecik sınırlarının artmasına sebep olmaktadır. Büyütülen ince film içerisindeki bu değişiklikler ise, geçiş sıcaklığının artmasına ve özdirenç değişiminin azalmasına sebep olmaktadır.

Şekil 4.39. Safir ve Fused Silika cam üzerine büyütülen vanadyum oksit ince filmlerin sıcaklığa bağlı elektriksel analiz sonuçları.

SONUÇ

5.1 PROJE DAHİLİNDE YAPILANLAR

Vanadyum dioksit (VO₂) ~68 °C'de metal-yalıtkan geçişi (MIT) gösterir. MIT sıcaklığında kristal yapısının değişmesinin yanı sıra VO₂'nin elektriksel ve optik özellikleri de değişmektedir. VO₂'nin faz geçiş sıcaklığı, diğer vanadyum oksit (VO_x) bileşiklerine kıyasla oda sıcaklığına daha yakın olması sebebiyle, VO₂ elektronik cihazlar ve birçok farklı uygulama alanları için yüksek kullanım potansiyeline sahiptir.

Kanal görevinde VO₂ ince film üretimi ve kapı oksitli FET üretiminde dielektrik tabaka olarak HfO₂ büyütülmesi için, saçtırılan atomların alttaşa güçlü yapışması ve kalınlığının kolayca kontrol edilebilmesi gibi özellikleri sebebiyle son derece ideal olan DC mıknatıssal saçtırma tekniği kullanılmıştır.

Bu projede öncelikle VO₂ ince film üretimi üzerine çalışılmıştır. İlk adım olarak ısıtıcılı magnetron sactırma sistemi tasarlanmış ve homojen film üretimi için bir dönme mekanizması kullanılmıştır. VO₂ fazı elde edebilmek için ideal film büyütme parametreleri elde edilmiş ve oksijen konsantrasyonunun ve kalınlığının üretilen filmler üzerindeki etkileri incelenmiştir. VO2 - VOx ince filmler, c-safir alttaş üzerine çeşitli oksijen oranlarında ve farklı kalınlıklarda büyütülmüştür. Büyütülen bu ince filmlerin, optik ve Raman analiz sonuçları, filmdeki oksijen konsantrasyonunun film kalınlığı ile değişebildiğini göstermektedir. %2.00 O₂ oranına sahip 310 nm VO₂ ince film, yakın IR bölgesinde sıcaklığa bağlı olarak geçirgenlik yüzdesinde yaklaşık %60'lık bir fark gösterir. Bununla birlikte, görünür bölge için, filmin kalınlığı nedeniyle gecirgenlik yüzdesindeki değişiklik oranı oldukça düşüktür. Film kalınlığı 125 nm'ye düşürüldüğünde, aynı oksijen konsantrasyonunda (%2.00 O₂) geçirgenlik analizinde sıcaklığa bağlı bir değişim görülmemektedir. Bu sonuç ise, eğer sıcaklığa bağlı geçirgenlik yüzdesinde bir değişiklik yok ise, büyütülen filmin VO₂ fazı içermediğini göstermektedir. Böylece, filmlerin oksijen oranları sabit tutulup, biriktirme süresi azaltılarak filmin kalınlığı azaltıldığında birbirinden farklı fazlar elde edilmektedir. Bundan sonra, 125 nm VO₂ ince filmler icin O₂ oranı %2.00'den %3.00'e yükseltilmiştir. Optik analiz sonuçlarına göre 125 nm VO₂ ince filminin (%2.25 O₂) geçirgenlik değişiminin yakın IR bölgesinde yaklaşık %50 olduğu halde, 125 nm VO₂ ince filminin (%2.00 O₂) geçirgenliğinde hiçbir değişiklik gözlenmemesi sonucunda, VO₂ fazının elde edilmesinde, sadece kalınlığın değil oksijen konsantrasyonunun önemli

parametreler olduğunu söyleyebiliriz. VO₂ filminin kalınlığının azalması durumunda filmdeki oksijen konsantrasyonu düşebilir ve film metalik özellik kazanır. Bu sebepten kristalleşme nedeniyle, film kalınlığı azaltıldığında filmdeki O₂ oranının arttırılması gerekir.

Ayrıca bulgularımız Raman analiz sonuçları ile de desteklenmiştir. 310 nm kalınlığında olan ve $\%2.00 \text{ O}_2$ ile büyütülen ince film için sadece şiddeti yüksek VO₂'ye ait Raman modları gözlenmiştir. Tüm filmler arasında, en kaliteli ve tek faz VO₂ içeren film bu parametrelerle üretilmiştir. Film büyütme için biriktirme süreleri azaltıldığında, 125 nm kalınlığında VO_x ince film ($\%2.00 \text{ O}_2$) için sadece bir düşük şiddetli Raman saçılmasının VO₂'ye ait olduğu gözlenmiştir. Optik ve Raman analiz sonuçlarına göre, %2.25 oranındaki 125 nm VO₂ ince film, büyütülen 125 kalınlığındaki vanadyum oksit filmler arasında en iyi sonucu vermektedir. 125 nm büyütülen ince olan filmler arasında, %2.00 oksijen konsantrasyonlu 125 nm VO₂ film metalik olarak gözlemlenirken, diğerleri 125 nm kalınlığında büyütülen filmler V₂O₅ ikincil fazı içermektedir. Filmin kalitesi, en iyi şekilde elektriksel analiz sonuçlarına göre belirlenmekte olup faz değişim süresinde özdirenç değişim oranı oldukça önemlidir.

310 nm VO₂ (%2.00 O₂) ince film için, ~68 °C'de sıcaklığa bağlı 10⁴ oranında özdirenç değişimine sahip olan MIT geçiş özelliği gözlenmiştir. Bu faktör, mıknatıssal saçtırma yöntemi ile üretilmiş VO₂ ince film için literatürdeki faz geçişi durumunda en yüksek özdirenç değişim değeridir. Bu direnç değişimi, alan etkili transistörler gibi VO₂ mantık devreleri, dedektörler veya termokromik camlar gibi birçok uygulama alanında kullanılabilir. Buna karşın, 125 nm VO_x (%2.25 O₂) ince filminin, hem VO₂ hem de V₂O₅ fazlarını içermesi sebebiyle özdirencindeki değişim oranı 10²'dir. Ölçülen sıcaklık aralığında V₂O₅ fazının yalıtkan olması sebebiyle oda sıcaklığında VO₂'ye oranla daha yüksek bir özdirenç değerine sahiptir.

Alan etkili transistör (FET) uygulamaları için safir alttaş üzerine kanal görevi görecek VO₂ ince film üretimi gerçekleştirilmiştir. Büyütülen VO₂ kare film (4mm x 4mm) elektron demeti litografisi ile çeşitli genişliklerde şeritler halinde şekillendirilmiştir. E-demeti ile şekillendirme sürecinde, VO₂ şeritleri kimyasal işleme ve yüksek voltaja maruz bırakılmıştır. Dolayısıyla, e-demeti ile şekillendirilen VO₂ şeritleri ve herhangi bir işlemden geçmeyen kare VO₂ örneğininin elektriksel analiz sonuçları birbirlerinden farklıdır. Oda sıcaklığında işlem görmemiş kare VO₂ örnek için özdirenç değeri 3.0 Ω .cm iken, E-demeti sürecinden sonra, VO₂ şeritlerinin özdirenci, 10⁻² Ω .cm'ye düşmüştür. VO₂ şeritlerin özdirenci oda sıcaklığında itibaren 100 °C'ye kadar ısıtılmasıyla, 10 kat özdirenç değişimi gözlemlenmiştir. Bunlara ek olaraktan, VO₂ şeritler için MIT geçiş sıcaklığının 68 °C'den 50 °C'ye kaydığı gözlenmiştir. Geçiş sıcaklığının oda sıcaklığına daha yakın olması birçok farklı uygulama alanlarında kolaylık sağlayacaktır.

Uygulanması gerekenden daha düşük sıcaklık ya da daha düşük ellektrik alan ile VO₂'nin MIT faz geçişinin tetiklenebilmesi daha ekonomik bir üstünlük sunmaktadır. Ancak, VO₂'nin faz geçiş sıcaklığını oda sıcaklığına kaydırmak ekstra farklı bir çalışma gerekmektedir. Projemizde üretilmesi hedeflenen iki farklı tip FET yapısı için, VO₂ şeritlerinin sıcaklığa bağlı 10⁴ oranında özdirenç değişimi göstermelidir; ancak bu durumda en iyi şekilde elektrik alan altında elektriksel özelliklerinin değişimi incelenebilir. Yapılan denemeler sonucu, e-demeti litografi işleminde uygulanan eV değeri düşürülerek istenilen sonuca ulaşılmıştır. Böylece şerit uzunluğundan ve genişliğinden bağımsız olarak şekillendirilen VO₂ şeritleri 10⁴ oranında sıcaklığa bağlı özdirenç değişimi göstererek faz geçişini tamamlamaktadır. Fakat VO₂ fazının ilk olarak 310 nm kalınlığında ve %2.00 O₂ oranında elde edilmesinin ardından film büyütme işlemi devamında üretilen VO₂ filmler ~250 nm kalınlığındadır. Daha ince bir kalınlıkta VO₂ fazı elde etmek elektronik cihaz üretimleri açısından minimum boyut sağlaması nedeni ile oldukça avantajlıdır. Kapı dielektrik tabakası olarak HfO₂ büyütme konusunda tecrübemiz olması sebebiyle kısa sürede n=2.01 değerine sahip olan HfO₂ üretilmeye başlanmıştır.

Bu projede hedeflenen kapı oksitli ve kapı oksitsiz FET olmak üzere iki farklı FET yapısı yer almaktadır. İlk olarak kapı oksitli FET üretimlerinde; 2 mm uzunluğunda, 220-75 µm genişliklerinde FET_1 deneme aşamasında maskeleme yöntemi ile üretilmiş olup, HfO₂ kapı dielektrik üzerine, kapı (gate) olarak AI buharlaştırılmıştır. Bu yapı için, alınan elektriksel ölçümlerde kapı ile kaynak (source) arasına 30-100 °C arasındaki sıcaklıklarda 0 V'tan 15 V'a kadar artış gösteren voltaj farkı uygulanmıştır. Aynı zamanda direnç okuyabilmek için, kaynak – savak (drain) arasına 1 V'luk bir voltaj farkı uygulanmıştır. Bunun sonucunda yaratılan elektrik alan etkisiyle özdirenç değerinde ~10 kat bir azalma olmuştur. Bu da elektrik alanın veya elektrik alan etkisi altında bölgesel ısınma (local heating) sebebiyle üretilen VO₂ tabanlı FET yapısını tetiklediğini göstermektedir.

Maskeleme ile üretilen FET_1 yapısından sonra, e-demeti litografisi ile şekillendirmeler yapılarak 2.5 mm uzunluğunda 100 – 15 µm genişliklerinde FET_2 üretimi gerçekleştirilmiştir. Bu yapı için de HfO₂ kapı dielektrik üzerine, kapı olarak Al buharlaştırılmıştır. Elektrik ölçüm devresi FET_1'deki gibi aynı tutularak elektriksel ölçümler gerçekleştirilmiş olup, elektrik alan altında elde edilen elektriksel sonuçlarda ~10 kat özdirenç değişimi görülmüştür.

FET_3 yapısında, VO₂ üzerine büyütülen HfO₂ kapı dielektrik tabakasının VO₂'nin içine difüz etmesini engellemek için, HfO₂ yerine VO₂ kanalı ile Au kapı arasına "air gap" dediğimiz 20 µm hava boşluğu bırakılarak ikinci tip kapı oksitsiz FET üretimi tamamlanmıştır. Elektriksel

ölçümlerde kaynak – kapı arasındaki voltaj farkı 0 V'tan 50 V'a kadar çıkartılmış olup, hiçbir sıcaklıkta elektrik alan ile tetikleme gözlenememiştir. Bunun nedeni, air gap sebebiyle bölgesel bir ısınma gerçekleşmemesidir.Yani bu sonuç, VO₂ kanalının elektrik alan ile tetiklenmesi yerine elektrik alan sebebiyle bölgesel bir ısınma sonrasında özdirencinde değişim olduğunu öngörmektedir. Yapılan araştırmalar sonucunda, VO₂'nin elektrik alan altında faz değişimi gerçekleştirmesinin sebebinin direkt elektrik alan ya da elektrik alanın sebep olduğu lokal ısınma sebebi olup olmadığı günümüzde tartışması devam eden bir konudur.

Kapı oksitsiz FET 3 üretiminden sonra serit uzunlukları ve serit genislikleri farklı olacak sekilde belli bir düzende FET_4, FET_5, FET_6 ve FET_7 yapıları üretilmiştir. Burada FET_4 1935 µm uzunluğunda olup, bu uzunluk FET 7 için 490 µm dir ve her FET yapısı için azalmaktadır. Aynı zamanda bu yapılarda, her FET için genişlik 100, 50 ve 20 µm olacak şekilde sabit tutulmuştur. E-demeti ile şekillendirmeler yapıldıktan sonra HfO2 kapı dielektrik tabakası üzerine Au kapı buharlaştırılmıştır. Bu seride, elektriksel ölçüm devresinde ise kaynak – savak arasındaki voltaj farkı lokal (bölgesel) ısınmayı engellemek için 0.15 V'a düşürülmüştür ve kaynak - kapı arasındaki voltaj farkı 0 V'tan başlayarak 30 V'a artırılarak elektriksel ölçüm analizleri yapılmıştır. Analiz sonuçlarında simetrik bir sonuç görülmemesinin sebebi, üretilen VO₂ filmin ve FET yapılarının her noktasında homojen olmamasıdır. Bu FET yapılarında oda sıcaklığında 30 V'luk voltaj farkının oluşturduğu elektrik alan ile VO₂ kanalı tetiklenerek 10² oranında özdirenç değişimi göstermektedir. Elektronik sistemlerde transistörlerin boyutunun küçüldükçe verimden değer kaybetmemesi oldukça önemlidir. Bizim çalışmalarımızda, en küçük boyuttaki FET 7 için şerit genişliğinden bağımsız elektrik alan altında 10² oranında özdirenç değişimi gözlemlenerek FET özelliğini koruduğu açıkça görülmektedir. Şerit uzunluğu azaldıkça oda sıcaklığından itibaren artan sıcaklıklarda, daha düşük bir elektrik alan ile bu faz değişimini belli bir oranda gösteren özdireç değişimine sebep olmaktadır. Şerit uzunluklarının azalması ve sıcaklığın artmasıyla voltaj farkı 0 V'tan başlayıp 30 V'a ulaşmadan özdirenci belli bir değere kadar düşerek, bu değerden sonra uygulanan voltaj 30 V'a gelene kadar sabit bir özdirenc değeri göstermektedir. Maksimum tetikleven voltaj değeri; FET serit uzunluğu, genişliği ve ölçülen sıcaklık değerine göre farklılık göstermektedir. Bu ölçümler sırasında, oda sıcaklığından itibaren arttırılan sıcaklıklarda 0 V altında, VO2'nin değerlik bandından iletkenlik bandına geçebilecek elektronların bir kısmının (o sıcaklığa kadar enerjisi yeten elektronlar) hareketi gerçekleşmiş olup, bir diğer kısmı da elektrik alan etkisiyle bu geçişi sağlayıp iletkenlik bandında yük taşıyıcı yoğunluğunu arttırmaktadır. VO2'nin geçiş sıcaklığından itibaren yapılan elektriksel analizlerde, elektrik alanının özdirenç değişimine sebep olmadığı görülmektedir. Bunun sebebi ise, VO₂'nin artık faz geçişinin tamamlanmış olması ve metalik yapıya geçiş

yapmak için iletkenlik bandında yük taşıyıcı yoğunluğunun maksimum değerine ulaşmış olmasıdır.

5.2 PROJE SONUÇLARININ YENİ ÇALIŞMALARA OLAN KATKISI

Sıcaklığa bağlı 10⁴ oranında özdirenç değişimiyle metal-yalıtkan geçiş özelliği gösteren VO₂ ince filmlerin, başka uygulamalarda kullanılması için ön çalışmalar devam etmektedir. Bunlardan biri THz dalgalarının modülasyonudur. Dolayısıyla, bu proje ile elde ettiğimiz deneyimler şu anda ve ileriki çalışmalarımızda kullanılmaktadır.

KAYNAKÇA

Atkin J. M, Berweger S., Chavez E. K., Raschke M. B., Cao J., Fan W. ve Wu J. (2012). "Strain ve temperature dependence of the insulating phases of VO₂ near the metal-insulator transition." Physical Review B 85 (2):020101.

Aygun G., Yildiz I. (2009). "Interfacial ve structural properties of sputtered HfO₂ layers." Journal of Applied Physics, 106, 014312.

Basov D. N., Averitt R. D., Marel D., Dressel M ve Haule K. (2011). "Electrodynamics of correlated electron materials." Reviews of Modern Physics 83 (2):471.

Brinkman W. F. ve Rice T. M. (1970). "Application of Gutzwiller's variational method to the metal-insulator transition." Physical Review B 2 (10):4302.

Chae B. G., Kim H. T. ve Yun S. J. (2008). "Characteristics of W-ve Ti-doped VO₂ thin films prepared by sol-gel method." Electrochemical ve Solid-State Letters 11 (6):D53-D55.

Chen C., Yi X., Zhao X. ve Xiong B. (2001). "Characterizations of VO₂-based uncooled microbolometer linear array." Sensors ve Actuators A: Physical 90 (3):212-214.

Demirhan Y. (2014). "Fabrication of double mesa structures from superconducting Bi2Sr2CaCu2O8+ d by e-beam lithography for terahertz emission." İzmir Institute of Technology.

Du J., Gao Y., Luo H., Kang L., Zhang Z., Chen Z. ve Cao C. (2011). "Significant changes in phase-transition hysteresis for Ti-doped VO₂ films prepared by polymer-assisted deposition." Solar Energy Materials ve Solar Cells 95 (2):469-475.

Eguchi R., T. Yokoya, Kiss T., Ueda Y., Tajima H., Yamazaki J. ve Shin S. (2002). "Angleresolved photoemission spectroscopy, optical conductivity, ve soft X-ray Raman spectroscopy of quasi-one-dimensional V_6O1_3 ." Physica B: Condensed Matter 312:600-602.

Filonenko V. P., Sundberg M., Werner P. E. ve Zibrov I. P. (2004). "Structure of a highpressure phase of vanadium pentoxide, β -V₂O₅." Acta Crystallographica Section B: Structural Science 60 (4):375-381.

Gopalakrishnan G., Ruzmetov D. ve Ramanathan S. (2009). "On the triggering mechanism for the metal–insulator transition in thin film VO₂ devices: electric field versus thermal effects." Journal of Materials Science 44 (19):5345-5353.

Griffiths P. R. ve Haseth J. A D. (2007). *Fourier transform infrared spectrometry*. Vol. 171: John Wiley & Sons.

Imada M., Fujimori A. ve Tokura Y. 1998. "Metal-insulator transitions." Reviews of Modern Physics 70 (4):1039.

Jiang M., Cao X., Bao S., Zhou H., Jin P. (2014). "Regulation of the phase transition temperature of VO_2 thin films deposited by reactive magnetron sputtering without doping", Thin Solid Films, 562, 314-318.

Johansson D. (2006). "VO₂ films as active infrared shutters." Linköping University.

Jordan T. S., Scott S., Leonhardt D., Custer J. O., Rodenbeck C. T., Wolfley S. ve Nordquist C. D. (2014). "Model ve Characterization of Thin-Film Switching Devices." Electron Devices, IEEE Transactions on 61 (3):813-819.

Kim H. T., Chae B. G., Youn D. H., Kim G., Kang K. Y. (2005) "Raman studies of electric-fieldinduced first-order metal-insulator transition in VO₂-based devices", Applied Physics Letters, 86, 242101.

Kim H., Charipar N., Osofsky M., Qadri S., Piqué A. (2014). "Optimization of the semiconductor-metal transition in VO_2 epitaxial thin films as a function of oxygen growth pressure", Applied Physics Letters, 104, 081913.

Kim D. H. ve Kwok H. S. (1994). "Pulsed laser deposition of VO₂ thin films." Applied physics letters 65 (25):3188-3190.

Ko C. ve Ramanathan S. (2008). "Stability of electrical switching properties in vanadium dioxide thin films under multiple thermal cycles across the phase transition boundary." Journal of Applied Physics 104 (8):6105.

Liu K., Cheng C., Suh J., Tang-Kong R., Fu D., Lee S., Zhou J., Chua L. O. ve Wu J. 2014. "Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition." Advanced Materials 26 (11):1746-1750.

Luo Y., Zhu L., Zhang Y., Pan S., Xu S., Liu M., Li G. (2013). "Optimization of microstructure ve optical properties of VO₂ thin film prepared by reactive sputtering", Journal of Applied Physics, 113, 183520.

Marezio M., McWhan D. B., Remeika J. P. ve Dernier P. D. (1972). "Structural Aspects of the Metal-Insulator Transitions in Cr-Doped VO₂." Physical Review B 5 (7):2541.

Maruyama, T, ve Y Ikuta. 1993. "Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate." Journal of Materials Science 28 (18):5073-5078.

Morin F. J. (1959). "Oxides which show a metal-to-insulator transition at the Neel temperature." Physical Review Letters 3 (1):34.61.

Mendialdua J., Casanova R., Barbaux Y. (1995). "XPS studies of V_2O_5 , V_6O_{13} , VO_2 ve V_2O_3 ", Journal of Electron Spectroscopy ve Related Phenomena, 71, 249-261.

Mortazavi S.Z., Parvin P., Reyhani A., Mirershadi S., Sadighi-Bonabi R. (2013) "Generation of various carbon nanostructures in water using IR/UV laser ablation", Journal of Physics D: Applied Physics, 46, 165303.

Mott N. (1990). "On metal-insulator transitions." Journal of Solid State Chemistry 88 (1):5-7.

Nag J. (2011). "The solid-solid phase transition in vanadium dioxide thin films: synthesis, physics and application." Vanderbilt University.

Nazari M. (2013). "Vibrational and Optical Properties of Vanadium Dioxide." Texas Tech University.

Nazari M., Chen C., Bernussi A. A., Fan Z. Y. ve Holtz M. (2011). "Effect of free-carrier concentration on the phase transition and vibrational properties of VO₂." Applied Physics Letters 99 (7):071902.

Ohno H. (1998). "Making nonmagnetic semiconductors ferromagnetic." *science* 281 (5379):951-956.

Öksüzoğlu R.M., Bilgiç P., Yıldırım M., Deniz O. (2013). "Influence of post-annealing on electrical, structural ve optical properties of vanadium oxide thin films", Optics & Laser Technology, 48, 102-109.

Paterson E. ve Swaffield R. (1994). "X-ray photoelectron spectroscopy." In Clay Mineralogy: Spectroscopic ve Chemical Determinative Methods, 226-259. Springer.62.

Petrov G., Yakovlev V., Squier J. (2002). "Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide", Applied Physics Letters, 81, 1023-1025.

Piccirillo C., Binions R., Parkin I.P. (2007). "Synthesis and functional properties of vanadium oxides: V_2O_3 , VO_2 , ve V_2O_5 deposited on glass by aerosol-assisted CVD", Chemical Vapor Deposition Weinheim, 13, 145-151.

Ruzmetov D., Gopalakrishnan G., Ko C., Narayanamurti V., Ramanathan S. (2010). "Threeterminal field effect devices utilizing thin film vanadium oxide as the channel layer", Journal of Applied Physics, 107, 114516.

Ruzmetov D., Gopalakrishnan G., Deng J., Narayanamurti V. ve Ramanathan S. (2009). "Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions." Journal of Applied Physics 106 (8):083702.

Ruzmetov D., Zawilski K. T., Narayanamurti V. ve Ramanathan S. (2007). "Structurefunctional property relationships in rf-sputtered vanadium dioxide thin films." Journal of Applied Physics 102 (11):113715.

Sahana M. B., Subbanna G. N. ve Shivashankar S. A. (2002). "Phase transformation ve semiconductor-metal transition in thin films of VO₂ deposited by low-pressure metalorganic chemical vapor deposition." Journal of Applied Physics 92 (11):6495-6504.

Silversmit G., Depla D., Poelman H., Marin G.B., De Gryse R. (2004). "Determination of the V2p XPS binding energies for different vanadium oxidation states (V^{5+} to V^{0+})", Journal of Electron Spectroscopy and Related Phenomena, 135, 167-175.

Stefanovich G. A. P. ve Stefanovich D. (2000). "Electrical switching and Mott transition in VO_2 ." Journal of Physics: Condensed Matter 12 (41):8837.

Taşdemir A. (2015). "Thin film coating of silver on fibers by roll to roll inverted cylindrical magnetron sputtering." İzmir Institute of Technology.

Tokura Y., Taguchi Y., Okada Y., Fujishima Y., Arima T., Kumagai K. ve Iye Y. (1993). "Filling dependence of electronic properties on the verge of metal–Mott-insulator transition in $Sr_{1-x} La_x$ TiO₃." Physical Review Letters 70 (14):2126.

Wang B., Lai J., Li H., Hu H. ve Chen S. (2013). "Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer." Infrared Physics & Technology 57:8-13.

West K. G., Lu J., Yu J., Kirkwood D., Chen W., Pei Y., Claassen J. ve Wolf S. A. (2008). "Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition." Journal of Vacuum Science and Technology. A, International Journal Devoted to Vacuum, Surfaces, and Films 26 (1).

Wu C., Feng F. ve Xie Y. (2013). "Design of vanadium oxide structures with controllable electrical properties for energy applications." Chemical Society Reviews 42 (12):5157-5183.

Wu J. M. ve Liou L. B. (2011). "Room temperature photo-induced phase transitions of VO2 nanodevices." Journal of Materials Chemistry 21 (14):5499-5504.

Yuce H. (2015). "Characterization of vanadium oxide thin films grown by mahnetron sputtering technique." İzmir Institute of Technology

Zallen R. ve Penchina C. M. (1986). "The physics of amorphous solids." American Journal of Physics 54 (9):862-863.

Zhang X. Y., Rozenberg M. J. ve Kotliar G. (1993). "Mott transition in the d=∞ Hubbard model at zero temperature." Physical Review Letters 70 (11):1666.

Zhao Y., Lee J. H., Zhu Y., Nazari M., Chen C., Wang H., Bernussi A., Holtz M. ve Fan Z. (2012). "Structural, electrical, and terahertz transmission properties of VO₂ thin films grown on c-, r-, and m-plane sapphire substrates." Journal of Applied Physics 111 (5):053533.

Zhou J., Gao Y., Zhang Z., Luo H., Cao C., Chen Z., Dai L., Liu X. (2013). "VO₂ thermochromic smart window for energy savings and generation", Scientific Reports, 3, 3029.

TÜBİTAK PROJE ÖZET BİLGİ FORMU

Proje Yürütücüsü:	Doç. Dr. GÜLNUR AYGÜN ÖZYÜZER
Proje No:	113F349
Proje Başlığı:	Metal-Yalıtkan Geçiş Özellikli VO2 İle Gate Oksitli Ve Gate Oksitsiz Alan-Etkili Aygıt
Proje Türü:	Uluslararası
Proje Süresi:	36
Araştırmacılar:	ENVER TARHAN
Danışmanlar:	
Projenin Yürütüldüğü Kuruluş ve Adresi:	İZMİR YÜKSEK TEKNOLOJİ ENS. FEN F. FİZİK B.
Projenin Başlangıç ve Bitiş Tarihleri:	01/05/2014 - 01/05/2017
Onaylanan Bütçe:	412760.0
Harcanan Bütçe:	362130.34
Öz:	Vanadyum dioksit (VO2) yaklaşık olarak 68 °C'de metal-yalıtkan geçiş özelliği göstermektedir. VO2 düşük sıcaklıklarda yalıtkan fazda bulunurken, geçiş sıcaklığına göre yüksek sıcaklıklarda metalik fazda bulunur. Geçiş sıcaklığında, VO2'nin özdirenci ani bir şekilde 10^4 oranında değişim gösterir ve bu özelliğinden dolayı hızlı elektronik cihazlarda kullanılma potansiyeli oldukça yüksektir. VO2 alan etkili transistör uygulamalarında önemli bir rol oynamaktadır. VO2 gösterdiği elektriksel özellikler sebebiyle alan etkili transistörlerde kanal görevi görmektedir. VO2 malzemesinin elektrik alan altında değişen elektriksel özellikleri, VO2'yi alan etkili transistörlerde kanal malzemesi olarak kullanılmasını mümkün kılmaktadır. Bu özellikler göz önünde bulundurulduğunda VO2 kanal görevi görecek şekilde iki farklı tipte FET üretilmiştir. Birinci tip FET üretiminde, VO2'ye temas etmeksizin, arada hava bırakılarak VO2'nin altına ve üstüne, iki adet altın gate tabakası buharlaştırılmıştır. Altın gate tabakalarının VO2'ye hiçbir şekilde fiziksel teması olmadığından, VO2 içerisine malzeme difüz etmesi de söz konusu değildir. Bu ise VO2'nin MIT özelliğini etkilemeden, e-demeti litografi tekniği sayesinde çok detaylı hatlara sahip olan FET üretebilmemizi sağlamıştır. İkinci tip FET üretiminde ise VO2'nin üretilip e-demeti ile şekillendirilmesi aşamasına kadarki yapılacak işlemler birinci tip FET üretimi ile aynıdır. HfO2 ince filmi gate dielektrik olarak kullanılmıştır. VO2 kanalları üzerine, DC saçtırma yöntemi ile HfO2 gate dielektrik büyütülmüştür. HfO2 gate dielektrik tabakası üzerine Au/Al gate tabakası buharlaştırılmıştır. Devamında ise, iki farklı tipte üretilen FET yapılarındaki (tip 1 ve tip 2) VO2 kanal tabakasının, prob istasyonu kullanılarak vakum ortamında sıcaklığa bağlı olarak, voltaj altında MIT karakterizasyonları yapılmıştır.
Anahtar Kelimeler:	VO2, HfO2, metal-yalıtkan geçişi, FET, ince filmler
Fikri Ürün Bildirim Formu Sunuldu Mu?:	Hayır

Projeden Yapılan Yayınlar:	1- Substrate Heated DC magnetron sputtered VO2 thin film and its electrical and optical	
	characteristics (Bildiri - Olusal Bildiri - Poster Sunum),	
	2- "Characterization of VO2 Films grown by Magnetron Sputtering for Field Effect Transistor	
	Applications"Hurriyet Yuce, Sena Gulen, Mehtap Koklu, Gulnur Aygun, Lutfi Ozyuzer (Bildiri -	
	Uluslararası Bildiri - Poster Sunum),	
	3- "X-Ray Photoelectron Spectroscopic SDepth Profiling Analysis of HfO2/Hf/Si Multilayer	
	structure"A. Cantas, G. Aygun, L. Ozyuzer (Bildiri - Uluslararası Bildiri - Poster Sunum),	
	4- MIKNATISSAL SAÇTIRMA YÖNTEMİ İLE ÜRETİLEN TERMOKROMİKVO2 İNCE	
	FİLMLERİN ELEKTRİKSEL VE OPTİKSELKARAKTERİZASYONU (Bildiri - Ulusal Bildiri -	
	Sözlü Sunum),	
	5- "VO2 films grown by magnetron sputtering"Hurriyet Yuce, Gulnur Aygun, Lutfi Ozyuzer,	
	Mehtap Ozdemir (Bildiri - Uluslararası Bildiri - Sözlü Sunum),	
	6- "Characterization of VO2 films grown by magnetron sputtering for thermochromic	
	applications"Hurriyet Yuce, Hakan Alaboz, Gülnur Aygun, Lutfi Ozyuzer (Bildiri - Uluslararası	
	Bildiri - Sözlü Sunum),	
	7- Characterization of vanadium oxide thin films grown by magnetron sputtering technique	
	(Tez (Araştırmacı Yetiştirilmesi) - Yüksek Lisans Tezi),	
	8- Magnetron Sputter Deposition of Vanadium Dioxide Thin Films on Various Substrates for	
	Thermochromic Applications (Bildiri - Ulusal Bildiri - Sözlü Sunum),	
	9- Magnetron Sputtered VO2 Films for Field Effect Transistor via Metal Insulator Transition	
	(Bildiri - Uluslararası Bildiri - Sözlü Sunum),	
	10- "High TCR DC Sputtered VOx Films for THz Bolometer Applications"Hakan Alaboz,	
	Hurriyet Yuce, Gulnur Aygun, Lutfi Ozyuzer (Bildiri - Uluslararası Bildiri - Poster Sunum),	
	11- Field Effect Transistors Based on Metal Insulator Transition in VO2 (Bildiri - Uluslararası	
	Bildiri - Sözlü Sunum),	
	12- Vanadium Oxide Thin Films grown by Magnetron Sputtering Technique (Bildiri -	
	Uluslararası Bildiri - Sözlü Sunum),	