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ABSTRACT

We study the hybrid type of rank one perturbations in R2 and R3, where the perturbation supported by a circle/sphere is considered together
with the delta potential supported by a point outside of the circle/sphere. The construction of a self-adjoint Hamiltonian operator associated
with formal expressions for the rank one perturbation supported by a circle and by a point is explicitly given. Bound state energies and scat-
tering properties for each problem are also studied. Finally, we consider the rank one perturbation supported by a deformed circle/sphere and
show that the first order change in bound state energies under small deformations of the circle/sphere has a simple geometric interpretation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090401

I. INTRODUCTION
Dirac delta potentials, also known as point interactions, in general, are among the exactly solvable classes of potentials studied from both

physical and mathematical points of view. A detailed review of the subject together with their mathematically rigorous constructions and
spectral properties is given in the monographs.1,2

Extension of point delta potentials to the ones whose support is a sphere—known as the delta shell potentials—is formally pre-
sented in some quantum mechanics textbooks,3–5 but its first precise mathematical treatment is given in Ref. 6 to the best of our
knowledge. In that work, an additional delta potential supported by a point at the center of the sphere is also discussed in the zero
angular momentum sector l = 0. Such circular/spherical singular interactions, also considered to be models for circular/spherical quan-
tum billiards, have been recently studied analytically and numerically.7,8 Their higher-dimensional generalization has been worked
out in the literature from the point of view of differential equations9 using the partial wave analysis. In addition to these spe-
cific geometrical objects as the supports of delta functions, more complicated contact-type interactions are studied by considering
some regular curves or surfaces. The Schrödinger operators or Hamiltonians for such a class of singular interactions are formally
given by

HΓ = H0 − λδ(⋅ − Γ), (1.1)

HΣ = H0 − λδ(⋅ − Σ), (1.2)

respectively. Here, H0 is the free Hamiltonian. There are various ways to define the above Hamiltonians in a mathematically proper way. If
the curve is planar, similarly if the surface is embedded in R3 (with some regularity conditions on the curves/surfaces), one way is to interpret
these interactions expressed by the following quadratic forms ∫R2 ∣∇ψ∣2d2x − λ∫Γ ∣ψ∣

2ds and ∫R3 ∣∇ψ∣2d3x − λ∫Σ ∣ψ∣
2dA, respectively, and then

prove that there exist associated self-adjoint Hamiltonians.10–14 Other ways are to impose proper boundary conditions (continuity and jump
discontinuity conditions at Γ; see Remark 4.1 in Refs. 10 and 15) or employ scaled potentials16 or direct construction of the resolvent10,17,18
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(see also Ref. 19, where the support of the delta potential is a curve in three dimensions). The main physical motivation for studying such
systems is to give a realistic model for trapped electrons due to interfaces between two different semiconductor materials, which are known
as leaky graphs, curves, or surfaces in the literature.20 Small geometric deformations of the support of delta potentials recently attract some
attention,17 where the area preserving small deformations can give rise to isolated eigenvalues. Furthermore, the scattering theory for delta-
potentials supported by locally deformed planes is constructed in Ref. 23. The generalizations to delta functions supported on curves and
surfaces embedded in manifolds are presented in Refs. 21 and 22.

The aim of this paper is to address the issue of the bound state and scattering spectrum of the free Hamiltonian operators perturbed by
the following rank one perturbations:

(i) Rank one perturbation supported by a circle and by a point outside of the circle in R2.
(ii) Rank one perturbation supported by a sphere and by a point outside of the sphere in R3.

(iii) Rank one perturbation supported by a small deformation in the normal direction of a circle in R2.
(iv) Rank one perturbation supported by a small deformation in the normal direction of a sphere in R3.

Actually, such perturbations are singular rank one perturbations in the sense described in Ref. 2, but we will simply call them rank one
perturbations throughout this paper. For instance, the Hamiltonian for the first problem is formally given by

H0 − λ1 ∣a⟩⟨a∣ − λ2 ∣Γ⟩⟨Γ∣, (1.3)

where a ∈ R2, Γ is the circle centered at the origin with radius R in R2, and λ1, λ2 > 0. In this paper, we shall call discrete eigenvalues of the
Hamiltonian below its essential spectrum the bound state energies, which is a common terminology in physics.

It is well known that the resolvent of such singular interactions (delta potential supported by a point, a curve, or a surface) can be
expressed by some explicit formulas involving the resolvent of the free Hamiltonian. These expressions are commonly known as Krein’s
formula in the literature.1,2,20 To find the resolvent of the above hybrid type of potentials, we essentially follow an approach given in
Ref. 24. For this, we first regularize the ill-defined interaction terms by finite rank projections acting on Hilbert space and then find the
resolvent associated with these regularized Hamiltonians. Then, considering the strong limit of these resolvents, as we remove the regulariza-
tion parameter, allows us to define a self-adjoint operator corresponding to their limits thanks to the Trotter–Kato theorem. If the support
of the interaction is co-dimension two or three, then it is well-known that we need to renormalize the problem (see, e.g., Refs. 25 and 26
for the point interactions in two and three dimensions). In this case, we need to choose the coupling constants or strengths as functions of
the regularization parameter such that the limit converges. It is important to emphasize that the second term in Hamiltonian (1.3) defines
a (singular) rank one perturbation supported on the circle. It turns out that the Hamiltonian in Eq. (1.3) corresponds to the zero angu-
lar momentum sector of delta potentials supported on a circle. (Similar models together with some regular potentials have been studied in
Ref. 27 using quasi boundary triples. For an alternative treatment of scattering applied to the co-existing point and line defects, see also the
recent work.28)

For the sake of brevity, we only present the construction of the self-adjoint operator associated with the first system (i) and skip
the technical details of the construction of the self-adjoint Hamiltonian associated with the other systems (ii)–(iv) since the idea of con-
struction is essentially the same. One of the main results of this paper is to give explicitly the bound state energies and differential cross
sections for systems (i)–(ii). The physical motivation of considering systems in (i) and (ii) is based on the extension of previously leaky
curves/surfaces described in Ref. 20 to the case where impurities in the semiconductor can be modeled by point delta interactions in the
low energy approximation (we restrict the problem to the l = 0 sector) for simplicity. Moreover, we show that the change in the bound
state energies under small deformations in the normal directions of the circle/sphere can be similarly studied to the first order in the
deformation. An interesting observation here is that the first order perturbative calculation of the bound state energy gives the same
result as the rank one perturbation supported by a circle/sphere with a radius increased by the average of the deformation. The method
developed in this paper is in fact rather general and can also be applied to rank one perturbation supported by curves and surfaces,
in principle.

This paper is organized as follows. In Sec. II, we explicitly show that there exists a self-adjoint operator associated with the initial formal
Hamiltonian where the interaction contains a rank one perturbation supported by a circle centered at the origin and a point outside of this
circle (point being inside does not present any difficulties; it can equally be considered). Then, we briefly discuss the bound state analysis and
scattering solutions. Section III deals with the bound state spectrum and scattering states for the rank one perturbation supported by a sphere
centered at the origin and a point outside of the sphere. Moreover, we study how the small deformations of the circle and sphere in the normal
directions change the bound state spectrum and scattering properties in Secs. IV and V. Finally, Appendix is devoted to the Trotter–Kato
theorem, which is needed to prove the self-adjointness of the Hamiltonian.

Notation. In our formulas, we often use the Dirac notation for the inner products; however, this notation is particularly designed for self-
adjoint operators (often, the distinction between symmetric and self-adjoint is ignored in physics literature). Here, we need to keep in mind that
the operators appearing in our expressions always act on the right, unless specified otherwise. We shall also use notations ∗ and † for the complex
conjugation of a complex number and an adjoint of an operator, respectively. The Dirac delta function supported by a point a is defined on
the test functions ψ by ⟨δa∣ψ⟩ = ⟨a∣ψ⟩ ∶= ψ(a). Similarly, the Dirac delta function δΓ supported by the curve Γ and the Dirac delta function δΣ
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supported by the surface Σ are defined by their action on ψ,29

⟨δΓ ∣ψ⟩ = ⟨Γ∣ψ⟩ ∶=
1

L(Γ)∫Γ
ψ ds, (1.4)

⟨δΣ ∣ψ⟩ = ⟨Σ∣ψ⟩ ∶=
1

A(Σ)∫Σ
ψ dA, (1.5)

where ds is the integration element over curve Γ and dA is the integration element over the surface. For the circle Γ = S1, ds = Rdθ and L(Γ) = 2πR.
For the sphere Σ = S2, dA = R2 sin θdθdϕ and A(Σ) = 4πR2. The volume elements in Rn are denoted by dnr. The formal expressions ∣a⟩⟨a∣, ∣Γ⟩⟨Γ∣,
and ∣Σ⟩⟨Σ∣ are also written as ⟨δa, ⋅⟩δa, ⟨δΓ, ⋅⟩δΓ, and ⟨δΣ, ⋅⟩δΣ, respectively, in the literature.

II. RANK ONE PERTURBATION SUPPORTED BY A CIRCLE AND A POINT IN R2

We first consider the rank one perturbation supported by a circle and a point, given formally in Dirac’s notation by

HaΓ = H0 − λ1 ∣a⟩⟨a∣ − λ2 ∣Γ⟩⟨Γ∣, (2.1)

where Γ is the circle centered at the origin with radius R and D(H0) = H2
(R2
). We shall use units such that h = 2m = 1 for simplicity. In order

to make sense of the above expression, we first regularize the Hamiltonian HaΓ by heat kernel Kϵ/2 in the following way:

HaΓ, ϵ = H0 − λ1(ϵ)∣aϵ⟩⟨aϵ∣ − λ2 ∣Γϵ⟩⟨Γϵ∣, (2.2)

where

⟨aϵ∣ψ⟩ = ∫
R2

Kϵ/2(r, a)ψ(r) d2r, (2.3)

⟨Γϵ∣ψ⟩ =
1

L(S1)
∫

S1
(∫

R2
Kϵ/2(r, γ(s))ψ(r) d2r) ds. (2.4)

Here, ϵ > 0 is the regularization parameter or cutoff and γ(s) = (R cos(s/R), R sin(s/R)) is the parameterization of the circle S1. The explicit
form of the heat kernel in Rn is given by30

Kϵ/2(r, r′) =
1

(2πϵ)n/2 e−∣r−r′ ∣2/2ϵ. (2.5)

The strength or coupling constant of the point Dirac delta interaction, denoted by λ1, is considered to be a function of ϵ > 0, whose explicit
form will be determined later. In this way, HaΓ,ϵ becomes a finite rank perturbation of the free Hamiltonian so that it is self-adjoint on the
domain of H0 thanks to the Kato–Rellich theorem.31 This choice of the regularization is based on the fact that the heat kernel converges to the
Dirac delta function as ϵ→ 0+ in the distributional sense. This is an especially natural choice if we consider delta potentials in manifolds,32,33

and here, it is not only useful for the regularization but also allows us to approximate a singular interaction supported by a circle with a more
regular one. It is important to emphasize that expressions (2.3) and (2.4) are well defined for functions ψ in H2

(R2
) using the Cauchy–Schwarz

inequality and reproducing property of the heat kernel ∫R2 Kϵ/2(r1, r)Kϵ/2(r, r2)d2r = Kϵ(r1, r2). For simplicity, let us define ∣ f1(ϵ)⟩ = ∣aϵ⟩ and
∣ f2(ϵ)⟩ = ∣Γϵ⟩. Then, we have the following first result.

Proposition 2.1. Let λ1(ϵ) be a continuous function of ϵ, which converges to zero as ϵ→ 0+, and λ2 > 0 be an arbitrary positive real number.
The resolvent of the regularized Hamiltonian

HaΓ, ϵ = H0 −
2

∑
i=1
λi(ϵ)∣ fi(ϵ)⟩⟨ fi(ϵ)∣ (2.6)

is given by

R(ϵ, E) = R0(E) + R0(E)
2

∑
i,j=1
∣ fi(ϵ)⟩(Φ−1

(ϵ, E))
ij
⟨ fj(ϵ)∣R0(E), (2.7)
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where

Φij(ϵ, E) =
δij

λi(ϵ)
− ⟨fi(ϵ)∣R0(E)∣ fj(ϵ)⟩, (2.8)

and its resolvent set is given by ρ(HaΓ,ϵ) = {E ∈ ρ(H0) : det(Φ(ϵ, E)) ≠ 0 for all ϵ > 0}.

Remark 2.2. As emphasized in the Introduction, here, Dirac’s notation ⟨ f̃ i(ϵ)∣R0(E)∣ f̃ i(ϵ)⟩ should be interpreted as ⟨ f̃ i(ϵ)∣R0(E) f̃ i(ϵ)⟩.

Proof. To find the resolvent of the regularized Hamiltonian (2.2), we need to solve the inhomogenous Schrödinger equation

(HaΓ, ϵ − E)∣ψ⟩ = ∣ρ⟩ (2.9)

for a given function ⟨r∣ρ⟩ = ρ(r) ∈ L2
(R2
). The existence of the solution is guaranteed by the basic self-adjointness criteria Ran(HaΓ, ϵ − E)

= L2
(R2
) for at least one E in the upper half-plane and one in the lower half-plane.31 It is useful to express the interaction as the sum of the

rescaled projection operators,

HaΓ, ϵ = H0 −
2

∑
j=1
∣ f̃ j(ϵ)⟩⟨ f̃ j(ϵ)∣, (2.10)

where ∣ f̃ i(ϵ)⟩ =
√
λi(ϵ)∣ fi(ϵ)⟩ in L2

(R2
). Then, applying the free resolvent R0(E) = (H0 − E)−1 defined on the resolvent set ρ(H0) =

C/[0,∞) to Eq. (2.9), we find

∣ψ⟩ = R0(E)∣ρ⟩ + R0(E)
2

∑
j=1
∣ f̃ j(ϵ)⟩⟨ f̃ j(ϵ)∣ψ⟩. (2.11)

The right-hand side of this expression involves unknown complex numbers ⟨ f̃ j(ϵ)∣ψ⟩. In order to find them, we project this equation onto
⟨ f̃ i(ϵ)∣ and isolate the j = ith term in the summation to get the following matrix equation:

2

∑
j=1
Φ̃ij(ϵ, E)⟨ f̃ j(ϵ)∣ψ⟩ = ⟨ f̃ i(ϵ)∣R0(E)∣ρ⟩, (2.12)

where

Φ̃ij(ϵ, E) =
⎧⎪⎪
⎨
⎪⎪⎩

1 − ⟨ f̃ i(ϵ)∣R0(E)∣ f̃ i(ϵ)⟩, i = j,
−⟨ f̃ i(ϵ)∣R0(E)∣ f̃ j(ϵ)⟩, i ≠ j.

(2.13)

Assume that the matrix Φ̃ is invertible for some subset of the free resolvent set to be determined below. Then, the solution of (2.12) exists and
is unique. Substituting this solution into (2.11), we get

∣ψ⟩ = R0(E)∣ρ⟩ + R0(E)
2

∑
i,j=1
∣ f̃ i⟩(Φ̃−1

(ϵ, E))
ij
⟨ f̃ j ∣R0(E)∣ρ⟩. (2.14)

Then, the resolvent of the regularized Hamiltonian can be directly read from the above result,

R(ϵ, E) = R0(E) + R0(E)
2

∑
i,j=1
∣ f̃ i(ϵ)⟩(Φ̃−1

(ϵ, E))
ij
⟨ f̃ j(ϵ)∣R0(E). (2.15)

It is convenient to express the above sum in the following way:

2

∑
i,j=1
∣ f̃ i(ϵ)⟩(Φ̃−1

(ϵ, E))
ij
⟨ f̃ j(ϵ)∣ = Tr(F̃(ϵ)Φ̃−1

(ϵ, E)), (2.16)

where we have defined the matrix F̃ij ∶= ∣ f̃ i⟩⟨ f̃ j ∣. If we define the diagonal matrix Dij(ϵ) ∶=
√
λi(ϵ)δij, we can decompose F̃ = DFD, where

Fij = ∣ fi⟩⟨ fj∣. This helps us to write the summation term (2.16) as Tr(F̃Φ̃−1
) = Tr(DFDΦ̃−1

) = Tr(FDΦ̃−1D) = Tr(FΦ−1
), where Φ is related
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to Φ̃ by a similarity transformation Φ = D−1Φ̃D−1 and given by

Φij(ϵ, E) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
λi(ϵ)

− ⟨fi(ϵ)∣R0(E)∣ fi(ϵ)⟩, i = j,

−⟨fi(ϵ)∣R0(E)∣ fj(ϵ)⟩, i ≠ j.
(2.17)

Hence, we explicitly find the resolvent formula for the regularized Hamiltonian (2.7).
We now show that E ∈ ρ(H0) lies in the resolvent set for (HaΓ,ϵ − E) if and only if the matrix Φ(ϵ, E) is invertible. To prove this, we first

assume that Φ(ϵ, E) is invertible for some values of E ∈ ρ(H0). From the triangle inequality, we have

∥R(ϵ, E)∣ψ⟩∥ ≤ ∥R0(E)∣ψ⟩∥ + 4 max
1≤i,j≤2

∣(Φ−1
(ϵ, E))

ij
∣ ∣⟨fj(ϵ)∣R0(E)∣ψ⟩∣ ∥R0(E)∣ fi(ϵ)⟩∥. (2.18)

We need to show that the right-hand side of this inequality is a bounded function of E where E must lie in ρ(H0) and satisfy detΦ(ϵ, E) ≠ 0.
Moreover, this bound must also be a regular function of ϵ since we will consider the limiting case as ϵ→ 0+ by appropriately choosing λ1(ϵ),
as we will show later on.

A direct application of the Cauchy–Schwarz inequality to the inner product in the right-hand side of the above inequality does not yield
a regular estimate in ϵ since the norm of the function fi(ϵ) is not regular. For this reason, we may think that the adjoint of the bounded free
resolvent operator acts on the first entry in the inner product and then apply the Cauchy–Schwarz inequality,

∣⟨fi(ϵ)∣R0(E)∣ψ⟩∣ ≤ ∥R0(E∗)∣ fi(ϵ)⟩∥ ∥ψ∥ < ∞, (2.19)

where we have used the fact that R†
0(E) = R0(E∗). Since E is inside the resolvent set of H0, the expression ∥R0(E)∣ fi(ϵ)⟩∥ and the inner product

on the right-hand side of inequality (2.18) are finite as long as ∣ fi(ϵ)⟩ lies in L2
(R2
). However, we must also show that their bounds must be

regular in ϵ as ϵ→ 0+. It is easy to see that

∥R0(E∗)∣aϵ⟩∥2
= ∫

R2

∣⟨p∣aϵ⟩∣2

(p2 − E)(p2 − E∗)
d2p
(2π)2 . (2.20)

Using (2.3) and the explicit form of the heat kernel (2.5), we find that

⟨p∣aϵ⟩ =
e−ip⋅a

2πϵ ∫R2
e−ip⋅(r−a)e−

∣r−a∣2
2ϵ d2r. (2.21)

By writing the integral in polar coordinates and using the integral representation of the Bessel function of the first kind J0(x),

J0(x) =
1

2π∫
2π

0
e−ix cos θ dθ, (2.22)

and the formula34

∫

∞

0
xν+1e−αx2

Jν(βx) dx =
βν

(2α)ν+1 e−
β2

4α , (2.23)

we get

⟨p∣aϵ⟩ = e−ip⋅a e−ϵp
2
/2. (2.24)

Substituting this result into (2.20) yields the following bound:

∥R0(E∗)∣aϵ⟩∥2
≤

1
2π∫

∞

0

e−ϵp
2
p

∣p4 − 2p2Re(E) + (Re(E)2 + Im(E)2)∣
dp. (2.25)
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Except for the positive real E axis, the above integral converges and one can estimate its upper bound if Re(E) < 0 by

∥R0(E∗)∣aϵ⟩∥2
≤

1
2π∫

∞

0

e−ϵp
2
p

p4 + A
dp, (2.26)

where A = Re(E)2
+ Im(E)2. Thanks to the result (3.354) given in Ref. 34, we can evaluate the above integral so that

∥R0(E∗)∣aϵ⟩∥2
≤

1
4π
√

A
(ci(ϵ

√
A) sin(ϵ

√
A) − si(ϵ

√
A) cos(ϵ

√
A)), (2.27)

where si(x) = −∫
∞

x
sin t

t dt is the sine integral function and ci(x) = −∫
∞

x
cos t

t dt is the cosine integral function. It is easy to see that this bound
is a regular function of ϵ for all A ≠ 0.

If Re(E) > 0,

∥R0(E∗)∣aϵ⟩∥2
=

1
4π∫

∞

0

e−ϵu

(u − Re(E))2 + Im(E)2 du

=
1

4π∫
0

−Re(E)

e−ϵ(v+Re(E))

v2 + Im(E)2 dv +
1

4π∫
∞

0

e−ϵ(v+Re(E))

v2 + Im(E)2 dv

≤
1

4π∫
0

−Re(E)

1
v2 + Im(E)2 dv +

1
4π∫

∞

0

e−ϵv

v2 + Im(E)2 dv, (2.28)

which are finite and regular in ϵ by the same reason given above. We can similarly show that the norm

∥R0(E∗)∣Γϵ⟩∥2
= ∫

R2

∣⟨p∣Γϵ⟩∣2

(p2 − E)(p2 − E∗)
d2p
(2π)2 (2.29)

is a bounded function of E on ρ(H0) and regular in ϵ. For this, we need to find

⟨p∣Γϵ⟩ =
1
L∫R2

eip⋅r
(∫

S1
Kϵ/2(r, γ(s)) ds) d2r. (2.30)

Using the explicit expression of the heat kernel (2.5) and the integral representation of the modified Bessel function of the first kind,35

I0(x) =
1

2π∫
2π

0
ex cos θdθ, (2.31)

we get

∫
S1

Kϵ/2(r, γ(s)) ds =
R
ϵ

e−
(r2+R2)

2ϵ I0(
R
ϵ

r). (2.32)

Then, from the result (6.633) in Ref. 34,

∫

∞

0
x e−αx2

Iν(βx)Jν(γx) dx =
1

2α
e
(β2−γ2)

4α Jν(
βγ
2α
), (2.33)

we obtain

⟨p∣Γϵ⟩ = e−
ϵp2

2 J0(pR). (2.34)

Combining all these results yield

∥R0(E∗)∣Γϵ⟩∥2
=

1
2π∫

∞

0

p e−ϵp
2
J2

0(pR)
(p2 − E)(p2 − E∗)

dp. (2.35)

Since J2
0(pR) ≤ 1, we obtain the same form of estimates (2.27) and (2.28) as above. All these imply that R(ϵ, E) is bounded if E ∈ ρ(H0) and

satisfies det(Φ(ϵ, E)) ≠ 0; hence, E ∈ ρ(HaΓ,ϵ).
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Conversely, if E ∈ ρ(HaΓ,ϵ), then det(Φ(ϵ, E)) ≠ 0. For this, suppose that E ∈ C/[0,∞) satisfies det(Φ(ϵ, E)) = 0. We need to show that
E ∉ ρ(HaΓ,ϵ) or E lies in the spectrum of HaΓ,ϵ or, in particular, E is an eigenvalue of HaΓ,ϵ,

HaΓ, ϵ ∣ψ⟩ = E∣ψ⟩, (2.36)

for some non-zero ∣ψ⟩ ∈ L2
(R2
). The above eigenvalue problem for the regularized Hamiltonian is equivalent to the problem of finding

non-trivial solution ⟨ f̃ j(ϵ)∣ψ⟩ of Eq. (2.12) with ∣ρ⟩ = ∣0⟩,

2

∑
j=1
Φ̃ij(ϵ, E)⟨ f̃ j(ϵ)∣ψ⟩ = 0. (2.37)

Since Eq. (2.37) is derived from the eigenvalue equation (2.36) of the regularized Hamiltonian, the set of E in (2.36) must also satisfy Eq. (2.37).
To prove the converse, we first need to show that ⟨ fi(ϵ)∣R0(E)∣ fj(ϵ)⟩ ≠ 0 for all i, j. Otherwise, Φ̃ would be an identity matrix, which is clearly
invertible. Then, Eq. (2.37) implies that ⟨ f̃ j(ϵ)∣ψ⟩ = 0 for all j. Expanding explicitly the form of the matrix Φ̃ in (2.37) and using the above
fact, it follows that E must satisfy the eigenvalue equation for the regularized Hamiltonian. Hence, we have a non-trivial solution of the above
linear equation (2.37) for ⟨ f̃ j(ϵ)∣ψ⟩ with some ∣ψ⟩ ∈ L2

(R2
) if and only if det Φ̃(ϵ, E) = detΦ(ϵ, E) = 0. ◻

Now, we consider the limiting case as ϵ→ 0 to properly define the initial formal Hamiltonian. For this reason, we choose λ1(ϵ) in such a
way that the regularized Hamiltonian has a reasonable and non-trivial limit as we remove the cut-off parameter, that is, as ϵ→ 0+.

Proposition 2.3. Let Φij(E) = limϵ→0+ Φij(ϵ, E) and E be a real negative number that satisfies detΦ(E) ≠ 0. Then, the resolvent R(ϵ, E) of
the regularized Hamiltonian HaΓ,ϵ converges strongly to the expression R(E), given by

R(E) ∶= R0(E) + R0(E)
2

∑
i,j=1
∣ fi⟩(Φ−1

(E))
ij
⟨ fj ∣R0(E), (2.38)

as ϵ→ 0+. Here, for j = 1, ⟨a∣R0(E) is an integral operator whose kernel is given by R0(a, x∣E), and for j = 2, ⟨Σ∣R0(E) is an integral operator
whose kernel is given by 1

L(Γ)∫ΓR0(x, γ(s)∣E) ds.

Proof. We begin the proof by calculating the matrix elements ofΦ(ϵ, E) in the limit ϵ→ 0+ for negative real values of E. The off-diagonal
elements of the matrixΦ(ϵ, E) for E = −ν2 with ν > 0 in the limit ϵ→ 0+ can be directly calculated using the Lebesgue dominated convergence
theorem and the integral34

∫

∞

0
Jξ(ax)Jξ(bx)

x
x2 + c2 dx =

⎧⎪⎪
⎨
⎪⎪⎩

Kξ(ac)Iξ(bc), 0 < b < a,

Kξ(bc)Iξ(ac), 0 < a < b,
(2.39)

for Re(ξ) > −1, so that

lim
ϵ→0+

Φ12(ϵ,−ν2
) = lim

ϵ→0+
Φ21(ϵ,−ν2

) = − lim
ϵ→0+
⟨aϵ∣R0(−ν2

)∣Γϵ⟩

= −
1

2π
K0(aν)I0(Rν). (2.40)

The limit of the second diagonal term of the matrixΦ(ϵ,−ν2
) as ϵ→ 0+ can be evaluated easily thanks to the Lebesgue dominated convergence

theorem, so we have

lim
ϵ→0+

Φ22(ϵ,−ν2
) =

1
λ2
− ⟨Γϵ∣R0(ϵ,−ν2

)∣Γϵ⟩ =
1
λ2
− lim
ϵ→0+∫R2

∣⟨p∣Γϵ⟩∣2

p2 + ν2
d2p
(2π)2

=
1
λ2
− −

1
2π

I0(νR)K0(νR), (2.41)

where we have used result (2.34) and the continuity of integral (2.39) in the limiting case a→ b. The ϵ→ 0+ limit of the first diagonal element
of the matrix Φ(ϵ, E) in (2.17) includes the following term:

lim
ϵ→0
⟨aϵ∣R0(−ν2

)∣aϵ⟩ = ∫
∞

0
Kt(a, a)e−tν2

dt. (2.42)

This is divergent due to the singular behavior of the heat kernel around t = 0 in two and three dimensions. In line with the well-known idea
of renormalization in field theory models, we introduce a new parameter μ > 0 and make the following choice of the coupling constant λ1 as
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a function of the regularization parameter ϵ:
1

λ1(ϵ)
∶= ∫

∞

0
Kt+ϵ(a, a)e−tμ2

dt. (2.43)

After substituting (2.43) for the first diagonal element of the matrix (2.17) for E = −ν2 and then taking the limit as ϵ→ 0+, we get

lim
ϵ→0+

Φ11(ϵ,−ν2
) =

1
4π

log(ν2
/μ2
). (2.44)

Hence, we denote the limit of the matrix Φ(ϵ,−ν2
) as Φ(−ν2

), and it is given by

Φ(−ν2
) ∶=

⎛
⎜
⎜
⎜
⎝

1
4π

log(
ν2

μ2 ) −
1

2π
K0(νa)I0(νR)

−
1

2π
K0(νa)I0(νR)

1
λ2
−

1
2π

K0(νR)I0(νR)

⎞
⎟
⎟
⎟
⎠

. (2.45)

The formal limit of resolvent (2.7) of the regularized Hamiltonian as we take ϵ→ 0+ is given by (2.38) for E = −ν2, which satisfies detΦ(E) ≠ 0,
and the matrix Φ is given by (2.45). Here, ∣ f1⟩ = ∣a⟩ and ∣ f2⟩ = ∣Γ⟩.

It remains to show that the above regularized resolvent (2.7) converges strongly to expression (2.38) as ϵ→ 0+ for real negative values of
E that satisfy detΦ(E) ≠ 0, that is,

lim
ϵ→0+
∥(R(ϵ, E) − R(E))∣f ⟩∥ = 0 (2.46)

for any ∣f ⟩ ∈ L2
(R2
) and E ∈ ρ(HaΓ,ϵ). Since E is assumed to satisfy detΦ(E) ≠ 0, we conclude that detΦ(ϵ, E) ≠ 0 for sufficiently small ϵ > 0.

Then, if we show that
lim
ϵ→0+
∥R0(E)∣ fi(ϵ)⟩ − R0(E)∣ fi⟩∥ = 0, (2.47)

the strong convergence of the resolvent easily follows. The above condition is easy to check once we write it explicitly,

lim
ϵ→0+
∥R0(E)∣ fi(ϵ)⟩ − R0(E)∣ fi⟩∥

2
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∫
R2
(1 + e−ϵp

2

− 2e−ϵp
2
/2
)

1
(p2 − E)2

d2p
(2π)2 for i = 1,

∫
R2
(1 + e−ϵp

2

− 2e−ϵp
2
/2
)

J2
0(pR)
(p2 − E)2

d2p
(2π)2 for i = 2,

(2.48)

where we have used Eqs. (2.24) and (2.34). Then, the Lebesgue dominated convergence theorem implies that this limit is zero. ◻

Remark 2.4. Applying the method of renormalization to find well-defined results for point Dirac delta potentials in two and three
dimensions is actually well known; see, e.g., Refs. 25 and 26.

Remark 2.5. If the point delta term is absent in the model, the resulting resolvent associated with H0 − λ2∣Γ⟩⟨Γ∣ is simply given by

R(E) = R0(E) + R0(E)∣Γ⟩Φ−1
(E)⟨Γ∣R0(E), (2.49)

where the function Φ is given by Eq. (2.41). Since the poles of the resolvent determine the bound state energies, zeroes of the function

Φ(E = −ν2
) =

1
λ2
−

1
2π

K0(νR)I0(νR) (2.50)

are the bound state energies of this system. This equation is exactly the same as Eq. (2.4) given in Ref. 15 written for the zero angular momentum
sector up to rescaling of the coupling constant [α = λ2/(2πR)]. In Ref. 15, all angular momentum sectors are taken into account, whereas the
second interaction term that we consider here is the rank one perturbation associated with the delta function supported on a circle.

It is now natural to ask whether the above limiting expression is the resolvent of some self-adjoint operator. This can be answered
affirmatively by following the ideas given in Ref. 1 or in Ref. 36. Here, we essentially follow a similar argument presented in Ref. 24 developed
for the point interactions in the plane.

Lemma 2.1. Let E be a real negative number that satisfies detΦ(E) ≠ 0. Then, R(E) is invertible.
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Proof. We first show that the limit operator R(E) for the real negative values of E that satisfies detΦ(E) ≠ 0 is invertible (equivalently,
Ker(R(E)) = {∣0⟩}). Suppose that R(E)∣ f ⟩ = ∣0⟩ for some ∣f ⟩ ∈ L2

(R2
). From the explicit expression of the operator R(E) given by (2.38) and

writing the equation in momentum representation, we find

f̂ (p) = −
2

∑
i,j=1

⟨p∣ fi⟩

p2 − E
[Φ−1

(E)]
ij∫R2
⟨fj ∣R0(E)∣q⟩⟨q∣f ⟩

d2q
(2π)2 . (2.51)

By the Cauchy–Schwarz inequality, we have

∫
R2
⟨a∣R0(E)∣q⟩⟨q∣ψ⟩

d2q
(2π)2 = ∫R2

eiq⋅a

q2 − E
f (q)

d2q
(2π)2

≤ (∫

∞

0

q
(q2 − E)2

dq
2π
)

1/2

∥f ∥ < ∞ (2.52)

and

∫
R2
⟨Γ∣R0(E)∣q⟩⟨q∣ψ⟩

d2q
(2π)2 = ∫R2

J0(qR)
q2 − E

f (q)
d2q
(2π)2

≤ (∫

∞

0

q
(q2 − E)2

dq
2π
)

1/2

∥f ∥ < ∞. (2.53)

With bounds (2.52) and (2.53), we show that

f̂ (p) = −[e−ip⋅a
[Φ−1

(E)]
11

C1 + e−ip⋅a
[Φ−1

(E)]
12

C2 + J0(pR)[Φ−1
(E)]

21
C2 + J0(pR)[Φ−1

(E)]
22

C1], (2.54)

where C1, C2 are finite real numbers and E is a negative real number that satisfies detΦ(E) ≠ 0. However, this solution f̂ (p) cannot be in
L2
(R2
) unless ∣ f ⟩ = ∣0⟩. ◻

This lemma allows us to define an operator H depending on the parameter μ via

R(E) ∶= (HaΓ(μ) − E)−1 (2.55)

for the above values of E. From now on, we suppress the dependence of the Hamiltonian on the parameter μ for simplicity.

Theorem 2.6. For complex E not in detΦ(E) = 0 and [0,∞), the resolvent R(ϵ, E) of regularized Hamiltonian HaΓ,ϵ converges strongly to
R(E). Furthermore, there exists a self-adjoint operator HaΓ such that R(E) = (HaΓ − E)−1.

Proof. Using the above preliminary steps together with a version of the Trotter–Kato theorem, quoted in Appendix (see also Ref. 24), it
follows that the limit R(ϵ, E) converges strongly to R(E) as ϵ→ 0+ for all complex numbers E except for the interval [0,∞) and for the values
satisfying detΦ(E) ≠ 0. Moreover, there exists a self-adjoint operator HaΓ such that R(E) = (HaΓ − E)−1 and the matrix Φ for complex values
are defined through its analytic continuation, given by

Φ(k2
) =

⎛
⎜
⎜
⎜
⎝

1
4π

log(−
k2

μ2 ) −
1

2π
K0(−ika)I0(−ikR)

−
1

2π
K0(−ika)I0(−ikR)

1
λ2
−

1
2π

K0(−ikR)I0(−ikR)

⎞
⎟
⎟
⎟
⎠

, (2.56)

where we parameterize E = k2 with unambiguous square root k with Im(k) > 0 for convenience. We shall call this matrix as principal matrix
from now on. ◻

Theorem 2.7. The domain of the self-adjoint operator HaΓ defined by its resolvent R(E) = (HaΓ − E)−1 consists of all functions ψ(r) in the
following form for r ∈ R2

/{a ∪ Γ}:

ψ(r) = ϕk(r) +
2

∑
i,j=1

Fi(r)[Φ−1
(k2
)]

ij
⟨fj ∣ϕk⟩, (2.57)

J. Math. Phys. 63, 123505 (2022); doi: 10.1063/5.0090401 63, 123505-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where Fi(r) = ⟨r∣R0(k2
)∣ fi⟩, given explicitly by

F1(r) = ⟨r∣R0(k2
)∣ f1⟩ = ⟨r∣R0(k2

)∣a⟩ = ∫
R2

eip⋅(r−a)

p2 − k2
d2p
(2π)2 =

i
4

H(1)0 (k∣r − a∣), (2.58)

F2(r) = ⟨r∣R0(k2
)∣ f2⟩ = ⟨r∣R0(k2

)∣Γ⟩ = ∫
R2

eip⋅r

p2 − k2 J0(pR)
d2p
(2π)2

= ∫

∞

0

pJ0(pr)J0(pR)
p2 − k2

dp
(2π)

=
i
4
(H(1)0 (kr)J0(kR)θ(R − r) +H(1)0 (kR)J0(kr)θ(r − R)). (2.59)

Here, ϕk ∈ D(H0) = H2
(R2
) and k2

∈ ρ(H) with Im(k) > 0. The above decomposition is unique and (HaΓ − k2
)∣ψ⟩ = (H0 − k2

)∣ϕk⟩. Moreover,
suppose that D(HaΓ) ∋ ψ(r) = 0 in an open set U ⊆ R2. Then, HaΓψ(r) = 0 for all r ∈ U.

Proof. Suppose E = k2 with unambiguous square root k, where Im(k) > 0 and ϕk(r) ∈ D(H0) = H2
(R2
). Thanks to the self-adjointness

of H, we have

D(HaΓ) = (HaΓ − k2
)
−1L2
(R2
) = (HaΓ − k2

)
−1
(H0 − k2

)D(H0). (2.60)

Then, using the explicit form of the resolvent formula (2.38), we have the following characterization of the domain of HaΓ:

D(HaΓ) =
⎛

⎝
1 +

2

∑
i,j=1

R0(k2
)∣ fi⟩[Φ−1

(k2
)]

ij
⟨ fj ∣
⎞

⎠
D(H0). (2.61)

This means that the domain of HaΓ consists of all functions of the following form:

ψ(r) = ϕk(r) +
2

∑
i,j=1
⟨r∣R0(k2

)∣ fi⟩[Φ−1
(k2
)]

ij
⟨fj ∣ϕk⟩, (2.62)

where ⟨a∣ϕk⟩ = ϕk(a), ⟨Γ∣ϕk⟩ =
1
L∫S1 ϕk(γ(s)) ds. Note that the point evaluation and integral over the curve here for ϕk ∈ H2

(R2
) are well

defined thanks to the Sobolev embedding theorem H2
(Rn
) ↪ Cl

(Rn
) with the condition 2 > l + n

2 ,30,37 that is, there exist unique continuous
representatives for (equivalence classes of) functions in H2

(Rn
) and we use this representative for ϕk here. We have evaluated the last integral

by the analytic continuation of result (2.39) and used the fact that K0(z) = iπ
2 H(1)0 (e

iπ/2z) and I0(z) = e−iπ/2J0(e
iπ/2z) for −π < arg(z) < π/2,35

where H(1)0 is the zeroth order Hankel function of the first kind. Hence, we obtain

ψ(r) = ϕk(r) +
i
4

H(1)0 (k∣r − a∣)([Φ−1
(k2
)]

11
ϕk(a) + [Φ

−1
(k2
)]

12
(

1
L∫S1

ϕk(γ(s)) ds))

+
i
4
(H(1)0 (kr)J0(kR)θ(R − r) +H(1)0 (kR)J0(kr)θ(r − R))

× ([Φ−1
(k2
)]

21
ϕk(a) + [Φ

−1
(k2
)]

22
(

1
L∫S1

ϕk(γ(s)) ds)). (2.63)

Indeed, this decomposition (2.63) is unique. For this, let us set ψ(r) = 0 identically. Then, it follows from the above decomposition that

ϕk(r) = −
i
4

H(1)0 (k∣r − a∣)([Φ−1
(k2
)]

11
ϕk(a) + [Φ

−1
(k2
)]

12
(

1
L∫S1

ϕk(γ(s)) ds))

−
i
4
(H(1)0 (kr)J0(kR)θ(R − r) +H(1)0 (kR)J0(kr)θ(r − R))

× ([Φ−1
(k2
)]

21
ϕk(a) + [Φ

−1
(k2
)]

22
(

1
L∫S1

ϕk(γ(s)) ds)). (2.64)
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Since the functions H(1)0 (k∣r − a∣) and H(1)0 (kr)J0(kR)θ(R − r) +H(1)0 (kR)J0(kr)θ(r − R) in each term are discontinuous at r = a and
r = R, the function ϕk(r) can only be continuous if

[Φ−1
(k2
)]

11
ϕk(a) + [Φ

−1
(k2
)]

12
(

1
L∫S1

ϕk(γ(s)) ds) = 0, (2.65)

[Φ−1
(k2
)]

21
ϕk(a) + [Φ

−1
(k2
)]

22
(

1
L∫S1

ϕk(γ(s)) ds) = 0. (2.66)

Therefore, these conditions imply that decomposition (2.63) is unique. It is also straightforward to show that (HaΓ − k2
)
−1
(H0 − k2

)∣ϕk⟩ = ∣ψ⟩,
which is equivalent to (HaΓ − k2

)∣ψ⟩ = (H0 − k2
)∣ϕk⟩.

After showing the existence of a self-adjoint operator HaΓ associated with the resolvent R(E), we may not guarantee that HaΓ must be
of the form H0 + V with some operator V . Nevertheless, we can show that HaΓ is a local operator in the sense that ψ(r) = 0 in an open set
U ⊆ R2 implies that HaΓψ(r) = ⟨r∣HaΓ∣ψ⟩ = 0. For this, let ψ(r) = 0 for all r ∈ U. Then, the function ϕk(r) for r ∈ U is given by Eq. (2.64).
If U ∩ {a ∪ Γ} = ∅, the action of H0 − k2 onto the function ϕk(r) vanishes. Since H(1)0 is the Green’s function of the Helmholtz equation in
two dimensions and J0(kr) satisfies the Helmholtz equation, we get HaΓψ(r) = k2ψ(r) + (H0 − k2

)ϕk(r) = 0 in U. For the case a ∈ U, the
continuity of the function ϕk at r = a from Eq. (2.64) implies that [Φ−1

(k2
)]

11
ϕk(a) + [Φ−1

(k2
)]

12
( 1

L∫S1ϕk(γ(s)) ds) = 0. Similarly, if Γ ∈ U,
the term [Φ−1

(k2
)]

21
ϕk(a) + [Φ−1

(k2
)]

22
( 1

L∫S1ϕk(γ(s)) ds)must vanish. Hence, we obtain HaΓψ(r) = 0 in U. ◻

A. Bound state analysis

Theorem 2.8. Let a ∈ R2 and Γ be the circle centered at the origin with radius R < a. Then, the essential spectrum of HaΓ associated
with the point delta and the rank one perturbation supported by Γ coincides with the essential spectrum of the free Hamiltonian, i.e., σess(HaΓ)

= σess(H0) = [0,∞). Furthermore, the point spectrum σp(HaΓ) of HaΓ lies in the negative real axis and HaΓ has at least one and at most two
negative eigenvalues (counting multiplicity). Let Re(k) = 0 and Im(k) > 0. Then, k2

∈ σp(HaΓ) if and only if detΦ(k2
) = 0, and multiplicity

(degeneracy) of the eigenvalue k2 is the same as the multiplicity of this zero eigenvalue of the matrix Φ(k2
). Moreover, let E = −ν2

∗ < 0 be an
eigenvalue of HaΓ; then, the eigenfunction ∣ψev⟩ associated with this eigenvalue is given by

ψev(r) =
2

∑
i=1
⟨r∣R0(−ν2

∗)∣ fi⟩Ai,

where (A1, A2) is an eigenvector corresponding to a zero eigenvalue of Φ(−ν2
∗).

Proof. It is well known that the point spectrum σp of an operator HaΓ consists of the set of complex numbers E such that Ker(HaΓ − E)
≠ {∣0⟩}. From the explicit expression of the resolvent R(k2

) given by (2.38) for E = k2, the poles of the resolvent for k2
< 0 can only appear if

the matrix Φ(k2
) is singular, that is, if

detΦ(k2
) = 0. (2.67)

Let ∣ψev⟩ be an eigenvector of HaΓ with the corresponding eigenvalue Eev = k2
ev , i.e.,

HaΓ ∣ψev⟩ = Eev ∣ψev⟩, (2.68)

where ∣ψev⟩ ∈ D(HaΓ). Since any function in the domain of HaΓ can be decomposed according to Theorem 2.7, we have

∣ψev⟩ = ∣ϕk⟩ +
2

∑
i,j=1

R0(k2
)∣ fi⟩[Φ−1

(k2
)]

ij
⟨fj ∣ϕk⟩ (2.69)

for some k2
∈ ρ(HaΓ) with Im(k) > 0 and ∣ϕk⟩ ∈ D(H0). Actually, Theorem 2.7 provides us another relation between ∣ψev⟩ and ∣ϕk⟩,

∣ϕk⟩ = (k
2
ev − k2

)R0(k2
)∣ψev⟩. (2.70)
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Substituting Eq. (2.69) into (2.70), we find

∣ϕk⟩ = (k
2
ev − k2

)
⎛

⎝
R0(k2

)∣ϕk⟩ +
2

∑
i,j=1

R0(k2
)R0(k2

)∣ fi⟩[Φ−1
(k2
)]

ij
⟨fj ∣ϕk⟩

⎞

⎠
. (2.71)

By acting H0 − k2 on this vector, it yields

(H0 − k2
ev)∣ϕk⟩ = (k

2
ev − k2

)
2

∑
i,j=1

R0(k2
)∣ fi⟩[Φ−1

(k2
)]

ij
⟨fj ∣ϕk⟩. (2.72)

The solution of this in the momentum representation is given by

ϕ̂k(p) =
(k2

ev − k2
)

p2 − k2
ev

2

∑
i,j=1

⟨p∣ fi⟩

p2 − k2 [Φ
−1
(k2
)]

ij
⟨fj ∣ϕk⟩. (2.73)

If Eev = k2
ev ≥ 0, then this equation has no nontrivial solution since ϕ̂k(p) cannot lie in L2

(R2
) unless it is identically zero. This implies

that ∣ϕk⟩ ∉ L2
(R2
) thanks to the Plancherel theorem. Hence, ψev(r) = 0 for all r ∈ R2, which proves that there is no non-negative

eigenvalue of HaΓ.
However, if Eev = k2

ev = −ν2
∗ < 0 with ν > 0, it is legitimate to apply R0(−ν2

∗) on each side of Eq. (2.72) and get

∣ϕk⟩ = (R0(−ν2
∗) − R0(k2

))
2

∑
i,j=1
∣ fi⟩[Φ−1

(k2
)]

ij
⟨fj ∣ϕk⟩. (2.74)

Inserting this solution into (2.69), we formally find the eigenfunctions of HaΓ,

ψev(r) =
2

∑
i,j=1
⟨r∣R0(−ν2

∗)∣ fi⟩[Φ−1
(k2
)]

ij
⟨fj ∣ϕk⟩. (2.75)

This formal solution includes unknown factors ⟨ fj∣ϕk⟩. In order to find them, we first note that the principal matrix Φ can also be expressed
purely in terms of the free resolvent kernels, that is,

Φ(k2
) =
⎛
⎜
⎝

⟨f1 ∣(R0(−μ2
) − R0(k2

))∣ f1⟩ −⟨f1 ∣R0(k2
)∣ f2⟩

−⟨f2 ∣R0(k2
)∣ f1⟩

1
λ2
− ⟨f2 ∣R0(k2

)∣ f2⟩

⎞
⎟
⎠

. (2.76)

Then, it is easy to check that

⟨fi ∣(R0(−ν2
∗) − R0(k2

))∣ fj⟩ = Φij(k2
) −Φij(−ν2

∗). (2.77)

Using this result in (2.74) after taking the projection onto ⟨ fj′ ∣, we obtain

2

∑
j=1
Φij(−ν2

∗)Aj = 0, (2.78)

where Aj = ∑
2
i=1[Φ

−1
(k2
)]

ji
⟨fi ∣ϕk⟩. This equation tells us that Ai is an eigenvector of the matrix Φ(−ν2

∗) with a zero eigenvalue.
Conversely, let us suppose that

∣ψev⟩ =
2

∑
i=1

R0(−ν2
∗)∣ fi⟩Ai, (2.79)
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where Ai = ∑
2
j=1[Φ

−1
(k2
)]

ij
⟨fj ∣ϕk⟩ is an eigenvector of Φ(−ν2

∗) with eigenvalue zero. We will show that ∣ψev⟩ ∈ D(HaΓ) and

HaΓ ∣ψev⟩ = −ν2
∗∣ψev⟩. First, we need to show that ∣ψev⟩ ∈ D(HaΓ). For this, we define

∣ϕk⟩ = (k
2
ev − k2

)R0(k2
)∣ψev⟩ (2.80)

for some k2
∈ ρ(HaΓ) with Im(k) > 0. Then, it follows easily that ∣ϕk⟩ ∈ D(H0), and inserting (2.79) into (2.80) and using the first resolvent

identity for the free resolvent, we obtain

∣ϕk⟩ = (R0(−ν2
∗) − R0(k2

))
2

∑
i=1
∣ fi⟩Ai (2.81)

or

∣ϕk⟩ + R0(k2
)

2

∑
i=1
∣ fi⟩Ai = ∣ψev⟩. (2.82)

Moreover, by taking the projection of (2.80) onto ⟨ fj∣ and using the above result (2.77), ∣ψev⟩ ∈ D(HaΓ) by Theorem 2.7. Finally, using the
result (H0 − k2

)∣ϕk⟩ = (HaΓ − k2
)∣ψev⟩ in Theorem 2.7 for the eigenstate ∣ψev⟩ and Eq. (2.80), we deduce that

HaΓ ∣ψev⟩ = (H0 − k2
)∣ϕk⟩ + k2

∣ψev⟩ = −ν2
∗∣ψev⟩. (2.83)

It is useful to express condition (2.67) in terms of a real positive parameter ν, defined by ν = −ik > 0. Then, the solutions of the equation
detΦ(−ν2

) = 0 determine the point spectrum of HaΓ or bound state spectrum of HaΓ. However, finding the roots of Eq. (2.67) is analytically
not possible. Nevertheless, we may obtain some information about the bound states as follows. First, suppose that the principal matrix Φ has
an eigenvector A associated with the eigenvalue ω,

ΦA = ωA. (2.84)

The eigenvalues can be explicitly calculated,

ω1(ν) =
1

4πλ

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2π + λ log(
ν
μ
) − λI0(νR)K0(νR) −

⎡
⎢
⎢
⎢
⎢
⎣

λ2I2
0(νR)(4K2

0(νa) + K2
0(νR))

+ (λ log(
ν
μ
) − 2π)

2

+ 2λI0(νR)K0(νR)(λ log(
ν
μ
) − 2π)

⎤
⎥
⎥
⎥
⎥
⎦

1/2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(2.85)

and

ω2(ν) =
1

4πλ

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2π + λ log(
ν
μ
) − λI0(νR)K0(νR) +

⎡
⎢
⎢
⎢
⎢
⎣

λ2I2
0(νR)(4K2

0(νa) + K2
0(νR))

+ (λ log(
ν
μ
) − 2π)

2

+ 2λI0(νR)K0(νR)(λ log(
ν
μ
) − 2π)

⎤
⎥
⎥
⎥
⎥
⎦

1/2⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (2.86)

Finding zeroes of the determinant of the matrixΦ is equivalent to finding the zeroes of its eigenvalues. We now show that these are increasing
functions of ν by expressing the principal matrix Φ in its closed form. Suppose for simplicity that the eigenvectors A are normalized. We can
determine how the eigenvalues change with respect to ν according to the Feynman–Hellman theorem,38

∂ω
∂ν
= A∗T ∂Φ

∂ν
A, (2.87)

where ∗ and T denote the complex conjugation and transpose, respectively. Here, it is convenient to express the derivative of the principal
matrix in the following form:
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∂Φ11

∂ν
=

1
2πν

, (2.88)

∂Φ12

∂ν
=
∂Φ∗21

∂ν
= (2ν)∫

R2

eip⋅a

(p2 + ν2)2 J0(pR)
d2p
(2π)2 , (2.89)

∂Φ22

∂ν
= (2ν)∫

R2

J2
0(pR)
(p2 + ν2)2

d2p
(2π)2 , (2.90)

by taking the derivative of Φ under the integral sign thanks to the Lebesgue dominated convergence theorem. Then, one can show that

∂ω
∂ν
= (2ν)∫

R2
∣A1eip⋅a

+ A2J0(pR)∣
2 1
(p2 + ν2)2

d2p
(2π)2 > 0 (2.91)

for all ν > 0, that is, all the eigenvalues ω of the principal matrix Φ are strictly increasing functions of ν.
The solutions of (2.67) can also be considered as the zeroes of the eigenvalues of the principal matrix Φ, so all the bound state energies

can be found from the zeroes of the eigenvalues, say ν∗ , for which

E = −ν2
∗. (2.92)

The positivity condition (2.91) implies that there are at most two bound state energies since each eigenvalue can cross the ν axis only once.
The zero of the eigenvalue ω1 corresponds to the ground state energy. This bound state always exists for all values of the parameter since
limν→0+ω1 = −∞, and it is an increasing function of ν and positive for sufficiently large values of ν. However, the second eigenvalue ω2 may
not have any zeroes if it is not negative around ν = 0.

It follows from Weyl’s theorem39 that the essential spectra of HaΓ and H0 coincide, that is, σess(HaΓ) = σess(H0) = [0,∞) if we show
that R(E) − R0(E) is compact for some E ∈ ρ(HaΓ) ∩ ρ(H0). Note that we have R(E) − R0(E) given by an explicit formula (2.38). Here, Φij is
invertible for a sufficiently negative E∗ on the real axis, and all its eigenvalues become positive. Therefore,

R(E∗) − R0(E∗) = R0(E∗)
2

∑
i,j=1
∣ fi⟩Φ−1

ij ⟨ fj ∣R0(E∗) (2.93)

indeed becomes a finite rank operator. For this, note that the principal matrix has a spectral decomposition Φ−1
(E∗)

= ∑kω
−1
k (E∗)A

(k)
(E∗)A(k)∗(E∗), with A(k) representing the kth eigenvector of Φ(E) and ωk being the corresponding eigenvalue. All the

eigenvalues become positive for E∗ . We therefore need to observe that all the vectors

2

∑
i=1
ω−1/2

k (E∗)A(k)i R0(E∗)∣ fi⟩ (2.94)

for k = 1, 2 have a finite norm, as can be seen as follows:

∥
2

∑
i=1
ω−1/2

k (E∗)A(k)i R0(E∗)∣ fi⟩∥ ≤
2

∑
i=1
∣ω−1/2

k (E∗)A(k)i ∥∣R0(E∗)∣ fi⟩∥. (2.95)

Hence, we have shown that R(E) − R0(E) is a trace class operator, which is compact. ◻

Remark 2.9. Figure 1 shows how the eigenvalues change with respect to ν for the particular values of parameters. One can also numerically
calculate the bound state energies and plot them as a function of a and R, respectively, for the fixed given values of the parameters, as shown in
Figs. 2 and 3.

B. Stationary scattering problem
The stationary scattering problem for such singular potentials is well defined, that is, the wave operatorsΩ± exist and are complete thanks

to the Birman–Kuroda theorem.40 This theorem states that if the difference between the resolvent (H − E)−1 of the self-adjoint operator H
and the resolvent of the free self-adjoint Hamiltonian (H0 − E)−1, this difference being defined on their common resolvent set, is a trace class,
then wave operators exist and are complete. We have already shown above that R(E) − R0(E) is a trace class. Therefore, the wave operators
for defining scattering phenomena exist. Once we have well-defined wave operators, we can study physically measurable quantities (e.g., cross
section) of a scattering experiment by finding the scattering amplitudes. For this reason, we first need to determine the boundary values of the
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FIG. 1. Eigenvalues of the principal matrix Φ vs ν for λ = 10, μ = 1, R = 1, a = 2 units.

FIG. 2. Bound state energies vs a for λ = 10, R = 1, μ = 1 units. (a) Ground state energy vs a. (b) Excited state energy vs a.

FIG. 3. Bound state energies EB vs R for λ = 10, a = 5.1, μ = 1 units. (a) Ground state energy vs R. (b) Excited state energy vs R.

operator T(E) as E approaches to the positive real axis from above. This is accomplished from the explicit formula of the resolvent written on
the complex plane. For convenience, let E = Ek + iϵ where Ek = k2 with k > 0. The relation between the resolvent and operator T is given by41

R(E) = R0(E) − R0(E)T(E)R0(E). (2.96)

Then, we have the following result for the differential cross section.
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Theorem 2.10. The differential cross section for the rank one perturbation supported by a circle of radius R centered at the origin and by a
point at a outside of the circle is given by

dσ
dθ
= ∣ f (k→ k′)∣2 =

1
8πk
∣ei(k−k′)⋅a

(Φ−1
(Ek + i0))

11
+ J0(kR)(e−ik′ ⋅a

+ eik⋅a
)(Φ−1

(Ek + i0))
12

+ J2
0(kR)(Φ−1

(Ek + i0))
22
∣
2
, (2.97)

where Φ(Ek + i0) is defined by the analytic continuation of (2.56).

Proof. Since we have the explicit expression for resolvent (2.38) extended onto the complex plane, we can read off the boundary values
of operator T(E) on the positive real axis,

T(Ek + i0) = −
2

∑
i,j=1
∣ fi⟩(Φ−1

(Ek + i0))
ij
⟨ fj ∣, (2.98)

where

Φ(Ek + i0) =
⎛
⎜
⎜
⎜
⎝

1
2π
(−

iπ
2
+ log(

k
μ
)) −

i
4

H(1)0 (ka)J0(kR)

−
i
4

H(1)0 (ka)J0(kR)
1
λ2
−

i
4

H(1)0 (kR)J0(kR)

⎞
⎟
⎟
⎟
⎠

. (2.99)

Here, we have used K0(z) = iπ
2 H(1)0 (e

iπ/2z) and I0(z) = e−iπ/2J0(e
iπ/2z) for −π < arg(z) < π/2.35 The scattering amplitude denoted by f and

the boundary values of the operator T in two dimensions are related by

f (k→ k′) = −
1
4

√
2
πk
⟨k′∣T(Ek + i0)∣k⟩, (2.100)

where ∣k⟩ is the generalized Dirac ket vector and ∣k′∣ = ∣k∣. (We note that there is another choice for the scattering amplitude by ignoring the
factor

√
i/k to get some desirable properties;42 here, we use the conventional version.) Substituting the result (2.98) into

⟨k′∣T(Ek + i0)∣k⟩ = ∫
R2
∫

R2
eik⋅x−ik′ ⋅x′

⟨x′∣T(Ek + i0)∣x⟩ d2x d2x′ (2.101)

and using the integral representation of the Bessel function J0(x) given in (2.22), we find

⟨k′∣T(Ek + i0)∣k⟩ = ei(k−k′)⋅a
(Φ−1

(Ek + i0))
11
+ J0(kR)(e−ik′ ⋅a

+ eik⋅a
)(Φ−1

(Ek + i0))
12

+ J2
0(kR)(Φ−1

(Ek + i0))
22

, (2.102)

where (Φ−1
(Ek + i0))

ij
is the ijth element of the inverse of the matrix Φ(Ek + i0) given in Eq. (2.99). ◻

The differential cross section is plotted as a function of θ in Fig. 4. Here, we assume that the support of the point defect is at x = a without
loss of generality and θ is the angle between k′ and k chosen to be along the positive x axis. One can also plot the differential cross section
as a function of k for different choice of parameters, as shown in Figs. 5(a) and 5(b). The behavior near k = 0 of the differential cross section
is consistent with the fact that the differential cross section for two-dimensional low energy scatterings blows up with decreasing energy, as
emphasized in Ref. 43.

III. RANK ONE PERTURBATION SUPPORTED BY A SPHERE AND A POINT IN R3

In this section, we will consider the rank one perturbation supported by a sphere and by a point in three dimensions. Since all the
techniques and results are similar to the case discussed in Sec. II, we will summarize some results without giving detailed proofs.

The regularized Hamiltonian for this model is given by

HaΣ, ϵ = H0 − λ1(ϵ)∣aϵ⟩⟨aϵ∣ − λ2 ∣Σϵ⟩⟨Σϵ∣, (3.1)

where Σ is the sphere centered at the origin with radius R and
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FIG. 4. Differential cross section vs θ for k = 2, λ2 = 20, a = 5, R = 1, μ = 1 units.

FIG. 5. Differential cross section vs k. (a) Differential cross section vs k for θ = 0, λ2 = 20, a = 2, R = 1, μ = 10 units. (b) Differential cross section vs k for θ = 0, λ2 = 20,
a = 20, R = 1, μ = 10 units.

⟨aϵ∣ψ⟩ = ∫
R3

Kϵ/2(r, a)ψ(r) d3r, (3.2)

⟨Σϵ∣ψ⟩ =
1

A(S2)
∫

S2
(∫

R3
Kϵ/2(r, σ(θ,ϕ))ψ(r) d3r)dA. (3.3)

Here, σ : (0, 2π) × (0,π) → S2 is the local parameterization given by

σ(θ,ϕ) ∶= (R sin θ cos ϕ, R sin θ sin ϕ, R cos θ). (3.4)

Proceeding analogously to the previous construction of the resolvent for the circular defect accompanied by a point defect problem, we obtain
the resolvent essentially in the same form (2.38). In this case, the first diagonal element of the matrixΦ for E = −ν2 can be calculated similarly,

Φ11(−ν2
) = lim

ϵ→0+∫

∞

0
Kt+ϵ(a, a)(e−tμ2

− e−tν2

)dt =
(ν − μ)

4π
, (3.5)

by choosing the bare coupling constant λ1(ϵ) of the point interaction to be of the same type as (2.43) except that the heat kernel here is written
in three dimensions. Choosing the support of the point defect along the z axis, we find the off-diagonal matrix elements of Φ by going to
spherical coordinates and evaluating the radial part of the integral by the residue theorem,
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Φ12(−ν2
) = Φ21(−ν2

) = −⟨a∣R0(−ν2
)∣Σ⟩ = −∫

R3

eip⋅a

(p2 + ν2)

sin(pR)
pR

d3p
(2π)3

= −
1

4πνaR
e−νa sinh(νR), (3.6)

where we have used

⟨p∣Σ⟩ =
sin(pR)

pR
. (3.7)

Similarly,

Φ22(−ν2
) =

1
λ2
− ⟨Σ∣R0(−ν2

)∣Σ⟩ =
1
λ2
− ∫

R3

1
p2 + ν2

sin2
(pR)
(pR)2

d3 p
(2π)3

=
1
λ2
−

1
4πνR2 e−νR sinh(νR). (3.8)

The resolvent of the model is formally given by Eq. (2.38), where ∣ f2⟩ = ∣Σ⟩, and the matrix Φ can be defined on the complex plane by an
analytic continuation of the above expressions. It is easy to see that the matrix elements of above matrix look similar to our two-dimensional
version if we express its entries in terms of the Bessel functions using I1/2(z) =

√
2
πz sinh z and K1/2(z) =

√ π
2z e−z ,

Φ(−ν2
) =

⎛
⎜
⎜
⎝

1
4π
(ν − μ) −

1
4π
√

aR
K1/2(νa) I1/2(νR)

−
1

4π
√

aR
K1/2(νa) I1/2(νR)

1
λ2
−

1
4πR

K1/2(νR) I1/2(νR)

⎞
⎟
⎟
⎠

. (3.9)

A. Bound state problem
Bound state analysis of this problem is performed exactly in the same manner as in the case of rank one perturbation supported by a

circle and a point. For this reason, we are not going to derive the analogous expressions for the flow of the eigenvalues with respect to ν.
Positivity of the flow of eigenvalues equally holds in this case, so we conclude that there are at most two bound states (and at least one bound
state).

One can plot the eigenvalues as a function of ν for particular values of the parameters. As shown in Sec. II A, zeroes ν∗ of the eigenvalues
correspond to the bound state energies E = −ν2

∗. It is interesting to note that there is only one bound state if we choose the same values of the
parameters for the circular defect perturbed by a point defect problem, as shown in Fig. 6(a). The reason for this may be based on the fact
that particle has more freedom to escape from the spherical defect compared to the circular defect. If we increase the strength of the spherical
defect, the second bound state appears, as shown in Fig. 6(b).

One can find how the bound state energies change with respect to the parameters R and a by numerically solving the zeroes of the
eigenvalues ω1 and ω2. They are plotted in Figs. 7 and 8. By following the same line of arguments, we have the following theorem.

FIG. 6. Eigenvalues of Φ vs ν. (a) Eigenvalues of the principal matrix Φ vs ν for λ2 = 10, a = 2, R = 1, and μ = 1 units. (b) Eigenvalues of the principal matrix Φ vs ν for
λ2 = 20, a = 2, R = 1, and μ = 1 units.
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FIG. 7. Bound state energies EB vs a for λ2 = 20, R = 1, μ = 1 units. (a) Ground state energy vs a. (b) Excited state energy vs a.

FIG. 8. Bound state energies vs R for λ2 = 150, a = 10.1, μ = 1 units. (a) Ground state energy vs R. (b) Excited state energy vs R.

Theorem 3.1. Let a ∈ R3 and Σ be the sphere centered at the origin with radius R < a. Then, the essential spectrum of HaΣ associated
with rank one perturbation supported by Σ and a point coincides with the essential spectrum of the free Hamiltonian, i.e., σess(HaΣ) = σess(H0)

= [0,∞). Furthermore, the point spectrum σp(HaΣ) of HaΣ lies in the negative real axis and HaΣ has at most two negative eigenvalues (counting
multiplicity) and always has one. Let Re(k) = 0 and Im(k) > 0. Then, k2

∈ σp(HaΣ) if and only if detΦ(k2
) = 0 and multiplicity (degeneracy)

of the eigenvalue k2 is the same as the multiplicity of the zero eigenvalue of the matrix Φ(k2
). Moreover, let E = −ν2

∗ < 0 be an eigenvalue of HaΣ.
Then, the eigenfunction ∣ψev⟩ associated with this eigenvalue is given by

ψev(r) =
2

∑
i=1
⟨r∣R0(−ν2

∗)∣ fi⟩Ai,

where (A1, A2) is an eigenvector with a zero eigenvalue of Φ(−ν2
∗) and ∣ f1⟩ = ∣a⟩, ∣ f2⟩ = ∣Σ⟩.

B. Stationary scattering problem
For the scattering problem, we similarly find the boundary values of the principal operator by analytical continuation,

Φ(Ek + i0) =
⎛
⎜
⎜
⎝

1
4π
(−ik − μ) −

1
4πaRk

eika sin(kR)

−
1

4πaRk
eika sin(kR)

1
λ2
−

eikR

4πR2k
sin(kR)

⎞
⎟
⎟
⎠

(3.10)
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FIG. 9. Differential cross section vs θ for k = 2, λ2 = 10, a = 5, R = 1, μ = 1 units.

and

⟨k′∣T(Ek + i0)∣k⟩ = −
2

∑
i,j=1
⟨k′∣ fi⟩(Φ−1

(Ek + i0))
ij
⟨fj ∣k⟩

= −
⎛
⎜
⎝

ei(k−k′)⋅a
(Φ−1

(Ek + i0))
11
+
(e−ik′ ⋅a

+ eik⋅a
) sin(kR)

kR
(Φ−1

(Ek + i0))
12
+

sin2
(kR)

k2R2 (Φ−1
(Ek + i0))

22

⎞

⎠
. (3.11)

Hence, we find the scattering amplitude from the formula f (k→ k′) = − 1
4π ⟨k

′
∣T(Ek + i0)∣k⟩, and the graph of the differential cross section

dσ
dΩ = ∣f (k→ k′)∣2 as a function of θ is given in Fig. 9. Let us summarize the result.

Theorem 3.2. The differential cross section for the rank one perturbation supported by a sphere of radius R centered at the origin and by a
point at a outside of the sphere is given by

dσ
dΩ
= ∣f (k→ k′)∣2 =

1
16π2

RRRRRRRRRRRRR

ei(k−k′)⋅a
(Φ−1

(Ek + i0))
11
+
(e−ik′ ⋅a

+ eik⋅a
) sin(kR)

kR
(Φ−1

(Ek + i0))
12

+
sin2
(kR)

k2R2 (Φ−1
(Ek + i0))

22

RRRRRRRRRRRRR

2

, (3.12)

where Φ(Ek + i0) is given by (3.10).

For the forward scattering, the differential cross section is plotted as a function of k for the below values of the parameters, as shown in
Figs. 10(a) and 10(b).

IV. SMALL DEFORMATIONS OF A CIRCLE IN R2

It would be interesting to ask how the bound state spectrum and scattering cross section for the above (or similar) problems change
under small deformation of the support of the rank one perturbations. Let us first briefly define the normal deformations of a general curve
in two dimensions. We consider a regular planar curve Γ parameterized with its arc length s with finite length. The Serret–Frenet equations
for this curve are given by t = dγ

ds , dt
ds = κn, and dn

ds = −κt, where t, n are the tangent and normal vectors and κ is the curvature of the curve Γ.44

The small deformation along a normal direction of the curve Γ is defined by

γ̃(s) = γ(s) + ϵh(s)n(s), (4.1)

where h is assumed to be a smooth function of s. It is worth pointing out that ϵ here is a small deformation parameter, not the same parameter
used for regularization.
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FIG. 10. Differential cross section vs k. (a) Differential cross section vs k for θ = 0, λ2 = 5, a = 2, R = 1, μ = 1 units. (b) Differential cross section vs k for θ = 0, λ2 = 20,
a = 2, R = 1, μ = 1 units.

The length of the deformed curve Γ̃ up to order ϵ is given by

L(Γ̃) = ∫
L

0

ds̃
ds

ds = ∫
L

0
(

dγ̃
ds
⋅

dγ̃
ds
)

1/2

ds = ∫
L

0
((1 − ϵκ(s)h(s))2

+ ϵ2
(

dh(s)
ds
)

2

)

1/2

ds

= ∫

L

0
(1 − ϵκ(s)h(s) +O(ϵ2

)) ds = L(Γ) − ϵ∫
L

0
κ(s)h(s)ds +O(ϵ2

). (4.2)

If Γ is a circle of radius R, κ = 1/R so that

L(Γ̃) = 2πR −
ϵ
R∫

L

0
h(s)ds +O(ϵ2

). (4.3)

When we do reparameterization of the curve by the angle θ, we will use the same notation for the functions h, γ, and n.

A. Perturbative first order calculation of the bound state energy
We consider here that the interaction is formally represented by λ∣Γ̃⟩⟨Γ̃∣—rank one perturbation supported on a deformed circle. Since

the support of the defect has co-dimension one, the renormalization is not required for this model and the resolvent of the Hamiltonian H
associated with a deformed circular defect can be found by using similar arguments summarized previously; as a result, we find

R(E) = R0(E) + R0(E)∣Γ̃⟩
1

Φ̃(E)
⟨Γ̃∣R0(E), (4.4)

where we denote the deformation of the circle S̃1 by Γ̃ for notational simplicity. For the bound state, we need to calculate

Φ̃(−ν2
) =

1
λ
− ⟨Γ̃∣R0(−ν2

)∣Γ̃⟩ =
1
λ
− ∫

R2

∣⟨Γ̃∣p⟩∣2

p2 + ν2
d2p
(2π)2 . (4.5)

Using

⟨Γ̃∣p⟩ =
1

L(Γ̃)∫
L

0
eip⋅γ̃ (s)

∣γ̃ ′(s)∣ ds (4.6)

and expanding the exponential eiϵh(θ)p⋅n(θ) in ϵ and the fact ∣γ̃ ′(s)∣ = 1 − ϵ
R h(s) +O(ϵ2

), it is easy to show that

Φ̃(−ν2
) =

1
λ
−

1
(2π)2 (1 +

ϵ
πR∫

2π

0
h(θ)dθ)[∫

R2
(∫

2π

0
∫

2π

0

eip⋅(γ(θ1)−γ(θ2))

p2 + ν2

× (1 −
ϵ
R
(h(θ1) + h(θ2)) + iϵ((p ⋅ n(θ1))h(θ1) − (p ⋅ n(θ2))h(θ2)))dθ1dθ2)]

d2p
(2π)2 + O(ϵ2

). (4.7)
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Let us consider the first integral in the square bracket above,

∫
R2
(∫

2π

0
∫

2π

0

eip⋅(γ(θ1)−γ(θ2))

p2 + ν2 dθ1dθ2)
d2p
(2π)2 . (4.8)

The uniformly convergent plane wave expansion in two dimensions42

eip⋅r
=
∞

∑
m=0

εmimJm(pr) cos(mθ), (4.9)

with ε0 = 1, εm = 2 if m > 0, and θ being the angle between p and r, helps us to compute the above integral with respect to the angle variables
easily and left with the integration over the variable p only,

(2π)∫
∞

0

J2
0(pR)

p2 + ν2 p dp, (4.10)

where we have used ∫
2π

0 cos(m(θ − θk))dθ = 2πδm0. Thanks to the integral representation,34

∫

∞

0

x
x2 + a2 J2

0(x)dx = I0(a)K0(a), (4.11)

we find that

∫
R2
(∫

2π

0
∫

2π

0

eip⋅(γ(θ1)−γ(θ2))

p2 + ν2 dθ1dθ2)
d2p
(2π)2 = (2π)I0(νR)K0(νR). (4.12)

For the second integral in Eq. (4.7), it is sufficient to consider

∫
R2
(∫

2π

0
∫

2π

0

eip⋅(γ(θ1)−γ(θ2))

p2 + ν2 h(θ1)dθ1dθ2)
d2p
(2π)2 . (4.13)

With the help of the plane wave expansion (4.9) and formula (4.11), the above integral becomes

I0(νR)K0(νR)(∫
S1

h(θ)dθ). (4.14)

The last integral in (4.7) can be computed similarly by first rewriting the expression i(p ⋅ n(θ))eip⋅γ(θ)
= ∂

∂R(e
ip⋅γ(θ)

) and dJ0(x)
dx = −J1(x), and

we find

∫
R2
(∫

2π

0
∫

2π

0

eip⋅(γ(θ1)−γ(θ2))

p2 + ν2 i (p ⋅ n(θ1))h(θ1)dθ1dθ2)
d2p
(2π)2 = −(∫S1

h(θ)dθ)∫
∞

0
J0(pR)J1(pR)

p2

p2 + ν2 dp. (4.15)

Rewriting p2

p2+ν2 as 1 − ν2

p2+ν2 and using formula (6.512) in Ref. 34,

∫

∞

0
Jν(αx)Jν−1(αx)dx =

1
2α

, (4.16)

and formula (6.577) in Ref. 34,

∫

∞

0

J0(pR)J1(pR)
p2 + ν2 dp =

1
ν

I1(νR)K0(νR), (4.17)

it follows that

∫
R2
(∫

2π

0
∫

2π

0

eip⋅(γ(θ1)−γ(θ2))

p2 + ν2 i (p ⋅ n(θ1))h(θ1)dθ1dθ2)
d2p
(2π)2 = −(

1
2R
− νI1(νR)K0(νR))(∫

2π

0
h(θ)dθ). (4.18)
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After combining (4.12), (4.14), and (4.18), we finally obtain

Φ̃(−ν2
) =

1
λ
−

1
2π

I0(νR)K0(νR) +
ϵ

2π2 (−
1

2R
+ νI0(νR)K1(νR))(∫

2π

0
h(θ)dθ) +O(ϵ2

), (4.19)

where we have used I1(x)K0(x) + I0(x)K1(x) = 1/x.
When there is no deformation (ϵ = 0), we have only one bound state. This can be seen by simply expressing the second term

I0(νR)K0(νR) using its integral representation (4.11),

1
λ
=

1
2π

I0(νR)K0(νR) =
1

2π∫
∞

0

x
x2 + ν2R2 J2

0(x)dx. (4.20)

Then, by taking the derivative of the right-hand side with respect to ν under the integral sign, it is easy to see that the right-hand side of the
above equation is a decreasing function of ν for given parameters λ and R. Therefore, there is a unique solution, say ν0, to the above equation.

It is important to note that deformations satisfying ∫
2π

0 h(θ)dθ = 0 do not change the bound state energies up to first order in ϵ. Since
we evaluate the deformation to order ϵ, we can actually solve the bound state energy for the deformed curve to the same order. In Refs. 33
and 45, we derived a general formula for perturbations of eigenvalues for small perturbations of the principal matrix Φ; here, we have a one-
dimensional version of this formula, so we can directly use the expansion above. Let ν = ν0 + ϵν1 +O(ϵ2

), where ν0 denotes the solution to the
original unperturbed circle case. Then, the bound state energy EB = −(ν0 + ϵν1)

2 for the deformed circular defect can be found by the zeroes
of Φ̃. This is achieved up to order ϵ by simply expanding its first term around ν0,

1
λ
−

1
2π

I0((ν0 + ϵν1)R)K0((ν0 + ϵν1)R) +
ϵ

2π2 (−
1

2R
+ ν0I0(ν0R)K1(ν0R))(∫

2π

0
h(θ)dθ) = 0, (4.21)

and using the fact that the zeroth order term cancels out 1
λ above to get the solution ν1. Hence, we obtain an explicit formula for the bound

state energy up to order ϵ,

EB = −ν2
0 − ϵ

2ν0

πR
(

( 1
2R − ν0I0(ν0R)K1(ν0R))

I1(ν0R)K0(ν0R) − I0(ν0R)K1(ν0R)
)(∫

2π

0
h(θ)dθ) +O(ϵ2

), (4.22)

which can be further simplified into the following.

Theorem 4.1. Under the small deformation of the circle described by (4.1), the bound state energy of the system up to first order in ϵ is
given by

EB = −ν2
0 − ϵ

ν2
0

πR
(∫

2π

0
h(θ)dθ) +O(ϵ2

). (4.23)

The simplicity of the first order result is remarkable and hints at a geometric interpretation. Suppose that instead of the original circle with
radius R we replace the circle with a circle of radius R − ϵ⟨h⟩ where ⟨h⟩ = 1

2πR∫
2π

0 h(θ)Rdθ (note that the normal in the curvature description
is inward). Because we are now using a delta function supported by a circle, we do have the same eigenvalue equation,

1
λ
−

1
2π

I0((ν0 + ϵν1)(R − ϵ⟨h⟩))K0((ν0 + ϵν1)(R − ϵ⟨h⟩)) = 0. (4.24)

If we expand all the terms to order ϵ, we find the relation Rν1 = ν0⟨h⟩. By using EB = −(ν0 + ϵν1)
2
= −ν2

0 − 2ϵν0ν1, we find exactly the above
result. Hence, we state this observation as follows.

Corollary 4.2. A small deformation in the normal direction of a given circle, which supports an attractive delta function, leads to a pertur-
bation of the original bound state energy; to first order, the resulting change can be obtained as follows: increase the initial radius by an amount
equal to the average of the deformation over the given circle and then compute the first order perturbation of the bound state energy corresponding
to this new circle with the same coupling constant.

Remark 4.3. It is tempting to push this to the second order and search for, if there is any, a geometric interpretation of the result. However,
the calculations are rather involved, so we postpone it for future work. Note that the circle problem per se can be solved by elementary methods,
that is, by choosing polar coordinates at the center and writing the delta function along the radial direction. However, a general curve cannot
be solved by this approach as there is no natural coordinate system to choose. In the case of small deformation, one can think of rank one
perturbation supported on this curve as a rank one perturbation supported on the original circle plus a series of perturbations. This idea leads to,
even to first order, a term of the form of ϵ dδ(r−R)

dr ∫
2π

0 h(θ)dθ and some additional ones coming from the change of arc-length and the change of
total length. Here, the derivative of the delta function term is important since the wave function is of the form (disregarding the normalization)

I0(rν0)K0(Rν0)θ(R − r) + I0(Rν0)K0(rν0)θ(r − R),
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and the usual first order perturbation of energy, which is found by evaluating the expectation value in the state of interest, leads to a divergence
(here, we need to use the symmetric choice for the theta function as often used in distribution theory).

The single bound state energy EB for the original circular defect can be numerically plotted as a function of R with fixed values of λ. For
a particular deformation h(θ) = h0 sin2 θ with h0 = 1 unit, we can plot how the bound state energy EB changes with respect to R numerically
with the help of Mathematica, as shown in Fig. 11. For a given R, it is easy to see that the function Φ̃ is a decreasing function of λ for all ν > 0.
This implies that the bound state energies decrease with increasing strength λ, as expected.

Remark 4.4. In Ref. 16, the authors considered an infinite curve in the plane as the support of the delta potential and gave a precise meaning
to the formal Hamiltonian via introducing a locally orthogonal system in the vicinity of the curve Γ under some assumptions and curvilinear
coordinates are given by x(s, u) = γ(s) + un(s), which is similar to our deformation formula (4.1). However, this expression has a rather different
purpose: Given any function in L∞(−1, 1), one defines a family of scaled potentials in the straightened strip conveniently expressed in the local
coordinates given above. Then, resolvents of the Hamiltonians associated with these scaled potentials are constructed. Finally, one shows that
Hamiltonians associated with the scaled potentials converge to the formal Hamiltonian associated with a delta potential supported on Γ in the
norm resolvent sense. Our aim here is to study how the deformation of the rank one potential supported on the circle changes the spectrum of the
problem.

Remark 4.5. A slightly different version of our deformed circle problem, in which the discrete spectrum of delta potentials is supported by
a circle with a varying coupling constant, in particular, a step function on the circle, has been studied in Ref. 15. The problem of the ring delta
potential with a variable coupling constant can be considered as an equivalent problem of the delta function supported by a deformed circle at
first glance. Note, for instance, that given h(θ), one may find a function α(θ) such that δ(r − (R + ϵh(θ))) = α(θ)δ(r − R). However, under the
transformation r′ = r − ϵh(θ) and θ′ = θ, the Laplacian must also be transformed, which makes the problem complicated and not quite identical
to the usual free Hamiltonian.

Remark 4.6. There are also works on more general curves chosen for the support of the delta functions. For instance, the asymptotic behavior
of the bound state energies of the attractive delta potentials supported by any closed Jordan curve in R2 as the coupling constant tends to infinity
has been studied in Ref. 12 and the asymptotic expansions of the bound state energies are found for two attractive delta potentials supported by
two concentric circles as their distance tends to zero and to infinity in Ref. 14.

B. Perturbative first order stationary scattering problem
The function Φ̃ can be analytically continued onto the complex plane using (4.19), and Φ̃(Ek + i0) can be evaluated in terms of the

variable k > 0,

Φ̃(Ek + i0) =
1
λ
−

i
4

J0(kR)H(1)0 (kR) +
ϵ

2π2 (−
1

2R
+

iπk
2

J0(kR)H(1)1 (kR))(∫
2π

0
h(θ)dθ) +O(ϵ2

). (4.25)

Let θ′ be the angle between k′ and k, which is the momentum of the incoming particle chosen to be parallel to the x axis for simplicity. Then,
we get

FIG. 11. Bound state energy for the circular defect and for the deformed circular defect vs R with ϵ = 0.1, λ = 10 units.
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FIG. 12. Differential cross sections as a function of k from a circular defect and deformed circular defect (red curve) for h(θ) = sin2 θ and R = 5, λ = 40, and ϵ = 0.1 units.

⟨k′∣Γ̃⟩ = (1 +
ϵ

2πR∫
2π

0
h(θ)dθ)(J0(kR) −

ϵ
2πR∫

2π

0
e−ikR cos(θ−θ′)h(θ)dθ

−
ikϵ
2π ∫

2π

0
e−ikR cos(θ−θ′) cos(θ − θ′)h(θ)dθ) +O(ϵ2

). (4.26)

Hence, using (4.25) and (4.26), and the formula for the scattering amplitude f̃ (k→ k′) = 1
4

√
2
πk ⟨k

′
∣Γ̃⟩(Φ̃(Ek + i0))−1

⟨Γ̃∣k⟩, we get the
following.

Theorem 4.7. Under the small deformation of the circle described by (4.1), the scattering amplitude up to first order in ϵ is given by

f̃ (k→ k′) =
1
4

√
2
πk
(

1
λ
−

i
4

J0(kR)H(1)0 (kR))
−1

× [J2
0(kR) + ϵ(

2
R

J2
0(kR)⟨h⟩ − J0(kR)∫

2π

0
[g(θ − θ′) + g∗(θ)]h(θ)

dθ
2πR

+ J2
0(kR)(

1
λ
−

i
4

J0(kR)H(1)0 (kR))
−1
(

1
2πR
−

ik
2

J0(kR)H(1)1 (kR))⟨h⟩)] +O(ϵ2
), (4.27)

where we introduce a function g(ϕ) = e−ikRcos(ϕ)
[1 + ikR cos(ϕ)] to simplify our expressions.

Note that we have an expansion in the form f̃ = f̃ (0) + ϵ f̃ (1); here, that implies the total scattering cross section can be found as

σ(k) = ∫
2π

0
∣ f̃ (0)∣2 dθ + ϵ∫

2π

0
[( f̃ (0))∗ f̃ (1) + f̃ (0)( f̃ (1))∗] dθ +O(ϵ2

). (4.28)

The differential cross sections as a function of k for the circular defect and deformed circular defect for a particular deformation h(θ)
= h0 sin2 θ are plotted in Fig. 12, with h0 = 1 unit.

V. SMALL DEFORMATIONS OF A SPHERE
We consider a particular regular surface, a sphere S2 centered at the origin with radius R. Let σ : (0,π) × (0, 2π) → S2 be a local chart,

given by (3.4). Suppose that Σ̃ is the small deformation of the sphere along its normal direction, defined by

σ̃(θ,ϕ) ∶= σ(θ,ϕ) + ϵh(θ,ϕ)N(θ,ϕ), (5.1)
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where ϵ is a small deformation parameter, N is the normal vector field on the sphere, and h is a smooth function on the sphere. If ∣ϵ∣
is sufficiently small, it is well known that the deformed sphere Σ̃ is a regular surface46 and its surface area up to order ϵ is given by

A(Σ̃) = A(Σ) − 2ϵ∫
2π

0
∫

π

0
H(θ,ϕ)h(θ,ϕ)R2 sin θdθdϕ +O(ϵ2

), (5.2)

where H = 1/R is the mean curvature of the sphere. To simplify the notation, we will write dΩ instead of sin θdθdϕ and Ω as the argument of
the functions on the sphere.

A. Perturbative first order calculation of the bound state energy
We consider here that the interaction is formally represented by λ∣Σ̃⟩⟨Σ̃∣—rank one perturbation supported on a deformed sphere. The

resolvent can be similarly constructed for the deformed spherical defect by following the same line of arguments discussed above. The explicit
form of the resolvent operator is given by

R(E) = R0(E) + R0(E)∣Σ̃⟩Φ̃−1
(E)⟨Σ̃∣R0(E), (5.3)

where
Φ̃(E) =

1
λ
− ⟨Σ̃∣R0(E)∣Σ̃⟩. (5.4)

For this part, we assume that the sphere problem has a bound state solution. We will choose E = −ν2, as we will be interested in a bound
state to begin with. If we use the realization in the Fourier domain, the resolvent kernel is given by

R0(r, r′∣ − ν2
) = ∫

R3

eip⋅(r−r′)

p2 + ν2
d3p
(2π)3 . (5.5)

Our aim is to calculate the function Φ̃(−ν2
) up to order ϵ. Using (5.2) and expanding the terms up to order ϵ, we have

Φ̃(−ν2
) =

1
λ
−

1
(4π)2 (1 +

ϵ
πR∫S2

h(Ω)dΩ)∫
S2×S2

R0(σ̃(Ω), σ̃(Ω′)∣ − ν2
)(1 −

2ϵ
R
(h(Ω) + h(Ω′)))dΩdΩ′ +O(ϵ2

). (5.6)

The resolvent kernel up to order ϵ can be calculated using (5.5),

R0(σ̃(Ω), σ̃(Ω′)∣ − ν2
)

= ∫
R3

eip⋅σ(Ω)e−ip⋅σ(Ω′) (1 + ϵ(ip ⋅ (h(Ω)N(Ω) − h(Ω′)N(Ω′)))
p2 + ν2

d3p
(2π)3 +O(ϵ2

). (5.7)

Substituting this into (5.6) and keeping the first order terms in ϵ for the surface integrals of the resolvent kernel, we obtain

Φ̃(−ν2
) =

1
λ
−

1
(4π)2 (1 +

ϵ
πR∫S2

h(Ω)dΩ)[∫
R3
(∫

S2×S2
eip⋅(σ(Ω)−σ(Ω′))dΩdΩ′)

×
1

p2 + ν2
d3p
(2π)3 + ϵ(2∫

R3
(∫

S2×S2
eip⋅(σ(Ω)−σ(Ω′))

(ip ⋅N(Ω)) h(Ω) dΩdΩ′)
1

p2 + ν2
d3p
(2π)3

−
4
R∫R3

(∫
S2×S2

eip⋅(σ(Ω)−σ(Ω′))h(Ω) dΩdΩ′)
1

p2 + ν2
d3p
(2π)3 )] +O(ϵ2

). (5.8)

We have already computed the above first integral in evaluating the second diagonal element of the matrix Φ in Eq. 3.9, and the result can be
expressed as

⟨Σ∣R0(−ν2
)∣Σ⟩ =

1
(4π)2∫R3

(∫
S2×S2

eip⋅(σ(Ω)−σ(Ω′))dΩdΩ′)
1

p2 + ν2
d3p
(2π)3

=
1

4πR
K1/2(νR)I1/2(νR). (5.9)

For the second integral, we will use the identity (ip ⋅N(Ω))eip⋅σ(Ω)
= ∂

∂R eip⋅σ(Ω). The exponential factors can be expressed in terms of the
spherical Bessel functions of first kind and spherical harmonics using the well-known expansion of the plane waves into spherical harmonics,47

eip⋅σ(Ω)
= 4π

∞

∑
l=0

l

∑
m=−l

iljl(pR)Y∗lm(Ωp)Ylm(Ω). (5.10)
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Here, Ωp and Ω are the polar angles of the vector p and σ, respectively. Hence, we obtain

∫
R3
(∫

S2×S2
eip⋅(σ(Ω)−σ(Ω′))

(ip ⋅N(Ω)) h(Ω) dΩdΩ′)
1

p2 + ν2
d3p
(2π)3

= (4π)2
∫

∞

0
∫

S2
(∫

S2×S2

∞

∑
l=0

l

∑
m=−l

il ∂jl(pR)
∂R

Y∗lm(Ωp)Ylm(Ω)h(Ω)

×
∞

∑
l′=0

l

∑
m′=−l

(−i)l′ ∂jl′(pR)
∂R

Yl′m′(Ωp)Y∗l′m′(Ω
′
)dΩdΩ′)

dΩpp2dp
(2π)3 . (5.11)

By the orthonormality of the spherical harmonics ∫S2 Ylm(Ω)Yl′m′(Ω)dΩ = δll′δmm′ , integrations over Ωp and Ω′ lead to

∫
R3
(∫

S2×S2
eip⋅(σ(Ω)−σ(Ω′))

(ip ⋅N(Ω)) h(Ω) dΩdΩ′)
1

p2 + ν2
d3p
(2π)3

=
(4π)2

(2π)3∫

∞

0
j0(pR)(−j1(pR))

p3

p2 + ν2 dp(∫
S2

h(Ω)dΩ), (5.12)

where we have used Y00(Ω) = 1/
√

4π and the relation dj0(x)
dx = −j1(x). We now use jl(x) =

√ π
2x Jl+1/2(x) and decompose p2

p2+ν2 as 1 − ν2

p2+ν2

together with formulas (6.512) and (6.577) in Ref. 34 for the integrals of the Bessel functions,

∫

∞

0
J1/2(pR)J3/2(pR)dp =

1
2R

, (5.13)

∫

∞

0
J3/2(pR)J1/2(pR)

dp
p2 + ν2 =

1
ν

I3/2(νR)K1/2(νR), (5.14)

to get

∫
R3
(∫

S2×S2
eip⋅(σ(Ω)−σ(Ω′))

(ip ⋅N(Ω)) h(Ω) dΩdΩ′)
1

p2 + ν2
d3p
(2π)3

= −
1
R
(∫

S2
h(Ω)dΩ)(

1
2R
− νK1/2(νR)I3/2(νR)). (5.15)

By applying similar arguments, we can find easily the last integral,

∫
R3
(∫

S2×S2
eik⋅(σ(Ω)−σ(Ω′))h(Ω) dΩdΩ′)

1
k2 + ν2

d3k
(2π)3 =

2
R

K1/2(νR)I1/2(νR)(∫
S2

h(Ω)dΩ). (5.16)

Combining (5.9), (5.15), and (5.16), we obtain

Φ̃(−ν2
) =

1
λ
−

1
4πR

I1/2(νR)K1/2(νR) +
ϵ

8π2R
(−

1
2R
+ νI1/2(νR)K3/2(νR))(∫

S2
h(Ω)dΩ), (5.17)

where we have used I1/2(x)K3/2(x) + I3/2(x)K1/2(x) = 1/x.
It is important to note that the formula for the function Φ̃ is very similar to the one obtained for the deformed circular defect case;

however, there is a difference. The eigenvalue flow can be obtained again by writing I1/2(νR)K1/2(νR) as [from formula (6.577) in Ref. 34]

1
λ
=

1
4πR

I1/2(νR)K1/2(νR) =
1

4πR∫
∞

0

x
x2 + ν2R2 J2

1/2(x)dx. (5.18)

As one can see, the right-hand side of the above equation is a decreasing function of ν for given parameters λ and R. Yet, the product
I1/2(νR)K1/2(νR) is finite as ν→ 0+, so there may not always be a solution if λ is small enough. If there is a solution, then it is unique, say ν0,
to the above equation. We assume that this is the case.
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Let ν = ν0 + ϵν1 +O(ϵ2
). Then, the bound state energy up to order ϵ can be found by solving the zeroes of Φ̃ by expanding terms around

ν = ν0. Hence, we find the following.

Theorem 5.1. Under the small deformation of the sphere described by (5.1), the bound state energy of the system up to the first order in ϵ
is given by

EB = −ν2
0 − ϵ ν

2
0
⎛

⎝

1
2ν0R − I1/2(ν0R)K3/2(ν0R)

I3/2(ν0R)K1/2(ν0R) − I1/2(ν0R)K3/2(ν0R) + 1
ν0R I1/2(ν0R)K1/2(ν0R)

⎞

⎠
(

1
πR∫S2

h(Ω)dΩ) +O(ϵ2
). (5.19)

Not surprisingly, this result has the same geometric interpretation as in the case of circle; we replace the original sphere with another sphere
of slightly different radius R − ϵ⟨h⟩ with ⟨h⟩ = 1

4πR2 ∫S2 h(Ω)R2dΩ and then look for the small change in the energy because of this alteration;
as a result of this computation, we recover the above expression. Hence, we have the following.

Corollary 5.2. A small deformation in the normal direction of a given sphere, which supports an attractive delta function, leads to a
perturbation of the original bound state energy; to first order, the resulting change can be obtained as follows: increase the initial radius by an
amount equal to the average of the deformation over the given sphere and then compute the first order perturbation of the bound state energy
corresponding to this new sphere with the same coupling constant.

For a particular deformation h(θ) = h0 sin θ with h0 = 1 unit, one can numerically plot how the bound state energies change with respect
to R for a given λ, as shown in Fig. 13.

Remark 5.3. Other types of deformations of the support of delta potentials are introduced and analyzed in Ref. 13. In that work, the asymp-
totic expansions of the eigenvalues for the deformation of a surface in n dimensions for a Hamiltonian are given by −Δ − βδ(⋅ − Σ/Sϵ), where Sϵ
is a family of measurable subsets of a chosen surface Σ, each one of which has size vanishing by O(ϵ) as ϵ→ 0. However, such deformations are
different from the ones that we consider in the present work. We assume small deformations of a sphere, in the normal direction, and study how
the bound state energies change.

Remark 5.4. A particular class of small and normal deformations of a sphere is the area-preserving ones. In Ref. 17, if the Hamiltonian
for the delta potential supported by a sphere satisfies a critical property, namely, if it has an empty discrete spectrum and a threshold resonance,
it is then shown that any sufficiently small smooth area preserving radial deformation leads to isolated eigenvalues. Here, our aim is to look at
sufficiently small smooth radial deformations of a sphere supporting a rank one perturbation.

B. Perturbative first order stationary scattering problem
For the deformed spherical defect, the function Φ̃ can be analytically continued onto the complex plane using (5.17) and Φ̃(Ek + i0) can

then be evaluated in terms of the variable k > 0,

Φ̃(Ek + i0) =
1
λ
−

i
8R

J1/2(kR)H(1)1/2 (kR) +
ϵ

8π2R
(−

1
2R
+

iπk
2

J1/2(kR)H(1)3/2 (kR))(∫
S2

h(Ω)dΩ) +O(ϵ2
). (5.20)

FIG. 13. Bound state energy for the spherical defect and for the deformed spherical defect (red curve) vs R with ϵ = 0.1, λ = 10 units.
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FIG. 14. Differential cross sections as a function of k from a spherical defect and deformed spherical defect (red curve) for h(θ) = sin θ and R = 1, λ = 100, and ϵ = 0.1
units.

For the scattering amplitude, we need to find the expression ⟨Σ̃∣k⟩ in terms of the deformation function h(Ω),

⟨Σ̃∣k⟩ =
1

A(Σ̃)∫S2
eik⋅σ̃ (Ω)R2

(1 −
2ϵ
R

h(Ω)) dΩ. (5.21)

By expanding the exponential eiϵh(Ω)k⋅N(Ω) in ϵ and expanding A(Σ̃) in ϵ from formula (5.2), it is easy to show that

⟨Σ̃∣k⟩ = (1 +
ϵ

2πR∫S2
h(Ω)dΩ)(

sin(kR)
kR

−
ϵ

2πR∫S2
eik⋅σ(Ω)h(Ω)dΩ +

iϵ
4π∫S2

eik⋅σ(Ω)
(k ⋅N(Ω))h(Ω)dΩ) +O(ϵ2

). (5.22)

For simplicity, we consider a particular class of deformations, where h(Ω) = h(θ). In this case, let θ′ be the angle between k′ and k, which is
the momentum of the incoming particle chosen to be parallel to the z axis. Then, using f̃ (k→ k′) = 1

4π ⟨k
′
∣Σ̃⟩(Φ̃(Ek + i0))−1

⟨Σ̃∣k⟩, we get the
explicit expression for the scattering amplitude for a given deformation h.

Theorem 5.5. Under the small deformation of the sphere described by (5.1), the scattering amplitude up to the first order in ϵ is given by

f̃ (k→ k′) =
1

4π
(

1
λ
−

i
8R

J1/2(kR)H(1)1/2 (kR))
−1

×{
sin2 kR

k2R2 + ϵ[
4⟨h⟩sin2 kR

k2R3 −
sin kR

kR2 ∫

π

0
(g(θ − θ′) + g∗(θ)) sin θ h(θ) dθ

+
sin2 kR

k2R2 (
1

4πR2 −
ik
4R

J1/2(kR)H(1)3/2 (kR))(
1
λ
−

i
8R

J1/2(kR)H(1)1/2 (kR))
−1
⟨h⟩]} +O(ϵ2

), (5.23)

where g(ϕ) ∶= e−ikR cos ϕ
(1 + ikR

2 cos ϕ).

The differential cross sections as a function of k for the spherical defect and deformed spherical defect for a particular deformation
h(θ) = sin θ are plotted in Fig. 14.
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APPENDIX: TROTTER–KATO THEOREM

This is a slightly different version of the Trotter–Kato theorem than typically found in the literature,48 as also stated in Ref. 24.

Theorem. Suppose that Hn be a sequence of self-adjoint operators with resolvents Rn(E) = (Hn − E)−1 defined for all complex numbers E
except a closed proper subset U of R. Furthermore, assume that Rn(E) converges strongly for some E ∉ U, and this limit is invertible. Then, there
exists a self-adjoint operator H with resolvents R(E) = (H − E)−1 such that Rn(E) converges strongly to R(E) for all complex numbers E ∉ U.

The idea of the proof is essentially the same as the original Trotter–Kato theorem. In our problem, we choose a sequence ϵn = 1/n.
Suppose that detΦ(E) ≠ 0. If n is sufficiently large, then detΦ(ϵ, E) ≠ 0. Then, R(ϵn, E) is defined for all complex E except a closed proper
subset U of R, namely, U = {E ∈ [0,∞) : detΦ(E) = 0}. Since we have shown that R(ϵn, E) converges strongly for some E ∉ U (e.g., choose E
to be a sufficiently large negative real number) and the limit is invertible, we conclude that there exists a self-adjoint operator H with resolvents
R(E) = (H − E)−1 such that R(ϵn, E) converges strongly to R(E) for all complex numbers E ∉ U thanks to the above theorem.
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