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The structural, magnetic, vibrational and electronic properties of single layer aluminum oxide
(AlO2) are investigated by performing state-of-the-art first-principles calculations. Total energy
optimization and phonon calculations reveal that aluminum oxide forms a distorted octahedral
structure (1T′-AlO2) in its single layer limit. It is also shown that surfaces of 1T′-AlO2 display
magnetic behavior originating from the O atoms. While the ferromagnetic (FM) state is the most
favorable magnetic order for 1T′-AlO2, transformation to a dynamically stable antiferromagnetic
(AFM) state upon a slight distortion in the crystal structure is also possible. It is also shown
that Raman activities (350-400 cm−1) obtained from the vibrational spectrum can be utilized to
distinguish the possible magnetic phases of the crystal structure. Electronically, both FM and the
AFM phases are semiconductors with an indirect band gap and they can form a type-III vdW
heterojunction with graphene-like ultra-thin materials. Moreover, it is predicted that presence of
oxygen defects that inevitably occur during synthesis and production do not alter the magnetic state,
even at high vacancy density. Apparently, ultra-thin 1T′-AlO2 with its stable crystal structure,
semiconducting nature and robust magnetic state is a quite promising material for nanoscale device
applications.

I. INTRODUCTION

Compounds formed by the combination of aluminum and oxygen atoms have found their use in many areas of
technology. Among the possible compounds, Alumina (Al2O3) with its high melting point,[1] self-healing crystal
structure,[2] high dielectric constant[3] and insulating properties[4, 5] have been widely used in electronic device
applications. While bulk Al2O3 is a suitable material for high-throughput anti-reflective polymer lenses[6], its thin
forms have been shown to improve the spin-polarized electron tunneling in magnetic tunnel junctions.[7] In addition,
successful synthesis of its nanowire,[8] quantum dot[9] and thin two-dimensional[10, 11] forms have also been reported
so far.
Aluminum oxides can also be stabilized in the form of aluminates (AlxOy). It was demonstrated that thin layers of

Lanthanum-based aluminates can serve as a source of two-dimensional electron liquid exhibiting electric-field-tunable
superconductivity.[12] It was also shown that using ultrathin Lithium aluminate nanoflakes as a polar additive, hav-
ing an enormous active surface area to immobilize the lithium polysulfides, leads to extremely stable cycling perfor-
mance in batteries.[13] Furthermore, one-dimensional forms of strontium-europium-based aluminates are luminescent
nanoribbons that can function as both light generators and waveguides, and therefore they are suitable materials for
miniaturized photonic circuitry.[14] In addition to experimental studies, stabilization of single layer α-AlO displaying
indirect semiconducting behavior was also predicted theoretically.[15]
At the point where nanotechnology has reached, it is necessary to further miniaturize materials, and nowadays,

there is also a great need for atomically thin building blocks of all kinds. Following the first successful synthesis of
graphene,[16] its unusual properties such as high thermal conductivity,[17] semi-metallic behavior,[18] and ultra-high
mechanical strength[19] have been demonstrated in a short period of time. Studies in the following years have revealed
that ultra-thin stable phases of other graphene-like materials may also exist. Among them especially h-BN with its
insulating properties,[20] MoS2 with its thickness-dependent electronic and optical properties,[21, 22] ReS2 for its
in-plane anisotropic and thickness-independent properties[23] and silicene with its ultra-high carrier mobility[24] have
been the most prominent ones.
Although many graphene-like materials have been successfully synthesized to date, very few of them show magnetic

properties. Recently, it has been found that the itinerant ferromagnetism persists in 2D Fe3GeTe2 down to the
monolayer with an out-of-plane magnetocrystalline anisotropy.[25] In addition, intrinsic ferromagnetic half-metallic
behavior of monolayer square CrBr2 and the strain-dependent phase transitions were predicted using first-principles
calculations.[26] Very recently, growth of iron chloride (FeCl2) films on Au(111) and graphite with atomic thickness by
molecular-beam epitaxy (MBE) technique has also been reported.[27] Besides, we showed that the magnetic ground
state of single layer FeCl2 crystal can be modulated by the point defects and structural stability was maintained
despite the heavy defect doping.[28]
In this work, we investigated the ultra-thin graphene-like crystal structure of aluminum oxide (AlO2) by means of ab-

initio calculations. The rest of the paper is organized as follows; computational methodology is given in Sec. II. Possible
magnetic phases and their vibrational characteristics are investigated in Sec. III A. In addition, electronic properties
of AFM and FM phases and their possible vdW type heterostructures are investigated in Sec.III B. Formation of
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TABLE I. For the different magnetic phases of 1T′-AlO2: lattice constants for rectangular unit cell (a and b), thickness (h),
the amount of donated (received) electron (ρAl and ρO), the work function (φ), calculated cohesive energy for per atom (ECoh),
the band gap value (EGap), total magnetic moment for per the formula, (µ), in-plane stiffness along zigzag direction, (Czz),
in-plane stiffness along armchair direction, (Carm), Poisson ratio along zigzag direction, (υzz), Poisson ratio along armchair
direction, (υarm), calculated hole effective mass (m∗

h), calculated electron effective mass (m∗

e) where m0 is the free electron
mass.

a b h ρAl ρO φ ECoh EGap µ Czz Carm υzz υarm m∗

h m∗

e

(Å) (Å) (Å) (e-) (e-) (eV) (eV/atom) (eV) (µB) (N/m) (N/m) - - (m0) (m0)

FM 3.05 4.84 1.77 0.54 7.23 8.01 5.57 0.63 1 126 138 0.40 0.36 2.29 1.33
AFM 3.06 4.82 1.78 0.54 7.23 7.96 5.56 1.18 0 108 123 0.33 0.37 1.20/18.34 8.52
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FIG. 1. (a) Energy versus lattice constant (a) of 2D 1T′-AlO2. Top views of the geometric structures of (b) FM and (c) AFM
state where blue and red atoms stand for Al and O, respectively. For 3D plot of magnetization charge densities minority and
majority states are shown by blue and yellow color.

single O vacancy and resulting modifications in electronic properties are given in Sec.III C. Finally, the conclusions
are presented in Sec.IV.

II. COMPUTATIONAL METHODOLOGY

For determination of optimized crystal structures and resulting electronic and magnetic characteristics of AlO2 first-
principles calculations were performed by using Vienna ab initio Simulation Package (VASP).[29–31] The exchange-
correlation potential was treated using the Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-
GGA).[32] The projector augmented wave (PAW) potentials were used as pseudo-potentials.[33] Van der Waals (vdW)
correction within the form of DFT-D2 method of Grimme is used for approximation of dispersion forces.[29] Bader
charge technique was used for determination of charge for each atom in the crystal structure.[34]
The kinetic energy cutoff and the convergence criteria for the total energy were set to 500 eV and 10−5 eV,

respectively. At least 18.2 Å vacuum spacing was inserted in order to avoid adjacent layer-layer interactions along
the vertical direction. For the structural optimization of the primitive unit cell, k-space was sampled by using 9×9×1
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FIG. 2. Phonon band structure of 1T′-AlO2 calculated for (a) the FM and (b) the AFM states. (c) The Raman activity
spectrum of the zone-centered phonon modes. (d) The representative images of Raman active phonon vibrations.

k-point mesh, and doubled to 18×18×1 in density of states calculations. Structural optimizations were carried on until
the pressure is in between ±1 kB along the each lattice direction. The cohesive energy per atom was calculated using
the equation ECoh = 1

ntot

[nAlEAl+nOEO −ESL] where nAl (nO) is the number of Al (O) atoms in the system, while
EAl and EO refer to individual energies of Al and O atoms, respectively. ESL is the total energy of the corresponding
single layer and ntot is the total number of atoms per unit cell.
The vibrational properties were investigated via PHONOPY code, which uses the small displacement method to

generate the force constant matrix.[35] In addition, the zone-centered phonon frequencies and the corresponding
off-resonant Raman activities were calculated using the finite-difference method. Basically, in a Raman experiment
instantly scattered photons, whose dispersion with respect to a shift in frequency gives the Raman spectrum, are
collected. The treatment of Raman activities of each vibration is based on Placzek’s classical theory of polarizability
in which the activity of a Raman active mode is proportional to the square of the term, |êsRêi| where ês and êi stand
for the polarization vectors of the scattered and the incident light, respectively. In addition, R represents the Raman
tensor whose elements are the derivatives of the polarizability of the material with respect to the phonon normal
modes. Notably, for a Raman active phonon mode some of the elements of Raman tensor are non-zero.

III. RESULTS

A. Structural, Magnetic and Vibrational Properties

Characteristic vibrational, electronic and magnetic fingerprints of any material are directly determined by its
crystal symmetry. Therefore, a reliable prediction of the ground state crystal structure is of importance. Total
energy optimization calculations show that (see Fig.1(a)) the AlO2 crystal has a six-atom rectangular unit cell with
the lattice parameter of a (b) is 3.05 (4.84) Å. Here the optimized structure of AlO2 displays slightly distorted 1T
hexagonal lattice (namely 1T′-AlO2), where the central Al subplane is surrounded by an octahedral type arrangement
of O atoms. It worths mentioning that 1T′-AlO2 displays ferromagnetic (FM) ground state with 1 µB per formula.
Magnetic charge density distribution (ρ↑-ρ↓) shown in Fig. 1(b) reveals that the ferromagnetic behavior stems from pz

orbitals of O atoms. However, there is also a possible antiferromagnetic (AFM) phase of the crystal structure which
is ∼40 meV less preferable than the FM one. Here cohesive energy of FM and AFM phase is calculated to be 5.57
and 5.56 eV/atom, respectively. In the AFM phase, that emerges as a result of the neighboring oxygens approaching
each other, ferromagnetically ordered AlO2 chains are formed and adjacent chains prefer to be antiferromagnetically
ordered with each other. Compared to the FM phase, as a result of closer packing of AlO2 chains in the AFM phase,
there is a narrowing in the b lattice parameter and a slight increase in the layer thickness (defined as the distance
between the neighboring subplanes of O atoms).
Bader charge analysis shows that crystal lattice is constructed with Al-O bonds having ionic character, where the

charge donation from Al to each O is 1.23 e- for both FM and AFM states. Additionally, the work functions of the FM
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and AFM phases are calculated to be 8.01 and 7.96 eV, respectively, which are significantly higher than that of single
layer structures of MoS2 (6.11 eV), WS2 (5.89 eV), MoSe2 (5.49 eV) and h-BN (4.7 eV).[36, 37] Apparently, such
materials having high work function are desirable for their use as charge extraction and injection layers in electronic
and optical devices in order to improve device capability.[38, 39]
For a discussion on resistance of the 2D crystal structure distortion under mechanical load, determination of in-plane

stiffness (C) and the Poisson ratio (υ) is of importance. Due to its anisotropic nature, the 1T′ phase of AlO2 possesses
anisotropy by means of its elastic constants. Here, the two elastic constants along with the zigzag (zz) and armchair
(arm) directions are calculated by using the equations[40] Czz = 1

C22

[C11C22 − C2
12] and Carm = 1

C11

[C11C22 − C2
12].

Accordingly, in-plane stiffness values of FM and AFM phases are found to be 126(138) and 108(123) N/m for FM
and AFM phases along the zz(arm) directions, respectively. Compared with the single layer Al2O3 (48 N/m)[11],
AlO2 seems to be a much stiffer material. On the other hand, as compared to single layer of AlN(116 N/m)[41], AlO2

phases are found to possess similar mechanical features in terms of the in-plane stiffness.
The Poisson ratio, which is defined as the ratio of the transverse contraction strain to the longitudinal extension,

describes the mechanical response of a material to the external load. The Poisson ratio through the zz and arm
directions are calculated by using the equations[40] υzz = C12

C22

and υarm = C12

C11

. It is known that for a stable linear

elastic material, the Poisson ratio varies between -1.0 and 0.5.[42] Here, the Poisson ratios of FM (AFM) phases of
1T′-AlO2 are calculated to be 0.40 (0.33) along zz direction and 0.36 (0.37) along arm direction. These values indicate
the soft nature of AlO2 when compared with those of the well-known 2D structures, such as graphene and MoS2, for
which the Poisson ratios are reported to be 0.19 and 0.26, respectively.[19, 43]
The dynamical stability of 1T′-AlO2 in FM and AFM states is also examined through their phonon band dispersions,

which are obtained by utilizing the small displacement method. Phonon dispersions depicted in Fig.2 show that all
the phonon branches have real eigenfrequencies through the whole Brillouin zone and therefore both FM and AFM
phases of 1T′-AlO2 crystal are dynamically stable. It is seen that distorted crystal structure of 6-atom primitive unit
cell of the crystal structure leads to presence of 18 phonon branches. The highest frequency optical phonon branch
is found at 622 (625) cm−1 for the FM (AFM) order which is lower than those single layer AlN (∼ 900cm−1), Al2O3

(1500cm−1), and α-AlO (∼ 650cm−1).[11, 15, 41]
For further discussion of vibrational characteristics, zone-centered first-order off-resonant Raman spectra of FM and

AFM phases are also calculated. As shown in Fig. 2(c-d), The Raman active modes labeled by numbers I-II, which
have the frequencies of 374.8 (401) cm−1 for FM (AFM) states, are attributed to the shear-like vibration of upper and
lower O atoms towards the Al atoms. In addition, the phonon modes III-IV are calculated to be at the frequencies
477 (482) cm−1 for FM (AFM) states and are shown to arise from the shear-like vibration of O atoms parallel to the
Al atoms. Moreover, the Raman active modes, V-VI having frequencies 582 (583) cm−1 for FM (AFM), represent the
out-of-plane vibration of upper and lower O atoms with respect to each other. While the two magnetic phases are
distinguishable in terms of the frequencies of the Raman active modes, the calculated activities reveal their distinct
features. The Raman activities of the most prominent modes (I-II) are found to be the same while the activities of
III and V in the FM phase are found to be lower as compared to that of IV and VI in the AFM state.

B. Electronic Properties

Electronic characteristics of FM and AFM phases of single layer 1T′-AlO2 are investigated through their electronic
band dispersions and the band decomposed charge densities. As shown in Fig. 3(a), FM phase of AlO2 is a ferro-
magnetic semiconductor with an indirect bandgap of 0.63 eV. As a consequence of the large splitting in majority and
minority states valence band maximum (VBM) and conduction band minimum (CBM) of the FM phase is composed
of the same spin type. While the edge of the VBM reside at the Y-Γ point, the CBM is located at the Brillouin zone
center. It is also seen that both VBM and CBM band edge states have the same tilted O-pz character. As shown in
Table I, the hole effective mass at the vicinity of VBM is found to be 2.29 m0, while the electron effective mass at the
CBM is calculated to be 1.33 m0 (where m0 is electron mass).
In addition, AFM phase displays indirect semiconducting behavior with 1.18 eV bandgap where the VBM and CBM

are located at the X and the Γ of the BZ, respectively. It appears that VBM states stem from orbitals perpendicularly
oriented to the crystal surface leads to the formation of quite flat bands around the X point and therefore relatively
large hole effective mass for the AFM state. Moreover, the hole effective mass is found to be anisotropic and two
different values are calculated along with the Γ-X and X-S directions (1.20 and 18.34 m0, respectively) while the
electron effective mass at the vicinity of the CBM is found to be 8.52 m0. Apparently, lattice contraction originating
from the formation of AlO2 chains leads to the much heavier charge carriers in the AFM phase.
Considering a nano device in which a 2D ultra-thin material is used as the building block, it is clear that within

the device architecture the material will form interfaces with other materials that can be thought as heterostructures.
Here, we also investigate the vertical vdW heterostructures of 1T′-AlO2 phases constructed with the 2D crystals such
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FIG. 3. Electronic band structure of 1T′-AlO2 for (a) FM and (b) AFM phase. Dashed and solid lines show the majority and
minority spin states which are degenerate in AFM state. (c) Comparative band alignments of 1T′-AlO2 phases with MoS2,
WSe2, InO and AlN single layers.

as MoS2, WSe2, InO, and AlN. As presented in Fig. 3(c), as a consequence of their high photoelectric threshold,
energies of VBM and the CBM of both phases of 1T′AlO2 are much lower than that of the other materials considered.
Therefore, it can deduced that either FM- or AFM-phase of 1T′-AlO2 form type-III heterojunction with single layers
of MoS2, WSe2, InO, and AlN. Obviously, such type-III vdW heterostructures might exhibit a negative differential
resistance phenomenon due to the existence of band-to-band tunneling as the electrons have a tendency to tunnel
from VBM of these crystal structures to the CBM of 1T′AlO2.[44–46]
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FIG. 4. The atomic structure, magnetization charge density and corresponding electronic density of states of single oxygen
defected 1T′-AlO2 in (a-b) FM and (c-d) AFM phase. The missing atom is shown by dashed red circle.

C. Effect of Oxygen Vacancies

Whether the synthesis technique is a top-down or bottom-up approach, the formation of point defects in two-
dimensional crystals is inevitable. In order to investigate the effect of atomic vacancies on the electronic properties
of single layer 1T′-AlO2, the formation of a single O vacancy, VO, is considered and the defected crystal structure is
fully optimized. In order to simulate the single O vacancy, a supercell structure containing 96 atoms is considered
and an O atom is removed from the layer. After full optimization of the O-vacant single layer of AlO2, it is shown
that structural deformations around the defect site are compensated by the local distortion of three Al atoms which
tend to form Al-dimers as the hole gets larger via O vacancy. While the Al-Al distance is 2.84 Å in the host lattice,
that of between the Al atoms around the defect site is 2.75 Å as a result of the structural distortion. On the other
hand, by the formation of the vacancy, O atoms around the defect site move towards the Al atoms surrounding the
defect site and thus, the Al-O bond lengths get smaller. It is also found that the formation of VO shrinks the lattice
by 0.4% along the x-direction while it locally enlarges the host lattice by 0.3%.
The defect formation energy is calculated using the relation; Ef = [Etot(def)+EO]−Etot(pristine) where Etot(def)

and Etot represents the total energies of the defected and the pristine single layers, respectively while EO stands for
the single O energy. Here, the calculated defect formation energy of VO is 6.24 eV which indicates that it is very
difficult to subsequently create an O vacancy in the single layer 1T′-AlO2.
Moreover, magnetic ground state calculations reveal that FM interaction is still energetically more favorable in

defected 1T′-AlO2. It is found that the formation of O vacancy leads to a decrease in the total magnetic moment
of the structure (2µB). Apparently, the creation of a single O vacancy induces local magnetic moments which are
altered by the deviations from the nominal stoichiometry. The effect of single O vacancy on the electronic properties
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of 1T′-AlO2 is investigated in terms of the total electronic density of states. Apparently, O vacancy induces midgap
states that result in a transition to the metallic state in the oxygen vacant domains of the 1T′-AlO2 crystal. As shown
in Fig. 4(c), similar to the FM phase, the presence of the oxygen vacancy does not cause a remarkable change in
the magnetic ground state when the crystal structure is in the AFM phase. It is also seen that while the magnetic
order of the AFM remains unchanged, a magnetic moment of 2µB per oxygen occurs because the balance between the
sublattice atoms is disturbed due to the missing oxygen atom. Additionally, as shown Fig. 4(d) formation of oxygen
vacancies also leads to a semiconductor-to-metal transition at the vicinity of defect domains.

IV. CONCLUSIONS

In conclusion, the first-principles calculations were performed on single layer AlO2 and its structural, magnetic,
vibrational and the electronic properties were investigated. Total energy optimizations revealed that single layer 1T′-
AlO2 possesses two distinct magnetic phases, namely FM and AFM. While the FM phase of 1T′-AlO2 was found to
be energetically more favorable over the AFM one, both phases are dynamically stable and they are distinguishable in
terms of their Raman spectra. Electronically, both FM- and AFM-1T′-AlO2 structures were shown to be semiconduc-
tors with an indirect band gap. It is also seen that 1T′-AlO2 crystals form a broken-gap type-III heterojunction when
combined with other graphene-like ultra-thin materials. Moreover, we predicted that presence of oxygen vacancies
yields semiconductor-to-metal transition without altering the magnetic order in the crystal structure. The ultra-thin
1T′-AlO2 with its semiconducting nature and robust magnetic ground state unaffected by the presence of structural
defects is a promising material for nanoscale device applications.
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