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ABSTRACT One way of developing fast, effective, and high-quality software products is to reuse previously
developed software components and products. In the case of a product family, the software product line (SPL)
approach canmake reuse more effective. The goal of SPLs is faster development of low-cost and high-quality
software products. This paper proposes an incremental model-based approach to test products in SPLs. The
proposed approach utilizes event-based behavioral models of the SPL features. It reuses existing event-based
feature models and event-based product models along with their test cases to generate test cases for each new
product developed by adding a new feature to an existing product. Newly introduced featured event sequence
graphs (FESGs) are used for behavioral feature and product modeling; thus, generated test cases are event
sequences. The paper presents evaluations with three software product lines to validate the approach and
analyze its characteristics by comparing it to the state-of-the-art ESG-based testing approach. Results show
that the proposed incremental testing approach highly reuses the existing test sets as intended. Also, it is
superior to the state-of-the-art approach in terms of fault detection effectiveness and test generation effort
but inferior in terms of test set size and test execution effort.

INDEX TERMS Incremental testing, model-based testing, software product line.

I. INTRODUCTION
A set of products with common features with varying
additional features related to each other in a specific domain
constitutes a software product line (SPL) [1]. The software
product line paradigm enables systematic reuse of software
assets resulting in faster development and increased product
quality [2]. SPLs are welcome to constant changes and
improvements in design and development. Therefore, the
methods ensuring their quality should be able to go alongwith
the same paradigm.

In SPLs, there are different products of software equipped
with different features to appeal to different target audiences;
for example, standard, professional and enterprise versions of
a software product. Every new feature added to the features
at the base/core of the software increases the complexity
of the software and thereby reinforces its predisposition to
failure [3]. The features in a software product line shape the
products according to the selection of the stakeholders and
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enable us to distinguish one product from another [4]. The
feature selection can be performed using feature diagrams [5].

In software product lines, software testing comprises
testing components in the asset pool (i.e., domain tests) and
testing the final product (i.e., application tests). We suggest
using model-based test generation methods for the automatic
generation of domain tests because domain engineering
mainly utilizes model-based approaches. In software product
lines, applications are built by reusing existing compo-
nents and their configurations. Similarly, application tests
should be generated by reusing domain tests and their
configurations.

In this paper, we propose a model-based approach to
functional or black-box testing of SPLs incrementally. The
idea is based on using the previously generated test artifacts
(models, tests, etc.) of existing products to generate the test
artifacts for the new products each of which includes an
additional feature. In order to realize this idea, it is possible to
use models of different focus and expressive power.We select
an event-based modeling approach using event sequence
graphs (ESGs) [6].
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ESGs are equivalent to finite state machines (FSMs) [7],
one of the most commonly used state-based models in testing
practice. An FSM can be converted to an ESG, and vice versa,
making ESGs as practical as FSMs. The difference, however,
is that ESGs focus on events and, therefore, have simpler
semantics as well as simpler associated fault models [8].
There is a considerably large body of work done on ESGs [6],
[9], [10] and similar event-based models [8], [11], [12], [13].

This work introduces an event-based incremental testing
approach for testing products of SPLs. One of the main
novelties of the approach is that featured event sequence
graphs (FESGs) which are extended from ESGs, are used
to model a product based on its features, and explicitly
capture behavioral variability in SPLs. More precisely, the
event-based behavior of each feature is modeled as a kind
of ESG, called feature ESG (f-ESG), and the behavior of
the product is defined by combining f-ESGs of its features.
Another novelty is that FESG and test sequences of an
existing product are reused in test generation together with
f-ESG of a new feature that is to be added to the existing
product to make up a new product. First, test sequences for
the new feature are generated by using the f-ESG of the
new feature and the FESG of the existing product. Then, test
sequences of the existing product are composed with those of
the new feature incrementally to obtain test sequences for the
new product.

Note that we introduced FESGs in our previous work [14].
We also presented a test generation algorithmwith limitations
to generate tests for a product by composing all the sequences
generated from its f-ESGs. In this paper, we extend [14] in
two directions. One is redesigning the approach to work with
increments to promote reuse. Although our previous work
is called ‘‘incremental’’, it is ‘‘compositionally incrementa’’,
where f-ESGs of the features of a new product are processed
separately. The approach presented in this paper reuses the
FESG of an existing product together with the f-ESG of an
additional feature that makes up a new product. The other
direction for extension [14] is proposing a more efficient and
general test generation algorithm. The previous algorithm
generates test cases from the f-ESGs of a new product
separately and then composes them to obtain test cases for
the new product. The proposed algorithm, however, generates
test cases for the new product by making use of the FESG of
an existing product and the f-ESG of an additional feature.
This algorithm also handles the cases that are not handled by
the previous one where sequences cannot be composed in the
middle parts and all sequences generated from the ESGmodel
of core feature end with the same finish event.

The advantages of the proposed approach are twofold.
First, with separate behavioral modeling of features, when
a change occurs in a feature or when a product with a
new feature emerges, the tester works only on the affected
feature ESG instead of the affected product ESGs, each
of which could be considerably larger than a feature ESG,
or only on the new feature ESG instead of the new and
larger product ESG. Second, by applying an incremental test

FIGURE 1. Soda Vending Machine SPL feature diagram (modified
from [15]).

generation process, the tester can generate tests by composing
the sequences of the affected feature or the sequences of the
new feature incrementally with existing sequences. Thus, the
proposed approach becomes more adept at handling constant
changes and the emergence of new products when compared
to the state-of-the-art ESG-based approach [6], which uses
a single ESG (of the product) to generate tests, and to
the approach in our previous work [14], which composes
sequences of all feature ESGs (of the product) to generate
tests.

The paper is organized as follows. Section II introduces the
foundations of feature modeling and the state-of-the-art test
generation approach using ESGs. The proposed approach,
incremental test generation using FESGs, is described in
Section III and Section IV validates the approach by perform-
ing evaluations to analyze its characteristics in comparison
to the state-of-the-art ESG-based testing approach. Related
work is discussed in in Section V and Section VI concludes
the paper and outlines the future work.

II. PRELIMINARIES
This section introduces our running SPL example which is
used paper and presents a brief background on event-based
modeling and test generation using event sequence graphs
(ESGs).

A. RUNNING EXAMPLE: SODA VENDING MACHINE SPL
Feature diagrams define the configuration options and the
dependencies of features in SPLs [5]. The root represents the
core of the SPL and the nodes represent features, which can
be either mandatory or optional, and are denoted by filled and
empty small circles, respectively. The features are classified
as concrete and abstract. Concrete features correspond to real
features in an SPLwhereas abstract features are used to group
features. Two or more features with an OR relationship can
exist in a product in different combinations, whereas an XOR
relationship allows only one of them to exist in a product.
XOR relationship models alternative features.There are also
require and exclude relationships, where the former denotes a
feature that cannot exist without the required feature and the
latter denotes a feature that omits excluded feature.

In the feature diagram given in Fig. 1, Soda Vending
Machine SPL is shown with mandatory abstract features
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Algorithm 1: Sequence Generation
Input: G = (V, E, 4, 0) – an ESG
Output: T – a set of complete sequences for G

1 GSC = add an edge from ’]’ to ’[’ into G
2 GSC−B = add necessary paths until degree of each vertex

in GT−SC is 0
3 T = compute Euler cycles from GT−SC−B

which are ServeBeverage and Purchase. In this diagram,
the abstract feature ServeBeverage is grouping the features
serveSoda and serveTea with OR relationship similar to
Purchase which groups the features payEUR, payUSD,
and free. The feature cancel is optional for this SPL.
Furthermore, the implication that is written below the feature
diagram corresponds to require relationship where the feature
cancel requires feature payEUR or feature payUSD in a
product configuration. Soda Vending Machine SPL example
is modified from [15] and all of the f-ESG models are given
in external resources.1

B. TEST GENERATION USING ESGs
An ESG is used for behavioral modeling of systems [16].
ESGs focus on the externally observable behavior of
computer-based systems by means of discrete event-based
models [17]. Definition 1 gives a definition of ESGs.
Definition 1: An event sequence graph (ESG) is a tuple

(V, E, 4, 0), where V6=∅ is a finite set of nodes (vertices
or events) and E⊆V×V is a finite set of arcs (edges), and
4,0⊆V finite sets of distinguished nodes with ξ ∈ 4 called
entry nodes (start events) and γ ∈ 0 called exit nodes (finish
events) [9].

The entry and exit vertices of an ESG are marked using
pseudo vertices. Each start vertex ξ ∈ 4 is preceded by
pseudo start vertex ‘[’ and each finish vertex γ ∈ 0 is
followed by pseudo finish vertex ‘]’ [10]. Pseudo vertices and
edges related to pseudo vertices (pseudo edges) are included
in V and E, respectively. An example ESG is given in Fig. 2.
Definition 2: Let (V, E, 4, 0) be an ESG as defined

in Definition 1. Any sequence of nonpseudo vertices
v0, v1, . . . , vk is called an event sequence (ES) if (vi, vi+1)∈E
for i=0, . . . , k-1 [6], [9], [10]. An ES of length k is called
k-sequence [13]. An ES v0, v1, . . . , vk is a start sequence if
v0∈4 is an entry and it is a finish sequence if vk∈0 is an exit
[8]. An ES is a complete event sequence (CES) if it is both a
start and a finish sequence [18].

The state-of-the-art test case generation from an ESG is
based on solving the Chinese postman problem (CPP) [19],
[20]. Solving CPP requires finding the shortest circuit that
visits every edge in a given graph. The state-of-the-art
implementation2 to solve CPP on ESGs computes Euler

1https://github.com/esg4aspl/SPL-FESG-Examples/blob/master/
SodaVendingMachineSPL.md [accessed 10 August 2022]

2TSD(2022). Download TestSuiteDesigner [online]. Website
http://download.ivknet.de/ [accessed 10 August 2022]

FIGURE 2. EUR product ESG of soda vending machine SPL.

cycles [21] in the graph using Hierholzer Algorithm [22].
Euler cycles are cycles starting from and returning back to the
same vertex by visiting each edge exactly once. Each Euler
cycle corresponds to a CES and represents a test case. The
resulting test set is optimal in the sense that each edge is
covered a minimum number of times. Algorithm 1 is adapted
from [6]; it outlines the generation of test cases from a given
ESG in an optimal manner.

Algorithm 1 firstly, constructs a strongly connected [19]
ESG by adding an edge from ‘]’ to ‘[’ to the input ESG
and, then, builds a balanced, i.e. symmetric [19] ESG from
the strongly connected ESG by adding paths until the degree
of each vertex is 0. In the last step, Algorithm 1 generates
Euler cycles [19] from the strongly connected and balanced
ESG. These generated Euler cycles are the sequences of the
input ESG. The worst-case time complexity of Algorithm 1
is O(|V |3) [6] where V is the vertex set of the input
ESG. For more discussion on the ESG-based test generation
algorithms, reader may refer to [6], [9], [10], and [17].

III. INCREMENTAL TEST GENERATION USING FEATURED
ESGs
In this section, we discuss our proposed incremental test
generation approach. It exploits the fact that test cases for
certain products already exist and they can be reused to
generate test cases for new products. New products are related
to the existing products in such a way that each new product
can be obtained from an existing product by adding a new
feature.

Featured ESGs (FESGs) are employed to propose an
incremental test generation approach. Based on the definition
of an ESG (see Definition 1), definition of a FESG is given
in Definition 3.
Definition 3: A featured event sequence graph (FESG) is

(F, c, 4, 0) where F={f1, f2, . . . , fN}6=∅ is a finite set of
ESGs called feature ESGs (f-ESGs) with each fi=(Vi, Ei,
4i, 0i). c∈F is a special f-ESG called core ESG (c-ESG).
4,0⊆∪Ni=1Vi are finite sets of distinguished nodes called
entry nodes (start events) and exit nodes (finish events),
respectively.

Definition 3 suggests that a FESG contains a set of feature
ESGs (f-ESGs) one of which is designated as the core ESG
(c-ESG). A feature diagram (as given in Fig. 1) is used to
learn the relation of each feature to the other features during
the creation of f-ESGs of the features. f-ESGs of features that
together form a particular product are added into a FESG to
create a behavioral model for the product.

An f-ESG of a given FESG, except for the c-ESG, contains
one or more vertices of other f-ESGs, called connection
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Algorithm 2: Incremental Sequence Generation
Input: G = (F, c, 4, 0) – an FESG T – a set of complete

sequences for G fnew = (Vnew, Enew, 4new 0new) -
a new f-ESG to be added to G

Output: T’ – a set of complete sequences for the new
FESG G’

1 G’ = (F∪{fnew}, c, 4∪4new, 0∪0new)
2 Tnew = generateSequences(fnew) // See Algorithm 1
3 T’ = composeSequences(T, Tnew, 4 ∪ 4new, 0 ∪ 0new) //

See Algorithm 3

FIGURE 3. F-ESGs of EUR product of soda vending machine SPL.

events [14], to express that it requires events of these other
f-ESGs. c-ESG of the FESG includes events that are (directly
or indirectly) required by f-ESGs of the given FESG; it
does not contain any connection events. Connection events
can be shown as (f-ESG Name, Event Name) pairs. f-ESG
names and event names are used as f-ESG identifiers and
event identifiers, respectively. Connection events are used
considering the constraints that are defined in the feature
diagram (as given in Fig. 1).
When compared to an ESG, an f-ESG does not need to

satisfy the following conditions which have to be satisfied
by an ESG: (1) each event is reachable from the pseudo
start vertex, and (2) the pseudo finish vertex is reachable
from each event. Also, in terms of expressive power,
f-ESGs are semantically richer than ESGs because an
f-ESG possibly contains events of another f-ESG (called
connection events) and, thus, express the dependency rela-
tion between these f-ESGs. This increased expressiveness,
however, does not make the test generation harder because
sequences of each f-ESG are generated by applying an
ESG-based test generation and the information on connection
events are used in the sequence composition phase (see
Algorithm 2). In addition, for the construction costs, one
can say that constructing f-ESGs of a given product has
almost the same complexity as constructing the product
ESG because the same behavior is modeled and, in total,
almost the same number and type of model elements are
used.

Example 1: EUR product ESG is given in Fig. 2. Since
EUR product includes payEUR, serveSoda and, serveTea
features, its FESG (F, c, 4, 0) is defined as follows.

• F = {c, f1, f2, f3}

– c is c-ESG (see Fig. 3a) such that Vc={prompt,
select}, Ec={}, 4c= {prompt} and 0c={}

– f1 is payEUR f-ESG (see Fig. 3b) such that V1
= {(core, prompt), payEUR, (core, select)}, E1
= {((core, prompt), payEUR), (payEUR, (core,
select))}, 41 = {}, 01 = {}

– f2 is serveSoda f-ESG (see Fig. 3c) such that V2 =
{(core, select), serveSoda, (core, ])}, E2 = {((core,
select), serveSoda), (serveSoda, (core, ]))},42 = {}
and 02 = {serveSoda}

– f3 is serveTea f-ESG (see Fig. 3d) such that V3 =
{(core, select), serveTea, (core, ])}, E3 = {((core,
select), serveTea), (serveTea, (core, ]))}, 43 = {}
and 03 = {serveTea}

• 4 = 41 ∪ 42 ∪ 43 ∪ 4c = {prompt}
• 0 = 01 ∪ 02 ∪ 03 ∪ 0c = {serveSoda, serveTea}
serveSoda and serveTea f-ESGs have connections to
core f-ESG using (core, select) and (core, ]) connection
events.

The purpose of incremental test generation is to reuse
FESG and test cases of an existing product to generate test
cases for a new product which is obtained by including a
new feature in the existing product. To achieve this, ESG-
based test generation is applied to the f-ESG of the new
feature, and its sequences are obtained. Later, these sequences
are composed with the sequences of the existing product to
obtain sequences for the new product. Algorithm 2 shows the
relevant steps.

Algorithm 2 constructs a new FESG by joining the existing
FESG’s features, the entry nodes and the exit nodes with the
new feature set and the new features’ entry and exit nodes.
Then, it generates test sequences from a new f-ESG using
Algorithm 1 and composes these sequences with existing
ones using Algorithm 3.

In order to show how Algorithm 2 works, we use EUR
product as the existing product with a FESG model and a
test set. cancel feature is added to EUR product to obtain
EUR-Cancel product and Algorithm 2 is used to generate test
cases for EUR-Cancel product in two steps: Example 2 for
Algorithm 1 and Example 3 for Algorithm 3.
Example 2: When Algorithm 1 is applied to the f-ESG of

cancel given in Fig. 4, the sequences ‘‘(payUSD,payUSD),
cancel, returnMone’’ and ‘‘(payEUR,payEUR), cancel,
returnMoney’’ are obtained.

After partial sequences are generated from a new f-ESG,
Algorithm 3 can be used to compose them with existing
complete sequences which are generated for an existing
FESG model.

Algorithm 3 uses four different procedures to per-
form sequence composition: ‘‘initializeStartSequences’’,
‘‘updateStartSequences’’, ‘‘initializeCompleteSequences’’
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Algorithm 3: Sequence Composition
Input: T - a set of existing complete sequences Tnew - a

set of new partial sequences 4 - a set of start
vertices 0 - a set of finish vertices

Output: CS – a set of composed complete sequences
1 SS = initializeStartSequences(T, Tnew, 4)
2 notfinished = true
3 while notfinished is true do
4 notfinished = updateStartSequences(Tnew, SS)

5 CS = initializeCompleteSequences(SS, 0)
6 notfinished = true
7 while notfinished is true do
8 notfinished = updateCompleteSequences(SS, CS)

and ‘‘updateCompleteSequences’’. For the sake of saving
space, we do not give separate algorithms for these
procedures but explain them. ‘‘initializeStartSequences’’
constructs a set of start sequences SS. For each sequence
s∈T∪Tnew, if s is a start sequence, it is removed from
the set that contains it. s is added in SS if it increases
the coverage. ‘‘updateStartSequences’’ goes through the
remaining sequences in Tnew. For each s∈Tnew, it tries to
find a start sequence seq∈SS such that s can be completed
to a start sequence seqnew by using a prefix of seq. If this
is possible, s is removed from Tnew and, if seqnew increases
coverage, it is included in SS. Furthermore, if seq is a prefix
of seqnew, seq is removed from SS. ‘‘updateStartSequences’’
is repetitively called until no more sequences remain in Tnew.
‘‘initializeCompleteSequences’’ constructs a set of complete
sequences CS. For each sequence s ∈ SS, if s is also a
finish sequence, it is removed from SS and included in CS.
‘‘updateCompleteSequences’’ goes through the remaining
start sequences in SS. For each s∈SS, it tries to find a
complete sequence seq∈CS such that s can be completed to
a finish sequence seqnew by using a suffix of seq. If this is
possible, s is removed from SS and seqnew is included in CS.
‘‘updateCompleteSequences’’ is repetitively called until no
more sequences remain in SS.
Example 3: Let T = {B1, B2} be a set of existing complete

sequences of EUR product where B1 = ‘‘prompt, payEUR,
select, serveSoda’’ and B2 = ‘‘prompt, payEUR, select,
serveTea’’. Let Tnew be the set of partial sequences of
cancel f-ESG given in Example 2, and let 4 = {prompt}
be the start event set and 0 = {serveSoda, serveTea} be
the finish event set. When Algorithm 3 is executed, the
resulting set of complete sequences is CS = {C1, C2, C3}
where C1 = ‘‘prompt, payEUR, select, serveSoda’’, C2 =
‘‘prompt, payEUR, select, serveTea’’ and, C3 = ‘‘prompt,
payEUR, cancel, returnMoney’’ and. These sequences belong
to EUR-Cancel product whose ESG is given in Fig. 4b. This
product is obtained by adding cancel feature to EUR product.

In order to analyze the worst-case runtime complexity of
Algorithm 2, we start by analyzing that of Algorithm 3.

FIGURE 4. F-ESG of a new feature and ESG of a new product.

However, in order to better relate the complexities of
Algorithm 2 and Algorithm 3 to that of Algorithm 1, we have
the following for our incremental testing scenarios.

• The size of Tnew is very small and bounded by a constant.
• The number of start events and the number of finish
events are comparatively small and bounded by con-
stants. (Even if not, they have very negligible effects.)

• |T | = O(len(T )) = O(|E|) where |T | is the number of
sequences in T , len(T ) is the sum of the length of all
sequences in T , and |E| is the number of edges in the
ESG which is used to generate T . Note that there is no
work that relates the size of the input ESG to the size
of the output test set. We assume that len(T ) <= c|E|
(c is constant) because ESG-based test generation aims
to cover the edges of the input ESG in an optimized
manner.

• All sequences in T are start sequences because they are
existing sequences.

Thus, in the worst-case scenario for Algorithm 3:

• ‘‘initializeStartSequences’’ isO(|E|), because one needs
to go through all the events of each sequence in T ∪ Tnew
to check the coverage contribution of the sequence.

• Before the loop on ‘‘updateStartSequences’’, Tnew
should be as large as possible (which implies that SS =
T ) and, at each iteration of the loop, the last sequence
in Tnew should be removed to construct a new start
sequence by using the last sequence in SS. Thus, the
loop on ‘‘updateStartSequences’’ runs at worst inO(|E|)
time.

• ‘‘initializeCompleteSequences’’ runs in O(|T |) =
O(len(T )) = O(|E|) time because one goes through all
sequence in SS with |SS| =O(|T |) and picks the starting
sequences.

• Before the loop on ‘‘updateCompleteSequences’’, SS
should be as large as possible (which implies that |CS| =
1) and, at each iteration of the loop, the last sequence
in SS should be removed to form a new complete
sequence using the last sequence in CS. Thus, the
loop on ‘‘updateCompleteSequences’’ runs at worst in
O(|T ||E|) = O(|E|2) time.
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Consequently, the worst-case runtime complexity of Algo-
rithm 2 is O(|Tnew|3 + |E|2) = O(|E|2). Note that a
better upper bound can be obtained and the effect of the
hidden constant can be discovered by analyzing the relations
between the sizes of ESGs, f-ESGs, ESG test sets, and, f-ESG
test sets experimentally, which is out of the scope of this
paper.

IV. EVALUATIONS
In this section, evaluations are performed using three
different SPLs and uniformly sampling 90 testing scenarios
at random to validate the proposed incremental testing
approach (Section III), to analyze its characteristics, and
to compare it against the single-model-based approach
(Section II-B).

A. APPROACHES UNDER CONSIDERATION
Testing scenarios which the incremental testing approach
proposed in this paper is designed for can be characterized
as triples (E, f, P). Here, E is an existing product (EP), f is
a new feature to be added to E, and P is a product under
consideration (PUC) which is obtained by adding f to E. Note
that test models and the test set of E exist, and the test set of P
is to be generated by reusing the test set of E and the test set
of f. Such testing scenarios are relevant in the sense that they
represent typical situations where a new product emerges in
an SPL, and it is to be tested functionally using existing test
artifacts.

For each testing scenario, testing approaches compared
in the evaluations are defined as inc and sm. inc generates
test sequences by composing test sequences of a new
feature with existing test sequences of an EP as described
in Section III (‘‘incremental’’ approach). sm generates test
sequences in an optimized manner by using a single model as
described in Section II-B (‘‘single-model’’ approach) where
the model is obtained by composing all the related feature
ESGs.

Note that, in the evaluations, our main purpose is to
compare our proposedmethodwhich exploits the incremental
nature of SPLs (inc) against a method which does not do that
(sm). We exclude the method we proposed in our previous
work [14], called pm, from the evaluations because it does
not exploit the incremental nature of SPLs. More precisely,
pm uses partial models, that is, feature ESGs, of a product to
generate sequences first and then compose these sequences
to obtain sequences for the product. Thus, it can actually
be considered as ‘‘partial-models-based’’ test generation
method. Furthermore, pm has two limitations which prevent
us from using it in our evaluations: (1) sequences cannot be
composed in themiddle parts, and (2) all sequences generated
from the core feature ESG are assumed to end with the same
finish event.

B. RESEARCH METHODOLOGY
Our goals are to discern at which level inc reuses existing test
sets, to see how different inc test sets are from the optimal

TABLE 1. Data on SPLs.

sm test sets in terms of size, and to compare inc against sm
in terms of fault detection and testing costs. To realize these
goals, we ask the following research questions.

RQ1:What is reuse level of existing products’ test sets by
inc, and what is size difference of inc test sets from sm test
sets?

RQ2: How does fault detection effectiveness of inc
compare against that of sm?

RQ3: How does testing cost effectiveness of inc compare
against that of sm?

Note that sm generates test sets in an optimized manner.
Therefore, we expect that inc results in larger test sets
and greater test execution costs. However, we do not know
to which level the differences are and whether there is
a good compromise with respect to the fault detection
effectiveness. Also, although many use test set size as an
indicator of test execution costs, our experience shows that
it is not always true [7], [23]. Thus, we perform realistic
test executions to obtain a better insight into the testing
costs.

C. SPLs UNDER CONSIDERATION AND TESTING
SCENARIOS
We use three SPLs: two from SPL2go and one from SPLOT
(SPL2go and SPLOT are publicly available repositories of
SPLs to be used for product-line analyses). We pick the SPLs
in such a way that they have different numbers of features,
different numbers of possible products, and different numbers
of testing scenarios: Bank Account (BA) SPL,3 e-Mail (eM)
SPL4 and Student Attendance System (SAS).5 The SPLs BA
and eM in SPL2go are also used in other works on SPL
research [24], [25], [26]. All the features of the chosen SPLs
are modeled using f-ESGs. Table 1 gives some data on these
SPLs.

In the evaluations, we select 30 testing scenarios uniformly
at random for each of the three SPLs so that we can use
parametric statistical hypothesis tests to determine whether
or not there is a significant difference between inc and sm
approaches [27], [28]. Each testing scenario has an EP and
a PUC; PUCs are used to collect data on the approaches.
Due to the lack of space, data on on the models of the

3SPL2GO(2022). Catalog of SPLs [online]. Website http://spl2go.
cs.ovgu.de/projects/54 [accessed 10 August 2022]

4SPL2GO(2022). Catalog of SPLs [online]. Website http://spl2go.
cs.ovgu.de/projects/17 [accessed 10 August 2022]

5SPLOT(2022). SPL Online Tools [online]. Website http://www.splot-
research.org/ [accessed 10 August 2022]
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TABLE 2. Exemplary data on test generation and execution.

used PUCs6 and the selected testing scenarios7 are given in
external resources.

D. FAULT SEEDING
From an event-based view, a fault is observed in the form of
an event that is either missing or extra after a particular (m-1)-
sequence (m>2) and, by increasing m, the fault domain can
be extended [8]. Both inc and sm target missing event faults
associated with 2-sequences; that is, an event does not follow
after a particular event although it should. Thus, in order to
gain a more realistic insight into testing performances of inc
and sm, missing-event faults associated with m-sequences
where m = 2,3 are considered. For each PUC, 20% of the
total number of possible faults are randomly generated and
seeded. Data on the number of possible faults and the number
of seeded faults are given in external resources for each SPL
and PUC.8

E. TEST GENERATION AND EXECUTION
Before we present the details on test generation and test
execution processes, we give some implementation and
infrastructural details. To obtain test generation and execution
results, inc and sm approaches are implemented using Java
programming language.9 Furthermore, test generations and
test executions are carried out on a computer with the Intel
Core i7-4720HQ 2.60 GHz CPU, 12 GB DDR3 RAM and,
Windows10 64-bit OS.

Table 2 presents exemplary data on fault coverage and
performance observed during test set generation and test
execution processes, that is, the approaches using which PUC
tests are generated, the length of each test set (the sum of the
lengths of all test sequences in each test set), the number of
events reused by inc test sets, the time it takes to generate
each test set, the number of events executed using each test

6BA https://github.com/esg4aspl/SPL-FESG-Examples/blob/master/
BankAccount/Products.pdf
eM https://github.com/esg4aspl/SPL-FESG-Examples/blob/master/Email/
Products.pdf
SAS https://github.com/esg4aspl/SPL-FESG-Examples/blob/master/
StudentAttendanceSystem/Products.pdf

7https://github.com/esg4aspl/Incremental-Testing-in-
SPLs/blob/main/IncrementalTestingData/TestingScenarios.pdf (BA: pp.1;
eM: pp.2; SAS: pp.3)

8https://github.com/esg4aspl/Incremental-Testing-in-
SPLs/blob/main/IncrementalTestingData/DataOnNumberOfFaults.pdf
(BA: pp.1; eM: pp.2; SAS: pp.3)

9https://github.com/esg4aspl/fesg-engine

set and the number of faults revealed using each test set. The
complete tables are given in external resources.10

F. INTERPRETATION OF THE RESULTS
In this section, research questions RQ1-RQ3 defined in
Section IV-B are answered. For questions RQ1, RQ2 and
RQ3, we use statistical hypothesis testing. Since we have
30 testing scenarios selected uniformly at random for each
of the three SPLs, we take the advantage of the Central
Limit Theorem [27] and perform parametric tests [28], [29].
More precisely, we perform paired two-sample t-tests to
compare test set sizes, fault detection effectiveness, and cost
effectiveness of inc to those of sm. Furthermore, for question
Q1, we analyze the test sets generated by inc to see to which
level the existing test sets have been reused in the test sets
generated by inc.

1) RQ1: REUSE LEVEL AND SIZE DIFFERENCES
Let Te be the existing test set (of an existing product), Tinc be
the test set of a new product generated using inc, len(T) be
the total number of events in T, and mpl(t, T) be the length of
the longest prefix of t which is also a prefix of a test case in
T. Reuse level of inc is defined as follows.

RLinc =
∑
t∈Te

mpl(t,Tinc)/len(Te) (1)

(1) is an indicator of how much of Te’s events are reused in
Tinc. For each testing scenario, RLinc is computed. Our results
show that RLinc value is always 100.00%. Existing test sets
are completely reused.

To compare the size differences of inc and sm test sets, let
Tsm to be the set of test cases of a new product generated
using sm. One can view Table 3 to see the number of testing
scenarios where len(Tinc) > len(Tsm), len(Tinc) < len(Tsm)
and len(Tinc) = len(Tsm) for each SPL. In the table, averages
of len(Tinc) / len(Tsm) are also given.

To decide whether or not the differences between len(Tinc)
and len(Tsm) values observed in different testing scenarios
are significant, we use length per seeded fault (LPSF), which
is the ratio of the length of a test set to the number of
seeded faults, to normalize the values observed in different
testing scenarios. We perform a paired two-sample t-test
to see whether the hypotheses that there are no significant

10https://github.com/esg4aspl/Incremental-Testing-in-SPLs/blob/main/
IncrementalTestingData/DataOnTestGenerationAndExecution.pdf (BA:
pp.1; eM: pp.2; SAS: pp.3)
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differences between the LPSFs of inc and sm test sets can be
rejected or not.

Significance values (p values) calculated for paired two-
sample t-tests are given in Table 3. Bold entries correspond
to the tests where the hypothesis is rejected at alpha=0.05 sig-
nificance level. According to the test results, sm test sets are
smaller than inc test sets for eM and SAS SPLs, and they
have similar sizes for BA SPL. This can be explained as
follows: ESG-based test generation to cover event pairs is
an optimized test generation. However, in the optimization
process, pseudo start vertices and pseudo finish vertices are
also included. This actually introduces some redundancy to
the generated test sets. In test sets of existing products in BA
SPL, this redundancy is greater because the product ESGs
are relatively smaller when compared to those of eM SPL
and SAS SPL. Hence, incmanages to reduce this redundancy
better than it does in other SPLs and, therefore, sizes of inc
test sets become similar to those of sm test sets.
Also, when we consider the observations obtained using all

testing scenarios for all SPLs, inc test sets are on the average
9.00% larger when compared to sm test sets.

2) RQ2: FAULT DETECTION EFFECTIVENESS
Fault detection effectiveness is evaluated based on number of
revealed faults. Let RFinc and RFsm be the numbers of fault
revealed by inc and sm, respectively. To see the number of
testing scenarios where inc reveals greater number of faults
(denoted by RFinc > RFsm), sm reveals greater number of
faults (denoted by RFinc < RFsm) and they tie (denoted by
RFinc = RFsm) for each SPL, one can view Table 4 where
averages of RFinc / RFsm are also given.
To decide whether or not the differences between RFinc

and RFsm values are significant and we use the fault detection
ratio (FDR) which is the ratio of the number of revealed faults
to the number of seeded faults. A paired two-sample t-test is
performed for each SPL to see whether the hypotheses that
there are no significant differences between the FDRs of inc
and sm test sets can be rejected or not.
Significance values (p values) calculated for paired two-

sample t-tests are given in Table 4. Bold entries correspond
to the tests where the hypothesis is rejected at alpha=0.05 sig-
nificance level. According to the test results, inc is more
effective at fault detection for BA SPL, and inc and sm are
equally effective for eM and SAS SPLs.
incmanages to reveal a greater number of faults than sm in

BA SPL, because it manages to cover a significantly greater
number of 3-sequences than sm does. However, in eM and
SAS SPLs, inc and sm cover a similar number of 3-sequences.

Also, when we consider the observations obtained using
all the testing scenarios for all SPLs, inc detects 1.33% more
faults on the average when compared to sm.

3) RQ3: COST EFFECTIVENESS
One of the measures which is used to evaluate cost
effectiveness is test generation time. In all testing scenarios,
test generation times of inc (TGTinc) are smaller than those

TABLE 3. Comparative data on testing scenarios w.r.t. test set sizes.

TABLE 4. Comparative data on testing scenarios w.r.t. revealed faults.

TABLE 5. Comparative data on testing scenarios w.r.t. test generation
times.

of sm (TGTsm). The average of TGTinc / TGTsm values is also
given in Table 5 for each SPL.

To check whether the differences between TGTinc and
TGTsm are significant or not, we normalize the test generation
times observed in different testing scenarios by computing
the ratio of the test generation time to the number of seeded
faults which is the test generation time per seeded fault
(TGTPSF). A paired two-sample t-test is performed for each
SPL to see whether the hypothesis that there are no significant
differences between the TGTPSFs of inc and sm can be
rejected or not.

Significance values (p values) calculated for paired two-
sample t-tests are given in Table 5. In all the tests, the
hypothesis is rejected at alpha=0.05 significance level. Thus,
inc requires shorter test generation times than sm. Upon
examination of the values, we see that inc generates test cases
significantly faster when compared to sm. The speedup of inc
becomes greater from BA SPL to eM SPL and from eM SPL
to SAS SPL. This stems from the fact that the sizes of product
ESGs increase from BA SPL to eM SPL and from eM SPL
and SAS SPL. When we consider the observations obtained
using all the testing scenarios, the test generation time of inc
is 2.86% of that of sm on the average.
Another measure to evaluate cost effectiveness is test

execution effort which is defined by number of executed
events. Let EEinc and EEsm be the numbers of events executed
by inc and sm, respectively. To see in how many testing
scenarios inc executes greater number of events (denoted
by EEinc > EEsm), sm executes greater number of events
(denoted by EEinc < EEsm) and they tie (denoted by EEinc =
EEsm) for each SPL, one can view Table 6. In the table,
averages of EEinc / EEsm values are also given.

To see whether or not there are significant differences
between EEinc and EEsm values, we use the number of
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TABLE 6. Comparative data on testing scenarios w.r.t. executed events.

executed events per seeded fault (NEEPSF) which is the
ratio of the number of executed events to the number of
seeded faults. We perform a paired two-sample t-test to
see whether the hypothesis that there are no significant
differences between the NEEPSFs of inc and sm can be
rejected or not.

Significance values (p values) calculated for paired two-
sample t-tests are given in Table 6. Bold entries correspond
to the tests where the hypothesis is rejected at alpha=0.05 sig-
nificance level. According to the test results, inc require less
test execution effort than sm for BA SPL, more effort for eM
SPL and similar effort for SAS SPL. When we consider the
observations obtained using all the testing scenarios for all
SPLs, inc executes a 0.47% greater number of events on the
average when compared to sm.

Our findings on numbers of executed events are not parallel
to the ones on test set sizes, except for eM SPL where both
test set sizes and the number of executed events of inc are
greater than those of sm in general. In BA SPL, test set sizes
of sm are similar to those of inc; however, numbers of events
executed by sm are greater than those of inc in general. Also,
in SAS SPL, test set sizes of sm are smaller than those of
inc; however, numbers of events executed by sm are similar
to those of inc in general. This stems from the fact that some
relatively long test cases generated by sm reveal multiple
faults and, each time such a test case reveals a fault, this
fault is corrected, and the test case is re-executed from the
beginning until all the events in the test case are successfully
executed. Our results suggest that these re-executions are
more frequent in sm when compared to inc.

G. THREATS TO VALIDITY
It is always possible to obtain stronger results using a
greater number of SPLs. Due to the lack of a repository
of event-based models for SPLs and specifications to create
event-based models of SPL features, we use three SPLs of
different sizes by discerning the functional behavior of their
features with the help of other publications, source codes of
product implementations and our experience. Also, to min-
imize this threat, to prevent bias, and to use a statistically
sound methodology, we use 90 testing scenarios which are
selected uniformly at random, having 30 testing scenarios for
each SPL. These scenarios represent cases where incremental
testing makes sense; that is, the new product is obtained
by adding a new feature to an existing product. In total,
69 different existing products and 79 different new products
are used. These products are of varied sizes, especially for
different SPLs. Thus, our testing scenarios represent a wide
range of different typical situations.

The choice of 30 (the number of testing scenarios for each
SPL) may seem arbitrary and insignificant. However, in the
theory of probability and statistics, a sample size greater than
or equal to 30 is often considered sufficient for Central Limit
Theorem to hold [27]. For such samples, parametric tests,
which are stronger than their nonparametric counterparts,
can be used for comparisons and significant results can be
obtained.

Since we promote reuse and the presented approach
is evaluated using small increments, each new product is
obtained by adding one feature to its existing product in
each testing scenario. However, the number of new features
is not the best indicator of increment size. There are many
additional factors which affect the size of an increment (size
of the event-based model of each feature, the rate at which
the fault domain expands for each feature, etc.), and, thus,
it is very hard to control the increment size. For this reason,
we use a simple indicator.

In the evaluations, we generate and seed certain
model-based faults (missing-event faults) because these faults
are targeted by the considered approaches. There is no proof
that the evaluations using model-based faults are relevant
for real-world faults, but there is strong evidence supporting
that a test set that detects more model-based mutants also
detects more code-based mutants [30] and that a test set
that detects more code-based mutants also detects more
real-world faults [31]. Thus, the evidence suggests that a test
set that detects more model-based mutants also detects more
real-world faults.

There is no study defining which event-based faults are
more common than the others in practice. Therefore, relevant
faults associated with m-sequences m=2,3 are generated and
seeded randomly to avoid bias. In addition, there is also no
work on what number of faults should be used to perform
realistic testing evaluations. Similar works use mutation
analysis to evaluate test sets. However, mutation analysis does
not give any idea of test execution costs. Thus, for the purpose
of obtaining realistic results, we randomly select a ratio of
all possible faults. We want to keep the ratio of the number
of faults the same for all the PUCs. Furthermore, to be able
to make substantial observations, we kept this ratio not very
small and not too large. Thus, a fixed percentage (20%) of all
possible faults is selected for each product.

V. RELATED WORK
In model-based testing (MBT), the specifications of the
software to be tested are defined by a model in accordance
with the specification. These models are usually graph-
based. Examples of these models can be given as finite
state machines [32], [33], petri nets [34], and event sequence
graphs [16]. A test generation algorithm that takes this model
as input creates a test set using a test selection criterion [35].

Whittaker [36] suggested that models used in MBT could
be decomposed or combined and showed that test cases can
be generated from partial models or model parts and also
from the combined large model, and then compared the
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results. El-Far and Whittaker [37] examined the issue of test
generation from hierarchical models. They showed how the
main finite state machine can be expanded by replacing a
state with a finite state machine. Theymade the definition of a
hierarchical finite state machine and discussed test generation
from hierarchical finite state machines. Belli et al. [38]
proposed a method for test generation from hierarchical
models that use event sequence graphs. However, these ideas
have not been applied to the MBT of SPLs.

Furthermore, ScenTED (Scenario based TEst case Deriva-
tions) is one of the first proposed approaches inMBT of SPLs
and it provides reuse of the core assets and components for the
reuse of the test cases [39]. CADeT (Customizable Activity
diagrams, Decision tables and Test specifications) method
is also another important research on MBT of SPLs [40]
which produces feature-based test cases using UML use
case and activity diagrams. Decision tables are used to
model variability and generate test cases. A technique called
150% finite state machines, which employs a superimposed
model for the SPL under consideration and includes a
coverage-driven SPL test suite generationmethod is proposed
by Cichos et al. [41]. Weissleder and Lackner extended this
approach and proposed top-down and bottom-up approaches
for model-based testing of product lines [42]. Our sm
technique uses a single model for each product as in the
top-down approach of Weissleder and Lackner with the
distinction of our models are ESGs and their FSMs. Our
inc technique is not related to Weissleder and Lackner’s
top-down and bottom-up approaches.

An approach that uses SAT-based analysis to generate test
inputs for each product in SPL is proposed by Uzuncaova
et al. [43]. Incremental refinement of test suites for a
particular product variant is enabled by their approach.
Another approach that reduces the testing effort through
reusing test cases taking advantage of SPL architectures
similarities is proposed by Neto et al. [44]. They take FSM
deltas to reach the next product variant. Our inc technique is
different from the delta-oriented test generation approaches
of Uzuncaova et al. [43] and Neto et al. [44] in the sense that
they utilize repeated extension through FSM deltas whereas
we use directly an additional feature and its f-ESG model to
reach next product variant.

Other several studies utilized delta-oriented SPL test-
ing. For instance, Lochau et al. [45] proposed an inte-
grated delta-oriented architectural test modeling and testing
approach for component as well as integration testing. Their
approach is component-based and aimed for integration
testing, which has no relation to our proposed approach.
Dukaczewski et al. [46] proposed requirements-based delta-
oriented SPL testing, which takes requirements into focus
and uses them to define deltas. Varshosaz et al. [47]
proposed to utilize delta-oriented programming to organize
FSM-based test models in an incremental structure. Their
approach requires object-oriented classes and their FSMs.
These three studies have different research directions than
ours.

Petry et al. [48] conducted a systematic mapping study
and built a roadmap from 44 selected studies. Some of
their results concerning our research are as follows: ‘‘Finite
State Machines is the most used model to test SPLs’’ and
‘‘Behavioral-based and Scenario-based are the most used
models’’ [48]. In addition to FSM-based modeling of SPLs,
Featured Transition Systems (FTSs) are proposed for a
mathematical and compact representation of the behavior
of an SPL [49]. Devroey et al. [49] utilized FTSs for
test generation for SPL products. They also worked on
the coverage criteria of FTSs on SPL products [50]. Their
approach is different than our approach because of the use
of FTSs and they do not perform incremental testing.

All the studies above are based either on FSMs or
on FTSs without explicit mapping between features and
FSMs or FTSs. In other words, how a single feature is
represented by states, transitions, etc. and how states and
transitions representing a single feature are connected to an
FSM or to an FTS of a product are not depicted. Since
these representations linking features to models and products
are important for traceability, in our study all features are
represented distinctly, their connection to products is clearly
stated and the connections can be formed algorithmically,
therefore, automatically. Another novelty of the approach
proposed in this paper is that it is not required to start with
a base product and incrementally reach others.

VI. CONCLUSION AND FUTURE WORK
This paper proposes an approach to incremental testing of
products in software product lines (SPLs) by promoting reuse
and substantially extending upon the previous approach [14].
The approach is event-based. Featured event sequence graphs
(FESGs) are proposed and used for the behavioral modeling
of products. Also, the approach is incremental. A novel
test generation algorithm is developed by removing the
limitations of the algorithm given in [14]; it uses FESG and
test cases of an existing product, and feature ESG of a new
feature to generate test cases for a new product. In addition,
the approach is compared with the state-of-the-art ESG-based
approach [6] by using 90 testing scenarios selected uniformly
at random over three SPLs.

The proposed approach differs from the state-of-the-art
event-based approach [6] in the sense that it allows the user
to model a product based on its features and generate test
cases. Thus, one does not need to create a new gigantic single
model, but instead, test cases are generated incrementally
by using existing test artifacts and the model of a new
feature. Similarly, when changes occur in specifications,
only the relevant features are updated, and their test cases
are generated and composed. Evaluations are performed
to analyze the characteristics of the proposed approach,
namely inc, compared to the state-of-the-art single-ESG-
based approach, namely sm, by using a total of 90 testing
scenarios. According to the results, inc achieves the highest
reuse level of 100% which means all events in existing tests
sets are reused. Also, inc generates test sets 34 times faster,
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results in 9.00% larger test sets, reveals a 1.33% greater
number of faults, and executes a 0.47% greater number of
events when compared to sm on the average.

Although inc yields larger test sets and executes a greater
number of events when compared to sm (as expected),
the percentage of the difference between the test set sizes
is greater than 19 times the percentage of the difference
between the number of executed events. Thus, inc shows a
performance much closer to that of optimal sm in terms of
test execution. Also, the compromise between the difference
between the revealed number of faults and the difference
between the executed number of events is a good one.

As future work, the incremental approach can be
extended to generate test sets achieving k-sequence coverage
(k≥ 2). In addition, testing scenarios that include the
addition of multiple new features to create a new product
can be considered. A complementary approach can also be
developed to involve the removal of existing features. Finally,
the idea of incremental testing realized in this paper using
ESGs can be applied to other types of models with richer
semantics and/or expressive power.
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