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ABSTRACT

A TOOL FOR SYNTHETIC EVALUATION OF ACTIVE CALIBRATION

ALGORITHMS

To calibrate a camera, the choice of poses is very important and different angled

poses can increase accuracy. Gathering those poses needs expert intuition in order to

constrain all parameters accurately. There are various tools to help users calibrate the

camera with its guidance.

In this study, two successful calibration tools are tested. Both of them guide the

user interactively to obtain the best poses. The first method tries to avoid singular poses

and captures the poses that reduce the uncertainty of calibration. The second method uses

a different approach. It uses the current calibration state to suggest the next pose. In the

end, it verifies the parameters with the specified ones by the user.

To test these two methods, ground truth data is needed. The ground truth data is

obtained with the help of a 3D modeling program. The suggested poses are generated also

with the modeling program and knowing the ground truth camera parameters given in the

program, the results of the tools are compared.
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ÖZET

AKTİF KALİBRASYON ALGORİTMALARININ SENTETİK

DEĞERLENDİRMESİ İÇİN BİR ARAÇ

Kamerayı kalibre etmek için poz seçimleri çok önemlidir ve farklı açılardan po-

zlar toplayabilmek, kalibrasyonun kesinliğini arttırabilir. Kamera parametrelerini doğru

şekilde kalibre etmek için farklı pozlara ihtiyaç vardır ve bu iş için alanında uzman kişiler

gerekebilir. Birçok araç, yönlendirme ile kamera kalibrasyonu için kullanıcılara destek

olmaktadır.

Bu çalışmada, iki başarılı kalibrasyon aracı test edilmiştir. İkisi araç da, en iyi

pozları toplayabilmek için interaktif şekilde kullanıcıları yönlendirmektedir. İlk yöntem,

tekil pozlardan kaçınmaya çalışır ve kalibrasyon belirsizliğini azaltan pozları yakalar. İk-

inci yöntem farklı bir yaklaşım kullanır. Bir sonraki pozu önermek için mevcut kalibrasyon

durumunu kullanır. Sonunda kullanıcı tarafından belirtilen parametrelerle parametreleri

doğrular.

Bu iki yöntemi test etmek için temel gerçek verilerine ihtiyaç vardır. Temel gerçek

verileri bir 3B modelleme programı yardımıyla elde edilir. Modelleme programı ile de

önerilen pozlar oluşturulmuştur ve programda verilen temel gerçek kamera parametreleri

bilinerek araçların sonuçları karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In this thesis, the aim is to develop an evaluation process that tests guided calibration

tools with ground truth camera parameters created with a modeling tool. The developed

evaluation system is used as a ground truth creator and provides repeatable test cases.

Camera calibration is a field that is important for every vision problem. Camera

calibration means obtaining the required camera parameters. Every camera has its own

characteristics and the camera calibration process is the way of estimating these charac-

teristics. These parameters are required in order to calculate the relation between the 3D

world and the 2D world.

The created process can be used in all camera calibration systems. All the cameras

should be calibrated well in order to work accurately. Dealing with 3D world measurements

requires both the intrinsic and extrinsic parameters found correctly. These parameters are

the ones to describe the mathematical relationship between the 3D coordinates of a point

and its 2D projection onto the image plane.

The intrinsic parameters can also be called internal parameters. These parameters

define the camera. For instance focal length and lens distortion. To make a good prediction,

the accuracy of the focal length must be very definite.

The other parameter group is called extrinsic parameters and they are also known

as external parameters. Extrinsic parameters define the 3D world relation between the

camera and the outer world.

The accuracy of the calibration is very important. For instance, in autonomous car

systems, the camera placed in the car should be accurate. Accuracy means how close the

results are to the ground truth. Precision means how close the results are to each other.

Camera accuracy means the camera should have low or no distortion. High precision

describes the same output quality for any kind of environment. High resolution describes

the camera should be able to decipher the smallest possible change. Hence, the camera

should be well calibrated in order to have high accuracy and high precision.

The parameter calculation process was always a concern and much research are

done in this field. However, there are still some issues with finding the correct parameters.

There are different cases of camera calibration problems. When the number of points

increases, the number of solutions increases [11]. Another problem is choosing the right
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Figure 1.1: Usage of parameters and conversion between planes

orientations for the checkerboard. Even the most educated person can make mistakes. To

get rid of human errors, calibration tools started to increase. These tools require only a

checkerboard with the desired shapes and a camera. The suggestion mechanism generates

new poses and asks users to move the checkerboard to that generated pose [24][23]. With

each step, both the intrinsic and the external parameters update themselves. Another

problem is choosing the right pattern. Board patterns affect the accurate estimation

of intrinsic and extrinsic parameters. Point and corner detection accuracy increase the

accuracy of the calibration [13].

The problems above can be solved but still needs to be checked with the ground truth

data in order to be sure about the accuracy. With the help of the proposed modeling process,

the accuracy can be tested and calibrated cameras can be more reliable. Furthermore,

accurately calibrated cameras can be used in a variety of scenes for different scenarios.

For instance, in autonomous driving systems, cameras must be accurate. Autonomous

driving cameras mostly have too much distortion. Lens distortion means deformations

that occur in the image produced by the camera lens. Distortion can be seen in the images

as the lines appear curvy or bent. Autonomous driving cameras need to estimate distance

calculations and geometric features accurately [18].

Figure 1.2: Distorted and Undistorted Image (Source:[19])
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Another scenario is the advertisement insertion system. Synthetic advertisements

can be seen in TV programs and internet videos. A camera calibration system is required

in these systems and different calibration techniques are used in order to estimate camera

parameters. Also, estimated parameters should be accurate to make ads more realistic

[15]. The last example is about football and multiple cameras. The system gives the

positions of the player in real-time. First, it uses a single camera as a source and then

uses multiple cameras to get more data. Using multiple cameras requires each camera to

be calibrated accurately. This accuracy is used in merging data from different angles and

increases the correctness of the position of the player [29].

1.2 Literature on Calibration Tools

Camera calibration can be considered in 3D computer vision. This is the process

of determining the physical characteristics of the camera (intrinsic parameters) and the

location and direction of the camera in a 3D world coordinate system (extrinsic parameters).

Almost every computer vision algorithms strictly depend on the accuracy of the

calibration. Moreover, the calibration process must be done after each setup change. Even

if the location of the camera stays the same, the truthfulness of the intrinsic parameters

may vary. The most known approach to calibrating the camera is Zhang’s method [30].

This method is done by calculating the relationship between the world and image plane

corners with a planar calibration pattern.

Nonetheless, there can be degenerate poses and this leads to inaccurate calibration.

Due to this reason, inexperienced people cannot gather good quality poses, and even the

researchers working in this area encounter this problem [24]. There are some important

constraints regarding the position of the checkerboard. The position of the board in front

of the camera, rotation, size, tilt angle, and shift is one of the most necessary constraints

that are really important while gathering efficient poses.

There has been researching on to determine how to use camera orientation con-

straints. Research about angular spread showed us that at least spread is necessary to

decrease the error in focal length [26]. Also, Sturm and Maybank [25] found a relation

between the principal point and focal length. The focal length cannot be calculated if the

patterns in the frames are parallel to the image plane.

With respect to the research above, a calibration tool was proposed by Rojtberg

and Kuijper [24]. In this method, they create optimal checkerboard poses while trying to

not get degenerate poses. Using the research mentioned above, a pose generation process

is created.

3



In contrast to the work created by Rojtberg and Kuijper [24], there are other

methods that work iteratively rather than having predefined pose generation steps. The

method presented by Richardson, Strom and Olson [23] uses two process to generate

poses and calibrate the camera. The first is bootstrapping an initial camera parameters by

calculating the focal length stabilities and the second one is reducing the uncertainty over

pixels iteratively.

Another method that works iteratively is proposed by Peng and Sturm [21]. This

method tries to reduce the intrinsic uncertainty step by step by generating the next pose.

The next pose is determined by the least uncertain parameters using previously captured

poses. Another contribution of the proposed method is to quantify intrinsic parameters

and calibration by using corner uncertainty.

There are also some different approaches in calibration tools alternative to iterative

ones. The work proposed by Ren and Hu [22] uses initial pose sets that are generated

among candidate pose sets. Their proposed score function is used when determining

which pose set should be selected. After selecting a pose set for the calibration process,

poses in the set are displayed step by step to the user with instructions in order to guide

the user to move the checkerboard pattern. Each step reduces the reproduction error and

intrinsic parameter estimation variance.

In order to calibrate the camera, tools and algorithms need data. Creating synthetic

data is also an option. Chen and Little [5] calibrates sports camera with synthetic data.

They generate poses with three different parameters and feed them to a GAN network and

refine poses.

Recent works showed us that generating synthetic data prevent us from getting

unwanted noise and camera effects. Using synthetic data increase the size and variability.

To get rid of sensor effects, a work is proposed. These sensor effects are chromatic

aberration, blur, exposure, noise, and color temperature [4].

Using synthetic data is useful but it should be tested with image processing algo-

rithms. To see if they are working accurately, a paper is proposed. The tested field is the

lane tracking problem. It is a daily problem for the autonomous vehicle industry. Ground

truth data is needed to test everything repeatedly. It is possible to compare the results of

synthetic data with the ground truth data after tests [27].

Synthetic data can mimic real-world data. Semantic segmentation tasks depend

on real-world images to segment things correctly. With the created synthetic data, data

can be increased without using real images. In a work proposed lately, real-world images

were replaced by synthetic data for foggy images. Segmentation models are trained with

synthetic data [8].
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1.3 Methods Used

The evaluation process system is based on a 3D modeling tool. The modeling tool

used in this system is Blender [6]. Blender is a free and open-source 3D software. It is

used for creating 3D models, film, animations, visual effects, and video games. Being

open-source and free was one of the reasons to choose Blender. The ease of use is also

the other reason.

To test the calibration tools in real-time, desired checkerboard patterns are printed

on cardboard. Testing was done using these cardboards. There are various cardboard

designs. Three of them are used in this work. These are AprilTags [28], ArucoMarkers [?
], and basic checkerboard patterns.

The first calibration tool is implemented using Python. The software uses PyQt as a

user interface. After gathering the necessary poses, it uses OpenCV [3] library to calibrate

the camera. The calibration function of OpenCV uses Zhang’s method to calibrate the

camera.

The second calibration tool is implemented using MatLab [19]. The user interface

of AprilCal is designed to show generated poses to the user. Users are allowed to move

cardboard regarding target poses. The interface also prompts some text about instructions.

Users can read them and continue the process.

In order to create the generated poses with Blender, the steps of pose suggestion

were applied in the modeling software. For instance, if the calibration tool suggests

cardboard with an orientation that is tilted on the principal axis by , the same orientation is

created in the Blender scene. Then, exporting this model gives a pose with ground truth.

Using the Blender generated data that is created in the way given above, the next

step is testing these poses with error metrics. The used error metrics are implemented

using Python. These error metrics are Maximum Reproduction Error, triangulation,

camera parameter changes over iteration, and keypoint matching. All of these error

metrics are implemented with the help of OpenCV and NumPy [9]. Result are plotted

using MatPlotLib [12].

1.4 Organization of the Thesis

The organization of the thesis is as follows:

• Chapter 2 gives the mathematical background that is necessary to understand

this field and work. This chapter consists of some of the basic vision concepts,

5



calibration algorithms, and linear algebra operations.

• In Chapter 3, calibration tools that are tested in this thesis are explained.

Their results are given.

• In Chapter 4, used modeling tool and implementations are explained. Eval-

uation metrics are given in this chapter. A comparison of the calibration tools with

the ground truth data is given in this chapter.

• Chapter 5 gives the summary of the obtained results in this thesis. At the

end of the chapter, a discussion and future works section are given.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction

In this chapter, the mathematical background that is necessary to understand the

work represented in this thesis is presented. To follow the mathematical derivations given

in the work, one needs to understand these basic mathematical concepts. Section 2.2

presents the main aspects and notation of projective geometry. These ideas are the core

elements of a multiple view geometry. Projective transformations of the 2D world are

introduced. Affine and similarity transformations are introduced in this section. How to

get affine and metric properties from an image is focused on. After introducing 2D world

concepts, the next concepts are projective geometry of 3D world space. The new concept

compared to 2D geometry here is the infinity plane and the absolute conic.

Section 2.3 concentrates on the geometry of the camera. This section describes

the 3D to 2D projection. The basic camera matrix P is introduced. It is a 3x4 matrix.

Matrix P is responsible for the mapping of homogeneous coordinates of 3D world space to

homogeneous coordinates of 2D image space. The camera parameters are also introduced

in this section. Both the intrinsic and extrinsic parameter derivations are presented in

this section. The internal camera parameters such as focal length and principal point

are obtained from matrix P. Estimation of the matrix P is described in this section. The

derivation comes from the corresponding world and image coordinates that are introduced

in the previous section.

In Section 2.4, the geometry of two perspective views is covered. The relation

between the two perspective views is explained. There are two cameras and the transition

from one view to another view is done using matrices 𝑃 and 𝑃′. The coordinates in these

two perspective view correspond. The reason behind this is these points are in the same

3D world space. To obtain these coordinates and relationship between them, there are

three main topics, correspondence geometry, camera geometry and scene geometry. To

explain the first topic, the epipolar geometry is described in this section. Epipolar line

is a line that passes from one point to another point in different views. These points

are correspondent. The epipolar line depends on the camera. To understand epipolar

geometry, the fundamental matrix concept should be explained and in this section, the 3x3

fundamental matrix F is described. The computation of the fundamental matrix F comes

from 𝑃 and 𝑃′. The vice versa is also explained in this section.
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Section 2.5 describes the triangulation concept. Triangulation is the method of

finding a point in 3D space based on its projections onto two or more images in computer

vision. In order to solve this problem, camera projections of 3D and 2D should be

known. These projections is mentioned in the previous sections. To use triangulation,

accurate camera matrices are necessary. Sometimes this concept is also mentioned as

reconstruction.

These concepts are very detailed and to understand deeper, the reader should refer

to the [10]. More detailed derivations and definitions are explained in this reference.

2.2 Projective Geometry

This section presents the 2D and 3D projective geometry properties. There are

some particular representations used in this field. A point in the image plane can be

represented by the coordinates like (𝑥, 𝑦) in 2D image plane. Also, the 2D image plane

can be considered as vector space. In vector space, there are vectors and a point 2D image

plane can be called a vector. Hence, a point is identified as a vector.

There is a specific notation that is used in the representation of a vector. Vectors

are represented by 𝑥 and this means that this is a column vector. The transpose of this

vector gives us the row vector, 𝑥𝑇 . To represent the point in the vector space, column

vector notation is used rather than row vector notation. In the derivations, 𝑥 = (𝑥, 𝑦)𝑇 is

used to represent vectors.

In projective geometry, lines are represented by equations. To represent a line, an

equation such as 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is used. This line can also be represented with a column

vector notation such as (𝑎, 𝑏, 𝑐)𝑇 .

In the representation of the lines and vectors, homogeneous representation is used.

To describe a homogeneous point in 3D vector space, 𝑥 = (𝑥1, 𝑥2, 𝑥3)
𝑇 is used. To represent

this point in the 2D vector space, 𝑥 = (𝑥1/𝑥3, 𝑥2/𝑥3, )
𝑇 is used. One advantage of using

homogeneous coordinate system is that the representation of infinite points can be done

using it. Basically, 𝑧 = 0 means that the point is at infinity.

In order to determine whether a point lies on the line, the equation below should

be satisfied.

𝑥𝑇 𝑙 = 0

The equation above shows us that the point 𝑥 lies on the line 𝑙 if and only if the scalar

product of the point 𝑥 and the line 𝑙 equals 0.

The concept of degrees of freedom is also important while discussing projective

geometry. In order to represent a point in the image plane, two main properties must be

8



satisfied. These two properties are 𝑥 and 𝑦 coordinates. Also, a line should have two

properties same as a point. Hence, it is dependent on these two values and it has two

degrees of freedom.

Given two lines 𝑙 = (𝑎, 𝑏, 𝑐)𝑇 and 𝑙
′
= (𝑥, 𝑦, 𝑧)𝑇 . To find the intersection of these

lines, one must satisfy the equation following.

𝑥 = 𝑙 × 𝑙
′

(2.1)

Equation 2.1 tells that the intersection of two lines is the point 𝑥. The line passes over two

points 𝑥 and 𝑥𝑇 is represented with Equation 2.2.

𝑙 = 𝑥 × 𝑥
′

(2.2)

This means that the lines go through the points 𝑥 and 𝑥𝑇 .

To represent finite points in the image plane, 𝑥3 ≠ 0 for the homogeneous vector

𝑥 = (𝑥1, 𝑥2, 𝑥3)
𝑇 . If 𝑥3 = 0, the vector is called ideal points or points at infinity. Regarding

these, the line 𝑙 can intersect the line 𝑙∞ in the ideal point.

As seen in the previous equations, points and lines are interchangeable. The roles

of points and lines can be interchanged. For instance, 𝑙𝑇𝑥 = 0 can be interchanged with

𝑥𝑇 𝑙 = 0. The positions of line and point are swapped. This concept is called duality
principle and the related point and line are dual to each other.

Mapping from point to point means projectivity. It is invertible. Projectivity is also

known as homography or projective transformation. Let’s call a mapping ℎ is a projectivity.

This is true if and only if there is an invertible 3𝑥3 matrix H. The transformation can be

represented as follows.

⎡⎢⎢⎢⎢⎢⎣
𝑥
′

1

𝑥
′

2

𝑥
′

3

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑥1

𝑥2

𝑥3

⎤⎥⎥⎥⎥⎥⎦
(2.3)
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To represent the Equation 2.3 more simpler, 𝑥
′
= 𝐻𝑥. Regarding the point transformations,

a line transformation can be represented as 𝑙
′
= 𝐻−𝑇 𝑙.

There are some main projective transformations. Transformations work by chang-

ing the values of the vector but sometimes the properties of the vector stay unchanged.

This situation is defined as invariants. For instance, the distance cannot be changed by

Euclidean transformation but is not similarity invariant. The main transformations are as

follows:

• Isometries

• Similarity

• Affine

• Projective

Under some projective transformations, the ideal points can be mapped to finite

points. However, if the transformation is affine, then it cannot be mapped to a finite point.

So, the line 𝑙∞ is fixed if and only if 𝐻 is affine.

To represent a point in 3D world space, vector of 4 is used. The point 𝑥 =

(𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 represents the vector in homogeneous form. The inhomogeneous form is

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 .

2.3 Camera Geometry

In this section, the description of the simplest camera model is explained. The

name of the camera model is the pinhole camera model. The Figure 2.1 shows the

modeling of the pinhole camera geometry.

As seen in Figure 2.1, 𝐶 is the camera center and is the center of the coordinate

system. The distance between the image plane and the camera center𝐶 is 𝑓 and it is called

focal length. The intersection of image plane and the z-axis is 𝑝 and it is called principal
point. The projection can simply written like below formula if all the points in both world

and image planes represented by homogeneous coordinates.

⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑧

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
𝑓 0 0 0

0 𝑓 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥

𝑦

𝑧

𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)
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Figure 2.1: Pinhole Camera Model (Source:[10])

In order to make all projections, a projection matrix is necessary. This matrix is

notated as 𝑃 and it is called the camera matrix.

𝑃 =

⎡⎢⎢⎢⎢⎢⎣
𝑓𝑥 𝑠 𝑢0 0

0 𝑓𝑦 𝑣0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
(2.5)

There are some properties and definitions of the matrix . The aspect ratio is the

ratio 𝑓𝑦/ 𝑓𝑥 .𝑠 is skew and defines the tilt of the image plane. To calculate the skew, the

equation 𝑠 = cot(𝛼) 𝑓𝑦 can be used.𝛼 is the skew angle. The precision of the camera is

the key to define the skew and 𝛼. Mostly, they are assumed 0◦ and 90◦, respectively. The

reason behind this is that the cameras are accurate and precise in today’s world. And

finally, 𝑢0 and 𝑣0. These two values hold the shift in the coordinate system.

The camera systems work in their own coordinate system. The camera coordinate

system is also called Euclidean coordinate frame. However, in order to make calculations

and projections, the conversion from Euclidean coordinate system to the world coordinate

system must be done. World coordinate system is a system that consists of 3D derivations.

These two coordinate systems are related to translation and rotation. To demonstrate the

transformation from one to another, let’s assume that is a point in the world coordinate

system and 𝑋𝐶 is the exact same point in the camera coordinate system. Then, the following

appears.

𝑋𝐶 = 𝑅(𝑋 − 𝐶) (2.6)
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𝐶 represents the center of the camera in the world coordinate system.𝑅 is the

rotation matrix.𝑅 holds the orientation of the camera and it is a 3𝑥3 matrix. Equation 2.6

is in inhomogeneous form. The homogeneous form is as follows.

𝑋𝐶 =

[
𝑅 −𝑅𝐶

0 1

]
𝑋 (2.7)

Equation 2.7 gives us the formula below.

𝑥 = 𝐾𝑅[𝐼 | −𝐶]𝑋 (2.8)

where the point is in now world coordinate system. Equation 2.8 can be divided into two

parts. The parameters that form 𝐾 are known as intrinsic parameters. These parameters

indicate the internal specifications of the camera.𝑅 and 𝐶 consist of extrinsic parameters.

Extrinsic parameters hold the camera orientation inside the world coordinate system. To

write the camera matrix more simpler:

𝑥 = 𝐾 [𝑅 | 𝑡]

2.4 Two View Geometry

In this section, the epipolar geometry is discussed. The epipolar geometry is

the relation between two views. It does not depend on the structure of the scene. It is

dependent on the internal camera parameters. After describing epipolar geometry, the

derivation of the fundamental matrix 𝐹 can be understood and it is also discussed in this

section.

In epipolar geometry, there are two views in 3D space. They are related to a point

𝑋 . The point 𝑋 is imaged in both views with two different cameras.

As seen in Figure 2.2, there is a point 𝑋 in the 3D world space and its corresponding
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Figure 2.2: Correspondence Geometry (Source:[10])

images are 𝑥 and 𝑥′. The camera centers are 𝐶 and 𝐶′. All of the objects are located in a

common plane and it is called epipolar plane Π.

To understand the epipolar geometry, first, the terminology should be described.

As mentioned before, there are two different cameras located in the same 3D plane and

two different image planes that intersects with the epipolar plane Π. The points 𝑒 and 𝑒′

are called epipoles. The line connecting the camera centers is known as baseline. The

intersection of the baseline with image planes creates epipoles. The plane that consists

baseline is called epipolar plane. And finally, the lines 𝑙 and 𝑙′ are called epipolar lines.
Epipolar line is the line that appears with the intersection of an epipolar plane and an

image plane.

As mentioned before, the images of the point 𝑋 are 𝑥 and 𝑥′. There is a 2D mapping

between imaged points. The imaged points are projectively equivalent and the mapping

between them is a 2D homography 𝐻𝜋. The homography can be written as

𝑥
′
= 𝐻𝜋𝑥

To derive the line passes through the point 𝑥′ and the epipole 𝑒′

𝑙
′

= [𝑒
′

] × 𝐻𝜋𝑥 (2.9)
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Where [𝑒
′
]× is the skew-symmetric matrix. The fundamental matrix 𝐹 can be written as

𝐹 = [𝑒
′
] × 𝐻𝜋. The 𝐻𝜋 is the mapping from one imaged point to another imaged point.

There are more than one ways to derive fundamental matrix 𝐹. In this section, the

derivation from the correspondence condition is presented. As mentioned Equation 2.9,

the equation of the line 𝑙′ can be calculated using epipoles and homography. The epipolar

line equation can also be written like

𝑙
′
= 𝐹𝑥

As mentioned in Section 2.2, if a point lies on a line, the multiplication should be

equal to zero. Hence, this is a known fact that the imaged point 𝑥′ lies on the epipolar line

𝑙′. And according to the rule, 𝑥
′𝑇 𝑙

′
= 0 must be satisfied. With this equation, the most

basic property of the fundamental matrix can be stated. For any pair of correspondence,

the fundamental matrix 𝐹 satisfies the condition

𝑥
′𝑇𝐹𝑥 = 0 (2.10)

Equation 2.10 must be satisfied. It is a necessary condition to say that two points

are correspondent. This is true because the imaged points 𝑥 and 𝑥′ are correspondent and

𝑥′ lies on the epipolar line 𝑙′.

To summarize, the most essential properties of the fundamental matrix are as

follows.

• The fundamental matrix has 7 degrees of freedom.

• 𝐹 has a rank of 2.

• 𝑥
′𝑇𝐹𝑥 = 0

• 𝑙
′
= 𝐹𝑥 and 𝑙 = 𝐹𝑇𝑥

′

• 𝐹𝑒 = 0 and 𝐹𝑇𝑒
′
= 0

To reconstruct the cameras and the planar structure from two view, three main steps

can be followed. Calculating the fundamental matrix from the known point correspon-

dences. The camera matrices can be derived from the fundamental matrix and the next step

is calculating the camera matrices. And lastly, calculation of all point correspondences in

the space. In order to do these steps, one needs to compute fundamental matrix. There

is a minimum number of point correspondences to compute the fundamental matrix. At

least 8 point correspondences are necessary to solve linearly for the fundamental matrix.
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However, there is a nonlinear solution that uses only 7 point correspondences. The 8-point

version is the general way of calculating the fundamental matrix 𝐹.

The fundamental matrix is given by the equation

𝑥
′𝑇𝐹𝑥 = 0

Each point correspondence gives one linear equation. These equations are the

unknown entries of the fundamental matrix. Let’s assume that the points are (𝑥, 𝑦, 1) and

(𝑥
′
, 𝑦

′
, 1). The entries of the equation can be written as

𝑥
′𝑇𝐹𝑥 =

[
𝑥
′

𝑦
′

1

] ⎡⎢⎢⎢⎢⎢⎣
𝑓1 𝑓2 𝑓3

𝑓4 𝑓5 𝑓6

𝑓7 𝑓8 𝑓9

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

1

⎤⎥⎥⎥⎥⎥⎦
(2.11)

Then, Equation 2.11 becomes

= 𝑥
′

𝑥 𝑓1 + 𝑥
′

𝑦 𝑓2 + 𝑥
′

𝑓3 + 𝑥𝑦
′

𝑓4 + 𝑦𝑦
′

𝑓5 + 𝑦
′

𝑓6 + 𝑥 𝑓7 + 𝑦 𝑓8 + 𝑓9 (2.12)

𝑓 values are the entries of 𝐹 in row-major order. Next, Equation 2.12 may be expressed

as vector inner product.

[
𝑥
′
𝑥 𝑥

′
𝑦 𝑥

′
𝑦
′
𝑥 𝑦

′
𝑦 𝑦

′
𝑥 𝑦 1

]
𝑓 = 0 (2.13)

There is a set of point correspondences and to get linear equations

𝐴 𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥
′

1
𝑥1 𝑥

′

1
𝑦1 𝑥

′

1
𝑦
′

1
𝑥1 𝑦

′

1
𝑦1 𝑦

′

1
𝑥1 𝑦1 1

...
...

...
...

...
...

...
...

...

𝑥
′

𝑛𝑥𝑛 𝑥
′

𝑛𝑦𝑛 𝑥
′

𝑛 𝑦
′

𝑛𝑥𝑛 𝑦
′

𝑛𝑦𝑛 𝑦
′

𝑛 𝑥𝑛 𝑦𝑛 1

⎤⎥⎥⎥⎥⎥⎥⎦
𝑓 = 0 (2.14)
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Equation 2.14 is a homogeneous solution. To solve this equation, matrix 𝐴 should be at a

rank of no more than 8. If the rank is 8, the solution can be defined as unique and using

linear methods is enough to find the answer.

There can be noise in the point coordinates. If that is the situation, the rank of

𝐴 can be greater than 8. This case brings us to a least-squares solution. The smallest

singular value of 𝐴 is the solution for 𝑓 . The smallest singular value is the last column

of 𝑉 in the singular value decomposition (SVD) of 𝐴. The solution can be written in the

form

𝑆𝑉𝐷𝐴 = 𝑈𝐷𝑉𝑇

In order to find a unique solution, the choice of a constraint is needed. To find the

𝑓 , the condition is | | 𝑓 | | = 1. The solution is the vector that minimized the | |𝐴 𝑓 | | subject

to | | 𝑓 | | = 1. The algorithm described is the 8-point algorithm.

2.5 Triangulation

This section describes how to calculate the position of a point in the world coor-

dinate system by using its image coordinates in image planes and the camera matrices of

both two views. Naturally, there may be an error while back-projecting the point. The

best solution needs an optimal cost function. In order to find a cost function, an invariant

triangulation method is necessary. It should be invariant to projective transformations of

3D space.

As mentioned above, there are errors while back-projection points. Back-projected

points can be skew if the measured points have errors. If there are errors, 𝑥 = 𝑃𝑋 and

𝑥
′
= 𝑃

′
𝑋 cannot be satisfied. Also, the epipolar constraint 𝑥

′𝑇𝐹𝑋 = 0 cannot be satisfied

by the image points.

The optimal triangulation method must be invariant to reconstruction transforma-

tions. To denote a triangulation method to find a 3D world point

𝑋 = 𝜏(𝑥, 𝑥
′

, 𝑃, 𝑃
′

) (2.15)

As written in Equation 2.15, the triangulation must be invariant to transformation

𝐻. Hence,
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𝜏(𝑥, 𝑥
′
, 𝑃, 𝑃

′
) = 𝐻−1𝜏(𝑥, 𝑥

′
, 𝑃𝐻−1, 𝑃

′
𝐻−1)

This indicates that the triangulation formula uses the transformed camera matrices in the

transformed point coordinates.

In linear triangulation method, the DLT similar way is used. There are measure-

ments that are already known, 𝑥 = 𝑃𝑋 and 𝑥′ = 𝑃′𝑋 . These equations can be merged into

𝐴𝑋 = 0. For the first image,

𝑥(𝑝3𝑇 𝑋) − (𝑝1𝑇 𝑋) = 0

𝑦(𝑝3𝑇 𝑋) − (𝑝2𝑇 𝑋) = 0

𝑥(𝑝2𝑇 𝑋) − 𝑦(𝑝1𝑇 𝑋) = 0

where the elements notated as 𝑝𝑖𝑇 are the row elements of 𝑃. These are the linear

equations.

Therefore, equation 𝐴𝑋 = 0 can be used.

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑝3𝑇 − 𝑝1𝑇

𝑦𝑝3𝑇 − 𝑝2𝑇

𝑥
′
𝑝

′3𝑇 − 𝑝
′1𝑇

𝑦
′
𝑝

′3𝑇 − 𝑝
′2𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.16)

Two equations from two images are combined in Equation 2.16. This gives us a four

homogeneous unknowns. This can be solved with DLT.

2.6 Summary

In this chapter, background information on projective geometry, camera geometry,

two view geometry and triangulation are presented. Some of the well-known algorithms

are also presented like 8-point algorithm.

As seen in Section 2.2, the projective geometry builds the ground floor of all the

topics that will be covered in this thesis. Equations and derivations that are used in this

section are used largely in the following parts.

In Section 2.3, the camera geometry is described. The simple but widely used

pinhole camera is explained. Understanding the structure of the camera is necessary
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to comprehend the calibration concepts. The parameters like focal length and principal

point are explained. Two subdivisions of the camera matrix, intrinsic and extrinsic, are

described. The derivation of the matrix 𝐾 is also described.

In Section 2.4, the most essential concepts in two view geometry are described.

Two view geometry is an important topic while dealing with camera calibration. The

fundamental matrix 𝐹 is used in almost every calibration method and the derivation of the

𝐹 is explained in this section. In order to find point correspondences in two image planes

and their related 3D world coordinate, the fundamental matrix is an important device.

And at the end in Section 2.5, the linear triangulation method is described. In

order to test the accuracy of the projections, the triangulation methods are necessary.
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CHAPTER 3

CALIBRATION TOOLS

3.1 Introduction

In this chapter, the main tools of this work are explained. These tools are two

calibration tools from different published works. The core calibration method in both

calibration tools is described. This method is not a new method but the impact is huge and

it is still being used. The method is Zhang’s method [30] from OpenCV to other libraries,

it is implemented. Two calibration tools are compared and verified with the proposed

evaluation method in the next chapter.

Section 3.2 describes the most used calibration method. The name of the method

is “A Flexible New Technique for Camera Calibration.”. The work is published in 2000 by

Zhang. As it is written in the paper, it describes a flexible way of camera calibration. The

reason for the name flexible is that this method can be applied without prior specialized

knowledge of computer vision or two view geometry. The only requirement is at least two

planar views in different orientations. The work also consists of radial distortion.

Section 3.3 explains the work called “Efficient Pose Selection for Interactive Cam-

era Calibration.”. This paper is published in 2019. This method is one of the works

compared in this thesis. The planar pattern choice is important in camera calibration yet

this is barely debated. This work proposes a set of calibration poses for interactive calibra-

tion. The main distinction of this work is the consideration of different planar orientations

and numerical values of positions. Further information is in the section.

Section 3.4 explains the other calibration tool. The name is “AprilCal: Assisted

and repeatable camera calibration.”. Tool uses the current state of the calibration to suggest

the next pose. A simultaneous advising system is the main difference of this work. As

pattern, AprilTags [20] are used. The other contributions of this work are two new score

functions. One is for focal length accuracy and the other is for pixel uncertainty. Further

information is in the section.
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3.2 Calibration Method

The method that is presented in this section is the base method for both of the

calibration tools. The core calibration method is the Zhang’s [30] calibration method.

After gathering the necessary and required poses, tools are executing this calibration

method to calibrate the camera.

The only requirement for this method is having a camera and a planar pattern. This

is why it is called flexible at first. The condition is having at least two frames with different

orientations. The motion of the planar surface can be anything. It can be moved by hand

or a device. This method is in both the fields of photogrammetry and self-calibration. The

reason of this is the method uses 2D information.

The main assumption of this method is that the model plane is on 𝑍 = 0 of the

world coordinate system. To show the homograph between the model and its image plane

𝑠

⎡⎢⎢⎢⎢⎢⎣
𝑢

𝑣

1

⎤⎥⎥⎥⎥⎥⎦
= 𝐴

[
𝑟1 𝑟2 𝑟3 𝑡

] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋

𝑌

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐴

[
𝑟1 𝑟2 𝑡

] ⎡⎢⎢⎢⎢⎢⎣
𝑋

𝑌

1

⎤⎥⎥⎥⎥⎥⎦
Since there is an assumption over the axis 𝑍 , the point can be expressed as (𝑋,𝑌 )𝑇 .

Hence, the relation between the point in the world coordinate system and its imaged one

can be described by a homography.

𝑠𝑥 = 𝐻𝑋 (3.1)

𝐻 = 𝐴
[
𝑟1 𝑟2 𝑡

]
(3.2)

In equations 3.1 and 3.2, 𝐻 is a 3𝑥3 matrix and 𝑠 is the scale factor.

The process finishes in three main steps. It starts with an analytical solution,

then continues with nonlinear optimization. This optimization is based on the maximum

likelihood. And for the final step, the addition of lens distortion is done.

20



For the first step, there is a closed-form solution. Let

𝐵 = 𝐴−𝑇 𝐴−1

gives

⎡⎢⎢⎢⎢⎢⎣
𝐵11 𝐵12 𝐵13

𝐵12 𝐵22 𝐵23

𝐵13 𝐵23 𝐵33

⎤⎥⎥⎥⎥⎥⎦
where 𝐵 is a symmetric matrix. Then, 𝑏 = [𝐵11, 𝐵12, 𝐵22, 𝐵13, 𝐵23, 𝐵33]

𝑇 . By adding the

homography, the equation becomes

ℎ𝑖
𝑇 𝐵ℎ 𝑗 = 𝑣𝑖 𝑗

𝑇 𝑏

where ℎ𝑖 means the 𝑖𝑡ℎ column vector of the homography H. And 𝑣𝑖 𝑗 consists of the

homograph vectors like

𝑣𝑖 𝑗 = [ℎ𝑖1ℎ 𝑗1, ℎ𝑖1ℎ 𝑗2 + ℎ𝑖2ℎ 𝑗1, ℎ𝑖2ℎ 𝑗2, ℎ𝑖3ℎ 𝑗1 + ℎ𝑖1ℎ 𝑗3, ℎ𝑖3ℎ 𝑗2 + ℎ𝑖2ℎ 𝑗3, ℎ𝑖3ℎ 𝑗3]
𝑇

Furthermore, the two fundamental equations can be written as homogeneous equations.[
𝑣𝑇

12

(𝑣11 − 𝑣22)
𝑇

]
𝑏 = 0

Let’s say that there are 𝑛 images in the set. This gives us 𝑛 equations. Stacking

these equations

𝑉𝑏 = 0

The equation above gives us different solutions with the number of 𝑛 images. If

𝑛 ≥ 3, the solution is a unique solution 𝑏 and it is constrained by a scale factor. If 𝑛 = 2,

equation becomes [0, 1, 0, 0, 0, 0]𝑏 = 0. If 𝑛 = 1, there is a solution that only gives two

camera intrinsic parameters. To estimate general 𝑏, finding the right singular value vector

of 𝑉 related with the smallest singular value gives the solution. After estimating 𝑏, all

intrinsic parameters can be computed.

After getting the camera intrinsic matrix, computation of the extrinsic parameters

can be done easily.

𝑟1 = 𝜆𝐴−1ℎ1

𝑟2 = 𝜆𝐴−1ℎ2

𝑟3 = 𝑟1 × 𝑟2

𝑡 = 𝜆𝐴−1ℎ3
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where 𝜆 = 1/| |𝐴−1ℎ1 | | = 1/| |𝐴−1ℎ2 | |

The next step is refining the solution above with a maximum likelihood estimation.

This needs to be done because the equation above is calculated with minimizing an

algebraic distance.

Let’s say that there are 𝑛 images and points in the world coordinate system. The

maximum likelihood estimation can be done by the following function.

𝑛∑
𝑖=1

𝑚∑
𝑗=1

| |𝑚𝑖 𝑗 − 𝑚(𝐴, 𝑅𝑖, 𝑡𝑖, 𝑀𝑗 ) | |
2

where 𝑚(𝐴, 𝑅𝑖, 𝑡𝑖, 𝑀𝑗 ) is the projection of the points. In order to minimize, Levenberg-

Marquardt[14][17] is used.

Until this step, the camera was considered a pure camera without lens distortion.

However, cameras have lens distortion and it is especially radial distortion. In this work,

only two values of radial distortion is described.

Let (𝑢, 𝑣) be the distortion-free image coordinates and (𝑢̃, 𝑣̃) the related real image

coordinates. Also, (𝑥, 𝑦) and (𝑥, 𝑦̃) are the coordinates with the same properties above,

respectively. Hence,

𝑥 = 𝑥 + 𝑥 [𝑘1(𝑥
2 + 𝑦2) + 𝑘2(𝑥

2 + 𝑦2)2]

𝑦̃ = 𝑦 + 𝑦[𝑘1(𝑥
2 + 𝑦2) + 𝑘2(𝑥

2 + 𝑦2)2]

where 𝑘1 and 𝑘2 radial distortion coefficients. Assuming 𝛾 = 0 gives

𝑢̃ = 𝑢 + (𝑢 − 𝑢0) [𝑘1(𝑥
2 + 𝑦2) + 𝑘2(𝑥

2 + 𝑦2)2]

𝑣̃ = 𝑣 + (𝑣 − 𝑣0) [𝑘1(𝑥
2 + 𝑦2) + 𝑘2(𝑥

2 + 𝑦2)2]

3.3 First Calibration Algorithm

There have been various works in the camera calibration tool field. Most of

them used different methods to relax the user. Naturally, user dependent calibration is

error prone. In this work, the choice of planar pattern poses is distinctive. A robust

and compact set of calibration poses is proposed. The generation of optimal pattern

poses considers avoiding degenerate pattern compositions. For each individual camera

parameter, a relation between pose and constraint is described. This reduces the generation

time compared to other work [23] that is presented in this thesis.

The covariance of the parameter solution is used during the calibration. The

uncertainties gradually are reduced step by step with the generated poses. The main

contributions of this work are:
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• Proving the need for two different pose generation strategies

• Including both strategies into an efficient pose selection algorithm

In order to analyze the error, the variance of the estimated parameters is used. Index

of dispersion is used to correlate the parameters to each other. The proposed method works

fine with every planar calibration pattern like the chessboard pattern. However, ChArUco

[7] marked pattern is used in this work. The reason for this is fast detection. Real-time

calibration requires fast detection of the planar pattern. The size of the pattern is 9𝑥6.

In order to calibrate the camera, Zhang’s [30] method is used. Selection of the

poses depends on the different key frames. While choosing frames, they proposed to split

the parameter group into pinhole and distortion parameters. In the estimation process,

some ambiguities appear. One is between the focal length and the distance to the camera

and the other is between translation and principal point. Both of these ambiguities can

be solved by tilting the pattern. For distortion parameters, accurate measurement in the

image regions is required.

After stating the parameter splitting, the splitted parameters are as follows.

𝐶𝐾 = [ 𝑓𝑥, 𝑓𝑦, 𝑐𝑥, 𝑐𝑦], 𝐶Δ = [𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2]

Regarding the work, avoidance of singular poses is a must. In order to get rid of

pinhole singularities, there are three configurations. These configurations are as follows:

• Image plane and pattern must not be parallel to each other.

• Each image axes must not be parallel to the pattern.

• The vanishing lines of the planes must not be reflections of each other.

Satisfying these conditions helps the calibration process and each step adds information.

The pose generation process of this work is described in 4 steps. The purpose of

these steps is to maximize the angular spread between the pattern and the image plane.

These steps are:

1. Choose a distance that is far enough to capture the whole pattern.

2. Tilt the pattern in the range of −70◦ and 70◦. This range is calculated using

the interpolation of binary subdivision of (0, 1). This step maximizes the angular

spread.

3. Rotate the view by 22.5◦. This prevents the pose to be parallel to one of the

axes.

4. Shift every image axis by 5% of the image size. This step is for faster

convergence and increases the spread for each axis.
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The steps above are for the intrinsic parameters 𝐶𝐾 . For distortion parameters 𝐶Δ,

increasing sampling accuracy reduces distortions. To do this, the generation of a distortion

map is done. Search for the distorted parts is done in 4 steps and as follows:

1. Threshold the map to find the highest distortion.

2. Fit a bounding box to the distorted region.

3. Exclude that region while searching.

4. Align the pattern according to the top-left corner of the bounding box.

To initialize the camera calibration and get the first calibration parameters, the

calibration method [30] requires at least two frames. The selection of poses for the first

two frames is as follows.

• For the 𝐶𝐾 , tilt the pose by 45◦ around the axis x.

• For 𝐶Δ, get a pose that is parallel to the image plane.

After getting the initial frames, the calibration process starts. The main goal is to

minimize variance of the parameters. This process works with one parameter each time.

The choice is determined with the help of the index of dispersion. The calibration process

is done after the convergence. For determining convergence, a ratio test over parameter

variance is done. If the refinement is below the given threshold, there is no need for the

next step. The calibration ends after all parameters have converged.

In this tool, there is a user guidance system like the other calibration tools. The

system guides the user until the desired number of poses is reached. In order to detect a

sufficient number of poses, Jaccard index is used. This is computed with target pose 𝑇

and estimate pose 𝐽 (𝑇, 𝐸) > 0.8. If , the desired number of poses is reached.

The results are computed over 5 iterations. The method described in this section

requires 70% of the images required by AprilCal [23].

3.4 Second Calibration Algorithm

In this section, the second calibration tool which is called AprilCal is described.

Most of the other tools stores some predefined poses and asks the user to move the pattern

to these poses. After gathering sufficient poses, calibration starts. However, in this work,

the next is generated with the help of the previous pose. Parameters are checked after each

step to satisfy the user requirements.
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To suggest the next pose, reliable score functions are necessary. This work provides

two methods for scoring. One is for focal length estimation and the other is for the model

uncertainty.

The main contributions of this work are listed below.

• Suggestion framework for generating poses during camera calibration.

• New score functions to increase the accuracy of the calibration.

• A new bootstrapping method to start calibration.

The system works with AprilTags [20]. The reason is that these tags are easy to

detect and more robust. Even if some parts of the pattern are not visible, AprilTag can be

detected. The system suggests new poses and the user moves the pattern on that position.

Then, the next pose is computed regarding the previous pose. This process continues until

the desired accuracy that the user defines is reached.

The calibration process is divided into two parts, bootstrapping and uncertainty

reduction. In bootstrapping phase, new images are added to determine the first camera

parameters. After the calculation of the first parameters, the system continues with the

uncertainty reduction phase. In bootstrapping phase, quick initialization is necessary. So,

focal center is assumed at the center of the image. This gives the focal length estimate

after the first frame. In order to select the next best pose with less accurate parameters, the

selection is done using the variance. Intrinsic parameters with a low variance are desired.

After each step, the previous inaccurate frame is replaced with the new lower intrinsic

uncertainty.

After constraining intrinsic parameters, the next step is increasing the accuracy of

the calibration. In order to achieve this, “Max Expected Reprojection Error” is proposed.

It can be calculated in every step by sampling the current distribution over parameters.

The reprojection error is a geometric distance error corresponding to the distance between

a projected point and a real one. It is used to quantify how closely an estimate of a 3D

point is to its projection.

Table 3.1: AprilCal Mean and Max Errors

Dataset Lens Model Mean Reproj. Error Max Reproj. Error
OpenCV Radial, 3 distortion terms 0,728 38.646

AprilCal Radial, 3 distortion terms 0,229 1.651

AprilCal Angular, 4 distortion terms 0,203 1.444
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In the Table 3.1, it can be seen that increasing distortion terms decreases the

reprojection error. Also, the usage of both Mean Reprojection Error and Max Reprojection

Error makes camera calibration more robust.

The Max Expected Reprojection Error is described as a calibration quality measure.

Users specify their desired accuracy and then if the Max ERE reaches that accuracy,

calibration can be called accurate. Their proposed error metric relates to the reprojection

errors of the captured test set. To test the accuracy of partial calibration, Max ERE gives

high accuracy.
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CHAPTER 4

EVALUATION TOOL

4.1 Introduction

In this chapter, the proposed evaluation system of calibration tools is presented.

The evaluation process has three main steps. These steps are as follows.

1. Setup 3D modeling system

2. Generate suggested poses

3. Test generated poses

To gather the suggested poses, given pose generation steps are followed. Then, with the

correctness of 3D modeling camera, results are compared.

Section 4.1 describes the camera and system setup. The specifications of the system

used in this evaluation tool are presented. The modeling tool used is also described. Its

basic functionalities and necessary information are included.

Section 4.2 describes the way of generating recommended poses. In this section,

each step of pose generation is explained in detail.

In Section 4.3, the results are compared. With the generated poses, each calibration

tool is tested. Knowing the camera ground truth values, calibration tool outputs are

compared.

4.2 Evaluation Tool Setup

The camera system used in this thesis is a virtual camera provided in the modeling

tool. The camera is a perceptive camera. Perspective camera is the same as how humans see

in the real world. Objects in the distance appear smaller. The camera can be manipulated

with the controls given in the modeling tool. In Table 4.1, you can see the details of the

system.

In order to calibrate the camera with the OpenCV [3], a checkerboard pattern is

required. It is a specific pattern and has some metrics. Used pattern is 9𝑥6 squared. It is

provided in OpenCV [3]. The pattern used is as follows.
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Table 4.1: System Details

System Properties
Macbook Pro 2018, 16 2.6GHz 6-core Intel Core i7

Camera 720p FaceTime HD camera

Modeling Tool Blender

Figure 4.1: Checkerboard Pattern (Source[3])

The 3D modeling tool is named Blender [6]. It is an open-source software that is

licensed as GNU GPL and owned by its contributors. It has a big array of modeling tools.

With the help of this, modeling and transforming is very easy. The main reasons to use

this tool are:

• Sculpting tools

• High resolution subdivision

• Python scripting

Transformation settings are location, rotation and scale. In order to change them,

typing the necessary values are enough.

Values in Figure 4.2 are the same as used those in projective geometry. All of them

are in 3D world space.
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Figure 4.2: Transformation Values From Blender

4.3 Pose Generation

Each calibration tool has its own steps to generate poses. The purpose of the

proposed method is to imitate these steps in the modeling tool and generate the required

poses. Every step is well-defined in calibration tools.

First step of pose imitation is setting up the scene in the modeling tool. There

are three main objects in a simple scene. These are camera, light and object. The object

is a checkerboard pattern in this method. The light is placed on top of every object in

the scene. The reason for this is lighting every object clearly to be seen by camera. The

coordinates and transformations of the light are as follows:

Figure 4.3: Position and transformation of the light taken from blender

The other object is camera. It is a perspective camera. Like every other real

camera, it also has 𝐾 and 𝑃 matrices. These matrices are given below, respectively.
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⎡⎢⎢⎢⎢⎢⎣
2666.67 0.00 960.00

0.00 2666.67 540.00

0.00 0.00 1.00

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣
−960.00 2666.67 0.00 4800.00

−540.00 0.00 −2666.67 2700.00

−1.00 0.00 0.00 5.00

⎤⎥⎥⎥⎥⎥⎦
The matrices above are ground truth data. While comparing calibration tools,

these values are necessary. Figure 4.4 shows the described scene visually.

Figure 4.4: Scene taken from Blender

The next step is generating poses. All algorithms have different stopping metrics.

Poses are generated with respect to these metrics. These metrics are mentioned in the

previous chapter. For AprilCal, 15 frames are generated. For PoseCalib, 14 frames are

generated. The generated frames for each calibration tool can be seen in Figure 4.5a and

Figure 4.5b.
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(a)

(b)

Figure 4.5: (a) AprilCal (b) Pose Selection
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After generating the poses presented in the Figure 4.5a and Figure 4.5b, the next

step is feeding OpenCV [3] calibration function with these images. As mentioned before,

these poses are generated with each proposed approach. The reason to use OpenCV [3]

calibration function is that. Both methods are using Zhang’s [30] method in their work.

4.4 Results

Both calibration methods are explained and their pose generation steps are applied.

Suggested poses used in calibration function and calibration results are gathered. In this

section, all results are compared.

Table 4.2: Generated poses and errors

Method Frames Used Mean Reproj. Error
AprilCal 15 0.005

Pose Selection 14 0.015

Table 4.2 shows that AprilCal gives better results without considering the number

of images. The difference is small and Pose Selection method requires fewer images.

Using a modeling tool gives the opportunity to compare camera matrices with a

ground truth camera matrix. The camera matrix results of both calibration tools can be

seen below and can be compared with the ground truth matrix. The first matrix is ground

truth. Others are AprilCal and Pose Selection, respectively.⎡⎢⎢⎢⎢⎢⎣
2666.67 0.00 960.00

0.00 2666.67 540.00

0.00 0.00 1.00

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
2686.06 0.00 950.68

0.00 2685.68 530.75

0.00 0.00 1.00

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
2668.64 0.00 915.92

0.00 2672.31 671.07

0.00 0.00 1.00

⎤⎥⎥⎥⎥⎥⎦
AprilCal’s focal lengths are much higher than the ground truth. The reason for this is

AprilCal’s tries to create intrinsic parameters as faster as it can. The results above show us
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that Pose Selection method estimates focal lengths better than AprilCal but the principal

points are estimated more accurately compared to Pose Selection.

Figure 4.6: AprilCal Mean Reprojection Error

Figure 4.7: Pose Selection Mean Reprojection Error

Figure 4.6 and Figure 4.7 show that AprilCal is better than Pose Selection with

fewer images. We can say that both of the algorithms suggest good frames to increase

the calibration quality. AprilCal’s first suggested frames are better than Pose Selection

because starting mean reprojrojection errors are lower than other algorithm. The other

thing to say is Pose Selection suggests better poses because error decreases much more

than AprilCal.

Figure 4.8 and 4.9 show that both focal lengths converge and they are almost the

same. Pose Selection is slighty better.

Figures 4.10, 4.11, 4.12 and 4.13 show us that AprilCal is better at finding principal

points and also more stable and requires fewer images. For distortion parameters, Pose

Selection is more stable but AprilCal is more accurate.

For an evaluation tool, one of the most necessary requirements is to create repeat-

able outputs and do tests. For a calibration process, taking ten pictures and doing tests is
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Figure 4.8: Focal lengths change for AprilCal over images

Figure 4.9: Focal lengths change for Pose Selection over images

humanly work. However, doing hundreds of tests is harder and more exhaustive. With

this evaluation tool, one can create hundreds of calibration poses and do repeatable tests

without being in front of the computer.

In this proposed evaluation tool, one can easily create dozens of test sets. For this

purpose, a set that consists of different poses created with the guidance of the calibration

algorithms is created. With the help of a Python script, hundred pose group is created.

Every pose in these sets is generated using calibration algorithms and they are not exactly

the same. They have some similar poses but overall they are not the same.

For ApriCal, each set has 15 calibration frames generated in its way. For Pose

Selection, each set has 14 calibration frames and these are also generated with the help of

Pose Selection suggestion algorithm. To summarize:

• AprilCal: 100 * 15 Frames

• Pose Selection: 100 * 14 Frames

With this test, the main focus is consistency. A calibration algorithm should be

consistent with the changing poses. For each parameter group, results should not change

over set changing. In this test case, evaluation tool generates 100 sets of calibration images
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Figure 4.10: Principal point change for AprilCal

Figure 4.11: Principal point change for Pose Selection

Figure 4.12: Distortion coefficient change for AprilCal

using both algorithms. We are doing this to evaluate the pose generation algorithms

suggestion mechanism’s stability. For each set, the starting frames are the same but the

next frames are generated according to algorithm. As a result, we can see that AprilCal’s

pose generation mechanism is more stable because the errors are not that much different

between sets.

35



Figure 4.13: Distortion coefficient change for Pose Selection

Figure 4.14: AprilCal MRE change over 100 sets

As can be seen in Figures 4.14 to 4.19, AprilCal is more consistent than Pose

Selection. MRE changes are much lower and this indicates that AprilCal generates more

similar poses. Like MRE changes, focal point changes are also much lower in AprilCal.

This also shows that AprilCal can calculate more accurate calibration matrices rather than

Pose Selection. At last, in contrast to other metrics, principal point changes over sets are

similar in both calibration algorithms.

The next metric is to use triangulation method to determine the 3D point locations

in the scene. Triangulation is the method to find the 3D coordinate of a point in its two or

more image projections. When the coordinates of the pointing two projections are known,

the two rays in space can easily be calculated. The triangulation is the method that finds

the ray intersection between them [2]. After finding the calibration matrices with the given

algorithms, the next step is to obtain projection matrices. Multiplying camera matrices

with the rotation and translation matrices gives the projection matrices. The rotation and

translation matrices are obtained from the modeling tool. With the help of the script, the

ground truth rotation and translation matrices can be calculated.

For the triangulation projections, there are two images from the same scene gener-

ated with the modeling tool. In this scene, some ordinary objects are placed. To continue

the triangulation process, a point is located and its coordinates in two image projections
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Figure 4.15: Pose Selection MRE change over 100 sets

Figure 4.16: AprilCal focal X change over 100 sets

Figure 4.17: Pose Selection focal X change over 100 sets

are obtained. To find the same location, Scale Invariant Feature Transform (SIFT) is used.

SIFT algorithm is used to locate the same points in the same scene but with different

views. Some algorithms are dependent on the viewpoint, depth and scale but SIFT is

independent [16]. Two projection views and the located point can be seen in Figure 4.20.

In the previous steps, the camera matrices are calculated. By using these matrices,

the final step can be achieved. The location of the specified point is known as ground

truth by the modeling tool. It is a 3D point in the world coordinate system. With the

triangulation, the coordinates can be found by using the previously calculated camera
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Figure 4.18: AprilCal principal point X change over 100 sets

Figure 4.19: Pose Selection principal point X change over 100 sets

matrices with the tested algorithms. The ground truth coordinates are:

• X: 0.2146

• Y: -0.8463

• Z: 0.0435

In order to do triangulation, the projection matrices need to be calculated as

mentioned above. After that, the algorithm called Direct Linear Transform (DLT) is used

over key point matches. There are two DLT methods. In this work, 3D DLT algorithm

is used. To convert from 2D DLT to 3D DLT, the dimension of the problem needs to be

changed. With the DLT reconstruction, it is possible to project 2D points into 3D points.

The only requirement is to have two different cameras at least [1].
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Figure 4.20: Generated scene and the point with Blender

After iterating over points and using DLT, for each camera calibration a 3D coor-

dinate is estimated. For AprilCal:

• X: 0.2147

• Y: -0.8465

• Z: 0.0436

For Pose Selection:

• X: 0.2147

• Y: -0.8464

• Z: 0.0435

The distance between the ground truth and the estimated points can give accuracy. For the

distance calculation, Euclidean distance is used. Table 4.3 shows the distances.

Table 4.3: Euclidean distances between the ground truth and estimations

AprilCal Pose Selection
Ground Truth 0.000245 0.000141

The distance and triangulation calculation above is for only one point in the world

system. In order to create a more reliable test metric, more than one point is necessary.
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By using key point detection method mentioned above, 329 point matches are found in the

same scene between two views. The key points found in the views can be seen in Figure

4.21.

Figure 4.21: Generated scene and the 329 points with Blender

The ground truth coordinates are obtained for all the correct matches using the

modeling tool. Using these correct point coordinates, triangulation process can be started.

3D coordinates of each matched point are estimated after iterating over 329 points and

using the DLT algorithm. Error metrics used in this case are mean reprojection error and

max reprojection error. Reprojection errors can provide quantitive accuracy measurement.

Reprojection error means the distance between the estimated point and the corresponding

world point.

As can be seen in Table 4.4, AprilCal algorithm works better when calculating

triangulation. This means that AprilCal algorithm is better for 3D reconstruction. Using

more points showed that being dependent on one point may give wrong results. AprilCal

is again more consistent but AprilCal has the maximum inlier as can be seen with the

max reprojection error. This inlier means that Pose Selection handles edges better than

AprilCal.

Real-world cameras have lens distortion. One of the purposes of camera calibration

is to reduce lens distortion. In order to get rid of lens distortion, one needs to calibrate

the camera accurately. Lens distortion can give us results that are not usable. Another test

metric in this evaluation tool is calibrating the camera under lens distortion. To generate

the necessary poses for this test, a constant lens distortion was added to 𝑘1 and 𝑘2. Added

constant is 1 for both distortion coefficients. You can see the generated poses under lens
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Table 4.4: Mean and Max reprojection errors over 329 points

Calibration Algorithm Mean Reproj. Error Max Reproj. Error
AprilCal 0.000126 0.000586

Pose Selection 0.000168 0.000341

Figure 4.22: Generated AprilCal poses with Blender under distortion

distortion for both calibration algorithms. You can see the generated poses in Figure 4.22

and Figure 4.23

After generating the poses above, the camera calibration process is started. You

can see the results for both algorithms Figure 4.24 to Figure 4.29.

For this test case, Mean Reprojection Error results are different. Pose Selection

algorithm gives better results. The reason behind this is AprilCal’s bootstrap session. In

this session, calibration is done with fewer images. Using distorted images affects this step

and this can be seen in Figure 4.24 and Figure 4.25. Fewer images under lens distortion

gives inaccurate results. However, the camera intrinsics are generated more accurately

with AprilCal. In Figure 4.26 to Figure 4.29, the intrinsics for AprilCal are more closer

to the ground truth than Pose Selection. This is the result of generated poses and means

AprilCal calculates intrinsic parameters more accurately rather than Pose Selection under

lens distortion.

To see the acccuracy of the camera calibrations in the real situation, refining the

camera matrix and undistorting the picture can help. Refining means controlling the

percentage of unwanted pixels in the undistorted image. These steps are done using
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Figure 4.23: Generated PoseCalib poses with Blender under distortion

Figure 4.24: AprilCal MRE change under distortion

OpenCV functions. Detailed calculations can be seen in [3]. Undistorted images can be

seen in Figure 4.30a and Figure 4.30b.
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Figure 4.25: Pose Selection MRE change under distortion

Figure 4.26: AprilCal focal change under distortion

Figure 4.27: Pose Selection focal change under distortion
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Figure 4.28: AprilCal principal point change under distortion

Figure 4.29: Pose Selection principal point change under distortion

44



(a)

(b)

Figure 4.30: Undistorted images (a) AprilCal (b) Pose Selection
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CHAPTER 5

CONCLUSION

5.1 Summary of the Results

In this study, two different calibration algorithms are explained. An evaluation

tool to test these calibration algorithms is proposed. The results of the algorithms are also

presented.

In Chapter 3, both calibration algorithms are explained. The results of the algo-

rithms are shared. Their own test results and pose generation steps are presented. For each

calibration algorithm, there are different pose generation algorithms presented. One of

the calibration algorithms uses specific pattern compositions to avoid degenerate poses. A

relation between pose and constraint is described for camera parameters. The covariance

of the parameters is used in the calibration. They split the parameters into two groups,

pinhole and distortion parameters.

The other calibration algorithm uses new error metrics to generate the new pose.

One of their contributions is these error metrics. The estimation of focal length and model

uncertainty are calculated with the help of these error metrics. The pose generation steps

are also divided into two in this work. In order to create the first poses, the bootstrapping

section is used. Then, they try to reduce uncertainties.

In Chapter 4, an evaluation tool to test these calibration algorithms is proposed.

This evaluation tool is a 3D modeling tool Blender with Python scripts. With the help of

scripts and modeling tool, repeatable tests and outputs are generated. These outputs are

used in the comparison of these two well-known calibration algorithms. Each calibration

algorithm is tested with this evaluation tool and results are presented. As a result, overall

AprilCal is better in consistency and result. With lesser images, AprilCal works better

than Pose Selection. AprilCal is more accurate than Pose Selection. In 3D reconstruction,

AprilCal is better. Triangulation results are better for AprilCal.
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5.2 Discussion and Future Work

The proposed evaluation tool creates accurate ground truth data and tests calibration

algorithms in a proper way. However, there are numerous improvements to the proposed

evaluation tool.

After camera calibrations, the camera can be used in different situations. In

football games, autonomous driving cars, and various scenarios. This evaluation tool can

be enhanced the test these real-time scenarios. For instance, a 3D-rendered football game

scene can be generated to test the camera that will be used in a football game. Real-time

obstacles can be generated with the modeling tool to imitate the traffic for autonomous

driving car cameras. Having this increases the accuracy and helps us to see the precision

of the camera.

Another enhancement is about the pose patterns. Mostly, the checkerboard pattern

is used. Including new patterns can create different situations and gives us the ability

to test another case. Using different patterns can create different results with calibration

algorithms. One can measure the calibration time according to different patterns.

While doing these, there are also some limitations. The proposed evaluation tool

uses a 3D modeling tool. The generated poses can only be generated with the modeling

tool and we are constrained by it. One can develop a modeling tool for only this purpose.
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APPENDIX A

Camera Creator for Blender

# Make su r e your f i r s t camera i s named ’ Camera ’
camera = bpy.data.objects[’Camera’]

# The camera w i l l f a c e t h i s o b j e c t . / ! \ Naming
target_object = bpy.data.objects[’Pattern’]

z = camera.location[2]

radius = Vector((camera.location[0],

camera.location[1], 0)).length

angle = 2 ∗ math.pi ∗ random.random()

new_camera_pos = Vector((radius ∗ math.cos(angle),

radius ∗ math.sin(angle), z))

bpy.ops.object.camera_add(enter_editmode=False,

location=new_camera_pos)

# Add a new t r a c k t o c o n s t r a i n t and s e t i t t o
# t r a c k your o b j e c t
track_to = bpy.context.object.constraints.new(’TRACK_TO’)

track_to.target = target_object

track_to.track_axis = ’TRACK_NEGATIVE_Z’

track_to.up_axis = ’UP_Y’

# S e t t h e new camera as a c t i v e
bpy.context.scene.camera = bpy.context.object
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APPENDIX B

Triangulation

first_point = np.array(points.values()[0])

first_rotation , first_jacobian = cv2.Rodrigues(

rvecs[list(points.keys())[0]])

second_point = np.array(points.values()[1])

second_rotation , second_jacobian = cv2.Rodrigues(

rvecs[list(points.keys())[1]])

RT = np.concatenate([first_rotation ,

tvecs[list(points.keys())[0]]],

axis=−1)

first_projection = np.dot(mtx, RT)

RT = np.concatenate([second_rotation , tvecs[list(

points.keys())[1]]], axis=−1)

second_projection = np.dot(mtx, RT)

# T r i a n g u l a t e P o i n t s r e q u i r e s 2 xn arrays , so t r a n s p o s e
# t h e p o i n t s
p = cv2.triangulatePoints(first_projection ,

second_projection ,

first_point.T,

second_point.T)

# However , homogeneous p o i n t i s r e t u r n e d
p = p.astype(’float’)

p /= p[3]

p = p[:3]

print(’Projected point:’, p.T)
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APPENDIX C

Calibration Calculation

self.total_error = 0

objp = np.zeros((self.height ∗ self.width, 3), np.float32)

objp[:, :2] = np.mgrid[0:self.width,

0:self.height].T.reshape(−1, 2)

# 3D p o i n t s i n r e a l wor ld
objpoints = []

# 2D p o i n t s i n image p lane
imgpoints = []

for image in self.images:

image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

ret, corners = cv2.findChessboardCorners(image_gray ,

(self.width, self.height), None)

if ret:

objpoints.append(objp)

corners2 = cv2.cornerSubPix(image_gray ,

corners, (11, 11), (−1, −1),

self.criteria)

imgpoints.append(corners2)

else:

print("Couldn’t find corners..")

if len(self.images) >= self.minimum_image_number:

self.objpoints = objpoints

self.imgpoints = imgpoints

ret, mtx, dist, rv, tv = cv2.calibrateCamera(objpoints ,

imgpoints ,

(self.camera_width , self.camera_height),

None, None)
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APPENDIX D

Getting Calibration Matrix from Blender

def get_calibration_matrix_K_from_blender(camd):

scene = bpy.context.scene

f_in_mm = camd.lens

scale = scene.render.resolution_percentage / 100

resolution_x_in_px = scale ∗ scene.render.resolution_x

resolution_y_in_px = scale ∗ scene.render.resolution_y

sensor_size_in_mm = get_sensor_size(camd.sensor_fit ,

camd.sensor_width , camd.sensor_height)

sensor_fit = get_sensor_fit(

camd.sensor_fit ,

scene.render.pixel_aspect_x ∗ resolution_x_in_px ,

scene.render.pixel_aspect_y ∗ resolution_y_in_px

)

pixel_aspect_ratio = scene.render.pixel_aspect_y

/ scene.render.pixel_aspect_x

if sensor_fit == ’HORIZONTAL’:

view_fac_in_px = resolution_x_in_px

else:

view_fac_in_px = pixel_aspect_ratio ∗ resolution_y_in_px

pixel_size_mm_per_px = sensor_size_in_mm / f_in_mm

/ view_fac_in_px

s_u = 1 / pixel_size_mm_per_px

s_v = 1 / pixel_size_mm_per_px / pixel_aspect_ratio

# Parame ter s o f i n t r i n s i c c a l i b r a t i o n m a t r i x K
u_0 = resolution_x_in_px / 2 − camd.shift_x ∗ view_fac_in_px

v_0 = resolution_y_in_px / 2 + camd.shift_y ∗ view_fac_in_px

/ pixel_aspect_ratio

skew = 0 # on l y use r e c t a n g u l a r p i x e l s

K = Matrix(

((s_u, skew, u_0),
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( 0, s_v, v_0),

( 0, 0, 1)))

return K
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APPENDIX E

Getting Extrinsic Parameters from Blender

def get_3x4_RT_matrix_from_blender(cam):

# bcam s t a n d s f o r b l e n d e r camera
R_bcam2cv = Matrix(

((1, 0, 0),

(0, −1, 0),

(0, 0, −1)))

# Use ma t r i x _wor l d i n s t e a d t o accoun t f o r a l l c o n s t r a i n t s
location , rotation = cam.matrix_world.decompose()[0:2]

R_world2bcam = rotation.to_matrix().transposed()

# Conver t camera l o c a t i o n t o t r a n s l a t i o n v e c t o r
# used i n c o o r d i n a t e changes
# T_world2bcam = −1∗R_world2bcam @ cam . l o c a t i o n
# Use l o c a t i o n from ma t r i x _wor l d t o accoun t f o r c o n s t r a i n t s :
T_world2bcam = −1∗R_world2bcam @ location

# Bu i l d t h e c o o r d i n a t e t r a n s f o r m m a t r i x from world
# t o computer v i s i o n camera
R_world2cv = R_bcam2cv@R_world2bcam

T_world2cv = R_bcam2cv@T_world2bcam

# pu t i n t o 3x4 m a t r i x
RT = Matrix((

R_world2cv[0][:] + (T_world2cv[0],),

R_world2cv[1][:] + (T_world2cv[1],),

R_world2cv[2][:] + (T_world2cv[2],)

))

return RT
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