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ABSTRACT

EXACTLY SOLVABLE QUANTUM PARAMETRIC OSCILLATORS
IN HIGHER DIMENSIONS

The purpose of this thesis is to study the dynamics of the generalized quantum
parametric oscillators in one and higher dimensions and present exactly solvable models.
First, time-evolution of the nonclassical states for a one-dimensional quantum paramet-
ric oscillator corresponding to the most general quadratic Hamiltonian is found expli-
citly, and the squeezing properties of the wave packets are analyzed. Then, initial boun-
dary value problems for the generalized quantum parametric oscillator with Dirichlet and
Robin boundary conditions imposed at a moving boundary are introduced. Solutions cor-
responding to different types of initial data and homogeneous boundary conditions are
found to examine the influence of the moving boundaries. Besides, an N-dimensional ge-
neralized quantum harmonic oscillator with time-dependent parameters is considered and
its solution is obtained by using the evolution operator method. Exactly solvable quantum
models are introduced and for each model, the squeezing and displacement properties of
the time-evolved coherent states are studied. Finally, time-dependent Schrodinger equa-
tion describing a generalized two-dimensional quantum coupled parametric oscillator in
the presence of time-variable external fields is solved using the evolution operator method.
The propagator and time-evolution of eigenstates and coherent states are derived expli-
citly in terms of solutions to the corresponding system of coupled classical equations of
motion. In addition, a Cauchy-Euler type quantum oscillator with increasing mass and
decreasing frequency in time-dependent magnetic and electric fields is introduced. Based
on the explicit results, squeezing properties of the wave packets and their trajectories in
the two-dimensional configuration space are discussed according to the influence of the

time-variable parameters and external fields.
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OZET

YUKSEK BOYUTTA TAM COZULEBILEN KUANTUM
PARAMETRIK OSILATORLER

Bu tezin amac1 bir ve yiiksek boyutlarda genellestirilmis kuantum parametrik osi-
latorlerin dinamigini calismak ve tam ¢oziilebilen modeller sunmaktir. 11k olarak, ikinci
dereceden en genel Hamiltonyen’e kargsilik gelen bir boyutlu bir kuantum parametrik osi-
lator icin klasik olmayan durumlarin zamanla evrimi agik¢a bulunmus ve dalga paket-
lerinin sikisma Ozellikleri analiz edilmistir. Daha sonra, hareketli bir sinira dayatilan
Dirichlet ve Robin smir kogsullarina sahip genellestirilmis kuantum parametrik osilator
icin baslangic sinir deger problemleri tanitilmistir. Hareketli sinirlarin etkisini inceleye-
bilmek i¢in farkl tiirdeki baglangic verilerine ve homojen sinir kosullarina karsilik gelen
¢Oziimler bulunmustur. Ayrica, zamana bagli parametrelere sahip N boyutlu bir genelles-
tirilmis kuantum harmonik osilator ele alinmig ve ¢oziimii evrim operatorii yontemini kul-
lanarak elde edilmistir. Tam ¢6ziilebilen kuantum modeller tanitilmis ve her bir model i¢in
zamanla evrimlesmis es uyumlu durumlarin sikisma ve yer degisme 6zellikleri calisilmastir.
Son olarak, evrim operatorii yontemini kullanarak, zamana bagli olarak degisen dis alan-
larin varlifinda genellestirilmis iki boyutlu bir kuantum parametrik baglasim osilatSriinii
tanimlayan zamana baglh Schroédinger denklemi c¢oziilmiistiir. Uretici ve 6zdurumlarin
ve es uyumlu durumlarin zamanla evrimi karsilik gelen baglantili klasik hareket denk-
lemlerinin sisteminin ¢dziimleri cinsinden acikga tiiretilmistir. Ek olarak, zamana bagh
manyetik ve elektrik alanlarda artan kiitle ve azalan frekansa sahip Cauchy-Euler tipi
bir kuantum osilator tanitilmigtir. Acik sonuglara dayanarak, dalga paketlerinin sikisma
ozellikleri ve iki boyutlu konfigiirasyon uzayindaki yoriingeleri, zamana bagl paramet-

relerinin ve dis alanlarin etkisine gore tartigilmistir.
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CHAPTER 1

INTRODUCTION

Quantum harmonic oscillators with explicitly time-dependent Hamiltonians have
attracted substantial interest in the literature since they have applications in many branches
of physics, such as quantum optics, quantum fluid dynamics, ion-traps, cosmology, quan-
tum information and quantum computation. To understand better behavior of such quan-
tum systems, it is always important to have exactly solvable models. The best known one
is the Caldirola-Kanai oscillator with an exponentially increasing mass, which is widely
used to study dissipation in quantum mechanics (Caldirola, 1941), (Kanai, 1948). There
are many powerful approaches for solving one-dimensional non-stationary quantum oscil-
lator problems, such as Feynman path integral (Feynman, 1951), Husimi ansatz (Husimi,
1953), Lewis-Riesenfeld invariant (Lewis & Riesenfeld, 1969), Malkin-Man’ko-Trifonov
(Malkin, Man’ko & Trifonov, 1970), (Malkin, Man’ko & Trifonov, 1971), and Wei-
Norman approaches (Wei & Norman, 1963).

Coherent states and squeezed coherent states of the quantum harmonic oscilla-
tor are known since the beginning of quantum mechanics. Indeed, the ‘non-spreading
wave packets’ of the harmonic oscillator were proposed by Schrodinger (Schrodinger,
1926), and followed by Kennard (Kennard, 1927). Then the same states were derived
as eigenstates of the non-Hermitian annihilation operator a (Iwata, 1951). However, in
the literature, the name ‘coherent states’ appeared for the first time in the paper (Glauber,

1963). For the standard quantum harmonic oscillator (SQHO) defined by the Hamiltonian

202
2 p Wy .o
H,o= %2 + 20
0= 2 ) q,
where ¢ is position operator, and p = —ifid/dq is the momentum operator, wy > 0 is the

constant frequency and mass is m = 1, coherent states are minimum uncertainty states
with equal uncertainties in both quadratures, whose dynamics most closely resemble the

classical states. According to this, they are known as the most classical states among the



quantum states. On the other hand, the squeezed coherent states, which can be considered
as generalizations of the coherent states, are one simplest representations of the nonclassi-
cal states. A straightforward technique for describing the nonclassical states is quadrature
squeezing. For states that satisfy the Heisenberg uncertainty relation AgAp > #/2, a
quadrature is said to be squeezed if uncertainty in that quadrature is smaller than 7/2. In
the simplest case, squeezed coherent states obey the minimum uncertainty principle, but
have less uncertainty in one quadrature at the expense of increased uncertainty in the other.
Essential properties of squeezed coherent states were derived in (Stoler, 1970), (Stoler,
1971), (Yuen, 1976) and then extensively investigated by many authors, (Henry, 1988),
(Trifonov, 1994), (Nieto, 1997), (Nieto & Truax, 1993), (Dodonov, 2002), (Dodonov
& Man’ko, 2003), (Malkin & Man’ko, 1979), (Pereclomov, 1986).

Coherent and squeezed states of standard quantum harmonic oscillator (SQHO)
can be generated by using different but equivalent approaches. One way to obtain coherent
states is applying the unitary displacement operator D(a) = exp (a/&T — a/*&) , where a'
denotes Hermitian conjugate of the operator 4, and o* denotes complex conjugate of «,
to the ground state. On the other hand, squeezed states can be found by application of the
unitary squeeze operator S (z) = exp[(za™ — z°a%)/2], z € C. Using this formalism, the
displaced and squeezed number states of SQHO, and their time-evolution were derived
explicitly in (Nieto & Simmons, 1979), (Nieto, 1996), (Nieto, 1997). It was shown that
the time-evolved squeezed coherent states of SQHO correspond to wave packets whose
width oscillates with time, the minimum uncertainty is no longer preserved during time-
evolution, and their peak follows the classical trajectory.

Moreover, there are other interesting types of nonclassical states, such as even-
odd coherent states and even-odd displaced squeezed states. As known, coherent states
of SQHO are not orthogonal, but superposition of these states generates new ones, which
are orthogonal and called even-odd coherent states. They were introduced in (Dodonov,
Malkin & Man’ko, 1974). The even-odd coherent states are eigenstates of the operator
@*, and considered as the simplest examples of Schrodinger’s cat states. They can be
obtained by applying the displacement operators D, (a) = cosh(ad™ — a*a) and D_(a) =
sinh(aa’™ — a*a), @ € C, to the ground state of SQHO. A detailed analysis of the non-
classical properties of these states is given in (Gerry, 1993), (Buzek & Knight, 1991),
(Buzek, Vidiella-Barranco & Knight, 1992). Besides, in (Choi, 2004), time development



of even-odd coherent states were found by using Lewis-Riesenfeld invariant approach.

The even-odd displaced squeezed states were proposed in (Fan & Zhang, 1994)
and it was shown that even-displaced squeezed states exhibit stronger squeezing than
squeezed coherent states of SQHO. There are two different but equivalent ways of defining
the even-odd displaced squeezed states; one way is taking the superposition of squeezed
coherent states, and the other one is applying the operators D, (@), D_(@), @ € C, on the
squeezed ground state. A comparison of the even-odd coherent states and the even-odd
displaced squeezed states was given in (Nieto, 1996), and the nonclassical properties of
the even-odd displaced squeezed states were discussed in (Zhu, Wang & Li, 1993), (Xin,
Wang, Hirayama & Matumoto, 1994).

There are other possibilities of generating nonclassical states. For example, by
adding to H,, at some moment of time, a term of the form %w%qz — fog, which clearly
corresponds to change of frequency and displacement, one can construct displaced and
squeezed number states. On the other hand, when the oscillator has time-dependent mass
u(t) and/or frequency w(t), squeezing effects appear naturally due to the time-variable
parameters. As a consequence, the evolution operator of the quadratic parametric oscil-
lator can be considered as some kind of generalized squeezing operator (Dodonov &
Man’ko, 2003). In other words, evolution itself is a displacement and squeezing process.
Coherent and squeezed states of this generalized oscillator were investigated in (Choi
& Kim, 2004), (Choi, 2006), (Choi & Nahm, 2007), using Lewis-Riesenfeld invariant
approach (Lewis & Riesenfeld, 1969). In (Atilgan Biiyiikasik, 2018), the squeezing and
resonance properties of coherent states for generalized Caldirola-Kanai type models were
investigated.

We consider the time-evolution problem for a quantum parametric oscillator de-

scribed by a generalized quadratic Hamiltonian

_ P 000, B
2u(t) 2 2

Hy(1) @Gp + pg) + D(t)p + E(DG + F(0)I, (1.1)

where u(t), w(t), B(t), D(t), E(t), F(t) are real-valued parameters depending on time. Re-
cently, in (Atilgan Biiyiikasik & Cayic, 2016 ), by using the Wei-Norman technique
and by properly choosing the ordering of the exponential operators, we found the ex-

act evolution operator for a quantum parametric oscillator described by a Hamiltonian



with SU(1, 1) & h(4) group structure. The significance of our results is that, for a time-
dependent one-dimensional Schrodinger equation with the most general quadratic in po-
sition and momentum Hamiltonian, we were able to determine the evolution operator
explicitly in terms of two linearly independent homogeneous solutions and a particular
solution to the corresponding classical equation of motion. This allowed us to give ex-
act description of the quantum dynamics and its relation with the corresponding classical
motion. According to this, we find the time development of the squeezed coherent states
(Atilgan Biiyiikasik & Cayig, 2019 ), the even-odd coherent states, and the even-odd dis-
placed squeezed states. Then, we analyze their squeezing and displacement properties in
detail. We also construct time-dependent quantum dynamical invariants using the evolu-
tion operator formalism and study the relationship between the dynamical invariants and
quantum states.

The Schrodinger equation subjected to time-dependent moving boundary condi-
tions is another interesting problem. Fermi presented this type of problem related to the
study of cosmic radiation in (Fermi, 1949). Then, in many works initial boundary value
problems (IBVPs) with moving boundaries were studied. In general, finding solutions of
such problems is not possible for an arbitrary boundary function. A well-known approach
for solving a moving boundary problem is transforming it into a problem with a fixed
boundary. However, exactly solvable models are rare over a fixed line segment of the
real line, especially when the potential is time-dependent. In (Makowski & Dembinski,
1991), it was shown that even in the case of a free particle bouncing between two infinitely
high walls, there exists an exact solution only when the moving boundary L(¢) satisfies
L3L =const. Then, in 1992, Makowski introduced a "cut-off oscillator" with a moving
infinite potential wall and a time-dependent frequency (Makowski, 1992). He was able
to find particular solutions only when the boundary s(f) satisfies §(t) + w?(f)s(t) = 0 and
realized that moving boundaries generate additional phase factors in the solution, both
time-dependent and coordinate-dependent phases. Alternatively, the supersymmetry ap-
proach was used to find a class of exactly solvable potentials in (Jana & Roy, 2008).

We introduce an IBVP for a one-dimensional quantum oscillator related to Hamil-
tonian (1.1) defined on a domain s(f) < g < o0, 0 < t < T, with a Dirichlet boundary
condition imposed at a moving boundary ¢ = s(f). Before finding solutions to prob-

lems with moving boundaries, we first consider an IBVP defined on the fixed half-line



0 < g < oo. We note that, time-dependent Schrodinger equation with the most general
quadratic Hamiltonian A (1) given by (1.1) is not symmetric with respect to space inver-
sion and it is not easy to solve the problem on the fixed half-line with Dirichlet boundary
condition imposed at ¢ = 0. However, when the external fields D(f) = E(¢) = 0, the
Schrédinger equation is invariant under space inversion and we solve the Dirichlet IBVP
defined on the fixed half-line analytically. Then, we consider the Dirichlet IBVP for the
generalized quantum parametric oscillator described by Hamiltonian (1.1) in the presence
of all terms and defined on the domain s(f) < g < 00, 0 < t < T. We prove that if the
boundary can be written as a linear combination of homogenous and particular solutions
of the corresponding classical equation of motion in position space, then it is possible to
find exact analytical solutions to these problems. Indeed, redefining the coordinate allows
us to replace the moving boundary with a fixed one, and consequently, the IBVP with a
moving boundary transforms into a fixed half-line problem. In this case, the boundary s()
generates new terms in the Hamiltonian. Although the transformed Schrédinger equation
with the new Hamiltonian is more complicated, by using the Wei-Norman Lie algebraic
approach we solve the IBVP for a certain family of moving boundaries. Furthermore, we
introduce an IBVP for the generalized quantum parametric oscillator with a Robin bound-
ary condition imposed at a boundary g = s(#) on a domain s(f) < g < 00,0 <t < T. We
show that if the time-dependent boundary is prescribed in a certain way, the Robin IBVP
can be solved analytically.

We also consider the time-evolution problem for a quantum system in higher di-
mensions. Dynamics in higher dimensions is an extensive area of research since it always
brings new questions and attracts more interest . Based on this motivation, we first con-

sider an N-dimensional quantum harmonic oscillator described by the Hamiltonian

N A (2

OE Z Z;Zj(t) " ﬂj(t);)j(t) q; + sz(t) (@;pj + Pjg;) + Di(Op; + Ej()g; + Fi(1) |,
(1.2)
where all time-dependent parameters are real valued. The corresponding N-dimensional
time-dependent Schrodinger equation is separable, and one can write formal solutions in
terms of solutions to the N one-dimensional time-dependent problems. Such multidimen-

sional quantum harmonic oscillators were studied before by different approaches (Bur-

gan, Feix, Fijalkow & Munier, 1979), (Ray & Hartley, 1982), (Malkin & Man’ko, 1979).
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To solve one-dimensional non-stationary quantum oscillator problem, we use our results
obtained in (Atilgan Biiyiikasik & Cayig, 2016 ), which are based on Wei-Norman Lie
algebraic approach. Then, we focus mainly on the time-development of coherent states
of N-dimensional harmonic oscillator. We also aim to investigate explicitly the influence
of squeezing parameters B;(¢) and the displacement parameters D;(?), E;(t) on the wave
packets.

Finally, we consider time-evolution problem for a quantum system described by a

generalized two-dimensional quadratic Hamiltonian of the form

2

)
~ _ Pi  pw0® ., BO,,. . . R R
7{gen(t)—jz:;(z#(t)+ 4+ (Cljpj+Pj‘]j)+Dj(t)Pj+Ej(f)QJ')

+ﬂ(t)(élﬁz - cyzﬁl), (1.3)

where all time-dependent parameters are real valued. This Hamiltonian is usually used
to describe quantum particles in two-dimensional space and comprises many fundamen-
tal physical systems as subcases. A significant physical and mathematical distinction
can be done according to the coupling parameter A(¢). When A(¢) = 0, one has a two-
dimensional quantum parametric oscillator with time-dependent mass u(t) > 0, frequency
w(1), squeezing parameter B(f) and driving forces D;(1), E;(t), j = 1,2. Since in that
case Hamiltonian (1.3) is separable, formally one can speak about two independent one-
dimensional oscillators.

Clearly, wave function solutions of the two-dimensional oscillator described by
(1.3) when A(t) = 0, can be easily written as a product of solutions to the one-dimensional
problem (Malkin, Man’ko & Trifonov, 1970), (Malkin, Man’ko & Trifonov, 1973). On
the other hand, when A(¢) # O, that is in the presence of the angular momentum opera-
tor L = §1p, — §»p1, Hamiltonian (1.3) can be used to describe the motion of a charged
particle in time-dependent magnetic and electric fields. In that context, parameter A(?)
is known as the Larmor frequency, w(t) is the modulated frequency, and E;(t), j = 1,2
are parameters of the external electric field. The problem of a charged particle in mag-
netic and electric fields is addressed in numerous research articles and has applications
in electromagnetic theory, quantum optics, plasma physics, etc. For non-stationary sys-

tems, including a charged particle in a time-dependent electromagnetic field, Lewis and



Riesenfeld derived explicitly time-dependent quadratic invariants (Lewis & Riesenfeld,
1969). Soon after, Malkin, Man’ko and Trifonov suggested the use of linear in position
and momentum invariants (Malkin, Man’ko & Trifonov, 1969), (Malkin, Man’ko & Tri-
fonov, 1970) and constructed two-dimensional coherent states of Gaussian type, that can
be considered as a generalization of the Glauber coherent states of the one-dimensional
harmonic oscillator. For a recent review of various families of coherent states, squeezed
states and their generalizations for a charged particle in a magnetic field, including Gaus-
sian and non-Gaussian states, one can see the work of Dodonov (Dodonov, 2018).

We solve the two-dimensional quantum parametric oscillator described by the
generalized quadratic Hamiltonian (1.3) using the evolution operator approach (Atil-
gan Biiyiikasik & Cayig, 2022 ). We find the exact evolution operator by first applying a
simple unitary transformation to decouple the Schrodinger equation, and then using Wei-
Norman Lie algebraic technique. This gives the evolution operator of the problem as a
finite product of unitary exponential operators being generators of a Lie group associated
with the closed Lie algebra describing the Hamiltonian. A crucial point in the Lie al-
gebraic techniques is to find all time-variable coefficients that completely determine the
evolution operator as product of Lie group generators. Usually this requires solution of
a large nonlinear system of ordinary differential equations, which is not always an easy
task, and in most works it is usually solved by quadratures. The utility of our results is
that all time-variable coeflicients in the formulation of the evolution operator for the quan-
tum problem are found explicitly in terms of the solutions to the corresponding system
of classical equations of motion. Then, the propagator (Green’s function), time-evolution
of the wave functions, expectations of position and momentum and their uncertainties are
also found in terms of the classical solutions. Furthermore, using the evolution operator
formalism, we also construct linear and quadratic quantum invariants and compare our
results by those obtained using the MMT- and the LR- approaches.

The main goal of this thesis is to provide exact and explicit results of the prescribed
evolution problems that allows us to investigate the influence of the time-dependent pa-
rameters and external terms on the dynamics of the quantum particle. We focus on the
squeezing properties of the wave packets and their trajectories in the presence of time-
dependent driving forces. For this purpose, the thesis is organised as follows.

Chapter 2 provides some essential tools that are useful for our further studies.



The coordinate representation of the quantum states, such as coherent states, squeezed
coherent states, etc., of the SQHO and their properties are given.

In Chapter 3, we present an IVP for time-dependent Schrddinger equation cor-
responding to the generalized Hamiltonian Flg(t) defined by (1.1). Then using the exact
evolution operator of the generalized quantum parametric oscillator, we explicitly obtain
the time-evolution of the squeezed coherent states, even-odd coherent states, and even-odd
displaced squeezed states of the SQHO. We also find the expectation values and uncertain-
ties of position and momentum. This allows us to investigate the nonclassical properties of
quantum states according to the complex parameter @ of the displacement operator D(a),
the complex parameter z of the squeeze operator S (z), and the time-dependent parameters
of the Hamiltonian ﬁg(t). As an application, we construct an exactly solvable model for a
generalized Caldirola-Kanai oscillator. We find the time-evolution of the quantum states
and discuss their properties, and construct many illustrative figures.

In Chapter 4, we introduce an IBVP for the generalized quantum parametric os-
cillator described by the Hamiltonian A (1) given by (1.1) with a Dirichlet boundary con-
dition imposed at a moving ¢ = s(f) in a domain s(f) < g < o0, 0 <t < T. We first solve
an IBVP for a quantum parametric oscillator with Hamiltonian (1.1) when the external
fields are zero, i.e., D(t) = E(t) = 0, defined on the fixed half-line with the homogeneous
Dirichlet boundary condition imposed at g = 0. Then, to solve the IBVP for the gener-
alized oscillator, we pass to a moving coordinate system and this transforms the moving
IBVP to a fixed half-line problem. We prove that if the boundary can be written as a
linear combination of homogenous and particular solutions of the corresponding classical
equation of motion in position space, then it is possible to find exact analytical solutions
to these problems. We also provide exact solutions of the IBVP for some particular ini-
tial functions and homogeneous boundary condition. As an application, we construct an
exactly solvable quantum model with specific frequency modification and analyze the in-
fluence of the moving boundaries on the solution. Moreover, we introduce and solve an
IBVP for the generalized quantum oscillator with a Robin boundary condition.

In Chapter 5, we provide coordinate representation of the exact time-evolution op-
erator for the N-dimensional Schrodinger equation described by Hamiltonian (1.2). Then,
we find the exact time-evolution of the eigenstates and coherent states. As known, solu-

tions of the quantum dynamical problem are completely determined by the solutions of



the corresponding classical equations, which could be exactly solvable or not, depending
on the parameters of the Hamiltonian. Therefore, many properties of the time-evolved
quantum states depend on that parameters. In general, parameters B;(¢) modify the fre-
quency of the classical oscillator and can change it essentially. For this reason, we discuss
the corresponding classical equations and introduce all parameters B;(f) for which the
structure of the standard harmonic oscillator in position space is preserved. Choosing
sinusoidal parameters D;(¢), we also discuss the classical trajectories of the wave pack-
ets. After that, we introduce exactly solvable models and for every model we give some
examples and illustrative figures.

In Chapter 6, we introduce the classical Hamiltonian corresponding to (1.3) and
find solutions to the associated system of coupled classical equations of motion. Then,
we obtain explicitly the evolution operator and the propagator (Green’s function or fun-
damental solution) for the time-dependent Schrodinger equation with Hamiltonian (1.3)
in terms of the classical solutions. We also describe the exact time-evolution of harmonic
oscillator eigenstates and Glauber coherent states under the influence of the generalized
Hamiltonian (1.3). In addition to this, we find the dynamical invariants for the quantum
problem and compare the results in the present thesis by those obtained by the MMT-
and the LR- techniques. As a generalization of the one-dimensional Cauchy-Euler type
dissipative oscillator in (Atilgan Biiyilikasik & Cayic, 2016 ), we introduce an exactly
solvable Cauchy-Euler type quantum parametric oscillator in time-dependent magnetic
and electric fields, discuss the dynamical properties of the quantum states and using con-
crete numerical values we draw some illustrative plots.

Chapter 7 includes brief discussion and concluding remarks.



CHAPTER 2

PRELIMINARIES

In this chapter, we briefly recall the main concepts used in quantum mechanics.
Also, for completeness and later use of the results, we review the definition and properties

of coherent states, squeezed states and non-Gaussian oscillatory states for the SQHO.

2.1. Basic Concepts of Quantum Mechanics

In this section, we present the postulates of quantum mechanics and some of their

important consequences.

Postulate 1 The state of a quantum mechanical system is completely specified by a com-
plex valued function y(x, t), which depends upon the coordinates of the particle(s) and on
time, in a Hilbert space. This function is called the wave function or state function and

the probability of finding the particle between x and x + dx is proportional to y(x, t)|*dx.

The wave function must satisfy certain mathematical conditions according to its proba-
bilistic interpretation. As known, the net probability of finding a single particle at some
point in space must be unity. So this leads to the normalization condition, j: O:o W (x, t)dx =
1.

Moreover, the function p(x, f) = [y/(x, )| is called the probability density function.

Postulate 2 7o every observable in quantum mechanics, there corresponds a linear Her-

mitian operator in a Hilbert space.

This postulate asserts that each quantum observable, such as position, momentum, en-
ergy, etc., is mathematically represented by a linear Hermitian operator in an infinite
dimensional separable Hilbert space. In quantum mechanics, such operators are called
observable operators. As a consequence of this postulate, eigenvalues of the observable

operators are real.
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Postulate 3 If the result of a measurement of an observable operator A is the number A,
then A must be one of the eigenvalues satisfying the eigenvalue equation Ay = Ay, where

W is the corresponding eigenstate.

According to this postulate, the only real values that can be measured for an observable
operator A are the eigenvalues of A. Although measurements must always yield an eigen-
value, the initial state before measuring does not have to be an eigenstate of A. So it is
almost impossible to know which one of these eigenvalues will be obtained in any mea-
surement unless the state of the system is not one of the eigenstates of the operator. To
deal with this difficulty, the average of a large number of measurements under identical

conditions is introduced as follows:

Definition 2.1 The expectation value of an observable corresponding to the operator A

in a state described by a normalized wave function y(x, t) is defined by

(A, = (0, Ay = f A,

A measurement of an observable A in the state i which leads to the eigenvalue A,,, causes
the wave function to collapse into the corresponding eigenstate i, forany n = 0,1,2,....
Thus, measurement affects the state of the system.

Moreover, as a consequence of this postulate, the eigenvectors corresponding to
different eigenvalues of an observable operator A form a complete orthonormal set, that
is, for all n, m, one has (¥, ¥,,) = d,,, and any state vector ¥(x) can be expanded in terms

of eigenvectors {¢,,} as

(o)

W) = ) eha(0) = ) Wi, Y (3). 2.1)
n=1

n=1

Namely, the set of eigenvectors {¢,} form an orthonormal basis for the corresponding
Hilbert space. The equation (2.1) implies that for a normalized state vector v, ||y]|> =
Srleal? = X2 K, )P = 1. Also, one can easily find that (A), = X2, K, )4,
Hence, |c,|*> = |(¥,, ¥)|* can be interpreted as the probability that the measurement will

yield the eigenvalue A, of A in the normalized state y(x).

11



Postulate 4 The wave function of a system evolves in time according to the time-dependent

Schrodinger equation

oy
O _
o

Ay(x,1),
where H is a linear Hermitian operator acting in the complex Hilbert space Ly(R), called

the Hamiltonian or energy operator.

If we consider an initial value problem (IVP) for a time-dependent Schrodinger equation

iha—w = Hy(x, 1),

ot (2.2)
Y(x, to) = o(x),

then the solution is completely determined by the evolution operator U(z, t,), which carries
the initial state y/(x, fy) into the state ¥ (x, t) at later time ¢, that is, ¥(x, 1) = U, oW (x, ).

Substituting this into the IVP (2.2), one obtains the IVP for the operator equation

0 A A
ih—U(t, ty) = HU(t, ty),

% E 0) A( 0) 23)
U(to, 10) = 1,

which can be seen as the definition of the evolution operator. We note that, the evolution
operator of a quantum system with a time-dependent Hermitian Hamiltonian is unitary.

We also give other essential tools for later use.

Definition 2.2 The uncertainty (M)w of an observable operator A is defined by the
square root of the expectation value of (A — (A)w)z in the normalized state  in which

(A)w is computed.

Theorem 2.1 (Debnath and Mikusiriski, 2005) For any Hermitian operator A and any

normalized state Y, we have
(i) (AA)? = (A%, — (A)2,

(ii) (A%, = |l Ay]P.
12



Theorem 2.2 (Uncertainty Principle) (Debnath and Mikusiriski, 2005) Let A and B be

two Hermitian operators on a Hilbert space H, then for any state vector s

" A | PO
(AA)y(AB)y 2 SI(IA. BD .

N

where the commutator is defined by [A, B] = AB - BA.

Corollary 2.1 For any state vector s, the Heisenberg uncertainty principle states that

N Sk

(AR)y(AP)y =

Definition 2.3 States for which the Heisenberg uncertainty principle holds with equality

are called the minimum uncertainty states.

In what follows, we focus on the properties of dynamical invariants (integrals of
the motion) of a quantum system. As known, solution of the IVP for a time-dependent
Schrodinger equation is completely determined by the evolution operator U(t, 7,). Here,
we give the relation between the dynamical invariants and the evolution operator. The

following definitions and results can be found in the work (Man’ko, 1987).

Definition 2.4 A quantum dynamical invariant (integral of the motion) is an operator
I(?), acting on the space of states of the physical system, whose expectation value at these

states does not change with time, that is, ddd Yo/dt = 0.

Proposition 2.1 An operator I(t) is a dynamical invariant for the Schrodinger equation

(2.2) if and only if

ol A
(a—(f) 1A, I(rn) w(x,) = 0

for any Y(x, t) being arbitrary solution of the Schrodinger equation.

Proposition 2.2 An operator 1(t) is a dynamical invariant for the Schrédinger equation

(2.2) if and only if it has the form I(t) = U(t, 10)1(10) U (2, to), where U(t, 1) is the evolution

13



operator for the IVP (2.2).
Proposition 2.3 The eigenvalues of an integral of the motion do not depend on time.

Proposition 2.4 An integral of the motion takes a solution of the Schrodinger equation

into a solution of this same equation.

2.2. Coherent States and Nonclassical States

This section consists of definition and properties of coherent states, which are
considered as the most classical states, see (Perelomov, 1986) for further details. Then,
squeezed coherent states and superposition of two coherent states are given and their

nonclassical properties are analyzed.

2.2.1. Coherent States
First, we consider the SQHO defined by the Hamiltonian
7 W2
A, =2 4 L 2.4
0 ) ) q, (2.4)

where wy > 0 is the natural frequency, mass is m = 1, § = ¢q is the position operator, and
p = —ih(0/0q) is the momentum operator such that [g, p] = ii. Then, by introducing the

number operator N = ata, where
wo h o - Wy h o
~ — - + - ' = — — _— 25
“TN2TT \2weag T N 2! \2we0g 2.5)

1/2). The operators &, a" and N satisfy the commutation relations [a,a'] = I, [N ,a'l=a’,

[N,a] = —a. So we have the spectrum generating algebra {7, a', a, N}.

14



The eigenvalue problem for H, is Flo¢n(q) = E,¢,(q), which is also known as the
time-independent Schrédinger equation. If ¢,(q) is the eigenstate of H, corresponding
to eigenvalue E,, then ag,(g) and a'¢,(q) will also be eigenstates of H, corresponding
to eigenvalues E, — fiwy and E,, + fiwy, respectively. Therefore, the annihilation operator
a reduces the energy of the state, while the creation operator &' raises it. The ground
state of a system is the state with the lowest energy. So the ground state ¢y(g) of the
SQHO can be found by solving the equation a¢y(g) = 0. In normalized form, it will be
¢0(q) = (wo/mh)!/*e= 54" Then, by applying the creation operator to the ground state, one

can find all other eigenstates of H,, which are given as

0u(q) = Nye 7 H,(Nwo/hg), n=0,1,2,..., (2.6)

where E, = (n + 1/2)hw, are the corresponding eigenvalues, H,(q) represents the n-th
order Hermite polynomial and N, = (2"n!)""?(wy/nh)"/* is the normalization constant.
The collection of eigenstates {¢,(g)} of the Hamiltonian H, forms an orthonormal basis
for the space L,(R).

Now, we introduce coherent states of SQHO, which are discovered by Schrodinger
as non-spreading wave packets in 1926, (Schrodinger, 1926). Then, after the work of
Glauber (Glauber, 1963), the name ’coherent states’ appeared for the first time. Coher-
ent states of SQHO, which are also called Glauber coherent states, can be defined using

different, but equivalent approaches:

(1) As minimum uncertainty states they satisfy (Ag).(Ap), = h/2 with equal uncer-
tainties in both quadratures (wy = 1). Their motion follows the classical trajectory,

and so they are the closest analogs to the classical states.

(i) Displacement operator coherent states are obtained by applying the unitary dis-

placement operator

D(e) = exp(ad’ — a*a), a€C, 2.7)

where @ and &' are define by (2.5), to the ground state ¢y(q) of the SQHO.

15



(i1i1)) Coherent states are also known as the eigenstates of the annihilation operator a

since they satisfy the eigenvalue equation a¢,(q) = a¢,(q) for any a € C.

Some important properties of coherent states are listed below:
For any @ € C, coherent states of the SQHO can be represented in terms of energy eigen-

states (2.6) of H, as

_ laPp2 2 . 28
Balq) = € Z(; @ (2.8)

Coherent states of the SQHO are not orthogonal. Actually, for any «, S € C, they satisfy

lof?

(Ba(@), ds(@)) = & T 5B 4 0, 2.9)

and the closure relation
1 N
- f I$aX(Bold®a = 1.
T Jc

Consequently, the collection of coherent states {¢,(q)}.cc forms an overcomplete set.
The coordinate representation of coherent states can be found explicitly by using

the displacement operator formalism.

Proposition 2.5 The displacement operator D(a) can be written as a product of exponen-
tial operators, which are group generators associated with the Heisenberg-Weyl algebra
defined by

Ei=ig, E,= a%’ Ey=il. (2.10)

Proof Using (2.5), the coordinate representation of the displacement operator becomes

) [2n 2
D(@) = exp [— w_0a1% +iq /%azq] @.11)

for any @ = a; + ias, a1, @, € R. Recall that, Baker-Campbell-Hausdorff (BCH) formula

says that for any operators X and ¥, if [X, ¥] commutes with both X and ¥, then & =

€_[X’Y]/2€X€Y.
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Indeed, the commutator of the operators E, and E, is [E 1 Ez] = —E3. So from
BCH formula, the coordinate representation (2.11) of the displacement operator can be

rewritten as a product of exponential operators in the form

N /2 2
D(a) = exp(—iaja,) exp|i ﬂcyzq exp|— —halﬁ . (2.12)
h wy 0q

O

Then, application of the disentangled form (2.12) of D(a) to the ground state ¢y(q) gives

the well-known coherent states of SQHO

1
a 2
b(q) = (@)4 X exp [ — iajaz] exp iw/ﬂazq] X exp
rh h

for any @ = a; + iay, a1, a; € R.

2.2.2. Squeezed Coherent States

The squeezed coherent states of SQHO are generalizations of the coherent states,
which in the simplest case obey the minimum uncertainty principle, but have less uncer-
tainty in one quadrature at the expense of increased uncertainty in the other. Their main
properties were derived by Stoler (Stoler, 1970), (Stoler, 1971), and Yuen (Yuen, 1976).
Squeezed states can be defined as a result of applying the squeeze operator.

The squeeze operator is a unitary operator mostly known in the form
o 1 AT2 * A2 .
S(z) = exp [E(za -7'a )], z2=271+12, 21,22 €R, (2.14)

where operators @ and &' are given by (2.5), (Stoler, 1970), (Nieto, 1996). In coordinate

representation, it becomes

. i o w o 1
S(Z],Zz)Zexp[—h—wOZ (—Ea—qz—?o 2)—Z1 (Q%+E)] (2.15)
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Now, using polar representation z = re?, with r > 0, 6 € [0, 27), one can write the squeeze

operator as

2
S(r 0) = exp [r (z—(sm H)q — (cos 9)(6]i + l) + zzi sin 9%)] (2.16)
Wo

Then, it can be disentangled as a product of exponential operators, which are generators

of the SU(1,1) group corresponding to Lie algebra defined by

N i & L . 1 0 1
K =—— K.=-¢*, Ky==(g—+ =), 2.17
29 + =34 0 2(qaq+2) (2.17)

that is,
ﬂn@=%pBﬁ®ka+Mﬂ@%+%ﬂ%ﬂ—é&@ﬁ%} (2.18)

where fy(r), go(r) and hy(r) are real-valued functions. Indeed, taking the derivative with

respect to r in (2.16) and (2.18), and comparing the results, we find that

yl
Jor) = fisin Q(y 9(7")) Jo0) =
B _h sin @ Va4(r) 3
go(r) = wolm%IAJ 26(0) = 0
hy(r) = —(r cos @ — In| 2120 ) hy(0) = 0
Yie

where y; ¢(r), y24(r) are two independent solutions of the classical inverted oscillator

Yy (r) + 2(cos 0)y,(r) — (sin® @)ye(r) =0, r>=0, 0<86<2nm, (2.19)

satisfying the initial conditions y; 4(0) = yo # O, ¥16(0) = 05 y24(0) = 0, ¥,,(0) =1 /Yo

(prime denotes derivative with respect to r). In terms of solutions of this differential
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equation, the squeeze operator becomes

. Yo iwy (Y14 ,
S0 - EETvad
(r,0) \/erch(r)eXp 27 sin G\ y; 4(r) 1

yig(H\ 0 ihsin® ,(yr4(r)\ &
e e e et
Yo a6] 2wy y16(r)/ dq

exp[— (rcos@—ln

and since y;o(r) = yoe "?(coshr + cos@sinhr), y,4(r) = y;'e”*’sinhr, we have

explicitly
$(rno) = 1 % exp iwy ( sin @ sinh r' )qz]
vcosh r + cos @ sinh r 2% \coshr + cos@sinhr

0
X exp [ — In(cosh r + cos 6 sinh r)qa—]
q

.. . . 2
ik ( sin @ sinh r )6 ] (2.20)

Xexp[ a—qz

2wo \cosh r + cos @sinh r
This form of the operator, which we derived in (Atilgan Biiylikasik & Cayig, 2019 ),
coincides with the squeeze operator derived by Nieto in (Nieto, 1996), but with slightly
different approach.

The squeezed coherent states of SQHO, which we denote by x{ . ,(¢) are defined
by

X2 0(@) = D(@)S (r, O)¢o(q). 2.21)

Applying first the squeeze operator, then the displacement operator to the ground state,

we explicitly get

—l(xlaz : r :
0 i sin @ ] . 2wy ]
= X ex drlexplia —
Xor (@) \/ \/ST p ) ST plia2[——=q

q-a \/M)z]

0
r0

@(CI — a1 V2h/wy )2]
2h S0 ’

r,0

X exp [% sin @ sinh(2r)(
xexp| - (2.22)
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where

= Vcosh 2r + cos @ sinh 2r, (2.23)

G0 groosd \/(yl,e<r)>2+y3 sin 0(y,o(r))?
re — y2
0

denotes the initial squeezing, that is S 29 is the squeezing coeflicient due to the action of
the squeeze operator S (r, 6) on the ground state. We note that for & = 0, Eq.(2.22) gives
the squeezed ground state, which we denote by )(gg(q).

It is not difficult to show that for @ = @, + i@, with @y, @, being real numbers,
expectation values of coordinate and momentum at squeezed states are the same as for
the coherent states and found as (§), = V2hi/woa; and (p), = V2woha,, respectively.

On the other hand, uncertainties at y° ,(q) are

f h [woh 1
A§°, = [—S° . (Ap)Y, = —0—\/1+sin295inh2 2r),
(q)rﬁ 2(,()() r,0 (p)rﬁ 2 S?’g ( )

i
(AGADP)Y, = 3 \/ 1 + sin® @ sinh?(2r).

Clearly, the uncertainties depend on the squeezing parameters r and 6. From these results,
it can be seen that squeezed coherent states are minimum uncertainty states only when
z is real. Moreover, according to some special values of the phase 6 in z = rexp(if)

uncertainties are as follows:

(1) f6=0and 6 = 7, (z = +r), then §Y, = ¢*’, and

ho, ) woh -, A h
(A0 = \[5—e, (AP = \[2=e™,  (AgAP)° = .
2wy 2 2

Thus, when z = r, one has minimum uncertainty state, which for large values of
r spreads in position space, and is highly localized in momentum space. When
z = —r, minimum uncertainty state is highly localized in position for large r, at the

expense of spreading in momentum.

20



(2) If 6 = /2 and 6 = 37/2, (z = +ir), then S?ﬂ = Vcosh2r, and

/ hi [won i
(Ag)° = T Veosh2r, (Ap)’ = “% Veosh2r, (AGAP) = 3 cosh 2r.
0

In that case, the state is not minimum uncertainty, and uncertainties increase with

increasing r.

Squeezed coherent states of SQHO may be defined in an alternative way following
the approach of Yuen, (Yuen, 1976). In this definition, the state is generated by applying

the displacement operator and then the squeeze operator on the ground state

15 0(@) = Sr,0)DB)¢o(q), B =P +iB2 Pr.Br€R, (2.24)

where ﬁ(ﬁ) and S (r, ) are introduced by (2.7) and (2.15), respectively.

Consider the operators
b=2da+ua", b'=ra"+ua, (2.25)

where a and &' are defined by (2.5), A = coshr, and u = —e sinh r with |A]> — |u*> = 1.
So these operators obey the boson commutation relation [5,5'] = 1. Recall that any
transformation that leaves the commutator invariant is called a canonical transformation.
The Bogoliubov transformation is a canonical transformation that maps the bosonic
operators & and &' to b and b'. In addition, a theorem of von Neumann says that every
canonical transformation can be represented as a unitary transformation, (Von Neumann,
1931). In fact, using the definition of the unitary operator S (r, §) given by (2.23) one can

show that the operators b and b' satisfy the following relations
b=S8(r0a8'(r,6), b =S80a'S 0. (2.26)

As a consequence of this, the operators b and b have similar properties with the operators
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a and &', and they are called pseudo-annihilation and creation operators.

Proposition 2.6 (Yuen, 1976) The squeezed states Tgw(q) are eigenstates of the pseudo-

annihilation operator b with complex eigenvalue 3, that is,

B}, o(9) = BYG,o(@)-

Therefore, b and b' have the same eigenvalues with respect to ng(q) as do & and a'
with respect to the coherent states ¢g(g). Note that, the pseudo-annihilation operator bis
defined in terms of the operators @ and &' and due to this the squeezed states ‘I’g .o(q) are

called two-photon coherent states (TPCS), (Yuen, 1976).

Remark 2.1 The two definitions (2.21) and (2.24) of the squeezed states yield the same

state if the displacement parameters a, 8 € C are related by

@ = cosh 7B + ¢ sinh 18" (2.27)

foranyr >0,0 € [0,2n).

2.2.3. Even and Odd Coherent States

Using the operator D(«) given by (2.7), one can construct the following displace-

ment operators

D.(a) = cosh(ad’ - a*a) = L(D(a) + D(-a)),

. . A (2.28)

D_(e) = sinh(ed’ — a*a) = 1(D(@) - D(-a)),

where @ and &' are given by (2.5). Then, the functions defined by
¢5(q) = Do(@eo(q).  B3(q) = D_(@)¢o(q) (2.29)
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are even and odd, respectively, with respect to @ and g. Therefore, they are called even
and odd coherent states in (Dodonov,1974). Actually, these states are superpositions of

coherent states

¢e(q) = Ni(¢(q, @) + ¢(q, —)), ¢.(q) = N_(¢(q, @) — ¢(q, —)), (2.30)

where we denote ¢,(q) = ¢(g, @), and using the property (2.9), it is easy to show that they
are orthogonal, i.e., (¢;(¢), ¢3(¢)) = O for any complex numbers «, 8. The normalization

constants for even and odd coherent states are respectively

2 2
ol /2 G2

N.

L A
" 2 \Jcosh|aP 2 \/sinh |a?

Here, we give some important properties of even and odd coherent states, details of which

can be found in the work (Gerry, 1993).

Proposition 2.7 The annihilation operator a acts on even and odd coherent states as

agy(q) = a tanh|al’¢o(q), a¢,(q) = avcoth|al*¢;(q),

where @ = @) + i, a1, @, € R, and |a)* = a% + a%.

Therefore, unlike coherent cases, even and odd coherent states are not eigenstates
of the annihilation operator. The eigenvalue equation for the even-odd coherent states are

given in the following corollary.

Corollary 2.2 Even and odd coherent states are eigenstates of the operator 4>, that is
Zi"(q) = @’¢;°(9).

Proposition 2.8 Even and odd coherent states have power series expansions in terms of
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the even and odd eigenstates ¢»,(q), ¢an+1(q), respectively,

h 2n

1
W(@) = 2(q),
Pald mz v
& 2n+1

1 0%
¢olq) = Oomsi(q), ae€C.
sinh |2 Z:; NerER) ik

For any complex number @, the explicit form of normalized even and odd coherent

states are

wo\/4 e @2 2w wo
#(q) = (—) —C cosh| 4[/Z0uyq exp(——q ) 2.31)
rth Jcosh a2 h 2h

1/4 —a?/2 D)
Palq) = (ﬂ) % inh [ A/ ﬂaq] exp (—ﬂqz) . (2.32)
nh \sinh |af2 h 2n

Squeezing properties:
As known, squeezing exists in position or momentum variable if the variance of one of
the operators is smaller than the value V7/2.
The expectation value of position and momentum operators at the even and odd
o 0

coherent states are zero, that is (§);” = 0, and (p);° = O for any @ € C. Then, the

variances in position and momentum operators at even coherent states are found as

/ i
(AG). = A= V1 +2]af? tanh |2 + 2R (a?),
2(1)0

h
(Ap) = ‘/“% VI + 2laf tanh o — 2R (),
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where R(a?) denotes the real part of . Using polar representation, @ = ve', (for sim-

plicity take wy = 1), the variances at even coherent states are

h
(AQ)y5 = \/; \/ 1 + 2v2(tanh v2 + cos 219),

h
(AP),.y = \g V1 + 202(tanh v2 — cos 29).

So they exhibit squeezing in momentum when @ € [0, 7/4) | J(37/4, ) since tanhv? < 1
for all v > 0. Squeezing in position exists when ¢ € (r/4,3m/4). Moreover, for ¢ = 0,
one has the maximum squeezing in momentum while maximum squeezing in position is
for & = n/2.

The variances in position and momentum operators at odd coherent states become

/ i
(A2 = A= V1 +2laf? coth a2 + 2R (a?),
20)0

n
(APY, = 4/ ‘% V1 +2[af? coth o — 2R (e?).

In polar representation, they are

h
(AQ), = \/;\/1 + 2v2(coth v? + cos 219),

h
(Ap)yy = \/; V1 + 2v2(coth v? — cos 29).

Since coth ¥ > 1 for any v > 0, there is no squeezing in odd coherent states.

So, the uncertainty relation at even and odd coherent states follow as

(A (AP, = g \/(1 + 2|l tanh [o2)* — 4(R(a?))’,

(AQ)2(AP) = g \/(1 + 2l cothla?)’ — 4(R(a?))’,
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and they satisfy the Heisenberg uncertainty principle, i.e, (AGAp)¢, > 1/2, and (AGApP)., >
h/2. These relations show that, even and odd coherent states are not minimum uncertainty

states and the uncertainty relation depends on the value of complex number a.

2.2.4. Even and Odd Displaced Squeezed States

Even and odd displaced squeezed states are constructed by applying the displace-
ment operators D.(e) and D_(@) defined by equations (2.28) on the squeezed ground

state

X.ro@) = Di(@)S (1, 0¢0(q),  X2,.0(9) = D_(@)S (r,0)p0(q) (2.33)

forany @« € C, r > 0, 6 € [0, 7). Denoting the squeezed coherent states ng(q) =
Xro(g, @), we notice that even and odd displaced squeezed states are superpositions of

squeezed coherent states

Xoro@ = Ne (xro(q, @) + x10(q, @), Xo.o(@) = No (xro(q, @) — xro(q, —)) .

Taking, for simplicity, & = 0, which corresponds to the case z € R in (2.14), normalized

forms of these states become

wo\I4 e
wr(@) = ( ) —————cosh ar ex
Xard nh/  er/24/cosha, 1
wo\l4 e 2
0@ = ( ) ——————sinh ar ex
x e’'2 \/sinh @, 7

where we denote a, = e @, + ie’a, with ay, a; being real numbers.

= o
A - ~
/\
Q
:>|Q~
~————
~———

Expectation values of position and momentum operators at the even and odd dis-

placed squeezed states are zero, that is ()5 = 0 and (p)s, = O for any a = a; + iay,
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a1, @, € R. Then, the uncertainties at even displaced squeezed states become

E
(A4), = 3| 5—¢ /1 + 2P tanh o + 2R (a2),
’ 2wy
h
APY, = +/ “’Toe-f 1+ 2l tanh o, — 2R (a2).

In polar representation a, = v,e”, v, > 0, 9, € [0, 27), (When w, = 1,) uncertainties in

position and momentum operators at even displaced squeezed states become

h
\/;e’ \/ 1 + 2v2(tanh v?2 + cos 299,),

h
(Ap);, 9 = \/;e" \/ 1 + 2v2(tanh o2 — cos 219,.).

(A, 9,

More precisely, for some special values of 1,, squeezing properties are as follows:

(1) For small values of v,, since tanh v, < 1, squeezing exists in momentum if ¢, = 0

or ¥, = m, while it exists in position for ¥}, = n/2 or ¥, = 37/2.

(2) If 9, = n/4 or ¢, = 3n/4, these states spread in position space and they are highly

localized in momentum space for large values of v,.

The uncertainties at odd displaced squeezed states are

h
(833, = 5 1+ 2 ol 2R,
0
/]
(Ap), = 1/ wTOe" \/1 + 2|, |? coth |a,|> — 2R (a?).

In polar representation form, they become

/]
(AQ)y, 5. = \/;er \/1 + 2v2(coth v? + cos 249,),

h
(AP);, 9, = \/;e_’ \/ 1 + 2v2(coth 2 — cos 29,).
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Since cothv, > 1 for all v, > 0, squeezing just exists in momentum for large values of r,

and there is no squeezing in position space. Finally, uncertainty relations follow as

(ADS(APY, = 5 (1 + e anhor Y — 4(R(a2)’

(AG(AP). = g \/(1 + 2,2 coth |, 2)” — 4(R(a2))’,

Vv

and they satisfy the Heisenberg uncertainty relation, thatis, (AGAp);, > 1/2, and (AGAp).,
h/2. Also, they show that even and odd displaced squeezed states are not minimum un-
certainty states and the uncertainty relation depends on the value of complex number
and the parameter r of the squeeze operator.

Alternative approach:

By replacing the order of application of the operators in the definition of even-odd dis-

placed squeezed states given by (2.33), one can obtain the following states,

15,09 = S (r,OD.(B)po(q) = 8 (1, 0)65(q),
(2.34)

15,49 = S (r,OD_(B)po(q) = 8 (1, 0)¢5(q),

where ¢;(g) and ¢3(q) are given by (2.31) and (2.32), respectively. These states can be
considered as squeezed even-odd coherent states. The definition (2.33) for even-odd
displaced squeezed states and the one (2.34) for squeezed even-odd coherent states yield
the same state if the complex parameters @ and g satisfy the equation f = coshra —
¢ sinh ra* for any r > 0 and 6 € [0, 27). One can derive the following relations for the

squeezed even-odd coherent states.

Proposition 2.9 (Xin, Wang, Hirayama & Matumoto, 1994) The pseudo-annihilation

operator b acts on squeezed even and odd coherent states as

bry(g) = B\tanh |BPYY(g),  bY(g) = Bycoth|BPYY(g). B e C.

Corollary 2.3 (Xin, Wang, Hirayama & Matumoto, 1994) Squeezed even and odd co-
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herent states are eigenstates of the operator b?, that is,

b*rg(q) = B*15"(g), peC.

Therefore, the squeezed even-odd coherent states are eigenstates of the operator 5? corre-

sponding to the eigenvalue 5 with 8 being complex number.
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CHAPTER 3

DYNAMICS OF THE GENERALIZED
ONE-DIMENSIONAL QUANTUM PARAMETRIC
OSCILLATOR

In this chapter, we consider an initial value problem for the Schrodinger equation

ih%‘l‘(q, 1 =H,t)¥(q,0, t>0,

(3.1)
W(g,10) = Yo(q), —00<gq<oo,
with the most general quadratic Hamiltonian
N - & u@w* () - B(t) o 0 0
H,(t _ — + —q) — ihD(t)— + E(t F(1), (3.2
=gt g4 i g+ g~ D+ EWq + (@), (32)

where u(t) > 0, w?(t) > 0, B(t), D(¢), E(t), and F(t) are real-valued parameters depending
on time. Since the Hamiltonian Flg(t) is a linear combination of generators of the S U(1, 1)
and the Heisenberg-Weyl Lie algebras, the evolution operator for the Schrédinger equa-
tion can be obtained using the Wei-Norman algebraic approach (Wei & Norman, 1963),
and for details one can see (Atilgan Biiylikasik & Cayig, 2016 ). It is a product of expo-
nential operators, corresponding to multiplication, displacement, squeeze and generalized

rotation as follows

0g(t, ty) = exp( f {(s)ds) X exp (zpp(t)q) X exp( xp(t)—)

() [ X1(0) > xi(to)|( 0
(57 (56 - o))<l + )
i (0@ &
X exp (zhxl (1) (xl(t)) _8q2) , 3.3)
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where

—HD | 2 2F (1)
() = — [(xp(t) - B(t)xp(z)) - wz(t)xf,(t) - D*(t) + 0 | (3.4)

Here, x;(¢), x(¢) are linearly independent homogeneous solutions of the classical equation
of motion

) ) . ) 1

x+Ex+(w2<r>—(B+BZ+ﬁ ))x:p+(ﬁ+3)p__5, (3.5)
u u v 0

satisfying the initial conditions x;(fy) = xo # 0, x1(ty) = xo0B(ty), x2(tg) = 0, x(tp) =

1/u(to)xo, and x,(¢) is a particular solution of (3.5) satisfying x,(to) = 0, x,(fy) = E(t).

The corresponding equation for momentum is

(uw?)

pw?

%?B))p = —/,ta)2D— E+(

L (pe?)
.

e p+(a)2+(B—Bz—

+ B) E (3.6)

with homogeneous solutions p;(f) = ,u(t)(xl(t)—B(t)xl(t)), pa(t) = ,u(t)()'cz(t)—B(t)xz(t)),

and particular solution p,(f) = ﬂ(t)(fcp(t) — Bt)x, (1) - D(t)).
3.1. Time-Evolved Coherent States

First, we recall the generalized time-evolved coherent states which are found by
applying the displacement and evolution operators to the ground state, that is ®,(g, ) =
Ug(t, tO)D(a)goo(q). To be able to compare with the generalized squeezed coherent states

derived in next sections, we give their explicit representation as found in (Atilgan Biiylikagik
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& Cayic, 2016 ), that is,

_(wo\* 1 (€ (t))2
%0 = (2) o X ex ( o e )]
xew); s\ Xexp[ it )( (1) - B(t)xp(t)—D(t))q]
X exp % (—tl Ie(t)I—B(t))(q xp(t))]
2w (q — xp(D))a —wp (g - Xp(f))2
X exp . 0 } X exp[ P , 3.7)
where
e(r) = 10 = Je(0le™, (3.8)
X0
whose modulus and phase are
X (1) ) s f’ dé
= , = 3.9
le(®)] \/ 2 + (woxo)*x5(1), V(1) @) @F (3.9)

and {(¢) is given by (3.4). The corresponding probability densities become

—AQ)a(t)
o = — |, 3.10
pulg:1) = ‘V |(r>| h |e<r)| )] (3.10)

where the squeezing coeflicient |e(?)| is given by (3.9) and expectation values are

2h

(@a(t) = \/— (ﬂm(t) + az(woxo)Xz(t)) +x,(0), (3.11)
wo \ Xo
2h

(Phalt) = 4 / —(ﬂpm - az(woxo)l?z(f)) + py(0), (3.12)
wo \ Xo
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showing that the center of the wave packets follows the classical trajectory. Then, uncer-

tainties in terms of |e(?)| are of the form

(ADalt) = ,/—271 €0,
wo
_ [won 2(r)|e(r)|4 d1In |e(r)| g
(AP)o(t) = \/ I(I)I\/ ( - B(r)),

h 2 4 (dl 2
(Aa(AP() = 5\/1 LD ( L0 —B(r)).

0

We note that, if x;(f), x,(¢) are solutions of the simple harmonic oscillator ¥ + w%x =0
corresponding to Hamiltonian Ay = p?/2 + w?§?, then we have |e(t)] = 1 so there is
no squeezing of the wave packets. However, in general |e(¢)| depends on time, which
shows that time-evolution of coherent states do not preserve the minimum uncertainty,

and squeezing properties depend on parameters u(t), w*(¢) and B(¢) of the Hamiltonian.

3.2. Quantum Dynamical Invariants

In what follows, we construct time-dependent linear invariants for the quantum
system using the evolution operator formalism. It is based on the fact that, if time-
development of a given quantum system is described by the unitary evolution operator
U(t, 1), then any operator of the form A(r) = U, 1)A(10)U' (1, 1) is an integral of motion
or a dynamical invariant, (Man’ko, 1987).

For the generalized quantum parametric oscillator with Hamiltonian I:Ig(t) given
by (3.2), using the evolution operator (3.3), one can find dynamical invariants that are

linear in coordinate and momentum

A = Uy(t,10)a U, 10),  AT(0) = Uyt 10) " U1, 1), (3.13)

where the lowering and raising operators, & and &' are given by (2.5). Explicit calculations
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give us

A = v;m [,u(t)(é(t) - B(z)em)(fz — x,(0) — () - pp<r>)] , (3.14)
A'r) = \/2;? [y(r)(é*(r) - BOE ()@ - (1) - € 0)(p - pp<r>)] . (15

where €(?) is defined by equation (3.8), and it is a complex solution of the homogeneous

part of equation (3.5), that is
e + M) + (a)Z(t) - (B(r) + BX1) + EB(I)))E(I) ~0 (3.16)
[ u

satisfying the IC’s e(ty) = 1, é(ty) = B(ty) + iwy/u(ty). Therefore, using the Wronskian
W(t) = W(e(t), €*(t)) = ()€ (t) — €' (1)é(t) = —2iwo/u(t), we can show that the linear
invariants A(7) and A'(¢) that are explicitly given by equations (3.14) and (3.15) satisfy
commutation relations [A(7), AT(£)] = 1, and that can be seen also as generalized lowering
and raising operators.

Moreover, coherent states @, (g, t) found in (3.7) by construction are eigenstates
of the generalized lowering operator A(f) corresponding to complex eigenvalue a. Indeed,

if ¢,(q) are eigenstates of a so that a¢,(q) = ad,(q), then

ADDo(g, 1) = Ut,100a0"(1,10)U (1, 10)pa(q) = @U (1, 10)pa(q),
from which it follows A(t)cl)a(q, 1) = a®,(q,t) for any a € C.
3.3. Time-Evolved Squeezed Coherent States

In this section, we obtain time evolution of squeezed coherent states under the

generalized evolution operator U <(1,19), (Atilgan Biiylikagik & Cayig, 2019 ). First, we
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give the time evolution of the squeezed ground state, that is,

xro(q, 1) = Ug(t,10)8 (. 0)o(q) = Us(t, 10)x76(9), (3.17)
which explicitly becomes

wWo

e = (3) ool -3 [

[ 1 wodt i ! i
X exp |5 fto m] X exp [ﬁ {(s)ds] X exp bpp(t)q]

4]

[iwo[ . . x%wo(l + sin29sinh2(2r)) X0 (q — x,()\?
X exp _g[smesmh(Zr) +( (S(r)ﬂ)z )xl(;) ( 10,.6(0)| ) ]
>M X’](l)_ _ 2 _@ q_xp(t) 2
xexp| 4 (x1 . B(t))(q 0) ]Xexp[ 2h(—|Qr,g o )] (3.18)

Next, the time evolution of the squeezed coherent states under the generalized evolution

operator U o(t,19) 1s found according to

Xa,r,é(qa t) = 0g(t, tO)D(a’)S (l", H)SOO(Q) = Ug(ta tO)Xg,r,Q(q)’

and this gives the generalized time-dependent squeezed coherent states in the form

_@% 1 i " sin Odr i ’wo—dt
Koo ) = (nh) 10,4(0)] eXp[ zfo (SQG)Z]CXP[ Zf,o ,u(s)lQr,G(S)lz]

expl 7 f t £5)dsexp| 2 pyorg exp [%(’“(” - BO)a - 50|

x1(1)
iwol . . . xgwo(1 + sin” 6 sinh?(2r))\ x,(¢)
exp {ﬁ[ sin @ sinh(2r) + ( S 29)2 )xl(t)]
><((q - Xx,(1)) — V2h/w0x61x1 OAa,r,0) )2}
|Qr,6(t)|
wo ((g = xp(1)) — \/2h/a)0x61x1(t)/l(a/, r, 0)\2
exp| - 5l 10700 J| G19
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where A(a, r,0) = Ai(a, 1, 0) + il (a, 1, §) with

sin #sinh(2r)S?, 50

a b(a,r,0) = il a
1 +sin20sinh2r) 277 T 1 +sin® @sinh22r) -

Ai(a,r,0) =a; —

For both states (3.18) and (3.19), the initial squeezing coefficient Sﬂg is given by (2.23),

and Q,(¢) is denoted as

SO . .
0,4(1) = (i’xlm 4 Too sin §5inh(2r) Xz(f)) + i(x;’ﬁ’o xz(t)), (3.20)

0
X0 S r,0 r,0

with

SO . . 2 2
10,40 = J[ 0 (t) + Smgsmh(z%(r)) +(XS°‘§’°xz<t>] (3.21)

0
X0 S r,0 r,0

being the generalized squeezing coefficient, for which we note the following properties:

(i) It depends on the squeezing parameters r > 0 and 6 € [0, 2x) of the squeeze opera-

tor.

(i1) It depends on the solutions x;(¢) and x; () of the classical equation of motion, which
in turn depend on the time-variable parameters u(t), w?(t) and B(f) of the Hamilto-

nian.

(i11) Atinitial time ¢ = ¢, the generalized squeezing reduces to the initial squeezing, that

iS |Qr,6(t0)| = S(r)g

(iv) For r = 0, we have SQO o = 1 and |Qr’9(t)||r:0 = |e(?)|. That is, when the squeezing

parameter r is zero, the generalized squeezing coeflicient |Q,4(?)| reduces to the

squeezing coeflicient |e(¢)| defined by (3.9) for the coherent states.

Now, probability densities at time-evolved squeezed coherent states become

Pasrsd:1) = \/% |Q,,19(r>| | - [\/% (%)r} (3:22)
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where expectation values of position and momentum are the same as for the coherent

states, and given by (3.11) and (3.12), but uncertainties and uncertainty product become

h
(AQ)rp(t) = \’lerﬂ(r)l’

woh 2<t)|Q,9<r>|4 d 10100 2
ORCERES |Q,9<r>|\/ ( = B(r)),

HEDIQp(D)* (d In|Q,4(1)]
w? dt

h 2
(AP0 = 5|1+ - B(r)) .

0

Therefore, time-evolved squeezed coherent states satisfy the Heisenberg uncertainty rela-
tion, that is, (AgAp),¢(t) > h/2. However, they are not minimum uncertainty states. The
squeezing properties of these states depend on the time-dependent parameters u(t), w(t)
and B(7) of the Hamiltonian A () given by (3.2) as in the time-dependent coherent states.
Also, the squeezing depends on the parameters r and 6 of the squeeze operator.

We also consider the case in which the phase 6 = 0 in order to compare the results
with those to be obtained later. When 6 = 0, the time-evolved squeezed coherent states

become

R €0
wtan = (3] Ve P (|r<t>|2 oo )]
x exp | = f g(s)ds]xexp[“()( (1) — B)x, (1) D(r))q]

X exp ”;g) ( ~ e (0] - B(r)) (q- x,,<r>)2]
2wy (C] - xp(t))a'r —Wo ((] - xp(t))2
X exp » <0 ] X exp { WP } , (3.23)

where the complex parameter @, = e”"a; + ie’as, @, a@; € R depends on r > 0, and the

corresponding probability densities are found as

P (qt):\/@ 1 exp —[ @(M)]Z
o 7 le ()] NV le)l '

37



Furthermore, in this case, the generalized squeezing coeflicient turns out to be

6] = 1050,y = 220 + wfe B0, (o= 1) (3.24)

but the expectation value of position (7). () is the same as in (3.11).

Recall that the squeezed coherent states of SQHO can be defined alternatively
following Yuen’s approach. The states generated by this approach are called two-photon
coherent states, which we denote by Tg’rﬂ(q) = S(r,0)D(B)po(q) forany B € C,r >0, 6 €
[0, 27). The squeezed coherent states )(g,r,g(q) and two-photon coherent states ‘I’gw(q) are
equivalent when « = cosh 78 + ¢ sinh r8* for any a, 8 € C, r > 0, 8 € [0, 27r). Moreover,
two-photon coherent states of SQHO are eigenstates of the pseudo-annihilation operator
b which is defined as a linear combination of the annihilation and creation operator &, a'
in the form b = coshra — ¢ sinh ra’. It is possible to find a relation between the time-
dependent dynamical invariants A@), At(r) given by (3.14), (3.15), respectively, and time-
evolved squeezed coherent states. For this, we first find the time-evolved two-photon

coherent states that can be obtained according to

V.ro(q, 1) = Uy(t,10)8 (r, ) D(B)po(q) = U(t, 10) Yy, 4(q)- (3.25)

Since the squeeze operator and the displacement operator do not commute and satisfy
the equation D(@)S (r, 6) = S (r, ) D(cosh rae® sinh ra*), the definition (3.25) will give us
time-dependent squeezed coherent states when 8 = cosh ra — € sinh ra*.

Then, we construct the following time-dependent operators
B(t) = Uyt,10) b U1, 10),  B'(1) = Uylt,10) B U (1, 10), (3.26)

where the pseudo-annihilation and creation operators b and b' are given by (2.25). The
following proposition asserts that the operators B(t) and B'(7) can be written as a linear

combination of the operators A(f) and A" (r) formulated by (3.14) and (3.15), respectively.

Proposition 3.1 There exists a Bogoliubov transformation between the dynamical invari-
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ants A1), A (t) and the operators B@), B (p).

Proof Using the equations in (2.25), we obtain

Bty = Uyt,10)b U1, 10)

U(t.10) ((cosh r)a - (¢” sinh r)a') U} (2, 1))

(cosh r)U,(t, 1) a Ul (t,10) — (¢” sinh U, (1, 10) &" U{(z, 10)

(cosh PA(t) — (" sinh NAT(7),

and analogously we get B(r) = (cosh nAT(f) — (¢7 sinh r)A(7). Let us denote u = cosh r

and v = e?sinhr. Then |ul*> — [v/> = 1 and this implies that the commutator leaves
invariant under this transformation, i.e, [B(7), B (r)] = 1. So this is a canonical Bogoliubov
transformation. m|
The commutator [B(7), B (1)] = 1 provides B(t) and B'(¢) with properties exactly similar
to those of A(r) and A¥(r). In addition, there is an eigenvalue equation that time-dependent

two-photon coherent satisfies, given as follows:

Proposition 3.2 Time-dependent two photon coherent states Vg ,4(q, t) are eigenstates of

the operator B(@).

Proof By using the definitions of the operator B(f) and time-dependent two photon

coherent states Vs 4(q, ), we have

B(t)Y5,0(q, 1) = Uy(t,10) b UL (1, 10) U(t, 10) S (r, 6) D(B)go(q).

Indeed, since b = § (r,0)aSt(r,0), and ¢p(q) are eigenstates of a, the desired result fol-

lows as

Ut 10) S (r,0)aS™(r,0) S (r,6) D(B) ¢o(q)
U, 10) S (r,0) & ¢p(q)
BU,(t,10) S(r,6) ¢s(q)

B Ypr0(q,1),

B(I)Tﬁ,r,e(q, 1)
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which shows that the states 1’z ,4(q, ) are eigenstates of the operator B(7) corresponding

to complex eigenvalue £. O

By taking the phase 6 as zero, we write the time-evolved two-photon coherent

states in explicit form

ooy 1 (&0
a0 = () <= xew|- (lr(mzﬁ B )]

X eXp ; f £(s)ds xexp[ “}; )( p(t)—B(t)xp(t)—D(t))q]

X exp ”;g) ( ~In e (0] - B(r)) (q- xp(r))z]
2wy (g = x,(1))B —wo (q = x,()°
X exp - <0 exp[ RO ] . (3.27)

The corresponding probability densities are

_ [ 1 wy (4= @0\
P8l 0) = %er(rn“p{_[‘\/?( &) )]}

where the generalized squeezing coefficient |¢,(¢)| is defined by (3.24) and expectation

values are found as

(@) = (Bie"x1(t) + woBre™ x2(1)) + x,(1),

2h
(Prp(t) = \/w:O(ﬁlerpl(t) + woPre” pa(D) + pp(D).

Comparing the states (3.27) with the ones obtained by (3.23), we realize that the squeez-
ing coeflicients are the same for both of them. Therefore, the uncertainties and the un-
certainty product at these states remain the same. (Note also that, the uncertainties and
the uncertainty product are independent of the complex parameters a or 8.) However,
the expectation values at the two-photon coherent states depend on the squeezing param-
eters r > 0 and 6 € [0, 2x), while the expectation values at squeezed coherent states are

independent of them.
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3.4. Time-Evolved Even and Odd Coherent States

The even and odd coherent states for SQHO are defined by applying the displace-
ment operators D.(a) and D_(a) to the ground state ¢g(q), that is, ¢.(q) = D+(a/)<po(q)
and ¢%(q) = ﬁ_(a)goo(q), where D, (@), D_(a) are given by (2.28). In this section, we
solve the IVP (3.1) for the generalized parametric oscillator by taking the initial states to
be the even-odd coherent states for SQHO.

First, if the initial state of the IVP (3.1) is taken to be ¥y(q) = ¢¢(g), then time

evolved even coherent states are found as @ (q, ) = U (1, 10)#%(q), and explicitly

(g, 1) = (ﬂ)l/4 ! X exp( €0 2)
o 7h)  \Jcosh(lalP)e(r) 2e(t)
x exp( f {(s)ds) X eXp [ “72 )( £,(0) = BO)x (1) - D(t))q]

exp[ iu(t)

% ( tlnl (t)I—B(t)) (g - xp(t))]

2wy (q - xp<r>)a] < exp [—wo (q- xp<z))2] |

h
X €os o el) )P

(3.28)

The corresponding probability densities become

can = [ 1 o (J(ae @) - (R(ae @)
Pl D=\ 7k 2 coshaPled] " EOL

wo (4 — xp(t) _xp(t)
" ( ()] ” {COSh[ T Bae €] )
[2wo w4 = Xp()
+ COs [2 75(&’6 (t))WJ}, (3.29)

where the squeezing coefficient |e(?)| is given by (3.9), R(.) and J(.) represents the real

X exp |-

and imaginary parts of the given complex functions, respectively.

Expectation values of position and momentum at time-evolved even coherent states
are (§)°(1) = x,(1), (P)(1) = p,(t), where x,(¢) and p,(¢) are the particular solutions of
the classical equations of motion in position and momentum spaces, which are found as

(3.5) and (3.6), respectively. So they depend on all of the time-variable parameters of the
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Hamiltonian 4 o(1) given by (3.2). However, the uncertainties and the uncertainty product

(for details, see Appendix A)

ANE e e W h .
(Aq)am:\/ el 50, (AP0 = Vo > (t)lw/n,,(n,
h
(ADS(APY (1) = 5 [T D).

(3.30)

where

M@ = 1+2|a|2tanh|a|2+| ()P%(ae ),
: LOOF (dnle@)] .V
@) = (1+ " ( 7 —B(t)))(1+2|a|2tanhloz|2)

2le(r))? '
IE(?' R [az(ﬂ(t)(é*(t) - B(f)f*(f)))z] ’

0

depend just on the values u(t), w(t), B(f) and the complex parameter a.
Next, we take the initial state of the IVP (3.1) as ¥y(q) = ¢(q), then time evolved

odd coherent states will be ®/(g, ) = U <(1,10)¢7(q), and explicitly we found

Piap = (@)1/4 1 xexp( €°() 2)
o nh cosh(jaP)e(?) 2€(1)

xexp(% f g(s)ds)xexp[“()( i(0) B(t)xp(t)—D(t))q]

exp[ﬂ (—tlnl @) —B(t)) (g — x,(1)) ]

2h
2w (g = xpa| [ -wo (g~ (1)
P1%2n " leor |

h e(r)

XSinh[ (3.31)
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The corresponding probability densities become

oah) = /@ ! o | Sla€ @) — (Ree' @)’
PTD =\ 7t 2 cosh(aP)len)] 7 EGE

wo (4 — xp(t) _xp(t)
exP[‘?( ()] )} {COSh[ T Bae ()] )
Roy. . q=x)
_008[2 75(0’6 (t))W]}, (3.32)

where the squeezing coeflicient |e(¢)| is given by (3.9).

Expectation values of position and momentum at time-evolved odd coherent states
are the same as for time-evolved even coherent states, that is, (§)’(t) = x,(2), {(p)°(t) =

pp(t). On the other hand, the uncertainties and the uncertainty product are

ANO _ h " ANO _ woh 1 Y
(AG0) = \/—2w0|e<t)| 0. (AP = \ - —le(t)lw/np(t),
h
(AP = 5 [T 0)

(3.33)

where

myn = 1+2|a|2coth|a|2+leé)P%(ae*(t)){
. L@l (dIn]e() ?
@ = (1+ " ( - —B(t)))(1+2la|2coth|a|2)

2le®)P
2

R [ (u(r)(& (1) - BOe 0))].

0

Therefore, they depend on the time-dependent parameters u(t), w(t) and B(¢) of the Hamil-
tonian H. o(#) and the parameter a € C.
Below, using the dynamical invariants defined by (3.14) and (3.15), we give some

important properties of time dependent even-odd coherent states.

Proposition 3.3 The generalized lowering operator A(t) acts on the time-dependent even-
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odd coherent states as

AD®(q, 1) = @ Jtanh [aPD%(q. 1),  A(ND°(q,1) = ayJcoth [aPD(q. 1)  (3.34)

for any a € C.

Proof From the definition of the invariant A(f), we have A(f) = U,(t, t0)aU{(t, o). Also,
time-dependent even coherent states are defined as ®¢(q, 1) = U <(t,10)¢5(q). So by apply-

ing A(7) to the states ®¢(q, 1), and using Proposition 2.7, we obtain

AO®i(q.1) = Uyt 10)aUf(t, 1) Uy(t, 10)¢(q)
U, (1, to)ag(q)

atanh [P0, (1, 1)63(q)

= a+/tanh |oPD’(q, 1)

for any a € C, which proves the first part of the proposition. Similarly, we can show the

other part:

AO®(q.1) = Uyt 10)aUf(t, 1) Uy(t, 10)¢%(q)
Uy (1, 10)adg(q)

= aeoth P01, 1) (q)

a +fcoth |aPDE (g, 1)

for any a € C. O

Therefore, as expected, the time-evolved even-odd coherent states are not eigenstates of

the generalized lowering operator A(r).

Corollary 3.1 Time-dependent even and odd coherent states are eigenstates of the oper-

ator AX(7).
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Proof From the previous proposition, we obtain

A0 g, = ADADD(g,1)
= a+'tanh|aPA@N)D%(q, 1)

= (a Ytanh |a/|2) (a coth |a/|2) (g, 1)
= a*P(q,1),

and

A0D)(q.10) = ADADDY(g,1)
= aycoth|aPA®N)D(q, 1)

= (a/ Ycoth |a/|2) (a ytanh |a/|2) D (g, 1)
= a2®3(q, 1)

for any @ € C. Therefore, even-odd coherent states are eigenstates of the operator A2(f)

corresponding to the eigenvalue o?, « € C. m|

3.5. Time-Evolved Even and Odd Displaced Squeezed States

The even-odd displaced squeezed states of standard harmonic oscillator are con-
structed by using the displacement operators D, (@), D_(@) and the squeeze operator
$(r,0) as x°, o(q) = Do(@)S (r,0)¢0(q), and x°, ,(9) = D_(@)S (r,0)po(q), where a € C,
r > 0,60 € [0,2r), and ¢(q) is the ground state of the standard Hamiltonian Hy. So they
are quantum superposition of squeezed coherent states Xg’,(q) given by (2.21). In what
follows, we solve the IVP (3.1) for the generalized oscillator with IC’s (i) Wo(q) = x¢ (@),
(i) Yo(q) = x5, (q), where for simplicity, we take 6 = O to find time evolution of even-odd

displaced squeezed states.
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If Yo(q9) = xi.,(q), then time-evolved even displaced squeezed states will be

X.,(q. 1) = Uy(t, to)x%,(q), and explicitly

Xe (q t) _ (@)1/4 1 xexp( (t) 2)
o nh)  \Jcosh(la,P)er) 2€(1)
xexp( f g(s)ds)xexp[ “()( (1) — BO)x, (1) D(t))q]
xp[%(—tl ()] - B(r)) (q—xp(t>)2]

X cosh

2wy ((] - xp(t))a’r —Wo (q - xp(t))2
Vi a0 ]X‘”‘p[ 7 leF ] (339

The corresponding probability density pf, (g,1) = |x;, (¢, 1)|? is then

@ = @ ! o | S@€®) — (R @)’
Pert® D=\ 7h 2 cosh(a,Ple @]~ " BOE
_wo (q = %p(1) — x,(1)
xeXp[ h( &) ) X{COh[ T B ]

[ 200 o4 = %p(0)
+cos[2 75(&,6,(1‘)) e ]}, (3.36)

where the squeezing coeflicient |€,(¢)| is defined by (3.24), and @, = e™"@; +ie" @, with ay,
a, being real constants.

Expectation values of position and momentum are the same as for the time-evolved
even coherent states, 1.e., (§)° = x,(f), and {(p)° = p,(t). So they do not depend on the
squeezing parameter r and the complex number a. However, uncertainties and uncertainty

product

A\e — i e )¢ — LL)_()h 1 e
(Ag), (1) = ‘/Za)o'e’(t)' @), (Ap),,.(D) = > el LI,(1),

h
(A2)a (APYo(1) = 7 TEOIT (1)

(3.37)
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where

() = 1+2lef tanh o,/ + ler(zl)P%(a/,ef(t))z,
: ©Ole ML (dInle () ’
@ = (1+ o ( y —B(t)))(1+2|ar|2tanh|arlz)
2le () ,
< (zm R |2 ()& (1) - B)er )]
Wy

depend on r > 0, the complex number @, = e”"a; + ie’a,, @, a; € R and also on the
parameters u(t), w(t), and B(t) of the Hamiltonian (3.2).

Now, if Wo(q) = x7.(¢) in(3.1), then we can find the time-evolved odd displaced
squeezed states by using the generalized evolution operator as x5, (¢, 1) = U <t lo)x o (q).

After doing calculations, they are found explicitly

o - ( w )1/4 1 < exp (_ € (1) az)
e h)  \Jeosh(la,P)e(?) 26(1)
X exp (% f {(s)ds) X exp [?(xp(t) — B(t)x,(1) - D(t))q]

in@ (d ,
exp [E (d_t In |€.(1)| — B(t)) (g — x,(0)) ]
| 200 (g = xp(0)e —wy (g = x,(0)°
X sinh [ - <0 ] X exp [ RO . (3.38)
The probability is then
0 an = L[ 1 o | 8@ € @) - (R @)’
Pert® D=\ 7h 2 cosh(la, Ple ] = T ()P
wo (g — xp(0) 2 2wy oo q = xp(0)
X exp [—? ( <O ) X {cosh [2 \/ 7‘)%(ar6r (1) () ]

26UO . q- xp(t)
— COS [21' 75(&’,@(1‘))W)] y (339)

where r > 0, @, = e”"ay + ie"a,, a1, @; € R and |€.(7)| is given by (3.24).
Expectation values of position and momentum in time-evolved odd displaced

squeezed states are (§)° = x,(t), and (p)° = p,(?). The corresponding uncertainties and
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uncertainty product are of the form

(A9),(1) = \[51& O [T, (Ap); (1) = \/7 e VI (@),

(A5 (AP (1) = 4 \[TI(D)TT (1)

(3.40)

where

o(n = l+2|a,|2tanh|a,|2+| ()|2‘R(a/,e (1),
] 2Ole ) (dInle ) ?
@ = (1+ " ( yr —B(:)))(1+2|a,|2tanh|a,|2)

2le(0I°
2

R [2(u(0)(&" (1) - B (1))]

0

with @, = e"a; + ie"ay, a1, @, € R.

Furthermore, by replacing the order of application of the operators S (r,6) and
D.(B), in the definition of the even-odd displaced squeezed states X/‘;’jﬁ(q) for any 8 € C,
r > 0and 6 € [0, 27), we construct time-dependent squeezed even-odd coherent states
‘I‘;’jﬁ(q). Here, by taking § = 0, we apply the generalized evolution operator U (1, 1p) to
the squeezed even-odd coherent states of SQHO and obtain their time evolution.

First, we find the exact form of the time evolved squeezed even coherent states

15,(q, 1) = Uy(t, 10) Y5 (q) as

RTTR ) p— xexp( (’)ﬁ)
’ nh cosh(|BP)e(1) 26(1)

x exp( f {(s)ds) X exp [ “7; )( 3,(8) — BOx (1) D(t))q]

exp[ i (1)

2
- ( = Inje (1) - B(r))(q—xpm)]

oo |0 (g - x,()
PI%n Tler |

2w (q = x,())B
h (1)

X cosh 3.41)

48



Then, the probability density follows as

O S T <o | BLE @) - R(ag @)’
Pertd-D =\ 7 2 cosh(BPle @] B
_@o (4= %0 2] 2w0 gy 4~ Xp(0)
X exp h( <O ) x{cosh(z - R(Be' (1)) 0 J

[2wo o o, 4= Xp(D)
+ cos (2 75(@5, ®) el )} , (3.42)

where the squeezing coefficient |€,.(¢)| is given by (3.24).

The change in the order of application of the squeeze operator S (r, ) and the dis-
placement operator D, () does not affect expectation values. So expectation of position
and momentum are the same as for time evolved even displaced squeezed states, that
18, (§)°(1) = x,(0), {P)(1) = p,(1), where x,(1) and p,(¢) are particular solutions of the

classical equations of motion. However, uncertainties and uncertainty product are

M), 0 = [l @l g0, apyg, 0 = 42 ks VT,

(AQ); (APY(1) = & T (1)

(3.43)

where
I5(n) = 1+2|gtanh| + ler(zt)lzaa(ﬁe:(z)){
and
e |, OO (dinle@) ’ 2 2
o = |1+ = B@)| |(1+ 215 tanh |F)
2l (1)

S R[B e (0 - Boe @)’].

0

depend on the squeezing parameter r > 0, and the complex number .
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Now, we find time-evolved squeezed odd coherent states Tg’r(q, nN=U o(1, tO)TO’r(q)

explicitly as

0 oo\ 1 ( &) )
T (q.1) = (22 _&W
5@ 1) (ﬂ'h) Jeosh(|BP)e (1) X exXp 26,(t)ﬁ

X eXp (% f g(s)ds) X eXp [@(x,,(t) — B)x, (1) - D(r))q]
u(t) ( d
Xp [M (E In|e (1) — B(r)) (g - xp(t))z]

2h
[_WO ((] - xp(t))2:|
exp ,

2w (g — x,(1))B
2h e

] (3.44)

X sinh [

and the corresponding probability density is

0 @D Vaol@h) _  [(BCre®)” - (R ®)’
Pord 2cosh(iBPle @] P e
wo (g — xp(2) ? 2wy .q = xp(1)
X ExP _?( & (0) ) X{COSh(ZVY%('BE’(’)) & (0) ]

2(1)0 % U/ xp(t)
—c0s (2 1/75(ﬁ€r(l‘)) e )} (3.45)

with the squeezing coefficient |e.(¢)| defined by (3.24).
Expectation values of position and momentum in these states are (§)°(t) = x,(1),

(p)°(t) = py(t), while uncertainties and uncertainty product become

(B, (1) = \[Eole Ol 0. (Ap), 1) = 4 VT,

(A5, (ApYy(1) = § \To(OTT5 (o),

(3.46)

where

2

I1°r) = 1+2|8fcoth|B] +
oD 1Bl coth || < OF

R(Be (1)),
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and

, EOle® (dinje o) ’
M@ = (1+ : ( o —B(t)))(1+2L8lzcothL8|2)
2le. ()
& (j)l R [ﬁz(p(t)(é,*(t) - B(t)e;‘(t)))z] :
Wy

In Section 2.3, we have defined the operators B(r) = U,(t, t)bU{(t, t,) and B'(¢) =
Ug(t, to)l;T U;(t, tp), where the pseudo-annihilation and creation operators b and bt are
given by (2.25). Now, we give the relations between these operators and time evolved

squeezed even-odd coherent states.

Proposition 3.4 The operator B(t) acts on the time evolved squeezed even-odd coherent

States as

Br;,(q.1) = Bytanh |B2Y5,(q. 1),  B()Y5,(q.1) = BJcoth |8, (q.0)  (3.47)
forallpe Candr > 0.

Proof By using the definition of operator B(1), and 15, (q,1) = Ug(t, 10)1; (q), for any

B € Candr >0, we can write

B(Y (q.1) = Uy(t, 10bU (1, 10) Uy (1, 16) Y5 (q).

Since the evolution operator U (1, 1p) 1s unitary, it satisfies U o(2, 1)U ; (t,10) = I. So using

Proposition 2.9, we obtain

B)Y;,(q,0 = B+tanh |BRU(1,10)T,(9)
= B+anh BPYS, (g, 1),
and in a similar way we can show that B’(t)To’r(q, t) = 8 +/coth LBIZTgJ(q, 1). O

From this proposition we conclude the following property.

51



Corollary 3.2 Time-evolved squeezed even-odd coherent states are eigenstates of the op-

erator 32(t).

Proof The proof follows directly from the Proposition 3.47. For any 8 € C and r > 0,

we have

B (1)5,(q. 1) = Btanh |B2B(1)Y} (q.1) = B*Y} (q.1)

and

B (1)1, (g, 1) = BJeoth BEB(YS, (g, 1) = B05,(g, ).

O

Therefore, time-evolved squeezed even-odd coherent states are eigenstates of the operator

B?(1) corresponding to the eigenvalue 3 for any 8 € C.
3.6. Exactly Solvable Models

In this section, we apply our results to find and analyze the behavior of the time-
evolved quantum states obtained in the previous parts. For this, we introduce and dis-
cuss an exactly solvable quantum model for a generalized Caldirola-Kanai oscillator
(Caldirola, 1941), (Kanai, 1948), described by the Hamiltonian

Rl s O[30
2 og> 2 K 2 qaq aqq

Hit) = —e "' —— + —+ — ) — Epe” cos(wt)g, (3.48)

where wy is a constant frequency, u(f) = ¢”,y > 0, is the exponentially increasing mass,
B(t) is a real-valued parameter depending on time, and driving force is taken to be of
sinusoidal form with E, and w being arbitrary real constants. We have seen that parameter
B(t) can essentially modify the original frequency of the classical oscillator (3.5), and
therefore it changes solutions x;(¢) and x;(#), which determine the squeezing coefficient

le(?)| given by (3.9). Thus, B(¢) influences the uncertainties and expectation values of
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position and momentum as well. Besides, for squeezed coherent states and even-odd
displaced squeezed states, the squeezing properties depend not only on the homogenous
solutions x;(#), x,(¢) of the classical equation (3.5), but also on the coefficient z = re®.
Our goal is to investigate the influence of these parameters on the squeezing properties of

the wave packets. Since the corresponding classical equation is
X+yx+ (a)(z) — (B() + BX(1) + yB(t)))x = Ejcos(wt), (3.49)
by requiring that
~(B(0) + B (1) + yB(1) = A, (3.50)

where A% > —w%, we can preserve the Caldirola-Kanai type oscillator structure. Accord-

ing to this, we choose B(r) = —(y/2) + €}, tanh(Q71), where Q, = [y2]4 — A(z) and —a)(z) <
A} < y*/4. Note that, B(r) takes its minimum value at # = 0 with B(0) = —y/2, and as

t — oo, it increases and asymptotically approaches the upper bound —y/2 + [y2/4 — A},
For this choice of B(f), equation (3.49) takes the form

X+ yx + (Wi + Ax = Eg cos(wt), (3.51)

with constant frequency wi + Aj > 0, AZ— being the frequency modification in position
space, and Q2 = wj + Aj—y*/4 gives the frequency Q, of the modified damped oscillator.

Depending on the sign of Q2, we have three cases:
(i) Q3 < 0 (overdamping),
(i1) in = 0 (critical damping),
(iii) Q2 > 0 (underdamping).

Here, we shall treat explicitly only the more interesting case of underdamping. When

in > 0, homogenous solutions of the classical equation (3.51) satisfying the required
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initial conditions x;(0) = 1, x;(0) = —y/2, and x,(0) = 0, x,(0) = 1 are
1
x1(t) = e cos(Qut),  x(f) = Q—e-ﬂ/z sin(Qg1),

d

and particular solution is
x,(1) = Ape™"* cos(Qut — i) + A, cos(wt — ), (3.52)

where A;, and 6, are constants such that x,(¢) satisfies the initial conditions x,(0) =

0, x,(0) = 0. The amplitude and phase shift of the steady-state part are

E
A, = 0 , 6, = tan_l( - yaz) 2).
V(@3 + A = w0 +y2? (wp +Ay) —w

For given vy and wy, the driving frequency w at which the amplitude A ,(w) takes maximum
is known as resonance frequency. For this model, the resonance frequency w = w,.; and

the maximum amplitude are found as

Dy

\/(wg + A2 -

Wres = \/(w% + A(Z)) - 72/2, Ap(wres) =

provided that w} + A2 —*/2 > 0.
A. Time-evolved squeezed coherent states
For the squeezed coherent states y,,0(q, 1), @ = @ + iay, a1, € R, r > 0, 6 € [0,2n),

the probability densities are found in the form

Par(d:1) = \/%Qr,lgan exp| - (%)(%)Z]

54



where the expectation value of position is

2h
(Dat) = \/—e‘y” 2 (al COS(Qqf) + 20 sin(th)) + x,(1)

with x,(7) is given by (3.52), and the generalized squeezing coeflicient is found as

wy sin 8 sinh(2r)
0,89,

2 2
1000 = €772 4[| S0, cos(Qun) + sin(Qur) | + | = sin(@qn) |,
’ QdSr,B

which depends on r, § and the modified frequency €. In particular, when r = 0, one gets

the squeezing coeflicient for the time-evolved coherent states @, (g, 1), that is,

2
w

= le@ = e \/cos2(de) + —3 sin*(Qt).
@

For the special choices of the phase § = 0 and 6 = n(z = +r), we have the squeezing

coefficient

2

w;
le,(1)] = e7'7? \/ *2r cos2(Qyt) + o e+2’ sin?(Qyt),
d

and uncertainties become

A1) = \/h/2w0|€r(1)|
2yt 4
AP)(1) = \/‘““ |€ (m 4 '6" —1 |r(r>|+——QBtanh(QBr>

(AGAP), (1) = 3 {l + 2 Qp tanh(QBt)(eﬂ’ cos?(Qut) + — €™ sin*(Qqt))

0

i w2 o 1/2
+ 5(Qdeﬁ’—g—oew) sin(Zth)]} .

2
0
2
Qd

d
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In Fig.3.1(a), we show that for given values vy, wy and A2, when r increases, the
amplitude of oscillations of (Ag),(¢) increases. As an example, in Fig.3.2(a), we plot the
probability density p, (g, ) of the ground state (o = 0) without displacement (x,(¢) = 0)
and observe oscillatory squeezing of the width. Fig.3.2(b) exhibits the displacement of
the wave packet due to the nonzero complex parameter @ = i when x,(f) = 0. Finally,
in Fig.3.2(c), we plot p,,(g, ) of the ground state (¢ = 0) under periodic displacement
xp(t) = 3cos(15t/2 - tan™!( \/ﬁ))/Z at resonance frequency w = \/5/2.

Aq Ap
1.5}
60
1.0p,
40}
\
1}
0.5 20|
------ t e t
1 2 3 4 5 6 1 2 3 4 5 6
(a) (b)
AqAp
8k
6 r=0
----- r=1
4 r=3/2
2
l’ \
i t
1 2 3 4 5 6
()

Figure 3.1. Forwy = V12,y = 1, A2 = -31/4,0,=2,Q, =2V2,r=0,1,3/2,6 = 0.
(a)Uncertainty (Ag).(t), (b)Uncertainty (Ap),(¢), (c) Uncertainty product
(AGAD):-
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Figure 3.2. Probability density p,(g,f) withy = 1, wy = VI2,h=1,r=1,60 = 0,
A(z) =-31/4, (@) a =0, x,(r) =0, (b) @ = i, x,(t) = 0, (c) @ = 0, x,(¢) at
resonance frequency w,.; = V15/2, Ey = 3.
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B. Time-evolved even-odd coherent states
The probability densities for the even-odd coherent states ®;°(q, f) are given by (3.29)

and (3.32), respectively, with the squeezing coefficient

2
d d

) W w;
le()] = e \/cosz(th) + Y sin”(Qy1), @ > 1.
When Aj — y*/4, we have Q) — wj and |e(r)| approaches the limiting squeezing e™7"/2.
In other words, for given y and wy, when frequency ), increases, amplitude of oscillations
of |e(?)| decreases. Knowing the explicit form of |e(¢)| allows us to find the uncertainties
and uncertainty product at time-evolved even-odd coherent states using the equations in
(3.30) and (3.33).

In Fig.3.3 and Fig.3.4, we give plots of the probability densities p¢ (g, ) and p%(q, 1),
which corresponds to @ = 0 in (3.29) and (3.32). Precisely, Fig.3.3-(a) and Fig.3.4-(a)
show the evolution when x,(f) = 0. Comparing these figures, we observe that while the
probability density at odd coherent states vanishes at g = 0, the probability density at
even coherent states does not. Besides, Fig.3.3-(b) and Fig.3.4-(b) exhibit how the trajec-
tories oscillate according to the particular solution x,() = cos( V47t/2 — tan~' (V47)) at
resonance frequency w,., = Vv23/2.

(a) (b)

Figure 3.3. Probability density p%(g,7) withy = 1, wy = VI2,i=1,Ag = 0, = 0,
(@) x,(1) = 0, (b) x,(1) at resonance frequency w,.; = V23/2, Ey = Va7 /2.
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Figure 3.4. Probability density p(g,7) withy = 1, wy = V12,i=1,Ag =0, a = 0,
(@) x,(1) = 0, (b) x,(1) at resonance frequency w,., = V23/2, Ey = V472,

C. Time-evolved even-odd displaced squeezed states
The probability densities for the even-odd displaced squeezed states x5 5(g, t) are given by

(3.36) and (3.39), respectively, with the squeezing coeflicient

2

2 2
w w
60| = e"? | e cos2(Qut) + — e 2 sin®(Qu1), — > 1.
2
Qd Qd

Then, we can find the uncertainties and uncertainty product at time-evolved even-odd
coherent states using the equations in (3.37) and (3.40). For these states, the squeezing
properties depend also on the parameter r > 0. Clearly the amplitude of oscillations of
(Ag)y” grows when r increases.

In the previous example, we show the time evolution of even-odd coherent states.
Even-odd displaced squeezed states are obtained by squeezing them. Therefore, we plot
the probability densities at time evolved even-odd displaced squeezed states and observe

the squeezing according to the parameter r, see Fig.3.5 and Fig.3.6.
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(@)

Figure 3.5. Probability density p¢, (¢, ) withy = 1, wy = V12,7i=1,A¢ = 0,7 = 1/6,
a = 0, (a) x,(t) = 0, (b) x,(r) at resonance frequency w,, = V23/2,
Ey = V47)2.

Figure 3.6. Probability density p%, (¢,t) withy = 1, wy = V12,7i=1,A¢ = 0,7 = 1/6,
a = 0, (a) x,(t) = 0, (b) x,(r) at resonance frequency w,, = V23/2,
Ey = V47)2.

60



CHAPTER 4

INITIAL-BOUNDARY VALUE PROBLEMS FOR
ONE-DIMENSIONAL QUANTUM PARAMETRIC
OSCILLATORS WITH MOVING BOUNDARIES

In this chapter, we present an initial-boundary value problem (IBVP) for a one-
dimensional generalized quantum parametric oscillator. We start with a Dirichlet bound-
ary condition imposed at a moving boundary and show that if the boundary function is
given as a linear combination of the homogenous and particular solutions of the corre-
sponding classical equation of motion in position space, the problem can be solved ana-
lytically. As an application, we construct an exactly solvable quantum model with specific
frequency modification and analyze the influence of the moving boundaries on the solu-
tion. Moreover, we introduce and solve an IBVP for the generalized quantum oscillator

with a Robin boundary condition.

4.1. Dirichlet IBVP for a Quantum Parametric Oscillator on the
Fixed Half-Line

In this section, we first consider an IBVP for a one-dimensional quantum para-

metric oscillator defined on the fixed half-line 0 < g < oo,

ih(%‘{’(q, n=Hn¥(q 1), 0<g<o, 0<t<T,
W(g,0) = ¥o(q), 0<q< oo @)
Y0,H=0, O0<r<T,
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where W(q, 1) is the wave function at time 0 < t < T, W(g) is the initial state at time ¢ = 0,

and H(r) is a quadratic Hamiltonian given by

P u@(0) ., BQ)
w2 173

H(1) = (@p + pq) (4.2)
with all time-dependent parameters being real-valued functions and u(f) > 0. We note
that, the Schrodinger equation defined by (4.1) is invariant under space inversion and we
can find an exact analytical solution of the Dirichlet IBVP on the half-line as given in the

following proposition.

Proposition 4.1 The Dirichlet IBVP for a quantum parametric oscillator given by (4.1)

has solution of the form

Y(g,1) =

0 (110

2
2R \x1(2) B(’))Q]XSO(n(q,t),r(z)), (4.3)

1
NrO R

where x(t) and x,(t) are two linearly independent solutions of the homogenous classical

equation of motion

‘—‘B))x —0, 150, (4.4)

5c'+’l—1x+(w2—(B+Bz+
u

u

satisfying the initial conditions x;(0) = 1, x;(0) = B(0), x,(0) = 0, x(0) = 1/u(0),

respectively,

x2(1)
x1(0)

ng.t)=——, (1) = —h(

o0 ) O<t<T, 4.5)

and ¢(n, 7) is solution of the Dirichlet IBVP for free Schrodinger equation

0 10?

ia_":zia_?;’g’ O<n<oo, O0<t<1(T),
0(1,0) = ¥o(m), 0 <7 < oo,
00,7)=0, 0<7<7().

(4.6)
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Proof First, consider the following IVP defined on the whole real line

0 N
ih—Y(q,t) = HH¥(q,t), —-oo<g<oo, 0<t<T,
% (g,1) 0¥(q,1) q @7)

¥(g,0) = Yo(g), —o0<g<oo,

where the Hamiltonian H(¢) is given by (4.2). IVP (4.7) is a special case of IVP (3.1)
defined in the previous chapter. So using Eq. (3.3), we can write the explicit form of the

evolution operator for IVP (4.7) in the form

) . 0o 1
Ot = exp(i@(xiﬁg —B(f))‘lz)xe"f’(ln 0 ( 9" 2))

Xexp( 1( 0)(x223) aqz), 4.8)

where x,(t) and x,(¢) are linearly independent solutions of the classical equation (4.4)
satisfying the initial conditions x;(0) = 1, x;(0) = B(0), x,(0) = 0, x2(0) = 1/u(0),
respectively. Then, by applying U(t, 1,) to the given initial function ¥,(q), we can find the
solution of IVP (4.7) as

1
Y(q,1) = ———= X exp

[m(t) (xl(t)
Vi (1)

2h \x1(2) B( )) ] X ¢(n(q, 1), 7(1)), (4.9)

where ¢(7, 7) 1s solution of the Dirichlet IVP for free Schrodinger equation

6(,0 1%
, —oco<n<oo, 0<71<1(T),
or " 20p 7 (4.10)

¢(n,0) = ¥o(n7), —oo<n<co.

Then, Y(q,t) found by (4.9) satisfies the initial condition W¥(gq,0) = ¥y(g) also on the
interval 0 < g < co. We note that, 7(¢) is positive and strictly increasing for 0 <t < T,
sothat 7 = 7(¢), 0 < ¢t < T if and only if t = #(7) for 0 < 7 < 7(T"). Therefore, solution
(4.9) will satisfy the boundary condition in (4.1) only when the function ¢(n, 7) satisfies
¢(0,7) = 0. Hence, (4.9) satisfies IBVP (4.1) if ¢(n, 7) satisfies IBVP (4.6) for the free

Schrodinger equation. O
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The Dirichlet IBVP (4.1) has solution

o) = fo G, &, T)e(&, 0)de, @.11)

where G(n,&,7) = K(n — &,7) — K(n + &, 7) 1s the Green’s function with K (7, ) being the

propagator of the free Schrodinger equation defined by

i —in?
K(n,7) = %exp 57 4.12)

As a consequence of Proposition 4.1, Dirichlet IBVP (4.1) for a quantum parametric
oscillator defined on the fixed half-line has solution with integral representation of the

form

- o a0

. o
2n \x (1) Bm%]xf‘Gm@ﬂ£J@NM®%,me

0

1
= X exp

where 7(q, t) and 7(¢) are given by (4.5). Thus, the exact form of the solution can be found

if the integral converges for the given initial data.

4.2. Dirichlet IBVP for a Generalized Quantum Parametric

Oscillator with Moving Boundary

In this section, we consider an IBVP for a time-dependent Schrédinger equation
defined on the interval s(f) < g < oo and with Dirichlet boundary condition imposed at

qg=s1),0<t<T,

ihgt‘l’(q, N = 0,040, st)<qg<oo, 0<t<T,
¥(q,0) = Wo(g), s5(0) < g <o (4.14)
W(s(t), =0, 0<r<T,
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where W(q, 1) is the wave function at time 0 < t < T, W(g) is the initial state at time ¢ = 0,

and I:Ig(t) is the most general quadratic Hamiltonian given by

H,(t) =

AD 2
p N uw() ., N Bét) (9p + pg) + DO)p + E(D)§ + F(1) (4.15)

2u(t) 2 1

with all time-dependent parameters being real-valued functions and u(z) > 0.

Proposition 4.2 Let the Dirichlet IBVP for a generalized quantum parametric oscillator
with moving boundary be given by (4.14). If the boundary function s(t) in the IBVP (4.14)

is of the form
5(1) = x,(1) = c1x1(8) + c2x0(t) + x,(2), ¢ =(c1,¢2) € R?, (4.16)

where x(t) and x,(t) are two linearly independent homogenous solutions and x,(t) is a

particular solution of the classical equation of motion

. ' . o ]
5c'+’gx+(w2—(B+Bz+'l—l ))x:D+(E+B)D——E, t>0, 4.17)
u u u u

satisfying the initial conditions x;(0) = 1, x;(0) = B(0), x,(0) = 0, %,(0) = 1/u(0), and
x,(0) = 0, x,(0) = D(0), respectively, then the IBVP (4.14) has solution of the form

_ 1 e @) (%10 NN
g = = <o fo Ly@)de| x exp |2 (xl . B(r)) (4= x|
X exXp #(xg(t) — B(t)x,(2) - D(f))(q - xg(t))] X @(11,(q, 1), 7(1)),

(4.18)

where Ly(t) denotes a Lagrangian function for the moving boundary given as

1
Ly(0) = ﬁ[mn((xg(t) — B)x,(1) - D(1))’ - wz(t)xg(g) - 2(E<r>xg<r> ¥ F(r))], (4.19)
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the coordinate transformations are denoted as

x(1)
x1(7)

q-— xg(t)
x1()

ny(q. 1) = . T(t) = —h( ) 0<t<T, (4.20)

and ¢(n, 7) is solution of the Dirichlet IBVP for free Schrodinger equation

0 162
ia—f_:iﬁ, 9<U<°°, 0<71<1(T),
—IC
o(1,0) = exp (=20 Yol + ), 0 <<,
00,7)=0, 0<7<7(T).

Proof Assume that the boundary function s(¢) is given by (4.16). Define a new co-

4.21)

ordinate § = g — s(¢) and denote ‘T’(E], 1) = Y(q,t). After performing time and space

differentiations

¥ 0¥ 9P 9Y ¥ Y Y

= () + — -
- 0% T e a9 op - o

we obtain the following IBVP defined on 0 < § < oo for function ‘FIV’(q, 1)

oV . -
h— = H(O)¥Y
e HOYS
W(g,0) = Po(g +c1), 0<g<oo, (4.22)
¥0,)=0, 0<t<T,

where

R ek, i X
A R L B
+ih($(t) — B)s(t) - D(r))ﬁ~ + (,u(t)a)z(t)s(t) + E(t))c}
ag
2
; (’wsz(z) + E(D)s(t) + F(t)) . (4.23)
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To solve IBVP (4.22), we first consider the following IVP defined on the whole real line

. (9\? TS A\
lhE = Hg(t)‘P, O0<t<T,

¥(F,0) = Wo(G + ¢1), —00 < § < o,

(4.24)

where the Hamiltonian A (1) is given by (4.23). We can find the exact form of the evolu-
tion operator for IVP (4.24) defined as

d . N
ih—U?S(t, 1) = H:(OU(t, 1), O0<t<T,
ih— o(t,70) (DU, (1, 1) 4.25)

Ug(to, to) = 1,

by using the Wei-Norman Lie algebraic approach. In fact, Hamiltonian (4.23) can be

expressed as a finite linear combination of Lie algebra generators as

2
" = —i[ﬁ%fﬂ + u(w* (K, + 2nB(1)K,
+h( — 5(0) + BO)s(t) + D(r))E2 ; (,u(t)wz(t)s(t) ; E(t))El
2
; (‘wszm + E()s(r) + F(t)) E3], (4.26)

where Heisenberg-Weyl algebra generators £, E,, E5 are given by (2.10) and the gener-
ators IA(,IAQ, K, of the SU(1, 1) algebra are given by (2.17). Then, the evolution operator

U o (1, 1o) for IVP (4.24) can be written as a product of exponential operators of the form

0;0, fy) = exp (C(I)Eg) X exp (?El) X exp ((s(t) - b(t))Ez)

X exp (f(t)IA(J,) X exp (Zh(t)ko) X exp (g(t)f{_) X exp (—%El ) ,
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where f(¢), g(1), h(¢) and a(?), b(t), c(t) being real-valued functions to be determined. Per-

forming time differentiation, we obtain

i Us(t, 1) = (é Eg) o WE pO-bNEs ,f DR 2Ky LeOR- = FEy
4 ocOEs (a(t) El) o E1 pO-bUNEs ,f (DK 20K e ~F Ey
h
[ a(t) # . N _ f > 0 > _aQp
+eC(t)E3 eTEl ((S(t) _ b([))Ez) e(S(t) b(1)E2 ef(t)K+ eZh(f)Ko eg(t)Kf e 7 E;
4o DEs ,GPEL f(s(-b(0)E> ( f(t) f(+) ol 0K+ 2hOK0 L8R ~FEy
4o DEs pGPEr (s(-b0)E> ,f(OK. (2h(r) K) 200Ky LK~ =T Er

4ot DEs TR EL S(s-b)Es ,f(OR. ,2h(DKy (g(t) k_) R o= FE(4.27)
Bu using the Baker-Campbell-Hausdorft relation
A B e = B4 ¢[A, Bl + (£2/2)[A, [A, Bl + (€3 /3DIA, [A, [A, B + .. .,
we can rewrite Eq. (4.27) in the form

ihdit U,(t,10) = ih[(é + 1a(s ~-b)+ ! f’(s - b)* + 1ha(s —b) — fh(s — b)?

+g€_2h(2;lza - —fa(s —b)+ f (5= ))E

+(b—s—h(s—b)+ge 2h(——a+f(s—b)))
(3

(;_la—f(s—b) - lha+2fh(s—b) ge _f (s—b)))El
Hf-2fh+ frge” |k

(7 -2fi+ Poe ™)k,

+2(h - fge‘%)f(o + (ge—Zh)k_]ﬁg(t, o). (4.28)

Using equations (4.26) and (4.28), we compare both sides of the operator equation (4.25)

and obtain that U 2(f, 1) is solution of the problem if the unknown functions f(7), g(), h(z)
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satisfy the nonlinear system

2
£+ = 20+ 280050 + LD _ o 40y =
u() h
&)+ — ( e M0 =0, g0)=0, (4.29)

. h
() + —f(@) + B(t) =0, h(0) =0,
()
and a(t), b(t), c(¢) satisfy the nonlinear system

a(t) + Ba(t) + u(Hw*(0)b(t) + E(1) = 0, a(0) = ¢,

b(1) - B(t)b(t) - % - D(1) =0, b0)=cy, (4.30)
. () pOw) , B
c(t) — 2h(0) + 7 (1) + (E(t)s(t) + F(t) = c0)=0

Indeed, (4.29) and (4.30) are two independent systems, one for f, g, h and second for
a, b, c. We realize that the first equation in the system (4.29) is an IVP for the non-linear
Riccatti equation, and using substitution f(¢) = u(t)(x/x — B)/h, it transforms to the linear

second-order homogeneous differential equation

i+ iy (a)2 - (B + B+ ’—‘B))x =0, (4.31)
7
with initial conditions x(0) = 1, x(0) = B(0). We denote the solution of the IVP as x;(¢)
and assuming that all coefficients in Eq. (4.31) are continuous on time interval containing

t = 0, we denote a second solution by x,(¢) satisfying the initial conditions x,(0) = 0,

X2(0) = 1/u(0). Abel’s differential equation identity gives us

! 1
Xz(t) = .Xl(t)j(: md&'
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Then, the solution of system (4.29) is found in terms of two linearly independent solutions

x1(#) and x,(¢) of classical equation of motion (4.17) as

_ M@ (20
S0 == (xl(t) B(t)),
X1

h(t) = —In|x;(2)|.

On the other hand, to solve system (4.30), we take derivative of the first line and use the

equation in the second line, which gives

b+—tb+(w2—(3+32+‘—‘ ))b:D+(B+‘—‘)D——E, (4.33)
u ul” u

which is the same as the classical equation (4.17) with initial conditions 5(0) = ¢;, b(0) =
c1B(0) + ¢,/u(0) + D(0). It implies that b(¢) and the boundary function s(7) satisfy the
same differential equation with the same initial conditions, that means b(t) = s(¢). Then,

the solution of the system (4.30) is found as

at) = u(r)(xgm — B(t)x, (1) - D(r)),

b(t) = s(t) = xg(f), (4.34)
1 !

o= 5 fo u&)(5(6) - BOX©) - P©x©)) - 2(E(§)xg<f> " F<§>)d§.

After finding expressions for all unknown functions, the explicit form of the evolution

operator becomes

Ot = expli fo L)) x exp (1) 5,) - B0 - Do)
» (/ﬂ ()'Cl(f)

P20 \ 50

i (x2(8)\ &
XeXp(E(xl(z))a_qZ)‘

_ B(t)) qz) X exp( — In[x,(7)| (@(% + %) )

(4.35)
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By applying this form of the evolution operator to the initial function Wy(g + c;) in (4.24),
we can find the solution of IVP (4.24) as

¥@G 1 = mxexp[ f tLAf)df]xexp[w(xl—Eg—B(t))az]
xexp| 42 (50 - By - D)) ]xw(%@—h%ﬁg)

(4.36)

where ¢(n, 7) satisfies the IVP for free Schodinger equation

2
ﬁgo 162, —oco<n<oo, 0<7<7(T),
or 200 (4.37)

ic
#01,0) = exp (=20 Wl + ), —o0 << oo,

Now, ‘?’(qv, 1) satisfies the homogeneous boundary condition lT’(O, 1) = 0 whenever ¢(1, T)
satisfies ¢(0,7) = 0. So the function ‘T’(’qj 1) found by (4.36) will be the solution of
IBVP (4.22) on the fixed half-line if the function ¢(n, 7) solves IBVP (4.21) for the free
Schrodinger equation. By back substitution § = g — x,(f), we obtain solution (4.18) of the
IBVP, satisfying the IC in (4.14). Therefore, solution (4.18) will satisfy the Dirichlet BC

in (4.14) if ¢(n, 7) satisfies the Dirichlet BC given in (4.21), completing the proof. O

As a result of Proposition 4.2, the Dirichlet IBVP (4.14) with moving boundary

for a quantum parametric oscillator has solution with integral representation given as

o o i (10 .
Vg = = xew I fo Ly€)dé| x exp| (xl(t) B(r))(q o
xexp| 22 5,0 ~ B0 - D0 (g - 50|
X fo G(4(g, 1), &, 7(1))Po(& + c1)e” " dg, (4.38)

provided the integral converges for the given initial data.
We notice that solution properties depend on the initial data, the time-dependent
parameters of Hamiltonian (4.15), and the moving boundary s(¢). Here, in the case s(¢) =

and D(t) = E(t) = F(t) = 0, the problem reduces to the one defined on the fixed half-line
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which we consider in Proposition 4.1. Therefore, the effect of the moving boundary can be
seen by comparing solutions given by (4.38) and (4.13). We observe that the boundary s(7)
causes a shift in the position coordinate. Also, there are extra time-dependent exponentials
generated by the effect of the moving boundary in the solution. One of them includes the

Lagrangian L,(1) = L(x(t), X(?), 1) and from the Euler-Lagrange equation

d (6L , oL , _
= (5) (x(0). £(0).1) = == (x(0), ¥(1).1) = 0. (4.39)

one can obtain the classical equation of motion (4.17). So the Lagrangian L,(f) describes
the motion of the boundary point. The other exponent depends linearly on the position
variable. Since the arguments of both of these exponentials are pure imaginary, they
contribute to the phase factor in the solution.

Finally, we note that if the parameters D(f) and E(¢) of Hamiltonian (4.15) are
nonzero, then the Schrodinger equation for the generalized quantum parametric oscillator
in (4.14) is not invariant under space inversion. In this case, it is not easy to solve the
corresponding IBVP on the fixed half-line 0 < g < co with Dirichlet boundary condition
imposed at ¢ = 0. However, solutions of some particular half-line IBVP’s can be found
as a consequence of Proposition 4.2 when the particular solution of the corresponding
classical equation of motion is zero, that is x,(f) = 0. Here, we write some particular

cases which could be of interest:
1) D(t) = E(r) = 0.

i) B(r) = —I’%, D(t)—constant and E(¢) = 0.

iti) B(t) = 5 and D(1) = 5.

For each case, by letting ¢; = ¢, = 0 in solution (4.38), one can obtain solutions of the
corresponding IBVP on the fixed half-line.

To get better insight into the problem, in what follows, we give solutions of
the IBVP (4.14) corresponding to a certain initial data Wy(q¢) and homogenous Dirich-

let boundary condition W,.(#) = 0.
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IBVP 1- Eigenstates type initial condition: Here, we consider IBVP (4.14) with a family

of initial functions that is parametrized by & = (£1,&;) € R?

@) = Nyexp (€20 — &) exp (- (g - &17) (,/ (q- fl)) 5(0) < g < o,
(4.40)

where &, controls shifting, & controls the phase factor, wy > 0, N, = (wo/nh)/*4(2"n!)~1/2,
and H,(g) are Hermite polynomials for all n = 0, 1,2, . ... For the given boundary s(t) =
Xo(1) = c1x1(8) + cox2(8) + x,(0), ¢ = (c1,¢2) € R? and parameter ¢ = &, the IBVP has
solution of the form (4.18), where 1,(g, 1), 7(¢) are given by (4.20), and ¢(7, 7) is solution
of the IBVP (4.21) with initial condition

Wy

#(1.0) = Ny exp (-0 H, ( o

0 4.41

being the normalized eigenstates of the SQHO whose Hamiltonian is Hy = (p*+ woqz) /2,

and ¢(0,7) = 0. So, IBVP (4.21) has solution with integral representation of the form

on,7) = N, f \/ﬁ(e-ziw-ff—e-zi(m@)exp( ;“gfz)H( %g)df (4.42)
0

foralln=0,1,2,.... We notice that foroddn =2k +1,k=0,1,2,..., one has

« I i
©2u+1(1, ) :N2k+1f \/%e 306 exp ——f 2k+1(\/ f) (4.43)

and so we can find the exact form of the solution. Then,

3 !
Yanlg.) = s <t>| 2k+1><eXP[ (2k+§)v(t>]><exp(i fo L(€)dé)
X exp %(—tl ()] - B(r))(q—xga))z]
[ iu(?)

X exp

L2550 - Box® - Do) (g - %)

[ wO (q xg(t)) wo (4 — xg(t)
X exp - Zh —le(t)lz ] X Hopiq ( % ( |E(t)| )) , (444)
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and the corresponding probability density becomes

2

2Ny, wy (g - )Cg(l))2 ) [wo (g — X,(1)
pu+1(g, 1) = —|€(l)| exp| — %—ldt)lz ]H2k+1( 0 (—lé(t)l ))’ (4.45)

where |e(?)| is the squeezing coefficient defined by (3.9). Thus, for k = 0,1,2,...,
Yoi11(q, t) found by (4.44) is an exact solution to IBVP (4.14).
IBVP 2- Coherent states type initial condition: Now, for IBVP (4.14) we take the

following family of initial data

2
. 2 2h
W) = Ae % exp (H/%a’zq] exp [—% (q - \/w—oal] ] 5(0) < g < oo, (4.46)

where A is a real constant, @ = @ + iy, @, a2 € R. If s(f) = x,(¢) is the moving
boundary, then solution is of the form (4.18), where n(q, t), 7(¢) are given by (4.20) and
©(n, 7) 1s solution of IBVP (4.21) with

2 _
0a(1,0) = Ay exp(\/%fm] exp(%nz), >0, (4.47)

where @ = @ — V1/Qwoh)(wycy +icy), c1, ¢, € R and ¢(0, 7) = 0. Actually, one may write

©¥o(n,0) as a linear combination of even and odd coherent states of SQHO

¢a(11,0) = A1¢5(1m) + Aapz (1), (4.48)

where A, A; € R and ¢;(n), ¢4 () are given by (2.31) and (2.32), respectively. Then, we

can write solution of IBVP (4.21) in the form

©a(n,7) = f A IZL(e—z#(n—fY _ e—%(”+§)2)(1“1¢§(§) + A3 (&))de. (4.49)
0 T
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Taking A; = 0, we can find the exact form of the solution by taking the following integral

@, 7) = A, f \/ﬁe‘féw‘%g@)dé (4.50)

Thus, one family of normalized solutions of Dirichlet IBVP (4.14) is

wp \'/* 1 (e"(n) 52
vy = (L) EOr
3@ 1) (ﬂh) \Je(?) sinh |62 X ex ( 2|6(t)|2 )

X eXp (z f g(é:)dé:) X exp [ Iu;z )( Xg(t) — B(t)x,(1) — D(t))(q - xg(t))]

iu(t) 2
eXp[—h (71 le(t)| - B(t)) (q—xg(t))]

2(1)0

wo (¢~ xg(t))z)
e(?) ’

o <P 4.51)

X sinh( —(g - xg(t))a/) X exp(

and the corresponding probability density function becomes

N T (S@e )’ - (Ri@e @)’
@0 = e < <0F )
Wo (g - )Cg(t))2 — X,4(1)
<o~ 3 { 25 R )
~cos (2 % I(ae (1) l;(f)j © )} , (4.52)

where |e(?)| is given by Eq.(3.9).

The probability density function (4.52) is in the same form as the probability den-
sity at time-evolved odd coherent states (3.32), obtained in the previous chapter. However,
the boundary s(#) causes a difference in the displacement of the position. Then, we also
realize differences in the phase factors by comparing solution (4.51) and time-evolved

odd coherent states given by (3.31).
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4.3. Exacatly Solvable Caldirola-Kanai Model for the Dirichlet IBVP

In this section, we consider an exactly solvable model

inZ¥(q,n = HO¥(q,1), s{)<g<oo, 1>0,
Y(q,0) = Yo(g), s(0)<g< oo, (4.53)
Y(s(r),n) =0, >0,

with moving boundary s(¢), and the Hamiltonian

N e wie!
H() = - P+ 0792 +e"'D()p — "E(1)§, (4.54)

where u(t) = €,y > 0, is the exponentially increasing mass, D(t), E(t) are arbitrary real-

valued parameters depending on time. The corresponding classical equation of motion
X+yi+wix=e"D+E, t>0 (4.55)

where y > 0 is the damping coefficient and wy > 0 is the natural frequency, that is the

frequency of the undamped oscillator (y = 0), has homogenous solutions

1
X1(1) = 2262 cos(Qot — ), xa(t) = — e sin(Qob),
Q Qo

satisfying the initial conditions x;(0) = 1, x;(0) = 0, x(0) = 0, x,(0) = 1, and Qy =
,/wé —¥2/4 is the frequency of the damped oscillator and §, = tan™!(y/(2€)) is the
phase shift.

Periodic forces (B(t) = 0): If the driving forces are taken to be D(¢) = 0, E(¢) =
E cos(wt), where w is the driving frequency and E| is a real constant, then the particular

solution of (4.55) will be

xp(1) = Ane™ "% cos(Qot — 6),) + A, cos(wt — 6)), (4.56)
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where A, and 6, are constants such that x,(r) satisfies the initial conditions x,(0) =

0, x,(0) = 0. The amplitude and phase shift of the steady-state part are

: 5p:tan_]( Vit ) (4.57)

E
Wres = \JO = V212, Ap(Wyes) = ——. o -y/2>0.  (458)
2 _

Example 1

First, we consider the IBVP (4.53) with an initial data of harmonic oscillator eigenstate
type given by (4.40) foroddn = 2k+ 1,k =0,1,2,.... If s(¢) = x,(2) = c1x1(2) + c2x2(2) +
xp(1), ¢ = (c1,¢2) € R? and the parameter & = ¢ in (4.40), then the probability densities

will be found by (4.45) with the squeezing coefficient

le(?)] = %e‘wz \/COSZ(QOt — 80) + sin®(Qp?), (4.59)
0

which is smooth and oscillatory for t > 0. We note that, the amplitude of oscillations
can be increased by increasing the value of the frequency wy. When y — 0, one has
w(z) / Qg — 1,09 — Osothat |e(#)] — 1. However, wheny > 1, the amplitude of oscillations
in |e(?)| decreases and approaches zero as time goes to infinity.

In Fig.4.1-(1), we plot time evolution of the probability density p,(g,?), n = 3 on
the fixed domain 0 < g < oo for s(tf) = 0 and D(r) = E(t) = 0. We observe that the
probability density function is equal to zero on the fixed boundary ¢ = 0. This figure
shows the evolution of the Gaussian wave packet on its domain and without displacement
in position. Since n = 3, we observe also the trajectory of a moving zero for ¢ > 0. In
Fig.4.1, we also give plots of time evolution of the probability density p,(q, t) for n = 3,
when ¢; = 0, ¢; = 1 (ii) without external parameters, that is x,(r) = 0, (iii) with periodic
xp(t) = (4/ \/éﬁ) cos(V23/2t — tan”!( \/4_6)) at resonance frequency (transient parts are

neglected in the figures). Fig.4.1-(ii) exhibits that the boundary point oscillates in time
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with decreasing amplitude. However, in Fig.4.1-(iii), the boundary point will continue to
oscillate with a constant amplitude after a certain time due to the moving boundary s(¢) =
x2(1) + x,(t). We observe also how the trajectories of moving zeros oscillate according to
the displacement (ii) s(t) = x,(1), (iii) s(t) = x,(1) = x2(2) + x,(2).

Example 2

Now, in the IBVP (4.53) we take the initial function as of the form (4.46), then the prob-
ability densities are given by Eq. (4.52) with the squeezing coefficient |e(z)| given by
(4.59). In Fig.4.2-(1), we show the probability density p’ (g, ¢) for @ = i, when the bound-
ary s(t) = 0, and we observe that the function is zero on the fixed boundary ¢ = 0. In
Fig.4.2-(ii), we plot p%(q,t) for @ = i, when ¢; = 0, ¢, = 2 without external parame-
ters, that is x,(f) = 0. Due to the moving boundary s() = 2x,(f), one can see that the
boundary point oscillates and as time increases the amplitude of oscillations decreases
and approaches to zero. Fig.4.2-(iii) shows p(g, 1) for @ = i, when ¢; = 0, ¢, = 2 with
periodic x,(f) = (4/ V47) cos( V2372t — tan™'(V46)) at resonance frequency. According
to this, the amplitude of oscillations of the boundary point will not approach to zero as

time increases.

78



® (ii)

(i)

Figure 4.1. Probability density p,(g, ) given by (4.45)forn =3,y = 1wy = V12, =
I, when (i) s(f) = 0 and x,(t) = 0, (i1) s(t) = 2x,(¢) and x,(1) = 0, (iii)
s(t) = 2x,(t) + x,(r) with periodic x,(¢) at resonance frequency w,., =

V23/2,Ey = 2.
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(iii)

Figure 4.2. Probability density p¢(q, ?) given by (4.52) fora =i,y = 1,wy = V12,5 =
1 when (i) s(f) = 0 and x,(t) = 0, (ii) s(t) = 2x(¢) and x,(¢) = 0, (iii)
s(t) = 2x,(t) + x,(t) with periodic x,(¢) at resonance frequency w,.;, =

V23/2,Ey = 2.
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4.4. Robin IBVP for a Generalized Quantum Parametric Oscillator

with Moving Boundary

Now, we consider an IBVP for the generalized quantum parametric oscillator de-
fined on a time-dependent domain s(f) < g < o0 0 < ¢ < T, with Robin BC imposed at a

moving boundary g = s(f)

ih%‘P(q, n=H,0O¥(q1), st)<g<ec, 0<i<T,

Y(q,0) = Yo(g), s(0)<g < oo, (4.60)
a—\P(s(t),t) - iﬁ(r)‘lf(s(t), n=0, 0<t<T,

0q h

where Plg(t) is the generalized Hamiltonian given by (4.15) and S(¢) is a real valued func-

tion of time.

Proposition 4.3 Consider the Robin IBVP with the moving boundary for the generalized
quantum parametric oscillator given by (4.60). If the boundary function s(t) is of the form
(4.16), and the function B(t) is given by

B(1) = pg(t) = c1p1(t) + cop2(t) + pp(t), ¢, €R, 4.61)

where pi(t) = u(t)(x1(f) — B(t)x1(1)) and py(t) = u@)(%,(t) — B(t)x,(1)) are two linearly in-
dependent homogeneous solutions and p ,(t) = u(t)(x,(t) — B(t)x,(t) — D(t)) is a particular

solution of the classical equation of motion in momentum space

p— (ZZ? ) + (w2 + (B - B> - %?B))p = —uw’D - E + (%z? + B) E, (4.62)
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then IBVP (4.60) has solution of the form

_ 1 e UAONENON NP
Ya.) = = ool fo Lu@)de| x exp |2 ( 5 B(r))(q x|
xexp| 2250 - By ) ~ D) (g - 0] x e, 0, 70),

(4.63)

where the Lagrangian L.(t) and coordinate transformations n,(t), 7(t) are defined by
(4.19) and (4.20), respectively. Here, ¢(n,7) is solution of the following IBVP for the

free Schrodinger equation with a homogeneous Neumann boundary condition

0 10?%
(9_()70' 2#, 9<U<OO,O<T<T(T),
0(11,0) = exp (%n) Wo(n +cp), 0 <1< oo, (4.64)

¢,(0,7) =0, O0<7<7().
Proof Suppose the boundary function s(#) and the function 5(¢) are of the form (4.16)

and (4.61), respectively. Let § = g — s(¢) and denote ‘T’(Z], 1) = ¥(q, t). Then, we obtain an
IBVP for ‘T’(Z], t) = WY(q, t) defined on the fixed half-line 0 < § < oo ‘?(q, 1)

oV . —
h— = H.(H)¥Y,
: Y ()
W(g,0) = ¥Yo(g+c1), 0<g<oo, (4.65)

M 0.0 - Lpo@0.n=0, 0<r<T.
0q h

where ﬁg(r) is given by (4.23). So following the same steps in the proof of Proposition

4.2, we obtain the function ‘Af’(c}, 1) as

TG = erxp[ 1l tLg@)df]xexp[M(x‘g;—B(r))qz]
xexp| 2 50 ~ B0~ D a ol S5 1T

(4.66)
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where ¢(n, 7) satisfies (4.37) with the prescribed initial condition. Now, ‘T’(’qv 1) satisfies
the homogeneous boundary condition in (4.65) whenever ¢(n, T) satisfies the Neumann
boundary condition ¢, (0, 7) = 0. So the function ‘T’(c], t) found by (4.66) will be the solu-
tion of IBVP (4.65) on the fixed half-line if the function ¢(7, 7) solves the Neumann IBVP
(4.64) for the free Schrodinger equation. By doing back substitution § = g — x,(¢), we get
solution (4.63) to IBVP (4.60) satisfying the prescribed IC there. Thus, solution (4.63)
will satisfy the Robin BC in (4.60) if ¢(n, 7) satisfies the Neumann BC given in (4.64). O

To be able to find the exact solution of the IBVP (4.60), one has to solve IBVP
(4.64) with Neumann boundary condition. Solution of IBVP (4.64) is found as

o) = fo N £, )p(é, 0)dE, 4.67)

where N(n,&,7) = K(n—§&, 1)+ K(n+¢&, 1) with K(n, 7) being the propagator of the system
given by (4.12). Then, as a consequence of Proposition (4.3), the Robin IBVP (4.60) has

solution with integral representation of the form

¥ = e fo Ly@)de| x exp |2 (w) B(r))(q x|
xexp| B2 (50 - B o) - D) (g - x,0)|
< [ Nonda.0.6 700l + coe (4.69)

Therefore, exact and explicit solutions to the IBVP (4.60) can be found only when the
integral in (4.68) converges for the given initial data.

In what follows, we give solutions of the IBVP (4.60) corresponding to some
particular initial functions ¥((g) and homogenous boundary condition ¥,.() = 0.
IBVP 1- Eigenstates type initial condition: First, we consider IBVP (4.60) with the
family of initial functions ‘I’g’n(q) given by (4.40). For the given boundary function s(z) =
xo(1), IBVP (4.60) has the solution of the form (4.63), and ¢(n, 7) is the solution to IBVP
(4.64), with initial condition ¢(n, 0) given by (4.41). Then, solution of IBVP (4.64) will
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be of the form (4.42), and forn = 2k, k=0,1,2,..., one has

0 i i ) W W
@o(1, T) = Noj f \/ —e w1 exp (——sz) Hyy —O‘f d¢, (4.69)
e V21T 2h 7]

and normalized solutions of the IBVP with moving boundary for the generalized oscillator

are found as

Wolg.) = \/%Nzk exp[— i(2k+ %)V(I)] X EXp (i fo t Lg(g)dg)

N
xexp| B 5 nlew) = 500 = 3,0
xexp| B2 (50 - By o) ~ D) (g - x,0)|
wo (@ = %0 o (4= %0
X exp » - ﬁW] X sz( % ( |€(t)| )) , (470)

and the corresponding probability densities become

_2NG, wo (g — x,(1))’ 5 wo (g — x,(1)
puta.) = g exe| - | ¢ HZ"( ' ( (o)l )) @70

where |e(?)| is the squeezing coefficient defined by (3.9).

IBVP 2- Coherent states type initial condition: Now, for IBVP (4.60), we take the
initial functions ¥9(g) of coherent states type given by (4.46). If s(t) = x,(¢) is the moving
boundary, then solution will be of the form (4.63). Here, ¢(1, 7) is the solution of IBVP
(4.64) with initial condition ¢3(1,0), given by (4.47). We can write ¢5(n7,0) as a linear
combination of even and odd coherent states of SQHO as ¢5(17,0) = A¢5 (1) + A20%(n),
where A, A, € R and ¢$(n), ¢%(n) are given by (2.31) and (2.32), respectively. Then,

solution of IBVP (4.64) in integral representation will be

0a(1,7) = f \/2#(@2’%("—92—e—2’%<"+f>2)(A1¢;<§>+A2¢5~;<§>)d§. (4.72)
0 T
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Here, taking A, = 0, we can find the exact form of the solution by taking the following

integral

@a(n,7) = A, f \/fme‘fé“‘f%zg)d& (4.73)

So, we obtain

e _ (@0 1 (e (t))2~2 t
\P&(q’ t) - (%) '—6(1) sinh |d/|2 CXP( 2|€(t)|2 ) exp( f Lg(f)d‘f)

xexp| ™ ( )( (1) = BOx(0) — DO)Jg = x,0)
exp 5 (5 nle)l - B0 | (g - 5,0
2600 wWo (q xg(t))z
X cosh( o) —(q - xg(t))a) X exp( 7 W) (4.74)
and the corresponding probability densities
G = 2 L ((S@e*(r)))z - (mae*m))z)
P U= N\ ah e sinh|af = " |e(z)|2
(L)() (CI -xg(t))z ~ % xg(t)
xexp( -5 G \' R ()2 )

+cos (24 %S(de*(t))q l;(f)ﬁi ))} (4.75)

where |e(?)| is given by Eq.(3.9).

Therefore, one family of normalized solutions of Robin IBVP (4.60) for the gener-
alized oscillator with moving boundary is of the form (4.74). We realize that the probabil-
ity density function (4.75) and the probability density at time-evolved even coherent states
found by (3.29) are similar. The only difference is in the displacement of the position,
which is a consequence of the boundary s(r). However, solution (4.74) and time-evolved

even coherent states (3.28) also differ in their phase factors.
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CHAPTER 5

TIME-EVOLVED COHERENT STATES OF
N-DIMENSIONAL GENERALIZED QUANTUM
HARMONIC OSCILLATORS

In this chapter, we consider N-dimensional generalized quantum harmonic oscil-
lator with time-dependent parameters and obtain its solution using the evolution operator
approach. Time-evolution of eigenstates and coherent states under the generalized evo-
lution operator is found explicitly. Then, we introduce exactly solvable quantum models
with special time-variable parameters for which the structure of the corresponding classi-
cal harmonic oscillator in position space is preserved. For each model, we study squeez-
ing properties of the time-evolved coherent states according to the frequency modification

and describe their displacement under the influence of external sinusoidal forces.
5.1. The Classical Problem

In this section, we consider a generalized N-dimensional oscillator described by

the Hamiltonian H,,(f) = 27:1 Hj(xj,pj,t), where

P? N ﬂj(l)a)i(t)

Hj(xj,pj,t) = X+ Bi(x;p;j+ Di(p; + E(Dx; + Fi(1),  (5.1)

and u;(1) > 0, a)?(t), Bi(1),Dj(1), Ej(t) and F(¢), j = 1,2,..., N, are real-valued parame-

ters depending on time. The corresponding Hamilton’s equations of motion are

o= g+ P,
dp; ' (1)
OH ;
pi= —a—xf = —(uj(Owi(O)x; + Bi(t)p; + E;1)), j=1,2,...,N.
J
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Then, foreach j = 1,2,..., N, we have the classical equations of motion in position space

Bj)).x]':——j‘FDj'f—(&'FBj)Dj, (52)

jéj+/ﬁxj+(w§—(Bj+B§+'ﬂ
i J

Hj Hj

and oscillator equation in momentum space

(1jw?) . (1jw?) (e
pj=——5pj+|w} + Bj - B} - —-B;j|p; = —ujw;D;—E;+| — + B, |E;. (5.3)
M5 Hjw; Hjw;

We notice that the parameter B;(f) of the mixed term in Hamiltonian (5.1) leads to modi-
fication of the original frequency w?(t), and the external parameters B;(t), D;(t), E;(?) all
contribute to the forcing term of the oscillator for j = 1,2,...,N.

We denote x&l)(t), x?(t) to be two linearly independent homogenous solutions
and xg.” () to be a particular solution of the corresponding classical equation of mo-
tion in position space given by (5.2), satisfying the initial conditions xy)(to) =xy # 0,
1(0) = x0B (o), X (10) = 0, 57 (10) = 1/ (xops;0)) . and x(10) = 0, ¥ (10) = E; (o).
respectively, for j = 1,2,..., N. Furthermore, we let pg.l)(t), pj.z)(t) denote two homoge-
neous solutions of the oscillator equation in momentum space given by (5.3), then they

can be found in terms of the solutions of the classical equations in position space as

P = w0 @) - Bi()x (1) - D;(0)),

PO = OGO = Bi0x7 (1) - Do),
and particular solution will be
PP = wOEP (1) = Bi()xP(1) — Dy(1)). (5.4)

This establishes solutions to the classical problem, whose quantization using the
usual replacement x; — §;, p; — pj, xjp; — (q;pj+ P;4;)/2, j=1,2,..., N is discussed

in next sections.
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5.2. Generalized Quantum Parametric Oscillator

We consider the evolution problem describing a generalized N-dimensional quan-

tum parametric oscillator in the presence of time-variable external fields given by

(5.5)

in2¥(q,n) = AOY(Q,0), qeR, 1>,
\P(q’ tO) = \I]O(q), q € ]RN’

where Y(q, t) := Y(q1, 92, .- .,qn, 1) is the wave function at time ¢ > fy; at t = 1y, the initial

state is YO(q) := ¥°(q1, ¢», . . . , gn) and time-dependent Hamiltonian H(¢) is defined by

N
AW = ) Ay, (5.6)
=1

where

5 P om0, B, ) )

Hj(t) = 20 + 4t (q;Dj + Pja;) + Dip; + Ej(1)q; + Fi(®), (5.7)
with §; = g;, is the position operator, p; = —ihd/0q; is the momentum operator for
j=12,...,N.

We note that, [FI,-,FIJ-] =0foralli,j=1,2,...,N, and due to this, we have the

following proposition.

Proposition 5.1 The IVP for an N-dimensional generalized quantum parametric oscilla-

tor given by (5.5) has solution of the form

N
¥a.n = | a0, (5.8)
j=1
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where

Yig,t) = —x(ic)o(t) exp (% f {j(s)ds) exp [i,uj(t) (xg.l’)(t) _ Bj(t)x;p)(t)Dj(t)) C]j]
j 10
: (1)
i (1) (%5 (1)
zjh (Xg»l)(t) - Bj(l‘))(CIj - xif’)(l))2 @i(ni(g;, 1), (D). (5.9)

Here, xg.])(t), xg.z)(t) are two linearly independent homogenous solutions and x}p )(t) is a
particular solution of the corresponding classical equation of motion in position space
given by (5.2) satisfying the prescribed initial conditions, and ¢(q;,t) is solution of N-

dimensional Schrodinger equation

. 2
5000 = 40,0, g €R. 150,

(5.10)
Also, we denote
- [, 2 2 2F (1)
40 = —— [(XE-’”(t) - Bi(0xV(1) - i) (V1) - Di(r) + ,u—ét) . (51D
j
and the coordinate transformations
(g ) = | 2 (7= xV@). 7,00 = hag 50 1,2,....,N.  (5.12)
T]] QJ’ - x(/l)(t) q] Jj s J - 0 x(ll)([) s J = L 4,000, 1V, .

Proof The dynamics of the quantum system described by Schrédinger equation (5.5) is

contained in the evolution operator defined as
. d A N A A 2~
zhEU(t, 1) = HOU(t,1y), Ul(ty, 1) = 1. (5.13)

Exact form of U(t,1,) can be found by using Wei-Norman Lie algebraic process. We

can write the Hamiltonian H(?) given by (5.6) as a linear combination of Lie algebra
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generators as

N

2
Z( (t) "+ (W OK + 208K

H(7)

o+ 40 8.

where operators

are generators of the su(1,1) algebra for each fixed j = 1,2,...,N,. Then, the evolution

operator is
N
OG,10) = | | Oyt 10), (5.14)
j=1

where for each j = 1,2, ..., N the operator U j(t, o) can be expressed as product of expo-
nential operators
J()

A (NED a(1) (NED - (DFeH) (N0 (A
Uj(l‘, tO) :ec](z)aj & h(t)aj ef,(t)‘Kj eZhj(t)‘Kj eg,(t)‘Kj ,

with f;(z), g;(1), hj(t) and a;(t), b;(1), c;(t) being real-valued functions to be determined.
Substituting (5.14) and (5.6) into (5.13) and performing necessary calculations, we find

that U (t,1p) is a solution of (5.13) if the unknown functions fi(?), g;(t), h;(?) satisfy the
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nonlinear system

/1]() (t)

fi+ a7 + 2B f; + =0, fi(t)=0
gj+ me”’f =0, g;(tp) =0, (5.15)

+ ;%fi +B(1) =0, hi(t)) =0

and a;(1), bj(1), c;(¢) satisfy the nonlinear system

)+ By(0a; + (DWAOb; + E(H) =0, aj(to) =0
- B; (t)b - —Clj - D](l') = 0, bj(l’o) = 0, (516)

(l) HO) i .
1 Cl + j(t) HjDw; b2 F;(0) — 0, C/(t()) — 0, j= 1, 2, L ,N.

0% aj— =7 Y5 n

cj+

Then, for each j = 1,2,..., N, the solution of system (5.15) is found in terms of two

linearly independent solutions x(jl)(t) and x(jz)(t) of classical system (5.2) as

(1)(t)

X0

,(z) b0 X2
0= | oy B0 0 = hd D) o=

Xj

On the other hand, for each j = 1,2...N, the solution of system (5.16) is obtained in

terms of particular solutions of systems (5.2) and (5.3) as
1 t
a,)=p'O, by =x"®, =5 f Zi(s)ds.
1o
Therefore, for each j =1,2,..., N, we find

Uf(f’to):exp(i f §/(S)dS)eXP(ipﬁp)(t)qj)eXp(—xi.”)(t)a%)
J

(1)
(D) (?)
exp[z éh ( El)() ](t)]qj]exp(ln

(1)(I)

(2)
0 Vo [20) &
( +2)]GXP{2EXO[XS1)(I)]6q§ 5
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which determines U(z, 1) explicitly. We note that,

& 8
exXp (_%6_] \PO(QJ) - Sﬁ(q],fj (517)

where for j = 1,2,..., N, the function ¢(g;; z;) satisfies the Schrodinger equation (5.10).

Using (5.17) and the expressions for the shift and dilatation operators respectively,

exp(fja )fﬁ(qj) P(q; + &) eXP(quja )flﬁ(qj)—f/)(efq]) (5.18)

for any function ¢(g;), j = 1,2, ..., N, the evolution operator (5.17) is applied to the initial
function ¥°(q i), thatis W;(g;, 1) = U i(t, 10)¥°(q 7). Then, we obtain solution (5.9) of the

IVP for N-dimensional generalized quantum parametric oscillator given by (5.5). O

Therefore, knowing explicitly the evolution operator allows us to obtain solution
of the IVP (5.5) for any given initial function. In what follows we show the exact time-

development of harmonic oscillator eigenstates and Glauber coherent states.
5.3. Time-Evolution of Harmonic Oscillator Eigenstates

First, we solve IVP (5.5) by taking the initial function to be the eigenstates ¢, (q)
of the N-dimensional simple harmonic oscillator, whose Hamiltonian is Hy = 37, (p% +
woqz) /2. As known, these eigenstates correspond to eigenvalues £, = E,, + E,, + ... +

E,, = hwo(n; +ny + ...+ ny + N/2), and for n = (n,n,, ..., ny) we have

En(@) = 00, (@), (q2) - - . Pny(qn), N1, 02,...,ny =0,1,2, ...,

with

‘Pn_/(CIj) = Nl’lje_%qun_/ ( ’\’ %q]) ’ j = 17 2’ tees N,
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where H, (Vwo/hq;) are Hermite polynomials and N,, = (wo/nh)"/*(2%n;1)""/* are the
normalization constants. According to this, time-evolved eigenstates of the N-dimensional

oscillator (5.5) with Hamiltonian (5.6) are of the form
N N
¥(q,0) = 0t t0)e(@) = | | 05,10}, (a)) = | | W (a0, (5.19)
J=1 j=1

and using the equations (5.18) and (5.17), ¥, (g, 1) are explicitly found as

¥ - N, — o
nj(qj’ = njmexp( - h_(,t)ovj(t))
o . .,
exp {1 f 4s =22 (8,0 - Lo, - xP0) + 50,
(») 2 (§2]
wo (Qj_xj (t)) () Qj_xj (t)
=P [ T2n 0P ]H Nu g0l | ©:20)

and the corresponding probability densities

1 wo @ =xPOY] ( [ogai— 0
-—— | H; ——, (5.21
&) exp[ n o |TWNT Tewr ) 02

pnj(qj’ t) = N]fj

where

x(.l) t
&) = ’XO + i(woxo)x (1) = lei(t)le” 1, (5.22)
with modulus and phase
(1 2
X, (t 4 wo
€D = \| —25— + (@oxo (X7 ()2, vi(t) = f e (5.23)
/ 2 M ! o HiS)ES)P
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foreach j=1,2,..., N. Here, the expectation values of position and momentum at states

¥, (q, 1) are

@n(t) = (Pu(q. D11, D) = (P, (g7 DIG1¥, (g, D) = P (0),

(Bi(®) = (X, DIP (. ) = (¥ (g DIPW, (g5, 1)) = pL (D),

showing that they do not depend on the wave number n = (ny,n,,...,ny) and are com-
pletely determined by the external forces. Then, the uncertainties in position and momen-

tum are found as

h 1
(Ag (1) = a)_o (ﬂj + §)|Ej(t)|’

o 1 1 & (dn (@) ’
(Ap])n(t) = J&)oh (l’lj + 5) m Jl + wg ( dr - Bj(l)) )

and the uncertainty relation in state ‘¥',,(q, ) becomes

1 (DI (d1ne; 2
(Ac}j)n(Aﬁj)n(l‘):h(nj+§) \/1+ Iej(rz)l ( n|e;(®)] —B,-(r)). (5.24)

wg dt

5.4. Time-Evolution of Glauber Coherent States

The coherent states of the simple N-dimensional harmonic oscillator with Hamil-

tonian Hy are usually defined using the unitary displacement operator

N N
D)= | Djtap = [ explasal - ajay), (5.25)
j:

J=1
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where a = (a1, a,,...,ay) and a; = a/(l) + lcx( ). with a/(l) 2 being real constants and

ajand 4" are the annihilation and creation operators given as

n wo h 8 T 0 .
Y (T [0 - 1,2,...,N. (526
@i T 2w g “ 21~ 2wo 6qj J (5.26)

By applying the displacement operator D(a) to the ground states ¢y(q) one can find the

well-known coherent states of the simple N-dimensional harmonic oscillator

N
6e(@ = | | #0,(a),

J=1
where

wo \* . 2w
%,-(qj):(ﬂ—;) exp[ —iaa p]exp[la(z),/ )

Then, time-evolved coherent states become

CL)()( 2h (]))2]
- — . .
2h wy ?

exp

N
0(t,10)¢0,(@)) = | | ®ay(a)1). (5.27)
j=1

-

Do(q, 1) = U(t, 10)palq) =

]

For j=1,2,...,N, ®,,(q),1) are found as

()" - )

exp f £i(s)ds — - ’()(B (o) — 1n|e]<r>|)(q]—x(”><r>) + ' (0g;}

(P
U)O (QJ - xj (t)) 20)0 1))
e p[ M 0P ]e p{ n e](t)( IR (I))“f}



and we have

_ 2y fwo 1 wo (45 = (@))a, )’
e e T T B S

where the squeezing coeflicient |€;(7)| is found by (5.23) and displacements in j-direction

determined by the expectation values at coherent states @,,(g;, 1) as

o (@)
(@130, (0) = | = [xLxg.”m + a§2>(woxo)x§2><r>] +x0(),
0 0

o a/(.l)
(P)Ya)(®) = \/w—o [x—’opg”m + a?)(woxo)p‘,?)(t)] +p().

The uncertainties for §; and p; at coherent states ®,(q, t) are precisely

h
(Agjo(t) = \/z—wo|€j(f)|,

. _ [weh 1 lej(t)I* (d1ne(t)| 2
(AP)a(t) = \/TW)' \/1+ o ( 7 —B,~<r>),

and the uncertainty product becomes

e R le;(D* (dInei(2)| ?
<Aq,~>a<Ap,~>a(t)—5\/1+ o7 ( - —Bj<r>).

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

As a result, we can say that time-evolved coherent states of the generalized har-

monic oscillator are N-dimensional shifted and squeezed Gaussian wave packets, which in
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general do not preserve the minimum uncertainty. Their squeezing properties in different
directions are controlled by the squeezing coeflicients |e;(#)|, which depends on the choice
of the parameters (1), w?(t) and B(t), j = 1,2,...,N. On the other hand, the displace-
ment properties of coherent states depend also on parameters D(t), E;(t), j=1,2,...,N.
Therefore, for time-evolved coherent states the center of the wave packets in position

space will follow the general classical trajectory, that is the parametric curve in RY, given

by

O (1) := ({41)ar (D5 (G2)ar (1), s (qNWDay (1), 120, (5.35)

and in momentum space the general trajectory will be

Py(1) = ({P1)ar (s {P2)a, ()5 oo {PW)ay (D), 120, (5.36)

where (g;)q,(f) and {p;),,;(¢) are defined by (5.28) and (5.30), respectively. In particular,
when there are no external forces, that is D;(r) = 0, E;j(r) = O forall j = 1,2,...,N,

coherent state packets in position space will follow the classical trajectory

Oo(1) := (Xa, (1), Xy (1), ooy Xy (1)), 120, (5.37)

determined by the homogeneous solutions x,(7) and values of ¢, j = 1,2,..., N. Simi-

larly, in momentum space trajectory will be

Po(1) := (Do) (1), Par (D) ey Par (D), 1> 0. (5.38)

On the other hand, when a; = 0 for all j = 1,2,..., N, which corresponds to the ground

state, and there are external forces due to nonzero parameters D ;(¢) or E;(t), the classical
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trajectories of the coherent states will be determined only by the particular solutions, i.e.,

0p(®) = (1 (1), Xp2(0), oos Xpn (), 120,

Py(t) = (ppa(0), ppa(®), s pp(®), 120

We note that, classical trajectories of the time-evolved eigenstate packets (5.21) are also

given by Q,(1), P,().
5.5. On the Classical Harmonic Oscillator

In this section, we consider a generalized N-dimensional oscillator related with

the classical Hamiltonian

N 2 2
P w
Hcl(t) = Z 71 + 70)63 + Bj(t)ijj + EJ(I)XJ'] s (539)
=1
where mass is m; = 1 for each j = 1,2,...,N. For this classical oscillator, we first

interpret the free motion and introduce all possible cases of frequency modification, which

preserve the structure. Then, we discuss the influence of the external forces.
5.5.1. Free Motion and Frequency Modification

The homogeneous classical equations of motion in position space corresponding

to the Hamiltonian (5.39) are
i+ (0} = (B0 + BB0))x; =0, j=1.2,....N, (5.40)

and to preserve the original harmonic oscillator structure, we shall choose B(7) to satisfy

the equation (B;(r) + B?(t)) = —A?, where A? > —wj is the frequency modification in
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position space for j = 1,2,---, N. Then, (5.40) takes the form
2+ Qx; =0 (5.41)

with modified natural frequency Q? = W) + A? > 0 foreach j = 1,2,...,N, On the other

hand, the homogeneous equation for the corresponding momentum becomes
.. 2 ) _ .
pi+ () +T20)p; =0, j=12....N, (5.42)

where ‘I’?(t) = B,(t) - B?(t) is the modification of the frequency in momentum space.

Now, according to above assumptions, all possibilities for B;(¢) are as follows:
e Bj(t) = 0, (standard harmonic oscillator).
e Bj(f) = B?— constant such that 0 < (B‘j).)2 < W},
o Bj(1) = Njtanh(N't + 7)), N = \/@, where —w} < A? <0, §;~arbitrary phase.
e Bi(f) = (t+b))”", bj-arbitrary.
o Bi(t) = A tan(A;t + ), A, = \/Xf where A2 > 0, 8;-arbitrary.

We note that, in the last three cases, the choice of time-dependent B;(1), leads to constant
frequency modification in position space by construction, but in momentum space it will
depend on time.

Lissajous orbits: For the above special choices of Bj(z), the position equation is given by
(5.41) foreach j = 1,2,..., N. Then, when there are no external forces, the coherent wave

packets (3.10) in position space will be localized along the classical trajectory

0.(1) = (Aq, cOS(Q1t = Vo, )s A, COS(Qat = V)5 vr Aay COS(QNE = V) » (5.43)

where amplitudes A, ,, frequencies €2; and phases vy, ; will change according to B(7). These
trajectories, especially for N = 2 and N = 3, are well-known as the Lissajous orbits,

(Goldstain, Safko & Poole). If Q; = r;Q, for some Q > 0, and r; are rational numbers for
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all j = 1,2,..., N, then Lissajous orbits will be periodic. Otherwise, they are not periodic,
and when time increases and tends to infinity, they will pass through every point of a box
in space. On the other hand, classical trajectories in momentum space in some cases will

be more complicated, as we will see in next sections.
5.5.2. Forced Motion

In this part, we shall consider the response of the quantum oscillator to sinusoidal
driving forces, that is E;(1) = —F;cos(€2’t), where €' is the driving frequency, and F';-
real constant for each j = 1,2, ..., N. The corresponding classical equations with modified

frequencies and forcing terms are

550 + Qxy(0) = Fyeos(Qn), Q= \Jw2+ A% j=12,..N, (5.44)

with particular solutions x, j(1), j = 1,2,..., N, which depend on the frequencies Q; and
Q;., as follows:
Beats: If Q} # Q;, then particular solution satisfying the IC’s x,, ;(0) = 0 and x,, ;(0) = 0

is of the form

, (5.45)

(Q; - Q;.)t
) sin

(Q; + Q)1
xp (1) = Fp | cos(Q)r) — cos(th)] =2F,; sin( ( )

where F),; = F;/ (Q? - Q}z) gives the maximum amplitude of the bounded oscillations.
Special case of interest occurs, when driving frequency €’ is relatively close to €, so
that [Q3; — Q[ is very small compared with (€2; + ). Then one can observe formation of
beats in g;— direction. That is, x, (1) oscillates rapidly with frequency (Q; + €%)/2, and
has slowly varying sinusoidal amplitude 2F), ; sin((Q2; — €’)t/2), known as the envelope
or modulation of the oscillations.

Resonance: If Q) = Q;, that is the modified natural frequency is equal to the driving
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frequency, then particular solution satisfying prescribed IC’s becomes

F:
xp(t) = 2—6; sin(Q;1), (5.46)

J

which describes oscillations whose amplitude grows linearly with time 7, and leads to
resonance phenomena in g;— direction.

Since we consider multidimensional oscillators, in general one can consider mod-
els with different type of behavior in different directions according to parameters B;(f)
and D;(r). For example, it is possible that beats occur in all directions, so that trajectory of
the center of the wave packets will be confined in a bounded domain. But, it can happen
that we have beats in one-direction, and resonance in another direction, so that motion in
one direction is bounded, but in another direction it is unbounded. Clearly dynamics in
multi-dimensional problems contain many possibilities according to various parameters.
In what follows, to understand better some typical properties, we shall discuss special

models, which behavior in different directions is of the same type according to B;(1).
5.6. N-Dimensional Standard Quantum Harmonic Oscillator

To be able to compare different models, in this section we recall some basic results
for the N-dimensional SQHO with B;(¢) = O for all j = 1,2, ..., N, under the influence of

linear external forces, whose Hamiltonian is

(,()_(2) A2 _ F Q,t ~
+ 5 g; jcos(Q1)g;.
Corresponding classical equations of motion for position are

2(0) + wyx(1) = Fycos(Qn),  j=1,2,...,N, (5.47)
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with homogeneous solutions x; j(f) = xo ; cos(wot) and x, (1) = (1/woxp, ;) sin(wyt), satis-

fying the prescribed initial conditions. Then, momentum equations become
PiO) + wopi(t) = —F;Qsin(Qr),  j=1,2,...,N, (5.48)

with solutions p; () = —xo, jwo sin(wot) and p; (1) = (1/xp ;) cos(wyt).
It follows that the probability density for time-evolved coherent states is of the

form

pulgs ) = ( %)N xexp{ - EN] ( \/%(qj - <qj>a,<t>))2}, (5.49)

J=1

with |e;(1)] = 1, for all j =1,2,..., N, and uncertainties are

A N /] N N (U()h R N h
(Agj)a = (AG))o; = Yo’ (Apj)a = (APj)a; = \/T, (Agj)o(AP))a = 7

showing that there is no squeezing of the wave packets both in coordinate and momentum,
and uncertainty product is minimum in each direction.

Expectations of position and momentum in j-direction are found using (5.28) and
(5.30). Therefore, when there are no external forces, i.e. E;(f) = 0forall j=1,2,...,N,
coherent wave packets (5.49) will follow the trajectory Q,(t) defined by (5.37), which for

this model becomes
Q.(t) = (Ag, cos(wot — 0,,), Ag, COS(Wot = B4y, - - - » Agy, COS(Wot — b,y)) s

and the trajectory in momentum space will be
P (1) = (—Aq,wo sin(wot — Oy,), —Ag,wo Sin(wot — 0,,), ..., —A

(lN('UO Sln(wot - 9(11\/)) ”

with amplitude A,, = V27i/wy , /a/%’j + cxg’j = V2h/wy |a)| and phase 6, = arctan(ay,j/ay,j).
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Since frequency is the same in every direction, for SQHO both Q,(?) and P,(t) are simple
curves, that is N-dimensional generalizations of lines, circles or ellipses.

Meanwhile, when E|(¢) # 0, particular solutions contributing to expectations, can
be found according to the driving frequencies €)', as follows:

a)If Q;. # wy, then x,, ;(?) is found by (5.45), with Q; = w, forall j = 1,2, ..., N, and

(D) = ( — Q) sin(Q)1) + wo sin(wot)). (5.50)

J
(w3 — Q)

b) If Q;. = w, then x,, ;(¢) is found by (5.46) and

F.
o) = 2—(50( sin(wof) + a)otcos(wot)). (5.51)

These well-known results for the standard harmonic oscillator, show that coherent states

q1

Figure 5.1. (i) Probability density p,(q, ), @) = 2 V2, a =i2 V2 at times ¢ = nr/4 for
n=01,---,87%=w=1,x,;(t) = 0 for j = 1,2. (ii) Contour plot of
density and trajectory Q,(f) = (4 cos(t),4 cos()), t € [0, 2n].

are displaced Gaussian wave packets, they are minimum uncertainty states, and there is
no squeezing of the wave packets. As an example for N=2, in Fig.5.1 we show time-
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development of probability density pa(gs ) = Pa, (91, DPas(g2: D, @1 = 2VZ, @3 = 22, at
times t = nm/4, where n = 0, 1, --- , 8, and which center follows the circular orbit Q, (%),

in case when there are no external forces.

5.7. Exactly Solvable Models

In this section, we introduce some exactly solvable models for the evolution prob-

lem (5.5) related with the Hamiltonian

N n2 2
A P W ~ B(t) A A A A ’ AN\A
H() = Z L 252+ L (q.,-p.,- + p‘,-qj) — Fjcos(Qn)g;, (5.52)

where B() are real valued time-dependent parameters and F;, ()’ are real constants for

each j=1,2,...N.
5.7.1. Model with B(J).— constants

First, we consider quantum oscillator with Hamiltonian (5.52) by taking the squeez-
ing parameters as B;(f) = B?— constants such that 0 < (B(J).)2 <wjforall j=1,2,...,N.
The corresponding classical equation in position space is of the form (5.44), with modi-
fied frequency Q; = /wj — (B(J).)2 smaller than the natural frequency, thatis 0 < Q; < w,

and solutions

XO’ j(uo

cos(Q;t = B)),  x2,(1) =

J 0,j=4j

X0 = sin(Q;1),  B; = arctan(B}/Q)). (5.53)

Then, the classical equation in momentum space becomes

Pi(0) + Qipj() = —F () sin(Q1) + BY cos(Q1)), (5.54)
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with the same modified frequency €2}, and its homogeneous solutions are

Xo, (05 1 B;
I Gin(Qy0), o) = x—(cos(g - sin@ jt)). (5.55)
0,j J

0
p1j(t) = — 0

J

Thus, both position and momentum solutions oscillate with the same frequencies.
Probability density for time-evolved coherent states is of the form (5.28), with

squeezing coefficient

w? w2
(1) = Q—g(cosz(g B+ sinz(th)), o3>l (5.56)
J

J

which is also periodic and oscillatory. In terms of |€;(#)|, uncertainties at time-evolved

coherent states are found by (5.31-5.33) and uncertainty product becomes

- h( . o
(A4 )a; (AP ay(1) = 5(1 * @

sin(2(Qt — B;)) — sin(2Qt)
2B° 2,172
+H]( cos (Q,1 — B;) + sin*(Q jz))] ) .
j

From (5.56), we see that when IB?I approaches zero, one has (wo/Q;) — 1,8; — 0, so that
(AG)e;(t) = VR/[2wo, (APj)a,(f) = Vhwo/2 and the uncertainty product approaches the
minimum 7%/2, as for the standard harmonic oscillator. For given wy, when IB?.| increases
and approaches wy, then €; tends to zero, and amplitude of oscillations increases.

Now, when E;(f) = Oforall j = 1,2, ..., N, then coherent wave packets in position

space will follow the trajectory

Qo) = (Ag, COS(QUT = Yq,)s Ay COS(Qt = Vi) vy Ay COS(QNT = Yoy ))s (5.57)
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Figure 5.2. Model B?-const: (i) Probability density p,(q,t) for B} = g, B) =
V5 0 =10, =1 @ = a = 2. (ii) Contour plot of probabil-
ity density and Lissajous orbit Q,(f) = (x4, (1), X0, (1)) = (4 V2 cos(% -
arctan( \/5)), 82 cos(ﬁ — arctan( \/E))).

where 0 < Q; < wy, for each j, with amplitudes and phases

A, = 2 \/(al’jB? + oo b () Yo, = arctan(@ " _az,jwo) (5.58)
@ [ Qj ’ @ Qj a’l,ij ’ '

and in momentum space, the corresponding trajectory P,(¢) will be of the form (5.38),

with

BO

2h w; -
Do) = —[—(aq j(—°)+a2 jwo—f)sin(gjt)mz wocos@], j=1,2,...N. (5.59)
j aol T\, )Ty :

J

J

Thus, when there are no external forces classical trajectories both in position and momen-
tum space will be of Lissajous type.
However, if there are external forces, expectation values and general trajectories
Qg(t) and Pg(t) of the wave packets are determined according to the values of the driving
frequencies. If Q;. # Q;j, then x,, ;(¢) is given by (5.45) and p, (1) = X, ;(t) - B‘J).xp, ().
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If Q) = Q;, then x,;(r) is given by (5.46), where p, (1) = %j((l - B?) sin(Q;t) +
Q;t cos(th)), foreach j=1,2,...,N.

As an example, in Fig.5.2 we plot time-evolution of probability density at times
t =nr/3forn =0,1,---,24, when there are no external forces. It explicitly shows the
changes of the width and amplitude of the wave packets due to the non-zero squeezing
parameters, and its contour plot confirms that the center of the wave packet follows the

classical Lissajous orbit Q,(?).
5.7.2. Model 1

Now, we introduce quantum oscillator with Hamiltonian (5.52), where squeez-
ing parameters for all j = 1,2,--- , N are of the form B;(t) = A;. tanh(Af/t), with 0 <
(A/j)2 < w}. In that case the modified frequency Q; = /wj — (A;.)2 is less than the natural
frequency, that is 0 < Q; < wy, like in previous model with B?— constants. The corre-
sponding classical equation in position space is of the form (5.44), with homogeneous
solutions x; j(f) = xojcos(;t), xj2(t) = (1/Q;x0 ;) sin(€2;t), but the classical equation in

momentum space becomes
Bi0) + (W + YAD)p; = FH(;sin(Qr) — A tanh(A'i) cos(1)), (5.60)

where T?(t) = A;.Z(l - 2tanh2(A}(t)) is the time-dependent frequency modification in
momentum space. When t — oo, T?(t) - —Afl.z, which means as time increases fre-
quency modification in momentum space approaches the frequency modification in posi-
tion space.

Probability density for time-evolved coherent states is of the form (3.10), with

squeezing coefficients

w2 (4)2
le;(H)] = 4 [cos*(Q;t) + Q—g sin®(Q;1), Q—g > 1, (5.61)
i J

J

where if Q; — wy, then |€;(f)] — 1. Meanwhile, when Q; — 0, that is when the modified
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frequency decreases, then amplitude of oscillations of |e;(#)| increases. The uncertainties
for g; and p; in terms of |€;(#)| and B;(¢) will be of the form (5.31-5.33), and the uncertainty

relation becomes

(AGiAD)) h 1 ! [At h(A )( 2(Q;1) e (Q )) ( 3) in(2€2 )]2
AD o = = + — | A’ tanh(A’1)| cos*(€27) + — sin“ (1) | + | == | sin(2Q ;1) | .
qjapj 2 g Jj J J Q? 1 ] ZQJ 1 ]

(5.62)
Therefore, there is a periodic oscillatory squeezing in position coordinates for each j =
1,2,...,N, and period in each direction will depend on the values of Q;. However, the
squeezing in momentum, and the uncertainty products are not periodic and become more

complicated due to influence of B;(z).

q1

Figure 5.3. Model 1: (i) Probability density p,(g, ) for Q; = 1/2,Q, = 1/3,a; = a; =
I,h = wy = 1and x,;(t) = 0 for j = 1,2. (ii) Contour plot and Lissajous
orbit Q,(¢) = (V2 cos(t/2), V2 cos(t/3)), t € [0, 67).

When there are no external forces wave packets in position space will follow the

Lissajous trajectory

0.() = (Aa1 cos(21t = 0,,), A, COS(Ct — 6,,), ..., A, cOS(Qyt — HQN)),
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\/ | '”‘f\”"\ﬂﬂ“"‘ o]

) (i0)

Figure 5.4. Model 1: (i) Resonance in g, direction: x,, (1) = %t sin(%).
(ii) In g, direction: x,(r) = — sin(%) sin(31).
(iii) Trajectory O, = (x,.1(1), x,2(t)) for t € [0,20x].

and in momentum space trajectory will be P,(f) defined by (5.38), with
Pa,(1) = Aa_,.( - Q;sin(Q;t — 6,,) — Ay tanh(A1) cos(€2;t — 90_/.)), j=12,...,N, (5.63)

where amplitudes and phases are

Aaj = \/2h/a)on \/(a/],ij)z + ((lz’j(,l)())z, gaj = arctan(az,jwo/al,ij). (564)

When there are external forces, expectations and trajectories will be determined according
to the following cases. If Q" # €Q;, then x, ;(¢) is given by (5.45) and p,, ;(t) = X, ;(t) —
A tanh(A;t)xp,j(t). If Q= Q, then x,, ;(¢) is given by (5.46) and p,, ;(t) = (F;/2Q;)((1 -
At tanh(A)) sin(€;1) + €t cos(Q i)

As an example, in Fig.(5.3-i) we plot probability density p,(q, t) at different times
t = nrforn = 0,1,...,6, and observe their width and amplitude changes due to the
squeezing parameters. Fig.5.3-(i7) shows the corresponding contour plot and the Lissajous
orbit of the center of the coherent wave packet. In Fig.5.4, we show possible trajectory
of ground state (@, = a, = 0) wave packet p,(q, t), under the influence of forces D;(¢) =
—Fcos(Q)1), Dy(t) = —F,cos(Q)t), where Q; = Q) = 1/2,Q, = 1/2,Q) = 1, F, =
1/50, F, = —3/8. It is a perpendicular superposition of resonance in g;—direction and

periodic oscillations in g,—direction.
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5.7.3. Model 2

In this section, we introduce quantum oscillator with Hamiltonian (5.52), where
squeezing parameters forall j = 1,2, ..., N, are of the form B(t) = 1/(t+b;), b;— arbitrary
nonzero constants. We note that, if ; < 0, then one will have singularity at positive time
t = b;. Substituting B;(¢) in (5.40), we see that it does not modify the natural frequency
wy, and the classical equation in position space becomes X () + w%x () =F; cos(ijt), j=
1,2,...,N, which is same as for the SQHO (B;() = 0), see eq.(5.47). But here, initial
conditions change according to b; as x; ;(0) = xo; # 0, X, ;(0) = x0;/bj; x;(0) =
0, x,,(0) = 1/x0, and this is reflected in the amplitude and phase of the solutions as

follows

1
x1,/(®) = x0j |1 + == cos(wot —6;), xp(t) = sin(wo?), (5.65)
1,j 0,/ %b? 0 Jj 2,j woXo, 0

where 6; = arctan(1/wob;). On the other hand, classical equation in momentum space is

2
ﬁj(l) + ((U% - m)p](t) = FJ(Q; Sil’l(Q}t) - (t ) ) COS(Q}Z‘)), (5.66)
J J

with frequency modification T?(r) ==-2/(t+b j)2 depending on time. Its solutions become

1 ) 1
pl,j(t) = —Xo; 1+ W(OJO sin(wot — 6J) + b, cos(wpt — 6j)), (5.67)

0~ j J

1
- sm(wot)). (5.68)

(wo cos(wgt) —
! J

1
p2.j(1) =
Wo X

Probability density for time-evolved coherent states is of the form (3.10), with periodic

and oscillatory squeezing coefficient

1
()] = \/(1 + =

2
0~j

)cosz(cuot -0+ sin®(wot), (5.69)
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whose period is same for all j = 1,2,..., N. Here, when |b;| — oo, one has o ;(f) — 1 and
amplitude of oscillations decreases, approaching the constant values as for the SQHO. On
the other hand, by letting |b;| — 0, one can increase amplitude of oscillations, without
changing their frequencies, which are independent of b;. In terms of |€;(¢)| uncertainties
are as found in (5.31-5.33) and the uncertainty relation at coherent states is found explic-

itly as

) ) _h 1 2 \(1+wb) 5
(A, (AP, (1) = 5{1 " [(r o )( oo o5 et = 8)) + sin (wot))
1+ (LL)()bj)2

2,1/2
= sin(2(wot — 6)) — wo sin(2a)0t)] } .

wWo

q2

q1

Figure 5.5. Model 2: (i) Probability density p,(q,t),a; = @, = 1, by = 1, by = 3,
h=wy=1,x,;(t)=0for j=1,2and t = nn/3, where n = 0, 1,2, ...6. (ii)
Contour plot and elliptic trajectory Q,(f) = (2 cos(t—m/4), (2 v5 /3) cos(t—
arctan(1/3))), t € [0, 2x].

In this model, when there are no external forces the expectations and trajectory of

the wave packets are given by

0,(1) = (Aa,- CcoS(Wol = Ya;)> Aa; COS(WoT = Va); .., Aa; COS(Wol — ya,-)),
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) (i)

Figure 5.6. Model 2: (i) x,,;(1) = sin(=0.05¢)sin(1.057), wy = 1,Q] = 1.1. (i)
xp2(t) = sin(=0.157) sin(1.157), wy = 1,Q} = 1.3. (iii) Trajectory Q, =
(xp,1(1), xp2(1)) for t € [0,20x], which is a perpendicular superposition of
two beats.

which are either lines or ellipses, like for the SQHO model, but in momentum space

trajectory P,(¢) is found using Pa,(t) = —Aaj(a)o sin(wof = ¥e,) + HLb cos(wot — %,j)) with

J

2 (@ ’ L, @y
A, = — ( L] + Q’z,j) + a’% o Yo, = arctan( + ﬁ) (570)
/ Wy a)obj J ! (,()obj ay,j

When there are external forces, expectations and trajectories are as follows. If Q} # wo,
then x,, ;(7) is given by (5.45) with Q; = w forall j = 1,2,...,N, and p, ;(t) = %, j(1) = (t+
bj)x, (). If Q' = wy, then x,, ;(1) is given by (5.46) and p,, (1) = ¥, j(t) - (t+b)) " x, (1)

In Fig.5.5-(i), we plot probability density p,(g,t) for N = 2, by = 1 and b, = 3,
a; = a; = 1, showing the width and amplitude changes at different times ¢t = nx/3, where
n =0,1,2,...6. Contour plot of the density in Fig.5.5-(ii), shows that the wave packet is
localized along the classical orbit Q,(f), which in that example is an ellipse. In Fig.5.6,
we plot a trajectory of the wave packets under the influence of special external forces. It

is a perpendicular superposition of two beats.
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5.7.4. Model 3

The last model, which we consider is quantum oscillator with Hamiltonian (5.52)
by taking the squeezing parameters for all j = 1,2,..., N, as B;(t) = —A tan(A 1), A? >
0. In this model, B;(¢) are periodic with singularities at times t = ((n — 1/2)n)/Aj, n =
1,2, .... The corresponding classical equations in position space are of the form (5.44),
with homogeneous solutions x; j(f) = xo ; cos(2;t), and x, ;(1) = (1/€;x0 ;) sin(Q;?), and
modified frequency greater than the natural frequency, that is Q; = ,/wj + A3 > wy, for

all j =1,2,..., N. Then, classical equations in momentum space become
P+ (] + T50)) pj = F(Qsin(Qjt) + A tan(A ;1) cos(Qjp),  j=1,2,...N, (5.71)

where we have time-dependent frequency modification ‘Y‘?(t) = —A?(l +2tan*(A 1), with
singularities at times ¢ = ((n—1/2)m)/A;, n = 1,2,.... Probability density for time-evolved

coherent states is found according to (3.10), with squeezing coefficient

2
w,
(D)) = \/cosmjz) + s @n). Q> w, (5.72)

J

and the uncertainties for §; and p; at time-evolved coherent states are given by (5.31-5.33).

Then, the uncertainty product is

(AZNAP = J 1+ i[A Stan(A jt)(COSZ(Q 0+ D@ jt)) N o o[
T2 w} Qf 2Q;

(5.73)

It follows that, uncertainty in position is smooth and periodic, but uncertainty in momen-

tum and the uncertainty product have singularities due to singularities in B (¢). Moreover,

(AgGj)e, (1) oscillates bellow the value (Ag)),;, = 1/ V2, and (Apj)e, (1) oscillates above it.

Also, for given w, both frequency €2; and amplitude of oscillations can be increased by

increasing the value of A% > 0.

For this model, when E;(r) = Oforall j = 1,2, ..., N, the center of the wave packets
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q1

Figure 5.7. Model 3: (i) Probability densities p,(g, ) withay = @, = 1+i,h = wy = 1,
x,j(t)=0for j=1,2and t = n7/6,n =0,1,2,...,6. (if) Contour plot and
the trajectory Q,(?), t € [0, 7).

will follow the Lissajous trajectories
0,(t) = (Ag,; €OS(L2;1 = O,,), Ag; COS(QLjt — O,)), ..., Aq; COS(Q;1 — 6,,)),

but in momentum space trajectories P,(f) are more complicated, having singularities, and

are found using
Pay(0) = Au, = Qy5in(@;t = 0,,) + A tan(A0) cos@yt - 6,,)). (5.74)

with amplitudes A, and phases 6,, given by (5.64).

The influence of the external force D;(t) = —F; cos(Q;.t) on the expectation values
will be as follows. If Q;. # Q;j, then x, (1) is given by (5.45) and p, ;(t) = %, (1) +
Ajtan(A;n)x, (). If Q) = Q, then x,, ;(7) is given by (5.46) and p,, (1) = (F;/2Q,)((1 +
Ajttan(A 1)) sin(Q;1) + Q;t cos(2;t)).

As an example, for N = 2, when there are no external force, in Fig.5.7, we show
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the probability density p,(g, 1), with Q; =2, Q, =4, @) = @, = 1 +i at different times ¢ =
nr/8 forn = 0,1,...,8 and the contour plot showing that the center of the wave packets
follow the classical Lissajous orbit Q,(¢) = (V5/2 cos(2t — arctan(1/2)), V17/8 cos(4t —
arctan(1/4)). In Fig.5.8-(i), we show a trajectory of the wave packets p,(q, ) under the
influence of external forces. And it is a perpendicular superposition of two beats. In
Fig.5.8-(ii), we show the trajectory Q,(¢) = (cos(2f), cos(rt)), which is a Lissajous orbit,

of the wave packets with no external force.

(@) (i)

Figure 5.8. Model 3 with external force D;(t) = —F; cos(Q;.t), j = 1,2, (i) The tra-
jectory Qp(t) = (sin((0.05)r) sin((1.05)r), sin((0.1)7) sin((2.1)7)) with ©; =
11,9 = 1,0, =22,Q) = 2,0 =a, =0and 1 = wy = 1, t € [0, 107].
(ii) The trajectory Q,(¢) = (cos(2f),cos(nt)) with Q; = 2,Q, = ma; =
a,=1/V2andh = wy = 1, t € [0,607].
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CHAPTER 6

A GENERALIZED TWO-DIMENSIONAL
QUANTUM PARAMETRIC OSCILLATOR IN THE
PRESENCE OF VARIABLE MAGNETIC AND
ELECTRIC FIELDS

In this chapter, we introduce time-dependent Schrodinger equation describing
a generalized two-dimensional quantum parametric oscillator in the presence of time-
variable external fields. We solve the corresponding evolution problem by using Wei-
Norman Lie algebraic approach, (Atilgan Biiyiikasik & Cayig, 2022 ). Then, we derive
the propagator and time-evolution of the eigenstates and coherent states explicitly in terms
of solutions to the corresponding system of coupled classical equations of motion. In ad-
dition, using the evolution operator formalism, we construct linear and quadratic quantum
dynamical invariants that provide connection of the present results by those obtained in
(Malkin, Man’ko & Trifonov, 1970) and (Lewis & Riesenfeld, 1969). Lastly, as an ex-
actly solvable model, we introduce a Cauchy-Euler type quantum oscillator with increas-
ing mass and decreasing frequency and in time-dependent magnetic and electric fields.
Based on the explicit results for the uncertainties and expectations, squeezing properties
of the wave packets and their trajectories in the two-dimensional configuration space are

discussed according to the influence of the time-variable parameters and external fields.

6.1. The Classical Problem

First, we consider a classical two-dimensional oscillator described by the Hamiltonian

2 2
Hor) = —— 4 HOV Do

2u(?) 2 +B(OX-P+D(t) - P+ E@) - X+ ALK, P),
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where X = (X}, X;)” is the position vector, P = (P, P,)" is the momentum vector and
L(X,P) = X, P, — X,P,. Also, u(t) > 0, w*(t), B(t) are real-valued parameters depending
on time, D(t) = (D,(t), D>())T, E(t) = (E,(¢), E»(t))" are vectors of real-valued time-
dependent functions, and A(¢) is a coupling parameter. Here, we use the dot product
notation u - v = u;v; + u,v, for any two vectors u = (uy, u;)", v=(v;,v»)’,andu? = u-u.

The corresponding Hamilton’s equations of motion are

X = ).(1 o L L) e
X, \Ze) HO e B

. P _(97'{61 B /l

pP= '1 =| = -{u@®*®OX + R P+E®),,
P \-%e -A(r) B()

where ’dot’ denotes derivative with respect to time. Then, the system of classical equa-

tions of motion in position space becomes

Qx(t) ga +1

. ) X = Fx(1), 6.1
—/’—j/l -4 Qx(@)

and for A(¢) # 0 it is a system of coupled second-order differential equations. In (6.1), we
have

Qu(f) = w(f) — (B(z) L B + ZQB(t) + 12(0),

and the forcing vector term

D(r) + D(r) - LE(t).

L4 BM) A ]
u()

Fx()=|"* .
A L+ B

We note that, if D = 0, then A(¢) does not influence the forcing vector Fx(7). Also, in

momentum space, the system of oscillator equations becomes

Q) -1y
: " -)2 H P = Fe0), (6.2)
—A+ A Q)
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where

(uw?)

pw?

qu):aﬂu)+(30)—z¥u)—
and the forcing term

2 . [ ﬂ§)+B(t)
Fp(t) = —u()w (D) - E(0) +| #

mn—fmy

A )

pw?

Here, in momentum space, the forcing Fp(¢) will be affected by A(7) in the presence of

electric fields. To solve the systems (6.1) and (6.2), it is convenient to introduce the

transformation of variables
X =Ry()X, p=Ry®P,

where

cosB(r) sind(t) ]

Ry(1) = [
—sin6(t) cosH(r)

is a rotation matrix, and the rotation angle is defined as

0(r) = ft A(s)ds.

fo

(6.3)

(6.4)

(6.5)

Under transformation in (6.3), the coupled system (6.1) reduces to the decoupled system

of two non-interacting damped oscillators

X+

O TR

' Q.(p) 0
X +
0 Q)

T ©

x = F.(),

(6.6)
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with the same damping parameter I'(r) = f(f)/u(t), and the same frequency
Q1) = (1) - (B(r) + B + EB(z)),
u

which is independent on A(?). On the other hand, the new forcing term becomes

E =
F.t)=—+D+ (H + B)D,
H Hu

and the relations between parameters D(¢), E(¢) and ﬁ(t), E(r) are found as

D(r) = Ry()D(1),  E(r) = Ry(n)E(1). (6.7)

Similarly, in momentum space we have

(uw?)

0 9 _
p+| M -y () p=F,®, (6.8)
g () 0 Q)
pw?

where the frequency and the forcing term are

Q,(1) = W) + (B(t) ~ B - MB(r)),

pa?

ﬁp(t) = —E + (%z) + B)E - ,uw21~).

Since the unforced part of each equation in the decoupled system (6.6) is same and it is

of the form
X(1) + l’%x(r) + Q. (H)x(t) =0, (6.9)

let x(lh)(t) and xgh)(t) denote two linearly independent solutions of the homogeneous Eq.(6.9),
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satisfying the initial conditions, respectively

X(lh)(fo) =x0# 0, #(t) = xoB(ty),

1) =0, x(10) = (6.10)

Xou(to)
Then, x(r) = (x!" (1), (1)) will become solution of the homogeneous part of system

(6.6) with IC’s (6.10). For system (6.6) in the presence of forcing terms, we let x(¢) =

(x(lp )(t), xép )(t))T denote particular solution satisfying the initial conditions

xP(19) = 0,  xP(19) = D(1y).

Furthermore, if p(lh)(t) and p(zh)(t) are two homogeneous solutions of the system of oscilla-

tor equations in momentum space given by (6.8), then they can be found in terms of the

solutions of the classical equation in position space as

py(@) -
pP0 =" | = u) (X" - Box® () - D)),

and particular solution will be

| PO | _ P ®) - D
PO =| L | = a0 (K70 - BoxP(1) - D).
2RO

As a result, it follows that

XM (r) = = R} ()x"(2)
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is a homogeneous solution to the coupled system (6.1) satisfying IC’s

X . XoB(t,
X0 = ||, X0y =|  HO (6.11)
0 X()/l(l()) + _xo,ul(to)
and
X(P) ¢
X(”)(t) = [ z )( ) ] = RGT(I)X(”)(I)
p
X, ()
is a particular solution to the forced coupled system (6.1), satisfying IC’s
0 . D (1
X (1) = X0y =| . (6.12)
0 Ds(10)

This establishes solutions to the classical problem, whose quantization using the usual

replacement X — @, P — p, X.P — (q.p)/2 is discussed in the next section.
6.2. Solution to the Generalized Quantum Parametric Oscillator

In this section, we consider time-dependent Schrodinger equation describing a gener-
alized two-dimensional quantum parametric oscillator in the presence of time-variable

external fields given by

0 ~
ih=¥(q,1) = Heen)¥(q,1), q R 1> 1,

Y(q,70) = ¥'(q), qeR?

(6.13)

where W(q, 1) := ¥(q1, ¢, ?) is the wave function at time ¢ > ty, ¥°(q) := ¥%(g1, g») is the

initial state at time #(, and the explicitly time-dependent Hamiltonian ﬁgen(t) is

—;2 2
2#7;) V2 + :u(f);) (1) qz —ihBt)(1+q-V)—ihD(@)-V+E@)-q + /l(t)ﬁ. (6.14)

Fyon() =

121



Here, § = (41, §»)" is the position vector operator with §; = ¢, j = 1,2, p = (p1, p2)" =
—ihV is the momentum vector operator with V = (8/dq,,8/dq,)", and L= q1D> — @21 18

the angular momentum operator, which satisfies the following commutation relations

and
(L,q1] = iGgr, [L.G2) = —igy, [L,p1]=ips, [L, P2l = —ipy,

showing that L does not commute with the position and momentum operators.

Proposition 6.1 The IVP for a two-dimensional generalized quantum parametric oscil-

lator given by (6.13) has solution of the form

Y(q,1) = ¢(g,1),7(0) \/Xo/x(lh)(f)exp(% f §c<s>ds)

en | EO(50 ) xoo cnvina]| 619
il 2 x(lh)(t) . .

where

(Q.1) = Xo Ro(1)(q — XP(1)),  7(t) = ha (X(zh)(l)]
K T ’ ")
() = M - DO PP + MP{(}?)O) 2 (6.16)
T 2u) ‘ 2 ’ '
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and ¢(q, 1) is solution of two-dimensional free Schrodinger equation

0 1
i—o(q, 1) = —=V2¢(q, 1), eR?, >0,
atsa(q ) > o(q,), q 6.17)

¢(q,0) =¥(q), qeR”
Proof Clearly, in the presence of angular momentum operator, the Hamiltonian H, gen(?)

is coupled, but one can overcome this difficulty by introducing a unitary transformation
Ug(l', fo) = exp (%H(t)lt) ,

where 6(t) is given by (6.5). Indeed, if we introduce new wave function as
w(q, 1) = Uy(t,1)¥(q, 1),

then IVP (6.13) transforms to the IVP

9 .
ih=9(@,1) = Haee DY(@, ), Q€ R?, t > t,
¥(q,10) = ¥°(q), qeR?

(6.18)

with decoupled Hamiltonian

n? — U (1) 5

Houoo(t) = 32 S~ imB()(1 +4-V) = D) - V+E®) - 4. (6.19)

where parameters ﬁ(r), E(r) are defined in terms of D(7), E(7) by the relations in (6.7).
Therefore, the original IVP (6.13) is reduced to solving the IVP (6.18).
The dynamics of the quantum system described by Schrodinger equation (6.18) is

contained in the evolution operator defined as

. d A A A A A
lhE Udec(ta tO) = Hdec(t)Udec(t’ t()), Udec(t()a tO) =1 (620)
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Exact form of Ug.(t, ) can be found by using Wei-Norman Lie algebraic process. In-
deed, the Hamiltonian H . (7) given by (6.19) for the decoupled oscillator can be written

as time-dependent linear combination of Lie algebra generators as

Hy (1) = —i (%W )+ u(OWA(OK® + 20BEOK? + 7D(7) - E? + E(7) - 8<1>)

where we denote the vector operators

. Aty AT

EV=(&"E") =iqna)" =iq
&0 = (62,62)' = (9/09:,0/0q,)" =
E0 = (60,8Y) = i =il

with 8(/.1), 8(/.2), 8(1.3) being generators of Heisenberg-Weyl algebra for j = 1,2, and the

operators

F) = 7%}(—) +ff(§—) _ _%( o2 62 ) i

_ ——V2
oqr  9q; 2

A A l

KO =R+ K = 2 (a1 +a3) = 59,

- A 1 0 0 (1
RN BTN

with 7%;._), 7A<](.+), ‘]A(J(.O) being generators of the SU(1,1) algebra. Then, the evolution can be

expressed as product of exponential operators

Usect, t0) = exp(c(t) 8(3>)><e p( a() éU))x@Xp(_b(t).g(z))

x exp (f(OK™) x exp (2h(K ™) x exp (gyK D), (6.21)

with a(r), b(?), ¢(¢) being vectors of real-valued functions and f(¢), g(¢), h(t) being real-
valued functions to be determined. Substituting (6.21) and (6.19) into (6.20) and perform-

ing necessary calculations, we find that U .e(1, o) is a solution of (6.20) if the unknown

124



functions f(¢), g(¢), h(t) satisfy the nonlinear system

f+ o+ 2B f + 250 = 0, f(1y) = 0

g+ mezh 0, glto) =0, (6.22)

h+mf+B(t):0, h(ty) =0

and a(?), b(z), ¢(¢) satisfy the nonlinear system

a+ B(a+ u(nw*(Ob+E@) =0, a(t) =0
b- B()b - -=a—D(1) = 0, b(z) =0, (6.23)
¢+ ga + 1 (D) 0 a) - H5D2 =0, elty) =

where we use Hadamard product notation u o v = (u;v;, u»v,)" for any two vectors u =
(u1,u2)", v = (vi,v2)" and u** = (u?,u3)". Then, the solution of system (6.22) is found
in terms of two linearly independent solutions x; )(t) and x(h)(t) of the decoupled classical

system (6.6) as

(h)
£y = (t)( (’”8 B(t)),

h
(h)
(1)
80 = [ ””(t))
(h)
h(f) = —1In w80 .
X0

On the other hand, for each j = 1,2 the solution of system (6.23) is obtained in terms of

particular solutions of systems (6.6) and (6.8) as

a(t) = p?(),
b(1) = x(1),

») 02 —
() = f (% (D) 0 p70) + K 2] g
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Therefore, we find Uy, (2, t) explicitly as

Oueclt,10) = exp(% f gda.(s)ds)xexp (7@ - q) x exp(-x7) - V)

MOIERO
X exp (ZE (x(ih)(t) - B(t)] |q|2] X exp (ln

. (h)
X exp (ihxo(x(lh)(t) v,

X0

(1+q'V))

h
()

where

—|p(p)(t)|2

B pu(t)w?
gdec(t) - 2/l(t) )

-D@) - pP) + —(t)|x(1’)(t)|2. (6.24)

According to the decoupling procedure discussed before, the evolution operator for IVP

(6.13) will be of the form
Ugen(t, 10) = U(1,10)Uec (1, 10), (6.25)
satisfying the operator equation
ih%ﬂgena, 10) = HoenOUygen(,10),  Ugen(to, 10) = 1.
We note the action of the angular momentum operator on given initial function as
exp (—%emi) $o(@) = Po(Re(NQ). (6.26)
The action of shifting and dilatation operators, respectively
exp (u(?) - V) ¢o(q) = do(q +u(r)), exp(£q - V) do(q) = go(e*q), (6.27)
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for any arbitrary vector of function u(¢) and € constant. And, we have also

exp (%Vz)%(q) = $(q: ),

where the function ¢(q; z) satisfies the free Schrodinger equation

FV2(q;2) = i p(q; 2)
& (Q; D=0 = Po(Q).

Then, the solution of IVP (6.13) is determined as W¥(q, ?) = (flgen(t, 1)¥0(q).

6.2.1. The Propagator

Solution of the IVP (6.13) can be written also in the form

Y(q,1) = f 2 Kegen(q, 15 @', 10)P°(q)dq,
R

(6.28)

where K,..(q,1; q’, ty) denotes the propagator of the system. The propagator is the kernel

of the integral transform that converts a given initial function to a wave function solution

at later times. Using the evolution operator and relation

(}(gen(q, [N ql’ fy) = q:[gen(ta tO)é(q - (I’), 7:[gen(l‘o’ fy) = ia

where d(q) denotes the Dirac-delta distribution, one can determine the propagator ex-

plicitly. For this, first we find the propagator for the two-dimensional decoupled oscil-

lator by using the evolution operator for the decoupled oscillator as Ky..(q,t; q’, t)) =
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(A]dec(t, 10)0(q — q’), and obtain

—ia)o 1 —i !
Kiec(q, 1;q', 1) = . — oo(8)d
dec(q, 1,4, 7o) 2t 1] sin (D) CXP(zhféd () S)

d
exp (Zh (ﬂ(t)(B(t) - L inlew) - Cl‘:(gf?) la- x‘mmf)

(2670 a-+ wycotnola )

(q-xP(@)- q’) :

xp (Zh

—i
P (h sin7(D)le (D)
where {;..(¢) 1s defined by (6.24) and

(h) (

elt) = + i(wox0) xS (1) = |e()le™?, (6.29)

X0

with modulus and phase

()2 " L Wy
le(t)| = + (woxo)2(x ()2, n() = f ——ds. (6.30)
2 o H(NECS)P
Then,

7{gen(qa L q/’ tO) = (](dec(RG(t)q’ L q’, tO)»

where Ry(?) is the rotation matrix given by (6.4), and explicitly in terms of the solutions

to the coupled systems (6.1) and (6.2), we get

L _ —la)()
Ken(@ 10 10) = 5 2mios] s1n77(t) (th “”ds)

d
exp( (u(t)(B(t) - Sl - ‘f(gg)) la- X”’)(t)lz)

(2P70) - g + wn cotn(ola )

“Xp (2h

;i _x® .a
exp ( — n(t)le(t)I(RB(t)(q X70))-q )
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where £ (¢) is given by (6.16), and €(¢) given by (6.29) can be written also in terms of the

homogeneous solution to the coupled classical system (6.1) as

e(f) = (Cos o)X (1) + sin H(I)X(h)(t)) + l(woxo)( — sin 6()X\" () + cos H(I)X(h)(t))
(6.31)

In general, the evolution of a state from an arbitrary time ¢’ to ¢, is defined as

P(q, 1) = Ugen(t, )¥(q, 1) = f Keen(q, :q, )P (Q', )dq’, th <t <t,
R2

and it implies that

(](gen(qa L q/, t/) = Ugen(t’ tl)é(q - q/)
U;(t’ t,)wdec(q, t; q,, t,)

Uo(t', 10)Kaee(Ro(1)Q, 15 ', ).

After some calculations, we obtain the following result

N —ia)g ;l !
Kool 000 = Ol sin (10— ) {2h f g"(s)ds}

d _ ’
exp{ (y(t)(B(t) - 2 nfe(o)) - L5 TZ((;)P & )))|R£ (1) —X(’”@Iz}
wo cot (n(t) - n(t’)))

{ )P
exp (= [p70) - (R} )) ~ PP - R

z(Re(r)(RT(t )q — X)) - (@' — R ()xP(¢ ))}
le(®lle@)] sin (3(1) — n(t’)) '

d
exp (,u(t) B(f') — — - In le(t’ )|) AT X(")(t’)|2}

exp

Usually, the propagator is interpreted as the probability amplitude of finding the particle at
point g and time ¢, given that at the past it was at point ¢’ and time #'. By construction, the
propagator K,,,(q,#;q’,?’) can be seen as a solution of the time-dependent Schrédinger
equation in the variables ¢, ¢, with ¢, ¢’ treated as parameters. It is the solution corre-
sponding to Dirac-delta initial condition 6(q — q"), which is highly singular, and due to
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this, the propagator as a "wave function" is not normalizable. In any case, the propagator
like the evolution operator, contains all necessary knowledge for describing the dynamics

of the quantum system.
6.3. Time-Evolution of Quantum States

In this section, for the generalized two-dimensional quantum parametric oscillator,

we find time-evolution of eigenstates and coherent states explicitly.
6.3.1. Time-Evolution of Harmonic Oscillator Eigenstates

First, we solve IVP (6.13) by taking the initial function to be an eigenstate ¢,(q)
of the two-dimensional simple harmonic oscillator, whose Hamiltonian is Hy = Z?Z 1 ( ﬁ? +
w%c}?) /2. As known, these eigenstates correspond to eigenvalues E,, = E, +E,, = hiwy(n;+

n, + 1), and for n = (n;, n,) we have

‘Pn(Q) = ‘10111(6[1)‘10112(612)’ ny,ny = O’ 1, 2’ ceey

with

_“0 2 W .
‘1071/(61]) = Ni’lje th'iHn_,'( ?Oqj)a J= 1’2’

where H, (Vwo/hq,) are Hermite polynomials and N,, = (wo/nf)"/*(2"n;!)""/* are the
normalization constants. According to this, time-evolved eigenstates of the two dimen-

sional oscillator (6.18) with Hamiltonian H,,.(f) are of the form

2
¥0(q. 1) = et 10)pa(@) = | | 062, 10}, (@),
j=1
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and using the equations (6.27) and (6.28), we obtain explicitly the wave functions

! iE
Yh(q,t) = Nn@ exp( - h—oﬂ(f) X CXP( f évdec(s)ds)

xexp{h[ (f)(3<t)__1n|6<t)|)|q V() +pP() q]}
wo |(l X(p)(f)| wo q — xP(1)
T2h e ]H( V7 e ’t)’

and the corresponding probability densities

1 wo |(1 - X(p)(t)lz ) woq— X(p)(l)
eoE & [ T leop ] <H, ( V7 e ’l)’

where |e(?)| 1s as defined in (6.30), and we used the compact notations N, = N, N,, and

H( |e(r)|) ﬁH(( (|e<r>|))

J=

X exp

puq,) =N

Now, formally time-evolved solutions of the IVP (6.13) will be as expected
Y@, 0 = Ut 10)¥(a.1) = V,(Re(1), 7).

Then, in terms of solutions to the coupled systems of classical equations (6.1) and (6.2)

we have

W) = Ny—— exp (—ina) xexp{= f £ (s)ds)

1
n—— €
le(D) fiwo

X exp {h[ U (B(t) - —1In |e(t)|)|q X(”)(t)| +PP(r) - Q]}

wo |a - X””(r)l wo Ry(t)(q — XP)(1))
X exp { T2 e } xH, ( T le(o)] ’ t) (032
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and probability densities become

2
pilan =N ew{ - o r M ) 69

Here, the expectation values of position and momentum at states P9(q, 7) are

(P
(P2)o(®)

(G
(G2)5(0)

@%:[ =Wm,®M=[ J:wm, (6.34)

showing that they don’t depend on the wave number n = (n;,n,) and are completely

determined by the external forces. Then, the uncertainties in position and momentum are

found as
Ag1)o(t / A
(AQ)(1) = (A = 1| —le@®| A(n, ny, 6()), (6.35)
(AG2)5(1) “o
AA 0
(AP)(t) = (AP0 = \/hw()& Any, na, 6(1)), (6.36)
(Ap2)(D) @)l
where

(0052 0(Hn; + sin> 0)n, + 1/ 2)1/2
A(nl’nZ’ H(t)) = s

1/2
(sin2 0(t)n; + cos? 8(H)n, + 1 /2) /

_ le(t)|* [ dIne(d)] 2
Z(t)—\/1+ w%[ o7 —B(t)},
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and the uncertainty product becomes

(AgDAPYD) | _— cos? 6(F)n, + sin® Oty + 1/2
(AG2)(AP2)o(t) sin? 0(H)ny + cos> 0(Hn, + 1/2|

(AG)(AP)I(t) = [

Clearly, uncertainties for some subcases can be easily recovered from above results. For
example, in case 6(r) = 0 one gets the uncertainties for the two-dimensional decoupled
parametric oscillator. In case 8(¢) # 0, and u(t) = 1, W) = a%, B(t) = 0, one gets the

uncertainties for the simple harmonic oscillator in electromagnetic field as

/ h
(AQ)g(I) = CL)_OA(nl s N2, Q(I)), (Af))z(t) =N thA(nl s N2, 0([)),

and we note that when n; = n,, then A(ny, n,, 6(¢)) becomes independent of 6(7).
Finally, it is not difficult to show that expectation value of angular momentum

operator L at wave function ¥/(q, 1) is
(L)1) = (Fi(a, DL, (@, 0) = XV OPY () = X3 (OP (1),
and the matrix elements are
i, DIEIYS @, 0) = (XPOPL 0 = X OPY0) o

where 6,,, s the Kronecker delta. In particular, when there are no external fields (D;(r) =
E;(t) =0, j=1,2), for the angular momentum operator one has expectation (D)) =0

and uncertainty

2
(AL (1) = \/h2(<n1 + 12y + 12 + n%n%)(Xi’%)Pé’”(t) - Xé“(z)Pﬁ”)(t)) ,

which is determined by the homogenous solutions of the classical equations and depends
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on the wave number n = (1, n).
6.3.2. Time-Evolution of Glauber Coherent States

By taking the initial function to be a coherent state of the simple two-dimensional

harmonic oscillator with Hamiltonian Hy, we solve the IVP (6.13), that is

¢a(q) = ¢al (611)%2(612),

4 la§ ) with a(l) 5.2) being real constants, and

o= (3) ool o] - (2

for j = 1,2. Then, time-evolved coherent states (DO (g, 1) = Uee(t, t0)P.(q) of the decou-

where @ = (@, @;) and a; = a;

| exp

pled oscillator are found as

0 _ Cﬂi (e (l‘))2 2 _ _f
N exp{ - (|(t>|2 o + ol )}xexp Lae()ds)

xexp{ 2171[ (iy(t)(B(t)—%lnle(t)l) )|q xP()[ +2ip? (1) - q]}

X exp \/ B(q_ xP(1)) - }

where o? = a.e, |af* = a.a*, and we have

le(?)]?

1 { wo g - @) Ol }

w
£o(a.1) = 10(q, I —( 0)| OF PV T leop
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Here, expectation values at Cl)g(q, 1) are obtained as

~ \0
(@°(n = [ii“i:l Etj = \/i:ichw(t) +xP(p), (6.37)
q2/q, t

A \0
<pl>a/1(t)] _ %Cgp(h)(l) + p(p)(t)’ (638)

Pt =
(P20, (1) Wo

where the coeflicient matrix C? is defined as

(2
(1)0)600’2

oy @)
—  WoXo¥
0 = [ x0T ] (6.39)

The uncertainties at coherent states d)g(q, t) are

AG)° Apy)°
( qoa(r)]’ - (t):[< poam],

(AQo(n) = [
(A32)0(1) (Ap2)(D)

where

NN R s wolt 1 .
(AG2(r) = w/20)0|e<r>|, (AP = A/ > e =12

and the uncertainty product becomes

(AG)(AP (D)

h
], (A@,,-Aﬁ,,-)?,(r)=52(t>, ji=12.
(AG2)(ADP2)2(1)

(AG)(AP)L(D) = [
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Now, time-evolved coherent states of the generalized two-dimensional oscillator are

DY(q, 1) = Uyen(t, 10)90(q) = U (2, 1)D2q, ) = DURy(1)q, 1),

and in terms of solutions to the classical systems (6.1) and (6.2), we get

N P (€W? i f
D, (q.1) = e exp{ ( |€(t)|2 + || )} X exp {c(s)ds

xexp{l[ (t,u(t)(B(t)——lnle(t)l) )|q XO()f +2iPP(r) - q]}

le(n)?

xexp \/ ERM)(q X7 (0)- al. (6.40)

Then, the probability densities become

{_ w la- <q>;’(t>|2} 641)

0 _ (%o
Pl 1) = (Jrh) ek

ex
eop =P
with squeezing coeflicient |e(?)| given by (6.31). We note that, since (6.31) is equal to
(6.29), then €(¢) does not depend on 6(r), thus uncertainties at ®°(q, ) and at ®Y(q, 7) are

same. On the other hand, expectation values at ®’(q, 7) depend on (), and are determined

as
@%@ = Ry ((@)%1),  (PYot) = R (e)(pYo(o),

where (Q)g(t), (f))g(t) are given by (6.37) and (6.38), respectively. In terms of the classical

solutions to systems (6.1) and (6.2), the expectation values are obtained as

@40 = \/i:icmx“”m + Xt
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and

(Pro() = \/ici(t)P(’”(t) +PP(0),
wo

where Cg(t) is the similarity matrix
Co(1) = Ry (DCoRy(D), (6.42)

with C? = CY(%) being the matrix given by (6.39).

Thus, time-evolved coherent states of the generalized quantum oscillator in the
given external fields, are two-dimensional squeezed Gaussian wave packets that follow
the trajectory of the classical particles. In general, they do not preserve the minimum un-
certainty and their squeezing properties are controlled by the squeezing coeflicient |e(?)|,
which depends on the choice of the parameters u(z), w?(f) and B(¢). On the other hand,
the displacement properties of coherent states depend also on parameters D;(1), E (1), j =
1,2, and the rotation angle 6(¢).

Lastly, we write the expectation values of angular momentum at coherent states

(6.40), when there are no external fields, as

(Lya(D)

2h(aaf? - el X PP @) - X 0P (1)

= Zdach)(xP PP o - PP o)

where C? is given by (6.39). In that case uncertainties become

2

(AD)(1) = \/h2(|a1|2 + |a2|2)(X§’”<z>Pg’”<t> - X;h><r>P§”><r>)

Similarly, in the presence of external fields one can compute expectations and uncertain-

ties of angular momentum by straightforward calculations.
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6.4. Quantum Dynamical Invariants

In this section, time-dependent linear and quadratic invariants for the quantum sys-
tem are constructed using the evolution operator formalism. As known, if time-development
of a given quantum system is described by the unitary evolution operator U(t, 1), then any
operator of the form A() = U, t)A(to)U'(1, 1) is an integral of motion or a dynamical
invariant. Using these dynamical invariants we establish relation between the present

results and those obtained by the MMT- and the LR- approaches.

6.4.1. Linear Invariants

For the generalized two-dimensional oscillator with Hamiltonian 7:{gen(t) given by

(6.14), using the evolution operator (6.25), one can find dynamical invariants

2 0.1(2) " Al ()
A= | Ao=| (6.43)
Ag(D) A1)
defined as
Ag(t) = Ugen(t, t0)A UL, (2, 10),
Al() = Ugen(t, 18" UL, (1, 10),
where
A &1 wo . h
= = /=G + +[=—V 6.44
i 1T \ 2w, (6.44)

"

a w h
at = | = ([ 2g— [—V 6.45
a [&5] V21 \ 2w, (643)
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are respectively the non-Hermitian lowering and raising Dirac operators for the standard
two-dimensional harmonic oscillator Hy = —(7/2)V? + (w2/2)§°. Explicit calculations

give us dynamical invariants, that are linear in position and momentum,

A = (&0 - Boaw)Q - ep)|. (6.46)
and
Ajn = «/2lm (e - Boe0)Q- e 0P|, (6.47)
where

Q=Ro0)(a-XP0). P=R)(p-P"0).
and €(¢) is defined by (6.31). Here, €(¢) is a complex solution of equation (6.9), that is
&)+ ey + (aﬂ(r) - (B(z) + B0 + EB(r)))e(t) —0 (6.48)
Jz 7

and it satisfies the IC’s

ia)o

etp) =1, €&(ty) = B(tp) + o)’

(6.49)

Therefore, using the Wronskian W(¢) = W(e(?), €'(t)) = e(t)€*(t) — € ()é(t) = —2iwo/u(t),

one can show that these linear invariants (6.46) satisfy commutation relations
[Aoi(D), Ay (D] = 655, i, j = 1,2,

and can be seen also as generalized lowering and rising operators.

Moreover, coherent states (Di(ql ,q2, 1), @ = (a1, @) found in (6.40) by construc-
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tion are eigenstates of Ay, ;(2) corresponding to complex eigenvalues «;, j = 1,2. Indeed,

if ¢,,(q;) are eigenstates of a; so that a;¢,(q;) = @;¢.,(q;), then

A

Uyen (1, 10)0; UL, (1, 10) U gen (1, 10) P (01 (@2) = @ Ugen(t, 10)bar, (q1)ar(q2), = 1.2,

from which it follows

AAG,j(t)qbg(ql’ q2, t) = a/jq)z(ql’ q2, t)a ] = 1’ 2.

Now we consider (Malkin, Man’ko & Trifonov, 1970), where Malkin, Man’ko and Tri-
fonov study the problem of the N-dimensional nonstationary harmonic oscillator and the
problem of a charged particle in an axially symmetric and a uniform time-dependent elec-
tromagnetic field. MMT-approach for solving problems described by a Schrodinger oper-
ator S (r) = ihd,—H(7) is based on finding all independent linear in position and momentum
invariants. In that context, an invariant is defined as an operator A(#) that commutes with
S (1), that is [A(1), S ()] = 0.

We note that the Hamiltonian in (Malkin, Man’ko & Trifonov, 1970) don’t contain
damping and external forces so that it is a particular case of Hamiltonian f{gen(t) given by
(6.14). Then, if in (Malkin, Man’ko & Trifonov, 1970) one takes €(¢) to satisfy (6.48) for
u(t) = 1 and B(t) = 0 with the specific IC’s (6.49), it will coincide with €(¢) defined in the

present work. Also, one can write

i&(z) _ 1| ffg,l(z)’ a| _ V2f-i 1 o 6.50)
B 2Vel1 -illdno) (8] 2|1 -illa

which shows that the invariants A(¢), B(r) found in (Malkin, Man’ko & Trifonov, 1970)

can be written as linear combinations of our invariants Ag (1), Ag2(f), j = 1.2. Lastly, if
one takes @ and S as defined in (6.50), then coherent states |, 3;¢) found in (Malkin,

Man’ko & Trifonov, 1970) will coincide with coherent states (6.40) found in this work.
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6.4.2. Quadratic Invariants

For the quantum system described by Hamiltonian ?A{gen(t) given by (6.14), using

.
A

the evolution operator and Hy = a,a; + &;&2 + 1, we can define a quadratic Hermitian

invariant

19(0) = Ugen(t, 10) AU, (2, 10). (6.51)

gen

This invariant can be expressed in terms of the linear invariants (6.46) and (6.47) as fol-

lows

Io0) = Af (DAg1(1) + A] ,(DAga(t) + 1.

We note that, the invariants (6.46) and (6.47) can be written also in the form

Agi® _ e wo . d 0 ) P,
[Ag,z(t)] = o [(M + lle(t)|/l(t)(B(t) -5 In |e(t)|))[ } + ile(?)| [p ﬂ

2 2

>

and

AZ,I(t) e wy d ol P,
[A;z(t)] - l(@ - lle(t)lﬂ(t)(B(t) - |e(t)))[Q2] — ()| [Pzﬂ ,

where o () = |e(t)| satisfies the Ermakov-Pinney nonlinear differential equation

(1) + ’3(';(;) + (a)z(t) - (B it )) o(t) = % (6.52)
M M wro (1)
with initial conditions
oty =1, o(ty) = B(ty). (6.53)
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Then, the quadratic invariant becomes

N R Y-S d R .t
) = 5 ,Zl {le(t)lej +[leluo (B - < nle@n)0; + el | ©54)

and it is special in the sense that |e(#)| is a particular solution of the Ermakov-Pinney equa-
tion (6.52) satisfying the initial conditions (6.53). Now, since the following commutation

relations hold
[A0i(0), A5 (0] = 635, Up(0), Ao j (0] = =Ag (),  Us(0), A} (0] = A (1) j=1,2,

then the eigenvalues and eigenstates of the invariant /,(r) can be found by the same alge-
braic procedure as for the simple harmonic oscillator. Here, I:I0¢n(q) = E,¢,(q), so that by
construction of (6.51) we have ig(l)\PZ(q, 1) = E,¥9(q, 1), showing that time-evolved wave
function solutions of the Scrodinger equation found as ¥(q, t) = (I:Ige,,(t, t0)p,(q) in (6.32)
are eigenstates of the invariant Iy(t) corresponding to eigenvalues E, = hiwy(n, + ny + 1).

In the work of Lewis and Riesenfeld (Lewis & Riesenfeld, 1969), for a quan-
tum system described by an explicitly time-dependent Hamiltonian A(r), a dynamical
invariant is defined to be an operator 1(t) satisfying ihd,1(t) — [H(), [(1)] = 0. As known
LR-approach for solving nonstationary quantum oscillators is based on finding Hermitian
quadratic invariant of the form (6.54). Then, eigenstates of the quadratic invariant con-
structed by the LR-technique and solutions of the Scrodinger equation usually differ by a
time-dependent phase factor. We note that, in (Lewis & Riesenfeld, 1969) the Hamilto-
nian describing a charged particle in a time-dependent electromagnetic field is a particular
case of Hamiltonian 7:(ge,,(t) given by (6.14). For more recent and related results based on

linear and quadratic invariants one can see also (Abdalla & Choi, 2007).
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6.5. Cauchy-Euler Type Quantum Oscillator in Time-Variable
Magnetic and Electric Fields

Now, we introduce and discuss an exactly solvable quantum model described by

the Hamiltonian

2gy-2
Wit

2

A2
4d;

2
R 1 , B®W ,. ..
jlgen(l') = E |: p;t ) (QJpj+ijJ)+

+

A
E ¥ sin (QE In l)ql + E t¥ cos (QE In l)gz + 70(611[32 — @2]31). (6.55)

In this model, for ¢ > 1y, t, = 1, we have time-dependent increasing mass u(f) = ¢ for
damping parameter y > 1, and decreasing frequency w*(f) = wj/t*, wy > 0. Then, to

preserve the Cauchy-Euler structure of the oscillator we take B(f) = —Qpgtan(Qgln¥)/t,

where Qp = \/a% —(y—=1)?/4 and w3 > (y — 1)*/4. In addition, we consider external
electric fields E () = Ey " sin(QgInt), E>(t) = Ey 1Y cos(Qg Int) with Ey, Qf- real con-
stants, that are oscillating in time with increasing amplitude and decreasing frequency.
The last term in (6.55) is the angular momentum with Larmor type frequency A(¢) = Ay/t,
Aop—real constant, that depends on time and tends to zero when time increases.

In what follows, first we write the solutions to the corresponding coupled system
of classical equations of motion. Then, we describe in detail time-evolved eigenfunctions
and coherent states.

A. The classical problem
For the quantum evolution problem with Hamiltonian (6.55), the corresponding coupled

system of classical equations of motion is of the form

.. . 2. 2 2
be yit 20/t || X “roph Aoy
.. + . + WA
h'é 2/t v/t )| X ~A0) 2h )| X,
—E(sin(Qg In¢)
) . (6.56)
—Eycos(QgIn¥)

For E,, = 0, system (6.56) with initial conditions (6.11) has homogeneous solution X"(¢) =
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RI(1)x"(1), explicitly found as

NG+ =112 o (Q,Int—6,)
XP0) =Ri(n)| > ‘ 1.
L ~-1)/2
ot =D/2gin (Q, Int)

t>1, (6.57)

where Q, = \/a)é + w% — (y—1)?/4 is the oscillator frequency and J, = arctan((y —
1)/2Q,).

For E, # 0, particular solution is X”(¢) = R} (/x”)(¢) and explicitly we have

M) ~(y-1)/2 _ sy _ __Eo _
X(1) = Rg(t) At cos(Q,Int—6,") T oS (Qe + A9)Int-06,) sl
AP OV 5in(Qy Int - 6)") + 2 sin (e + dg) Int = 6,)
(6.58)

where a = (W} +w}) = (Qz+20)%, b = (1-7)(Qx + ), 6, = arccot(b/a) and A", 51", j =
1,2 are constants of the transient part such that X'P)(¢) satisfies the initial conditions (6.12).

Here, rotation angle is 6(f) = A, In ¢ and the rotation matrix becomes

cos(ApInt sin(4p Int
R9<r>:[ oty it )], (=1,

—sin(dgInt) cos(4Aglni)
where the sign of 1) determines the direction of rotation.

B. Time-evolution of the wave functions ¥/(q, 1)

For the wave functions W9(q, t) the probability densities are given by Eq.(6.33), that is

2
R | o |[a=XPO[ ([ [y Re(D)(g = XP () ) )
pllan = Ny exe{ = = ) e )

where X?)(¢) is found in (6.58), and squeezing coeflicient is

=072

Q

€(6)] = V@R + w3y cos? (Q Int - 5,) + o sin® (©, In), (6.59)

8

which is smooth and oscillatory for # > 1. Then, for a given wy > 0 and y > 1, the
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frequency Q, = \/a)g + w% — (y = 1)?/4 of oscillations in |e(7)| can be increased by in-
creasing the value of wp in parameter B(z). When y = 1, amplitude is fixed and one
has |e(r)] — 1 as wp — 0. However, when y > 1, the amplitude of oscillations in |e()|
decreases and approaches zero as time increases.

In Fig.6.1, we plot the probability density p’(q,?) with n = (1,2) at three dif-
ferent times. For this, we take v = 2, B(t) = -3 \/ﬁtan(S Villn n/t, wg = \/ﬁ/l
Larmor type frequency A(f) = 7/t, and Ey, = 0, so that there are no external electric
fields. These plots show how the width and amplitude of the wave packets change with
time and how they are rotated with angle 6(r) = 7 Int under the influence of the magnetic

field. Uncertainties of position and momentum at time-evolved wave functions ¥%(q, 1)

(b)

Figure 6.1. Probability density p%(q,7) forn = (1,2),y = 2,h = 1,wo = 1,0(t) = 7Int,
Ey=0,attimes (a)fp =1, (b)t =1.07, (c) t = 1.85.

are found by (6.35) and (6.36), respectively,

h )y
(AQ() = \/w:OIE(t)IA(nl,nz,Q(t)), (Ap), (D) = Vhwo% A(ny, na, 0(1)),

where for this model we obtain the vector valued function

1

(cos?(Ao Int)ny + sin®(g Ino)ny + 1/2)

2

A(ny, na, 0(1)) = [

(sinz(/lo Int)n; + cos®(o Int)ny + 1/2)E
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and coeflicient

1
. [(293 tan (QpIn7) -y + 1)
4wy

X((wé + wp) cos® (Q Int — &,) + wj sin® (Q, In t))

() = {1+ -

2.1/2
+Qg(—(wg+w§) sin (2(Q, I — 6)) + w2 sin (20 lnt)) } . (6.60)

Clearly, A(n,n;,0(t)) carries the dependence of the uncertainties on the wave num-
bers ny,n, and the rotation angle 6(¢), while |e(¢)| and X(r) depend only on parameters
u(t), w*(t) and B(t). We note that for y = 1 and wz — 0, one has X(#) — 1. Otherwise
the coefficient Z(¢) has singularities due to the singularities in B(¢), and this affects the
uncertainties in momentum. Using the same parameters as in Fig. 6.1, then in Fig. 6.2 we
plot uncertainties in position and momentum at wave function ¥(q, 1) for n = (1,2). As
can be seen in Fig. 6.2-(a), uncertainty in position is smooth, oscillatory and approaches
to zero as time increases. However, singularities appear in uncertainties of momentum

since they depend on the coefficient X(¢) found by (6.60).

Aqg; Ap;
250
1.5p il

n
H
200 ::

" s ] 1) 1

i noarn ¥ i

o bR Ll e Aw® - op b P ae(9
3 e . 1]

----- Ady(t) T P i ----= Apy(t)
100F1 o1 1 1 [
05k4E BT o
Il 50 :- [}

Figure 6.2. Uncertainties in position and momentum for n = (1,2) andy = 2, % = 1,
wo = 1: (a) (AG)), (), j = 1,2 for t € [1,5], (b) (Ap));, (1), j = 1,2 for
te|l,5].

Now, we discuss possible trajectories of the wave packets in the two-dimensional
coordinate space, that are determined by the expectation values of position at state ¥?(q, 7).
According to the general results found in (6.34), if there are no external fields wave pack-

ets are localized at (g;,¢,) = (0,0) in R?, as in Fig.6.1. However, in the presence of
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external fields wave packets will move along the trajectory (§)%(r) = X®(¢) in R?, which
for this model is given by (6.58). Then, depending on parameter y > 1 in (6.58), we
consider two cases:

i) For y = 1, we have the trajectory

|;|Eg(§ ((QE + Ag) sin (Qg In 1) — Q, sin ((Qg + Ap) In t))

@41 =R (1) t>1

2 2

lal

@( cos (Q,Int) — cos (Qg + o) In t))

where Q, = /w] + w3, is the oscillator frequency and Qg, A are frequencies due to the
external fields. When (Qg + 49) = Q,, then one has balance between frequencies and
particle is localized at the origin for any time. When (Qg + 4y)/€, is a rational number,
the trajectory (§)?() is a closed plane curve. In this case, a particle moving along the
trajectory returns to its starting point after some time, whatever the starting point is, and
then retraces the same curve. On the other hand, when (Qg + 4¢)/€2, is not rational, the
curve will never close and the particle will pass through every point of a bounded region
containing the origin in IR?, eventually filling it. Clearly, we have non-uniform motion
with smoothly decreasing speed.

ii) For y > 1, since transient part of X”(¢) quickly tends to zero, after some time

we have

OHOER A IS e
C—sin (QgInt—4,)

—\/6% sin (Qg + A9)Int - 5,) Va2 +5?

S cos((QE+/lo)lnt—5p)] [—\/C%COS(QElnt—ép)]

Then, the particle exhibits again a non-uniform motion with decreasing speed and with A,
contributing to the phase and radius of the orbit. In that case the trajectory is not closed
since usually it does not repeat, but in the long time limit it converges to a circular orbit
given by (6.61). O

As an example, for y = 1 in Fig.6.3 we plot the trajectory

15+1¢ _: .
R E sin(101In¢) — sin((15 + Ag) In¢)
@50 = —Rin| " ., 6(t) = A Int,
|al cos(101n £) — cos((15 + o) In7)
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starting at the origin and with parameters Q, = 10, Qg = 15, Ey = 800, a = 100 —
(15 + 2p)*. In Fig.6.3-(a) we see the plot for 6(f) = 0, which is a closed curve since

Qp/Q, = 3/2 is rational. And in Fig.6.3-(b) we show this curve under rotation with

rotation angle 6(¢) = 151nz.

Figure 6.3. Trajectory of the wave packets [¥%(q, H* foranynandy = 1, wy = 1,/ =
1, B(t) = -3 V11 tan3 V11 1n#)/1, wg = 3 V11,
E(r) = 800tsin(151n7), E>(¢) = 800tcos(151In¢), t € [1,4] :
(a) when A(r) = 0, (b) when A(r) = 15/t.

Another example for y = 1 is given in Fig.6.4, where we plot the trajectory

207T+/10 . .
R E sin(101n ¢) — sin((207 + Ag) In7)
@0 = 2Riwy| " . 6(t) = A Int,
lal cos(101n£) — cos((207 + Ao) In7)

with parameters Q, = 10, Qg = 20m, Eg = 5.10° and @ = 100 — (207 + A)*. In Fig.6.4-(a)
we have 6(r) = 0, and note that Q£/€Q, = 2 is irrational so that the curve is not closed.
Particle will start from the origin, and then it will pass through every point of a bounded
region in R? as t — oo. In Fig.6.4-(b) we take 6(f) = 201n ¢ and see particle motion along
another open trajectory confined to a bounded region.

C. Time-evolution of coherent states ®’(q, 1)

At coherent states @Y (q, 7) probability densities are two-dimensional Gaussian wave pack-
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Figure 6.4. Trajectory of the wave packets [¥(q, #)|* for any n, withy = 1, wy = 1,7 =
1, B(t) = -3 V1T tan3 V11 In1)/t, wp = 3 V11,
E(t) = 5.10%tsin(20x In 1), E5(f) = 5.10%¢ cos(20xIn¢), t € [1,20] :
(a) when A(r) = 0, (b) when A(¢) = 20/t.

ets given by (6.41), i.e.

2
o ({wo) 1 wo |a = @450)| B ,
Po(Q, 1) = (E) EOE exp{ - ?W}’ a = (a, @) € C,

where for this model squeezing coefficient is explicitly given by (6.59). As an example,
in Fig. 6.5 we plot probability density for @ = (20 V2/V401,10i),y = 2, h = ,w, =
1, A(r) = 10/t, and squeezing parameter B(t) = -3 Vi1 tan(3 Vilin N/t, wg = V397/2,
at different times ¢ = 1, 1.2, 2. These plots show the changes in width and amplitude of

the wave packet that follows a trajectory

(6.61)

21712 101n ¢ — arctan(1/20
(@2%1n =R () cos(101n 7 — arctan(1/20))
V22 5in(10 In 7)

with rotation angle 8(¢) = 101In¢, and in case E, = 0. Explicitly, the corresponding uncer-

tainties are found according to (6.62), that is

N 500 = /2 L sy, =
(B350 = \[5-le®l. BP0 = N im0, =12,
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Figure 6.5. Probability density pf(q, 1) for a = (20 V2/ V401, 100), A(t) = 10/t,y = 2,
hi=1l,wo=1,Ey=0attimes: (Q)t=1,=1,(b)r=1.2,(c) t=2.

where the coeflicients |e(¢)| and Z(¢) are given by (6.59) and (6.60), respectively. Clearly,
uncertainties do not depend on « and 6(#), and they are equal in both directions. Fig.6.6
shows (AG)a;(1) and (Ap)),,(?) for each j = 1,2, where B(r) = -3 Vil tan(3 Vilin nH/t,
wp = V397/2 as in Fig.6.5. We note that uncertainties in position are smooth, oscillatory
and approach zero as t — oo, but uncertainties in momentum have singularities due to the

singularities in B(¢), as we see in Fig.6.6-(b).

Ag Ap
1.0+
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06 80 H
60
04}
40
0.2 H
20 w W
................ t | t
2 4 6 8 10 2 4 6 8 10
(a) (b)

Figure 6.6. Uncertainties for y = 2,7 = 1, wy = 1: (a) (Ag))q, (), j = 1,2, (b)
(Apje;(®), j=1,2,1€[1,10].

Now, we recall that the center of the wave packet p?(q, 7) in the two-dimensional
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coordinate space follows the classical trajectory

@51 = Ry (@) = \/iECZmX“”(n + X)), (6.62)
0

and for this model CY(#) is defined by (6.42) with 6(¢) = AyInt, X (¢) is given by (6.57)
and XP)(¢) is given by (6.58). In particular, when 6(f) = 0 and there are no external
electric fields (Eq = 0), then the trajectory will be (§)°(¢) = V2i/w, C° x(¢), which can

be written explicitly as

6 @) [ Voitws —y-
2% [af1 woa; ][#t D2 cos (Q,Int = &) ‘ 6.63)

N0 |2
(@), (1) = wo | D @ L+~0-D26in (O 1
oV wyaf al sin (Q, In?)

In Eq.(6.63) depending on the values of y > 1 and @ = (a;,a,) € C?, we note the

following possibilities:

a) For y = 1, the trajectory could be a line segment, a circle or an ellipse in R?,

centered at the origin. In case det(Cg) = a)o(a(ll)a(zz) - a(zl)a(lz)) = 0, wave packet

oscillates along a line segment. If 01(12) = a/(zl) =0and Ia(zz)l = 1+ (wi/w)) Ia(ll)l

(1 (@)

or similarly if @' = o = 0 and [0\”] = /1 + (w3/w?) |a"], then we have a

circular motion. Otherwise, the motion is along an ellipse, and in any case it is a

non-uniform motion.

b) For y > 1, wave packet moves towards the origin due to damping affects. In case
det(CY) = 0, it oscillates forth and back along a line segment passing through the
origin, with decreasing amplitude and approaching the origin. If det(CY) # 0, wave

packet moves inward usually along a spiral like trajectory as time increases.

It follows that when 6(¢) # 0, the rotated trajectories (except the circular ones) will be
more complicated, as one can see in the following plots. For example, we consider the

trajectory (6.62) fory = 1,

cos(101In¥)

, 0(r) = Ao In(2),
3sin(101In7)

@4t =R} (r){
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which is an ellipse for 6 = 0 and E, = 0, as we see in Fig.6.7-(a). In Fig.6.7-(b) we see
the rotated ellipse for 68(f) = 251In¢, Ay = 25. Then, in Fig.6.7-(c), we plot the trajectory
) cos(101n¢) 3sin(101In¢) — sin(301In¢)
@50 =Ry || + :
%sm(lOln 1) cos(10In7) — cos(301n7¢)

with rotation angle 8(f) = 251Int and under the influence of electric fields. In that case,
the trajectory depends also on the particular solution of the classical system, and since the

ratio (Qg + Ao)/€, = 3 is a rational number the trajectory is closed.

%@ %
4
)
) o @ 4 2 [ 2 el
Q
0 -0.5 N
-4
(a) (b) ()

Figure 6.7. Trajectories of p’(q,7) with y = 1, @ = (\5/2,5\/§i/2), B =
—3V1ltan3VIlInn/t, wy = 3VIL, h = wy = 1 : (a) Ar) = 0,
Ey =0, € [1,2], (b) A(t) = 25/t, Ey, = 0, t € [1,4], (c) A(t) = 25/t,
E (t) = 800rsin(51nt), E»(t) = 800tcos(51Int), t € [1,4].

As another example, for y = 2 in Fig.6.8 we plot

/2 5in(101n¢)

, 60(t) = Ay In(p), (6.64)
t12sin(101n¢)

(@721 = 2 V2RI (1) [

where in Fig.6.8-(a) we have 8 = 0 and det(Cg) = 0, so that the wave packet oscillates
along a straight line and approaches the origin as time increases. Fig.6.8-(b) shows the

trajectory given by Eq.(6.64) with rotation angle 6(r) = 201In¢. Then, in Fig.6.8-(c) we
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plot

12 5in(101In r)] E, [— cos(5In7 — arccot(b/a))

(@05 =2 V2R (1) +
‘ [t”zsin(IOInt) Va2 + b2

sin(5 In ¢ — arccot(b/a))

where a = 401/4 — (5 + Ay)>, b = —(5 + Ay), for 8(t) = 201In¢, and in the presence of

%
6
@ %
-6 B = 2 @
-2

(©

electric fields.

(a)

Figure 6.8. Trajectories of p’(q, 7) with y = 2, @ = (204, 20i),
B() = -3 V11tan(3 V1l 1n0)/t, wg = V397/2, 1 = wy = 1, ¢ € [1,20] :
(@) A(r) = 0, Ey = 0. (b) A1) = 20/t, Ey = 0. (¢c) A(r) = 20/t, E1(t) =
2.10%¢sin(51n1), E>(f) = 2.10%¢ cos(5In¢).

Finally, for y = 2 in Fig.6.9 we show the trajectory given by Eq.(6.61). In Fig.6.9-
(a) we take 8(t) = 0, Ey = 0 and since det(C°) # 0, the wave packet initially located at
(g1, 92) = (2cos(arctan(1/20)), 0) follows spiral like path approaching the origin as time
increases. In Fig.6.9-(b) we have 6(f) = 101In¢, Ey = 0 and wave packet again moves

inward along a spiral. Then, in Fig.6.9-(c) we display the trajectory

2712 cos(101nt — arctan(1/20))]

@50 = Ry
’ [ V212 sin(101n 1)

E, —cos(151In¢ — arccot(b/a))
+— b
Va? + b? | sin(151nt — arccot(h/a))

153



of p%(q, 1) for 6(t) = 101Int, a = 401/4 — (15 + A0)%, b = —(15 + Ap) and electric fields
E () = 10%tsin(151n 1), E>(f) = 10°tcos(151n¢).

®

qt

(AN
)

()

Figure 6.9. Trajectories of pf(q,7) with y = 2, @ = (20 \/E/ V401, 10i), B(t) =

—3V11tanB3V1lIno)/t, wg = V397/2, i = wy = 1,1t € [1,25] :
(@ A() = 0, E; = 0. (b) A0) = 10/t, Ey = 0. (¢) A¢) = 10/1,
E (t) = 10°tsin(151n+¢), E»(f) = 103t cos(151n 7).

Briefly saying, we have discussed squeezing properties of the wave packets due
to influence of parameters B(¢) and y > 1. Then, the trajectories of the wave packets
in coordinate space were investigated according to the value of the damping parameter
v > 1. For coherent states, we’ve seen that their center follows the path of the classical
particle in the two-dimensional configuration space and that the shape of the trajectory
is closely related with the choice of @ = (a;, @;). Lastly, according to their presence, the
effects of magnetic and electric fields were illustrated by considering three different cases:

(a)/lOZO,E():O, (b)/lo;to, EO:Oand(c)/loiO,EO;&O.
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CHAPTER 7

CONCLUSION

We considered the most general one-dimensional quantum parametric oscillator,
whose Hamiltonian A, (1) can be written as a linear combination of generators of the finite
dimensional SU(1,1) and Heisenberg-Weyl Lie algebras. Then, we were able to write the
displacement operator D(a), squeeze operator S (z), and the evolution operator U o(1, 1), all
being unitary as finite products of exponential operators, which are generators of the cor-
responding Lie groups. Based on these representations, we found the exact time-evolution
of the nonclassical states, such as squeezed coherent states, even-odd coherent states and
even-odd displaced squeezed states. We obtained their probability densities, expectations
and uncertainties, and this allowed us to determine explicitly how the displacement of the
wave packets depend on the complex parameter o and on all parameters of the Hamilto-
nian, and how squeezing properties depend on the complex parameter z = re®, and the
time-dependent parameters u(?), w(t) and B(f). As an application of these results, we intro-
duced an exactly solvable model as a generalization of the Caldirola-Kanai type quantum
oscillator, which has an exponentially increasing mass u(f) = ¢”, y > 0, by adding to it
a special mixed term B(#)(gp + pg)/2 and a linear term E(#)g. We chose the mixed term
parameter B(¢) for which the structure of the corresponding classical equation in position
space is preserved. For given frequency wy > 0, squeezing properties of the wave packets
depend both on r > 0 and B(f). However, the parameters » > 0 and 8 € [0, 2x) of the
squeeze operator S (r, 8) can be used to control only the amplitude and phase of the oscil-
lating widths of the wave packets, while squeezing parameter B(¢) can be used to control
not only their amplitude and phase, but also their frequency.

Then, we introduced an IBVP for a generalized quantum oscillator with time-
variable coefficients, which was defined on a domain with a time-dependent boundary
s(t) < g < 00,0 <t < T. We showed that this problem can be solved analytically if
the moving boundary is written as a linear combination of two linearly independent ho-
mogenous and a particular solution of the corresponding classical equation of motion in

position space. We found solutions of the IBVP for a generalized quantum oscillator with

155



a homogenous Dirichlet boundary condition W(s(¢),7) = 0. Furthermore, by comparing
the results with the fixed boundary problems, we concluded that the moving boundary
causes a shift in position coordinate and generates extra time-dependent exponentials
in the solution contributing to the phase factor. We also examined an exactly solvable
Caldirola-Kanai model to be able to analyze the effects of the moving boundary in detail.
In addition to this, we introduced an IBVP for a generalized quantum oscillator with a
Robin boundary condition 0W(s(¢), t)/dq — (ih)B(t)¥Y(s(t), t) = 0, and showed that the ex-
act solution can be found when s(#) and 5(¢) are general solutions of the corresponding
classical equations in position and momentum spaces, respectively.

We also considered the evolution problem for an N-dimensional generalized quan-
tum parametric oscillator. By obtaining the exact form of the evolution operator, we found
time development of the eigenstates and coherent states. Since properties of these states
depend on solutions of the corresponding classical equations, we introduced exactly solv-
able models for which the oscillator structure in position space is preserved. Precisely,
we found all nonzero squeezing parameters B;(f) for which frequency modification in
g j-direction remains constant, so that position uncertainties are always smooth, periodic
and oscillatory. Moreover, we realized that when there are no external forces, the center
of the wave packets in position space follows the classical Lissajous trajectories, and in
general, when there are external forces, motion could be bounded or unbounded in space
depending on the driving frequencies in each direction.

Finally, we solved an IVP for time-dependent Schrodinger equation for a gen-
eralized two-dimensional quantum parametric oscillator in the presence of time-varying
magnetic and electric fields using the evolution operator method. We found the evolution
operator and the propagator exactly in terms of solutions to the corresponding system of
coupled classical equations of motion. Then, we applied the evolution operator to initial
states such as the eigenstates and coherent states of the simple two-dimensional harmonic
oscillator, and described explicitly the propagation of the time-dependent wave functions.
In addition, by the evolution operator formalism, we constructed linear and quadratic in-
variants for the generalized two-dimensional quantum oscillator. As an exactly solvable
model we introduced a two-dimensional Cauchy-Euler type quantum parametric oscilla-
tor with smoothly decreasing Larmor type frequency in oscillating external electric field.

After solving the problem at classical level, we evaluated the probability densities, uncer-
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tainties and expectations at time-evolved eigenstates and coherent states and studied their
behavior in details. That gave us more insight into how one can control the dynamics of
the system by varying the parameters of damping and squeezing terms and by choosing

proper external forces.
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APPENDIX A

THE UNCERTAINTIES AT TIME-EVOLVED
EVEN-ODD COHERENT STATES

In this part, we find the uncertainties of position and momentum at time-evolved
even-odd coherent states explicitly.
First, we start with expectation values at time-evolved even coherent states. From

the definition of expectation value at a state, for any @ = a; + ia,, a1, a; € R, we have

@0 = (Diq.DIGIDL(g. 1)) = (U, 1) DI U (1, 10) D% (q))
= (DLPIU(1, 104U (1, 10)|D(q))
and
Py = (D(q, DIPID(g, 1)) = (U(t, t))PPIPIU, (1, 10) P (q))

(DU (1, 10)pU (1, 10)| DS (q)).

Using the following formulas, which are found in (Atilgan Biiyiikasik & Cayig, 2016 )

Uit 10qU(1,10) = x1(DG + x2(0p + x,(2),

Ui, 10)pU(t.10) = p1()p + po(t)p + py (D),

and (®@;(q)|g1D5,(9)) = 0, (P (@) pIP;(g)) = 0, we obtain

(Do) = x,(0),  (P)o() = pp(D).
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Then, we find expectation value of square of position as follows

(D(q, DIGP|DE (g, 1)) = (U, (¢, to)DUDIG U, 1) D(9))
(DLUPIT(1, 10)q° U (1, 10)| D5 (9))

A A 2
(@I (U1, 104U (1, 10)) |10 ())

@)

Since

A A 2
(05, 10)qU(t, 1)) = XOF + 2100 @p + pg) + 5D

+2 (x1(1)g + x2(1)p) x,(1) + xlz,(t),
using the following expectation values at time-evolved even coherent states

(O (QGPIDE() = 21 (1+2laf tanhaf? +2 (") + ?)).
Wo

AD | e woh .
(@ (@)|P71P5(@) = =5~ (1 + 2laf tanhof’ - 2((a")? +a?)).

(@(@lap + palPi () = ih (@) = a?),

we get

% (1+2lef* tanh o + 2 (@) + o)) 1} ()
0

+il (@) = @) 11 (Dx0()

(@,

+“’7°h (1+ 2laf? tanhaf? - 2 ((2")* + o?)) () + x3(2)
n
= 27)0“2 (x7(1) = 2iwox; (Dx2(1) — wy3(1))

h
+2—w0(a*)2 (x7(0) + 2iwox; (Dx2(1) — w33(1))

h
o (1+ 2laf tanh |of?) (x(1) + wixd(1) + x3(0).
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We know that €(7) = x1(?) + iwyx(%), SO
h
@o(1) = 5— | (e’ @) + (@ e®))” + @) (1 + 2laf tanh o) | + x3(0).
2(1)0 P
By following the same steps, we can find expectation value of square of momentum as

h
P = 5 |(auu(t)(€ (1) = Ba)e®)) + (" u()(&(t) - B)e(®)))’

2
e H )

dt

1
+(1 +2lef* tanh o) FOE (wae(r)r‘ (

Therefore, uncertainties of position and momentum at time-evolved even coherent states

become
fi
(AQa (1) = \/<€12>f;(t) — (@) = \/2—m|6(t)l 1 (2),
Ave _ Ao\ e A\ g _ (L)()h 1 .
(Ap)o(D) = \/<p2>a(t) - (p))* = 2 kol V4@,
where

() = 1+2lef tanhjaf® + |Eé)|2 R(ae (1),
; 2Ol (dInle@) ’
@@ = (1 + w(z) ( 7 B(t)) )(1 + 2|ef* tanh Ialz)
2 2
li?l R [az(u(t)(é*(t) - B(t)e*(r)))z] :
0

By the same way, uncertainties at time-evolved odd coherent states can be found.
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