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support, patients and valuable effort. Without his experience and guidance, it may not be

possible to complete this thesis. I will be honored to have worked with him during my

life.

I would also have to thank to my dear colleagues Süleyman Yaşayanlar and Yonca
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ABSTRACT

NUMERICAL MODELLING OF FAILURE IN 3D QUASI-BRITTLE
UNREINFORCED STRUCTURAL COMPONENTS

Concrete has been one of the most commonly used modern structural material

with quasi-brittle response. Because of its wide usage, numerical prediction of crack path

and failure of structural components made of concrete and reinforced concrete has a great

importance. To achieve this goal, a wide range of techniques have been introduced by

treating fracture differently. In addition, the development of successful element formu-

lations in analysis of 3D structural components has also been an active research topic.

Several formulations have been proposed as an alternative to the conventional Lagrangian

elements in recent years.

In this thesis, localizing implicit gradient damage model and an isogemetric tetra-

hedral element are combined to investigate failure of 3D quasi-brittle unreinforced struc-

tural components. 10 noded Bézier tetrahedral element is implemented to commercial

finite element software Abaqus through user defined element subroutine, UEL. The im-

plementation is validated by using two benchmark problems with nearly incompressible

linear elastic and elasto-plastic material behaviors. After validating the implemented el-

ement, the formulation is extended such that localizing implicit gradient damage model

is embedded within the isogeometric element formulation. Resulting two field formula-

tion is tested on 3D experimental studies that exhibit complex fracture propagation due to

combined torsional and bending moments. The sufficiency of the implemented two field

formulation is verified by comparing obtained results with the experimental ones in terms

of both force versus displacement responses and resulting crack paths.
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ÖZET

3 BOYUTLU YARI GEVREK DONATISIZ YAPISAL ELEMANLARDA
GÖÇMENİN SAYISAL MODELLENMESİ

Beton tüm Dünya’da en yaygın olarak kullanılan ve yarı gevrek davranış gösteren

yapı malzemelerinden biridir. Bu yoğun kullanım nedeniyle beton ve betonarme yapısal

elemanların sayısal göçme analizlerinin başarılı şekilde yapılması büyük önem arz

etmektedir. Bu amaçla, çatlakları farklı yöntemler kullanarak temsil eden birçok teknik

ortaya konulmuştur. Ayrıca üç boyutlu yapısal elemanların analizi için başarılı eleman

formülasyonlarının geliştirilmesi de oldukça önemlidir. Bu nedenle son yıllarda birçok

formülasyon geleneksel Lagrange elemanlarına alternatif olarak öne sürülmüştür.

Bu tezde, lokalize olan örtük gradyant hasar yaklaşımı ve izogeometrik eleman

formülasyon birleşiminin üç boyutlu yarı gevrek donatısız yapısal elemanların

modellenmesinde ne derece başarılı olabileceği ele alınmıştır. Bahsedilen 10 düğüm

noktalı Bézier dört yüzlü eleman formülasyonu Abaqus sonlu elemanlar yazılımı içerisine

UEL altyordamı (User ELement subroutine : kullanıcı tarafından tanımlanan eleman

altyordamı) yardımıyla entegre edilmiştir. Bu entegrasyon sıkıştırılamazlık limitine çok

yakın doğrusal elastik ve elasto-plastik davranışa sahip iki adet problem ile sınanmıştır.

Kontrol sonrası entegrasyonu yapılan elemana lokalize olan gradyant tipi örtük hasar

modeli eklenmiştir. Ortaya çıkarılan iki alanlı bu eleman formülasyonu ile birleşik eğilme

ve burulma etkisi altında karmaşık çatlak oluşumları içeren üç boyutlu deneysel çalışmalar

analiz edilmiştir. Nümerik sonuçlar ile elemanın performansı hem kuvvet-yer değiştirme

hem de çatlak gelişimleri açısından deneysel çalışma sonuçları ile karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

Predicting the failure of structural components has been a central theme in struc-

tural analysis and design. While fracture is brittle for some materials such as glass, the

failure of metals is ductile. However, failure process of quasi-brittle materials consists

of a softening region which is followed by the complete failure of the material. Con-

crete is one of the most commonly used structural material on earth with quasi-brittle

response. Therefore, predicting the formation of crack and failure for concrete and re-

inforced concrete structural components is important. The methods used for modelling

the failure of quasi-brittle materials can be roughly divided into three parts. Depending

on the kinematics used to define crack, these methods can be classified as continuous,

discontinuous and combined. In continuous methods, fracture is not taken as a disconti-

nuity and considered by using a damage variable which allows the formation of softening

bands within the body. On the contrary, in discontinuous methods, fracture is defined

as a discontinuity in kinematic description by means of additional degrees of freedom.

Extended finite element (X-FEM) method is one of most widely used of discontinuous

methods (Khoei, 2015). Finally, in the combined methods the softening branch is consid-

ered with the help of continuous approach, until the crack initiation. Thereafter, fracture

is inserted to the problem as a discontinuity by using X-FEM (Mediavilla Varas, 2005).

Because of their relatively easier implementation in the existing finite element solution

algorithms, continuous approaches have been widely used. However, it was figured out

that the solutions obtained by using classical continuum damage models do not converge

to physically meaningful results in early 80s (Bažant et al., 1984). One of the proposed

solutions to overcome this problem was to use non-local formulations. The approach

that stands out among these non-local proposals is implicit gradient damage formulation.

Even though the pathological mesh dependency problem could be prevented with the us-

age of this approach, it has been observed that the resulting damage distributions tend

to widen artificially. In order to eliminate this problem, thermodynamically consistent

localizing implicit gradient damage (LIGD) model was proposed (Poh and Sun, 2017).
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However, the accuracy of this model on non-planar fractures of 3D quasi-brittle structural

components has not been fully investigated yet.

On the other hand, efficient element formulations are needed for solutions of 3D

problems. In this context, besides traditional isoparametric Lagrangian element formu-

lations, there are also element formulations based on the recently proposed isogeometric

analysis (IGA). IGA is a revolutionary approach that was introduced by Hughes in the

2000s and aims to change completely traditional methods (Cottrell et al., 2009). In tra-

ditional approach, it is required to prepare CAD model of the analyzed part, import it

to finite element solver, repair and create an appropriate mesh for analysis. IGA, on

the other hand, is an approach based on the idea of using basis functions that are used

to create the model in CAD model (B-Splines, NURBS) also in finite element analysis

instead of Lagrange polynomials. In this approach, geometry approximation errors are

almost completely eliminated. Due to higher continuity of B-Splines and NURBS, IGA

has been successfully used in analysis of thin plates and shells. Efficient IGA elements

for 3D solid bodies have been under development as well (Espath et al., 2011; Engvall

and Evans, 2016). Especially, the formulation recently proposed by Kadapa seems to be

an attractive approach, since it creates the control points from the nodes of 10 noded La-

grangian tetrahedral elements (Kadapa, 2019a). This also implies that, using the existing

mesh generators with this isogeometric element formulation is possible. In this method,

the aim is using Bernstein polynomials as basis functions which have higher continuity,

rather than reducing the geometry approximation error. The performance of this element

has been studied for nearly incompressible elasticity and elasto-plasticity. However, it is

not yet known how successful this element is in failure and resulting crack path prediction

of quasi-brittle structural components.

With this motivation, in this theses, selected 3D fracture problems are analyzed by

using 10 noded Bézier tetrahedral element and localizing implicit gradient damage model.

For this purpose, 10 noded Bézier tetrahedral element is implemented to commercial finite

element analysis software Abaqus through user defined element (UEL) subroutine. After-

wards, LIGD model is embedded in this element and the resulting two field formulation

is used to analyze 3D case studies involving planar and non-planar cracks.
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1.1. Outline of the Thesis

In Chapter 2, the basis of continuum damage mechanics are laid out, path depen-

dency problem is revisited and the solution of this issue is presented. Implicit gradient

damage and localizing implicit gradient damage models are detailed and the resulting

coupled equations are introduced both in strong and weak forms in this chapter as well.

In Chapter 3, the basics of IGA are summarized and the implemented 10 noded Bézier

element is introduced. Abaqus implementation of the element is also discussed and the

implementation is tested by using two benchmark problems. In Chapter 4, four experi-

ments are numerically analyzed with the mentioned formulation and the obtained results

are compared with the experimental ones. In the last chapter, the thesis is concluded by

the main findings and recommendations for future studies.
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CHAPTER 2

CONTINUUM DAMAGE MECHANICS

As mentioned in Chapter 1, the main focus of this thesis is to construct a damage

based failure model, which is suitable for quasi-brittle material response. The scope of the

thesis is limited only to static cases and dynamic effects are not covered. The equilibrium

equations in small strain context can be written as

∇ · σ + ρ b = 0 (2.1)

where σ is the stress tensor, b is the body force, ρ is the density and ∇· is the divergence

operator. To complete the problem and map it into a well-posed state, it is necessary to

specify the boundary conditions. The surface of the solid body can be decomposed into

two non-overlapping parts such as Γt and Γu over which tractions and displacements are

prescribed, respectively. A constitutive model is necessary to specify the stress tensor.

As far as modelling of failure in quasi-brittle materials is concerned, existing numerical

models can be classified as discontinuous, continuous and combined.

Continuum damage mechanics is one of these models. In this approach, fracture

does not contribute to the displacement field as a discontinuity. The stiffness of mate-

rial decreases gradually depending on the damage variable which stands between zero

and one. When the damage variable at a material point reaches to one, it is considered

to be complete fracture. One of the most well known of the discontinuous models is

the extended finite element (X-FEM) method (Khoei, 2015). In this method, fracture is

embedded within kinematic description of the problem as a discontinuity. However in

this method, it is required to add and remove some degrees of freedom dynamically ac-

cording to the crack propagation path. In the combined methods, the softening is dealt

with continuum damage mechanics. When the damage reaches to one at a material point,

discontinuity is inserted in kinematics using X-FEM (Mediavilla Varas, 2005). In this

thesis, continuum damage mechanics will be used because of its easier implementation
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and robustness.

2.1. Continuum Damage Mechanics

The most widely used way to describe damage variable is the geometrical one. In

an element with infinitesimal volume dV , which is large enough for containing a number

of cracks, voids and defects, one surface can be named as dS. The defected and unde-

fected areas on this surface are shown by dSD and dSU = dS − dSD respectively. The

definition of the damage variable D with respect to these quantities is denoted as a ratio

of the defected area over total area as

D = dSD

dS
(2.2)

When the infinitesimal element dV is under a constant nominal stress state σ, the damaged

area on surface dS of the element can not carry any load and nominal stress has to be

carried only by the undamaged are dSU = dS − dSD. It is obvious that the effective

stress on this undamaged area will be higher than the nominal stress on total surface are

and this effective stress is defined as

σ̃ = σ
dS

dSU
= σ

1 −D
(2.3)

where σ̃ is the effective stress acting on the undamaged area. For D > 0, it is clear that

the effective stress is always higher than the nominal stress.

2.2. Elasticity Based Damage

Damage generally occurs under the influence of the external effects such as exter-

nal loading and applied displacement. The evolution of the damage variable starts when

a specific limit, the elastic limit, is reached similar to plasticity (Peerlings et al., 1998).
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The elastic limit surface, which is also called as loading surface or damage criterion, is

characterized by the loading function f , which is defined as

f(ε, κ) = 0 (2.4)

where ε is the strain tensor and κ is the history variable. For strain values which satisfy

f < 0 condition, the material behavior is totally in the elastic region and the damage

variable is stationary. The damage evolution can only be possible when the limit surface

is reached (f = 0), please see Figure 2.1.

Figure 2.1. Loading surface specified in strain space

(Adopted from Peerlings, 2008)

The loading function f(ε, κ) for isotropic damage is given by

f(ε, κ) = ε̃(ε) − κ (2.5)

where ε̃ is a scalar and equivalent measure of strain state or equivalent strain. History

variable κ equals to the maximum value of the ε̃. If there is no damage evolution f < 0

condition is met and κ̇ = 0. As a result f κ̇ = 0 is satisfied. On the other hand, if there

is damage evolution, in this case κ̇ ≥ 0 and f = 0 conditions are met, since the damage
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criterion reaches the surface. Because of these conditions, f κ̇ = 0 is satisfied also for

this case. In a mathematical fashion, it can be said that these processes have to satisfy

Karush-Kuhn-Tucker conditions which are written as

fκ̇ = 0 f ≤ 0 κ̇ ≥ 0 (2.6)

They basically dictate that the increase of the field variable κ is positive and the dam-

age criterion cannot be exceeded. Damage evolution can be conveniently expressed as a

function of field variable κ.

D = D(κ) (2.7)

With the help of the total form which is represented in Equation 2.7 damage evolution can

also be defined in the following rate form

Ḋ = g(D, κ)κ̇ (2.8)

where g(D, κ) is an arbitrary function.

2.3. Softening

In the linear elastic context, the stress-strain law is written as follows

σ = (1 −D) C : ε (2.9)

It is beneficial to pursue the material behavior of this constitutive model in case of a uni-

form, uniaxial tensile stress state σ = σe1 ⊗ e1, where e1 unit vector gives the direction
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of the stress. It is assumed that the equivalent strain ε̃ is equal to the uniaxial strain ε and

it is written as ε̃ = ε (Peerlings et al., 1998).

The differences between elasto-plasticity and damage are shown in Figure 2.2.

The responses are both linear elastic at the beginning stage and they have a slope with

undamaged elasticity modulus E. When the equivalent strain exceeds the threshold value

κ0 of the field variable κ, damage starts to evolve. This causes a reduction on initial slope

of the response. At one point, strain softening, which means that stresses decrease with

increased strains, starts. This turning point is called as limit point or snap-through point.

Figure 2.2. Stress-strain responses for the damage modelling and elasto-plasticity

(Adopted from Peerlings, 2008)

A similar stress-strain response can be provided by using elasto-plasticity and

can be seen from the right diagram of Figure 2.2. Although the behaviors look similar

at first sight, there are obvious differences between these responses especially for the

unloading stages. Elasto-plastic behavior shows linear elastic unloading with a slope of

virgin elasticity modulus E. Significant amount of inelastic strain still exists when the

stress reaches to zero upon unloading in elasto-plastic behavior. However, in the damage

model unloading reaches to zero with a decreased slope, which is equal to (1 −D)E, (i.e.

decreased stiffness) namely secant stiffness. Since Equation 2.9 gives zero stress for zero

strain, there is no inelastic deformation at the end of the unloading stage.
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2.4. Mesh Dependency

Even though estimation of softening behavior with the help of continuum theories

look mathematically solid and physically meaningful at the beginning, it turns out that

they are not well suited (Pietruszczak and Mróz, 1981; Bažant et al., 1984). When dis-

cretized in its original form, the solution does not converge to a physically meaningful

result upon mesh refinement. This phenomenon is commonly called as mesh dependency,

pathological mesh sensitivity or mesh sensitivity. Previously mentioned classical contin-

uum theories result physically unforeseen localization, which condenses all deterioration

on a vanishing volume.

One dimensional setup can be used to get a deeper understanding of shortcomings

of the continuum theory. For this purpose, the model represented in Figure 2.3 will be

examined. The bar has mildly varying cross-sectional area A(x). Similar to the men-

tioned example in the Section 2.3, it makes sense to assume that the equivalent strain ε̃(x)

is equal to the axial stress ε(x). Also, the previously examined constitutive relation in

Section 2.3 is used for this example.

Figure 2.3. Localization of the damage along the bar

(Adopted from Peerlings, 2008)

While the bar is subjected to a tensile load of F , every cross-section along the

longitudinal axis has to transfer this tensile force. Therefore, the stress σ along the bar

is expressed as σ(x) = F/A(x). The axial strain and equivalent strain are specified as

ε(x) = ε̃(x) = σ(x)/E. When the threshold value of κ0 has been reached, damage
9



evolution begins. Since, the smallest cross-section is located in the midspan, damage

evolution starts at this point and this cross-section enters the post-peak softening region.

In order to satisfy equilibrium, the stress values of neighborhood areas located slightly

left and right of the midspan shall decrease. In these parts threshold values has not been

reached and therefore this regions show elastic unloading response, see Figure 2.3.

If the discretization of the bar shown in Figure 2.3 is considered, only the element

located at smallest cross-section enters softening branch and all of the other elements

remain in elastic region and exhibit linear elastic unloading. This situation is shown in

Figure 2.4. The parameter h in the figure represents the element size. For greater h values,

width of the damage zone increases and amount of dissipated energy is relatively large.

On the other hand, for smaller h values, the element size and width of the damaged zone

decrease as well as amount of dissipated energy. In the limit case, h → 0, FEM result

gives coincident loading and unloading paths. It is obvious that the converged solution is

not physically meaningful. This phenomenon is called as pathological mesh dependency

or mesh sensitivity.

Figure 2.4. F versus U graph for different element size h

(Adopted from Peerlings, 2008)

2.5. Non-local Damage Mechanics

As seen in the previous sections, numerical solutions based on continuum damage

theory converge to physically incorrect solution upon mesh refinement. To solve this

issue, non-local approaches were proposed in the literature (Bažant et al., 1984; Jirásek,

1998; Peerlings et al., 1998). It is to be noted that non-local models have a smoothing
10



effect on the deformation and damage distribution. With the aid of the smoothing effect,

localization of the damage into a small volume is prevented (Bažant et al., 1984).

Integral and gradient type non-local approaches will be summarized briefly. Then

localizing implicit gradient damage model, which is used to construct two field FE for-

mulation of this thesis, will be explained.

2.5.1. Integral Type Non-local Damage

The evolution of damage is expressed as a function of equivalent strain in Section

2.2. In integral type non-local damage models, the equivalent strain at a material point is

replaced by an average value called as non-local equivalent strain, ε̄.

On R3, the non-local equivalent strain ε̄ is defined for a specific point x⃗ as

ε̄(x⃗) =
∫
R3

ψ0(x⃗, y⃗) ε̃(y⃗) dV (y⃗) (2.10)

where dV (y⃗) is infinitesimal volume at y⃗ ∈ R3. The relation between the equivalent

strain ε̃ and the non-local equivalent strain ε̄ at this point is represented with the weight

function ψ0(x⃗, y⃗). Gauss distribution is the frequently used definition for ψ0(x⃗, y⃗) and in

three dimensions it can be written as

ψ0(x⃗, y⃗) = 1
(2π)2/3l3c

exp

[
− ξ2

2l2c

]
(2.11)

where ξ = ||x⃗− y⃗|| is the distance between points x⃗ and y⃗ and function is only dependent

on this term. An important property of the weight function is specified as

∫
R3

ψ0(x⃗, y⃗) dV (y⃗) = 1 (2.12)

It can be clearly seen that mutual effects between the points decrease with increas-

ing distance. The lc parameter is generally called as internal length scale and governs
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the range of averaging domain. The integral length scale parameter also identifies the

smoothness of strain and damage fields. In integral type non-local damage, damage and

crack propagation is controlled by a finite volume despite an infinitesimal volume which

is considered in local theory. The length scale parameter, lc, should be defined by consid-

ering the microstructural properties of the material such as average grain size or particle

spacing.

Figure 2.5. A schematic representation of non-local averaging along with the defini-

tion of averaging domain

(Adopted from Sarkar et al., 2019)

Some disadvantages of integral type non-local damage can be listed as follows.

For the material points which are close to the boundaries, a considerable part of the weight

function falls outside of the problem domain V . The outside parts do not participate to the

integral that computes ε̄, since the equivalent strain ε̃ is not defined outside of the problem

domain. Non-local equivalent strain ε̄ tends to decrease near the boundaries. A similar

difficulty arises in case of internal geometric discontinuities such as notches.

2.5.2. Gradient Type Non-local Damage

In spite of defining non-local equivalent strains by using finite sized integrals, non-

locality can also be introduced by using an equivalent strain and its gradient at a material

point. Similar to the integral type non-local damage enhancement, an averaging domain

is also used in this approach. However, gradient type non-local damage approach aims
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to solve the integral operation in Equation 2.10 by using a differential approximation.

With the aid of this approach, the governing equations become differential ones instead

of integro-differential equations. There are at least two different formulations namely

explicit and implicit gradient formulations in this approach (Peerlings et al., 1998).

To construct both implicit and explicit gradient damage formulations, ε̃(y⃗) in

Equation 2.10 is first expanded as a Taylor series and the expanded form is substituted

to Equation 2.10. By using Equation 2.12 it is possible to rewrite Equation 2.10 as

ε̄(x⃗) = ε̃(x⃗) + 1
2 l

2
c∇2ε̃(x⃗) + 1

8 l
4
c∇4ε̃(x⃗) + · · · (2.13)

where ∇2 = ∇.∇ is the Laplacian operator, ∇4 = ∇2∇2 and the lc is the internal length

scale. Odd numbered coefficients of gradients disappear because of the isotropy of the

weight function ψ. By considering the second order Taylor series expansion, the explicit

form is expressed as

ε̄ = ε̃+ 1
2 l

2
c∇2ε̃ (2.14)

In order to get the implicit form, it is necessary to make small mathematical ma-

nipulations to Equation 2.13 before truncating it. Implicit form can be derived by taking

Laplacian of Equation 2.13 and multiplying it by 1
2 l

2
c and subtracting the resulting equa-

tion from Equation 2.13 which yields

ε̄− 1
2 l

2
c∇2ε̄ = ε̃+ 1

8 l
4
c∇4ε̃ (2.15)

By neglecting the second term on the right hand side, final form of implicit gradient

formulation is obtained as

ε̄− 1
2 l

2
c∇2ε̄ = ε̃ (2.16)
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It is clear that in implicit form, non-local equivalent strain ε̄ is not directly com-

puted by using equivalent strain ε̃ and its gradient. On the contrary, it yields a partial

differential equation for ε̄. Equation 2.16 has to be solved with equilibrium equation in a

coupled manner, because the driving term ε̃ in Equation 2.16 is a function of strain and

in term depends on the displacements. Finite element method is suitable for solving this

coupled solution. It is to be noted that the Equation 2.16 requires a proper boundary con-

dition. In this thesis the boundary condition, which is provided by Peerlings et al., 1998,

is used. This boundary condition is expressed as

n⃗ · ∇ε̄ = 0 (2.17)

In Figure 2.6, the evolution of damage zone obtained by the implicit gradient

damage formulation is shown. As can be seen from the figure, the damaged zone is

widening. This artificial widening of the damage zone is one of the problems of implicit

gradient damage that was also shown by other researchers (Poh and Sun, 2017; Sarkar

et al., 2019; Shedbale et al., 2021).

2.5.3. Equivalent Strain Definition

Modified von Mises definition, which is firstly proposed by de Vree et al., 1995

with a strain based approach, is considered. Modified von Mises definition rooted origi-

nally from the plasticity models of polymers that uses stress tensor invariants. It is possi-

ble to rewrite strain-based modified von Mises definition as follows

ε̃ = k − 1
2k(1 − 2ν)I1 + 1

2k

√√√√ (k − 1)2

(1 − 2ν)2 I
2
1 − 12k

(1 + ν)2J2 (2.18)

where I1 and J2 are the first invariant of the strain tensor ε and the second invariant of the

deviatoric strain tensor ε′, respectively. These quantities are defined as
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Figure 2.6. Graphical representation of the widening of damage zone during an anal-

ysis (a) Damage distribution at t=0.08s (b) Damage distribution at t=0.15

(c) Damage distribution at t=1.00s

I1 = tr(ε) J2 = 1
6I

2
1 − 1

2 ε : ε (2.19)

Meaning of the parameter k is that a compressive stress kσ has the same effect

on damage evolution as a tensile stress σ. The parameter k can be written as a ratio of

compressive and tensile strengths of the material; k = σfc/σft.

2.5.4. Damage Evolution Law

The damage evolution law, which has a general form represented in Equation 2.7,

can be considered as a measure of damage evolution in the material with respect to the

strain. Exponential damage evolution law, which is used in Mazars and Pijaudier-Cabot,

1989; Brekelmans et al., 1992; de Vree et al., 1995; Peerlings et al., 1998 among others

, is also used in this thesis to get a nonlinear softening response. This damage evolution
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equation is expressed in the following form

D =


0, if κ ≤ κ0

1 − κ0
κ

(1 − α + αe−β(κ−κ0)), otherwise
(2.20)

The damage variable converges D = 1 asymptotically, that means it is impossible

to yield a total fracture. As ε → ∞ the uniaxial stress reaches (1 − α)Eκ0 and this

asymptote shows the long tail of load-displacement graph.

2.6. Localizing Implicit Gradient Damage

The damage model introduced in the previous section is called as Conventional

Implicit Gradient Damage (CIGD) and it has an important artificial widening of damage

issue as shown in Figure 2.6. It was realized that the artificial widening of damage is

rooted in fixed averaging domain (fixed interaction domain), which makes energy transfer

from the damaged zone to neighboring elastically unloading regions possible, see Poh and

Sun, 2017; Sarkar et al., 2019.

Figure 2.7. A schematic representation of non-local averaging along with the defini-

tion of averaging domain

(Adopted from Sarkar et al., 2019)

As shown in Figure 2.7, at the beginning, failure initiates with randomly located

microcracks. With increased deformation, these microcracks start to grow and create
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macrocracks. On the other hand with the formation of those macrocracks, the microcracks

located away from the failure region are closed because of the relaxation. As a result,

material failure shrinks into a smaller area. However, in CIGD the variable nature of

crack propagation is ignored by using a constant averaging domain which causes spurious

damage growth. Localizing Implicit Gradient Damage model (LIGD), proposed firstly in

Poh and Sun, 2017, mainly aims to prevent this issue by using an evolving averaging

domain. To control the size of averaging domain, an interaction function is used in LIGD.

LIGD model defines the free energy density , Ψ, as follows

Ψ = 1
2(1 −D) ε : C : ε + 1

2 h (ε̃− ε̄)2 + 1
2 ghl

2
c ∇ε̄ · ∇ε̄ (2.21)

In the Equation 2.21, the first term stands for stored elastic energy with fourth-

order elasticity tensor C and ε is the strain tensor. The second term represents the interac-

tion between micro and macro levels with h as coupling modulus. The equivalent strains

of micro and macro levels are specified by ε̃ and ε̄, respectively. Lastly, interactions of

microcracks with the averaging domain are described in the third term. Similar to the

CIGD, the range of the averaging domain is controlled by the internal length scale param-

eter, lc. The interaction function, g, is defined to adopt interaction between microcracks

during damage propagation.

By using a small h value, the residual stress existing due to coupling term during

the damage evolution can be minimized. If the coupling term h is ignored, it is possible

to reach a standard constitutive relation for LIGD model

σ = (1 −D) C : ε (2.22a)

ε̄− ε̃ = ∇ · (gl2c ∇ε̄) (2.22b)

similar to that in Equation 2.9 of CIGD model. In fact, this modification allows a straight-

forward implementation of LIGD to FEM framework and it is also used in this thesis

(Sarkar et al., 2019).
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2.6.1. Interaction Function

According to the Poh and Sun, 2017; Sarkar et al., 2019, the interaction function

g is defined as

g = (1 −R) exp(−η D) +R − exp(−η)
1 − exp(−η) (2.23)

where R and η are the parameters, which govern the interaction during the damage evo-

lution process. The material parameter η controls the evolution of g as shown on the left

hand side of Figure 2.8. The other parameter R, which is called as the residual interaction

parameter, defines the range of interaction as the damage reaches unity. Different inter-

action functions for various R values at constant η are presented on the right hand side

graph of Figure 2.8. Even though, the residual interactions are completely broken at total

failure in real cases, smallR values are taken for numerical stability in simulations. Those

parameters, R and η, are empirical and calibrated by experimental results. As illustrated

in Figure 2.8, when R is taken as one, the interaction function stays constant and equals

to one. Therefore, taking R = 1 in LIGD results in CIGD model (Sarkar et al., 2019).

2.7. Two Field Finite Element Formulation

As defined in previous sections, the constitutive relations of LIGD form a coupled

system, since the driving term ε̃ of 2.22b is a function of strain tensor ε, which depends on

variable u. To solve this coupled system of partial differential equations, it is necessary to

construct a two field finite element formulation with independent variables displacement

vector u and non-local equivalent strain ε̄. This two field FE formulation can be con-

structed by starting from the balance equations with corresponding boundary conditions.

These governing equations are
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Figure 2.8. Variation of interaction function (g) with damage for (a) different values

of n at R = 0.005, (b) different values of R at n = 4

∇ · σ + ρ b = 0 (2.24a)

ε̄− ∇ · (gl2c ∇ε̄) − ε̃ = 0 (2.24b)

and corresponding boundary conditions are written as follows

t = σ · n = t̄ on Γt (2.25a)

u = ū on Γu (2.25b)

∇ε̄ · n = 0 on Γ (2.25c)

where ū is the prescribed displacement on Γu and t̄ is the prescribed traction on Γt. In

order to derive the weak forms of these governing equations, it is required to use two

arbitrary test functions ϕu and ϕε, respectively. ϕu has to be ϕu = 0 on Γu. By using
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governing equations and test functions, the residual forms of governing equations for

LIGD model can be expressed as follows

∫
V

(∇ · σ + ρ b) · ϕu dV = 0 (2.26a)

∫
V

(
ε̄− ∇ · (gl2c ∇ε̄) − ε̃

)
ϕε dV = 0 (2.26b)

The expanded form of Equation 2.26a can be written as

∫
V

(∇ · σ) · ϕu︸ ︷︷ ︸
Term 1

dV +
∫
V

ρ b · ϕu dV = 0 (2.27)

It is possible to rewrite Term 1 of Equation 2.27 in an alternative way by using the fol-

lowing identity

∇ · (σ ϕu) = ∇ (σ ϕu) : I

∇ · (σ ϕu) = ϕu · (∇ · σ) + ∇ϕu : σ

ϕu · (∇ · σ)︸ ︷︷ ︸
Term 1

= ∇ · (σ ϕu) − ∇ϕu : σ (2.28)

Substituting this result into Equation 2.27 yields

∫
V

∇ · (σ ϕu) dV −
∫
V

∇ϕu : σ dV +
∫
V

ρ b · ϕu dV = 0 (2.29)

By using Gauss’s divergence theorem and boundary condition, Equation 2.29 can be

rewritten as

∫
V

σ : ∇ϕu dV =
∫
V

ρ b · ϕu dV +
∫
Γt

t · ϕu dA (2.30)
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Finally, Equation 2.30 can be rewritten by using the virtual strain δε as follows

∫
V

σ : δε dV

︸ ︷︷ ︸
Virtual Work done
by internal stresses

=
∫
V

ρ b · ϕu dV +
∫
Γt

t · ϕu dA

︸ ︷︷ ︸
Virtual Work done
by external forces

(2.31)

where the virtual strain δ ε = δ ∇u = D(∇u)[ϕu] = ∇ϕu. The weak form of Equation

2.26b can be derived by using a similar approach. Firstly, the expanded form of Equation

2.26b is written as

∫
V

ε̄ ϕε dV − gl2c

∫
V

∇2(ε̄) ϕε︸ ︷︷ ︸
Term 2

dV −
∫
V

ε̃ ϕε dV = 0 (2.32)

where, Term 2 in Equation 2.32 can be expressed as

∇2(ε̄) ϕε = ∇ · (∇ε̄ ϕε) − ∇ε̄∇ϕε (2.33)

Therefore, by inserting Equation 2.33 into Equation 2.32 and applying Gauss’s divergence

theorem, the following

∫
V

ε̄ ϕε dV − gl2c

∫
Γt

ϕε ∇ε̄ · n︸ ︷︷ ︸
Term 3

dA+ gl2c

∫
V

∇ε̄∇ϕε dV −
∫
V

ε̃ ϕε dV = 0 (2.34)

is obtained. Term 3 in Equation 2.34 equals to zero, because of the boundary condition

given in Equation 2.25c. Consequently, the weak form of the second governing equation

of LIGD model takes the following form

∫
V

ε̄ ϕε dV + gl2c

∫
V

∇ε̄∇ϕε dV −
∫
V

ε̃ ϕε dV = 0 (2.35)
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Since the problem is nonlinear, using an incremental iterative solution is a necessity.

Newton-Raphson method is going to be used for this purpose. To this end, it is required

to take directional derivatives of the weak forms in the direction of the increment of inde-

pendent variables. The weak forms can be written as residuals

ru = δ W u
int − δ W u

ext (2.36a)

rε = δ W ε
int,1 + δ W ε

int,2 − δ W ε
ext (2.36b)

where ru is the residual for the first weak form (Equation 2.31) and rε is the residual for

the second weak form (Equation 2.35). To build a proper Newton-Raphson incremental

iterative solution procedure, the above equations have to be linearized around u
∣∣∣∣
k

and ε̄
∣∣∣∣
k

and the following set of equations

ru

∣∣∣∣
k

+D (ru) [∆u]︸ ︷︷ ︸
Kuu ∆u

+D (ru) [∆ε̄]︸ ︷︷ ︸
Kuε ∆ε̄

= 0 (2.37a)

rε

∣∣∣∣
k

+D (rε) [∆u]︸ ︷︷ ︸
Kεu ∆u

+D (rε) [∆ε̄]︸ ︷︷ ︸
Kεε ∆ε̄

= 0 (2.37b)

are obtained and the Newton-Raphson scheme in matrix form for this coupled nonlinear

problem is given as follows

Kuu Kuε

Kεu Kεε


∆u

∆ε̄

 =

−ru

∣∣∣∣
k

−rε

∣∣∣∣
k

 (2.38)

To calculate Kuu, it is required to derive the D (ru) [∆u] by following
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D (ru) [∆u] = D (δ W u
int) [∆u] −D (δ W u

ext) [∆u]︸ ︷︷ ︸
0

D (δ W u
int) [∆u] =

∫
V

∂σ

∂ε
: D (ε) [∆u] : δ ε dV +

∫
V

σ : D (δ ε) [∆u] dV

︸ ︷︷ ︸
0

Kuu = D (ru) [∆u] =
∫
V

C : A : δ ε dV (2.39a)

where C = ∂σ
∂ε

is the fourth order material tangent stiffness tensor and A = D (ε) [∆u] =
1
2(∇(∆u) + (∇(∆u))T ) is a second order tensor. By following a similar approach, lin-

earization of ru in the direction of ∆ε̄, Kuε yields as

D (ru) [∆ε̄] = D (δ W u
int) [∆ε̄] −D (δ W u

ext) [∆ε̄]︸ ︷︷ ︸
0

D (δ W u
int) [∆ε̄] =

∫
V

∂σ

∂ε̄
D (ε̄) [∆ε̄] : δ ε dV +

∫
V

σ : ∂δ ε

∂ε̄
dV

︸ ︷︷ ︸
0

Kuε = D (ru) [∆ε̄] = −
∫
V

∂D

∂κ

∂κ

∂ε̄
∆ε̄ C : ε : δ ε dV (2.40a)

To linearize rε and calculate stiffness matrices, Kεu and Kεε, it is required to take direc-

tional derivative of rε in the directions of ∆u and ∆ε̄ as follows

D (rε) [∆u] = D
(
δ W ε

int,1

)
[∆u]︸ ︷︷ ︸

0

+D
(
δ W ε

int,2

)
[∆u]︸ ︷︷ ︸

0

+D (δ W ε
ext) [∆u]

D (δ W ε
ext) [∆u] = −

∫
V

∂ε̃

∂ε
: ∂ε

∂u
D (u) [∆u] ϕε dV

Kεu = D (rε) [∆u] = −
∫
V

∂ε̃

∂ε
: ∂ε

∂u
∆u ϕε dV (2.41a)

and by following a similar approach, linearized form of rε in the direction of ∆ε̄ is shown

as
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D (rε) [∆ε̄] = D
(
δ W ε

int,1

)
[∆ε̄] +D

(
δ W ε

int,2

)
[∆ε̄] +D (δ W ε

ext) [∆ε̄]︸ ︷︷ ︸
0

D
(
δ W ε

int,1

)
[∆ε̄] =

∫
V

∂ε̄

∂ε̄
D (ε̄) [∆ε̄] ϕε dV

D
(
δ W ε

int,2

)
[∆ε̄] = ∂g

∂D

∂D

∂κ

∂κ

∂ε̄
D (ε̄) [∆ε̄] l2c

∫
V

∇ε̄∇ϕε dV

+ gl2c

∫
V

D (∇ε̄) [∆ε̄] ∇ϕε dV

Kεε = D (rε) [∆ε̄] =
∫
V

∂ε̄

∂ε̄
∆ε̄ ϕε dV + ∂g

∂D

∂D

∂κ

∂κ

∂ε̄
∆ε̄ l2c

∫
V

∇ε̄∇ϕε dV

+ gl2c

∫
V

∇(∇ε̄) ∇ϕε dV
(2.42a)

Spatial discretization of these linearized forms are specified in the following chap-

ter.
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CHAPTER 3

ISOGEOMETRIC ANALYSIS FOR 3D BODIES

In this chapter, the background information related to Isogeometric Analysis for

3D Bodies is given. A 10 noded Bézier Tetrahedra element formulation (Kadapa, 2019a)

that uses existing mesh generators is re-elaborated and integrated within commercial finite

element software (ABAQUS) through UEL subroutine as a user defined element. The per-

formance of the element is assessed by means of two benchmark problems with different

constitutive models.

3.1. Fundamentals of Isogeometric Analysis

There are two main approaches to represent curves and surfaces in computational

geometry namely implicit equations and parametric functions.

The implicit equation of a curve can be written as f(x, y) = 0 in the xy plane and

a surface has a form of f(x, y, z) = 0. For example, a unit circle with a center of origin

is represented by the equation f(x, y) = x2 + y2 − 1 = 0 and in three dimensional space

the surface of a sphere has an equation of the form f(x, y, z) = x2 + y2 + z2 − 1 = 0.

On the other hand, in parametric form each coordinates of a point on a curve or surface is

written separately as explicit functions of independent parameters

C(u) = (x(u), y(u)) a ≤ u ≤ b (3.1)

At the end, C(u) becomes a vector-valued function with an independent variable

u. The interval [a, b] is normalized and set to [0, 1].

It is not easy to comment on which of the two forms described above prevails over

the other. However, the parametric form is generally used in modern Computer Aided

Design programs (Piegl and Tiller, 1997). Therefore, in the following sections, mainly

the parametric form is going to be examined.
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3.1.1. Power Basis Form

Power Basis Form is the one of the parametric form of a curve or surface. Polyno-

mials are the most commonly used expression for functions. Although they are concep-

tually simple, it is necessary to underline that polynomials are not capable to demonstrate

most of the curves and surfaces directly. An nth-degree power basis curve is written as

below

C(u) = (x(u), y(u), z(u)) =
n∑

i=0
aiu

i 0 ≤ u ≤ 1 (3.2)

The ai = (xi, yi, zi) quantities are also vectors in the form of

x(u) =
n∑

i=0
xiu

i y(u) =
n∑

i=0
yiu

i z(u) =
n∑

i=0
ziu

i (3.3)

3.1.2. Bézier curves

Bézier curves are another class of parametric polynomial curves. Mathematically,

the Bézier and power basis forms are equivalent. It basically means that any curve can be

represented by using one form or the other. Despite of this mathematical similarity, Bézier

form is superior over the power basis form in several ways for computational modelling.

The Bézier form has following advantages:

• Bézier form is more natural, because it is possible to specify both start and end

points of the curve. However, in power basis form, a designer can just specify the

start point of the curve.

• With the help of some existing algorithms, computations for the Bézier form has

less algebraic steps than the power basis form’s.
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• The power basis form tends to create more round-off error because of the Horner’s

method.

Further imformation on Bézier curves and surfaces will be given in Section 3.2.

3.1.3. B-splines

Curve and surface computations with only one polynomial or segment are gener-

ally not satisfactory to represent complex geometries such as circles, cones, ellipses, etc.

Power basis and Bézier forms of computer graphic methods have some weaknesses and

these can be summarized as follows:

• (n-1) degree polynomial is necessary in order to construct a Bézier curve that passes

through n data points. In other words, higher degree polynomials are necessary in

order to take more data points into account. However, high degree polynomials are

hard to compute and are prone to numerical instability.

• Curves and surfaces with only single segment are not adequate for interactive shape

design. Even though it is possible to control Bézier curves by using their control

points and weights, they do not give local control and flexibility.

In order to solve these issues, using piecewise polynomials or piecewise rationals

might be a good approach. Therefore, Non-Uniform Rational Basis Splines are going to

be introduced in this section.

3.1.3.1. Knot Vectors

Non-Uniform Rational Basis Splines are originally rooted from B-Splines and

getting a solid insight on the B-Splines is crucial for this study. In order to construct a

B-Spline, a one dimensional knot vector must be defined with an ordered set of increasing

parameter values,

Ξ = {ξ1, ξ2, · · · , ξn+p+1} ξi+1 ≥ ξi (3.4)
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where ξi is the ith knot, n is the number of basis functions used to compute B-Spline curve

and p is the polynomial order. Generally, the knot vectors are normalized to fit its values

in a range between zero and one. Knot vector separates the parametric space into pieces

generally named as ”knot spans”.

If the elements in the knot vector have same distance between each other, this type

of knot vectors is called as uniform. (e.g. [0 1 2 3 4 5] or [0 0.5 1]). Otherwise, knot

vector is defined as non-uniform. A knot vector may be open, if its first and last knots

exist p + 1 times. If the same element of a knot vector appears k times, it means that the

knot vector has a multiplicity k. In B-Spline basis functions, mostly open knot vectors

are used with a multiplicity k = p+ 1 at the first and last knots.

3.1.3.2. B-Spline Basis Functions

B-Spline basis functions can be computed by using a knot vector Ξ. B-Spline basis

functions {Ni,p}n
i=1, which are connected to the given knot vector Ξ, can be calculated

recursively starting from the independent constants (p = 0) :

Ni,0(ξ) =


1, if ξi ≥ ξ ≥ ξi+1

0, otherwise
(3.5)

In case of p ≥ 1, they are given by the following formula

Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3.6)

which is called as Cox-de-Boor recursion formula ( Cox, 1972; de Boor, 1972).

As an example B-Spline basis functions created by Equations 3.5 and 3.6 for p = 3

and Ξ = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1} are shown in Figure 3.1. The red squares in

the figure represent the knots. Further information and efficient algorithms can be found

in Piegl and Tiller, 1997.
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Figure 3.1. B-Spline basis functions for p = 3

3.1.3.3. B-Spline Curves, Surfaces and Volumes

A pth-degree B-Spline curve is specified as

C(ξ) =
n∑

i=0
Ni,p(ξ)P i (3.7)

where the {P i} are the control points and the {Ni,p(ξ)} are the previously mentioned B-

Spline basis functions and control polygon is the polygon formed by {P i}. An example

of a B-Spline curve with a knot vector Ξ = {0, 0, 0, 0, 1/4, 3/4, 1, 1, 1, 1} can be seen in

Figure 3.2.

The red line in Figure 3.2 is the B-Spline curve and the blue squares are the control

points used to compute this curve. With a control set {P i,j}, i = 0, 1, 2, · · · , n − 1, j =

0, 1, 2, · · · ,m−1 and knot vectors Ξ = {ξ1, ξ2, · · · , ξn+p+1} and H = {η1, η2, · · · , ηn+q+1}

a tensor product B-Spline surface is defined as

S(ξ, η) =
n∑

i=0

m∑
j=0

Ni,p(ξ)Mj,q(η)P i,j (3.8)

where {Ni,p(ξ)} and {Mj,q(η)} are the univariate B-spline basis functions of order p and q

corresponding to knot vectors Ξ and H. By introducing a global index asA = n(j−1)+i.

Equation 3.8 can be fitted into the following compact form
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Figure 3.2. A cubic B-Spline curve, its control points and control polygon

S(ξ) =
n∑

A=0
P AN

p,q
A (ξ) (3.9)

where Np,q
A is the bivariate B-Spline basis function computed as Np,q

A = Ni,p(ξ)Mj,q(η).

It is a trivial procedure to create B-Spline volumes, which are the trivariate basis defined

by a tensor product of B-Spline basis functions as

V (ξ, η, ζ) =
n∑

i=0

m∑
j=0

l∑
k=0

Ni,p(ξ)Mj,qLk,r(ζ)P i,j,k (3.10)

It is to be noted that even though there are definitions for the B-Spline and NURBS vol-

umes, their usage is rare in CAD. CAD representations for volumes are generally com-

posed of surface models representing the boundaries of object. For an example of a bi-

variate B-Spline basis function set with polynomial degrees p = 2 and q = 2 and knot

vectors Ξ = {0, 0, 0, 1, 1, 1} and H = {0, 0, 0, 1, 1, 1}, please see Figure 3.3.
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Figure 3.3. Quadratic Bivariate B-Spline basis functions

3.1.4. Non-Uniform Rational Basis Splines

B-Splines are suitable to make free-form modeling, however they are also in-

adequate to exactly represent some basic shapes such as circles and ellipsoids. Be-

cause of this, a generalized form of B-Spline basis called as Non-Uniform Rational Basis

Splines (NURBS) has become almost a standard technology in CAD. NURBS are de-

scribed through rational functions of B-Splines and inherent all the efficient properties

of B-Splines. Furthermore, through NURBS, conic sections such as spheres, ellipsoids,

paraboloids and hyperboloids can be exactly represented.

3.1.4.1. NURBS Basis Functions

The basis functions of NURBS are specified as
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Ri,p(ξ) = Ni,p(ξ)wi

W (ξ) = Ni,p(ξ)wi
n∑

j=0
Nj,p(ξ)wj

(3.11)

where {Ni,p}n
i=0 is the set of B-Spline basis function of order p and {wi}n

i=0 , wi > 0

is the set of NURBS weights. Utilizing proper weights allows the representation of any

type of curves, not only polynomials but also circular arcs. In the particular case of equal

weights, the NURBS basis reduces to the B-Spline basis. The NURBS knot vectors and

weights are granted for some basic geometries in Piegl and Tiller, 1997, however, the

general approach is to take these quantities from CAD tools such as Rhino with the help

of user defined subroutines.

3.1.4.2. NURBS Curves, Surfaces and Volumes

The NURBS curves are introduced in a similar manner to B-Spline curves with

a set of control points {P i}, set of weights {wi} and associated rational basis functions

{Ri,p(ξ)}. They are piecewise rational functions on ξ ∈ [0, 1] and written as

C(ξ) =
n∑

i=0
Ri,p(ξ)P i (3.12)

NURBS surfaces are computed by using the linear combinations of bivariate NURBS

basis functions as

S(ξ, η) =
n∑

i=0

m∑
j=0

Rp,q
i,j (ξ, η)P i,j (3.13)

where {P i,j} is the set of control points and
{
Rp,q

i,j (ξ, η)
}

is the bivariate NURBS basis

functions with the degrees of p and q. Bivariate NURBS basis functions are specified as
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Rp,q
i,j (ξ, η) = Ni,p(ξ)Mj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Ml,q(η)wk,l

(3.14)

In a similar fashion to B-Spline volumes, NURBS volumes are structured from control

points {P i,j,k} and weights wi,j,k > 0 as

V (ξ, η, ζ) =
n∑

i=0

m∑
j=0

l∑
k=0

Rp,q,r
i,j,k (ξ, η, ζ)P i,j,k (3.15)

where the trivariate NURBS basis functions Rp,q,r
i,j,k are defined as

Rp,q,r
i,j,k (ξ, η, ζ) = Ni,p(ξ)Mj,q(η)Pk,r(ζ)wi,j,k

n∑
k=0

m∑
l=0

t∑
s=0

Nk,p(ξ)Ml,q(η)Ps,r(ζ)wk,l,s

(3.16)

3.1.5. Isogeometric Element Formulation

In isoparametric Finite Element Analysis (FEA) there are essentially two spaces,

namely physical space and isoparametric space. In the physical space the problem do-

main is discretized by non-overlapping elements and corresponding representation of an

element in isoparametric space is called as the parent element. In contrast to the conven-

tional finite element formulation, there are three relevant spaces in isogeometric element

formulation and these are introduced in what follows.

The first space is called as index space and it means the whole space which is

specified by the knot vectors. For example, in order to demonstrate a NURBS sur-

face, bivariate NURBS basis functions constructed from the following knot vectors Ξ =

{0, 0, 0, 1/2, 1, 1, 1} and H = {0, 0, 0, 1/3, 2/3, 1, 1, 1} can be used. Index space which

is defined by these knot vectors is shown in bottom right corner of Figure 3.4. Parametric

space is defined by the non-zero intervals in knot vectors. For given knot vectors, the

corresponding parametric space is colored with gray and blue in Figure 3.4. Physical

space is where the exact geometry is computed with aid of the basis functions and the
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Figure 3.4. Schematic illustration of mappings in IGA for a surface model

(Adopted from Cottrell et al., 2009)

control points. An illustration of a physical space and control mesh, control points and

the associated elements can be found in Figure 3.4.

The aforementioned spaces are directly related to the B-Splines and NURBS,

however, an additional mapping is necessary to perform numerical integration through

Gauss method. This additional space is commonly called as parent space on a domain

Ω̃ = [−1, 1]dp and dp is the problem dimension. A graphical representation of parent

element can be seen in Figure 3.4. Parent space coordinates are defined as ξ̃ = (ξ̃, η̃, ζ̃).

While constructing an isogeometric analysis formulation, three mappings are re-

quired. The first mapping is between the index space and parametric space which is

easiest one and handled by just taking non-zero knot intervals. The transformation from

the parent domain to a parametric domain is done by
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ξ = 1
2

[
(ξi+1 − ξi) ξ̃ + (ξi+1 + ξi)

]
η = 1

2 [(ηi+1 − ηi) η̃ + (ηi+1 + ηi)]

ζ = 1
2

[
(ζi+1 − ζi) ζ̃ + (ζi+1 + ζi)

] (3.17)

Similarly, the relation between the parametric domain and the physical domain is defined

by

x =
n∑

i=1
N(ξ) Ci (3.18)

where the N(ξ) represents the univariate NURBS basis function for curve, bivariate

NURBS basis function for surface and trivariate NURBS basis function for solids. The

control points are denoted with Ci and the number of control points is n. ξ vector collects

the parametric coordinates. Jacobian of this transformation is defined by

J =



∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

 =


x,ξ x,η x,ζ

y,ξ y,η y,ζ

z,ξ z,η z,ζ

 (3.19)

the components specified as

∂xi

∂ξj

= ∂Ni

∂ξj

Ci,I (3.20)

where the Ci,I is the ith coordinate of control point I . Finally, the spatial derivatives of

NURBS basis functions with respect to coordinates of the physical domain, which is vital

for element formulation both in IGA and FEA, is represented by
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[
Ni,x Ni,x Ni,z

]
=

[
Ni,ξ Ni,η Ni,ζ

]

ξ,x ξ,y ξ,z

η,x η,y η,z

ζ,x ζ,y ζ,z


=

[
Ni,ξ Ni,η Ni,ζ

]
J−1

ξ

(3.21)

3.2. 10-Noded Bezier Tetrahedra Element

IGA, which is introduced in the previous sections, has a potential to become an

alternative to the conventional FEA. It is related not only to its ability to suppress in-

termediate steps between CAD model and FEA process but also its skills to represent

geometries with less elements and higher exactness.

It is to be noticed that IGA requires control points and knot vectors. Although

these data can be obtained from CAD programs such as Rhino, they are suitable for sur-

face structures for example shells. For efficient analysis of 3D solid bodies on isogeo-

metric element formulation with tetrahedral geometry is proposed by Kadapa, 2019a. By

using Bernstein polynomials, a technique that makes use of existing mesh generators to

construct the control points is also proposed. In the following subsections, this element is

re-elaborated starting with the basic information on Bernstein polynomials.

3.2.1. Bernstein Polynomials

Bernstein polynomials (curves) are the linear combinations of Bernstein basis

functions that are the special type of B-Splines and NURBS. If the weights are equal and

the knot vectors contain only zeros and ones the resulting B-Splines are called as Bern-

stein basis functions. Trivariate Bernstein polynomials Bn
i,j,k,l(ξ1, ξ2, ξ3, ξ4) on a tetrahe-

dral domain are represented by the following equation

Bn
i,j,k,l(ξ1, ξ2, ξ3, ξ4) = n!

i!j!k!l!ξ
i
1ξ

j
2ξ

k
3ξ

l
4 i+ j + k + l = n (3.22)
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in terms of parametric coordinates ξ1, ξ2, ξ3, ξ4 where ξ4 = 1 − (ξ1 + ξ2 + ξ3) and 0 ≤

ξ1, ξ2, ξ3, ξ4 ≤ 1. In Equation 3.22, n represents the order of the basis function and

i, j, k, l are the power of the parametric coordinates of the tetrahedral domain. Bernstein

polynomials and Lagrange polynomials are coincident in cases n = 0 and n = 1. The

trivariate linear (n = 1) Bernstein polynomials, which are used as shape functions for

non-local equivalent strain field, ε̄, are given by

B1
1000 = N ε

1 = ξ1 B1
0100 = N ε

2 = ξ2

B1
0010 = N ε

3 = ξ3 B1
0001 = N ε

4 = ξ4

(3.23)

The trivariate quadratic (n = 2) Bernstein polynomials, which are used as shape functions

of displacement field, u, are written as

B2
2000 = N1 = ξ2

1 B2
0200 = N2 = ξ2

2

B2
0020 = N3 = ξ2

3 B2
0002 = N4 = ξ2

4

B2
1100 = N5 = 2ξ1ξ2 B2

1010 = N6 = 2ξ1ξ3

B2
0101 = N7 = 2ξ2ξ4 B2

1001 = N8 = 2ξ1ξ4

B2
0011 = N9 = 2ξ3ξ4 B2

0110 = N10 = 2ξ2ξ3

(3.24)

Bernstein polynomials satisfy the partition of unity

n∑
i

Ni(ξ1, ξ2, ξ3, ξ4) = 1 0 ≤ ξ1, ξ2, ξ3, ξ4 ≤ 1

and the nonnegativity

Ni(ξ1, ξ2, ξ3, ξ4) ≥ 0 0 ≤ ξ1, ξ2, ξ3, ξ4 ≤ 1

conditions.

Within the IGA concept, the displacement interpolation for a second order Bézier

tetrahedral element requires the coordinates of the associated control points as shown in

Figure 3.5.
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Figure 3.5. Representation of Bézier tetrahedra element (The filled circles are nodes

of Lagrangian element and the circles are control points of Bézier element)

The edges of the element represented in Figure 3.5, can be considered Bézier curves and

a Bézier curve is defined as a linear combination of Bernstein polynomials and related

control points. Since the element is quadratic (n = 2), any point on the edge between the

nodes 1 and 4 in Figure 3.5 is given by

X(ξ) = (1 − ξ)2P 1 + 2ξ(1 − ξ)P 8 + ξ2P 4 0 ≤ ξ ≤ 1 (3.25)

where P 1, P 4 and P 8 are the control points. It is important to note that the corner control

points are interpolatory however the mid-edge control points are not. With the help of

this knowledge, a straightforward mapping methodology is proposed by Kadapa, 2019a,

where the control points of the quadratic Bézier tetrahedral element are computed from

the nodal coordinates of the Lagrangian quadratic tetrahedral element.

P 8 = 1
2ξ̂(1 − ξ̂)

[
X8 − (1 − ξ̂)2X1 − ξ̂2X4

]
(3.26)

If the mid-edge nodes are exactly at the middle of the edges, Equation 3.26 simplifies to

P 8 = 2 [X8 − 0.25X1 − 0.25X4] (3.27)
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Since in this case ξ = ξ̂ = 0.5, by using an analogous way and providing that the edge

nodes of the Lagrange elements are exactly in the mid-edge location, it is a trivial task to

extend aforementioned mapping procedure for the whole element as

P 1 = X1 P 2 = X2

P 3 = X3 P 4 = X4

P 5 = 2 [X5 − 0.25X1 − 0.25X2] P 6 = 2 [X6 − 0.25X2 − 0.25X3]

P 7 = 2 [X7 − 0.25X1 − 0.25X3] P 8 = 2 [X8 − 0.25X1 − 0.25X4]

P 9 = 2 [X9 − 0.25X2 − 0.25X4] P 10 = 2 [X10 − 0.25X3 − 0.25X4]

(3.28)

which can be compactly written in matrix form

P = LX (3.29)

The explicit form of the transformation matrix L that relates control points and nodal

coordinates of the Lagrangian element reads as,

L =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

−0.5 −0.5 0 0 2 0 0 0 0 0

0 −0.5 −0.5 0 0 2 0 0 0 0

−0.5 0 −0.5 0 0 0 2 0 0 0

−0.5 0 0 −0.5 0 0 0 2 0 0

0 −0.5 0 −0.5 0 0 0 0 2 0

0 0 −0.5 −0.5 0 0 0 0 0 2



(3.30)

39



The same mapping technique is also used for the displacement field and embedded within

the standard steps of the finite element method. In other words, nodal coordinates and

displacements are converted into coordinates and displacements of control points. The

basic steps of this transformation algorithm are given in Algorithm 1.

Algorithm 1 Mapping between nodal and control point quantities
Convert nodal quantities to control point quantities

uc = L un

P = L X

Calculate element internal force vector and tangent stiffness matrix in terms of control

point quantities

Convert element internal force vector and tangent stiffness matrix to nodal quantities

for Abaqus solver

F int
n = LT F int

c

Kn = LT Kc L

3.2.2. Discretization

By using the introduced shape functions (Equations 3.23 and 3.24), it is possible

to make spatial discretization of the weak forms, given in Equations 2.31 and 2.35. For

this purpose, the independent variables u and ε̄ are discretized by using quadratic and

linear Bernstein interpolation functions respectively as

u = N û (3.31a)

ε̄ = N ε
ˆ̄ε (3.31b)

their gradients are shown as
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ε = ∇ N û = B û (3.32a)

∇ ε̄ = ∇ N ε
ˆ̄ε = Bε

ˆ̄ε (3.32b)

where û and ˆ̄ε are the nodal quantities for displacement and non-local equivalent strain

fields, respectively. In addition to these discretized quantities, the corresponding test

functions have to be discretized as

ϕu = N ϕ̂u and ϕε = Nε ϕ̂ε (3.33)

their gradients are written as follows

∇ϕu = B ϕ̂u and ∇ϕε = Nε ϕ̂ε (3.34)

Therefore, by substituting these discretized fields into Equations 2.31 and 2.35,

the following final forms

∫
V

BT σ dV =
∫
V

NT ρ b dV +
∫
Γt

NT t dA (3.35a)

∫
V

NT
ε ε̄ dV + gl2c

∫
V

Bε
T ∇ε̄ dV −

∫
V

Nε
T ε̃ dV = 0 (3.35b)

are obtained. The corresponding discretized form of linearized equations for LIGD model

in matrix form read as

Kuu Kuε

Kεu Kεε


∆u

∆ε̄

 =

F u
ext − F u

int

−F ε
int

 (3.36)
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where element force vectors are

F u
ext =

ne∑
n=1

∫
Ve

NT ρ b dV +
∫
Γt

NT t dA

 (3.37a)

F u
int =

ne∑
n=1

∫
Ve

BT σ dV

 (3.37b)

F ε
int =

ne∑
n=1

∫
Ve

NT
ε ε̄ dV + gl2c

∫
Ve

BT
ε ∇ε̄ dV −

∫
Ve

NT
ε ε̃ dV

 (3.37c)

and the components of tangent stiffness matrices are specified

Kuu =
ne∑

n=1

∫
Ve

BT (1 −D) C B dV

 (3.38a)

Kuε =
ne∑

n=1

−
∫
Ve

∂D

∂κ

∂κ

∂ε̄
NT

ε C : ε B dV

 (3.38b)

Kεu =
ne∑

n=1

−
∫
Ve

∂ε̃

∂ε
: ∂ε

∂u
NT

ε B dV

 (3.38c)

Kεε =
ne∑

n=1

∫
Ve

NT
ε N ε dV +

∫
Ve

∂g

∂D

∂D

∂κ

∂κ

∂ε̄
l2c BT

ε ∇ε̄N ε dV

+
∫
Ve

BT
ε gl

2
c N ε dV


(3.38d)

This introduced nonsymmetric stiffness matrix is implemented in incremental iter-

ative Newton-Raphson solution procedure. As represented in Subsection 2.6.1 and shown

in Figure 2.8, previously driven finite element formulation for LIGD model can be con-

verted into the CIGD model just setting R = 1 in the interaction function, Equation 2.23.

This modification results a constant interaction function, which is equal to one.

It is to be noted that, element integrals are evaluated by using the four-point Gauss

quadrature rule.
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3.2.3. Abaqus Implementation

This presented formulation is implemented in the commercial FE solver Abaqus

through user defined element (UEL) subroutine, since this element formulation does not

exist in the Abaqus element library. A summarized workflow for this implementation is

given in Figure 3.6.

A ten noded quadratic 3D Bézier element is created. The displacement degrees

of freedom (DOF) defined all nodes of the element, whereas non-local equivalent strain

DOFs are defined only at the corner nodes, please see Figure 3.6. The total number of

DOFs become 34 as 30 of them are related to the displacements in x-, y- and z-directions

and four of them are related to the nodal non-local equivalent strain values.

The implementation of UEL subroutine can be considered under two parts: (a)

Input file (*.inp) and (b) FORTRAN file (*.for). The input file includes the representa-

tive data for the analysis and FORTRAN file controls the computational model which is

implemented by the user.

The input file (*.inp) has the Abaqus keywords and material properties along with

the element and connectivity data for the analysis. On the other hand, FORTRAN file has

the user defined element details. It is possible to divide FORTRAN file into two parts.

UEL subroutine includes the necessary computational steps for calculating the element

stiffness matrix and internal force column by using the aforementioned discretized con-

stitutive relations. Finite element assembly and solution of the system of equations are

performed by Abaqus.

As mentioned before, an incremental iterative solution algorithm, the Newton-

Raphson method, is used to solve the coupled nonlinear system of equations. For this

solution procedure, the computation of tangent stiffness at the beginning of every iteration

is necessary. At the end of the analysis, an output database file (*.odb) is created by

the Abaqus and that file contains the nodal quantities and solution dependent variables

(SDV). There are mainly two alternatives to read and visualize the output database file.

The first alternative is writing a Python script to read and visualize the output by using

some visualization package. Another way of the visualization of the output database

file is using the library elements of Abaqus. To achieve this, it is necessary to pass the

computed data of user defined element to the Abaqus library element during the analysis.
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This transfer can be done by using an Abaqus subroutine, which is called as UVARM.

With the aid of this subroutine, solutions obtained from the user defined element can be

visualized through Abaqus’ library elements. In order to complete this transfer for each

user element, a ”dummy” element with the same connectivity of UEL is created. This

dummy element has 10 noded tetrahedral topology and they behave elastically with the

very small modulus of elasticity (E = 1x10−12), so that they do not influence the solution.

An illustrated summary of this transfer process is shown in Figure 3.6.

Figure 3.6. Workflow in Abaqus during the analysis through UEL subroutine and two

field element with nodes

The main steps of the UEL subroutine is given in the following algorithm.

Algorithm 2 UEL Subroutine algorithm for a single element
Read u and ε̄ values from the previous iteration

Convert nodal quantities to the control point quantities ▷ Algorithm 1

Loop over integration points starts

Calculate ε

Evaluate ε̃, D and g ▷ Eqs. 2.18, 2.20 and 2.23

Compute σ ▷ Equation 2.9

Compute F u
ext, F u

int and F ε
int ▷ Equations 3.37

Compute Kuu, Kuε, Kεu and Kεε ▷ Equations 3.38

Convert the above control point quantities to the nodal quantities ▷ Algorithm 1
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3.3. Numerical Examples

The implementation has to be validated by benchmark problems. Therefore, two

numerical examples are considered to assess the performance of the quadratic tetrahedral

Bézier element. It is to be noted that, in these benchmark problems nearly incompressible

material behavior is considered and another two field element formulation (u-p element)

is created. For further information about nearly incompressible material behavior and

two field u-p formulation, please refer Bathe, 2014. The solutions obtained by hybrid

hexahedra element (quadratic displacement and linear pressure interpolations, Abaqus el-

ement type C3D20H) are taken as the reference solution. To get a consistent comparison,

the Abaqus element was selected as hexahedra element, since the quadratic tetrahedral

Abaqus element has constant pressure interpolation.

3.3.1. 3D Tapered Beam

In this example, a tapered beam model, which is 3D version of well known 2D

Cook’s Membrane, is considered with nearly incompressible linear elastic material be-

havior. The example’s geometry and the boundary conditions are taken from Kadapa,

2019a and shown in Figure 3.7.

Figure 3.7. The geometry and boundary conditions of the tapered beam (units in mm)

The material properties are used as proposed in Kadapa’s paper and the modulus

of elasticity and Poisson’s ratio are taken as, 240.565 MPa and 0.4999, respectively. The

surface traction is applied to the free surface (represented as hatched area in Figure 3.7)

of the beam. Magnitude of the surface traction is 2 N/mm2 in the y-direction and 0.4
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Table 3.1. Used meshes and number of elements for elastic tapered beam analysis

Total Elements Total Nodes

UEL Mesh 21242 33341

Abaqus Mesh 8192 36737

N/mm2 in the z-direction. The displacement values in the y-direction of point A are

collected to construct a convergence graph for quadratic Bézier tetrahedral element by

using successively refined meshes, please see Figure 3.8. Even though the total number

of elements used in UEL mesh is higher than the Abaqus mesh, the total number nodes

in UEL mesh is slightly less than the Abaqus mesh. Because of this difference, sizes of

the stiffness matrix and force vector are going to be smaller for mesh with tetrahedral

elements.

Except the analysis with very coarse mesh, which consists only 21 elements, re-

sults obtained by using quadratic Bézier tetrahedral element are very close with the hybrid

hexahedra element, please see Figure 3.8. Furthermore, a comparison between displace-

ment of Point A and reaction force values in the y-direction at the fixed end of tapered

beam is shown in Figure 3.9. The details of the used meshes are given in Table 3.1. It is

to be noticed that the curves are almost coincident in Figure 3.9.

Figure 3.8. Convergence study for displacements in the y-direction of point A
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Figure 3.9. Reaction force versus displacement graph in the y-direction

3.3.2. Von Mises (J2) Plasticity Example

In the second example, a plate with a central hole under tensile loading is con-

sidered with the classical J2 plasticity model without hardening. Because of the symme-

try, 1/8th of the geometry (as shown with red dashed lines in Figure 3.10) was modeled

and analyzed by using the quadratic Bézier tetrahedral elements. The geometry and the

boundary conditions used in the analysis can be seen in Figure 3.10.

Figure 3.10. The geometry and boundary conditions of the plate with a central hole

(units in mm)

The modulus of elasticity, Poisson’s ratio and the yield stress are taken as 200000
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MPa, 0.4999 and 600 MPa, respectively. A displacement controlled loading is applied

at the top surface of the specimen which is increased linearly and reached a final value

of 3-mm. The analyses are conducted using both the quadratic Bézier tetrahedra element

with a mesh that contains 1213 elements and Abaqus element type C3D20H with a mesh

that contains 1767 elements. The deformed shapes obtained from both of the FE anal-

yses and vertical displacement contours are shown in Figure 3.11, the left figure is the

reference solution and right is the quadratic Bézier . Reaction force components in the

y-direction are collected from nodes of the top surface and summed up to plot a reaction

force versus displacement graph. As can be clearly seen from Figure 3.12, the resulting

force-displacement graphs are almost coincident.

Figure 3.11. Deformed shapes for both reference element and quadratic Bézier element

with vertical displacement contour

Figure 3.12. Reaction force versus displacement graph in the y-direction
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CHAPTER 4

THREE DIMENSIONAL CASE STUDIES

4.1. 3 Point Bending Test

This experimental setup was proposed and a series of tests were conducted by

Jefferson et al., 2004. The purpose of using this example is to examine the performance

of the two field Bézier tetrahedral element in the case of planar fracture propagation.

Figure 4.1. Test setup and FE model (a) Test setup with boundary conditions and di-

mensions (b) FE model used in the analyses (all dimensions in mm)

The test setup with its geometrical details and dimensions are presented in the left

hand side of Figure 4.1. The test specimen is 100 mm x 100 mm in cross-section and

450 mm in length. The notch is located in the midspan and it has a depth of 50 mm and

a width of 5 mm. In a displacement controlled setting, the prescribed displacement is

applied and distributed along the depth by means of a cylindrical steel mill as shown in

Figure 4.1. The FE model with boundary conditions can be seen in the right hand side.

For this example, both CIGD and LIGD models were considered and used in the

analyses. Material properties used in this example are given in Table 4.1.
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Table 4.1. Used parameters for three point bending test

E(N/mm2) ν R n β κ0 α lc k

35000 0.2 0.005 1 85 9.00E-05 0.96 2 13.9

Table 4.2. Used meshes and number of elements for three point bending test

Total Elements

Mesh #1 13539

Mesh #2 21024

Mesh #3 33775

Mesh #4 43409

In order to carry out a mesh convergence study, four analyses with different num-

ber of elements were done. The details of the used meshes are given in Table 4.2. After

completion of these analyses, the prescribed vertical displacement values and the corre-

sponding reaction force values were collected. The corresponding displacement versus

force graphs can be seen in Figure 4.2.

Figure 4.2. Results of mesh convergence study for three point bending test
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The fourth mesh was selected for further investigations and comparisons with so-

lutions from Jefferson et al., 2004. The comparison between the experimental and numer-

ical predictions of other studies and FEA results of the current study can be seen in Figure

4.3.

Figure 4.3. Comparison of experimental and numerical results for prescribed displace-

ments (un) versus reaction force values in three point bending test

Result for the continuum damage model, which is described in a detailed fashion

in the previous sections, is shown with black line and experimental results are represented

with red stars and blue dots in Figure 4.3. It can be stated that, peak force prediction of

the FE analysis looks sufficient (the values of FE result and the average of experimental

results are 1469.9N and 1511.8N, respectively and the difference is around 2.8%). In the

post peak regime the FE analysis result falls higher than the experimental and numerical

results of Jefferson et al., 2004 almost throughout the loading history.

The deformed shape obtained from the FE analysis with vertical displacement

contour is located in the left hand side of Figure 4.4. The Gauss quadrature point locations

with a damage variable of d ≥ 0.99 and their coordinates were gathered. These coordinate

points and the border of the analyzed model were plotted to make a visual representation

of the crack surface around the notch. The planar behavior of the crack surface is clearly

visible in the right hand side of Figure 4.4.
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Figure 4.4. Analysis results (a) Deformed shape with vertical displacement contour

(with a scaling factor of 50) (b) Isometric view of fracture surface

In Figure 4.5, the views (a) and (b) show the damage contours of the current study

obtained by using LIGD and CIGD models. In view (b) it is clearly seen that the damage

zone diffuses to a wide band. It is difficult to identify a sharp fracture surface. Whereas,

in the case of LIGD model, diffusing of the crack zone is limited.

Figure 4.5. Damage contours of the current study obtained by using (a) LIGD model

and (b) CIGD model
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4.2. Double Edge Notched Specimen

A double edge notched (DEN) concrete specimen under mixed-mode loading is

considered in this example. This experimental setup was proposed and a series of tests

were conducted by Nooru-Mohamed, 1992 and a numerical modelling study by using the

experimental setup was done by Shedbale et al., 2021 among others. The purpose of using

this example is to examine the performance of the two field Bézier tetrahedral element in

case of mixed-mode fracture propagation.

Figure 4.6. Test setup and FE model (a) Test setup with boundary conditions and di-

mensions (b) FE model used in the analyses

The test setup with its geometrical details and dimensions are presented in Figure

4.6. In the experimental study, there were three types of specimen, but in this study only

DEN200 specimen is used. DEN200 has in-plane dimensions of 200 mm x 200 mm and

out-of-plane thickness of 50 mm. The specimen has a notch-to-depth ratio of 0.125. The

test specimen was fixed to apply tensile and lateral loads by using the loading frame. The

boundary conditions are shown in Figure 4.6 as well. By adjusting the vertical and lateral

loads, the mixed-mode loading is achieved.

It is to be noted that all of the FEAs conducted in this example are displacement

controlled. The prescribed displacements versus time graphs are given in Figure 4.7. The

prescribed vertical displacement (upn) was applied to the top surface of the specimen

and prescribed lateral displacement (ups) was applied to the left surface above the notch,
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please see Figure 4.7. These application surfaces are shown in the left hand side in Figure

4.6 as Loading Frame. upn/ups ratio is one as proposed in Nooru-Mohamed, 1992. The

average relative vertical displacement between MN and M’N’ is measured and designated

by un. Similarly, the lateral displacement between S and S’ is taken and denoted by us.

The finite element model which is used in the analyses is shown in right view (b) in Figure

4.6.

Figure 4.7. Prescribed displacements of upn and ups versus time graphs

For this example, both CIGD and LIGD was considered and used in the analyses.

Material properties used in this example are given in Table 4.3.

Table 4.3. Used parameters for double edge notched specimen

E(N/mm2) ν R n β κ0 α lc k

30000 0.2 0.005 1 100 9.85E-05 0.96 2 14.4

In order to carry out a mesh convergence study, three analyses with different num-

ber of elements were done. The details of the used meshes are given in Table 4.4. After

completion of these analyses, the prescribed vertical displacement values (upn) and the

corresponding reaction force values were collected from the top surface of the loading

frame in Figure 4.6. The corresponding displacement versus force graphs can be found in

Figure 4.8.

The third mesh was selected for further investigations and comparisons with so-
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Table 4.4. Used meshes and number of elements for double edge notch specimen

Total Elements

Mesh #1 24601

Mesh #2 33931

Mesh #3 43904

Figure 4.8. Results of mesh convergence study for double edge notch specimen

lutions from different sources. Comparison between the experimental and numerical pre-

dictions of other studies and FEA results of current study can be seen in Figure 4.9. By

using a similar approach, a comparison for lateral displacement values us is shown in

Figure 4.10. It is to be noted that, only 2D simulations were done by using 2D quadratic

quadrilateral elements with quadratic displacement interpolation and linear interpolation

for non-local equivalent strains in Shedbale et al., 2021. However, in the current study, 3D

quadratic Bézier tetrahedral elements with a quadratic interpolation for displacements and

linear interpolation for non-local equivalent strains both based on Bernstein polynomials

are used.

It can be stated that, peak force prediction of the FEA of current study seems

sufficient (the values of FEA results of current study and average of experimental results
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Figure 4.9. Comparison of experimental and numerical results for relative vertical dis-

placement (un) versus reaction force values in double edge notch specimen

Figure 4.10. Comparison of experimental and numerical results for lateral relative dis-

placement (us) versus reaction force values in double edge notch specimen

are 17434N and 18400N, respectively and the difference is around 5.2%). In addition to

that, FEA results of current study almost coincide with the numerical results obtained by
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using modified von Mises and modified Ottosen non-local equivalent strain definitions

in Shedbale et al., 2021. The comparison for vertical displacement un versus reaction

force and a similar comparison for lateral displacement values us versus reaction force

graphs are shown in Figures 4.9 and 4.10. Numerical predictions have a clear plateau

like region in Figure 4.10, whereas the experimental results do not. The FEA results of

the current study give lower reaction values as compared to the results of Shedbale et al.,

2021. However, in the last stages of the analysis the predictions of FEA of the current

study fall between the results of experimental range.

Figure 4.11. Deformed shapes with (a) Vertical Displacement Contour (with a scaling

factor of 120) (b) Isometric view of fracture surface

The deformed shape obtained from the FE analysis with vertical displacement

contour is located in left hand side of Figure 4.11. The Gauss quadrature point locations

with a damage variable of d ≥ 0.90 and their coordinates were gathered. These coordinate

points and the border of the analyzed model were plotted to make a visual representation

of the crack surface around the notch. The non-planar behavior of the crack surface is

clearly visible in right hand side of Figure 4.11.

In Figure 4.12, the views (a) and (b) the damage contours obtained from LIGD

and CIGD are shown next to each other. In view (b) it is clearly seen that the damage

zone diffuses to a wide band. It is difficult to identify a sharp crack line. Whereas, in

the case of LIGD, widening of the crack zones is suppressed. The agreement between

the damage propagation of the FEA of the current study and experimental crack patterns
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(black dashed lines) is good. In view (c), the numerical prediction obtained in Shedbale

et al., 2021 by using the modified von Mises non-local equivalent strain definition and

experimental cracks are shown. The width of the crack zone in view (c) is thinner than

LIGD based results of current study. The reason is for this difference is the fact that a

much finer FE mesh was used in Shedbale et al., 2021.

In view (c), the numerical prediction obtained in Shedbale et al., 2021 by using the

modified von Mises non-local equivalent strain definition and experimental cracks (black

dashed lines) taken from Nooru-Mohamed, 1992 are shown. In view (a), the experimental

cracks are located on the specimen to compare them with the FEA results of current study.

Figure 4.12. Damage contours of (a) FEA Result of current study with LIGD (b) FEA

Result of current study with CIGD (c) Numerical Result of Shedbale et al.,

2021. Dotted lines represent experimentally obtained cracks

4.3. Prismatic Concrete Beam Under Eccentric Loading

In this example, a prismatic skew notched concrete beam under eccentric loading

is considered. This experimental setup was proposed and a series of tests were conducted

by Jefferson et al., 2004 and a numerical study by using the experimental setup was done

by Cervera et al., 2017. The purpose of using this example is to examine the sufficiency

of the two field Bézier tetrahedral element in case of non-planar crack propagation.

The test setup is shown in Figure 4.13. It is a concrete beam with skew notch

clamped with steel frames at both ends. While one of the arms of steel frame is subjected

a point loading (at point P in Figure 4.13), the other three arms are restricted in vertical
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Figure 4.13. Test setup and dimensions for prismatic skew notched concrete beam

direction. Steel frame transfers point load to the concrete beam. The point load creates

both torsional and bending moments on the beam.

The finite element model which is used in the analyses with boundary conditions

can be seen in Figure 4.14. The steel frames are represented with yellow and concrete

beam is represented with green color in the figure. All of the finite element analyses

conducted in this example are displacement controlled and prescribed displacement is

applied at point P in vertical direction.

Figure 4.14. Used finite element model in the analysis and its boundary conditions

Steel frames have linear elastic material response and they stay in the elastic re-
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gion during the analysis. Modulus of elasticity and Poisson’s ratio for steel frames were

taken as E = 200000N/mm2 and ν = 0.3, respectively. Material properties used in the

concrete beam are represented in the Table 4.5.

Table 4.5. Used parameters for prismatic concrete beam

E(N/mm2) ν R n β κ0 α lc k

35000 0.2 0.005 1 85 9.00E-05 0.96 2 13.9

In order to conduct a mesh convergence study, four analyses with different number

of elements were conducted. The details of the used meshes are given in the Table 4.6.

After completion of these analyses, vertical displacement and the reaction force

values were collected from the point P. A mesh convergence study is made by using this

data and results can be found in Figure 4.15.

The third mesh was selected for further investigations and comparisons with so-

lutions from different sources. For this purposes, the notch mouth opening displacement

(also called as crack mouth opening displacement or CMOD) and reaction force at the

point P were measured and collected. To measure orthogonal CMOD, distance between

the points B and K in Figure 4.13 was stored in every step during the analysis. Compar-

ison between the experiment and finite element analysis for orthogonal CMOD can be

seen in Figure 4.16.

Result for the continuum damage model, which is described in a detailed fashion

in the previous sections, is shown with black line and experimental results are represented

with red stars and blue hexagons in Figure 4.16. It can be stated that, peak force prediction

of the FE analysis looks sufficient (the values of FE result and average of experimental

Table 4.6. Used meshes and number of elements for prismatic concrete beam

Concrete Elements Steel Elements Total Elements

Mesh #1 15966 432 16398

Mesh #2 30095 599 30694

Mesh #3 40184 612 40796

Mesh #4 49483 813 50296
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Figure 4.15. Results of mesh convergence study for prismatic skew notched concrete

beam

results 1285.2N and 1317.3N, respectively and the difference is around 2.4%). In the post

peak regime the FE analysis result falls in between the two experimental curves almost

throughout the loading history.

The deformed shape obtained from the FE analysis with vertical displacement

contour is located in Figure 4.17.

As mentioned in the beginning of this section, the most challenging part of this

example is that the non-planar behavior of the crack surface. Since continuum damage

mechanics is used in this thesis, to acquire a significant failure surface is not possible.

However, a crack surface can be represented by using the damage variables in integration

points. For this purpose, the Gauss quadrature point locations with a damage variable of

d ≥ 0.99 and their coordinates were gathered. These coordinate points and the border

of the analyzed model were plotted to make a visual representation of the crack surface

around the notch. In Figure 4.18, side view of fracture surfaces obtained from current

FEA and reference solution are represented.

The results from the experiment which was conducted in the previously mentioned

paper and FEA with both conventional and localizing implicit gradient damage model

is shown in Figure 4.19. The non-planar crack surface is visible both in the localizing
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Figure 4.16. Comparison of analysis and experiment results for orthogonal CMOD for

prismatic skew notched concrete beam

Figure 4.17. The deformed shape of analysis with vertical displacement contour plot

implicit gradient damage model and experimental results. However, crack surface cannot

be predicted properly by using the conventional implicit gradient damage model. The

used two field Bézier tetrahedral element mentioned in Section 3.2 and localizing implicit

gradient damage model defined in Section 2.6 seem to be successful to predict even for
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Figure 4.18. Side view of the fracture surfaces (a) FE Analysis result for defined model

in this study (b) FE Analysis result of reference paper

challenging non-planar crack cases.

Figure 4.19. Experimental and finite element analysis results. The non-planar behavior

of crack surface in localizing model coincides with the experimental result.

However, non-planar behavior cannot be seen in conventional model. (a)

Experimental Result (b) Localizing Model (c) Conventional Model

As can be seen in Figure 4.20, the comparison between the conventional and local-

izing implicit gradient damage model results are presented. To compare the predictions of

these two models please see the Figure 4.20. The crack surface obtained by using the con-
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ventional model is wide and non-planar behavior is not obvious. Whereas the localizing

model yields a thin and non-planar crack surface.

Figure 4.20. Comparison of crack surfaces obtained from conventional and localizing

implicit gradient damage models (a) Localizing (b) Conventional

4.4. Cylindrical Concrete Beam Under Eccentric Loading

In this example, a cylindrical skew notched concrete beam under eccentric loading

is considered. This experimental setup was proposed and a series of tests were conducted

by Jefferson et al., 2004 and a numerical study by using the experimental setup was done

by Cervera et al., 2017 similar to the example considered in Section 4.3. The purpose of

using this example is same as the previous one and is to examine the accuracy of the two

field Bézier tetrahedral element in case of non-planar crack propagation.

The test setup is shown in Figure 4.21. It is a cylindrical concrete beam with skew

notch clamped from both ends by using steel frames. One of the arms of steel frame

is subjected a point loading (at point P in Figure 4.21), the other three arms are fixed

in vertical direction. The point load creates both torsional and bending moments on the

beam.

The finite element model which is used in the analyses with boundary conditions
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Figure 4.21. Test setup and dimensions for cylindrical skew notched concrete beam

Table 4.7. Used meshes and number of elements for cylindrical concrete beam

Concerete Elements Steel Elements Total Elements

Mesh #1 20996 587 21583

Mesh #2 30077 574 30651

Mesh #3 43143 582 43725

Mesh #4 57441 582 58023

are shown in Figure 4.22. The steel frames are demonstrated with yellow and concrete

beam with green color in the figure. All of the finite element analyses conducted in this

example are displacement controlled and prescribed displacement is applied at point P in

vertical direction.

It is important to note that, this specimen and previous rectangular skew notched

beam specimen were tested in same experimental study for both specimens same materials

were used. Therefore material properties for steel and concrete materials are same as the

ones given in Section 4.3 and Table 4.5.

In order to carry out a mesh convergence study, four analyses with different num-

ber of elements were done. The details of the used meshes are given in the Table 4.7.
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Figure 4.22. Used finite element model in the analysis from different point of views and

its boundary conditions

In Figure 4.23, vertical displacement versus reaction force values obtained from

Point P for different meshes are presented. From these reaction force versus displacement

curves it is clearly seen that response converges a certain curve upon mesh refinement.

Figure 4.23. Results of mesh convergence study for cylindrical skew notched concrete

beam

The third mesh was chosen for further investigations and comparisons with so-

lutions from different sources mentioned in the previous section. Following the similar
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step explained in Section 4.3, CMOD is calculated and the resulting CMOD versus reac-

tion force graph is represented in Figure 4.24 along with the experimental and numerical

results.

Figure 4.24. Comparison of analysis and experiment results for orthogonal CMOD for

cylindrical skew notched concrete beam

It can be stated that, peak force prediction of the FE analysis looks higher than the

experimental results (the values of FE result and average of experimental results 928.3N

and 801.5N, respectively and the difference is almost 13.6%). In the post peak regime

the FE analysis result falls in between the two experimental curves almost throughout the

loading history.

Similar to the previous example, crack surface is generated by collecting the dam-

age variables in integration points. For this representation, the Gauss quadrature point

locations with a damage variable of d ≥ 0.99 and their coordinates were brought to-

gether. These coordinate points and the border of the model were displayed to obtain

a visual representation of the failure surface around the notch. In Figure 4.25, different

views of the fracture surface obtained from FEA and reference solution are presented.

In Figure 4.25, crack surface obtained by using the CIGD is also shown. From the

comparison of experiment, CIGD and LIGD crack surface, it can be clearly stated that

LIGD is performing better than CIGD in predicting the crack surface. The crack surface
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constructed from the CIGD is thicker and non-planar crack surface is not obvious. On the

other hand LIGD yields a thinner and non-planar failure crack surface.

It is also to be noticed that the previous and the current examples have a strong

dependency on the applied boundary conditions. Changes on applied boundary conditions

affect the obtained results dramatically.
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Figure 4.25. Experimental and finite element analysis results. The non-planar behavior

of crack surface in localizing model fits with the experimental result. But,

non-planar behavior cannot be predicted by using conventional model. (a)

Experimental Result (b) Localizing Model from front side (c) Localizing

Model from another side (d) Conventional Model from front side (e) Con-

ventional Model from another side
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CHAPTER 5

CONCLUSION AND OUTLOOK

5.1. Summary and Main Findings

In this thesis, main task was the implementation of two field formulation with a

tetrahedral geometry for damage mechanics based failure analysis of quasi-brittle struc-

tural components. To this end, LIGD formulation was embedded within a quadratic

Bézier tetrahedral element and implemented to Abaqus through user defined element

subroutine. Before failure analysis of quasi-brittle structural components, two bench-

mark problems were analyzed to validate the performance of the implemented element

and compared with the library element of Abaqus. Afterwards, the performance of im-

plemented element was investigated by means of 3D case studies. The main findings of

the study can be listed as follows;

• Implemented quadratic 3D Bézier tetrahedral element performed as good as quadratic

hexahedral element of Abaqus. The performance of the conventional quadratic

tetrahedral and quadratic Bézier tetrahedral element are close. Since Kadapa, 2019a

compared quadratic Bézier tetrahedral elements with conventional linear tetrahe-

dral ones, the performance of quadratic Bézier tetrahedral element seems to be very

good as compared to conventional tetrahedral element. However this comparison

given in Kadapa, 2019a is not appropriate since quadratic and linear elements are

compared.

• The results obtained from benchmark problems almost coincided with the reference

solution for both elastic and elasto-plastic material responses.

• 10 noded quadratic 3D Bézier tetrahedral element and LIGD model combination

gave sufficient results in case of both planar and nonplanar fracture propagation.

The results obtained from the first example with LIGD model were very close to

experimental results. The difference of peak responses was calculated around 2.8%
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and the post peak response of current study stayed slightly higher than the experi-

mental results. A thin and planar crack surface is obtained. In the second example,

the difference of peak responses was around 5.2% and post peak response was close

to the experimental study for both vertical and horizontal responses. Furthermore,

the resulting crack surface is non-planar and the propagation of the fracture can be

considered precise as compared to the experimental observations. In the third ex-

ample, the difference of peak responses was calculated around 2.4%. In the post

peak regime the analysis result falls in between the two experimental curves al-

most during the whole loading history. With the aid of the LIGD model, a thin

and non-planar fracture surface was obtained with very similar orientation to the

experimental one. The difference of peak responses was computed around 13.6%

for the last example. The result obtained in the post peak regime remains between

the experimental responses. A non-planar failure surface was obtained by using

LIGD model, however it was not possible to reach a thin crack surface by using

CIGD model. In all of the cases, with the LIGD model the crack paths are confined

to a relatively thin layers, whereas in case of CIGD, diffusion of damage is clearly

visible.

5.2. Recommendations for Future Studies

In this thesis, a study has been carried out on a subject that is still open to devel-

opment. The recommendations for future studies can be summarized as follows;

• Bernstein polynomials are non-negative in the whole range they are defined. With

the aid of this property, their usage as basis polynomials can prevent the existence of

negative components in mass matrices. Therefore, the presented Bézier tetrahedral

element can be extended to dynamics for both explicit and implicit analysis.

• As mentioned previously, the analysis results have a strong dependency on applica-

tion of boundary conditions. Comparison of the effects of applied boundary condi-

tions can be considered as a future study.

• The evolution equation for damage variable is not physically well motivated. There
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are fitting parameters both for CIGD and LIGD formulations which are not re-

lated to experimentally measured fracture parameters directly (e.g., fracture en-

ergy). Therefore, damage models where fracture energy and strength parameters

are directly used would be much more useful.

• This study can be extended to analyze the reinforced concrete structural compo-

nents. For this purpose, rebars can be modeled explicitly as 3D solid body or can

be embedded in the bulk as rebar elements.

• In this study, the modified von Mises equivalent strain was used. However, there

are also different equivalent strain definitions in the literature. The predictions of

different equivalent strain measures can be investigated as well.
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Bažant, Z. P., T. B. Belytschko, and T.-P. Chang (1984, December). Continuum Theory 

K.J. Bathe.

Bathe, K.-J. (Ed.) (2014). Finite element procedures (2nd edition ed.). Watertown, MA: 

REFERENCES



74

4145.

of approaches. International Journal of Solids and Structures 35(31-32), 4133–

Jirásek, M. (1998, November). Nonlocal models for damage and fracture: Comparison 

and Concrete 1(3), 261–284.

element simulations of fracture tests using the Craft concrete model. Computers

Jefferson, A., B. Barr, T. Bennett, and S. Hee (2004, August). Three dimensional finite 

element analysis. Englewood Cliffs, N.J: Prentice-Hall.

Hughes, T. J. R. (1987). The finite element method: linear static and dynamic finite 

(2nd ed ed.). Natick, Mass: A.K. Peters.

Farin, G. E. and G. E. Farin (1999). NURBS: from projective geometry to practical use 

metric Analysis Applied to Solid Mechanics. pp. 21.

Espath, L. F. R., A. L. Braun, and A. M. Awruch (2011). An Introduction to Isogeo- 

Mechanics and Engineering 319, 83–123.
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