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ABSTRACT
The production of phenyllactic acid (PLA) has been reported by several researchers, but so far, no 
mention has been made of augmented PLA production using an orchestrated assembly of simple 
techniques integrated to improve lactic acid bacteria (LAB) metabolism for the same. This review 
summarizes sequentially tailoring LAB growth and metabolism for augmented PLA catalysis through 
several strategies like monitoring LAB sustenance by choosing appropriate starter PLA-producing 
LAB strains isolated from natural environments, with desirably fastidious growth rates, properties 
like acidification, proteolysis, bacteriophage-resistance, aromatic/texturing-features, etc.; entrapping 
chosen LAB strains in novel cryogels and/or co-cultivating two/more LAB strains to improve their 
biotransformation potential and promote growth dependency/sustainability; adopting adaptive 
evolution methods designed to improve LAB strains under selection pressure inducing desired 
phenotypes tolerant to stress factors like heat, salt, acid, and solvent; monitoring physico-chemical 
LAB fermentation factors like temperature, pH, dissolved oxygen content, enzymes, and cofactors 
for PLA biosynthesis; and modulating purification/downstream processes to extract substantial PLA 
yields. This review paper serves as a comprehensive preliminary guide that can evoke a strategic 
experimental plan to produce industrial-scale PLA yields using simple techniques orchestrated 
together in the pursuit of conserving time, effort, and resources.

1.  Introduction

Lactic acid bacteria (LAB) are efficient microbial biofactories 
fermenting carbohydrates using metabolic pathways to yield 
lactic acid (LA), and other bioactive molecules viz., acetic 
acid, phenyllactic acid (PLA), diacetyl, cyclic dipeptides, 
bacteriocins (Virdis et  al. 2021). LAB are an amenable group 
of bacteria with simple energy demands, metabolisms, and 
small genomes, which makes them preferred candidates for 
devising metabolic engineering strategies during primary 
and secondary metabolism ensuring high and stable product 
yields (Luo et  al. 2020). Common low-cost substrates for 
LAB fermentation include waste biomasses from agro-food 
industries like milk/cheese whey, pear processing residues, 
potato/tomato pomace, etc. (Costa et  al. 2020); among them, 
cheese whey (remnant liquid stream derived after milk is 
transformed to cheese) is an inexpensive nitrogen-rich sub-
strate which can be exploited holistically by LAB (Lappa 
et  al. 2019; Catone et  al. 2021). The biosynthesis of PLA 
makes LAB industrially useful as probiotic agents and food 
preser vatives exhibit ing antimicrobial  activit ies 
(Mora-Villalobos et  al. 2020).

PLA or 2-hydroxy-3-phenyl propionic acid or C9H10O3 
(previously known as 3-phenyllactic acid/β-phenyllactic 
acid), is a natural organic acid (molecular weight of 166.17 g/
mol) derived from phenyl-alanine catabolism and 

metabolized by lactate dehydrogenase (glycolysis) (Jung, 
Hwang, and Lee 2019; Mu et  al. 2012), occurring in foods 
like honey, milk, cheese, pickles, sourdough (Behera et  al. 
2020). Chemically it is a monomer of poly-phenyllactic acid 
(biodegradable), occurring in two enantiomeric forms 
D-PLA and L-PLA based upon the C2 position chirality. 
D-PLA has better antimicrobial potential, efficiency at oper-
ational pH ranges, thermostability, high diffusibility and 
water solubility, safe antiseptic activity, with versatile appli-
cations in food and feed industries, and can be used for 
the biosynthesis of poly-phenyllactic acid and other phar-
maceuticals (Luo et  al. 2020). The current state-of-art 
research in PLA production, calls for the development of 
robust LAB strains with augmented metabolism/physiologies 
to achieve holistic exploitation of inexpensive agro-industrial 
substrates. High-throughput technologies of synthetic biology 
and metabolic engineering can be adopted to design LAB 
strains of desired attributes (Liu et  al. 2019).

Comprehending LAB metabolism, refining their robust-
ness, and adopting requisite optimization techniques can 
augment PLA biosynthesis. Common industrial bottlenecks 
occurring during LA fermentation like ‘acid tolerance’ caused 
by LA accumulation, ‘withstanding environmental stress’, 
and phage resistance issues, can be addressed by adopting 
strategies like adaptive metabolic engineering of LAB strains 
(Liu et  al. 2019). Noted LAB genera producing PLA are 
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Lactobacillus, Leuconostoc, and Enterococcus, but some 
non-LAB like Bacillus coagulans, Brevibacterium lactofermen-
tum, Escherichia coli also produce high amounts of PLA 
(Valerio et  al. 2004; Yang et  al. 2019). Lactate dehydroge-
nases (LDH) and pyruvate reductases are key enzymes for 
PLA biosynthesis from phenylalanine and central carbon 
metabolism in LAB; several studies have reported gene clon-
ing/expressing native/site-mutated LDHs and pyruvate reduc-
tases in some LAB (Sporolactobacillus inulinus, Lactobacillus 
sp.) and E. coli to increase PLA productivity (Chaudhari 
and Gokhale 2016; Rajanikar 2021; Xu, Zhang, and Ni 2016). 
Highly pure optically-active 3-PLA and 4-hydroxyl-PLA were 
produced using phenylpyruvate reductase and its coding-gene 
(Konishi and Takaya 2012). However, genetic techniques 
require tremendous effort and long periods, while adaptive 
metabolic engineering is less time-conserving and is budget 
friendly. Within the context of this review considering quint-
essentially favorable research factors (time, effort, resources), 
we discuss a strategy for the probable production of 
industrial-scale yields of PLA using inexpensive substrates 
and robust LAB with improved metabolism, and by opti-
mizing fermentation and purification/characterization stages. 
Table 1 shows the various levels of PLA production from 
various LAB strains adopting various methodologies.

2.  Tailoring LAB growth and metabolism for PLA 
catalysis

2.1.  Monitoring LAB sustenance

Choosing appropriate starter LAB strains for PLA produc-
tion is an essential step. Desired LAB strains can be chosen/
selected based on properties like quick rates of growth and 
acidification in milk, proteolytic characteristics, resistance 
to bacteriophages, and potential to synthesize required levels 
of PLA and other aromatic/texturing compounds (Derkx 
et  al. 2014; Meruvu and Harsa 2022). Isolation of LAB 
strains from their natural environments is worth considering 
while strain selection; for instance, 24 PLA-producing LAB 
strains could be isolated from the pig’s cecum, large/small 
intestines (80–119 mg/L) and feces, while the highest pro-
duction (233.0 mg/L) was reported from fecal-isolate 
Lactobacillus plantarum r16 (Liu Changjian 2012), other 
LAB strains reported with innate PLA metabolism include 
cheese-isolate Geotrichum candidum (600–1000 mg/L) 
(Dieuleveux et al. 1998), olive phylloplane-isolate Leuconostoc 
mesenteroides (10.0–101.1) (Valerio et  al. 2004), sourdough 
bread-isolate Lactobacillus plantarum 21B (56.0 g/L) 
(Lavermicocca et  al. 2000) pickle-isolate Lactobacillus ssp. 
SK007 (91.0 mg/L) (Li, Jiang, and Pan 2007). A preliminary 

Table 1.  Compendium showing LAB strain, its source and medium, and the subsequent PLA production levels.

S.n. LAB strain Source Medium PLA production Ref.

1. Lactobacillus crustorum  NWAFU 1078 Naturally fermented 
vegetables

MRS broth,
supplements: phenyl 

pyruvic acid (PPA), CaCO3

45.2 mmol/L (Xu et  al. 2021)

2 Lactobacillus delbrueckii ŁOCK 0987 Human intestinal tract MRS broth, supplement: 
galactosyl polyol

84.3 mg/L (Lipinska-Zubrycka et  al. 
2020)

3 Lactobacillus plantarum KP3, KP4 Commercial fermented 
foods

Porphyra  residues 4.58 mg (Huang et  al. 2021)

4 Lactobacillus plantarum CECT-221 – Cheese whey hydrolyzates, 
supplement: PPA

45.4 ± 3.02 mM (Rodríguez-Pazo et  al. 
2013)

5 Lactiplantibacillus plantarum  CXG9 Fermented 
vegetable-stinky 
xiancaigeng

Fermented vegetable-stinky 
xiancaigeng

51.31 mg/kg (Zhang, Zhang, et  al. 
2022)

6 Lactobacillus paracasei – Phenylalanine 0.314 mg/mL (Lou, Hou, et  al. 2022)
Lactobacillus buchneri

7 Lactobacillus paracasei 16C3 – – 202 mg/L (Zhang, Zhao, et  al. 
2022)

8 Lactobacillus paracasei 16C3 Pickled vegetables Glucose 73 mg/L  (Yun et  al. 2018)
9 Lactococcus lactis F44 – Yeast extract, peptone, 

KH2PO4, sucrose, NaCl, 
MgSO4⋅7H2O, corn steep 
liquor, cysteine 
supplement: PPA

1.344 g/L (Liu et  al. 2021)
Lactococcus lactis F44/DLDH

10 Lactobacillus plantarum YM-4-3y Chinese fermented 
soybeans or milk

MRS medium 400 mg/L (Wu, Deng, et  al. 2020)

11 Lactobacillus  reuteri  R29 Human intestine MRS medium,
supplement: phenylalanine

– (Schmidt et  al. 2018)

12 Pediococcus pentosaceus  SK25 Traditional Chinese 
pickles

MRS broth 135.6 mg/L (Yu et  al. 2015)

13 Lactobacillus plantarum ZJ316 – MRS  broth 108.87 mg/mL (Gu, Li, and Zhou 2018)
14 Lactobacillus plantarum CNQ7 Chinese homemade 

pickles
Pickled cabbage, mustard, 

cowpea
49.80 mg/kg (Li et  al. 2015)

15 Lactobacillus plantarum FST1.7 Wheat sourdough Wheat sourdough 33.47 mg/kg (Ryan et  al. 2009)
16 Lactobacillus plantarum X5 Alfalfa silage Alfalfa silages 0.054 mg/mL (Wu, Xu, et  al. 2019)
17 Lactobacillus buchneri GBS3 Traditional Chinese 

pickles
PPA 10.93  g/L (Guan et  al. 2019)

18 Lactobacillus plantarum  IMAU10124 – MRS medium,
supplement: PPA

2.90 g/L (Zhang et  al. 2014)

19 Lactobacillus  sp. SK007 – PPA,
supplement: glucose

17.38 g/L  (Mu et  al. 2009)
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step to be followed for PLA biocatalysis is orchestrating 
the growth needs of LAB by adding suitable supplements 
to the fermentation medium as it is the simplest way to 
improve PLA production. Research studies have been con-
ducted to trigger PLA production from LAB (viz., 
Lactobacillus plantarum 21B, Lactobacillus fermentum 18B, 
Lactobacillus brevis 18F) by supplementing defined growth 
media with phenyl pyruvic acid (PPA) (PLA-precursor), 
which consequently increased antifungal activity and poly-
poric production alongside (Valerio et  al. 2016). The most 
common defined growth medium widely used for culturing 
Lactobacilli in laboratory environments is the De Man 
Rogosa Sharpe (MRS) which is optimally fermented for 
24 hours (Jung, Hwang, and Lee 2019; Nazareth et  al. 2019); 
nevertheless the cost of MRS growth medium and the defi-
cit of all prerequisite growth components demand finding 
cost-cutting alternatives like usage of supplements, and 
substrates like agro-byproducts or dairy whey for commer-
cial/industrial production (Wu, Deng, et  al. 2020). It was 
reported that PLA biosynthesis from Lactiplantibacillus 
plantarum ITM21B was not observed when the basal growth 
medium was devoid of phenylalanine, but its incorporation 
at 0.1–0.4 g/L concentration range showed a hike in the 
PLA production (0.17–0.33 mM) (Valerio et  al. 2004). 
Several researchers have determined that supplementation 
of phenylalanine and phenyl pyruvic acid (PPA) in the 
growth medium positively triggered PLA production 
(Rodríguez et  al. 2012; Schmidt et  al. 2018; Zheng et  al. 
2011). Phenylalanine and PPA were also reported to be 
used as substrates for the fermentation of Kodakella ohmeri 
strain W5 resulting in high PLA yields of 2250 mg and 
7490 mg (per liter of fermentation liquor) respectively. In 
another case, replacing phenylalanine with PPA curbed the 
phenylalanine to PLA transformation step, resulting in aug-
mented PLA production from Lactobacillus spp. SK007 by 
14-fold (Li, Jiang, and Pan 2007). The presence of galactosyl 
polyols in the growth medium of Lactobacillus spp. improved 
its antifungal activity, PLA production (84.3 mg/L), and 
hydroxy-PLA production (Lipinska-Zubrycka et  al. 2020). 
Lactobacillus crustorum NWAFU 1078 was reported to pro-
duce 45.2 mmol/L 3-PLA using supplements like phenyl 
pyruvic acid (60 mmol/L) and 5.0% CaCO3 (neutralizer) 
(Xu et  al. 2021). There was a 30-fold PLA production by 
P. pentosaceus upon supplementation with NADH and 
NADH-regeneration catalysts which was triggered by the 
involvement of an auxiliary pathway (Yu et  al. 2014). Using 
the technique of crystal glue chromatography, “Lactobacillus 
paracasei enzymes adsorbed/immobilised onto anion 
exchange semi-hydrophobic polyester resins” (biocatalyst) 
were added to a reaction solution (containing PPA and 
NADH coenzyme) for simple and large-scale bioconversion 
into PLA (Zhu et  al. 2022). Two strains of Lactobacillus 
plantarum (KP3, KP4) were fermented using algal residues 
of Porphyra yielding 2.5 times higher PLA compared to 
fermentation of the duo with de Man, Rogosa and Sharpe 
broth (Huang et  al. 2021). Fed-batch fermentation of 
Lactobacillus plantarum CECT-221 with cheese whey hydro-
lyzates and PPA supplements produced antimicrobial PLA 
and LA as the chief metabolites (Rodríguez-Pazo et  al. 

2013). Lactobacillus delbrueckii strains have been reported 
for the production of polylactic acid production from cheese 
whey (Cuervo Garces Laura 2021).

2.2.  Lab co-cultivation and cryogel-entrapment

Improving the biotransformation potential of LAB could 
also be achieved by using co-cultivation of LAB strains 
and/or by using novel cryogels for cell-entrapment. 
Co-culturing and fermenting two/more LAB strains can be 
considered a more feasible approach that could promote 
good PLA yields without the need for any genetic biotrans-
formation. A rational blending of two/more strains could 
promote growth dependency/sustainability and desired 
product profiles, particularly in the cheese/yogurt fermen-
tation industry (Sieuwerts 2016). Lactobacillus acidophilus, 
Lacticaseibacillus rhamnosus, and Pediococcus acidilactici 
strains when fermented as co-cultures produced improved 
PLA yields compared to when fermented as monocultures, 
and found practical application in fermenting food ‘okara’ 
(Hadj Saadoun et  al. 2021). In a recent study, PLA biopro-
duction from phenylalanine was reported by co-culturing 
Lactobacillus paracasei and L. buchneri strains by entrapping 
their cells within semi-hydrophobic matrices. Using cryo-
genic entrapment, the cell growth rate observed was 
40.6 g/L, and the maximum PLA yield was 1.0 mg/mL which 
was 39.6% higher than L. casei and L. paracasei co-cultured 
without using cryogels (Lou, Hou, et  al. 2022). Lactobacillus 
cell-loaded (semi-hydrophobic poly 2-hydroxyethyl 
methacrylate-butyl methacrylate) cryogels were also 
employed as biocatalysts in PLA production using 
budget-friendly precursors like phenylalanine. Co-cultures 
of L. casei and L. paracasei could be successfully grown 
with high cell concentrations of 32.7 g/L and 38.7 g/L 
(higher than singly cultured strains using cryogels), with 
PLA yields 5.4 and 4.2 times higher than single strain 
cultures using cell-loaded cryogels (Lou, Jiang, et  al. 2022). 
202 mg/L of PLA yield with 7.1 mg/L/h productivity was 
obtained with 8% Lactobacillus paracasei cell-loaded 
(poly2-hydroxyethyl methacrylate-based anion-exchange) 
cryogel-beads in 100 mM phosphate containing 1 mg/mL 
phenylalanine and 2 mg/mL glucose (with 80 rpm agitation 
at 35 °C) using stirred-tank bioreactors (Zhang, Zhao, et  al. 
2022). Lactate dehydrogenase (LDH) (entrapped in 
metal-organic framework ZIF-90) served as a novel, robust, 
reusable, cost-effective, and eco-friendly catalyst for the 
biosynthesis of D-PLA (Wang et  al. 2022).

2.3.  Adaptive evolution methods promoting LAB 
growth

Adaptive laboratory evolution methods promote strain 
improvement under selection pressure to induce desired 
phenotypes, growth, and metabolite production by mim-
icking the natural process of evolution, despite the lack 
of comprehensive understanding of host metabolism (Ko 
et  al. 2020; Papadimitriou et al. 2016). The natural diver-
sity of LAB can be harvested by adapting them to tolerate 
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high levels of stress (Boguta et  al. 2014; Dijkstra et  al. 
2014), and tolerance to stress factors can be interrelated 
in LAB strains that can bear multi-stress resistance  
(caused by mediated-expression of chaperone proteins) 
(Papadimitriou et al. 2016; Rallu et  al. 2000). Heat 
Tolerance in LAB is a vital factor as heat stress occurs 
during industrial fermentation processes. Lactococcus lactis 
subsp. cremoris MG1363 when mutated as TM29 with a 
maximal increase in growth temperature (Chen et  al. 2015) 
and Lactobacillus acidophilus NCFM (Kulkarni et  al. 2018) 
showed increased acidification rates by gradually increas-
ing their thermotolerance whilst surviving critical tem-
peratures for prolonged periods. Short-term exposures to 
sub-lethal high temperatures for a few days could also 
yield thermotolerant LAB strains like Lactococcus lactis 
subsp. cremoris MG1363 and Lactobacillus helveticus DSM 
20075 (Smith et  al. 2012; Spus et  al. 2017). Various mutant 
sub-population strains of Lactococcus lactis subsp. cremoris 
SK11 were isolated by repeatedly exposing them to heat 
stress, and were found to bear resistance to both heat 
stress and spray-drying (preparation for long-term storage) 
as well (Dijkstra et  al. 2018). Lactococcus lactis subsp. 
cremoris MG1363 showed improved heat and acid stress 
tolerance after small heat shock proteins (Lo18) from 
Oenococcus oeni ATCC BAA-1163 were expressed in it 
(Weidmann et  al. 2017). Heterologous expression of ‘chap-
erone proteins (DnaK) from E. coli JM109’ (Abdullah et  al. 
2010) and ‘DNA-repair proteins (RecO) from Lactobacillus 
casei Zhang’ (Wu et al. 2013) when expressed in Lactococcus 
lactis subsp. cremoris NZ9000 promoted tolerant growth 
at 40 °C conferring tolerance to multiple stress factors like 
heat, salt, acid, solvent, etc. Lactobacillus delbrueckii subsp. 
bulgaricus  CFL1 upon exposure to 30 cycles of 
freezing-thawing-growing in milk exhibited improved sur-
vival rates after freezing (Monnet, Béal, and Corrieu 2003), 
while Lactobacillus rhamnosus GG showed improved 
re-activation from frozen culture conditions when sub-
jected to exposure to 150-times of freeze-thaw-growth 
cycles (Kwon et  al. 2018). Tolerance to acids is a necessary 
requisite for LAB fermentation and metabolite production 
because at low levels of pH (desirably below 3.8), LA 
occurs in its free form to be harvested through electro-
dialysis or ultrafiltration (Hongo, Nomura, and Iwahara 
1986; Othman et  al. 2017). Leuconostoc mesenteroides 
subsp. mesenteroides KCTC 3718 when adapted to high 
concentrations of LA (at pH 6.5) for a year were found 
to bear high acidic stress (Ju, Kim, and Lee 2016). LAB 
are mostly anaerobic/facultative anaerobic bacteria, so 
exposure to oxygen/reactive oxygen species is detrimental. 
But oxygen tolerance can induce robustness in probiotic 
strains that must undergo oxidative damage during pro-
duction/storage/ingestion in the gastrointestinal tract 
(Maresca, Zotta, and Mauriello 2018; Zotta et  al. 2018). 
Spontaneous mutants of Lactococcus lactis subsp. cremoris 
MG1363 strains could be mutated spontaneously by selec-
tive exposure to hydrogen peroxide to survive long periods 
in aerated environments and whilst co-culturing with 
(hydrogen peroxide producing) Lactobacillus delbrueckii 

subsp. delbrueckii (Rochat et  al. 2005). Probiotic LAB 
strains like Lactobacillus johnsonii and Lactobacillus gasseri 
showed tolerance to oxygen stress owing to their respira-
tory capacity triggered by catalase production (Maresca, 
Zotta, and Mauriello 2018).

2.4.  Monitoring LAB fermentation factors for PLA 
biosynthesis

Owing to food safety concerns and the frantic search and/
or want for natural food preservatives throughout the world, 
PLA is garnering much attention due to its antimicrobial 
and antibiofilm properties. Typically, PLA production can 
be done using precursors either through chemical synthesis 
(from benzaldehyde) (Deng, Chen, and Zhou 2001), 
extraction from plant materials like thistle honey (Tuberoso 
et  al. 2011) and fruit/cereal vinegar (Yunan et  al. 2021), 
and microbial synthesis (from several substrates) (Wu, 
Guang, et  al. 2021). Microbial fermentation methods are 
widely practiced as eco-friendly means for PLA production 
instead of chemical methods which are disadvantageous due 
to high-energy requirements and the generation of complex 
toxins or pollutants (Wu, Guang, et  al. 2021). PLA produc-
tion has been reported from several LAB strains: Lactobacillus 
sp. SK007 (Mu et  al. 2009), Lactobacillus plantarum 
(Lavermicocca et  al. 2000; Li et  al. 2015; Yang et  al. 2019; 
Zhang et  al. 2014), Lactobacillus reuteri (Schmidt et  al. 
2018), Lactobacillus alimentarius (Valerio et  al. 2004), 
Lactobacillus buchneri (Guan et  al. 2019), P. acidilactici DSM 
20284 (Mu et  al. 2012), Pediococcus pentosaceus SK25 (Yu 
et  al. 2015), from a myriad of fermented foods like tradi-
tional pickles, koumiss, kimchi, sourdough (Wu, Guang, 
et  al. 2021).

Monitoring physico-chemical fermentation factors (tem-
perature, pH, dissolved oxygen content, enzymes, and 
cofactors) traditionally and/or statistically (Meruvu and 
Donthireddy 2014) can regulate LAB fermentation and 
PLA biosynthesis. Temperature and pH control can reg-
ulate secondary metabolism and PLA biosynthesis by influ-
encing growth and intracellular activity. Lactobacillus sp. 
SK007 showed optimal growth and PLA yields at 30 °C 
rather than higher/lower temperatures under static culti-
vation mode (lower dissolved oxygen contents) (Li et  al. 
2007), while Lactobacillus paracasei W2 showed optimal 
PLA yields when cultured at 6.5–7.0 pH ranges instead of 
acidic/alkaline environment (Wu, Guang, et  al. 2021). PLA 
production from Lactobacillus strains in fed-batch fermen-
tation (1 to 10 L) was monitored by controlling pH values, 
glucose, phenyl pyruvic acid, sodium hydroxide, agitation, 
etc., thereby promoting better yields (20 g/L) (Bo et  al. 
2008). Enhanced production of PLA has also been reported 
by fermenting recombinant Escherichia coli under limited 
oxygen conditions because lower dissolved oxygen content 
could trigger l-phenylalanine production which is the pre-
cursor for PLA production oxygen limitation (Kawaguchi 
et  al. 2019). Lactococcus lactis—aminotransferases (purified 
and characterized) could be used for catalyzing 
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phenylalanine substrate into phenyl pyruvic acid (direct 
PLA-precursor) (Yvon et  al. 1997). Lactate dehydrogenases 
(LDH) of LAB can trigger PLA catalysis from phenylala-
nine substrates (due to their higher affinity/activity and 
substrate-specificity) at optimum temperature and pH 
ranges of 30–45 °C and 5.5–7.0, some of them reported 
include: L-LDH from Lactobacillus plantarum SK002 (Jia 
et  al. 2010), D-LDH from Pediococcus pentosaceus (Yu 
et  al. 2012), and Pediococcus acidilactici which exhibited 
a high substrate-specific catalytic efficiency—kcat/Km value 
of 105 m/M/S (Mu, Yu, Zhu, Zhang, et  al. 2012). The 
activation of LDH can be triggered by the addition of 
cofactors like NADH/NADPH to improve the LAB metab-
olism and PLA catalysis, and the usage of NAD+-dependent 
dehydrogenases is an economic option. NAD+-dependent 
dehydrogenases that can be used for cofactor regeneration 
include formate dehydrogenases of engineered Escherichia 
coli (Zheng et  al. 2015) and Ancylobacter aquaticus (Nanba, 
Takaoka, and Hasegawa 2003), glucose dehydrogenases of 
Lactobacillus rossiae (Luo et  al. 2020), etc. PLA synthesis 
has been reported using a semi-hydrophobic crystal 
gum-based whole-cell-catalyst (Lactobacillus paracasei) 
within a stirring-type bioreactor with improved yields 
compared to the traditional free cell biosynthesis (Zhang, 
Li, et  al. 2021).

Purification/separation techniques for extracting PLA 
yields include solvent extraction (Lavermicocca et  al. 2000), 
chromatography (Magnusson et  al. 2003), capillary electro-
phoresis (Li et  al. 2004), etc. Several researchers have 
reported myriad methodologies to render high-purity 
extraction of PLA: 80.2–90.8% recovery from Lactobacillus 
buchneri (whole cells)—fermented crude bioconversion 
broths using deionized water (running buffer) and NaCl 
(eluent) even devoid of any pretreatment, further recovery 
up to 97.6% with the aid of poly(hydroxyethyl methacry-
late)-based cryogels along with anion-exchange and 
hydrophobic-benzyl groups (Guan, Guan, et  al. 2018); 97% 
(DeMan–Rogosa–Sharpe medium) and 88% (synthetic 
medium) recovery was reported by extraction with ethyl 
acetate and supernatant-treatment with formic acid after 
rotary evaporation (Valerio et  al. 2004). Reverse phase High 
Performance Liquid Chromatography (RP-HPLC) could be 
employed for the simultaneous and rapid detection of PLA 
and 4-hydroxy PLA contents (Liu et  al. 2020). HPLC could 
be used also for qualitatively and/or quantitatively analyzing 
DL-3-PLA content in MRS broth fermentation supernatant 
fluid (by adopting reversed-phase ion suppression technology 
and Agilent Zorbax SB-C18 chromatographic column), 
thereby facilitating the rapid screening of LAB strains that 
produce high DL-3-PLA yields (Chenjian et  al. 2011; Liu 
et  al. 2013). An HPLC mobile phase addition method could 
be adopted for determining the content of PLA isomer using 
the chromatograph Agilent 1200 system, it was found to be 
rapid, simple, sensitive, and convenient offering strong spec-
ificity at low costs (Hu et  al. 2021). Enantiomeric separation 
of (±)-PLA from racemic mixtures was reported through 
surface-molecular-imprinting of nylon fibers (Bukhari, 
Monier, and Elsayed 2019), capillary electrophoresis using 

suitable chiral selective agents like mono-6A-(3-methoxypropy
l)-1-ammonium-β-cyclodextrin chloride (Wang et  al. 2014) 
and 6A-4-hydroxylethyl-1,2,3-triazole-6C-3-methoxypropylamino- 
β-cyclodextrin (Zhou et  al. 2015) that can form different 
stable-complexes with different PLA isomers; and 
chiral-ligand-exchange counter-current chromatography 
(Tong et  al. 2017).

3.  Conclusion

PLA is a benign green chemical produced through LAB 
metabolism with versatile applications owing to its 
broad-spectrum antimicrobial properties and immune-regulatory 
functions. It can be used as a food preservative (Chatterjee 
et  al. 2017; Fang et  al. 2022; Jiang, Yang, et  al. 2022; Liu 
et  al. 2021; Zhang, Wang, et  al. 2021; Zheng et  al. 2019) 
and additive agent for texturing/flavoring foods, as a 
cosmetic-additive for reducing wrinkles (Park 2020; Yu Ruey 
and Van Scott Eugene 1997) and decelerating the signs of 
aging (Park Yong 2021), for synthesizing poly-PLA (raw 
material for biodegradable plastics) (Guan, Yun, et  al. 2018), 
and as an animal feed-additive for improving growth in pigs 
and hens (Wang, Yoo, Lee, Jang, et  al. 2009; Wang, Yoo, 
Lee, Zhou, et  al. 2009). The applications of PLA are detailed 
in Tables 2 and 3.

The current state-of-art research in PLA production 
calls for the development of robust LAB strains with 
augmented metabolism/physiologies and novel synthesis 
strategies for high PLA yields thereby bridging the 
demand-supply barrier of the industrial sectors. 
High-throughput technologies of synthetic biology, met-
abolic engineering, and microbial biochemistry that can 
be adopted to design LAB strains of desired attributes 
for boosting the biotechnological production of PLA have 
been presented comprehensively. It is recommended that 
a sequential application of myriad techniques (Figure 1) 
viz., “primarily tailoring robust LAB growth and metab-
olism for PLA catalysis through adaptive evolution, LAB 
co-cultivation and cryogel-entrapment, traditionally/sta-
tistically monitoring LAB fermentation factors for effi-
cient PLA biosynthesis, and finally purification and 
characterization techniques apposite to extract high PLA 
yields,” could promote achieving economic yields. 
Orchestrating LAB sustenance followed by adaptive evo-
lution could trigger the growth and identification of 
robust strains with augmented PLA production, speeding 
up the process of choosing the starter strains. LAB 
co-cultivation and/or entrapment with cryogels, monitored 
fermentation, and choosing apposite purification/charac-
terization techniques would contribute to the cost-cutting 
strategies by conserving resources. A schematic illustra-
tion of PLA production through subsequent stages and 
its applications has been depicted in Figure 2. This review 
paper serves as a comprehensive preliminary guide that 
can evoke strategic experimental plans to produce 
industrial-scale PLA yields using simple techniques 
orchestrated together.
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Table 2.  Compendium showing antimicrobial/antibiofilm applications of PLA.

S.n. Property
PLA producing 
microorganism

Microorganisms susceptible 
to PLA Application References

1 Antimicrobial and 
antibiofilm activity

Lactococcus lactis Enterobacter cloacae Antibiotic (Kenar et  al. 2020)
Lactobacillus casei
Enterococcus faecium
Enterococcus faecalis

2 Antibacterial and 
antibiofilm activity

Lactiplantibacillus 
plantarum

Shigella flexneri Food preservation (Jiang, Xin, et  al. 2021)

3 Antibiofilm Effect Lactobacillus casei Proteus mirabilis Antibiotic to combat urinary 
tract infections

(Shaaban et  al. 2020)
Lactobacillus reuteri

4 Antibacterial and 
antibiofilm activity

Lactobacillus plantarum 
KU200656

Staphylococcus aureus Probiotic in food industry (Lee, Lee, and Paik 
2021)Listeria monocytogenes

Escherichia coli
Salmonella typhimurium

5 Antibacterial activity Lactococcus lactis Staphylococcus xylosus Food preservation (meat and 
dairy)

(Liu et  al. 2021)
Micrococcus luteus

6 Antibiofilm activity Lactobacillus species Pseudomonas aeruginosa Food preservation (Chatterjee et  al. 2017)
7 Antibiotic activity Lactobacillus acidophilus Salmonella enterica Javiana Protective effect against 

intestinal epithelial infection
(Burkholder et  al. 2019)

Lactobacillus rhamnosus
Lactobacillus casei

8 Antimicrobial activity Pediococcus pentasaceus Bacillus subtilis Food preservation (Haziyamin et  al. 2020)
Escherichia coli
Salmonella typhimurium
Staphylococcus aureus

9 Antimicrobial activity Lactobacillus fermentum Escherichia coli Food preservation (Haziyamin et  al. 2020)
Salmonella typhimurium
Staphylococcus aureus

10 Antibiofilm activity Lactobacillus acidophilus Listeria monocytogenes Food grade sanitizers (Masebe and Thantsha 
2022)Lactiplantibacillus 

plantarum
Lacticaseibacillus rhamnosus

11 Antibiofilm, 
antiadhesive, and 
anti-invasive activity

pediococcus acidilactici Listeria monocytogenes Antibiotic uses (Lee et  al. 2022)

12 Antibacterial, 
antibiofilm activity

Lactiplantibacillus 
plantarum CCFM8724

Streptococcus mutans Oral probiotic (Li et  al. 2022)
Candida albicans

14 Antifungal activity Lactobacillus plantarum 21B Eurotium repens Bread preservation (Lavermicocca et  al. 
2000)Eurotium rubrum

Penicillium corylophilum
Penicillium roqueforti

15 Antibacterial activity Lactobacillus plantarum 
CECT-221

Salmonella enterica Preservative in poultry, eggs, 
milk, beef, pork

(Rodríguez et  al. 2012)

Table 3.  Miscellaneous applications of PLA and allied patents.

S.n. Patent Claim/Summary Application References

1 CN 113150941A Gluconacetobacter FBFS 97 was used to synthesize PLA 
for adding to table vinegar in an increased content of 
439.26 mg/L.

Production of healthy table vinegar 
production

(Wu, Chen, et  al. 2021)

2 US 5643953A Topical application of 3-phenyllactic acid to skin wrinkles 
or affected skin of face to reverse the effects of aging

Cosmetic: treating wrinkles (Yu Ruey and Van Scott 
Eugene 1997)

3 CN 110870859A Lactobacillus plantarum DR7 metabolite-2-
hydroxyisocaproic acid and 3-PLA, used in cosmetic 
formulations

Cosmetic: delaying aging signs (Park 2020)

4 CN 111135157A The composition of 3-PLA and probiotics can be used to 
reduce growth of pathogenic bacteria to improve 
vaginal bacterial phase

Probiotics for improving bacterial 
phase (female vagina)

(Lin 2020)

5 CN 113412853A A coating preservative was prepared by mixing 
components: chitosan, PLA, kojic acid, tea-polyphenol, 
plasticizer, acetic acid, and water.

Preservative for aquatic products at 
low temperatures

(Pan et  al. 2021)

6 CN 108029751A A film coating fresh-keeping agent for cherries was 
prepared from a combination of 20-30%wt of PLA 
concentrate, carboxy methyl chitosan, glacial acetic acid, 
edible glycerin and water

Fresh keeping film-coat agent for 
cherries’ preservation

(Gong et  al. 2018)

7 CN 114084497A Manufacturing a fruit and vegetable fresh-keeping bag 
composed of polyethylene and phenyllactic acid.

Fruit and vegetable fresh-keeping 
bag to improve shelf-life

(Chen et  al. 2022)

8 CN 101906392A Lactobacillus sp. W2 was used to transform phenylpyruvic 
acid and extract PLA from ferment using ethyl acetate 
to produce high yields up to 1.038 g/L

Inhibition of putrefactive bacteria in 
food

(Limei et  al. 2010)

(Continued)
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Figure 1. S chematic presentation that effectively explains the “Integration valorizes simplicity” concept for augmented PLA production yields (LAB: lactic acid 
bacteria, PLA: Phenyllactic acid).

9 CN 106434483A Lactobacillus buchneri was used to ferment phenylpyruvic 
acid and glucose to produce PLA (13 g/L) and lactic 
acid (1.8 g/L) synchronously

Industrial application: Synthesis of 
biochemicals

(Yun, Guan, and Guan 
2017)

10 CN 114002363A PLA can be used as a food-detector and typical marker of 
Xinjiang black bee honey.

Characteristic marker of Xinjiang 
black bee honey

(Sun et  al. 2022)

11 CN 114527222A DL-3-PLA, malic acid, and 3-hydroxy-3-methyl glutamic acid 
could be used for preparing reagents that are applied 
as markers for detecting prostate cancer

Biomarker is used for diagnosing 
prostate cancer

(He et  al. 2022)

12 WO 2010/082846 
A1

Phenolic compounds like PLA, methoxylated PLA, 
methoxylated benzoic acids, syringic acid, methyl 
syringate and isomers, etc, could be used in 
compositions for preparing medical formulations

Medical and Nutritional 
Formulations

(Schlothauer and 
Stephens Jonathan 
Mcdonald 2010)

13 CN 112168846A Lactobacillus plantarum TCI378 and its metabolites 
selected from group including 3-PLA, can be used for 
preparing fat-reducing compositions/drugs

Preparation of a fat-reducing 
composition/drugs to combat 
obesity

(Lin et  al. 2021)

Table 3.  (Continued).

S.n. Patent Claim/Summary Application References
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Figure 2. S chematic illustration of arraignment of steps in Phenyllactic acid production and its applications. Red arrow shows the steps in Lactic acid bacteria 
strains’ screening and isolation: (a) isolation and culturing of indigenous LAB strains, (b) monitoring nutrition and growth requisites of LAB, (c) adaptive evolution 
of LAB strains, (d) co-cultivation of LAB strains, (e) LAB strain entrapment; violet arrow shows fermentation procedures for enhanced PLA production: (a) 
physico-chemical factors’ optimization conventionally, (b) fermentation factors’ optimization statistically, (c) fermentation process monitored at optimized con-
ditions (d) using fed-batch, stirred tank bioreactors for pilot-scale production. Golden arrow shows the processes for purification and extraction (a–c). Green 
arrow depicts the various applications of the produced PLA in (a) food preservation, (b) improving shelf-life of food products, (c) food additive to improve the 
flavor/texture of foods, (d) cosmetic industry, (e) manufacture of bioplastics (poly-phenyllactic acid), (f ) animal feed-additive.
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