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ABSTRACT

SEMANTIC SEGMENTATION OF PANORAMIC IMAGES AND PANORAMIC
IMAGE BASED OUTDOOR VISUAL LOCALIZATION

360-degree views are captured by full omnidirectional cameras and generally

represented with panoramic images. Unfortunately, these images heavily suffer from the

spherical distortion at the poles of the sphere. In previous studies of Convolutional Neu-

ral Networks (CNNs), several methods have been proposed (e.g. equirectangular convo-

lution) to alleviate spherical distortion. Getting inspired from these previous efforts, we

developed an equirectangular version of the UNet model. We evaluated the semantic seg-

mentation performance of the UNet model and its equirectangular version on an outdoor

panoramic dataset. Experimental results showed that the equirectangular version of UNet

performed better than UNet. In addition, we released the pixel-level annotated dataset,

which is one of the first semantic segmentation datasets of outdoor panoramic images.

In visual localization, localizing perspective query images in a panoramic image

dataset can alleviate the non-overlapping view problem between cameras. Generally, per-

spective query images are localized in a panoramic image database with generating its

virtual 4 or 8 gnomonic views, which is deforming sphere into cube faces. Doing so

can simplify the searching problem to perspective to perspective search, but still there

might be a non-overlapping view problem between query and gnomonic database images.

Therefore we propose directly localizing perspective query images in panoramic images

by applying sliding windows on the last convolution layer of CNNs. Features are extracted

with R-MAC, GeM, and SFRS. Experimental results showed that the sliding window ap-

proach outperformed 4-gnomonic views, and we get competitive results compared with 8

and 12 gnomonic views.

Any city-scale visual localization system has to be robust against long-term changes.

Semantic information is more robust to such changes (e.g. surface of the building), and

the depth maps provide geometric clues. In our work, we utilized semantic and depth in-

formation while pose verification, that is checking semantic and depth similarity to verify

the poses (retrievals) obtained with the approach that use only RGB image features. Se-

mantic and depth information are represented with a self-supervised contrastive learning

approach (SimCLR). Experimental results showed that pose verification with semantic

and depth features improved the visual localization performance of the RGB-only model.
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ÖZET

PANORAMİK İMGELERDE ANLAMSAL BÖLÜTLEME VE PANORAMİK İMGE
TABANLI DIŞ MEKAN GÖRSEL KONUMLANDIRMA

360-derece görüntüler tümyönlü kameralar ile çekilir ve genellikle panoramik

imgeler ile temsil edilir. Ne yazık ki, panoramik imgeler kürenin kutup noktalarında

aşırı küresel bozunuma maruz kalır. Evrişimli Yapay Sinir Ağları (EYSA) literatüründe,

küresel bozunumun etkisini azaltmak için birçok yöntem önerilmiştir (örn. eşdikdörtgensel

evrişim). Önceki çalışmalardan esinlenerek, UNet modelinin eşdikdörtgensel evrişim ver-

siyonunu geliştirdik. UNet modeli ve onun eşdikdörtgensel evrişim versiyonunun anlam-

sal bölütleme performansını dış mekan panoramik veri kümesi üzerinde ölçtük. Deney

sonuçları, UNet’in eşdikdörtgensel evrişim versiyonunun, UNet’den daha iyi performans

gösterdiğini göstermiştir. Ek olarak, piksel seviyesinde etiketlenmiş anlamsal bölütleme

için ilk dış mekan panoramik imge veri kümelerinden birini yayınladık.

Görsel konumlandırma yaparken, perspektif sorgu imgelerini panoramik veri kü-

mesinde aramak kameralar arasındaki örtüşmeyen görüntü problemini hafifletebilir. Genel-

likle, perspektif sorgu imgeleri panoramik veri kümesi içinde panoramik imgelerin 4 veya

8 gnomonik görüntüleri (kürenin küp ile temsili) üretilerek konumlandırılır. Bunu yap-

mak, konumlandırma problemini perspektiften perspektif aramaya indirgeyebilir, fakat

sorgu ve gnomonik veri kümesi imgeleri arasında hala örtüşmeyen görüş açısı problemi

olabilir. Bu nedenle perspektif sorgu imgelerini doğrudan panoramik imgeler içerisinde

aramayı önerdik. Bunu yapmak için, kayan pencere yaklaşımını EYSA’nın son evrişim

katmanına uyguladık. Öznitelikleri R-MAC, GeM ve SFRS ile çıkardık. Deney sonuçla-

rında, kayan pencere yöntemi 4 gnomonik görüşe göre çok daha iyi sonuçlar üretti, ve

kayan pencere yöntemi ile 8 ve 12 gnomonik görüşe göre rekabetçi sonuçlar aldık.

Herhangi bir görsel konumlandırma sistemi uzun vadeli değişikliklere karşı gürbüz

olmalıdır. Anlamsal bilgi bu değişikliklere karşı daha gürbüzdür (örn: binanın yüzeyi),

ve derinlik haritaları geometrik bilgi sağlar. Çalışmamızda, anlamsal ve derinlik bilgisini

poz doğrulama aşamasında kullandık. Poz doğrulama RGB model ile getirilen pozların

(sonuçların) anlamsal ve derinlik benzerlikleri ile doğrulanmasıdır. Anlamsal ve derinlik

bilgisini özdenetimli karşılaştırmalı öğrenme yaklaşımı (SimCLR) ile temsil ettik. Deney

sonuçları anlamsal ve derinlik öznitelikleri ile poz doğrulamanın sadece RGB öznitelik

kullanan modelin görsel konumlandırma performansını arttırdığını gösterdi.

iv



 
 

v 

TABLE OF CONTENTS 

 

LIST OF FIGURES ………………………………………………………………...…. vii 

 

LIST OF TABLES ………………………………………………………..…………... xii 

 

LIST OF ABBREVIATIONS ……………………………………..………………..... xiii 

 

CHAPTER 1. INTRODUCTION ………………………………...…………………….. 1 

 

CHAPTER 2. LITERATURE REVIEW ……………………...………………………... 6 

2.1. Semantic Segmentation …………………..………………………... 6 

2.1.1. Semantic segmentation of narrow FOV Images …...…….. 6 

2.1.2. Semantic Segmentation on wide FOV Images …………... 7 

2.2. Visual Localization and Image Retrieval ………………..………… 8 

2.3. Contrastive Learning ………………………………..……………. 13 

 

CHAPTER 3. SEMANTIC SEGMENTATION OF OUTDOOR PANORAMIC  

IMAGES ………………………………………………...……………...16 

3.1. Method ……………………………………………...…………….. 16 

3.1.1. Equirectangular Convolution ……………..…………….. 17 

3.2. Dataset ……………………………………………..……………... 20 

3.2.1. Equirectangular Outdoor Panoramic Image Dataset for            

          Semantic Segmentation ……………………………...….. 21 

3.2.2. Semantic Mask Generation with well-performing CNN ... 21 

  3.3. Experiments ………………………………………..……………... 23 

   3.3.1. Evaluation Metric ……………………...………………... 23 

   3.3.2. Weight Initialization ……………………...……………... 24 

   3.3.3. Standard vs. Equirectangular Convolution ……..……….. 24 

 

 

  



 
 

vi 

CHAPTER 4. SEARCHING PERSPECTIVE QUERY IMAGES IN A PANORAMIC 

                       IMAGE DATABASE WITHOUT GENERATING PERSPECTIVE  

                       VIEWS ………………………………………………..……………….. 26 

  4.1. Dataset for Visual Localization …………………..……………….. 26 

4.2. Methodology …………………………………...…………………. 28 

4.2.1. Searching perspective query image in an equirectangular   

          panoramic image database ……………..……………….. 28 

4.3. Experimental Results …………………………..…………………. 31 

4.3.1. Computation Cost …………………...…………………... 32 

 

CHAPTER 5. MULTI-MODAL POSE VERIFICATION FOR LONG-TERM OUT- 

DOOR VISUAL LOCALIZATION WITH SELF-SUPERVISED  

CONTRASTIVE LEARNING ……………………..…………………. 39 

5.1. Methodology ………………………………...……………………. 39 

5.1.1. Visual localization of perspective query images  

in a panoramic image database ……………..………….. 39 

5.1.2. Feature extraction on semantic masks and depth maps …. 40 

5.1.3. Updating RGB-only scores with semantic and depth  

          Similarity ……………………………………..………… 43 

5.2. Experimental Results …………………………………..…………. 44 

5.2.1. Pose Verification with Semantic Features …..…………... 44 

5.2.2. Additional Experiments with Semantic Features ……...… 45 

5.2.3. Pose Verification with Depth Features ……………..…… 50 

5.2.4. Pose Verification with Multi-modal Features ………...…. 54 

 

CHAPTER 6. CONCLUSION …………………………………………………..……. 57 

 

REFERENCES ………………………………………………………………...……… 60 

 

 

 

 

 

 



LIST OF FIGURES

Figure Page

Figure 1.1. An equirectangular panoramic image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2. Illustration of multi-modal visual localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1. An example scenario where query image is collected when the car is

moving toward to street, and database image is collected from opposite

direction. An example database is shown in (a), and an example query

image taken from the same location with the opposite viewing angle

is shown in (b). The scene depicted in the query and database is quite

different even though they are collected from the same location. . . . . . . . . . 10

Figure 2.2. a) An example panoramic image. b) Virtual perspective images (each

has 90◦ FOV) generated from the panoramic image. c) An example

query image having 45◦ orientation. d) Another query image having

225◦ orientation. Query images shown (c) and (d) do not overlap with

the database images (b). There is not only a non-overlapping problem

between query and database images but also illumination changes. This

will result in poor matching performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.3. An example scenario is to learn semantic representations with the self-

supervised learning approach (SimCLR). The positive pairs are gener-

ated with random crops and random rotations, and negative ones are

collected from different parts of the city. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.1. Architecture of UNet-equiconv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.2. Distortion-aware convolution. Each pixel p in the equirectangular im-

age is transformed into unit sphere coordinates, then the sampling grid

is computed on the tangent plane in unit sphere coordinates, finally the

sampling grid is back-projected into equirectangular image to deter-

mine the location of the distorted sampling grid. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



Figure 3.3. The offsets of spherical kernel are visualized in three different po-

sitions. Kernel offset behaves as a regular grid on the equator. As the

kernel is moved towards the poles, offset of the grid far apart. When the

borders are exceeded, offsets move to the other side of the panoramic

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.4. The total number of annotated pixels is shown on the y-axis, and their

semantic labels on the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.5. An example image from the equirectangular outdoor panoramic image

dataset with its semantic mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.6. The whole step of semantic mask generation for panoramic images.

First, we generate cubemaps from panoramic images and estimate their

semantic labels with a well-performing CNN model. Afterward, we

project the semantics of masks of cubemaps to a panoramic image. . . . . . . 23

Figure 3.7. Example qualitative samples of UNet-stdconv and UNet-equiconv. Some

semantic segmentation errors are highlighted with red circles. . . . . . . . . . . . 25

Figure 4.1. Query image appears in (a), best case scenario, 90◦ overlap between

query and database images are in (b). Worst-case scenario in 4-gnomonic

database, 45◦ overlapping in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.2. An example query and database pairs were collected from the same

location. The panoramic database image is shown at the top left, and

perspective images collected from the same location are shown at the

top right. Each query image has 90◦ FOV and does not overlap with to

next one. A generated 12-gnomonic database images to localize per-

spective query images are shown in the bottom two rows. . . . . . . . . . . . . . . . . 28

viii

Figure Page



Figure 4.3. Equirectangular panoramic image and query images are shown in (a)

and (b), respectively. Sliding windows applied on the panoramic im-

age are highlighted with a different color in (a). Red sliding window

correspond to the actual location of the query image. Feature maps

extracted from panoramic and query images are illustrated in (c). Ac-

tivation maps of panoramic and query images are visualized in (d) and

(e). We get a similar activation pattern from the exact location of the

query in the panoramic activation map. Feature similar scores extracted

with GeM pooling are shown in (f). We get the highest score from the

exact location (red window) of the query image.

29

Figure 4.4. Visual localization result obtained with GeM pooling (a), R-MAC (b)

and SFRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.5. Two samples of query database pairs when 4 and 8 gnomonic projec-

tions fail, but the sliding window correctly localizes the query images.

Query images are shown in the upper-right corner of (a) and (b). 8-

gnomonic database images are shown in the bottom rows. In sample

(a), there is a non-overlapping problem between query and database

images and also an illumination difference. In sample (b), although the

FOV of query and database images overlap almost perfectly, there are

long-term changes (e.g. illumination and vegetation difference). . . . . . . . . . 37

Figure 5.1. An example scenario where the CNN model is trained on semantically

segmented masks with self-supervised contrastive loss. . . . . . . . . . . . . . . . . . . . 41

Figure 5.2. An example of visual localization results of the RGB-only model.

RGB-only model fails to localize query image in a 12-gnomonic image

database (middle column). A model that utilizes RGB and semantic

information at the pose verification step correctly localizes the query

image (right co-lumn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix

Figure Page



Figure 5.3. Recall@N scores of RGB-only and pose verification with semantic

features for 8-gnomonic experiments (a), and 12-gnomonic and sliding

window experiments (c). Recall@1 with different distance thresholds

for 8-gnomonic experiments (b), and 12-gnomonic and sliding window

experiments (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.4. Example visual localization results when semantic pose verification

improves the RGB-only scores. Query images are shown in the first

column, and initial retrieval results are in the second column. Updated

results with SimCLR appear in the third column. Pose verification with

semantic features moved up the correct candidate when semantic infor-

mation of the query and database images are similar (first two columns).

Distinctive semantic classes in query and database masks (e.g., traffic

signs) helped to improve the visual localization (third row). In some

cases, pose verification on semantic masks where partial labeling error

exists improved the visual localization(last row). . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.5. Visual localization results with average of Recall where N={1,...,3}. . . . 49

Figure 5.6. An example RGB image is shown in (a), its estimated depth map is in

(b) and quantized version of depth map is shown in (c). . . . . . . . . . . . . . . . . . . . 50

Figure 5.7. Example query images and their initial localization results with RGB-

modal (middle column). Their updated results with depth features are

shown in the last column. The red rectangle indicates the false localiza-

tion of the query, and the green rectangle indicates correct localization. . 51

Figure 5.8. Recall@N scores of RGB-only and pose verification with depth fea-

tures for 8-gnomonic experiments (a), and 12-gnomonic and sliding

window experiments (c). Recall@1 with different distance thresholds

for 8-gnomonic experiments (b), and 12-gnomonic and sliding window

experiments (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.9. Visual localization results with average of Recall where N={1,...,3}. . . . 53

x

Figure Page



Figure 5.10. Recall@N scores of RGB-only and pose verification with multi-modal

(semantic and depth together) features for 8-gnomonic experiments (a),

and 12-gnomonic and sliding window experiments (c). Recall@1 with

different distance thresholds for 8-gnomonic experiments (b), and 12-

gnomonic and sliding window experiments (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.11. Pose verification with multi-modal features (semantic and depth to-

gether). Visual localization results are provided with average of Recall

where N={1,...,3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xi

Figure Page



LIST OF TABLES

Table Page

Table 3.1. Semantic classes and their categorical groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.2. Pre-training weight effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 3.3. UNet-stdconv and UNet-equiconv performance on CVGR-Pano. . . . . . . . . 25

Table 4.1. Visual Localization Results with R-MAC pooling (Tolias et al. (2016)). 33

Table 4.2. Visual Localization Results with GeM pooling (Radenović et al. (2018)).
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CHAPTER 1

INTRODUCTION

Omnidirectional cameras can capture surrounding area (360◦ of view) within a

single shot. They provide more information than perspective cameras. Recently, they

have gained popularity because of having wider field-of-view (FOV). Many computer vi-

sion applications can benefit from it (e.g. autonomous driving and visual localization).

Full omnidirectional cameras cover 180◦ vertical (left to right), and 360◦ horizontal (bot-

tom to up) views. Generally, 360◦ imagery is represented with equirectangular projection.

Coordinates are proportional to latitude and longitude of the sphere, i.e., unit distance in

horizontal or vertical direction in the image corresponds to a fixed amount of angular cov-

erage. Unfortunately, equirectangular projection heavily suffers from spherical distortion

moving towards to poles due to not having enough pixel space. Objects which are close

to the poles look different than they would appear in the perspective images. This effect

is shown in Figure 1.1.

Figure 1.1. An equirectangular panoramic image.

Spherical distortion is a challenge for conventional computer vision approaches,

since most of approaches are developed considering perspective images, and adopting

1



already existing approaches for omnidirectional 360◦ view is not a trivial task. In the

past, numerous methods were proposed to handle this distortion (e.g. (Lourenço et al.

(2012); Cinaroglu and Bastanlar (2016); Demiröz et al. (2019))). Not surprisingly, recent

efforts on handling the distortion have been focused on CNNs (Fernandez-Labrador et al.

(2020); Tateno et al. (2018); Guerrero-Viu et al. (2020); Coors et al. (2018)). In previous

works of CNNs, spherical distortion is explicitly modeled, and the offsets of the grids

are calculated beforehand. Unlike the standard convolution layer, spherical convolution is

done regarding spherical coordinates. Previous works (Fernandez-Labrador et al. (2020);

Tateno et al. (2018); Guerrero-Viu et al. (2020); Coors et al. (2018)) were limited to object

detection, depth map estimation, semantic segmentation on synthetic outdoor images and

real indoor images. We developed a CNN model (called UNet-equiconv) for semantic

segmentation on outdoor panoramic images in the third chapter of the thesis. In our CNN

model, we replaced each standard convolution layer with equirectangular convolution

(Fernandez-Labrador et al. (2020)) to eliminate spherical distortion of panoramic images

at convolution time.

In the fourth chapter of the thesis, we focused on the visual localization of out-

door panoramic images. In visual localization, approximate location of query material is

estimated within a visual map. GPS-based systems stumble in such case where environ-

ment is cluttered, or if there is harsh weather conditions. Due to the fact that, interest

in visual localization systems has increased in recent years (Piasco et al. (2018)), which

can be used as supporting or alternative localization system. In our work, we used im-

age retrieval (Tolias et al. (2016); Radenović et al. (2018)) and metric localization based

(Ge et al. (2020)) approaches. In our settings, perspective (narrow FOV) query images is

searched in an equirectangular outdoor panoramic image database. In the dataset, both

query and database have GPS information. GPS location (latitude and longitude) of re-

trieved database images serve as an approximate location of query images. In the last

decade, many computer vision approaches (Torii et al. (2015); Babenko and Lempitsky

(2015); Arandjelovic et al. (2016); Ge et al. (2020)) have been proposed for visual lo-

calization. There are several challenges for these systems, and one of them is long-term

visual localization (Toft et al. (2018a); Stenborg et al. (2018); Naiming et al. (2018)).

Query and database images can be collected in different seasons or under different illu-

mination and visual localization systems should handle these long-term effects.

In our dataset, database images are collected from different locations of Pittsburgh,

PA., and query images are randomly taken from UCF dataset (Zamir and Shah (2014)).
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There is at least one database image within a five meter distance to each query image. Our

dataset fits more the topological localization problem rather than a metric localization

(Lu et al. (2013); Goedemé et al. (2007); Chen et al. (2017); Iscen et al. (2017)). A

common way to search perspective query images in an equirectangular panoramic image

database is to generate 4 or 8 virtual perspective gnomonic views, which are generated

moving alongside the equator of spheres, and each gnomonic images have a 90◦ FOV.

Each gnomonic view in the 8-gnomonic database overlaps 45-degree FOV with the next

one. But there might exist non-overlapping FOV views between two perspective images,

thus query images could not be correctly localized. 360◦ imagery (panoramic images)

helps us to solve this problem. In our work (Orhan and Bastanlar (2021)), we used 360◦

vision, full equirectangular panoramic images directly.

Our main contribution in the fourth chapter is that, unlike previous works which

generate virtual perspective images using gnomonic projection, we directly localize per-

spective query images in a database that is composed of equirectangular outdoor panoramic

images by applying a sliding window to the last convolutional layer of the CNN. We used

three different feature extraction methods (Tolias et al. (2016); Radenović et al. (2018);

Ge et al. (2020)), and provided experimental results with topological localization. Exper-

imental results show that sliding windows outperform 4 gnomonic projections (90-degree

field-of-view non overlapping images), and we get competitive results compared to 8 and

12 gnomonic projections (45-degree overlapping and 60-degree overlapping, 90-degree

FOV images, respectively).

In the fifth chapter of the thesis, we exploit semantic and depth information for vi-

sual localization (Orhan et al. (2022)) to alleviate the long-term appearance changes such

as query and database images could be collected in different years which might cause the

seasonal difference and structures changes. Semantic information of the scene is more

robust to long-term changes (e.g, surface of the building), and depth maps provides geo-

metric clues. In our scenario, database images consist of 8 and 12 gnomonic views gen-

erated from panoramic images, and query set consisting of perspective images which are

captured within a five meter of database image in different years. In (Bastanlar and Orhan

(2022)), we observed that self-supervised contrastive learning approach can be used for

semantic instance discrimination. Thus, we represent semantic, and depth information

with a self-supervised contrastive learning (SimCLR) approach that is proposed by Chen

et al. (2020). Unlike supervised training, self-supervised learning helps us to train our

model without requiring a decent amount of labeled data. We can obtain a vast amount of
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pseudo labels for a pretext task with a well-performing CNN model. We represented each

location in our database with its semantic and depth masks using self-supervised learning.

Embedding space representation is learned by comparing the similarity between positive

samples and dissimilarity between negative ones in contrastive learning. The main ob-

jective is to learn an embedding space where positive pairs (anchor and its augmented

version or other samples with the same label) stay close, and negative pairs stay far away.

In self-supervised settings, positive pairs are generated by applying data augmentation on

the same instance (e.g. random crop, rotation, and color jitters), and negative ones are

other instances than input samples. In (Orhan et al. (2022)), we improved visual local-

ization performance of the RGB-only model (Ge et al. (2020)) more than %1 utilizing

semantic features at pose verification steps.

We extended our work (Orhan et al. (2022)) utilizing depth information at the pose

verification step in addition to RGB and semantic features. To localize perspective query

images in a panoramic image database, we employed the sliding window and gnomonic

views (details are in Chapter 5). We illustrated multi-modal visual localization in Figure

1.2.

Figure 1.2. Illustration of multi-modal visual localization.
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I summarize main contributions of the thesis below:

• To tackle the spherical distortion of panoramic images during semantic segmen-

tation, we developed an equirectangular version of UNet (called UNet-equiconv).

The only difference between standard and equirectangular version of UNet is their

convolution types. We conducted several experiments and observed that the equirect-

angular version of UNet performed better than its standard convolution version

(UNet-stdconv). We released one of the first equirectangular outdoor panoramic

image dataset for semantic segmentation task.

• In previous works, a common way to localize perspective query images in a panoramic

image database is to generate their virtual gnomonic views. Instead of generating

virtual perspective gnomonic images and matching query images with them, we di-

rectly localize query images in an equirectangular panoramic image database. To

do it, we applied sliding windows to the last feature map of the CNN, and we visited

more locations in less amount of time. Experimental results showed that the sliding

window outperformed the 4-gnomonic projection, and we get competitive results

compared to 8 and 12 gnomonic projections.

• In the thesis’ fifth chapter, we researched long-term visual localization on panoramic

images. We utilized semantic and depth information at the pose verification step.

We represented semantic and depth information with a self-supervised contrastive

learning approach (SimCLR). Experimental results showed that utilizing semantic

and depth information improved the visual localization performance of the RGB-

only model (SFRS).
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CHAPTER 2

LITERATURE REVIEW

2.1. Semantic Segmentation

Computer vision composes of many research areas (e.g. object detection, scene

understanding, visual localization). Semantic segmentation is one of them. It is assigning

labels to each pixel in images. Many computer vision applications benefit of seman-

tic segmentation such as pedestrian detection (Mao et al. (2017); Costea and Nedevschi

(2016)); autonomous vehicles (Siam et al. (2018); Teichmann et al. (2018)); remote sens-

ing (Kampffmeyer et al. (2016); Sun and Wang (2018)); and pose estimation (Peng et al.

(2019); Wong et al. (2017)).

In recent years, deep learning-based approaches outperformed previous works on

semantic segmentation. Here, we adhere literature review only on deep learning-based

approaches. We divided semantic segmentation literature into two. First, we summarize

studies that are proposed for perspective (narrow FOV) images. Second, we explain previ-

ous works on panoramic images which tackle or not the spherical distortion of panoramic

images.

2.1.1. Semantic segmentation of narrow FOV Images

Long et al. (2015) proposed Fully Convolutional Networks (FCN). They removed

the classification layer of CNN models. With this modification, the proposed CNN model

could work with variable size of inputs. Features are encoded with convolutional lay-

ers, and up-sampled with skip connection and bilinear interpolation. Features are taken

from the different depths of the model. Noh et al. (2015) proposed DeconvNet. The pro-

posed model composes of two parts, encoder and decoder. In the encoder part, features

are encoded with convolution and pooling layers. In the decoder part, features are up-

sampled using unpooling and transposed convolution (deconvolution) layers. In a follow-
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up study, SegNet is proposed by (Badrinarayanan et al. (2017)). It is an encoder-decoder

CNN model. Features are encoded with convolution and max-pooling layers. They are

up-sampled with deconvolution and un-pooling layers in the decoder part of the model.

Apart from previous encoder-decoder models, pooling indexes are used while decoding

features. It helps to reduce parameters of the CNN model. Another encoder-decoder CNN

model is proposed by (Ronneberger et al. (2015)), called UNet. Encoded features are de-

coded with bilinear interpolation and concatenated using skip connections. There are

better-performing CNN models (Chen et al. (2022); Yuan et al. (2020); Yan et al. (2022))

on semantic segmentation, but we preferred to use UNet (Ronneberger et al. (2015)) in

our work because of easy implementation of equirectangular convolution to the CNN

architecture.

2.1.2. Semantic Segmentation on wide FOV Images

Distortion aware convolution methods on panoramic images exist in the previous

works (Fernandez-Labrador et al. (2020); Coors et al. (2018); Tateno et al. (2018)). The

main idea is that convolution operating is done with offsets of the grids that are calculated

regarding the spherical distortion beforehand.

Spherical convolution was proposed by Coors et al. (2018). Unlike standard con-

volution layers, which use regular grid coordinates, spherical convolution is done with

offsets of the grids. They conducted experiments on object detection and image classifica-

tion tasks. Another distortion-aware convolution approach was proposed by Tateno et al.

(2018). They tested the proposed approach on depth estimation and semantic segmenta-

tion. They trained proposed CNN model on perspective images and tested on panoramic

images.

SPHCONV is proposed by Su and Grauman (2017). An advantage of the proposed

CNN model is that it can learn spherical representation training on narrow FOV images

and does not need any labeled panoramic image dataset. Perspective cameras have narrow

field-of-view and objects near to the cameras can not be fully captured. Thus training on

perspective images, where objects close to the cameras degrades the performance. An-

other limitation of SPHCONV is that number of parameter of the model linearly increase

with the height of the panoramic images.

OOP-net is proposed by Deng et al. (2017). Apart from the previous works shown
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above, OOP-net consists of Overlapping Pyramid Pooling (OPP) method that utilizes not

only local but also global information simultaneously. Proposed OOP-net model is trained

on a fisheye dataset where FOV is 180◦, without distortion handling.

Equirectangular convolution is proposed by Fernandez-Labrador et al. (2020), to

estimate the 3D layout of the rooms. It is a special form of deformable convolution

(Dai et al. (2017)) layer, where offsets of the convolution layers are calculated regarding

the spherical distortion. In a later work, equirectangular version of BliztNet (Dvornik

et al. (2017)) is introduced by Guerrero-Viu et al. (2020). They presented results on a

panoramic indoor dataset.

A synthetic panoramic image dataset is released by Xu et al. (2019) for seman-

tic segmentation task. They generated synthetic panoramic images from SYNTHIA se-

quence dataset (Ros et al. (2016)). There is a style difference between synthetic and real

images, which degrades the performance of CNNs. In Orhan and Bastanlar (2022), we

released pixel-level annotated one of the first real panoramic image datasets for semantic

segmentation.

We used equirectangular convolution (Fernandez-Labrador et al. (2020)) in our

work (Orhan and Bastanlar (2022)) and introduced UNet-equiconv. Apart from previ-

ous works, we trained and presented our results on a dataset that consists of real outdoor

panoramic images. We showed the results with different pre-training weights and evalu-

ated the distortion elimination effect on the outdoor panoramic image dataset.

2.2. Visual Localization and Image Retrieval

We summarize visual localization and image retrieval literature into two groups.

First, we will explain visual localization studies before and after the era of CNNs. After-

ward, we will summarize previous studies which are proposed for panoramic images.

Before the era of CNN-based methods, image retrieval, and visual localization

systems used hand-crafted based approaches such as Bag-of-Features (Philbin et al. (2007)).

Descriptors were extracted with SIFT (Lowe (1999)) and SURF (Bay et al. (2006)) like

approaches, and databases are clustered into sets of visual words. Jégou et al. (2011)

introduced Vector of locally aggregated descriptors (VLAD). The proposed approach ex-

tract features in a more compact representation. Later on, approaches which are robust

to viewpoint and illumination changes (Torii et al. (2015)) and repetitive structures (Torii
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et al. (2015)) were proposed.

In recent years, deep learning-based approaches performed well in visual localiza-

tion and image retrieval tasks. Sünderhauf et al. (2015) showed viewpoint-invariant prop-

erty of features extracted from CNN for the place recognition task. Chen et al. (2017)

compared CNN and non-CNN-based methods and demonstrated results with different

feature extraction techniques. Arandjelovic et al. (2016) proposed a CNN model which

consists of convolution and learn-able VLAD (Jégou et al. (2011)) layers. Ge et al. (2020)

proposed SFRS, which alleviates the noisy labels of geo-tagged images and outperformed

previous works on visual localization task.

Another body of research conducted on image retrieval. It is a system, where

the most similar N database images are retrieved regarding the query. These systems

use topological localization. R-MAC pooling layer is proposed by Tolias et al. (2016).

The max-pooling operation is applied to different location of feature maps with varying

resolutions. Radenović et al. (2018) proposed one of the first trainable generalized mean

(GeM) pooling layers. Instead of taking the maximum or an average of the receptive

field, GeM pooling learns the pooling characteristic after training. In a follow-up study,

Radenović et al. (2018) demonstrated GeM pooling performance on well-known image

retrieval datasets.

The previous works we mentioned about did not use 360-degree FOV. They lo-

calized perspective narrow FOV query images in perspective image databases. While

searching perspective query images in a perspective image database, there might be a

non-overlapping view problem between query and database images. This problem is illus-

trated in Figure 2.1. This problem frequently happens in well-known benchmark datasets

(Sattler et al. (2018)).

We can group previous works of image retrieval and visual localization systems

with 360-degree imagery into two. In the first group, query and database are panoramic

(Karkus et al. (2020); Hansen and Browning (2015); Cheng et al. (2019); Murillo et al.

(2012); Lu et al. (2013); Wang et al. (2018); Iscen et al. (2017); Goedemé et al. (2007)).

They work directly on omnidirectional images (dough-nut images obtained with an om-

nidirectional sensor), others convert omnidirectional images to panoramic images. The

problem can be called panorama to panorama matching in the first group. Features can be

extracted with SIFT-like (Lowe (1999); Bay et al. (2006)), CNN-based methods (Karkus

et al. (2020); Cheng et al. (2019); Wang et al. (2018); Iscen et al. (2017)).

In the second group, database consists of panoramic images, whereas query set
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(a) (b)

Figure 2.1. An example scenario where query image is collected when the car is mov-

ing toward to street, and database image is collected from opposite direc-

tion. An example database is shown in (a), and an example query image

taken from the same location with the opposite viewing angle is shown in

(b). The scene depicted in the query and database is quite different even

though they are collected from the same location.

consists of perspective images (Zamir and Shah (2010); Schroth et al. (2011); Huang

et al. (2016)). This scenario is more realistic because panoramic images can be collected

offline while query images can be captured with any standard FOV cameras. Previous

studies generally represented panoramic images with 4 or 8 gnomonic projections. 4

non-overlapping gnomonic projection (each 90◦ FOV) corresponds to cubemap represen-

tation (Zamir and Shah (2010)). An example virtual perspective images generated with

4-gnomonic projection are shown in Figure 2.2b. 8 gnomonic projection were used in

(Huang et al. (2016)).

We can reduce perspective to panoramic searching problem to perspective to per-

spective searching by using gnomonic projection, but it comes with the cost of increasing

the total number of images in the database. Generating virtual perspective images with

gnomonic projection can not guarantee good matching between query (Fig. 2.2c) and

database (Fig 2.2d) images. To tackle this problem, we can generate virtual perspective

images with higher overlapping field-of-view, but it increases the number of images in

the database. Apart from previous works, in (Orhan and Bastanlar (2021)), we directly

searched perspective query images in an equirectangular panoramic image database by

applying sliding to the last convolution layer (feature map) of CNN models (Ge et al.
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(2020); Tolias et al. (2016); Radenović et al. (2018)). With this method, we do not need

to generate virtual gnomonic view database to localize perspective query images.

(a)

(b)

(c) (d)

Figure 2.2. a) An example panoramic image. b) Virtual perspective images (each has

90◦ FOV) generated from the panoramic image. c) An example query im-

age having 45◦ orientation. d) Another query image having 225◦ orienta-

tion. Query images shown (c) and (d) do not overlap with the database

images (b). There is not only a non-overlapping problem between query

and database images but also illumination changes. This will result in poor

matching performance.
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Utilizing semantic information for visual localization. Semantic information

more robust to seasonal and structural changes, which is one of the main challenges for

city-scale visual localization. We categorize semantic visual localization literature into

two. First, we summarize literature works of 3D structure-based methods, and after that

we explain related works of 2D-based image retrieval approaches. In (Stenborg et al.

(2018)), 3D structure of the scene are built together with its semantic labels. Query images

are localized in a 3D environment. In another work, 2D-3D point matches are checked

if their semantic labels are the same (Toft et al. (2018b)). We used 2D-based approaches

in our work which relies on retrieving the most similar images from the database. Main

advantage of 2D-based approaches is that generally they requires less computation power

than 3D based methods (Sattler et al. (2017)).

Among 2D approaches, street intersections are detected with training a classifier

on semantic descriptors in (Singh and Košecká (2012)). Semantic edge-based localization

method is proposed in (Yu et al. (2018)). Semantic edges (e.g. tree-sky, building-sky) are

extracted with CASENet (Yu et al. (2017)). Cinaroglu and Bastanlar (2020) used only

semantic features for visual localization. An attention-based visual localization approach

is proposed by Seymour et al. (2019). The proposed CNN model utilizes appearance and

semantic scene information. To detect the man-made landmark structures (e.g. buildings)

of the scene, semantic information is incorporated by Mousavian et al. (2015). Features

belonging to other than landmarks are considered unreliable and discarded. Some seman-

tic objects are more robust to long-term changes (e.g. buildings). Based-on this idea,

semantic weighting approach is proposed in (Naseer et al. (2017)). Regarding robust-

ness of semantic classes to long-term changes, semantic weights of the robust classes (e.g

building) are increased. Cinaroglu and Bastanlar (2022) proposed a hybrid method which

utilize RGB and semantic information for visual localization. They trained NetVLAD on

semantic maps with triplet loss.

Previous work mentioned above used semantic information to eliminate unreliable

regions to guide where to focus, or visual localization is done with semantic features.

Apart from previous works, we utilized semantic information at the pose verification step

to validate initially retrieved images and the semantic similarity is learned via a self-

supervised approach (detailed in Section 2.3).

Utilizing Depth Information for visual localization. Depth maps provide ge-

ometric clues of the scenes. Before the era of CNNs, camera re-localization was done

on RGB-D image datasets with random forest-based approaches (Valentin et al. (2015);
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Shotton et al. (2013)). In recent years, CNN-based approaches have been proposed for the

pose refinement of queries images on the depth maps (Piasco et al. (2019a)). In (Piasco

et al. (2019a)), they trained the encoder-decoder CNN model (which is similar to UNet)

on depth maps. Initial query retrieval results are obtained with MAC (Razavian et al.

(2016)) and NetVLAD (Arandjelovic et al. (2016)). Initial point clouds are generated

with depth maps, and they are used to refine the pose of query images with the Iterative

Closes Points (ICP) algorithm. In the follow-up study of Piasco et al. (2019b), the most

similar candidate is retrieved with a 2D-based feature extraction approach (NetVLAD,

Arandjelovic et al. (2016)), and the initial camera pose of query images is refined on

dense depth maps with Perspective-n-Learned-Points (PnP) algorithm. Dense maps were

used 2D points matching in the 3D environment for query pose estimation. The most

similar work to ours is proposed by Piasco et al. (2021). They improved RGB-based vi-

sual localization performance with geometric information of the scene provided by the

depth maps for the long-term visual localization. They proposed a CNN architecture that

learns to deconstruct depth maps of input image. This idea is similar to Hallucination

CNN model (Hoffman et al. (2016)). The proposed model simultaneously learns to ex-

tract depth and RGB information of a given input. They trained the model with triplet

margin loss (Arandjelovic et al. (2016)) on depth and RGB images, at test time, they only

used RGB images.

2.3. Contrastive Learning

History of contrastive learning date back to the 1990s, but it has recently gained

popularity because of enormous success in computer vision (Le-Khac et al. (2020)). To

train the model in supervised manner, considerable amount of annotated data is needed,

which is not easy to obtain since it is a labor-intensive task. With the help of self-

supervised learning, we can train models for the pre-task on unlabeled data. In self-

supervised learning, the model is trained on pseudo-labels that are generated from the

part of the input data. We use supervised training loss for the pretext task since positive

pairs are part of the anchors. This training helps us to learn embedding space represen-

tation. Performance on the pretext task is not that important because, for most cases,

we train our model with self-supervised manner on a big dataset and fine-tune part of it

with a small amount of labeled dataset. There are several pretext tasks (e.g instance dis-
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crimination, image colorization, image in-painting) that can be contribute to downstream

tasks.

Dosovitskiy et al. (2014) used unsupervised learning for exempler-based classi-

fication. Positive pairs are created with data augmentation methods, such as color jitter,

rotation, random crop, rotation. Applying data augmentation to whole dataset, and learn-

ing similarity between positive pairs and dissimilarity between negative ones is called

instance discrimination Wu et al. (2018). In (Gidaris et al. (2018)), each image is rotated

90◦ and CNN model is trained on those images with self-supervised learning to estimate

degree of rotation. This problem can be seen as four class classification. This learned

representation can be used for object detection as a final task. Zhang et al. (2016) trained

CNN on image pairs that consists of gray-scale and colorized version of the same image.

By doing so, proposed model learns to colorize gray-scale images. This latent space can

be useful for various downstream tasks.

Contrastive learning approaches are able to learn good enough embedding space

representation with self-supervised training. Data augmented version of two sample are

fed to the Siamese CNN, and after the training, the goal is to learn such embedding space

where the positive sample stays close, and the negative ones are far away. SimCLR (Chen

et al. (2020)) and MoCo (He et al. (2020)) use negative sample together with positives

ones during the training. Unlike using positive and negative samples during the training,

there are some methods (Chen and He (2021); Grill et al. (2020)) only use positive pairs

(data augmented version of the same sample) for the training. Experimental results in

previous studies showed that many computer vision research areas (e.g. semantic seg-

mentation, image classification) benefit of contrastive learning.

In (Orhan et al. (2022)), we represented semantic information with self-supervised

learning approach (SimCLR, Chen et al. (2020)). Unlike a labeled dataset, we can easily

obtain an unlabeled dataset to train SimCLR on semantic masks or depth maps. Hence,

we collected database images in different location of Pittsburgh, PA. and estimated their

semantic masks with well-performing CNN model (Sun et al. (2019)). We used the self-

supervised contrastive learning approach (SimCLR). Positive pairs are generated with

random crop and rotation, and negative ones are collected from different parts of the city.

An example of positive and negative pairs are illustrated in Figure 2.3. We extended our

previous (Orhan et al. (2022)) with depth and multi-modal features in Section 5.
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Figure 2.3. An example scenario is to learn semantic representations with the self-

supervised learning approach (SimCLR). The positive pairs are generated

with random crops and random rotations, and negative ones are collected

from different parts of the city.
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CHAPTER 3

SEMANTIC SEGMENTATION OF OUTDOOR

PANORAMIC IMAGES

Full omnidirectional cameras can capture 360-degree of view with a single pose.

Omnidirectional views are generally represented using equirectangular projection. Spatial

coordinates are proportional to the sphere’s longitude and latitude (same distance on the

image corresponds to equal amount of viewing angle, e.g. 50 pixels = 32deg FOV). Unfor-

tunately, it heavily suffers from distortion moving towers to the poles of the sphere. Spher-

ical distortion degrades performance of computer vision approaches because most of them

are optimized for perspective views. To tackle the spherical distortion, Coors et al. (2018)

and Fernandez-Labrador et al. (2020) proposed spherical and equirectangular convolution

respectively. The main idea in ((Coors et al. (2018); Fernandez-Labrador et al. (2020))

is that offset of the grids is calculated beforehand regarding the spherical distortion, and

convolution operation is done with these offsets. We utilized equirectangular convolution

(Fernandez-Labrador et al. (2020)) in our work and proposed an equirectangular version

of UNet model. Although semantic segmentation was done on indoor panoramic and

synthetic images, we conducted experiments on outdoor real panoramic images for the

first time. Our main contribution is as follows: we developed UNet-equiconv, which is

an equirectangular version of UNet. We replaced convolution layers with equirectangular

convolution to tackle with spherical distortion, and we released publicly available one of

the first outdoor panoramic image dataset for semantic segmentation.

3.1. Method

We introduced UNet-equiconv to alleviate the spherical distortion effect. It is an

equirectangular version of UNet (Ronneberger et al. (2015)). We replaced each convo-

lution layer with its equirectangular version. We illustrated the architecture of UNet-

equiconv in Figure 3.1. After each convolutional layer, we applied batch normalization

and ReLU (rectified linear units). For the simplicity, we did not illustrate these operations

in the figure. We showed the repeated process in the figure with the ’x’ symbol.
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Figure 3.1. Architecture of UNet-equiconv.

3.1.1. Equirectangular Convolution

Previous works (Coors et al. (2018); Su and Grauman (2017); Tateno et al. (2018);

Guerrero-Viu et al. (2020)) showed that explicitly modeling spherical distortion at the

kernel level increased the semantic segmentation and object detection performance. The

main idea in equirectangular convolution is that convolution kernels are moved onto the

sphere rather than planar imagery. The convolution kernel is moved onto the sphere, and

its location is calculated by spherical coordinates (θ and ϕ).

We generally use a square shape convolution kernel in CNN. In this section, we

explain calculating spherical location from the convolution kernel at location p on the unit

sphere. All transformation operations are illustrated in Fig. 3.2.
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Figure 3.2. Distortion-aware convolution. Each pixel p in the equirectangular image

is transformed into unit sphere coordinates, then the sampling grid is com-

puted on the tangent plane in unit sphere coordinates, finally the sampling

grid is back-projected into equirectangular image to determine the location

of the distorted sampling grid.

We followed the instructions explained in by Fernandez-Labrador et al. (2020).

As a first step, we defined (u0,0, v0,0) as the corresponding pixel location on the equirect-

angular image where we apply the convolution operation (i.e. the image coordinate where

the center of the kernel is located). Then, these coordinates are transformed to longitude

and latitude in the spherical coordinate system (Fig. 3.2b).

θ0,0 =

(
u0,0 −

W

2

)
360

W
; ϕ0,0 = −

(
v0,0 −

H

2

)
180

H
(3.1)

where θ and ϕ are in degrees and W and H are, respectively, the width and height of the

equirectangular image in pixels.

Subsequently, the 3D coordinates for every element in the kernel (the tangent

plane) is computed (Fig. 3.2c). When we consider a 3x3 kernel on the equator, kernel
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element 3D coordinates are:

p̂ij =


x̂ij

ŷij

ẑij

 (3.2)

where i and j are the horizontal and vertical indexes of a kernel element. 3D coordinates

change as follows:

p̂0,0 =


0

0

1

 , p̂±1,0 =


± tan∆θ

0

1

 , p̂0,±1 =


0

± tan∆ϕ

1

 (3.3)

where ∆θ and ∆ϕ are 360/W and 180/H in degrees respectively. These correspond to the

angles covered by one pixel in the equator of the sphere. When the filter size is larger,

angular coverage of kernel also decreases. Although we do not employ, lower resolution

kernels can also be defined for wide angles. Readers can find detailed formulation on

various kernel resolutions in Fernandez-Labrador et al. (2020).

We keep the kernel shape on the tangent plane fixed. When applying the filter at a

different location (θ,ϕ), we rotate the points to the corresponding point of the sphere. We

also project each point onto the sphere surface by normalizing the vectors:

pij =


xij

yij

zij

 = Ry(ϕ0,0)Rx(θ0,0)
p̂ij
|p̂ij|

(3.4)

where Ra(β) stands for a rotation matrix of an angle β around a axis.

Finally, the rest of elements are back-projected to the equirectangular image do-

main (Fig. 3.2d). First, 3D kernel coordinates are transferred to latitude and longitude

angles, which is called as the inverse gnomonic projection:

θij = arctan

(
xij

zij

)
; ϕij = arcsin (yij) (3.5)

Then, converted to the original 2D equirectangular image domain:

uij =

(
θij
360

+
1

2

)
W ; vij =

(
− ϕij

180
+

1

2

)
H (3.6)

Equirectangular convolution is a special form of deformable convolution (Dai

et al. (2017)) layer. Unlike applying convolution operation to grid-like plane, offsets

of the convolution layers are calculated regarding the spherical distortion.
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Spherical distortion has a pattern in panoramic images. Hence, the offsets of the

convolution layers are not learned with training but calculated regarding the equirectan-

gular projection geometry. The offsets of the convolutional layers do not change moving

horizontally, but they increase as the kernel moves toward the poles. It is illustrated in

Figure 3.3.

Figure 3.3. The offsets of spherical kernel are visualized in three different positions.

Kernel offset behaves as a regular grid on the equator. As the kernel is

moved towards the poles, offset of the grid far apart. When the borders are

exceeded, offsets move to the other side of the panoramic image.

3.2. Dataset

Most of the publicly available semantic segmentation datasets are collected with

narrow FOV cameras (Lin et al. (2014); Cordts et al. (2016); Brostow et al. (2009); Geiger

et al. (2012)). Thus, releasing a 360-degree view semantic segmentation dataset can con-

tribute to several computer vision applications. In (Orhan and Bastanlar (2022)), we re-

leased one of the first outdoor panoramic image dataset for semantic segmentation task.

We hope that it will be helpful to the various research on computer vision.
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3.2.1. Equirectangular Outdoor Panoramic Image Dataset for

Semantic Segmentation

We released one of the first equirectangular panoramic datasets of outdoor im-

ages for semantic segmentation, called CVRG-Pano. Panoramic images were collected

from Pittsburgh, PA. with Google Street View application1. CVRG-Pano comprises 600

equirectangular panoramic images with 20 semantic labels. Semantic classes are grouped

into seven categories regarding their semantic associations. Semantic labels and cate-

gories are shown in Table 3.1. Pixel distribution of each category is shown in Figure 3.4.

We divided the dataset into three sets: training, validation, and test. Training set consists

of 446, validation set consists of 48, and test set consists of 76 images. CVRG-Pano can

be downloaded from the following link: https://github.com/semihorhan/semseg-outdoor-

pano. In Figure 3.5, we show an equirectangular panoramic image from the dataset with

its semantic labels.

Table 3.1. Semantic classes and their categorical groups.

construction building, wall, fence, bridge

sky sky

object traffic light, pole, traffic sign

person person

nature terrain, vegetation

vehicle bus, motorcycle, truck, bicycle, car

flat road, sidewalk, parking, ground

3.2.2. Semantic Mask Generation with well-performing CNN

Manual label annotation takes a lot of time and effort. As an alternative approach,

we can automatically generated semantic mask of outdoor panoramic images with well-

performing CNN models.

1iStreetView.com
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Figure 3.4. The total number of annotated pixels is shown on the y-axis, and their

semantic labels on the x-axis.

Figure 3.5. An example image from the equirectangular outdoor panoramic image

dataset with its semantic mask.

Cubemaps of panoramic images are generated as a first step. Later, we estimated

the semantic labels of each cubemaps with a well-performing CNN model (Yuan et al.

(2020)). The CNN model used to estimate the semantic mask of the cubemaps was trained

on Cityscapes (Cordts et al. (2016)). As the last step, we generated a semantic mask for

each panorama from the semantic mask of the cubemaps. The whole process is illustrated

in Figure 3.6. In this way, we generated 504 panoramic semantic labels and grouped them

into seven categories regarding Table 3.1.
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Figure 3.6. The whole step of semantic mask generation for panoramic images. First,

we generate cubemaps from panoramic images and estimate their seman-

tic labels with a well-performing CNN model. Afterward, we project the

semantics of masks of cubemaps to a panoramic image.

3.3. Experiments

We trained and fine-tuned UNet-stdconv and UNet-equiconv on the released dataset.

We demonstrated with experiments effect of alleviating spherical distortion at the kernel

level and weight initialization on semantic segmentation. As a deep learning framework,

we used Pytorch 1.7.1 (Paszke et al. (2019)). We trained all CNN models on a computer

with following specifications: Nvidia GeForce GTX 1080 GPU, Intel i7-8700K processor,

and 16 GB memory.

3.3.1. Evaluation Metric

We used mean intersection over union (mIoU) in our experiments. It is a well-

known evaluation metric for semantic segmentation (e.g. Cordts et al. (2016), Guerrero-

Viu et al. (2020)). In Eq. 3.7, M represents the total number of classes, Ai is total number

of ground truth pixels of class i, and Âi is predicted number of pixels for class i.

mIoU =
1

M

M∑
i=1

Ai ∩ Âi

Ai ∪ Âi

(3.7)
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3.3.2. Weight Initialization

We have a relatively small size of dataset to train our models. To evaluate contri-

bution of the weight initialization, we evaluated performance of the model with several

experiments using different pre-trained weights. We demonstrated weight initialization

effect in Table 3.2. We fine-tuned all models on the CVRG-Pano (the released dataset).

The test set consists of 76 equirectangular panoramic images with their semantic labels.

Experimental results of different weight initialization are shown in Table 3.2. Experimen-

tal results showed that we get the best results with pre-trained Cityscape weights. We can

also conclude that using pre-trained ImageNet increases performance since the low level

of details (e.g., edges, curves) are shared between CVRG-Pano and ImageNet.

Table 3.2. Pre-training weight effect.

Test mIoU scores

Training from scratch 0.610

ImageNet 0.634

Cityscapes 0.649

3.3.3. Standard vs. Equirectangular Convolution

In this section, to show the performance difference between standard and equirect-

angular convolution layers, we evaluated both models on outdoor panoramic image dataset.

As a first step, we trained both models on Cityscapes and fine on the released panoramic

image dataset. Experimental results in Table 3.3 showed that, UNet-equiconv perform

better than UNet-stdconv. These results showed that handling spherical distortion at the

kernel level helps to improve semantic segmentation of CNN model on outdoor panoramic

images (Orhan and Bastanlar (2022)). Qualitative comparison are shown in Figure 3.7.
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Figure 3.7. Example qualitative samples of UNet-stdconv and UNet-equiconv. Some

semantic segmentation errors are highlighted with red circles.

Table 3.3. UNet-stdconv and UNet-equiconv performance on CVGR-Pano.

Model name mean IoU sky construction vehicle nature person flat objects

UNet-stdconv 0.65 0.98 0.83 0.69 0.79 0.13 0.96 0.17

UNet-equiconv 0.68 0.98 0.84 0.73 0.80 0.17 0.96 0.23
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CHAPTER 4

SEARCHING PERSPECTIVE QUERY IMAGES IN A

PANORAMIC IMAGE DATABASE WITHOUT

GENERATING PERSPECTIVE VIEWS

In visual localization, an approximate location of query material is estimated

within a visual map. Any city-scale visual localization system has to be robust against

long-term changes (e.g illumination, seasonal, and structural). In our settings, we lo-

calize perspective (narrow FOV) query images in an equirectangular outdoor panoramic

image database. A common way to search perspective query images in a panoramic

image database is to generate virtual perspective gnomonic views. Even though we gen-

erate virtual perspective views from panoramic images, there might be a non-overlapping

views problem between query and gnomic images. We can alleviate this problem by di-

rectly searching query images in a panoramic image database. Our main contribution in

this chapter is that, while localizing perspective query images in the panoramic image

database, instead of generating virtual perspective images using gnomic projection, we

apply sliding window on the last convolution layer of CNN and directly localize query

images in outdoor panoramic database. More detail of sliding window is explained in

Section 4.2.1.

4.1. Dataset for Visual Localization

To localize perspective query images, we formed visual localization database con-

sisting of panoramic outdoor images. In our dataset, query images are part of the UCF

dataset (Zamir and Shah (2014)) and collected from Pittsburgh, PA, in 2014. We down-

loaded our panoramic image database from the same location as query images with Street

View Download 360 application1, collected in 2019. Images collected from different

years cause long-term changes (Toft et al. (2018b); Naiming et al. (2018); Sattler et al.

(2018)) such as seasonal, structural, and illumination changes.

1iStreetView.com
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In our dataset, query images are collected from 123 locations, and panoramic

database images are collected from 222 locations. There is at least one database image

for each query within a five-meter distance. We generated 4, 8, and 12 gnomonic versions

of our panoramic database. Our query set consist of 123x4=492 images; our 4, 8 and

12 gnomonic database consist of 222x4=888, 222x8=1176, and 222x12=2664 images

respectively. In the 8-gnomonic database, each gnomonic view has 90-degree FOV and

overlaps a 45-degree FOV with the next gnomonic image. In the 12-gnomonic image

database, each gnomonic image overlaps 60-degree FOV with the next one.

The reason for generating 8 and 12 gnomonic datasets is that generating more

gnomonic views with higher overlapping FOV alleviates the non-overlapping view prob-

lem. The best and the worst case scenarios for 4-gnomonic database are shown in Figure

4.1 and good overlap between query and 12 gnomonic database images are shown in

Figure 4.2.

(a) (b) (c)

Figure 4.1. Query image appears in (a), best case scenario, 90◦ overlap between

query and database images are in (b). Worst-case scenario in 4-gnomonic

database, 45◦ overlapping in (c).
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Figure 4.2. An example query and database pairs were collected from the same loca-

tion. The panoramic database image is shown at the top left, and perspec-

tive images collected from the same location are shown at the top right.

Each query image has 90◦ FOV and does not overlap with to next one. A

generated 12-gnomonic database images to localize perspective query im-

ages are shown in the bottom two rows.

4.2. Methodology

4.2.1. Searching perspective query image in an equirectangular

panoramic image database

In our settings, perspective query images are directly localized in an equirectan-

gular panoramic image database. To extract the features, we apply sliding windows to

the last feature maps of CNNs. The images in our panoramic database are fully equirect-

angular, which means it covers 180◦ vertical views (bottom to top) and 360◦ horizontal

views (left to right). Query images of our dataset are localized around the horizon. There-

fore, we only search query images around the equator in panoramic images. The sliding

window process is illustrated in Fig 4.3a.
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(a) (b)

(c)

(d) (e)

(f)

Figure 4.3. Equirectangular panoramic image and query images are shown in (a) and

(b), respectively. Sliding windows applied on the panoramic image are 

highlighted with a different color in (a). Red sliding window correspond 

to the actual location of the query image. Feature maps extracted from 

panoramic and query images are illustrated in (c). Activation maps of 

panoramic and query images are visualized in (d) and (e). We get a similar 

activation pattern from the exact location of the query in the panoramic 

activation map. Feature similarity scores extracted with GeM pooling 

are shown in (f). We get the highest score from the exact location 

(red window) of the query image.
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There are several studies based on pooling methods (Radenović et al. (2018);

Razavian et al. (2016); Tolias et al. (2016)) to represent CNN features as compact and

distinctive way. Let X be a WxHxK dimensional matrix corresponding to the last fea-

ture map of the convolution layer of CNN. Xi represents a single 2D activation plane in

the feature map, where i = 1, ..., K and Xi(p) is the response at position p. If we select

the maximum value in Xi (Eq.4.1), this results in a K-size feature vector for the image

(MAC, Razavian et al. (2016)).

f = [f1, ...fi, ...fK ]
T , fi = max

p∈Xi

Xi(p) (4.1)

MAC pooling was improved in a follow-up study (Tolias et al. (2016)). R-MAC

pooling is proposed by Tolias et al. (2016). It is based on applying the max-pooling

method to different regions of feature maps with varying resolutions. Generalized-Mean

(GeM) pooling layer is proposed by Radenović et al. (2018). It is one of the first trainable

(differentiable) pooling layers. It learns pooling value after training rather than taking the

maximum or average of the receptive field.

f = [f1, ...fi, ...fK ]
T , fi =

(
1

|Xi|
∑
p∈Xi

Xi(p)
ci

) 1
ci

(4.2)

GeM pooling (Radenović et al. (2018)) behaves as a max-pooling (Razavian et al.

(2016)) when ci → ∞. They used the Flickr dataset to train the GeM pooling layer. The

Flickr dataset is composed of 7.4 million images. Flickr images consist of landmarks, top

attraction of the cities, which fits well for the image retrieval task. We did not train the

GeM pooling on our dataset because it is already trained on millions of images.

Another body of research focuses on visual localization in a city-scale map rather

than top attractions or landmarks. Geo-tagged datasets, which are used for visual localiza-

tion, consist of images collected from different times of the year with close-by locations.

NetVLAD is proposed by Arandjelovic et al. (2016). The architecture of the NetVLAD

includes several convolutions and trainable VLAD layers. It is trained triplets loss. Geo-

tagged images have noisy labels. It is because images collected from the same location

might not depict the same scene due to having different viewing angles of the cameras. To

tackle noisy labels of geo-tagged images, SFRS is proposed by Ge et al. (2020). In (Ge

et al. (2020)), an alternative training regimen is proposed. During the training, database

images are divided into small parts, and similarity scores are estimated with these parts.

By doing so, the positioning error of geo-tagged images is alleviated and CNN is trained
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with more robust features. It outperformed the previous studies on the well-known visual

localization benchmark datasets. In this chapter, we presented our results with R-MAC

(Tolias et al. (2016)) pooling, SFRS (Ge et al. (2020)), and GeM (Radenović et al. (2018))

pooling.

We can give varying resolution of inputs to the same CNN model, which enables

us to extract features from panoramic (1664x832 resolution) and query (500x400 resolu-

tion) images. Before conducting extensive experiments, we checked our hypothesis and

visualized activation feature maps of panoramic image in Fig. 4.3d, and activation feature

maps of query images in Fig. 4.3e. Fig. 4.3 shows that, we get the similar activation map

patterns from exact location of query image in panoramic image database.

Some previous work on image classification and object detection; (Coors et al.

(2018)), depth estimation and semantic segmentation (Tateno et al. (2018)); and 3D lay-

out estimation (Fernandez-Labrador et al. (2020)) used distortion handling methods for

panoramic images. However, it is not mandatory for us to use distortion handling methods

since query images are around the equator of the sphere where they appear as perspective

images. In addition, training a CNN model with a small dataset might not perform well

compared to a CNN trained with a large dataset.

4.3. Experimental Results

In previous works (Sec. 2.2), a perspective query is localized in panoramic image

database by generating 4 or 8 gnomonic virtual perspective views. Thus, we compared our

method with gnomonic views. As a first step, we compare our method with 4-gnomonic

projections (cubemaps, each having non-overlapping 90◦ FOV, cf. Fig. 2.2b). We assume

the query is correctly localized if the query and the panoramic image and its gnomonic

versions are collected from the same location (within 5 meter distance). We do not check

the overlapping ratio between query and database images.

While searching perspective query images in the 4-gnomonic image database, ac-

curacy mostly depends on overlapping FOV between query and database images. In the

best case, there is a 100% overlap between FOV views; in the worst case scenario, there is

only 45◦ FOV overlap between query and database images. We randomly chose starting

point of the cubemaps (4-gnomonic images).

We conducted several experiments on the 4-gnomonic, 8-gnomonic, 12-gnomonic,
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and panoramic datasets (details are explained in Section 4.1) with several feature extrac-

tors: R-MAC, GeM, SFRS. At first, we extracted features with R-MAC pooling (Tolias

et al. (2016)). Table 4.1 shows the experimental results obtained with R-MAC pooling.

The best result is obtained with the 12-gnomonic projection, which is 70.3%. We get com-

petitive results with the proposed sliding window method (67.2%). 12-gnomonic projec-

tion and the proposed sliding window approach significantly outperform the 4-gnomonic

projection (50.8%).

Experimental results obtained with GeM pooling (Tolias et al. (2016)) are shown

in Table 4.2 and experimental results obtained with SFRS (Ge et al. (2020)) are shown

in Table 4.3. The sliding window method outperformed the 4-gnomonic projection in all

experiments, and we obtained competitive results compared to 8 and 12 gnomonic pro-

jections. With R-MAC and GeM poolings, the sliding window requires much less feature

extraction time than 8 and 12 gnomonic projections (Table 4.4), but we do not observe

a similar outcome with SFRS. This is due to the fact that Principal component analysis

(PCA) is applied each feature map (window) to reduce dimension of VLAD features,

which drastically increase the computation time. Nevertheless, the main advantage of

sliding is that we can directly localize perspective images in a panoramic image database

without generating its gnomonic views. We observe significant performance improve-

ment in visual localization performance with SFRS. It is partly because SFRS is trained

on Pittsburgh perspective images. All visual localization results are visualized in Figure

4.4 and qualitative results are shown in Figure 4.5.

4.3.1. Computation Cost

Descriptor extraction time of 4, 8, 12 gnomonic projections and sliding window

are shown in Table 4.4. Table 4.4 shows that, with R-MAC and GeM pooling, the sliding

window approach takes much less feature extraction time than 8 and 12-gnomonic projec-

tions while getting competitive results (see Table 4.1), but we did not observed the similar

outcome with SFRS. The sliding window takes more time than 8 and 12 gnomonic projec-

tion with SFRS. This is due to the fact that Principal component analysis (PCA) is applied

each feature map (window) to reduce dimension of VLAD features, which drastically in-

crease the computation time. Nevertheless, the main advantage of sliding is that we can

directly localize perspective images in a panoramic image database without generating its
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Table 4.1. Visual Localization Results with R-MAC pooling (Tolias et al. (2016)).

Methods
Recall@N

N=1 N=2 N=3 N=4 N=5 Avg=1-3

4 gnomonic views (cubemaps) 0.508 0.589 0.630 0.674 0.699 0.576

8 gnomonic views 0.650 0.743 0.778 0.802 0.819 0.724

12 gnomonic views 0.703 0.784 0.813 0.833 0.851 0.767

Sliding Window (20x20 stride=3) 0.648 0.754 0.789 0.795 0.809 0.730

Sliding Window (20x20 stride=5) 0.652 0.732 0.778 0.799 0.811 0.721

Sliding Window (20x20 stride=7) 0.634 0.756 0.772 0.797 0.825 0.721

Sliding Window (24x24 stride=3) 0.672 0.740 0.787 0.807 0.821 0.732

Sliding Window (24x24 stride=5) 0.673 0.740 0.778 0.809 0.827 0.730

Sliding Window (24x24 stride=7) 0.663 0.740 0.780 0.799 0.807 0.728

Sliding Window (28x28 stride=3) 0.683 0.748 0.791 0.807 0.817 0.740

Sliding Window (28x28 stride=5) 0.675 0.750 0.791 0.801 0.821 0.738

Sliding Window (28x28 stride=7) 0.661 0.750 0.789 0.805 0.823 0.733

Sliding Window (32x32 stride=3) 0.669 0.736 0.776 0.803 0.815 0.727

Sliding Window (32x32 stride=5) 0.665 0.733 0.778 0.801 0.817 0.725

Sliding Window (32x32 stride=7) 0.659 0.740 0.785 0.797 0.811 0.728

gnomonic views. All experiments are run on a computer with following specifications:

NVIDIA GeForce GTX 1080 GPU, Intel i7-8700K processor, and 16 GB memory.

33



Table 4.2. Visual Localization Results with GeM pooling (Radenović et al. (2018)).

Methods
Recall@N

N=1 N=2 N=3 N=4 N=5 Avg=1-3

4 gnomonic views (cubemaps) 0.497 0.585 0.660 0.689 0.719 0.580

8 gnomonic views 0.650 0.741 0.778 0.800 0.815 0.723

12 gnomonic views 0.672 0.750 0.796 0.815 0.833 0.739

Sliding Window (20x20 stride=3) 0.642 0.729 0.770 0.799 0.819 0.714

Sliding Window (20x20 stride=5) 0.646 0.728 0.764 0.793 0.813 0.713

Sliding Window (20x20 stride=7) 0.628 0.713 0.766 0.805 0.813 0.703

Sliding Window (24x24 stride=3) 0.646 0.735 0.774 0.797 0.819 0.719

Sliding Window (24x24 stride=5) 0.644 0.730 0.774 0.807 0.825 0.716

Sliding Window (24x24 stride=7) 0.612 0.707 0.762 0.792 0.815 0.694

Sliding Window (28x28 stride=3) 0.630 0.711 0.750 0.799 0.819 0.697

Sliding Window (28x28 stride=5) 0.636 0.717 0.762 0.799 0.813 0.705

Sliding Window (28x28 stride=7) 0.618 0.722 0.754 0.789 0.805 0.698

Sliding Window (32x32 stride=3) 0.596 0.703 0.734 0.776 0.801 0.677

Sliding Window (32x32 stride=5) 0.581 0.697 0.746 0.774 0.795 0.675

Sliding Window (32x32 stride=7) 0.579 0.673 0.728 0.760 0.789 0.660
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Table 4.3. Visual Localization Results with SFRS (Ge et al. (2020)).

Methods
Recall@N

N=1 N=2 N=3 N=4 N=5 Avg=1-3

4 gnomonic views (cubemaps) 0.760 0.835 0.852 0.868 0.890 0.816

8 gnomonic views 0.876 0.921 0.939 0.951 0.955 0.912

12 gnomonic views 0.888 0.929 0.947 0.953 0.955 0.921

Sliding Window (20x20 stride=3) 0.886 0.927 0.935 0.943 0.951 0.916

Sliding Window (20x20 stride=5) 0.872 0.921 0.929 0.941 0.947 0.907

Sliding Window (20x20 stride=7) 0.866 0.917 0.929 0.941 0.949 0.904

Sliding Window (25x25 stride=3) 0.884 0.929 0.941 0.949 0.955 0.918

Sliding Window (25x25 stride=5) 0.884 0.929 0.935 0.947 0.949 0.916

Sliding Window (25x25 stride=7) 0.868 0.919 0.935 0.941 0.949 0.907

Sliding Window (28x28 stride=3) 0.870 0.911 0.927 0.935 0.939 0.902

Sliding Window (28x28 stride=5) 0.872 0.915 0.927 0.937 0.941 0.904

Sliding Window (28x28 stride=7) 0.860 0.917 0.925 0.939 0.943 0.900

Sliding Window (32x32 stride=3) 0.831 0.900 0.921 0.929 0.937 0.884

Sliding Window (32x32 stride=5) 0.839 0.894 0.915 0.927 0.931 0.883

Sliding Window (32x32 stride=7) 0.846 0.900 0.917 0.925 0.927 0.888
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(a)

(b)

(c)

Figure 4.4. Visual localization result obtained with GeM pooling (a), R-MAC (b) and

SFRS.
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(a)

(b)

Figure 4.5. Two samples of query database pairs when 4 and 8 gnomonic projections

fail, but the sliding window correctly localizes the query images. Query

images are shown in the upper-right corner of (a) and (b). 8-gnomonic

database images are shown in the bottom rows. In sample (a), there is

a non-overlapping problem between query and database images and also

an illumination difference. In sample (b), although the FOV of query and

database images overlap almost perfectly, there are long-term changes (e.g.

illumination and vegetation difference).
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Table 4.4. Feature extraction time of gnomonic projections and sliding window.

Approach Database Feature Extraction Time in sec.

R-MAC

4-gnomonic view 29.34

8-gnomonic view 51.38

12-gnomonic view 77.22

Panoramic (sliding window, stride=3) 44.74

Panoramic (sliding window, stride=5) 34.55

Panoramic (sliding window, stride=7) 29.89

GeM

4-gnomonic view 26.61

8-gnomonic view 44.03

12-gnomonic view 65.93

Panoramic (sliding window, stride=3) 19.23

Panoramic (sliding window, stride=5) 18.35

Panoramic (sliding window, stride=7) 17.97

SFRS

4-gnomonic view 40.20

8-gnomonic view 70.62

12-gnomonic view 105.51

Panoramic (sliding window, stride=3) 131.03

Panoramic (sliding window, stride=5) 85.57

Panoramic (sliding window, stride=7) 65.75
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CHAPTER 5

MULTI-MODAL POSE VERIFICATION FOR

LONG-TERM OUTDOOR VISUAL LOCALIZATION

WITH SELF-SUPERVISED CONTRASTIVE LEARNING

Any city-scale visual localization system should overcome long-term appearance

changes. Semantic information robust to seasonal, structural, an illumination changes and

depth maps provide geometric clues. In this chapter, we utilized semantic and depth in-

formation for visual localization at the pose verification step. Semantic masks and depth

maps of each image are automatically generated with well-performing CNN models and

represented with a self-supervised contrastive learning approach (SimCLR, Chen et al.

(2020)). To evaluate the semantic and depth contribution, we evaluated pose verification

with experiments on the dataset explained in Section 4.1. Query images in our dataset

consist of perspective images, and our database consists of panoramic images and their

gnomonic versions. Our main contribution in this chapter is that we represented seman-

tic and depth information with the self-supervised contrastive learning approached (Sim-

CLR) and improved the state-of-the-art RGB-only model (SFRS) performance more than

1%.

5.1. Methodology

5.1.1. Visual localization of perspective query images in a panoramic

image database

To measure the contribution of using semantic and depth information at the pose

verification step, we conducted several experiments on our dataset that consists of per-

spective query and panoramic database images (details are in Section 4.1). We employed

gnomonic projection and sliding windows approaches in our settings.

In long-term visual localization, images captured from close locations might not

39



depict the same scene due to seasonal and illumination differences. Several approaches

(Tolias et al. (2016); Babenko and Lempitsky (2015); Ge et al. (2020); Arandjelovic et al.

(2016)) have been proposed to tackle long-term changes (e.g seasonal difference, and

structural changes). In addition the long-term changes, there might be a non-overlapping

FOV problem between cameras. We can alleviate the overlapping problem by generating

12 gnomonic views from a panoramic image, but there might still exists non-overlapping

view between query and gnomonic database images. In the worst-case scenario, view-

point difference of query and 12-gnomonic database is 15◦; on average, it is 7.5◦. Re-

cently SFRS has been proposed by Ge et al. (2020). They used a training regimen based

on image to region similarity to alleviate noisy labels of geo-tagged images. By doing so,

the proposed model is trained with more robust features. SFRS outperformed previous

approaches on well-known visual localization datasets (Torii et al. (2013, 2015)).

5.1.2. Feature extraction on semantic masks and depth maps

As a first step, we estimate the semantic masks and depth maps of query and

database images with CNN models (Sun et al. (2019); Ranftl et al. (2020)). The CNN

model proposed for semantic segmentation is trained on the Cityscapes dataset (Cordts

et al. (2016)), which consists of 30 semantic classes (e.g. sky, building, road). The depth

model is trained on various depth datasets (Ranftl et al. (2020)).

Estimating the semantic similarity of the given two masks is a non-trivial task.

SIFT and SURF like descriptor extractors do not exist to match semantic features. Images

collected from the same location in different years might depict quite different scenes due

to FOV different between cameras, or long-term changes. We tried to utilize CNN-based

geometric alignment method (Rocco et al. (2017)) in our work to fit one semantic mask

to another, but it did not work. Therefore, we proposed to represent the semantic and

depth information with a trainable feature extractor that intrinsically learns small shifts

and view point difference between masks. We utilized trainable feature extraction at the

pose verification step of the RGB-only model (SFRS).

As a first step to test our hypothesis, we estimated the semantic similarity between

query and database masks with pixel-wise similarity, which can be seen as a hand-crafted

feature extractor. The drawback of this approach is that it is sensitive to small shifts and

view point difference.
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Pixel-wise Similarity. We compute pixel similarity between query and database

masks as follows:

pixel-wise similarity =

m∑
i=1

n∑
j=1

sim(Q(i,j), D(i,j))

m · n
(5.1)

where sim(a, b) is equal to 1 if a = b, 0 otherwise. Q represents the query image’s

mask and D represents the database image’s mask, both having size m × n, (i, j) ∈
{1, ...,m} × {1, ..., n}. A pixel is considered as a matching pixel if Q(i,j) = D(i,j) and it

increases similarity.

Self-supervised contrastive learning (trainable feature extractor). We repre-

sented the semantic and depth content of the scene with a self-supervised learning ap-

proach (SimCLR, Chen et al. (2020)) since semantic masks and depth maps can be easily

generated by well-performing CNN models. In our work, we estimated semantic masks

and depth maps of images with (Sun et al. (2019)) and (Ranftl et al. (2020)). We trained

SimCLR on 3484 semantic masks and depth maps randomly collected from UCF (Zamir

and Shah (2014)) dataset. Since the quality of automatically generated masks is enough

to represent semantic and depth information, we did not need ground-truth labels.

Figure 5.1. An example scenario where the CNN model is trained on semantically

segmented masks with self-supervised contrastive loss.
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We represented semantic masks and depth maps of the scenes with self-supervised

contrastive learning approach (SimCLR, Chen et al. (2020)). ResNet-18 is used as an

encoder of SimCLR. In our configuration, the encoder model produces r = Enc(x) ∈
R512 size of features, projection model produces z = Proj(r) ∈ R2048 size of features.

This process is illustrated in Fig. 5.1. We used random resized crop and random rotation

augmentation methods during the training, and resized semantic masks and depth maps to

64x80 pixels due to memory limitations. We set the random rotation degree as 3, and the

random resized crop ratio as 0.6, which means that cropped area covers equal to or more

than 60% of input masks. The data augmentation process of a semantic mask is illustrated

in Fig. 5.1. We trained our model with contrastive loss shown in Eq. 5.2 (Khosla et al.

(2020); Chen et al. (2020)). It is a categorical cross-entropy loss to learn the dissimilarity

of the positive inputs amongst negative ones (inspired from InfoNCE, van den Oord et al.

(2018)).

Lself =
∑
i∈I

Lself
i = −

∑
i∈I

log
exp(zi · zj(i)/τ)∑

a∈A(i)

exp(zi · za(i)/τ)
(5.2)

We randomly take N images from the semantic or depth mask dataset and generate

augmented versions of the positive samples during the data loading step. Let i ∈ I ≡
{1...2N} be the index of an arbitrary augmented sample, then j(i) is the index of the other

augmentation of the same original image. τ ∈ R+ is a scalar temperature parameter, ·
represents the dot product, and A(i) ≡ I − {i}. We call index i the anchor, index j(i) is

the positive, and the other 2(N − 1) indices as negatives. The denominator has a total of

2N − 1 terms (one positive and 2N − 2 negatives).

Now the CNN model (SimCLR) trained on semantic masks or depth maps are

ready to estimate the similarity between query and database images. We updated RGB-

only methods scores (SimCLR) with semantic and depth similarity at the pose verification

step (detail are in Section 5.1.3).

After self-supervised contrastive learning, we can fine-tune our self-supervised

trained CNN model on a dataset that consists of query and database pairs. By doing so,

the CNN model can learn the small shift and view point difference between query and

database images. Therefore, we prepared a query-database pair dataset. It consists of 227

query-database pairs. Fine-tuning dataset is very small compared to the self-supervised

training dataset, which consists of 3484 images. The standard procedure in contrastive

learning literature is to replace the projection head, and fine-tune it on a small dataset
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for object detection, image classification, and semantic segmentation tasks (final tasks).

Since our pretext task and the final task are the same (instance discrimination which means

estimating similarity between two masks), we partially or fully fine-tune our model and

add a new projection head (explained in Section.5.2.2).

5.1.3. Updating RGB-only scores with semantic and depth similarity

At first, we normalize RGB-only, semantic, and depth similarity scores to [−1,+1],

and then update RGB-only scores with Eq. 5.3 for pose verification with semantic fea-

tures, and we update RGB-only scores with Eq. 5.4 for pose verification with depth

features. As last, Eq. 5.5 is used to update RGB-only scores with multi-modal features.

updated-scorei = rgb-scorei + Ws · semantic-scorei (5.3)

updated-scorei = rgb-scorei + Wd · depth-scorei (5.4)

updated-scorei = rgb-scorei + Ws · semantic-scorei + Wd · depth-scorei (5.5)

where i is the index within the top K candidates for each query image, Ws is a weight

coefficient of semantic similarity, and Wd is weight coefficient of depth similarity scores.

We only update similarity scores of top K candidate database images retrieved by the

RGB-only model for each query image. We set K as 10 in all experiments, and the

example scenario is illustrated in Fig. 5.2. We update similar scores of neighbors of

the top K candidate panoramic image (all gnomonic views) since neighbors of the most

similar view can provide supportive information.

While updating similarity of RGB-only model, we select weight coefficient value

(W ) with regards to highest localization performance separately for depth and semantic

features. Semantic, depth, and multi-modal weight coefficient effects are visualized in

Figure 5.5, Figure 5.9, and Figure 5.11 respectively.
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Figure 5.2. An example of visual localization results of the RGB-only model. RGB-

only model fails to localize query image in a 12-gnomonic image database

(middle column). A model that utilizes RGB and semantic information

at the pose verification step correctly localizes the query image (right co-

lumn).

5.2. Experimental Results

We trained our self-supervised contrastive learning model on 3484 images which

is a subset of the UCF (Zamir and Shah (2014)) dataset, and we checked in case of shared

images in the test set. Stochastic gradient descent (SGD) was used as optimizer, and

initial learning rate (lr) was set as 0.05. Batch size was set as 174 images (2N ), and the

temperature parameter (τ ) was 0.07.

5.2.1. Pose Verification with Semantic Features

To show the visual localization performance of RGB-only model and utilizing

semantic information at the pose verification step, we performed many experiments on
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our dataset (details are in Section 4.1). We localized perspective query images in 8-

gnomonic, 12-gnomonic, and panoramic image databases. Our query test consists of 492

images; 8 and 12 gnomonic databases consist of 1776 (222x8) and 2664 (222x12) images,

respectively. The panoramic image database consists of 222 images. We evaluated visual

localization performance of four approaches. In the first approach, visual localization is

done with SimCLR (Chen et al. (2020)) on only RGB images. We called this approach

as RGB-only model. In the second approach, we updated the similarity scores of the

RGB-only model with pixel-wise similarity. In the third approach, we updated RGB-only

scores with a trainable feature extractor (SimCLR) on 8 or 12 gnomonic databases, and

the last approach is updating RGB-only scores with the sliding window. We demonstrated

performance of the RGB-only and semantic pose verification methods with an ablation

study on the labeled dataset, which consists of query-database pairs for each location. We

provided these results in Section 5.2.2.

We compare the performance of RGB-only model and semantic pose verification

with Recall@N metric. A query is considered correctly localized if the distance between

any of the top N candidate database images is smaller than the distance threshold. We

set the distance threshold as 5 meters in all experiments. We provided semantic pose

verification results in Table 5.1. Experimental results show that pose verification im-

proves the visual localization accuracy of RGB-only model for all methods. Semantic

pose verification contributed to most (more than 1%) when visual localization is done on

12-gnomonic and panoramic image databases. It is because there is a small shift between

queries and the most similar database images. The Sliding window approach (25x25 win-

dow, stride=3) performed similar to the 12-gnomonic projection. We visualized all the

experimental results in Fig. 5.3. In addition to experimental results in Table 5.1, we con-

ducted experiments with varying distance threshold. Experimental results showed that

pose verification with SimCLR still outperformed the RGB-only and pixel-wise similar-

ity scores, that is shown Fig. 5.3. We provide qualitative visual localization results in Fig.

5.4.

5.2.2. Additional Experiments with Semantic Features

So far, we have demonstrated experimental results training on the unlabeled dataset

with self-supervised contrastive learning. This section provides additional experimental
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Table 5.1. Visual localization results. Results are obtained with RGB-only and pose

verification with semantic features. Ws corresponds to semantic weight

coefficient.

Approaches
Recall@N

N=1 N=2 N=3 N=4 N=5 Avg=1-3

8-gnomonic (RGB-only) 0.876 0.921 0.939 0.951 0.955 0.909

8-gnomonic with SimCLR (Ws: 0.20) 0.888 0.921 0.941 0.945 0.949 0.917

12-gnomonic (RGB-only) 0.888 0.929 0.947 0.953 0.955 0.921

12-gnomonic with Pixel-wise (Ws: 0.20) 0.892 0.931 0.945 0.951 0.957 0.923

12-gnomonic with SimCLR (Ws: 0.20) 0.902 0.941 0.951 0.957 0.957 0.931

Sliding Window (RGB-only) 0.884 0.929 0.941 0.949 0.955 0.918

Sliding Window with SimCLR (Ws: 0.20) 0.9 0.933 0.949 0.953 0.959 0.927

results by fine-tuning our model on a labeled dataset consisting of query-database pairs

for each location. In this section, we investigate the sensitivity of crop ratio and semantic

weight coefficient (W ) parameters.

We show fine-tuning and self-supervised training results in Table. 5.2. We fine-

tuned our model on 227 query-database pairs. In the fine-tuning dataset, each location

is represented with a mask of query-database pairs. We fine-tuned the last two dense

layers, added an additional two dense layers, and we fine-tuned all layers of the CNN.

Even though we followed various fine-tuning regimens, we still got the best results with

self-supervised learning. Our fine-tuning dataset is quite small than the training dataset

(227 ≪ 3484). The reason we are not getting better results after fine-tuning is that our

labeled dataset might be too small to learn viewpoint shifts between query database pairs,

or our pretext task and the main task are the same (instance discrimination). In previous

works where fine-tuning improved the results, projection heads are generally replaced for

image classification or objection detection tasks. We also conducted several experiments

with SimSiam (Chen and He (2021)), but it did not perform well with our configurations.

We conducted several experiments with different crop ratio parameters. Although

recall scores fluctuate for where N={2,..,5}, we get the highest scores when the crop ratio

parameter is 0.6. Table 5.3 shows that visual localization performance decreases smaller

and larger crop ratio parameter than 0.6. This is coherent with the reverse-U shape finding

46



(a) (b)

(c) (d)

Figure 5.3. Recall@N scores of RGB-only and pose verification with semantic fea-

tures for 8-gnomonic experiments (a), and 12-gnomonic and sliding win-

dow experiments (c). Recall@1 with different distance thresholds for 8-

gnomonic experiments (b), and 12-gnomonic and sliding window experi-

ments (d).

Table 5.2. Fine-tuning and self-supervised learning visual localization results. We set

semantic weight coefficient (W ) as 0.20 in all experiments.

Training Methods
Recall@N

N=1 N=2 N=3 N=4 N=5

Self-supervised training 0.902 0.941 0.951 0.957 0.957

Fine-tuning projection head 0.892 0.937 0.949 0.953 0.961

Adding two new dense layers 0.898 0.931 0.949 0.953 0.957

Fine-tuning all layers 0.902 0.939 0.949 0.955 0.959
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Figure 5.4. Example visual localization results when semantic pose verification im-

proves the RGB-only scores. Query images are shown in the first column,

and initial retrieval results are in the second column. Updated results with

SimCLR appear in the third column. Pose verification with semantic fea-

tures moved up the correct candidate when semantic information of the

query and database images are similar (first two columns). Distinctive se-

mantic classes in query and database masks (e.g., traffic signs) helped to

improve the visual localization (third row). In some cases, pose verifica-

tion on semantic masks where partial labeling error exists improved the

visual localization(last row).

explained in (Tian et al. (2020)). High mutual information, such as when crop ratio is 0.9,

does not provide enough information to the model because anchor and the positive pairs

look almost identical. On the other hand, if there is low mutual information (e.g. crop

ratio: 0.1), anchor and positive pairs depict almost different scenes. In both cases, the

performance is lower than the peak value where it resided between them. The semantic

weight coefficient is another parameter that influences performance. We showed semantic

coefficient effect with different weights in Fig. 5.5. It is shown in Fig. 5.5 that we get the

best performance when W are between 0.20 and 0.30.
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Table 5.3. Visual localization results with different crop ratio parameters.

Crop
Ratio

Recall@N

N=1 N=2 N=3 N=4 N=5

0.9 0.898 0.935 0.941 0.947 0.951

0.8 0.900 0.939 0.949 0.953 0.957

0.7 0.896 0.941 0.949 0.955 0.957

0.6 0.902 0.941 0.951 0.957 0.957

0.5 0.900 0.939 0.945 0.949 0.951

0.4 0.896 0.939 0.949 0.957 0.959

0.3 0.896 0.935 0.947 0.957 0.959

Figure 5.5. Visual localization results with average of Recall where N={1,...,3}.
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5.2.3. Pose Verification with Depth Features

In addition to semantic information, we utilized depth information at the pose

verification step. At first, we trained SimCLR on a dataset composed of depth maps

estimated by (Ranftl et al. (2020)), but training loss did not decrease enough at the end

of the training and the trained model did not perform well for the instance discrimination

task. To simplify the learning process of instance discrimination from depth maps, we

quantized depth maps into non-linear bins. An example estimated depth maps and its

quantized version are shown in Figure 2.2.

(a) (b) (c)

Figure 5.6. An example RGB image is shown in (a), its estimated depth map is in (b)

and quantized version of depth map is shown in (c).

We conducted several experiments on 8 and 12 gnomonic databases. Experiment

results in Table 5.4 shows that utilizing depth information improved performance of the

RGB-only model more than 1%, regarding Recall@1 metric. We plot experimental re-

sults in Figure 5.8. Qualitative examples where the pose verification with depth features

improved the RGB-only model are provided in Figure 5.7. We evaluated the depth weight

coefficient effect on visual localization. Fig. 5.5 shows the visual localization results

with different depth weight coefficients (W ). Depth features contribute the most when

the depth weight coefficient (W ) is between 0.30 and 0.40.
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Figure 5.7. Example query images and their initial localization results with RGB-

modal (middle column). Their updated results with depth features are

shown in the last column. The red rectangle indicates the false localiza-

tion of the query, and the green rectangle indicates correct localization.

Table 5.4. Visual localization results. Results are obtained with RGB-only and pose

verification with depth features. Wd corresponds to depth weight coeffi-

cient.

Approaches
Recall@N

N=1 N=2 N=3 N=4 N=5 Avg=1-3

8-gnomonic (RGB-only) 0.878 0.921 0.929 0.935 0.939 0.909

8-gnomonic with SimCLR (Wd:0.30) 0.888 0.917 0.923 0.935 0.943 0.909

12-gnomonic (RGB-only) 0.888 0.928 0.947 0.953 0.955 0.921

12-gnomonic with SimCLR (Wd:0.30) 0.9 0.935 0.945 0.951 0.959 0.927
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(a) (b)

(c) (d)

Figure 5.8. Recall@N scores of RGB-only and pose verification with depth features

for 8-gnomonic experiments (a), and 12-gnomonic and sliding window ex-

periments (c). Recall@1 with different distance thresholds for 8-gnomonic

experiments (b), and 12-gnomonic and sliding window experiments (d).
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Figure 5.9. Visual localization results with average of Recall where N={1,...,3}.
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5.2.4. Pose Verification with Multi-modal Features

RGB, semantic, and depth features can provide distinctive and complementary

information about the same scene. Based on this idea, we combined RGB, semantic, and

depth features to see if multi-modal visual localization with self-supervised learning is

meaningful. Experimental results in Table 5.5 shows that multi-modal pose verification

improved the RGB-only model performance more than 1%. Even though multi-modal

visual pose verification improves the visual localization scores of RGB-only model, multi-

modal visual localization is almost on par with the pose verification with semantic features

(average Recall N={1,...3}=0.931).

Semantic and depth weight coefficient effect are visualized in Figure 5.10. Figure

5.11 shows that multi-modal visual localization perform the best when semantic weight

is between 0.2 to 0.3 and depth weight is between 0.2 to 0.3.

Table 5.5. Visual localization results obtained RGB, depth, semantic and multi-modal

features. Ws refers to semantic, Wd refers to depth weight coefficients.

Approaches
Recall@N

N=1 N=2 N=3 N=4 N=5 Avg=1-3

8-gnm. (RGB-only) 0.878 0.921 0.929 0.935 0.939 0.909

8-gnm. with SimCLR (Ws:0.20) 0.888 0.921 0.941 0.945 0.949 0.917

8-gnm. with SimCLR (Wd:0.30) 0.888 0.917 0.923 0.935 0.943 0.909

8-gnm. with SimCLR (Ws:0.30,Wd:0.20) 0.89 0.925 0.941 0.947 0.953 0.919

12-gnm. (RGB-only) 0.888 0.928 0.947 0.953 0.955 0.921

12-gnm. with SimCLR (Ws:0.20) 0.902 0.941 0.951 0.957 0.957 0.931

12-gnm. with SimCLR (Wd:0.30) 0.9 0.935 0.945 0.951 0.959 0.927

12-gnm. with SimCLR (Ws:0.30,Wd:0.20) 0.9 0.943 0.955 0.955 0.957 0.933
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(a) (b)

(c) (d)

Figure 5.10. Recall@N scores of RGB-only and pose verification with multi-modal (se-

mantic and depth together) features for 8-gnomonic experiments (a), and

12-gnomonic and sliding window experiments (c). Recall@1 with differ-

ent distance thresholds for 8-gnomonic experiments (b), and 12-gnomonic

and sliding window experiments (d).
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Figure 5.11. Pose verification with multi-modal features (semantic and depth together).

Visual localization results are provided with average of Recall where

N={1,...,3}.
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CHAPTER 6

CONCLUSION

In this thesis, we localized perspective query images in an outdoor panoramic

image database and its gnomonic views. In addition to RGB information, we utilized

semantic and depth information for visual localization at the pose verification step.

Full omnidirectional (360-degree) views are generally represented in the planar

space using equirectangular projection. In omnidirectional views, we capture 360-degree

views with a single shot, but it comes with the cost of spherical distortion at the poles of

the sphere. Objects which are close to the poles look quite different than they would ap-

pear in perspective views. In previous studies of CNNs, several methods (e.g. equirectan-

gular convolution, spherical convolution) were proposed to tackle the spherical distortion.

In the third chapter of the thesis, we developed an equirectangular version of UNet for se-

mantic segmentation of outdoor panoramic images. Their convolution type is the only

difference between the standard UNet and its equirectangular version (UNet-equiconv).

Experimental results showed that UNet-equiconv performs better than its standard ver-

sion (UNet-stdconv). We released one of the first outdoor panoramic image datasets for

semantic segmentation. This dataset can be used for various computer vision research

areas from autonomous driving to visual localization.

The distortion appears not only in panoramic images but also in any large FOV

images, such as the fish eye. By explicitly modeling distortion patterns at convolution

time, we expect to get a similar performance improvement also for other types of images.

In the fourth chapter of the thesis, we focused on localizing perspective query

images in an outdoor panoramic image database. In previous works, a common way to

search perspective query images in a panoramic image database is to generate virtual per-

spective views of panoramic images with gnomonic projection. Yet, a non-overlapping

view problem might still exist between query and database images. We can alleviate this

problem by generating more gnomonic views with a higher overlapping ratio with the next

gnomonic view, but it increases the database size. To directly localize perspective query

images within a panoramic image database, we proposed an alternative searching (visual

localization) method. Instead of generating virtual perspective views from panoramic im-
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ages, we apply a sliding window on the last convolution layer of CNNs. We prepared

a dataset that consists of perspective queries and panoramic database images. We also

generated 4, 8, and 12 gnomonic views of panoramic images. We compared the visual

localization performance of the sliding window approach with gnomonic views. We used

R-MAC, GeM, and SFRS as feature extractors. Experimental results show that the slid-

ing window approach outperformed 4-gnomonic views, and we get competitive results

compared to 8 and 12-gnomonic projections. With R-MAC and GeM pooling, feature

extraction takes much less time with the sliding window compared to 8 and 12 gnomonic

projection, but we did not observe a similar outcome with SFRS. With SFRS, the feature

extraction time of the sliding window takes longer than 8-gnomonic projection. It is be-

cause PCA is applied to each extracted feature (windows), which drastically increases the

computation time. The main advantage of the sliding window is that it can directly lo-

calize perspective query images in a panoramic images dataset (e.g. Google Street View)

without generating its gnomonic views.

In visual localization systems, search time is more important than feature extrac-

tion time because searching is done online, unlike feature extraction. As future work, the

search time of the sliding window and gnomonic view approaches can be evaluated on a

big dataset. Thus, we can evaluate search time and performance gain with respect to the

number of windows extracted from each panoramic image or the number of gnomonic

views generated from each panoramic image.

In the fifth and last chapter of the thesis, we researched long-term visual local-

ization on outdoor panoramic images. Every long-term visual localization system has to

handle long-term changes (e.g. illumination, seasonal, and structural). Semantic infor-

mation about the scene is more robust to changes (e.g. surface of the building), and depth

maps provide geometric information, which can be used as a complementary modality,

in addition to RGB features. Based on these ideas, we utilized semantic and depth in-

formation for long-term visual localization at the pose verification step. We represented

semantic masks and depth maps with self-supervised contrastive learning (SimCLR). We

conducted several experiments to evaluate the performance difference between the RGB-

only model and the pose verification with semantic and depth features. Experimental

results showed that pose verification with semantic, depth, and multi-modal (semantic

and depth together) features improved the RGB-only model performance. Depth fea-

tures contributed the least, and we obtained similar visual localization performance with

semantic and multi-modal features.
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Other modalities (e.g. surface normal) can also be represented with self-supervised

learning. In the last chapter, we tried to utilize normal surface normal in addition to the

semantic features, but the visual localization performance of the RGB-only model did

not improve. We did get similar semantic information in urban areas where buildings are

generally surrounded by roads. In such areas, semantic information is not distinctive, and

the contribution of semantic information was little to no.

As future work, utilizing semantic and depth information at the pose verification

step can be evaluated on more challenging and bigger datasets, such as the ones that

consist of day and night images, where drastic illumination changes occur, or images that

are taken under foggy or snowy weather.
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Grill, J.-B., F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,

B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko

(2020). Bootstrap your own latent: A new approach to self-supervised learning.

Guerrero-Viu, J., C. Fernandez-Labrador, C. Demonceaux, and J. J. Guerrero (2020).

What’s in my room? object recognition on indoor panoramic images. In 2020 IEEE

International Conference on Robotics and Automation (ICRA), pp. 567–573. IEEE.

Hansen, P. and B. Browning (2015). Omnidirectional visual place recognition using rota-

tion invariant sequence matching. Technical Report.

He, K., H. Fan, Y. Wu, S. Xie, and R. Girshick (2020). Momentum contrast for unsu-

pervised visual representation learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition.

Hoffman, J., S. Gupta, and T. Darrell (2016). Learning with side information through

modality hallucination. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 826–834.

Huang, J.-Y., S.-H. Lee, and C.-H. Tsai (2016). A fast image matching technique for

the panoramic-based localization. In IEEE/ACIS 15th International Conference on

Computer and Information Science (ICIS).

Iscen, A., G. Tolias, Y. Avrithis, T. Furon, and O. Chum (2017). Panorama to panorama

matching for location recognition. In ACM International Conference on Multimedia

Retrieval (ICMR).

Jégou, H., F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid (2011). Ag-
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