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Abstract—We propose a pre-processing pipeline for the de-
tection and restoration of distorted frames in phase-contrast
microscopy time-series images. The analysis is based on the
average intensity values of the frames within any given time-
series image. The extent of the correction of intensity variation
in frames is determined by the normalization of the difference
between the current frame’s average intensity and the median
of average intensity of all frames. Our restoration algorithm
preserves regional trans-passing pixels, does not cause new
distortions, and increases the histogram similarity between the
distorted and non-distorted frames. The algorithm was validated
on 15,395 time-series image frames from 27 experiments and the
results were found to be visually and quantitatively accurate.

Index Terms—pre-processing, detection, restoration, blank-
frame, intensity variation, video processing, phase contrast mi-
croscopy

I. INTRODUCTION

The pre-processing of data is a crucial step for many
studies. When working on deep learning-based (DL) solutions,
for instance, data pre-processing has been found to be a
prerequisite for the success of the proposed technique [1], [2].
Phase Contrast Microscopy (PCM) and its applications has
gained popularity in the past few years [3]–[8]. In order to
have higher success rates in the downstream pipelines such
as DL-based solutions [9] and conventional machine learning-
based (ML) solutions [10], a pre-processing pipeline which,
includes the correction of multiple distortions is necessary.

Histogram equalization (HE) and adaptive histogram equal-
ization (AHE) methods are commonly used for image
enhancement, however; phase-contrast microscopy images
(PCMI) are not using all gray level intensities. Because of
that reason when HE or AHE is used, non-distorted frames
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will also be altered. Contrast limited adaptive histogram equal-
ization (CLAHE) is a more suitable method than HE or AHE
for PCMI data. [11] compared the HE, AHE, and CLAHE
methods and showed that the CLAHE method displays blood
vessels more clearly than HE and AHE. However, CLAHE
also produces more noise. As a result, median filtering is
applied as a post-processing step after CLAHE. [12] proposed
a method that removes flickering from videos. The proposed
de-flickering method is effective on sudden and even small
amounts of intensity changes. Even though it seemed appli-
cable to our problem, it requires high frame-rate videos as
input so that it compares intensity changes of pixels in local
areas. The videos in our data set are in AVI format with 20
frames-per-second, where frames are acquired at every 15-
minutes during an experiment. Another difference is that the
proposed method of [12] exploits local intensity variation,
while in our data intensity variations affect the whole frame.
[13] suggested a physical correction method for intensity
non-uniformity in magnetic resonance images, while [14]–
[16] suggested computational solutions for the correction of
intensity inhomogeneity in MRI. [17] proposed a segmentation
method with inhomogeneous intensity correction on US B-
node images.

Although MRIs, ultrasound images, and PCMIs possess a
common property of having contiguous z-stacked gray-scale
images, such proposed methods are based on non-uniformity
of the intensity distribution. PCMI mostly possesses uniform
intensity separation in the background for both distorted and
non-distorted frames, the variation in intensities of pixels is
very little, all pixels are on a very narrow part of the separation
interval for non-distorted frames. The physical correction
method was suggested for local intensity correction, but we
seek a global (whole frame) intensity correction.

On a similar account, non-uniformity correction (NUC) is
a common image-enhancement task to adjust for infra-red
detector drifts occuring as the scene or the environment change
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[18]. Weighted average of neighbouring frames method has
more computational work than proposed median thresholding
algorithm. Our goal is not the best fit with subsequent frames,
Fig. 2-c is showing that best fitting histogram is causing new
noises, which will be explained in Section III.

In this study, we propose a new pipeline that takes a video
(PCM time-series images) as input, produces relevant quality-
related metrics and corrects the detected distorted frames of
the video. The proposed pipeline currently detects and corrects
blank-frames and frames with intensity variation, respectively.

The paper is organized as follows. Section II explains the
acquisition and annotation details of the PCM data used,
Section III introduces our proposed detection and restoration
solutions for the blank-frame and intensity variation distortions
present in PCM data, Section IV presents the results of our
proposed solutions, and finally Section V summarizes the
conclusions drawn.

II. DATA

The data used in our experiments was obtained from the
Izmir Institute of Technology Molecular Biology and Genetics
Department. It consists of 27 PCM assays of cell motility.
In this study, we have focused on detecting and correcting
two types of distortions namely: blank frames and intensity
variations. Visual examples of the distortions can be seen here
and here, respectively.

Two sets of ground truth classifications were made by ex-
perts: 1) Video-level classification was performed by watching
a video and classifying it based on the type of distortion that
was present in it. 2) Frame-level classification was performed
by visually examining every frame of a video using the
ImageJ software1 and classifying them based on the type
of distortion that was present. For monotonic decreasing of
intensity distortion, frame-level ground truth is not prepared.

III. METHODS

Our study focuses on the detection and correction of blank
frames and intensity variations that are commonly observed in
Z-PCM images. A blank frame is a problem for cell tracking
algorithms because, on such screens there are no cells to
detect. As a result, tracking algorithms could miss the path
of the cells that are being tracked. Intensity variations pose
a problem to segmentation algorithms as unusual intensity
changes between ROIs could lead to the extraction of incon-
sistent or unrepresentative features. Our restoration algorithm
is built on the assumption that the pixel intensity distribution
of a given frame is half-normal [19]. Then, we ensure the
distribution does not have a long tail. The flowchart of our
proposed method is shown in Fig. 1.

In our dataset, there are blank frames resulting from errors
during data collection at the laboratory and those that were
added synthetically for the purpose of analyses. Regardless of
the reason for the presence of blank frames in videos, they are
detrimental to downstream processes like cell segmentation

1https://imagej.nih.gov/ij/

and cell tracking. Some videos exhibit an abrupt change in
intensity between adjacent frames. While the source of such
an artifact is not certain, experts confirm that it results from
an unintentionally altered brightness of the light source.

The steps taken to detect and eliminate blank frames are as
follows:

• Read the data as a video.
• Average frame intensity (AFI) is calculated for every

frame.
• AFI values are floored.
• Save the floored AFI values as a vector in chronological

frame order.
• Threshold the AFI vector (‘1’ if vector(i) == 0, else ‘0’).
• Discard frames labeled ‘1’.
After eliminating the blank frames, the algorithm continues

as:
• Compute the median of AFI vector.
• Create normalized standard deviation vector
• Threshold the AFI vector at k times the calculated median

(the value of k was empirically chosen).
• Frames labeled with ‘1’ have intensity variation problem,

while those labeled ‘0’ do not.
To determine a good value for k, five videos from our

data set were analyzed and 0.3 was chosen empirically as
an optimum value. It means that intensity variations that are
greater than 30% of the adjacent frames’ average intensity,
will be flagged. After the detection step is completed, the
restoration algorithm is triggered. It takes the video and the
detection results as inputs.

Fig. 1. Flowcharts of our proposed blank frame detection and intensity
variation correction algorithms
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PCMI histograms occupy only a narrow band of the 8-
bit intensity range. When an intensity variation occurs, the
histogram distribution tends to occupy a larger band. To
investigate if we could restore distorted frames from the
histograms of non-distorted frames, a histogram matching
algorithm (HM) was applied. The inputs to the HM algorithm
were the distorted frame and the frame which gave the median
value of the AFI vector, Fig. 2-c. However, the HM algorithm
produced further distortions including:

• Salt noise at the center of the frame
• Very high intensities at the center of cells
• Regional intensity changes
To overcome these short-comings of HM, we designed an

algorithm that: 1) preserves regional intensity changes; 2) does
not introduce undesired noise; and 3) produces a histogram
similar to that of the non-distorted frame.

We compute the normalized standard deviation (σn) of
the distorted frame. σn expresses the difference between the
current frame’s average intensity and the median AFI. We
had chosen median instead of mean value of AFI of frames.
Selecting mean value is making algorithm more sensitive to the
frames’ intensity variation, selecting median value makes the
algorithm robust to variations. Equation 1 results in a restored
frame in which every pixel is altered by a fixed percentage.
Since the pixel values are altered in a frame-by-frame manner,
the AFI changes but the regional trans-passing information of
the PCMI is preserved.

K = ⌊I ∗ (1− σn)⌋ (1)

where I is the current frame, σn is the normalized standard
deviation and K is the output of Equation 1.

After the application of Equation 1, the resulting frame
showed a drastic reduction of pixel intensities. This result
was undesirable thus, Equation 1 was modified. Equation 2,
similar to 1, preserves the regional trans-passing pixels and
reduces the pixel intensities with a fixed percentage. Equation
3 changes the pixel intensities arithmetically. Finally we take
the mean of equations 2 and 3 to get 4. The results of equation
4 can be observed in Fig. 2b.

L = ⌊I ∗ σn
i

100
⌋ (2)

M = I + J ∗ σn
i

100
(3)

Fig. 2. A distorted frame (a), output of the proposed intensity restoration
algorithm applied on the distorted frame (b), output of the conventional
histogram matching applied on the distorted frame (c).

Fig. 3. Distorted frame and its histogram (column a), output of the proposed
intensity restoration algorithm applied on the distorted frame and its histogram
(column b), and the next non-distorted frame and its histogram (column c).

ReconsFrame =
L + M

2
(4)

where, σn
i refers to the ith element of the normalized standard

deviation, σn. J is a matrix of ones with the same size as I ,
L is ouput of Equation 2, M is output of Equation 3 and
ReconsFrame is the output of Equation 4.

Fig. 3 shows a sample distorted frame, its restored version
using our proposed method, and a consecutive non-distorted
frame along with their corresponding histograms. As can be
seen, the distorted frame has a histogram that covers a larger
band of the 8-bit spectrum than the non-distorted frame.

In this study, to evaluate the distortion detection perfor-
mances of our proposed algorithms we employed the following
conventional performance metrics: true positive (TP), false
positive (FP), true negative (TN), false negative (FN), and
accuracy ( TP+TN

TP+TN+FP+FN ), sensitivity ( TP
TP+FN ), and speci-

ficity ( TN
TN+FP ) scores derived from them. Here, a positive

item refers to a distorted frame and a true negative corre-
sponds to a non-distorted frame that is correctly identified
by the algorithm. Performances are measured at frame-level
by considering each frame individually, and video-level by
flagging a video as non-distorted if it does not contain any
distorted frame.

IV. RESULTS

We evaluated the performance of our detection algorithms
for blank-frame and intensity variation problems on the PCM
dataset described in Section II, both at frame- and video-
levels. Blank-frame detection results presented in Table I and
Table II indicate that our algorithm successfully detects all
blank frames without any false alarms. It should be noted
that the PCM data set is an imbalanced one. Only 164 out of
15,395 frames have blank-frame distortion, while 446 of the
15,395 frames have intensity variation distortion. Hence, total
distorted frame rate for our dataset is 0.04%. The proposed
method is robust to the inherent imbalance in the data set.

As for the intensity variation, our proposed algorithm pro-
duces visually more pleasing results than the conventional HM

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on January 09,2023 at 06:43:29 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
VIDEO AND FRAME LEVEL BLANK-FRAME DETECTION PERFORMANCES

OF OUR PROPOSED ALGORITHM.

Video level Frame level
Accuracy 1.00 1.00
Sensitivity 1.00 1.00
Specificity 1.00 1.00

TABLE II
VIDEO AND FRAME LEVEL CONFUSION MATRICES OF OUR PROPOSED

BLANK-FRAME DETECTION ALGORITHM.

TP FP TN FN
Video level detection 5 0 22 0
Frame level detection 164 0 15,231 0

algorithm (Fig 2). Table IV and Table III display the confusion
matrices and the detection performances of our algorithm,
respectively. The algorithm is highly accurate at video level
detection with just 4 FNs as seen in Table IV. Regarding the
frame level detections, as discussed in Section II videos with
monotonic intensity variation were not labeled at the frame
level, while 386 FPs (Table III) belong to such videos.

Overall our proposed algorithm performs restoration of
intensity variations in an accurate manner, i.e. it should output
a histogram similar to the neighboring non-distorted frame
without injecting any additional distortions such as abrupt
local intensity variations or noise. As seen in Fig. 3, histogram
of the distorted frame becomes similar (narrower in this
example) to that of the next non-distorted frame.

V. CONCLUSION

In this study, we proposed a new pre-processing pipeline
for the detection and restoration of distorted frames in phase-
contrast microscopy time-series images. The distortions we
addressed are the blank-frames and the intensity variations
across frames, both of which may hinder the performances of
segmentation and tracking algorithms. Our proposed methods,
evaluated on PCM time-series images of 27 cell motility ex-
periments, showed outstanding performances for the detection
of blank-frames and very high accuracies for the detection of
intensity variations. While simple exclusion of the blank-frame
from the video stream is sufficient for correction of the former

TABLE III
VIDEO AND FRAME LEVEL INTENSITY VARIATION DETECTION

PERFORMANCES OF OUR PROPOSED ALGORITHM.

Video level Frame level
Accuracy 0.85 0.97
Sensitivity 0.69 0.93
Specificity 1.00 0.97

TABLE IV
VIDEO AND FRAME LEVEL CONFUSION MATRICES OF OUR PROPOSED

INTENSITY VARIATION DETECTION ALGORITHM.

TP FP TN FN
Video level detection 9 0 14 4
Frame level detection 413 386 14,538 31

distortion, frames with intensity variations should be restored
in a lossless manner. To this end, our proposed restoration
method for intensity variations correctly balances out the
average intensities across frames without distorting in-frame
information. As future work, we plan to include geometric and
optical distortions in our detection and restoration pipeline.
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