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ABSTRACT

TOUCH GESTURES CLASSIFICATION BY DEEP LEARNING
METHODS

In this study, we carried out social touch gesture classification on two publicly

available datasets, Corpus of Social Touch (CoST) and Human-Animal Affective Robot

Touch (HAART), and our demo dataset. In order to classify touch gesture datasets, four

different models are proposed: 3-dimensional convolutional neural network (3D-CNN),

3-dimensional convolutional-long term short term memory neural network (3D-CNN-

LSTM), 3-dimensional convolutional-bidirectional long term short term memory neural

network (3D-CNN-BiLSTM) + and 3-dimensional convolutional transformers network

(3D-CNN-Transformer). The fundamental layer of the proposed deep neural network

architectures is 3-dimensional convolution layer that enables to extract spatio-temporal

features of touch gestures. In this regard, with the use of spatio-temporal features of

touch gestures, generalization performance of proposed four models have been improved

using data augmentation techniques by applying randomly shift and rotation, and ensemble

learning. Additionally, We also found out that Stochastic Gradient Descent (SGD)

optimization algorithm has better generalization performance than Adaptive Moment

Estimation (ADAM), which is used more frequently in deep learning. The accuracy of

classification results of three dataset is investigated in terms of proposed model. The

results showed that the proposed methods, especially ensemble classifier and the ensemble

classifier with data augmentation, are beneficial for obtaining more generalizable learning

algorithms. The scripts of deep neural network architecture are available upon request.

Keywords: Touch Gesture Classification, Touch Gesture Recognition, Deep Learning,

3-Dimensional Convolution, Long Term Short Term Memory, Transformers, Generalization,

Data Augmentaion
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ÖZET

DOKUNMA HAREKETLERİNİN DERİN ÖĞRENME YÖNTEMLERİ İLE
SINIFLANDIRILMASI

Bu çalışmada, açık erişime sahip iki veri seti, Corpus of Social Touch (CoST) ve

Human-Animal Affective Robot Touch (HAART) ve oluşturduğumuz veri seti üzerinde

sosyal dokunma hareketi sınıflandırması gerçekleştirdik. Dokunma hareketi veri setlerini

sınıflandırmak için dört farklı model önerilmiştir: 3 boyutlu evrişimli sinir ağı (3D-CNN),

3 boyutlu evrişimli uzun süreli kısa süreli bellek sinir ağı (3D-CNN-LSTM), 3 boyutlu

evrişimli çift yönlü uzun süreli kısa süreli bellek sinir ağı (3D-CNN-BiLSTM) ve 3

boyutlu evrişimli dönüştürücü ağı (3D-CNN-Transformer). Önerilen derin sinir ağı mimari-

lerinin temel katmanı, dokunma hareketlerinin uzamsal-zamansal özniteliklerini çıkarmayı

sağlayan 3 boyutlu evrişim katmanıdır. Bu bağlamda, dokunma hareketlerinin uzamsal-

zamansal özelliklerinin kullanılmasıyla, önerilen dört modelin genelleme performansı,

rassal olarak uygulanan dönme ve öteleme gibi veri artırma teknikleri ve toplu öğrenme

kullanılarak geliştirilmiştir. Ek olarak, Stokastik Gradyan İniş (SGD) optimizasyon algo-

ritmasının, derin öğrenmede daha sık kullanılan Uyarlamalı Moment Tahmini (ADAM)

algoritmasından daha iyi genelleme performansına sahip olduğu sonucuna ulaştık. Üç veri

kümesinin sınıflandırma sonuçlarının doğruluğu önerilen modeller ışığında araştırılmıştır.

Sonuçlar, önerilen metodların, özellikle toplu sınıflandırıcı ve veri büyütmeli topluluk

sınıflandırıcı algoritmalarının, daha genelleştirilebilir öğrenme algoritmaları elde etmek

için faydalı olduğunu göstermiştir. Derin öğrenme mimarilerinin kod betik dosyası istek

üzerine temin edilebilir.

Anahtar Kelimeler: Dokunma Hareketi Sınıflandırma, Dokunma Hareketi Tanıma, Derin

Öğrenme, 3-Boyutlu Evrişim, Uzun Süreli Kısa Süreli Bellek, Dönüştürücü, Genelleştirme,

Veri Büyütme
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CHAPTER 1

INTRODUCTION

Human behaviour can be defined as the set of actions of individuals to respond to

internal and external stimuli from their environment. While these set of actions are complex,

they play a substantial role in the construction of our experiences and understanding the

world [49]. The complexity of human behaviour can be reduced into three interactive

components: action, cognition and emotion of human. The action might be seen as a

self-initiated, purposeful movement sequence. It is, of course, complemented by proper

cognitive ability in a suitable state. Examples of such well equipped human actions might

be body movements, hand gestures or touch gestures.

Touch is one of the actions that enables shaping the individual’s physical environment

and communication with the world around us. It is the only sense that allows physical

contact with living and non-living beings. Through the instrumentality of multiple actions

of touch, the individuals express their state of emotions to each other as well. Understanding

such interactions between humans plays a significant role in the development of psychology.

In some sense, generally in the digital age, individuals often prefer to interact with

machines as they do with other individuals [15], and understanding those interactions via

computer analysis might be useful. The determination of human actions as behaviours by

computer analysis leads to research areas such as human-computer interaction, affective

computing [7], social signal processing [69]. These areas are commonly used in the

development of social robots with the purpose of applications ranging from therapeutic

robots for intervening with children and disabled individuals to improve the socialization

of the elderly. Moreover, some of the current research is concentrated on implementing

touch sense similar to humans on robotic grippers [37].

Social robots are able to sense the touch behaviour via tactile sensing modality

[11] which provides unique communication to express an individual’s emotions and intent

through affective touch [27]. These robots also benefit from other modalities such as audio

and facial expression. However, in the case of interaction with contact, perception of tactile
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signals during social interaction is doable only with proper combination of robotic skin

hardware with detection and recognition algorithms.

Figure 1.1: Interaction cycle for an robot with social intelligence to respond to human
touch [31]

The interaction cycle shown in Figure 1.1 consists of two main components: the

human and the robot. The human is the natural actor in the environment. The aim of the

interaction cycle is to respond to the natural actor in the proper way. The social robot is

equipped with tactile sensors and is responsible for sensing, classifying, interpreting and

responding to the human. These four capabilities should be essential to understand the

social meaning of the human touch.

Equipping a robot with touch sensors is the starting point of touch interaction.

Once the sensor encodes a touch gesture, a specific algorithm must recognize what type of

touch gesture is being performed. Recognition of touch can be examined in terms of the

classification of touch gestures. A robust classifier must be designed in order to obtain

accurate results. The other element is the interpretation of the social meaning of touch

gestures. Other important capabilities of touch interaction include appropriate interpretation

and thus responding to the human. Inferring the meaning from sensed gestures requires

several sensor settings and cannot be easily done. The final step, responding, must be

done in a way that makes sense to the human, not to confuse his/her mental state. These

four elements of touch interaction are closely related to each other, and each of them is as

important as the others.
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In the following, we provide a summary of the existing literature on prominent

studies in touch gesture classification with classical machine learning and deep learning

methods, necessary details of touch gesture datasets used in this work, the motivation and

problem definition of this work.

Chapter 2 is about methods that give a detailed information about deep learning

architectures. This chapter focuses on the definition of the main building blocks of

architectures and the mathematical operation inside these blocks. Additionally, this chapter

answers the question of how the hyperparameter of proposed architectures is tuned and

how is generalization ability of deep learning architectures are improved using several

techniques: data augmentation, ensemble classifier and using Stochastic Gradient Descent

algorithm instead of Adaptive Moment Estimation (ADAM).

Chapter 3 gives the results of deep learning methods introduced in Chapter 2 on

three datasets. The obtained results are summarized, discussed and compared to the existing

literature in Chapter 4. In Chapter 5, observations from classification results are discussed

in detail and a research direction for further analysis of touch gestures is explained.

1.1 Literature Review

In earlier studies with touch gesture recognition, several social robots have been

designed for communication with humans and interpret touch gestures. To the best of our

knowledge, the very first social robot PARO [58] is able to recognize two touch gestures,

stroke and hit. Haptic Creature [72] can sense various emotional states of humans through

interaction with them. There are plenty of applications such as Huggable [61], Probo [56],

AIBO [16], Miro [48], Lovot [73], etc. Comprehensive and detailed reviews can be found

in [59], [57] and [20].

The Social Touch Gesture Challenge, which was organized as a satellite event in

2015 [29], has sparked further studies on the recognition of social touch gestures. The

challenge has focused on recognition of touch gestures for two datasets: Human-Animal

Affective Robot Touch (HAART) [14] and Corpus of Social Touch (CoST) [32]. The touch

gestures in these datasets represent the problem of touch gesture recognition as an 8x8 grid
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of pressure sensors to sense various social touch gestures. There were 4 papers accepted to

the challenge as a benchmark results in social touch gesture classification.

In [4], researchers used statistical properties, image features and autoregressive

model coefficients to extract features from touch gestures. In addition to feature extraction,

several feature selection methods were performed in order to increase the accuracy of both

datasets. The accuracy, which was obtained after applying those methods with random

forest classifier, varied from 26% to 95% of CoST and from 60% to 70% of HAART.

Another paper in the challenge, [17], inputted high level features of touch gestures, statistical

distribution of pressure surface at each frame level, binary motion history to capture shape

of gestures, statistical properties of each signal in an 8x8 grid, spatial multi-scale motion

history histogram to capture touch dynamics to random forest classifier. They obtained the

accuracy of 59% and 67% for CoST and HAART, respectively.

In [63], the authors implemented random forest classifier as well as with overall

statistics of the gestures as global features, spatial relationship over temporal features as

channel-based features and some signal processing method such as Fast Fourier Transform

and Discrete Cosine Transform as sequence features. The overall accuracy they obtained

was 61.34% for CoST and 70.91% for HAART as recorded a state of art results in touch

gesture literature.

In [25], authors approached the problem by extracting features of touch gesture

and calculating likelihood score of them, and finally using these scores as inputs to simple

logistic regression. Three different methods were performed for extracting features to

identify touch gestures: 1) Using a deep auto-encoder to obtain spatial features in low

dimensions. 2) Determining geometric moment of each gesture frame. 3) Calculating

summary statistic for both spatial and temporal features to obtain high level features of

gestures. They got 56% accuracy on CoST, 71% accuracy on HAART.

As we have mentioned earlier, the social touch gesture challenge has accelerated

researches on social touch gesture recognition. The detailed review of papers until the year

2017 can be accessed in [30]. Additionally, authors in [30] published their own results on

the CoST dataset. They compared results of several classifiers such as Bayesian classifier,

Decision tree, Support Vector Machine and Neural Network in four different mode; gentle,

normal, rough, and combination of all. They did not obtain the state of the art result but

discussed their results on the recognition of touch gestures in a detailed way.
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A model that classifies touch gestures using spatio-temporal feature fusion was

proposed in [42]. First, a set of coefficients of each sensor channel is obtained by Discrete

Wavelet Transform (DWT). Then, these sets of wavelet coefficients were reduced to five

statistical features for classification tasks such as norm, standard deviation, skewness and

kurtosis which were inputed to four classifiers. The maximum obtained accuracy from

classification was 64.17% on CoST which is the state of the art result for the CoST dataset.

The very first deep learning models to classify touch gestures were performed for

both datasets in the paper of [26]. Three different models were considered: 2-dimensional

convolutional neural network (2D-CNN) to capture spatial features, 2-dimensional convo-

lution and recurrent neural network (RNN) to capture both spatial and temporal features,

and autoencoder (AE) following with recurrent neural network to capture reduced noise

spatial features and temporal features. These promising models in the deep learning field

did not outperform the state of the art results but gave similar results compared to classical

machine learning models.

Zhou and Du [74] analyzed different deep neural networks architectures including

2D-CNN, 3-dimensional convolutional and long term short term (LSTM) neural network,

LSTM with extracted features by geometric moments, combination of RNN, LSTM,

2D-CNN and 3-dimensional convolutional neural network on HAART dataset. Their

3D-CNN architecture was achieved the state of art result 76.1% accuracy.

Bani and Chetouani [13] proposed another deep learning model named as Attentive

Touch Model (ATM). The model consists of three building blocks; spatiotemporal encoding

with convolutional block and positional encoding, intra-attention and inter-attention to

optimize the learning process. The results are 60.9% and 67.8% for both dataset CoST and

HAART, respectively.

General motivations behind touch gesture recognition literature focused on clas-

sification of all recorded gestures and their variants as accurately as possible and such

classification must be independent from subjects. Previously reviewed papers have followed

the touch gesture challenge protocol. However, Albawi et al. [2] have obtained 63.7%

mean accuracy with leave-one-subject-out cross validation for all subjects on CoST using

2D-CNN.

There are various machine learning algorithms in the social touch gesture literature,

especially concentrated on classification because of The Social Touch Gesture Challenge
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in 2015 [29]. In the Challenge and the following years, researchers mainly focused on

machine learning methods with manually extracted features. Thereafter, with the rise of

the deep learning field, the attempts have been made to increase classification accuracy in

the touch gesture literature.

1.2 Touch Gesture Datasets

Three datasets CoST, HAART, our demo dataset were classified in this thesis.

The first dataset, CoST, was introduced in 2014 and there was no touch gesture dataset

available for research and benchmarking purposes before it. The HAART dataset was also

introduced in the following year. Both datasets are publicly available which contain labeled

training and test set. After their introduction, they became very popular among gesture

recognition, affective computing and human-robot interaction research. The summary of

datasets’ properties can be found in the Table 1.1.

Table 1.1: Dataset properties of CoST and HAART

Dataset Properties CoST Dataset HAART Dataset Our Demo Dataset

Number of social touch gestures 14 7 6

Size of sensor grid 8x8 8x8 15 x15

Sensor sampling rate 135 Hz 54 Hz 10 Hz

Sensor values 0-1023 0-1023 0-1023

Duration of gestures Variable 8s 20s

Touch surface Mannequin arm Various Cotton Fabric Condition

Variants Gentle, normal, rough Substrates and covers No Variants

Number of subjects 31 10 5

Training and test split 21 subjects/ 10 subjects 7 subjects/ 3 subjects 5 subjects/ 1 Subjects

Number of gesture 7,805 829 300
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1.2.1 CoST: Corpus of Social Touch Dataset

CoST stands for Corpus of Social Touch that was introduced in order to transfer

the tactile modality from interpersonal touch interaction to Human-Robot Interaction

(HRI)[31].

Figure 1.2: The experimental setting of CoST dataset reprinted with permission from [31]

Touch gesture data in CoST were collected from a sensor grid wrapped around a

mannequin arm as in Figure 1.2. The arm was chosen as the touch surface intentionally

because it was less invasive and neutral than other parts of the human body such as head,

shoulders and legs [23]. The sensor grid contains 64 pressure sensors placed as 8x8 sensor

array. There were 14 touch gestures recorded which were taken from the touch gesture

dictionary of [72]. The definition of each touch gesture can be seen in Table 1.2. The 14

gestures were performed by 31 subjects in 3 variations: normal, gentle and rough.
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Table 1.2: Recorded touch gestures in CoST dataset

Touch Gesture Gesture Definition

Grab Grasp or seize the arm suddenly and roughly.

Hit Deliver a forcible blow to the arm with either a closed fist

or the side or back of your hand.

Massage Rub or knead the arm with your hands.

Pat Gently and quickly touch the arm with the flat of your hand.

Pinch Tightly and sharply grip the arm between your fingers

and thumb.

Poke Jab or prod the arm with your finger.

Press Exert a steady force on the arm with your flattened fingers or hand.

Rub Move your hand repeatedly back and forth on the arm

with firm pressure.

Scratch Rub the arm with your fingernails.

Slap Quickly and sharply strike the arm with your open hand.

Squeeze Firmly press the arm between your fingers or both hands.

Stroke Move your hand with gentle pressure over arm, often repeatedly.

Tap Strike the arm with a quick light blow or blows using one

or more fingers.

Tickle Touch the arm with light finger movements.

Other important properties of the dataset are that there are 7805 gesture sequences

that belong to 21 training and 10 test subjects. The encoded sensor values range from 0 to

1023 which is sampled at 135 Hz.
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1.2.2 HAART: Human-Animal Affective Robot Touch Dataset

The aim of collecting touch gestures in the HAART dataset is to mimic human-

animal interaction. The dataset contains 7 social touch gestures: no touch, constant, pat,

contact without movement, rub, scratch, stroke and tickle. The definition of gesture can be

found in Table 1.3. The reason behind selecting these gestures is that they were found to be

the most often used gestures in the touch gesture dictionary [72]. Ten subjects performed

the touch actions on a 10x10 pressure sensor in Figure 1.3. Each instance is captured

during 10 seconds and sampled at 54 Hz with different conditions: all permutations of

3 substrate conditions (firm and flat; foam and flat; foam and curve), and 4 fabric cover

conditions (none; short minkee; long minkee; synthetic fur).

Figure 1.3: The experimental setting of HAART, reprinted with permission [14]

The HAART dataset was provided with an 8x8 array in each frame by trimming

from a 10x10 array. The pressure values range from 0 to 1023. The resulting dataset

includes 829 gestures constituted by 12 conditions, 7 gestures and 10 subjects. There were

11 faulty gestures in the dataset that were removed.
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Table 1.3: Recorded touch gestures in HAART dataset

Touch Gesture Gesture Definition

No touch No contact on sensor.

Constant Exert a steady force on the arm with your flattened

fingers or hand.

Contact without movement Any undefined form of contact.

Pat Gently and quickly touch the arm with the flat of your

hand.

Rub Move your hand repeatedly back and forth on the arm

with firm pressure.

Scratch Rub the arm with your fingernails.

Stroke Move your hand with gentle pressure over arm,

often repeatedly.

Tickle Touch the arm with light finger movements.

1.2.3 Our Demo Dataset

Our sensor setting is made from conductive silver strips, resistive fabric and paper

of acetate. The conductive silver strips are sprinkled on the acetate paper at certain intervals.

The resistive fabric is placed between the layer of conductive silver strips and its rotated

version by 90◦. The sensor setting is settled on a pillow and covered with fabric cotton as

shown in Figure 1.4. The piezoresistive sensors are preferred among other alternatives

such as piezoelectric and capacitive sensors in our sensor setting since the major reason is

that they are quite sensitive to force impacts [18]. The minor reasons are their low cost,

flexibility and bending ratio under variety of conditions.

The sensor properties in Table 1.1 has 15x15 sensor grid. The pressure value of

gesture range in our dataset is in the range of 0 to 1023 and the gestures are performed

during 20 second at sampling rate of 10 Hz. The gesture sequences in our dataset belong

to 6 classes: grab, tap, hit, pat, scratch, stroke. These gestures are performed by Turkish

10



subjects. Thus, Turkish translation of these gestures can be found in Table A.1 in Appendix

A. There are no additional variants of gesture. They are performed 10 times in normal

pressure by 5 subject. In total, our dataset contains 300 touch gestures.

(a) The sensor setting (b) The tactile sensor

Figure 1.4: Our sensor setting

1.3 Motivation

The main motivation of the thesis is how touch perception works in human-robot

interaction, especially how the touch gestures can be classified. To understand the

mechanism of touch gesture recognition as broadly as possible, a tactile sensor is developed

and the recorded touch gestures with appropriate experimentation settings are classified.

Additionally, the two publicly available touch gesture datasets are classified in order to

increase the benchmark results.

The classification of touch gesture sequences in CoST, HAART, and our demo

dataset is done using various deep learning methods by extracting spatio-temporal features

of touch gestures. The current literature has focused on increasing the classification

accuracy of test sets of dataset. This direction might be helpful in some sense but it is
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surely not sufficient for the recognition task. During recognition of touch gestures, the

motivation should take as much benefit as possible from training set. The aim should be

obtain generalizability of given data at hand.

The classification begins with how the touch gesture sequence is represented.

Formally, a touch gesture sequence x𝑖 ∈ R𝐻×𝑊×𝐿 can be represented as:

𝒙𝒊 =


𝑥 𝑗 ,(1,1) . . . 𝑥 𝑗 ,(1,𝑤)
...

. . .
...

𝑥 𝑗 ,(ℎ,1) . . . 𝑥 𝑗 ,(ℎ,𝑤)


(1.1)

where 𝑥 𝑗 ,(ℎ,𝑤) ∈ R𝑛, for ℎ = 1, 2, . . . , 𝐻, 𝑤 = 1, 2, . . . ,𝑊 and 𝐿 is the duration in terms of

number of samples in touch gesture sequence x𝑖. The approach to the problem of gesture

recognition is as follows: The touch gestures data were collected from the 𝐻 ×𝑊 sensor

channels at each time step 𝑗 . With the entire collection of one touch gesture, the shape of

data is 𝐻 ×𝑊 × 𝐿 which represents a 𝐻 ×𝑊 dimensional time series array where L is the

total number of samples. An instance of touch gesture sequence has 𝐻 ×𝑊 dimensional

spatial size and L dimensional temporal size. An example of gesture array that is mapped

to range from 0 to 255 can be seen in Figure ??. White-colored squares are represented by

value of 0 which corresponds to lowest pressure in sensor array and black-colored squares

are represented by value of 255 which corresponds to highest pressure in sensor array.

The second step is how the ground truth of the class label of the gesture sequence is

established. Even if the culture of an individual has a significant effect on the representation

of touch gestures, the optimal label can be defined by who makes the experimentation

settings.

The third step is how the classification of touch recognition is approached. There

are various alternatives to approaching the classification of gestures [3]. The approach to

the problem is as follows: given a set of n training touch gesture samples 𝑥 ∈ X and 𝑦 ∈ C

is the class label of 𝑥 from the set of classes C = {1, ..., 𝑐}, it is aimed to design a classifier

based on deep neural network by extracting spatio-temporal features such that 𝑓𝜃 : X → C

denotes a transformation with learned parameters 𝜃 from the input space X to predict the

class of an unseen touch gestures.
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1.4 Scope

The general idea behind the recognition of tactile signals is to classify gestures from

captured data via tactile sensors. Other methods such as unsupervised or semisupervised

learning may be performed to provide robust recognition. However, in this work, the

classification of touch gestures is performed by improving the generalization capability

of deep neural networks. The main objective of learning touch gestures is not only to

minimize errors in the validation and test set of gestures as the current literature suggests

but also to minimize generalization errors that is to have higher test accuracy than validation

accuracy. Eventually, obtain more generalizable deep neural network model that takes as

much as benefit from the training set.

In this thesis, we propose deep learning models to classify social touch gestures

by learning spatiotemporal features of these gestures with the help of 3-dimensional

convolution operation. There are plenty of models in the deep learning literature, the

fundamental idea is to preserve natural local features of touch gestures and classify them.

Hence, we propose four different deep neural network models to capture both spatial

and temporal features together with the blocks of 3-dimensional convolution, long term

short term memory and transformer. Using these four deep neural networks, the literature

required to have unified model for touch gesture classification problem. In that regard, the

CoST, the HAART, and our demo dataset are classified with changing only few parameters

such as epoch, class labels, etc.

Several techniques are also proposed to improve generalization performance of

networks by augmenting data with randomly shifted and rotated gestures, switching well-

known optimization algorithm Adaptive Moment Estimation (ADAM) with Stochastic

Gradient Descent (SGD) and ensemble classifier method to benefit from solution space of

each networks. This way, we seek to test the performances of classification methods for

shifted and rotated versions of touch gesture data.

In summary, the sensing and classification elements of touch gestures in Figure

1.1 are investigated with developed sensor settings using deep neural networks. The

well-known publicly available datasets are classified to obtain an unified classifier.
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CHAPTER 2

METHODS

Models that have been proposed in this section consist of two fundamental building

block: the feature extractor and the classifier. The main feature extractor of the models

is 3-dimensional convolution and the classifier is neural network. The models except 3-

dimensional convolutional networks have additional temporal extractor just before classified.

Eventually, the touch gesture sequences, which are resampled if necessary, are fed into the

models to extract spatial and temporal features. Then, a neural network classifier makes a

decision to assign labels to gestures.

2.1 Resampling

The proposed models require fixed sized inputs in temporal axis. Thus, the input

gestures need to be resampled in the given length, otherwise it is not possible to train our

models. The HAART and our dataset does not require resampling operation since they

already have fixed length sequence in the temporal axis. But, the CoST dataset has varying

size of gesture sequences. It is essential to make all gestures sequences in CoST dataset

same length in temporal axis. Before the data in CoST fed into deep neural network, they

were resampled to 200 frames which is the mean length of all gestures obtained by fitting

Rayleigh distribution to length of all gesture sequences in CoST as shown in Figure 2.1.

Rayleigh distribution is chosen since it is used for continuous probability distributions with

non-negative valued random variables [46]. Some of gestures are downsampled and some

of them are upsampled to obtain desired sequence length.
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Figure 2.1: The Rayleigh distribution fit for length of entire CoST dataset

Converting a gesture sequence to a higher equivalent sampling rate is referred to

as upsampling. The reversed form of upsampling is downsampling that is to convert a

gesture sequence to a lower equivalent sampling rate. The upsampling process first starts

by inserting intermediate points with zero amplitude between each of the values in the

sequence. Then, an interpolation operation [70] is performed by lowpass filtering [45].

The downsampling operation is reversed process of upsampling. After resampling, there

may be a loss of information in the touch gesture sequence.

2.2 Deep Neural Networks Architectures

This section contains detailed information about the building blocks of deep neural

network architecture and how they are combined to classify touch gestures.
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2.2.1 The Building Blocks of Architectures

The building blocks of deep neural network consist of two parts: feature extractor

and classifier. 3-dimensional convolution, LSTM, BiLSTM and Transformer are the feature

extractor in the deep neural network with the classifier of neural network. There are

additional layer that play a significant role in the proposed architectures: 1) Pooling layer is

to preserve invariant features in spatio-temporal axis 2) Dropout and spatial dropout layers

are to regularize the proposed networks.

2.2.1.1 Artificial Neural Networks

The field of artificial neural networks has a rich history which is inspired from

cognitive science neuroscience. The artificial neuron was firstly originated by McCulloch

and Pitts in 1943 as a mathematical model of the biological neuron [43]. Their mathematical

model was consisting of a perceptron with a bias, but did not have learnable weights in

constrast to model which was invented by Rosenblatt [52] in 1958 had learnable weight

which pioneered deep learning field as a subfield of machine learning in 2012 [36]. Deep

learning uses neural networks as function approximator, with a stacking many layers of

structurally similar components [51].

Artificial neural networks which nowadays are referred to as neural networks can

be described as a particular set of composable functions derived from a overly simplified

model of the brain. The neural networks start with a flexible set of functions { 𝑓 (𝑥; 𝜃}

constructed from parameterized by adjustable model parameters 𝜃𝜇 in order to approximate

original function 𝑓 (𝑥; 𝜃) ≈ 𝑓 (𝑥) where 𝑓 (𝑥) represent the function that takes as input an

𝑑𝑥𝑑 gesture sequence 𝑥𝑖 and outputs the label of the gesture sequence.

The fundamental component of the neural networks is the neuron that consists of

two operation: preactivation and activation.
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𝑧𝑖 (𝑠) = 𝑏𝑖 +
𝑛𝑖𝑛∑︁
𝑗=1

𝑊𝑖 𝑗 𝑠 𝑗 (2.1)

𝜎𝑖 ≡ 𝜎(𝑧𝑖) (2.2)

where 𝑖 = 1, . . . , 𝑛𝑜𝑢𝑡 and 𝑗 = 1, . . . , 𝑛𝑖𝑛. The preactivation 𝑧𝑖 of a neuron in Equation 2.1

is a linear combination of input signals of 𝑠 𝑗 which are weighted by𝑊𝑖 𝑗 and biased by 𝑏𝑖.

Then, each neuron is activated in Equation 2.2 according to the value of the preactivation

𝑧𝑖. Here, the scalar-valued function 𝜎(·) is defined as the activation function. Eventually,

a layer of the neural networks is parameterized by a matrix of weights and a vector of

biases together with a proper activation function.

Using the components at above, flexible set of functions can be constituted by

organizing many neurons into a layer and stacking such layers in such a way that the

outgoing vector of activation of the neurons in one layer feed into the neurons in the

following layer. Such organization is known as neural network architecture, in a more

modern name fully-connected network.

2.2.1.1.1 Activation Functions

The activation function at each layer of neural networks is chosen to be a nonlinear

function in order to convey as much information as possible from one layer to another.

The sigmoid activation function is a smoothed version of the perceptron activation

function [43]. The behaviour of original perceptron, which is just a step function, either

fires and outputs 1 or does not fire and outputs 0. The sigmoid activation function is a

logistic function as follows:
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𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑧) =
1

1 + 𝑒−𝑧

=
1

2
+ 1

2
tanh

( 𝑧
2

) (2.3)

It is not only a continuous function that maps from the domain of (−∞,∞) to the

range [0, 1] but also it preserve information about the magnitude of preactivation. However,

the sigmoid activation function is not a best choice for deep neural network architectures

due to the fact that it does not pass through the origin.

The hyperbolic tangent or tanh activation function in Equation 2.4 is scaled and

shifted version of the sigmoid activation function such that 𝜎(0) = 0.

𝜎𝑇𝑎𝑛ℎ (𝑧) =
𝑒𝑧 − 𝑒−𝑧
𝑒𝑧 + 𝑒−𝑧

=
𝑒2𝑧 − 1

𝑒2𝑧 + 1

(2.4)

One of them rectifier linear unit ReLU [19][44] in Equation 2.5 is the most popular

activation function used in deep neural networks and the reason behind its popularity is

being a scale invariant activation function and its behavior at the origin. These properties

allow the ReLU to create nonlinear relationship between inputs and outputs.

𝜎𝑅𝑒𝐿𝑈 (·) =


𝑥 if 𝑥 > 0

0 otherwise
(2.5)
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Despite the popularity of ReLU, it is not a smooth activation function. The Gaussian Error

Linear Unit (GELU):

𝜎𝐺𝐸𝐿𝑈 =

[
1

2
+ 1

2
erf

(
𝑧
√
2

)]
× 𝑧 (2.6)

where the error function erf(z) is given by

erf(𝑧) ≡ 2
√
𝜋

∫ 𝑧

0
𝑒−𝑡

2
𝑑𝑡 (2.7)

The graph of error function of GELU is similar to the tanh.

2.2.1.1.2 Pooling

Pooling operation is another important building block in Deep Neural Networks.

The idea is firstly introduced and used in [39], [38]. The pooling operation reduces the size

of feature map by using window and the purpose of window is to summarize information

in the border of that window by taking the average or the maximum value.

The way of summarizing information works by sliding a window across the input.

There are three parameter that affect the output size: input size, pooling window size and

stride which means the distance between two consecutive window operations.
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2.2.1.1.3 Dropout

Dropout is a regularization technique to reduce overfitting problem of neural

networks [60]. It does not only reduce overfitting, but it also improves generalization error

of model. During training phase of neural networks, some nodes in layers are randomly

ignored or dropped out. Such random dropping activity offers reduced computational

complexity as well. It can be used with fully connected layers, convolutional layers and

recurrent layers.

Spatial dropout [65] is an extension of dropout technique which make sense in

convolutional layer since the feature map is a 2-dimensional matrix. In case of applying

spatial dropout to the feature map, a neighbour values in the gesture array can provide a

highly correlated gradient. With the same principle as in the dropout, the spatial dropout

randomly drops feature maps.

2.2.1.1.4 Loss Function

The cross-entropy loss is a measure of similarity between discrete distributions.

In our models, these discrete distributions are the ground truth of gesture sequences and

the estimated distributions at the out of deep neural networks.

L = −
∑︁
𝛿∈D

∑︁
𝑖=1

𝑝(𝑖 |𝑥𝛿)𝑙𝑜𝑔[𝑞(𝑖 |𝑥𝛿)] (2.8)

where 𝑝(𝑖 |𝑥𝛿) is a discrete distribution of the ground truth or true output and 𝑞(𝑖 |𝑥𝛿) is a

discrete distribution of the network’s output. x is the input of network and 𝛿 is the index of
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input. 𝑖 is the component of output.

𝑝(𝑖 |𝑥𝛿) =
exp [𝑦𝑖;𝛿]∑
𝑗=1 exp [𝑦𝑖;𝛿]

𝑞(𝑖 |𝑥𝛿) =
exp [𝑧𝑖;𝛿] (𝑡)∑
𝑗=1 exp[𝑧𝑖;𝛿 (𝑡)]

(2.9)

The equation 2.9 which are the components of Equation 2.8 are sometimes referred as

softmax function.

2.2.1.2 3-Dimensional Convolution

In order to learn spatio-temporal features, 3-dimensional convolution operation

is proposed. The 2-dimensional convolution operation can only capture spatial features,

whereas the 3-dimensional convolution operation preserves spatial and temporal information.

Therefore, the feature learning is extended through temporal axis. As shown in Figure

2.2, applying 𝑘 × 𝑘 × 𝑑 dimensional filter enables us to feature mapping both spatial and

temporal features.

Figure 2.2: The input and output of 3D convolution operation reprinted by permission
from [66]
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The k represents the spatial size of convolution filter and d represents the temporal

size of convolution filter. Each touch gestures in the datasets are able to represent with

a size of 𝐻 ×𝑊 × 𝐿 where H and W are the height and width of the frame and L is the

number of frames in the gesture sequence, respectively. During applying 3-dimensional

convolution operation to touch gesture, the value at position (𝑥, 𝑦, 𝑧) on the 𝑗 th feature map

in the 𝑖th layer is given by,

𝑣
𝑥,𝑦,𝑧

𝑖, 𝑗
= 𝑓

(∑︁
𝑚

𝐻𝑖−1∑︁
ℎ=0

𝑊𝑖−1∑︁
𝑤=0

𝐿𝑖−1∑︁
𝑙=0

𝑤
ℎ,𝑤,𝑙
𝑖, 𝑗 ,𝑚

𝑣
(𝑥+ℎ),(𝑦+𝑤),(𝑧+𝑙)
(𝑖−1),𝑚 + 𝑏𝑖, 𝑗

)
(2.10)

where H and W represent spatial size of 3-dimensional kernel, L is the temporal size

of 3 dimensional kernel, 𝑤ℎ,𝑤,𝑙
𝑖, 𝑗 ,𝑚

is the (ℎ, 𝑤, 𝑙)th value of the kernel of the 𝑚th feature

map. If padding is not used and the stride is 1, then the dimension of feature map is

(𝑊 − 𝑘 + 1) × (𝐻 − 𝑘 + 1) × (𝐿 − 𝑑 + 1) generated by 3-dimensional convolutional layer.

The inherited disadvantages of the 3-dimensional convolution are computational

complexity and excessive memory usage. However, with cutting-edge technology such

as parallel computing, Graphic Processing Units, and Tensor Processing Units, those

disadvantages can be overcome to a certain degree.
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2.2.1.3 Long Term Short Term Memory

Figure 2.3: Structure of the LSTM

Long term short term memory networks (LSTMs) [24] are a special kind of

recurrent neural networks (RNN) [53] that are capable of capturing long term dependencies

in a sequence. The idea is quite straightforward and comes from autoregressive models,

in order to understand present information the previous information might be useful. For

instance, using previous frame of gesture sequence might inform the understanding of the

present frame of the gesture sequence.

LSTMs have chain like structure composed of cells, similar to the RNNs. However,

the repeating module of LSTMs has a different embedded structure. The key part of the

structure is cell state that has ability to remove and add information along cell state by a

structure called gates. The gates optionally enable information flow operated by activation

function and element-wise multiplication operation.

There are three main gates in the LSTM structure: input gate, output gate, forget

gate. The input gate determines the extent of information to be written onto the cell state,

the forget gate determines to what extent to forget the previous data and finally, the purpose

of the output gate is to decide which part of the cell state to output.
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Figure 2.4: Inner structure of the LSTM

In Equation 2.11, 𝑓𝑡 represents forget gate where 𝑥𝑡 is the current input vector, ℎ𝑡−1
is previous hidden vector,𝑊 𝑓 is weight matrices, 𝑏 𝑓 is bias vector. The forget gate makes a

decision to keep information in the cell state with certain degree calculated by activation

function. In the same equation, 𝑖𝑡 represent input gate where what new information in the

current cell is going to store. 𝑊𝑖 is the weight matrices of input gate and 𝑏𝑖 is the bias vector

and 𝐶𝑡 creates new candidate values that may be added to current cell state which is driven

by tanh activation function. Combining the 𝑓𝑡 , 𝑖𝑡 and 𝐶𝑡 , the old state 𝐶𝑡−1 is updated into

𝐶𝑡 . As a final step at the cell, to decide what the output is going to be, 𝑜𝑡 is employed which

is also driven by an activation function and ℎ𝑡 . The summary of mentioned operation can
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be found in the Figure 2.4

𝑓𝑡 = 𝜎(𝑊 𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏 𝑓 )

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶𝑡 = tanh (𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)

(2.11)

LSTMs are designed to overcome the long term dependency problem. That means,

it can store the information over long periods of time. But, such feature heavily depends on

the length of sequence. It also encodes long term dependencies by encoding one element at

each time. Encoding in this way makes the LSTM more resistant to the vanishing gradient

problem but make it impossible to parallelize the training process. So, LSTM requires

more training time due to its of nature of encoding.

2.2.1.4 Transformer

The transformer architecture is used to process sequential input in such a way

that takes advantages from correlation between elements in the sequence relying on the

attention mechanism [67]. There are important elements in transformer architecture that

provide us to capture long term dependencies in the sequence: positional encoding, residual

connection, layer normalization, multi-head attention.

Transformers models encode the entire sequence at once and that yields losing

critical information in the sequence, the order of sequence. That’s why transformer models

need to be able to capture positional information of elements of the sequence and input such
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positional information to the encoder of transformer. The model should encode a unique

representation for each time step of the sequence and should capture longer dependencies

as in the LSTM. Using the below equation, the positional information of elements in the

sequence:

𝑃𝐸(p,2𝑖) = sin (p/100002𝑖/𝑑)

𝑃𝐸(p,2𝑖+1) = cos (p/100002𝑖/𝑑)
(2.12)

where PE represent positional encoding of corresponding element, p is the position of

element in the sequence and i is the dimension. Thus, each dimension of the positional

encoding represented as a sinusoid function.

Residual Connection serve two main purposes: knowledge preservation and avoiding

vanishing gradient problem. During forward propagation of neural network, the inputs

are modified considerably by the time they reaching the last layer. Such modification may

result in the loss of the information that would present early on at the beginning layers. To

resolve this issue, one solution is to add residual connection that bypasses the intermediate

layers and feed information to deeper layers. This helps the deeper layer not to forget

relatively important information that was present early on the system.

The layer normalization makes the network faster and more stable while optimizing.

The operation is simply standardizing the neuron activations along the axis of features as

described below,

𝑥𝑖 =
𝑥𝑑
𝑖
− 𝜇

𝜎2 + 𝜖
(2.13)

where 𝑥𝑖 is neuron activations, 𝜇 is mean of features, 𝜎 is the standard deviation of features

and 𝜖 is a small value not to obtain zero in denominator.

Another important element in transformers is multi-head attention which contains
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certain number of self-attention mechanism. The purpose of the multi-head attention is to

filter out unnecessary features of the sequence by concentrating on different combination

of features in the same sequence using the Equation 2.14:

Attention(𝑄, 𝐾,𝑉) = 𝜎softmax

(
𝑄𝐾𝑇
√
𝑑𝑘
𝑉

)
(2.14)

where Q is query, K is key, V is value and 𝑑𝑘 is the dimension of query or key. Using Q, K

and V, the unnnecessary features in the gesture sequence are filtered out. The query, key

and values are identical vectors that are flattened versions of patches of gesture sequences.

By taking the dot product of query, key and values, we obtain a matrix that contains score

of each patch in terms of other patches.

As a summary of transformer, the gesture sequences are divided into patches or

3-dimensional submatrices. The patches and its positional information calculated by the

Equation 2.12 and only patches are normalized with their mean and variance. Then,

multi-head attention compares each patches in the gesture sequence and discriminate

them by taking the dot product of query, key and values. Another layer normalization

is performed to stabilize the network during training. The encoder part is finalized with

neural network by feeding all parameter extracting from gesture sequences. One additional

mechanism is necessary which is the residual connection that allows the encoder not

to encounter the vanishing gradient problem. As a result, the encoder of transformers

takes the input sequence and converts it into vectorized representation. This vectorized

representation then feeds into the neural network to obtain class labels. The advantage of

the network is to draw global dependencies between inputs and their labels by allowing

parallelization, unlike LSTM.
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2.2.2 Proposed Models

Four models are proposed using the building blocks which are introduced in Section

2.2.1. The architectures can be found in from Figure 2.6 to 2.9. The main block of

each architecture is 3-dimensional convolution where the spatio-temporal features of touch

gestures are extracted.

In the first architecture, the block that consists of 3-dimensional convolution, GeLU

activation function, 3-dimensional pooling layer and Spatial Dropout layer is used twice

before the neural network classifier. These two blocks works as feature extractor and the

obtained features are flattened by Global Average Pooling layer. Thus, The data will be

ready to classify. The classifier in the first architecture contains one input, one hidden layer

and one output layer. Not to encounter overfitting, the Dropout layer is added between each

layer.

Figure 2.5: The structure of the BiLSTM

The second and third architectures in Figure 2.7 and 2.8 are similar to the 3D-CNN

with one exception. The exception is the LSTM layer that is to extract additional temporal

features from flattened layer. In the second architecture, LSTM layers is used, and in the

third architecture the BiLSTM layer is used. BiLSTM layer in Figure 2.5 is capable of the
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input flows in both directions, not only from first element to last element of the sequence

but also from last element and first element of the sequence. The remaning architecture is

the same as in the 3D-CNN.

In the fourth architecture, the combination of 3-dimensional convolution and

transformers network is proposed to overcome the vanishing gradient problem of LSTM

while the input sequence is longer as in the gesture sequence. The proposed architecture

starts with 3-dimensional convolution, followed by transformers encoder and the neural

network classifier. The intuition behind the 3D-CNN - Transformer model is to capture

positional information of sequence, spatio-temporal features, global dependencies by

attention mechanism together might be beneficial to increase generalization accuracy.
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Figure 2.6: 3D-CNN
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Figure 2.7: 3D-CNN + LSTM
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Figure 2.8: 3D-CNN + BiLSTM
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Figure 2.9: 3D-CNN + Transformer
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2.3 Hyperparameter Tuning

The primary goal of hyperparameter tuning is to find the lowest generalization error

of the learning algorithm, in other words, the effective capacity of a learning algorithm.

The most important hyperparameter is learning rate since it affects the decision making

by optimization algorithm [21]. Other hyperparameters of proposed models are filter size

of 3-dimensional convolution, the pooling filter size, optimization algorithm, activation

functions, batch size of training samples and number of epoch to train the models.

The candidate hyperparameters for proposed models; convolutional filter size:

((2,2,2), (2,2,5), (2,2,10), (3,3,3), (3,3,5), (3,3,10)), pooling filter size: ((2,2,2), (2,2,5),

(2,2,10), (3,3,3), (3,3,5), (3,3,10)), learning rate: (0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005),

optimization algorithm: (ADAM, SGD), batch size: (64, 128, 256), activation functions:

(GeLU, ReLU), loss function: (categorical cross entropy), epochs: (200, 300, 500, 600, 800).

A grid search performed to determine best hyperparameters inspired [5][6]. Additionally,

the proposed models are trained with Tensorflow Platform [1] using Google Colaboratory’s

NVIDIA P100 and T4 GPUs.

2.4 Optimization Algorithms

From optimization perspective, training deep neural networks can be formulate as

non-convex optimization problem

min
𝑤

𝑓 (𝑤) := 1

𝑀

𝑀∑︁
𝑖=1

𝑓𝑖 (𝑤)

where 𝑓𝑖 is a loss function for data point 𝑖 ∈ {1, 2, · · · , 𝑀} which captures the deviation of

the model prediction from the data and w is the vector of weights of corresponding deep
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learning model being optimized. Such non-convex problem can be iteratively solved using

Stochastic Gradient Descent (SGD) [50]:

𝑤𝑘 = 𝑤𝑘−1 − 𝛼𝑘−1
(

1

|𝐵𝑘−1 |
∑︁
𝑖∈𝐵𝑘−1

∇ 𝑓𝑖 (𝑤𝑘−1)
)

(2.15)

where 𝑤𝑘 denotes weights in the 𝑘 𝑡ℎ iteration, 𝛼𝑘 is a step size sequence, also called the

learning rate, 𝐵𝑘 ⊂ {1, 2, · · · , 𝑀} is the batch sampled from the data set and ∇ 𝑓 (𝑤𝑘 )

denotes the stochastic gradient computed at 𝑤𝑘 . SGD uses only one learning rate for all

gradient coordinates as in Equation (2.15) and could suffer from slow convergence rate

since it scales uniformly the gradient of all parameters of the model during training [34].

Figure 2.10: A conceptual sketch of flat and sharp minimum, reprinted with permission
from [33]

In order to avoid shortcomings of SGD, several adaptive methods have been proposed

that adjust learning rate for each gradient coordinates such as Adam [35], AdaGrad [12] and

RMSprop [64]. These optimization methods scale the gradient diagonally using estimates

of the function’s curvature and much faster convergence rate than SGD. Adam and its
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update equations can be formulated as follows:

𝑤𝑘 = 𝑤𝑘−1 − 𝛼𝑘−1 ·

√︃
1 − 𝛽𝑘2
1 − 𝛽𝑘1

· 𝑚𝑘−1√
𝑣𝑘−1 + 𝜖

(2.16)

where

𝑚𝑘−1 = 𝛽1𝑚𝑘−2 + (1 − 𝛽1)∇̂ 𝑓 (𝑤𝑘−1)

𝑣𝑘−1 = 𝛽2𝑣𝑘−2 + (1 − 𝛽2)∇̂ 𝑓 (𝑤𝑘−1)2
(2.17)

In Equation (2.16) and (2.17), 𝛽 ∈ [0, 1) is a momentum parameter and 𝑣 is the accumulator

which is initialized to 0. 𝜖 is a constant to make sure the denominator not to equal 0. The

momentum parameter 𝛽1 is generally kept around 0.9 while 𝛽2 is kept at 0.99. Epsilon is

chosen to be 10−10 generally.

Adaptive Moment Estimation (Adam) has been used in many deep learning

applications because of performing well with requiring minimal tuning. However, adaptive

methods lack of ability to generalize compared to Stochastic Gradient Descent (SGD)

since the loss surface of deep neural networks tends to have many local minima and many

of these might be equally good in terms of training error, but they may have different

generalization performance [71] [76]. The lack of generalization of adaptive methods is

caused by tending to converge to sharp minimizers of the training function that is due to

the number of large positive eigenvalues of ▽2 𝑓 (𝑤). In contrast, SGD converges to flat

minimizers of training function [33] [68] since the loss surface indicates numerous small

eigenvalues of ▽2 𝑓 (𝑤) as in the Figure 2.10 where the x-axis represents the parameters of
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deep neural network model and the y-axis represents value of loss function.

2.5 Ensemble Classifier

Ensemble classifier is to build a prediction model by combining the strengths of

multiple single classifiers. The main advantage is that ensembles are often much more

accurate than the single classifiers, but they are computationally infeasible, especially with

deep neural networks having lots of parameters. The rationale behind ensemble methods is

that single classifiers have the uncorrelated error rate.

To improve prediction performance and generalization of single model, a relatively

simple search algorithm grid search is applied to ensemble the proposed classifiers. The

search space was defined as a grid of weights of each model to achieve best combination

of proposed 4 model that give maximum accuracy and feasible solution was obtained by

evaluating every position in the grid.

The grid of ensemble classifier has four dimensional since there are four proposed

model. Each dimension divided into 10 points and the best point that gives maximum

accuracy is searched by grid search algorithm. Then, the weight of each proposed model is

determined according to corresponding point in the axis of grid.

2.6 Data Augmentation

To obtain more generalizable deep neural networks, the best way to train the model

with more data. In practice, there are limited amount of data. So, data augmentation is

a technique that is used to increase the amount of data in the training dataset by adding

modified copies of existing data [39]. Adding modified copies to the dataset helps reduce

overfitting during the training phase as well.
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Examples of rotation and shift of touch gestures

The neural network as a classifier encodes information by reshaping input data

into a vector, so it is difficult to preserve equivariant features, even invariant features.

However, the neural networks learn to classify data by training on a significant amount of

data. It is natural to expect to give better results. But this highly depends on the quality of

training data. With the data augmentation, the neural networks may learn some equivariant

or invariant features [41]. In other words, the classifier is invariant to a wide variety of

transformations.

There are various types of augmentation techniques such as rotation, shift, flip,

saturation, cropping, etc. In this thesis, only the rotation and the shifted versions of touch

gestures are taken into account and fed into deep neural networks. The augmentation

should be applied only to limited number of samples in the training set of the datasets. In

the ideal scenario, each transformation should be applied to randomly selected 25% of

dataset. For instance, the augmentation by rotation should be applied to randomly selected

25% of dataset and same procedures should be repeated for the augmentation by shift. As

a final step, all transformed touch gesture data is added to the training set with its labels
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before it was transformed. Some of the examples of data augmentation can be seen in

Figure 2.11: (a) Touch without, (b) Right and upper-shifted version, (c) Left-shifted, (d)

−45◦ degree rotated version, (e) +45◦ degree rotated version.
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CHAPTER 3

RESULTS

3.1 Results on CoST Dataset

The Table 3.1 shows that the validation and test accuracies of each architecture

and their ensemble accuracies with respect to ADAM and SGD optimization algorithm.

The results are obtained by following the protocol in Social Touch Gesture Challenge. In

the challenge, the training subjects are 1, 2, 3, 5, 6, 7, 10, 12, 13, 14, 16, 18, 19, 21, 22, 24,

25, 26, 27, 28, 30 and the test subjects are 4, 8, 9, 11, 15, 17, 20, 23, 29, 31. The variants

that were taken into account in the challenge were gentle and normal gestures, not include

gestures that are performed in rough manner.

Table 3.1: The percentage maximum accuracies for CoST dataset

Architecture

ADAM SGD

Val. Acc. Test Acc. Val. Acc. Test Acc.

3D-CNN 55.46 55.27 55.74 56.82

3D-CNN - LSTM 56.31 52.89 58.72 55.69

3D-CNN - BiLSTM 56.74 55.27 55.89 55.15

3D-CNN - Transformer 43.55 40.14 37.54 35.24

Ensemble Classifier - 57.83 - 59.14

The above table contains the validation accuracies and test accuracies together.

During training phase, validation set is always chosen randomly from training set by the

amount of 20%. The test accuracy is always calculated after training phase is done. The

purpose of giving validation results and test results together are to emphasize generalizability
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of the proposed models. The validation accuracy of ensemble classifier cannot be reported

since the ensemble classifier takes only account for best combination of networks which

is not trainable due to choosing best weights of model. The obtained results in the table

is the average accuracy of 10 randomized trial. The number of epoch is 200 for ADAM

optimizer, 300 for SGD optimizer.

(a) CoST Dataset with ADAM Optimizer (b) CoST Dataset with SGD Optimizer

Figure 3.1: The model weights of ensemble classifier for CoST dataset

In the Table 3.1, among all proposed architectures, 3D-CNN-Transformers networks

classified the gestures 40.14% with ADAM and 35.24% with SGD. These are the lowest

accuracies among all reported result. However, 3D-CNN and 3D-CNN-LSTM results are

the best accuracies. By examining generalizability of architectures, the 3D-CNN with SGD

optimizer has passed the validation accuracy. Additionaly, it can easily seen that Ensemble

methods are benefical to generalize in terms of both optimizer. In both cases, ensemble

accuracies are better than any other reported validation accuracies.

Furthermore, the weights of the proposed classifiers while generating ensemble

classifier are shown in Figure 3.1. Ensemble classifier with ADAM took advantage from 3D-

CNN-BiLSTM, 3D-CNN and 3D-CNN - Transformer. 3D-CNN-BiLSTM classified as best,

so it is expected to take big role in ensemble. However, The result of 3D-CNN - Transformer

classifier was the lowest accuracy and took a little role in ensemble classifier. Although

the 3D-CNN-LSTM obtains higher accuracy than 3D-CNN - Transformer, it has 0 weight

in ensemble. Another ensemble classifier with SGD contains 3D-CNN, 3D-CNN-LSTM,
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3D-CNN-BiLSTM architectures, not the 3D-CNN - Transformer architecture.

Figure 3.2: Confusion matrix for test set of CoST dataset

The Figure 3.2 depicts the confusion matrix of CoST test set with ensemble

classifier with SGD optimization algorithm. The horizontal axis represents predicted labels

and the vertical axis represents the ground truth of gestures. According to the confusion

matrix at above, the most predictable touch gestures are poke, tickle and pinch, whereas

42



tap, rub and scratch are the most confusable gestures. The tap gesture is confused with pat

and slap. The ensemble classifier identifies rub gestures as stroke, scratch and tickle. The

third confused gesture is scratch which is classified mostly as tickle, rub and stroke.

Another method to increase generalizability was data augmentation of touch

gestures. The test set of CoST dataset was identical in the experiment of augmented and

non-augmented dataset. The only difference during experiment was training dataset. The

results belongs to each classifier can be found in the Table 3.2. The results are similar to

the non-augmented dataset except in 3D-CNN - Transformer architecture and Ensemble

classifier. The ensemble classifier are better than ensemble classifier with non-augmented

dataset.

Table 3.2: The percentage test accuracy of augmented CoST datasets

Architecture Augmented CoST

3D-CNN 55.81%

3D-CNN - LSTM 56.68%

3D-CNN - BiLSTM 49.67%

3D-CNN - Transformer 53.96%

Ensemble Classifier 63.58%

In the Table 3.3, leave-one-out-subject cross validation results of ensemble classifier

with SGD are reported. Accuracies are obtained by testing with only corresponding subject

on trained remaining subjects. The best accuracy belongs to subjects 3 and 10 with 78.18%

accuracy. The lowest accuracies are belongs to the subjects 23 and 14 with approximately

35%. The average accuracy of all subjects in the dataset is 59.72%.
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Table 3.3: Leave-one-out-subject cross validation percentage accuracy for CoST

Test Subjects 1 2 3 4 5 6 7 8

Accuracy 67.48 50.81 78.19 71.04 79.38 54.97 68.46 72.23

Test Subjects 9 10 11 12 13 14 15 16

Accuracy 62.12 78.19 62.71 52.33 52.92 35.34 46.83 49.62

Test Subjects 17 18 19 20 21 22 23 24

Accuracy 65.10 69.47 45.11 50.50 50.50 66.88 34.14 58.54

Test Subjects 25 26 27 28 29 30 31 Average

Accuracy 45.71 75.81 62.71 51.40 56.16 57.95 63.90 59.72

3.2 Results on HAART Dataset

The Table 3.4 shows that that the validation and test accuries of each arhitecture and

their ensemble accuracies with respect to two optimization algorithm for HAART dataset.

The results are obtained by following the protocol in Social Touch Gesture Challenge. In

the challenge, the training subjects are 3, 4, 5, 6, 7, 8, 10 and the test subjects are 1, 2, 9.

All conditions and substrates are considered, none of them excluded from dataset.

Table 3.4: The percentage maximum validation accuracy and test accuracy obtained by
proposed models in terms of ADAM and SGD Optimizer for HAART dataset

Architecture ADAM SGD

Val. Acc. Test Acc. Val. Acc. Test Acc.

3D-CNN 64.66 62.15 67.24 63.35

3D-CNN - LSTM 68.97 61.35 62.93 53.78

3D-CNN - BiLSTM 50.86 49.40 63.79 53.39

3D-CNN - Transformer 63.79 66.14 69.83 70.52

Ensemble Classifier - 69.33 - 72.51
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The Table 3.4 contains the validation accuracies and test accuracies together. During

training phase, validation set is always chosen randomly from training set by the amount

of 20%. The test accuracy is always calculated after training phase is done. The purpose

of giving validation results and test results together are to emphasize generalizability of

the proposed models. The validation accuracy of ensemble classifier cannot be reported

since the ensemble classifier takes only account for best combination of networks which

is not trainable due to choosing best weights of model. The number of epoch is 500 for

ADAM optimizer, 800 for SGD optimizer. The obtained results for HAART dataset are the

average accuracies of 10 randomized trial.

The best accuracy of test set of HAART belongs to 3D-CNN - Transformer classifier

with ADAM and SGD which is 66.14% and 70.52%. The lowest one is 49.40% that belongs

to 3D-CNN-BiLSTM with ADAM. The test accuracies obtained by LSTMs layers are

the lowest ones for both optimization algorithm. The ensemble method classified the test

dataset 69.33% with ADAM and 72.51% with SGD. SGD again outperformed the results

with ADAM.

(a) HAART Dataset with ADAM Optimizer (b) HAART Dataset with SGD Optimizer

Figure 3.3: The model weights of ensemble classifier for HAART dataset

The weights of ensemble method can be found in the Figure 3.3. The weights of

models with SGD are correlated with the accuracies. 3D-CNN - Transformer classifier has

major impact on ensembles. The 3D-CNN-LSTM has also higher weight in ensemble with

ADAM, whereas no impact in ensemble with SGD. Another higher weight in ensemble
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with ADAM belongs to 3D-CNN-BiLSTM and no impact with other optimizer.

The confusion matrix of test set of HAART is shown in the Figure 3.4. The

matrix includes the classification result of ensemble classifier with SGD. By examining the

confusion matrix, the most confusable gestures are rub and tickle. They are confused with

stroke and scratch with almost same amount. The most successfully predicted gestures are

constant, no touch and pat. The prediction of scratch and stroke are in the moderate level.

Mostly, scratch has been confused rub and tickle. The gesture of stroke is rarely confused

with pat and rub according to figure.

Figure 3.4: Confusion matrix for test set of HAART dataset
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Table 3.5: The percentage test accuracy of augmented HAART datasets

Architecture Augmented HAART

3D-CNN 62.55%

3D-CNN - LSTM 64.14%

3D-CNN - BiLSTM 60.95 %

3D-CNN - Transformer 67.73%

Ensemble Classifier 74.10%

The method of augmented training set increase the accuracy of ensemble classifier

but decrease the 3D-CNN and 3D-CNN - Transformer accuracies and increase the 3D-CNN

- LSTM and 3D-CNN - BiLSTM compared to pure training set. It is clearly be seen that

generalizability property has been improved by proposed models in Table 3.5.

Table 3.6: Leave-one-out-subject cross validation percentage accuracy for HAART dataset

Test Subjects 1 2 3 4 5

Accuracy 14.28 14.28 14.45 14.28 14.28

Test Subjects 6 7 8 9 10 Average

Accuracy 14.45 14.46 14.28 13.25 14.46 14.24

The Table 3.6 shows that leave-one-out-subject cross validation results of entire

dataset. The accuracies almost similar in all subjects. The difference in accuracies depends

on the size of test set. Some of gestures were missing as default in the dataset. The average

accuracy is 14.24 that is quite lower than intentionally selected test set in the Table 3.6.

Adding test set into training set go down the overall accuracy. Due to the less number of

samples in the HAART dataset, the proposed models was biased to specific gestures. They

only recognize touch without movement and no touch.
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3.3 Results on Our Demo Dataset

The results that reported in this section is classification results of our demo dataset.

The Table 3.4 shows that the validation and test accuracies of each architecture and their

ensemble accuracies with respect to two optimization algorithm. From Table 3.8 to 3.11,

the leave-one-out-subject cross validation results are reported.

The first attempt of classification contained all collected gestures in our dataset and

the accuracies of classification was almost zero. To overcome the lower accuracy problem,

the cross validation is performed to find out what are the most efficient gestures in our

dataset. Thus, the scratch and grab gestures are excluded from our collected data.

The Table 3.7 contains the validation accuracies and test accuracies together.

During training phase, validation set is always chosen randomly from training set by the

amount of 10% because of having less gesture data. The test accuracy is always calculated

after training phase is done. The purpose of giving validation results and test results

together are to emphasize generalizability of the proposed models. The validation accuracy

of ensemble classifier cannot be reported since the ensemble classifier takes only account

for best combination of networks which is not trainable due to choosing best weights of

model. The number of epoch is 50 for ADAM optimizer, 100 for SGD optimizer. The

obtained results for HAART dataset are the average accuracies of 10 randomized trial.

Table 3.7: The percentage maximum validation accuracy and test accuracy obtained by
proposed models in terms of ADAM and SGD Optimizer for our demo
dataset

Architecture ADAM SGD

Val. Acc. Test Acc. Val. Acc. Test Acc.

3D-CNN 25.00 45.00 55.00 50.00

3D-CNN - LSTM 45.00 25.00 35.00 25.00

3D-CNN - BiLSTM 40.00 37.50 65.00 52.50

3D-CNN - Transformer 37.50 25.00 40.00 20.00

Ensemble Classifier - 57.50 - 67.50
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The Table 3.7 shows the test set results of our demo dataset. The training set

consist of subjects: 1, 2, 4 and 5. The test set only contains the gestures of subject 3. The

ensemble classifier with SGD outperform other methods. It is not clearly seen the improved

generalization from individual results but can be seen in the both ensemble classifier. The

weights of ensemble classifier with ADAM optimizer 3D-CNN with 0.3, 3D-CNN - LSTM

with 0, 3D-CNN - Transformer with 0.1, 3D-CNN - BiLSTM with 0.8. The weights of

ensemble classifier with SGD optimizer 3D-CNN with 0.2, 3D-CNN - LSTM with 0,

3D-CNN - Transformer with 0, 3D-CNN - BiLSTM with 0.5. The confusion matrices

belong to these ensemble classifiers reported in the Figure 3.6 and 3.5.

Figure 3.6: Confusion matrix for test set of our demo dataset in result of ensemble classifier
with SGD
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Figure 3.5: Confusion matrix for test set of our demo dataset in result of ensemble classifier
with ADAM
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The obtained confusion matrix have in common results which is the stroke gesture

that is classified perfectly. Another perfect classification results is the hit gesture obtained

with ensemble classifier with SGD. The pat gesture 50% classified with ADAM and totaly

confused with the method of SGD where as the tap gesture are totaly confused with hit and

stroke gestures.

Table 3.8: Leave-one-out-subject cross validation percentage accuracy for our demo dataset
with ADAM optimizer

Test Subjects 1 2 3 4 5 Average

Accuracy 50.00 58.00 57.50 42.00 50.00 51.50

Table 3.9: Leave-one-out-subject cross validation percentage accuracy for our demo dataset
with SGD optimizer

Test Subjects 1 2 3 4 5 Average

Accuracy 52.00 64.00 67.50 34.00 64.00 56.30

At the above Table 3.8 that is cross validation results of ensemble classifier with

ADAM, the average accuracy is 51.50% percent ranging from 50% to 57.50%. The subject

2 is the best test set among other subjects. The results of leave-one-out-subject cross

validation can be seen in the Table 3.9 where the subject 3 is the best test set.

Table 3.10: Leave-one-out-subject cross validation percentage accuracy for augmented our
demo dataset with ADAM optimizer

Test Subjects 1 2 3 4 5 Average

Accuracy 52.00 58.00 64.00 50.00 50.00 54.80
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Table 3.11: Leave-one-out-subject cross validation percentage accuracy for augmented our
demo dataset with SGD optimizer

Test Subjects 1 2 3 4 5 Average

Accuracy 58.00 52.00 70.00 50.00 52.00 56.40

The cross validation results with augmented training set can be found in Table 3.10

and 3.11. The results with SGD are still the best results but average result is lower than

without augmentation. The subject 3 is again the best test set among other subjects which

has minimum accuracy of 52.00% and maximum accuracy of 70.00%.
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CHAPTER 4

DISCUSSION

In order to evaluate proposed methods, a comparison is made with other results in

the literature in Table 4.1 for CoST dataset and the Table 4.2 for HAART dataset. Two

method have been evaluated, the ensemble classifier and ensemble classifier with data

augmentation. In the comparison of literature results of CoST dataset, they did not achieve

the best accuracy, but the ensemble classifier with data augmentation are in second place

after Li et al. [42].

Table 4.1: Evaluation of CoST: Benchmark Results and Proposed Method

Paper Classifier Accuracy

Ta et al.[63] Random Forest 61.3 %

Gaus et al.[17] Random Forest 58.7 %

Hughes et al. [25] Logistic Regression 47.2 %

Balli et al.[4] Random Forest 26.0 %

Jung et al. [30] SVM 60.0 %

Hughes et al. [26] 2D-CNN 42.3 %

Hughes et al. [26] 2D-CNN - RNN 52.8 %

Li et al. [42] Random Forest 64.17%

Bani et al.[13] ATM 60.9 %

Proposed method Ensemble Classifier 59.14%

Proposed method Augmentation + Ensemble Classifier 63.58%

In the evaluation of HAART dataset, both proposed methods took second place in

terms of accuracy after Zhou et al. [75]. Zhou et al. have used 3D-CNN, same architecture

with the proposed method in this thesis, and achieved the best accuracy. Bani et al. [13]
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prefer to implement Transformers architecture and obtained 67.8 accuracy. Their method

only took into consideration temporal features of touch gestures. The obtained result with

3D-CNN - Transformer architecture is better than theirs, as well.

Table 4.2: Evaluation of HAART: Benchmark Results and Proposed Method

Paper Classifier Accuracy

Ta et al.[63] Random Forest 70.9 %

Gaus et al.[17] Random Forest 66.5 %

Hughes et al. [25] Logistic Regression 67.7 %

Balli et al.[4] Random Forest 61.0 %

Zhou et al.[75] 3D-CNN 76.1 %

Hughes et al. [26] 2D-CNN 56.1 &

Hughes et al. [26] 2D-CNN - RNN 61.3 &

Bani et al.[13] ATM 67.8 %

Proposed method Ensemble Classifier 72.51%

Proposed method Augmentation + Ensemble Classifier 74.10%

Classification results of our demo dataset and both publicly available dataset show

that the confusable gestures have common features: the definition of gestures can be easily

misunderstood by subject without strictly defined. Because, most of the mislabeled gestures

might be confusable with similar gesture in terms of movement such as poke and tap, rub

and stroke, hit and slap. Other factor rather than properly understanding the definition of

gestures and having similar movements by performing them could be cultural differences

among subjects.

While during experiment to achieve better accuracy and hyper-parameter tuning of

proposed models, the networks came across with the problem of overfitting and underfitting.

To overcome such problems, the dropout have been used in the proposed architectures; even

if the popular solution to overfitting using the dropout layer and batch normalization layer

together in the way that convolution layer, batch normalization layer, activation function

and dropout layer [28][60]. In the touch gesture classification, batch normalization did not
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work, it only increase training time.

On the one hand, from the results of CoST and HAART dataset several implications

can be made. Selection of proper subject highly affects the classification result. The subject

biases can be clearly observed in the leave-one-out-subjects cross validation results. It is

seen that the test set of both CoST and HAART dataset are intentionally chosen which

is significantly low accuracies and hardly generalizable. A lot of outlier gestures can be

observed from confusion matrices.

On the other hand, the results of our demo dataset showed us that our sensor setting

does not capture variety of touch gestures. Only specific gestures can be captured and

classified moderately. The measurement of touch gesture probably contains noisy data, so

they are not discriminated from each other.

We also trained with one dataset and tested with another dataset to figure out how

beneficial to try out-of-distribution training. The result of this experiment are not reported

since no significant results were observed.

The results show that the data augmentation is a beneficial method for three dataset,

especially, with more data such as in case of CoST and HAART dataset. With the limited

amount of data, the deep neural networks might turn biased classifier.

There are variety of ensemble methods in the literature [22]. One may decrease

the generalization error of test set by using them. We have chosen one of the simple

method, the grid search strategy, is just to show that the combination of proposed model

can outperform compared to the single model. According to the results, ensemble classifier

and ensemble classifier with data augmentation yields more generalizable accuracies then

single model.

However, the purpose of choosing one of the simple method, the grid search strategy,

is to show that the combination of models can outperform compared to one model at

each time. According to result of ensemble classifiers, the both cases which are only

the ensemble classifier and the ensemble classifier with data augmentation yields more

generalized test set than one proposed model.

It is observed that Stochastic Gradient Descent (SGD) has well-generalizable

optimization algorithm than Adaptive Moment Estimation. In most of the results, it

outperformed the ADAM. However, it requires more epoch to train since its convergence

rate is slow.
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The another observation from the results is that LSTM and BiLSTM are better

at relatively shorter sequences. The gestures in HAART dataset have longer sequences

than other two dataset. The temporal size is more than double of HAART. Compared

to other architecture, LSTM has lower accuracies in HAART that is why the 3D-CNN -

Transformer classifier is proposed, to capture long term dependencies.

Even if the classification results of our demo dataset is promising, encoding gestures

at the sampling rate of 10 Hz may not be sufficient. The actual sampling rate of the

developed sensor is 5 Hz according to the Shannon-Nyquist Sampling Theorem [45] which

is quite low in terms of the capability of number of finger movements can be done in one

second. The gesture movements may be captured in effective and detailed way with the

higher sampling rates.
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CHAPTER 5

CONCLUSION

5.1 Summary and Conclusion

Studying how touch perception works in humans and animals is especially important

in order to develop artificial touch perception systems for social robots. In this thesis,

improving the classification of touch gestures and generalizability of the proposed methods

have been attempted. The conducted experiments and analyses provided us to understand

the problem of touch gesture classification.

The ultimate goal of this thesis was to create unified model to be successful in

classification of touch gestures. In that regard, we classified two publicly available dataset

with four deep learning model. Generalization error of these two datasets are minimized

with ensemble classifier, data augmentation, switching ADAM optimization algorithm to

SGD. The proposed models are also tested with our demo dataset with developed sensor

setting. We performed same models as done in the two publicly available dataset to

minimize generalization error.

We observed that a single model is not enough to learn all necessary features

of touch gestures. Ensemble classifier by combining all of the proposed architectures

achieved more accurate results. Attempts to increase capacity of deep learning models was

quite effective. It is clearly observed that data augmentation and altering the optimization

algorithm provide well generalizability. It can also be concluded that most of the proposed

model are beneficial compared to the literature.

The number of gesture sequence in the datasets did not enough to improve

generalization performance of the proposed model. The common approach for such

improvement is collecting more data as much as possible. The results of research in [40]

[62] delivers that the performance on deep learning classifier increases logarithmically

based on volume of training data size and plateaus after certain number of training data is

57



seen. Our results show that classification performance of the proposed model increased by

augmenting the training set of the datasets.

The tactile sensors and the sensors that mentioned in this thesis collects lower level

indicators of touch gestures, not higher level of indicators due to the structure of sensor

array. No possible way to capture 3-dimensional shape of hand and touch gesture through

spatial and temporal axis on those sensor array. The pressure values of sensor can be

counted as the third dimension but it still not enough to represent touch gestures

Deep learning algorithms are quite robust to errors in the training set, less robust to

systematic errors. It is not easy to determine mislabeled touch gesture in the three dataset

as commonly done in the image dataset. Despite all systematic errors in the datasets, the

results are promising for three dataset compared to existing literature in term of accuracies.

5.2 Future Studies

The results have shown that the data augmentation methods improved the generaliza-

tion model. Additional data augmentation method, scaling may be beneficial, since all the

subjects in the dataset have different size of hands. However, data augmentation methods

are not an efficient method to overcome generalization problem. The proposed models

are able learn features of touch gestures that have variety of orientation. More advance

methods can be applied in order to learn transformation of gestures during movement.

Capsule Networks may resolve such transformation problem efficiently [54] [9], it can be

used as future model instead of using data augmentation to capture equivariant features of

the touch gestures.

Another powerful method to capture invariant features of touch gestures could be

Dynamic Time Warping (DTW) [55]. DTW is a simpler approach and able to handle one

dimensional time series determining discrepancy between them. We believe that combining

geometric invariant properties with the neural network classifier may be a possible solution

to classification of touch gesture problem, as in [10] [8].

The accuracy of our demo dataset may be increased by collecting more data and

adding new blocks to proposed architectures. The one of aim of this thesis is to propose
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unified deep neural network models for gesture classification. However, our demo dataset

have more sensor channels in the experimental setting than in the CoST and HAART sensor

settings. So, new blocks to models may be added since at the input of neural network the

touch gestures spatial and temporal features could not be preserved due to flattening.

One of the aims of machine learning models to approach the level of classification

accuracy as human did. In order to compare the performance of humans and the proposed

models, an experiment can be designed to recognize touch gestures that are performed on

individual skin. The individual whose skin is touched can try to predict the touch gestures

without looking them. In this way, we can test the proposed models in terms of human

performance. So that, we will have a metric to compare our models with real-touch feeling.

The error margin or uncertainty of model have not been investigated in this thesis.

Creating neural network using probabilistic methods can be quite effective to understand

the limitation of proposed models. Moreover, the recent studies have attempts to give a

proof the underlying theory of neural networks [51] but they are still in the category of

observational studies. In my opinion, there is a long way to give a proof of the theory

neural networks.

Further research to fill in gaps in our understanding of classification of touch

gestures might increase the capacity of models, especially concentration on learning of

invariant and equivariant features of touch gestures. Additionally, as emphasized in [47],

there are always only a finite sample from theoretically infinite population of individuals

to record their touch gestures. In that regard, the literature has still need to understand

underlying structure of individual gestures. Even if the datasets can classified to certain

accuracies, gestures in out of distribution gestures may not be classified correctly.
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APPENDIX A

Table A.1: Touch gesture definitions in experiment

Gesture label Gesture definition
Kavramak Elinizin tamamını kullanarak nesneyi kavrayıp

bırakınız. Hareketi tekrarlı bir şekilde sürdürünüz.
Parmak ile vurmak Tek parmağınız ile nesneye birkaç defa vurunuz.

Hareketi tekrarlı bir şekilde sürdürünüz.
El ile vurmak Elinizin tamamını kullanarak nesneye vurunuz.

Hareketi tekrarlı bir şekilde sürdürünüz.
Sıvazlamak Elinizi obje üzerinde ileriye ve geriye hareket

ettiriniz. Hareketi tekrarlı bir şekilde sürdürünüz.
Okşamak Elinizi obje üzerinde, objeye bastırarak dairesel

bir şekide hareket ettiriniz. Hareketi tekrarlı bir
şekilde sürdürünüz.

Tırmalamak Bütün parmaklarınızı kullanarak, tırnaklarınız ile
fazla kuvvet uygulamadan objeyi tırmalayınız.
Hareketi tekrarlı bir şekilde sürdürünüz.
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